

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor de la comunicación de congreso publicada en:
This is an author produced version of a paper published in:

16th International Conference on Artificial Intelligence and Soft Computing,

ICAISC 2017, Zakopane; Poland, June 11-15, 2017. Lecture Notes in Computer
Science, Volumen 10306. Springer, 2017. 501-5012

DOI: http://dx.doi.org/10.1007/978-3-319-59147-6_43

Copyright: © Springer International Publishing AG 2017

El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
https://link.springer.com/chapter/10.1007/978-3-319-59147-6_43

Deep Fisher Discriminant Analysis

David Dı́az–Vico, Adil Omari, Alberto Torres–Barrán, José R. Dorronsoro

Dpto. Ing. Informática and Instituto de Ingenieŕıa del Conocimiento
Universidad Autónoma de Madrid

Abstract. Fisher Discriminant Analysis’ linear nature and the usual
eigen–analysis approach to its solution have limited the application of
its underlying elegant idea. In this work we will take advantage of some
recent partially equivalent formulations based on standard least squares
regression to develop a simple Deep Neural Network (DNN) extension
of Fisher’s analysis that greatly improves on its ability to cluster sample
projections around their class means while keeping these apart. This is
shown by the much better accuracies and g scores of class mean classifiers
when applied to the features provided by simple DNN architectures than
what can be achieved using Fisher’s linear ones.

Keywords: Linear Discriminant Analysis, Deep Neural Networks, Non–linear
Classifiers.

1 Introduction

Fisher’ Linear Discriminant Analysis (FLDA from now on) is a very well known
linear dimensionality reduction/feature extraction technique that, while able to
provide useful data representations, does not intend, in principle, to solve a
given classification problem and, thus, it has known only a limited use as a tool
to build classifiers. There may be two main reasons for this. The first one is its
linear nature. In fact, while quite attractive, its main goal of concentrating the
projected features around their class means while keeping those means apart
can, for most problems, only be partially achieved by FLDA’s linear projections.
Moreover, in order to build a powerful classifier, we would most likely need
to apply a non–linear classifier to the FLDA features, but this combination
of a linear projection followed by a non–linear classifier may at best be only
competitive with the direct application of the non–linear classifier over the initial
features.

In any case, FLDA has been successfully applied in a number of problems,
most notably on face recognition where the original Fisher Face method [1] has
been progressively improved to become the state of the art in this area. A natural
idea is thus to somehow extend FLDA to a nonlinear procedure by applying it
after some non–linear pre–processing of the original features. This is the goal of
Kernel Discriminant Analysis (KDA, [12]), which addresses binary problems and
where the well known reduction for such problems of FLDA to a linear regression
problem [4], Chap. 5, is extended into a kernel setting.

As just said, KDA only is available in principle for binary problems. A dif-
ferent non–linear extension that works for multiclass problems was proposed
in [14,8], where FLDA is applied on the nonlinear features obtained after pro-
cessing the original features by the hidden layers of a standard feed–forward
multilayer perceptron (MLP). For this, the non–linear z features are first ob-
tained on the MLP’s last hidden layer as z = f(x,W), where W denotes the
MLP weights and biases up to the last hidden layer and f(x,W) the effect
of the MLP forward pass on the original features x. Then, FLDA’s standard
criterion function is used on these z to get FLDA’s projecting matrix A by
minimizing one of the several criterion functions J proposed in FLDA. Thus,
we can view the overall cost function J(A,W) as depending separately on the
FLDA’s projection matrix A and on the MLP’s weight and bias set W , which
suggests to optimize J(A,W) alternating the minimization on W and A. More
precisely, for a given Wk and zk = f(x,Wk), we first derive the Ak matrix
by minimizing J(A,Wk) by FLDA’s standard eigen–procedure. Then, the new
Wk+1 are derived minimizing J (W) = J(Ak,W); as shown in [8], the gradient
∇WJ can be explicitly computed by backpropagation. Notice that this ensures
J(Ak,Wk+1) < J(Ak,Wk) < J(Ak−1,Wk) and this alternating two–step process
can be iterated towards a minimum (A∗,W ∗) of J . As in [14,8], we shall refer
to this procedure as Non–linear Discriminant Analysis (NLDA).

While in principle any number of hidden layers could be considered, only
a single hidden layer was used in [14,8], as was customarily done before the
advent of deep neural networks (DNN). These have provided two main insights.
The first one is a better understanding of network initialization plus efficient
minimization and regularization procedures, which have made largely routine
the previously near impossible training of many layered networks. The second
one is the availability of symbolic gradient computation in platforms such as
Theano [2] or TensorFlow [9] that make it possible the consideration of cost
functions much more general than the square error or cross entropy usually
applied in neural network–based regression or classification.

Both could be applied to improve on NLDA, either by keeping the alternating
minimization of J(A,W) but working with deeper networks or, simply by apply-
ing symbolic differentiation on A, W directly to the joint J(A,W) cost function.
Here, however, we will follow a much more direct approach by taking advantage
of the results in [13], [15] and [16], where a link is established between a concrete
formulation of FLDA and a related Least Squares Regression (LSR) problem
with a particular, class–based target choice. We shall make extensive use of this
approach which we will call Least Squares Discriminant Analysis (LSDA). More
precisely, it is shown in [16,15] that there is an isometry between projections
derived from a specific FLDA formulation and those derived from the solution
of the LSR problem. In turn, this implies that if distance based classifiers such as
k–Nearest Neighbors or (as done here) minimum class–mean distances are used,
either a renormalized FLDA or LSR approaches result in equivalent classifiers.

Once the previous set up is available, it is straightforward to carry the LSR
problem into a DNN setting, working with the same targets as in the linear

case but which now are to be approximated by the outputs of a suitable DNN.
This is the approach we shall follow here and, besides a short, self–contained
presentation of the LSR and FLDA equivalence in [16,15] our contributions are
the following:

– The proposal of Deep Fisher Discriminant Analysis, DFDA, along the lines
just summarized.

– A comparison of DFDA with classical FLDA over several, large size, binary
and multiclass datasets, that shows a much better performance of DFDA.

The paper is organized as follows. In Section 2 we shall review classical FLDA
as well as the distance–based classifier equivalence established in [16,15] between
classical FLDA and a concrete LSR problem. Deep Fisher Discriminant Analysis
is introduced in Section 3 and in Section 4 we will compare its performance with
that of classical LFDA over several relatively large multiclass and, in some cases,
imbalanced problems. As we shall see, the accuracies and g scores of the DFDA
classifiers are substantially better. Finally the paper closes with a brief discussion
and pointers to further work.

2 Fisher’s Linear Discriminant Analysis and Least
Squares Counterparts

2.1 Fisher’s Linear Discriminant Analysis

We first briefly review classical FLDA. As mentioned, its goal is to linearly
project the original patterns in such a way that these projections are close to their
class means while these class means are kept apart. Several criterion functions
can be used for this goal and many of them are in fact equivalent; see [6], Section
10.2. Here we will seek to maximize the trace criterion

g(W) = trace(s−1T sB) = trace
(
(AtSTA)−1(AtSBA)

)
, (1)

where A is the projection matrix, SB and ST denote the between–class and total
covariance matrices respectively of the sample patterns and sB and sT are their
counterparts for the projections z = Ax; see [16], Subsection 2.2 for more details.
Solving ∇Ag = 0 leads to

0 = −2STAs
−1
T sBs

−1
T + 2SBAs

−1
T

i.e., S−1T SBA = As−1T sB or, up to an invertible transformation of A (which won’t
change the cost function g(W)), to

S−1T SBA = AΛ, (2)

with Λ the non–zero eigenvalues of S−1T SB (and of s−1T sB). Thus, for such an A
we have

g(A) = trace(s−1T sW) = trace Λ = λ1 + . . .+ λq,

which we maximize by sorting the eigenvalues in Λ in descending order and
selecting the q = min{d,C − 1} largest ones and some conveniently normalized
associated eigenvectors; here d is pattern dimension and C the number of classes;
q is then the rank of SB . Notice that the minimizer of (1) is not uniquely
defined, and some normalization has to be introduced; an usual choice is to
impose AtSTA = Iq.

In some problems ST may be ill conditioned and not have full rank. One
possibility in this case is to use the Moore–Penrose inverse of ST ; another, and
the one we follow here, is Regularized Discriminant Analysis [5], where we work
with St + λI for an appropriate λ > 0.

2.2 Least Squares Regression and Fisher’s Linear Discriminant
Analysis

It is a very well known result [4] that for 2–class problems, a solution to FLDA
can be obtained solving a Least Squares Regression (LSR) problem

min
1

2
‖Y − 1nw0 −Xw‖2 (3)

where 1n is the all ones vector, X is the n×d data matrix and Y is an appropriate
target matrix defined by setting Yp = n/n1 if xp belongs to class 1 and Yp =
−n/n2 if xp belongs to class 2. If m1 and m2 denote the class means on the
original features, it can be then checked that w = S−1T (m1 − m2). Since now
SB = (m1 − m2)(m1 − m2)t, it follows that S−1T SBw = wγ, with γ = (m1 −
m2)tS−1T (m1 −m2), i.e., w is an eigen–solution of (2) and, hence, a dilation of
a FLDA’s projection vector computed as in the previous subsection.

There have been several attempts to carry this result to a multiclass setting.
Among the most successful ones are the proposals by Park and Park [13] and
the somewhat simpler one in Zhang et al. [16], which we follow here and briefly
explain next in a much more concise way.

Consider again the LSR problem (3), where the target matrix Y to be ad-
equately chosen. For simplicity we assume that ST is regular; if not, we can
simply replace it with ST +λI for some λ > 0. The optimal LSR solution is then

w = S−1T XtHY,

where H is the centering matrix

H = In −
1

n
1n1tn;

in particular, XtH is the n× d matrix whose p–th row equals xtp −mt. The key
assumption is now that we can choose a target matrix Y such that we can write
SB as

SB = XtHY Y tHX.

Assuming this, let us write Q = XtHY (and, thus, SB = QQt); we show next
how can we transform the solution w = S−1T XtHY = S−1T Q of (3) into an eigen-
solution A of (2). Consider the semidefinite positive matrix R = QtS−1T Q whose

SVD decomposition is R = Ṽ Γ̃ Ṽ t. Assuming for simplicity that rank(Q) =
rank(SB) = C − 1, at least one of the diagonal elements in Γ̃ will be zero;
reordering Γ̃ if necessary, we assume it to be the element in the (C,C) ma-
trix entry. We can thus drop the last row and column of Γ̃ (that are 0) to get
a (C − 1) × (C − 1) diagonal matrix Γ , and the last column of Ṽ to get a
C × (C − 1) matrix V that verifies V tV = IC−1 and for which we can also write
R as R = V ΓV t.

Now it is easy to check that the pair (A = wV Γ−1/2, Γ) is an eigensolution
of (2) with normalization AtSTA = Iq, for we have

S−1T SBA = S−1T QQtwV Γ−1/2 = wQtS−1T QV Γ−1/2 = wRV Γ−1/2

= wV ΓV tV Γ−1/2 = AΓ.

In other words, if we choose Y adequately, from Q = XtHY we can derive the
LSR solution w, the SVD decompositon (V, Γ) of QtS−1T Q and the FLDA eigen-
solution A = wV Γ−1/2. This combines Algorithm 4 in [16] and the discussion in
its section 6 to derive a FLDA solution A from the LSR solution w.

As mentioned, one thing to consider is the possibility of ST being singular.
This can be easily handled now by working with a Ridge Regression problem,
i.e., solving for an appropriate λ > 0

min
1

2
‖Y − 1nC wt0 −Xw‖2 +

λ

2
trace(wtw),

where 1nC denotes the n×C all ones matrix and w0 is a C–dimensional vector.

2.3 Equivalence of Distance Classifiers

As in [16], let’s consider the projection matrix B = AΓ 1/2 = wV instead of
FLDA’s standard A. It is easy to see that B is also an eigen–solution of (2)
associated to the normalization BtSTB = Γ . Let y = w0 +wtx and ω = Btx be
the LSR and B–eigen–projections of a pattern x, respectively. We then have

‖ω − ω′‖2 = (x− x′)tBBt(x− x′) = (x− x′)twV V twt(x− x′) = ‖y − y′‖2.

Thus, any Euclidean distance–based classifier will give the same results when
applied to the B–eigen–projections ω than when applied to the LSR ones y.
This will be the case for a k–Nearest Neighbor classifier and also for the nearest
class mean classifier

δNCM (x) = arg minc‖wtx− wtxc‖ = arg minc‖y − yc‖,

which we will use here. In other words, we can obtain a FLDA–like nearest
class mean classifier directly from the LSR solution, without having to perform
the eigen–analysis that FLDA requires. We will call this procedure, proposed in
[16,15], Least Squares Discriminant Analysis, LSDA, and take advantage of this
in Section 3 to define our deep Fisher classifiers but, before that, we close this
section with two examples of suitable target matrices Y .

2.4 Two Examples

The well known relationship between the LSR and FLDA solutions for 2 class
problems mentioned above also follows easily from the previous discussion. In
fact, using the target vector Yp = n/n1 if xp is in class 1 and Yp = −n/n2
if xp is in class 2, then we have Q = XtHY = m1 − m2 and, hence, SB =
(m1 − m2)(m1 − m2)t = QQt. Besides, R = QS−1T Q = (m1 − m2)tS−1T (m1 −
m2) = γ, with a trivial SVD decomposition R = 1γ1 and, thus, we have here
A = w · 1 · γ−1/2 = S−1T (m1 −m2)γ−1/2 and B = Aγ1/2 = S−1T (m1 −m2) = w,
i.e, the ω and y projections now coincide.

For the general multi–class case, it is shown in [16], equation (4), that we
can write

SB = XtHEΠ−1EtHX = XtHEΠ−1/2Π−1/2EtHX,

where Π is the diagonal matrix with Πcc = nc and E is the n × C indicator
matrix with rows ep such that if xp is in class c, epc = 1 and epc′ = 0 for c′ 6= c.
Thus here we can take Q = XtHEΠ−1/2 and it is also shown in [16], equation
(25) that we can write the LSR solution w = S−1T XtHY as

w = S−1T XtHEΠ−1/2 = S−1T Q

if we use Y = HEΠ−1/2 as the target matrix. It is now easy to see that for such

Y and xp in class c, we have Ypc = n−nc

n
√
nc

, and Ypc′ = −
√
nc

n otherwise. These

are the targets we shall use in the next section.

3 Deep Fisher Discriminant Analysis

We have just argued how we can obtain for a general C class problem a nearest
class–mean classifier equivalent to one acting on the B–based Fisher projections
by performing the following steps:

1. For a given training set Dtr, solve for a data matrix Xtr, class indicator
matrix Etr and targets Ytr = HEtrΠ

−1/2 the LSR problem

min
1

2
‖Ytr − 1nC wt0 −Xtrw‖2,

obtaining the optimal d× C matrix w∗ and C–dimensional vector w∗0 .

2. Compute the projections y = w∗0 + (w∗)tx for x ∈ Dtr and their class means
yc = w∗0 + (w∗)txc.

3. Assign an x in a test sample Dts to the class whose mean the projection
y = w∗0 + (w∗)tx it is closest to; that is, to the class c∗ for which

c∗ = arg minc{‖y − yc‖}.

Now, a natural idea to extend this to a non linear setting is to perform the
LSR computations on features z obtained by a non–linear processing z = Φ(x)
of the original features x. An example of this is Kernel Discriminant Analysis,
KDA [12,16], where a certain generalized eigenvalue problem involving the kernel
matrix K = ZZt is solved, with the matrix Z being Z = Φ(X); in particular the
projections z are not needed explicitly as they enter the computations through
a kernel k such that z · z′ = Φ(x) · Φ(x′) = k(x, x′). As it is often the case in
kernel methods, handling the n× n matrix K can be too costly in large sample
problems and some suitable low rank approximation would have to be used.

A simpler alternative, better suited in principle for large sample problems, is
to derive the z features using a straightforward DNN extension of the previous
linear setup; more precisely, in a DNN setting we would

1. Solve over a training set Dtr the LSR problem

min
1

2
‖Ytr − f(Xtr,W)‖2

with Ytr the previous training target matrix and the p–th row of the matrix
f(Xtr,W)p is given by f(Xtr,W)p = f(xp,W), where f(x,W) is the transfer
function of a deep network with linear outputs and overall weight set W; we
thus obtain an optimal DNN weight set W∗.

2. Compute the projections yp = f(xp,W∗) over Dtr.
3. Assign a new x ∈ Dts to the class whose mean the projection y = f(x,W∗)

is closest to.

Writing W∗ = (w∗0 , w
∗,W ∗) with w∗0 , w

∗ the linear output weights, these op-
timal w∗0 , w

∗ solve the LSR problem (3) over the last hidden layer features
z = Φ(x,W ∗), with Φ the DNN transfer function up to the last hidden layer.
Thus, the class mean classifier of the full DNN is equivalent to a class mean
classifier over some FLDA projections of the z patterns in the last hidden layer
which, in turn, are also learned by tuning the W component of the overall weight
W. In other words, the DNN also performs a particular kind of representation
learning, as in this case it learns in its last hidden layer new features that have
been optimized to perform FLDA on them. We will call this Deep Fisher Dis-
criminant Analysis, or DFDA.

As in the linear case, we may avoid singularity issues here by adding a regu-
larization term, i.e., solving for instance

min
w,W

1

2
‖Y − f(X,w0, w,W)‖2 +

λ

2
trace(wtw + W̃ tW̃),

with W̃ the components of W excluding the biases at each hidden layer. This
is the cost function we will use. Of course, in the deep case one may use other
regularization terms for the W components of the overall weight structure W
(such as, for instance, dropout), but the term λ

2 trace(wtw) should be kept in
any case for the linear weights w.

Table 1. Train sample size, dimension, number of classed and ratio between the max-
imum and minimum class sizes for the considered datasets.

Problem n. patterns dimension n. classes class ratios

combined 78,823 100 3 2.156
dna 2,000 180 3 2.265
ijcnn1 49,990 22 2 9.301
letter 15,000 16 26 1.128
mnist 60,000 784 10 1.244
pendigits 7,494 16 10 1.085
satimage 4,435 36 6 2.583
shuttle 43,500 9 7 5,684.667
w7a 24,692 300 2 32.368
w8a 49,749 300 2 32.637
usps 7,291 256 10 2.203

4 Numerical Experiments

4.1 Datasets and Quality Measures

We will consider the datasets SensIT Vehicle (combined), dna, ijcnn1, letter, mnist

, pendigits, satimage, shuttle, w7a, w8a and usps. All of them also have separate,
well defined train–test splits and, except mnist, are available on the Datasets
section of the LIBSVM web site; for mnist we have used Scikit–Learn to fetch it
from mldata. We have put an emphasis in relatively large, multiclass datasets;
in Table 1 we give their dimension, total number of train patterns, number of
classes and their maximum class size ratios, i.e., the ratio of the maximum class
size to the minimum one. Data sizes go from 2,000 (dna) to 78,823 (combined)
and the number of classes ranges from 2 to 26 (letter); while some of them are
quite balanced, others (w7a, w8a and particularly shuttle) present large class im-
balances, having class size ratios� 1. Because of this, the main quality measure
we will use for model evaluation will be the g–score, i.e., the geometric mean of
the different class sensitivities:

g =

(
C∏
c=1

Sc

)1/C

=

(
C∏
1

mcc∑
jmcj

)1/C

,

where mcj is the (c, j) entry of the confusion matrix, that is, the number of class
c patterns that are assigned to class j. The g–score measure is often used in
imbalanced classification as it is more robust to markedly different class sizes
than accuracy, easily achieved by assigning small class patterns to the largest
class. Because of this we will also use g as the merit function for hyper–parameter
selection of both linear and deep models. Nevertheless, we shall also report the

accuracies a =
∑

cmcc∑
c,j mcj

.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://mldata.org/

4.2 Deep Model Universal Approximation Capabilities

The goal when using deep versions of FLDA is to obtain better representations
in the last hidden layer of which the final, Fisher–like, linear transform can
take advantage. In an extreme perspective, overfitting should concentrate each
class around its mean while keeping these classes far apart. Once vanishing
gradients are avoided and proper training is possible, the simplest way to overfit
a dataset is to work with a deep enough network with rather large hidden layers,
which ensures a large number of weights. We will do so here, building for each
dataset four DFDA models having between 2 and 5 fully connected hidden layers
with 100 units each but controlling overfit with a proper penalty. For most
problems the number of weights approximately varies thus between 20,000 and
50,000; on the other hand, given its pattern dimension, for mnist the first hidden
layer already has 78,400 weights. We stress that our main goal here is not to
obtain top quality models; for instance, for mnist, convolutional networks would
be needed for this and the fully connected layers be much larger than the ones
considered here. Instead, our main goal here is to measure DFDA’s performance
and compare it against that of FLDA.

As a benchmark reference we will build an LSDA model for each dataset using
the class Ridge in scikit-learn; for DFDA models we will use the MLPRegressor class
also in scikit-learn. MLPRegressor only allows for deep MLPs with fully connected
layers and L2 penalization; we will use relu activations and the adam solver. This
solver is a faster, more stable version of gradient descent but convergence may
still be slow. Moreover, the targets Ytr are rather small to begin with, so the
convergence tolerance should also be small. Because of this we will work with a
maximum number of 20,000 iterations and use a tolerance of 10−9; other solver
parameters are left at their default values. A more powerful alternative could
have been to work with a general DNN framework such as Keras [3] that has
Theano or TensorFlow as backends and offers a much wider range of network
architectures (including for instance convolutional layers) or penalties (L1 or
dropout). However, most of the problems considered do not lend themselves to,
say, using convolutional layers and, on the other hand, the structural simplicity
of MLPRegressor models results in a much faster training.

We will work with mini–batch sizes min(200, num_patterns), i.e., the default for
the MLPRegressor class. Therefore, the only hyper–parameter we have to set is the
L2 penalty alpha of the LSDA and DFDA models. For both cases we will select it
using the RandomizedSearchCV model selection framework in scikit-learn. To select
the optimal alpha values, we will perform 100 uniform random searches of alpha

values in a range (0, αmax), averaging for each one its g scores over 10 cross
validation folds built on the training set and retaining the value giving the largest
validation score. The test g–scores are reported in Table 2 and the accuracies
in Table 3. In each case the reported test g and accuracy values are obtained
training 10 DLDA models with different random initializations, averaging their
outputs as well as those of the corresponding test patterns and computing the
class predictions and the test confusion matrix over these averages. The tables
also give the rankings of each model over the different problems.

Table 2. Test g scores of the LSDA and of the DFDA models with 2, 3, 4 and 5 100
unit, hidden layers. We write in parenthesis the g score ranking of each model over the
different problems and the corresponding ranking means in the last line.

DFDA

Problem LSDA 2 HL 3 HL 4 HL 5 HL

combined 0.780 (5) 0.800 (3) 0.791 (4) 0.817 (2) 0.831 (1)
dna 0.940 (5) 0.952 (3) 0.952 (3) 0.955 (1) 0.953 (2)
ijcnn1 0.772 (5) 0.826 (3) 0.809 (4) 0.946 (2) 0.955 (1)
letter 0.683 (5) 0.924 (4) 0.936 (3) 0.952 (2) 0.957 (1)
mnist 0.870 (5) 0.929 (4) 0.947 (3) 0.952 (2) 0.962 (1)
pendigits 0.805 (5) 0.975 (4) 0.976 (3) 0.978 (2) 0.981 (1)
satimage 0.808 (5) 0.883 (2) 0.887 (1) 0.876 (3) 0.873 (4)
shuttle 0.565 (3) 0.000 (5) 0.414 (4) 0.838 (2) 0.979 (1)
w7a 0.794 (3) 0.694 (5) 0.776 (4) 0.852 (1) 0.849 (2)
w8a 0.781 (5) 0.837 (1) 0.827 (3) 0.827 (3) 0.831 (2)
usps 0.870 (4) 0.943 (2) 0.949 (1) 0.939 (3) 0.939 (3)
rank mean 4.55 3.27 3.00 2.09 1.73

As it can be seen, the deep DFDA models clearly improve on the LSDA
ones in terms of g scores and accuracies, with the best results usually obtained
with the largest 5–hidden layer network. This is particularly remarkable on the
shuttle problem. Notice in Table 2 the g score of the 2–hidden layer network is
0, due to no pattern in the smallest class being correctly classified (this class has
about 50,000 times less patterns than the biggest one).

5 Discussion and Further Work

While elegant and enticing, classical Fisher Linear Discriminant Analysis (FLDA)
has fallen into some disuse, partly because of its linear nature but also because
of the eigenanalysis it requires, which doesn’t lend itself to be considered over
very large datasets or to be learned in an iterative basis. Most of these difficulties
are greatly alleviated when instead of a “pure” FLDA approach, one follows the
equivalent LSR set–up proposed in [16,15] and discussed above. Moreover, this
lends itself into a natural extension to a Deep Neural Network setting, pairing
the LSR target matrix with a highly complex deep pattern processing.

This is our approach here, where we have shown how simple 2–to–5 layer net-
works can noticeably improve the performance of FLDA. We have applied some
of the latest tools in deep networks, such as Glorot initialization [7], RELU acti-
vations [11] or ADAM optimizers [10] but, in any case, the networks considered
are relatively small and rather simple. There are thus several venues we can fol-
low to improve on the results reported here. For instance, we can use other, more
specialized, DNN architectures, easily available through the keras wrapper for
Theano or TensorFlow, which may include convolutional layers for highly struc-
tured inputs such as mnist. These layers could also be helpful in problems such

Table 3. Test accuracies of the LSDA and of the DFDA models with 2, 3, 4 and 5 100
unit, hidden layers. Again, we write in parenthesis the accuracy ranking of each model
over the different problems and the corresponding ranking means in the last line.

DFDA

Problem LSDA 2 HL 3 HL 4 HL 5 HL

combined 0.770 (5) 0.791 (3) 0.782 (4) 0.808 (2) 0.819 (1)
dna 0.927 (5) 0.957 (3) 0.954 (4) 0.960 (1) 0.958 (2)
ijcnn1 0.855 (5) 0.891 (3) 0.883 (4) 0.977 (2) 0.984 (1)
letter 0.694 (5) 0.925 (4) 0.937 (3) 0.952 (2) 0.957 (1)
mnist 0.873 (5) 0.931 (4) 0.947 (3) 0.952 (2) 0.962 (1)
pendigits 0.825 (5) 0.975 (4) 0.976 (3) 0.978 (2) 0.981 (1)
satimage 0.835 (5) 0.891 (2) 0.897 (1) 0.885 (3) 0.882 (4)
shuttle 0.913 (5) 0.943 (3) 0.934 (4) 0.989 (1) 0.986 (2)
w7a 0.984 (3) 0.843 (5) 0.978 (4) 0.988 (2) 0.989 (1)
w8a 0.984 (5) 0.988 (2) 0.988 (2) 0.987 (4) 0.989 (1)
usps 0.883 (5) 0.949 (2) 0.954 (1) 0.946 (3) 0.944 (4)
rank mean 4.82 3.18 3.00 2.18 1.73

as person identification, where the current state of the art are the Fisher Face
procedures, that apply a suitable version of Fisher analysis over face images. We
could also consider DFDA networks as representation learners, using the net-
work outputs of the last hidden layer as features upon which classifiers stronger
than nearest neighbors or class mean distances could be applied. This may be
particularly suitable for imbalanced problems. In this line it is also interesting to
compare the performance of Deep Fisher networks with that of other non linear
Fisher extensions, such as KDA. We are currently studying these issues.

Acknowledgments. With partial support from Spain’s grants TIN2013-42351-
P, TIN2016-76406-P, TIN2015-70308-REDT and S2013/ICE-2845 CASI-CAM-
CM. Work supported also by project FACIL–Ayudas Fundación BBVA a Equipos
de Investigación Cient́ıfica 2016, the UAM–ADIC Chair for Data Science and
Machine Learning and Instituto de Ingenieŕıa del Conocimiento. The third au-
thor is also supported by the FPU–MEC grant AP-2012-5163. We gratefully ac-
knowledge the use of the facilities of Centro de Computación Cient́ıfica (CCC)
at UAM.

References

1. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces:
Recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach.
Intell. 19(7), 711–720 (1997), http://dx.doi.org/10.1109/34.598228

2. Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G.,
Turian, J., Warde-Farley, D., Bengio, Y.: Theano: a CPU and GPU math expres-
sion compiler. In: Proceedings of the Python for Scientific Computing Conference
(SciPy) (Jun 2010), oral Presentation

http://dx.doi.org/10.1109/34.598228

3. Chollet, F.: Keras: Deep learning library for theano and tensorflow (2015), https:
//github.com/fchollet/keras

4. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification (2nd Edition). Wiley-
Interscience (2000)

5. Friedman, J.H.: Regularized discriminant analysis. Journal of the American Sta-
tistical Association 84(405), 165–175 (1989)

6. Fukunaga, K.: Introduction to statistical pattern recognition. Computer science
and scientific computing, Academic Press, Boston (1990)

7. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: JMLR W&CP: Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics (AISTATS 2010). vol. 9, pp.
249–256 (May 2010)

8. González, A.M., Dorronsoro, J.R.: Natural learning in NLDA networks. Neural
Networks 20(5), 610–620 (2007), http://dx.doi.org/10.1016/j.neunet.
2006.09.014

9. Google: Tensorflow, an open source software library for machine intelligence,
https://www.tensorflow.org/

10. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR
abs/1412.6980 (2014), http://arxiv.org/abs/1412.6980

11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep
convolutional neural networks. In: Pereira, F., Burges, C., Bottou, L., Wein-
berger, K. (eds.) Advances in Neural Information Processing Systems 25, pp.
1097–1105. Curran Associates, Inc. (2012), http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.
pdf

12. Mika, S., Rätsch, G., Weston, J., Schölkopf, B., Smola, A.J., Müller, K.: Invari-
ant feature extraction and classification in kernel spaces. In: Advances in Neural
Information Processing Systems 12, [NIPS Conference, Denver, Colorado, USA,
November 29 - December 4, 1999]. pp. 526–532 (1999)

13. Park, C.H., Park, H.: A relationship between linear discriminant analysis and the
generalized minimum squared error solution. SIAM J. Matrix Analysis Applica-
tions 27(2), 474–492 (2005), http://dx.doi.org/10.1137/040607599

14. Santa Cruz, C., Dorronsoro, J.R.: A nonlinear discriminant algorithm for feature
extraction and data classification. IEEE Trans. Neural Networks 9(6), 1370–1376
(1998), http://dx.doi.org/10.1109/72.728388

15. Ye, J.: Least squares linear discriminant analysis. In: Machine Learning, Proceed-
ings of the Twenty-Fourth International Conference (ICML 2007), Corvallis, Ore-
gon, USA, June 20-24, 2007. pp. 1087–1093 (2007)

16. Zhang, Z., Dai, G., Xu, C., Jordan, M.I.: Regularized discriminant analysis, ridge
regression and beyond. Journal of Machine Learning Research 11, 2199–2228 (2010)

View publication statsView publication stats

https://github.com/fchollet/keras
https://github.com/fchollet/keras
http://dx.doi.org/10.1016/j.neunet.2006.09.014
http://dx.doi.org/10.1016/j.neunet.2006.09.014
https://www.tensorflow.org/
http://arxiv.org/abs/1412.6980
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://dx.doi.org/10.1137/040607599
http://dx.doi.org/10.1109/72.728388
https://www.researchgate.net/publication/317801769

	plantilla_deep

