
Universidad Autónoma de Madrid
Escuela Politécnica Superior

Departamento de Ingeniería Informática

Acceleration Methods for Classic Convex Optimization
Algorithms

A thesis submitted in partial fulfillment for the
degree of Doctor of Philosophy

By
Alberto Torres Barrán

under the direction of
José R. Dorronsoro Ibero

Madrid, July 11, 2017

ii

iii

Department: Ingeniería Informática
Escuela Politécnica Superior
Universidad Autónoma de Madrid (UAM)
Spain

Title: Acceleration Methods for Classic Convex Optimization Algorithms

Author: Alberto Torres Barrrán

Advisor: José R. Dorronsoro Ibero

Date: June 2017

Committee:

• President: Aníbal Ramón Figueiras Vidal

• Secretary: Daniel Hernández Lobato

• Vocal 1: César Hervás Martínez

• Vocal 2: María Amparo Alonso Betanzos

• Vocal 3: David Ríos Insua

• Substitute 1: Ana María González Marcos

• Substitute 2: Pedro Antonio Gutiérrez

iv

Abstract

Most Machine Learning models are defined in terms of a convex optimization problem. Thus,
developing algorithms to quickly solve such problems its of great interest to the field. We focus
in this thesis on two of the most widely used models, the Lasso and Support Vector Machines.
The former belongs to the family of regularization methods, and it was introduced in 1996 to
perform both variable selection and regression at the same time. This is accomplished by adding
a `1-regularization term to the least squares model, achieving interpretability and also a good
generalization error.

Support Vector Machines were originally formulated to solve a classification problem by
finding the maximum-margin hyperplane, that is, the hyperplane which separates two sets
of points and its at equal distance from both of them. SVMs were later extended to handle
non-separable classes and non-linear classification problems, applying the kernel-trick. A first
contribution of this work is to carefully analyze all the existing algorithms to solve both problems,
describing not only the theory behind them but also pointing out possible advantages and
disadvantages of each one.

Although the Lasso and SVMs solve very different problems, we show in this thesis that they
are both equivalent. Following a recent result by Jaggi, given an instance of one model we can
construct an instance of the other having the same solution, and vice versa. This equivalence
allows us to translate theoretical and practical results, such as algorithms, from one field to the
other, that have been otherwise being developed independently. We will give in this thesis not
only the theoretical result but also a practical application, that consists on solving the Lasso
problem using the SMO algorithm, the state-of-the-art solver for non-linear SVMs. We also
perform experiments comparing SMO to GLMNet, one of the most popular solvers for the Lasso.
The results obtained show that SMO is competitive with GLMNet, and sometimes even faster.

Furthermore, motivated by a recent trend where classical optimization methods are being
re-discovered in improved forms and successfully applied to many problems, we have also analyzed
two classical momentum-based methods: the Heavy Ball algorithm, introduced by Polyak in
1963 and Nesterov’s Accelerated Gradient, discovered by Nesterov in 1983. In this thesis we
develop practical versions of Conjugate Gradient, which is essentially equivalent to the Heavy
Ball method, and Nesterov’s Acceleration for the SMO algorithm. Experiments comparing
the convergence of all the methods are also carried out. The results show that the proposed
algorithms can achieve a faster convergence both in terms of iterations and execution time.

v

vi

Resumen

La mayoría de modelos de Aprendizaje Automático se definen en términos de un problema
de optimización convexo. Por tanto, desarrollar algoritmos para resolver rápidamente dichos
problemas es de gran interés para este campo. En esta tesis nos centramos en dos de los modelos
más usados, Lasso y Support Vector Machines. El primero pertenece a la familia de métodos de
regularización, y fue introducido en 1996 para realizar selección de características y regresión al
mismo tiempo. Esto se consigue añadiendo una penalización `1al modelo de mínimos cuadrados,
obteniendo interpretabilidad y un buen error de generalización.

Las Máquinas de Vectores de Soporte fueron formuladas originalmente para resolver un
problema de clasificación buscando el hiper-plano de máximo margen, es decir, el hiper-plano
que separa los dos conjuntos de puntos y está a la misma distancia de ambos. Las SVMs se
han extendido posteriormente para manejar clases no separables y problemas de clasificación
no lineales, mediante el uso de núcleos. Una primera contribución de este trabajo es analizar
cuidadosamente los algoritmos existentes para resolver ambos problemas, describiendo no solo la
teoría detrás de los mismos sino también mencionando las posibles ventajas y desventajas de
cada uno.

A pesar de que el Lasso y las SVMs resuelven problemas muy diferentes, en esta tesis
demostramos que ambos son equivalentes. Continuando con un resultado reciente de Jaggi,
dada una instancia de uno de los modelos podemos construir una instancia del otro que tiene
la misma solución, y viceversa. Esta equivalencia nos permite trasladar resultados teóricos y
prácticos, como por ejemplo algoritmos, de un campo al otro, que se han desarrollado de forma
independiente. En esta tesis mostraremos no solo la equivalencia teórica sino también una
aplicación práctica, que consiste en resolver el problema Lasso usando el algoritmo SMO, que
es el estado del arte para la resolución de SVM no lineales. También realizamos experimentos
comparando SMO a GLMNet, uno de los algoritmos más populares para resolver el Lasso. Los
resultados obtenidos muestran que SMO es competitivo con GLMNet, y en ocasiones incluso
más rápido.

Además, motivado por una tendencia reciente donde métodos clásicos de optimización se
están re- descubriendo y aplicando satisfactoriamente en muchos problemas, también hemos
analizado dos métodos clásicos basados en “momento”: el algoritmo Heavy Ball, creado por
Polyak en 1963 y el Gradiente Acelerado de Nesterov, descubierto por Nesterov en 1983. En esta
tesis desarrollamos versiones prácticas de Gradiente Conjugado, que es equivalente a Heavy Ball,
y Aceleración de Nesterov para el algortimo SMO. Además, también se realizan experimentos
comparando todos los métodos. Los resultados muestran que los algoritmos propuestos a menudo
convergen más rápido, tanto en términos de iteraciones como de tiempo de ejecución.

vii

viii

Acknowledgements

First of all, I would like to thank my supervisor José R. Dorronsoro Ibero for all the help and
advice during this period. I am also immensely grateful to all the professors who volunteered to
come to the thesis panel and read this dissertation. I express my gratitude to Professor Johan
A.K. Suykens for giving me the opportunity to join the ESAT department at KU Leuven during
the research stay of 2015.

I would also like to mention all the grants and institutions that supported my research:
FPU12/05163 grant, funded by “Ministerio de Economía, Cultura y Deporte”; FPI grant,
funded by “Universidad Autónoma de Madrid”; “Cátedra IIC Modelado y Predicción” funded by
“Instituto de Ingeniería del Conocimiento” and “Instituto de Ciencias Matemáticas” (ICMAT-
CSIC). Finally, I gratefully acknowledge the computational resources provided by “Centro de
Computación Científica” (CCC) at “Universidad Autónoma de Madrid”.

ix

x

Contents

Abstract vii

Resumen vii

Acknowledgments ix

Contents x

1 Introduction 1
1.1 Outline . 2
1.2 Contributions . 3

2 Mathematical background 5
2.1 Machine Learning . 5

2.1.1 Regression . 5
2.1.2 Classification . 7
2.1.3 Model selection . 8
2.1.4 Regularization . 10

2.2 Convex optimization . 12
2.2.1 Duality . 14
2.2.2 Subgradients . 15
2.2.3 Algorithms . 19

3 Theory and algorithms for the Lasso 21
3.1 Lasso . 21
3.2 Elastic Net . 23

3.2.1 Naïve Elastic Net . 25
3.2.2 General Elastic Net . 28

3.3 Algorithms . 29
3.3.1 Least Angle Regression . 29
3.3.2 Proximal Gradient Descent . 32
3.3.3 Coordinate Descent . 38
3.3.4 Stochastic Coordinate Descent . 41
3.3.5 Stochastic Gradient Descent . 42
3.3.6 Stochastic Dual Coordinate Ascent . 44

3.4 Screening . 47

xi

xii Contents

4 Theory and algorithms for Support Vector Machines 51
4.1 Support Vector Classification . 51

4.1.1 Hard-margin SVC . 51
4.1.2 Soft-margin SVC . 53
4.1.3 Kernel trick . 54
4.1.4 ν-Support Vector Classification . 55
4.1.5 One-class Support Vector Machine . 56

4.2 Support Vector Regression . 57
4.3 Algorithms . 58

4.3.1 Primal gradient methods . 59
4.3.2 Dual coordinate methods . 63
4.3.3 Decomposition methods . 65
4.3.4 Shrinking . 70

5 Relation between the Lasso and SVMs 73
5.1 Previous work . 73

5.1.1 Lasso to SVM . 74
5.1.2 SVM to Lasso . 75
5.1.3 Elastic Net to SVM . 76

5.2 Constrained and unconstrained Lasso . 77
5.3 Constrained Lasso to Nearest Point Problem . 80
5.4 Numerical experiments . 83

5.4.1 Implementation details . 84
5.4.2 Datasets and methodology . 85
5.4.3 Results . 87

5.5 Discussion and further work . 92

6 Accelerating SVM training 95
6.1 Nesterov Accelerated Gradient . 96

6.1.1 Naïve Nesterov Accelerated SMO . 98
6.1.2 Monotone Nesterov’s Accelerated SMO 100

6.2 Conjugate Gradient Descent . 102
6.2.1 Conjugate MDM . 106
6.2.2 Conjugate SMO . 109

6.3 Numerical experiments . 113
6.3.1 MDM . 114
6.3.2 SMO: Algorithm correctness . 118
6.3.3 SMO: Iteration comparison . 120
6.3.4 SMO: Comparison versus LIBSVM . 129

6.4 Discussion and further work . 143

7 Conclusions 145
7.1 Discussion . 145
7.2 Further work . 147

8 Conclusiones 149
8.1 Discusión . 149
8.2 Trabajo futuro . 151

Contents xiii

Appendices 153

A Derivation of the soft-thresholding operator 155

B Convergence rates 157

C Iteration results 159

D Published papers 167

Bibliography 169

xiv Contents

List of Tables

5.1 Optimal λ values, λ/λmax ratio, sample sizes and input dimensions of the datasets
considered. 86

5.2 Sparsity of final solutions, number of iterations and running times. 88

6.1 Sample sizes and input dimensions of the datasets considered. 114
6.2 Median of the execution times and number of iterations for all possible values of

the initial point for both standard MDM and conjugate MDM (CMDM). 115
6.3 Dimensions, data sizes and class sizes of the datasets considered. 118
6.4 Final value of SMO’s objective function and number of support vectors (nSV) for

ε = 0.1 and ε = 0.001 . 119
6.5 Relative error with respect to SMO in the coefficients, objective value and number

of support vectors for CS and MNAS (ε = 0.1) 121
6.6 Relative error with respect to SMO in the coefficients, objective value and number

of support vectors for CS and MNAS (ε = 0.001) 122
6.7 Number of iterations and time for SMO and Monotone Nesterov Accelerated SMO

(MNAS), together with their ratios SMO/MNAS (ε = 0.1) 123
6.8 Number of iterations and time for SMO and Monotone Nesterov Accelerated SMO

(MNAS), together with their ratios SMO/MNAS (ε = 0.001) 124
6.9 Number of iterations and time for SMO and Conjugate SMO (CS), together with

their ratios SMO/CS (ε = 0.1) . 125
6.10 Number of iterations and time for SMO and Conjugate SMO (CS), together with

their ratios SMO/CS (ε = 0.001) . 126
6.11 Iterations, objective value and number of support vectors for the adult9 and

web8 datasets . 130
6.12 Running time in seconds for the adult9 and web8 datasets 130
6.13 Dimensions, data sizes and class sizes of the datasets considered. 131
6.14 Comparison of the running time in seconds between SMO, Conjugate SMO (CS)

and Hybrid SMO (HS) for the adult8 dataset 133
6.15 Comparison of the running time in seconds between SMO, Conjugate SMO (CS)

and Hybrid SMO (HS) for the web8 dataset . 134
6.16 Comparison of the running time in seconds between SMO, Conjugate SMO (CS)

and Hybrid SMO (HS) for the ijcnn1 dataset 135
6.17 Comparison of the running time in seconds between SMO, Conjugate SMO (CS)

and Hybrid SMO (HS) for the cod-rna dataset 136
6.18 Comparison of the running time in seconds between SMO, Conjugate SMO (CS)

and Hybrid SMO (HS) for the mnist1 dataset 137
6.19 Comparison of the running time in seconds between SMO, Conjugate SMO (CS)

and Hybrid SMO (HS) for the skin dataset . 138

xv

xvi List of Tables

6.20 Relative time difference as a percentage between SMO and CS for a full hyper-
parameter search with ε = 0.001 and a 100 Mb cache 139

C.1 Comparison of the number of iterations between SMO, Conjugate SMO (CS) and
Hybrid SMO (HS) for the adult8 dataset . 160

C.2 Comparison of the number of iterations between SMO, Conjugate SMO (CS) and
Hybrid SMO (HS) for the web8 dataset . 161

C.3 Comparison of the number of iterations between SMO, Conjugate SMO (CS) and
Hybrid SMO (HS) for the ijcnn1 dataset . 162

C.4 Comparison of the number of iterations between SMO, Conjugate SMO (CS) and
Hybrid SMO (HS) for the cod-rna dataset . 163

C.5 Comparison of the number of iterations between SMO, Conjugate SMO (CS) and
Hybrid SMO (HS) for the mnist1 dataset . 164

C.6 Comparison of the number of iterations between SMO, Conjugate SMO (CS) and
Hybrid SMO (HS) for the skin dataset . 165

List of Figures

2.1 Linear least squares fitting with X ∈ R . 7
2.2 Points are generated from a random quadratic model with Gaussian noise and

they are fitted to linear (purple line), quadratic (blue) and polynomial functions
(red). Green points are also drawn from the same model but not used to fit the
functions. 9

2.3 Test and training error as a function of the model complexity (Hastie et al., 2003) 10
2.4 Example of convex set (left) and non-covex set (right) [Wikipedia, “Convex set”] 13
2.5 A convex function (blue) and “subtangent” lines at x0 (red) [Wikipedia “Subdif-

ferential”] . 16
2.6 Convex hull of a set of points . 16

3.1 Subset regression, Ridge Regression, Lasso and garotte shrinkage comparison in
the case of an orthonormal design. 24

3.2 Lasso (a) and Ridge Regression (b) estimates (Tibshirani, 1994) 25
3.3 Lasso, Ridge Regression and Elastic Net penalties for the two variable case . . . 26
3.4 Convergence of ISTA and FISTA . 37

4.1 Linear Support Vector Regression (left) and ε-insensitive loss (right). Support
vectors are drawn with a black outline (Yu et al., 2014) 57

4.2 Support Vector Machines loss function (hinge loss) compared to the logistic
regression loss (negative log-likelihood loss). They are shown as a function of yf
rather than f because of the symmetry between the y = +1 and y = −1 case
(Hastie et al., 2003). 60

5.1 Geometrical interpretation of problem (5.3.2) . 81
5.2 Time evolution of the objective function for the three classification datasets with

λ∗ as the penalty factor . 89
5.3 Time evolution of the objective function for the eight regression datasets with λ∗

as the penalty factor . 90
5.4 Time versus iterations for the housing and year datasets with penalty 2λ∗ with

and without shrinking . 91

6.1 Convergence of Gradient Descent (GD) and the Heavy Ball (HB) methods for the
optimal choices of η and β. 104

6.2 Convergence of Gradient Descent (GD) and the Heavy Ball (HB) methods for
η = 0.18 and β = 0.3. 105

6.3 Execution times and iterations histograms for the dataset mnist_reg and toler-
ance ε = 0.1, ε = 0.001 and ε = 1e− 06. 116

xvii

xviii List of Figures

6.4 Execution times and iterations histograms for the dataset ree and tolerance
ε = 0.1, ε = 0.001 and ε = 1e− 06. 117

6.5 Evolution of the number of iterations with respect to C for the eight datasets . . 127
6.6 Evolution of the objective function with ε = 0.001 for the adult4 (top) and the

web7 datasets . 128
6.7 Time evolution of the objective function (left) and number of kernel operations

(right) for different cache sizes. 129
6.8 Comparison between SMO and CS of the running time as a function of the cache

size for the adult9 and web7 datasets and different C values 132
6.9 Relative time difference heatmap with a cache size of 100 Mb (a) 140
6.9 Relative time difference heatmap with a cache size of 100 Mb (b) 141
6.10 Relative time difference heatmap with a cache size of 100 Mb for the different C

and γ values of a full hyper-parameter search . 142

B.1 Comparison of sublinear (1/k and 1/k2), linear and superlinear (quadratic) con-
vergences. 158

List of Algorithms

1 ISTA with constant stepsize . 34
2 ISTA with backtracking . 35
3 FISTA with constant stepsize . 35
4 FISTA with backtracking . 36
5 Cyclic Coordinate Descent (CCD), naive updates 39
6 Cyclic Coordinate Descent (CCD), covariance updates 40
7 Stochastic Coordinate Descent (SCD) . 42
8 Truncated Gradient Descent (TGD) . 43
9 Stochastic MIrror Descent Algorithm made Sparse (SMIDAS) 45

10 Pegasos for the linear SVM . 61
11 Pegasos for the nonlinear SVM . 62
12 Dual coordinate descent for the Linear SVM . 64
13 Sequential Minimal Optimization (SMO) . 69

14 Naïve Nesterov’s Accelerated SMO . 99
15 Monotone Nesterov’s Accelerated SMO (MNAS) 102
16 Conjugate MDM (CMDM) . 108
17 Conjugate SMO (CSMO) . 112

xix

xx List of Algorithms

Notation

Matrices are denoted in upper-case bold font (X), whereas vectors are denoted in lower-case
bold, (x). Plain font stands for scalars (x), usually lower-case, although some important scalar
constants are denoted in upper-case (for instance, C). Upper-case plain font is also used for
random variables (X). Sets are usually denoted by calligraphic font (X) and spaces with
blackboard bold font (R). Components of a vector are denoted in subscript (xi); when the
component is another sub-vector the bold face is mantained (xi). The components of a matrix
X are denoted by two subscripts (Xi,j). A single subscript on a matrix may indicate both the
vector corresponding to a single row or column (Xi). This is indicated when it is not clear by
the context. For a general sequence brackets are employed ({xk}) and element of such sequences
are denoted in superscript (xk). A superscript ∗ indicates the limit of a sequence, such as the
optimum (x∗).

All the non-standard operators are defined on their first use. Regarding the standard ones,
‖x‖ indicates the norm of a vector x, ∇ is used for the gradient and x · y denotes the inner
product between vectors x and y. The inner product is sometimes also written as x>y. The
transpose of a matrix is X> and its inverse X−1. ∂ stands for both the partial derivative and
the subdifferential, and it should be clear from the context which is which. The standard big O
notation is written as O(·).

xxi

xxii List of Algorithms

Chapter 1

Introduction

Machine learning is a branch of artificial intelligence commonly defined as the science of learning
from data without the need for the computer to be explicitly programmed. Other fields that
overlap with machine learning are statistics, data mining and pattern recognition, since they
often use the same methods. Some example of learning problems are:

• Learn to distinguish between spam and non-spam email messages and classify new messages
accordingly.

• Predict the selling price of a house based on facts such as square meters and number of
bedrooms.

• Predict the price of a stock in 6 months from now, on the basis of company performance
measures and economic data (Hastie et al., 2003).

• Recognize handwritten digits from a digitized image, for example ZIP codes in letters.

• Identify the risk factors for prostate cancer, based on clinical and demographic variables
(Hastie et al., 2003).

• Identify the clients of an insurance company who are likely to upgrade their policy to
premium if an offer is made to them.

In the typical scenario we have an outcome measurement we want to predict, which can
be either quantitative (price of the house) or categorical (spam/non-spam), based on a set of
features or variables. We have a set of data, in which we observe both the features and the
outcome, and the goal is to build a prediction model which allows us to predict the outcome of
new samples, not used to train the model.

Notice that it is impossible to compute the accuracy of the predictions for the new data,
since the real outcome is not available. So, in order to asses the quality of the model, the original
dataset is usually divided into a training set and a test set. The former is used to build the
prediction model while the latter is used to estimate its performance. This is done by computing
the accuracy of the predictions in the test set and, since they were not used for training, they
are a good estimate of the accuracy for new data (assuming they are similar).

The ability to predict correctly the outcome of new unseen data is known as generalization.
In practice the variability of the data will be such that the training set can comprise only a small
amount of all possible examples, so generalization is a central goal in machine learning.

Machine learning systems also have to deal with the representation of the data. For instance,
in the case of handwritten digits recognition, it is usually convenient to represent the digitized

1

2 Chapter 1. Introduction

images as numerical vectors using a greyscale approach. Data is also usually pre-processed
to transform it into another space where the problem of building the model is easier to solve.
Continuing with the example of digit recognition, the images are typically traslated and scaled
so that each digit is contained in a fixed size box (Bishop, 2007). Note that new data must be
processed using the same steps as the training data.

So far we have only mentioned the task where the training data contains both the features
and the outcome. That kind of data is said to be labeled, and such applications are known as
supervised learning problems. These problems can be further divided into classification, if the
outcome is a finite number of discrete categories, or regression, if the outcome consists of one or
more continuous variables. Examples of classification problems are spam detection, handwritten
digits recognition and identifying possible premium users. Examples of regression problems are
house pricing, prostate cancer detection and stock price prediction.

There are other machine learning problems where the input data consists only of features,
and no outcome is available. In those unsupervised learning problems the goal is to find some
kind of structure in the data: groups of similar examples (clustering), distribution of the data in
the input space (density estimation) or subspaces in which the data is still “meaningful” but
with less dimensions (dimensionality reduction).

1.1 Outline
The rest of thesis is organized as follows:

1. Chapter 2 contains the necessary mathematical background to understand this thesis:
learning theory, where we include examples of the simplest linear models, and the basics
of convex optimization. We skip and therefore assume the reader is familiar with basic
results in linear algebra and probability theory.

2. Chapter 3 presents a detailed review of the theory behind the Lasso model and the different
optimization algorithms that exist in the literature to solve it. The sparsity of the Lasso
regularization was exploited in Alaíz et al. (2012) and Torres et al. (2014b).

3. Chapter 4 is analogous to Chapter 3 but regarding the SVM model. We will address the
formulation of the different variants and the different methods used to optimize them.
The generalization capabilities of SVMs were studied in different real-world problems:
high-content screening (Azegrouz et al., 2013), wind energy prediction (Torres et al., 2014a;
Alonso et al., 2015; Díaz et al., 2015), and photovoltaic energy prediction (Catalina et al.,
2016).

4. Chapter 5 includes the equivalence between the Lasso and SVM models. Furthermore, a
practical application is suggested and several experiments are carried out. This chapter
contains novel material from Alaíz et al. (2015), where cited.

5. Chapter 6 reviews two classical acceleration techniques in convex optimization, the Heavy
Ball method and Nesterov’s Accelerated Gradient, and two new versions of the SMO
algorithm based on both of them are also derived. This chapter contains novel material
from Torres-Barrán and Dorronsoro (2015), Torres-Barrán and Dorronsoro (2016a), and
Torres-Barrán and Dorronsoro (2016b), where cited.

6. Chapter 7 states the conclusions of the thesis and suggests ways to extend the presented
ideas

1.2. Contributions 3

7. Appendices A to C contain some complementary material, included for completeness.
Finally in Appendix D we also include a comprehensive list of all the articles accepted in
conferences and journals during the elaboration of the thesis.

1.2 Contributions
In the context of Machine Learning models, two of the most widely used are the Lasso and
Support Vector Machines. They are both defined in terms of an optimization problem and many
algorithms exist to solve such problems. It is of current interest to find faster, scalable and more
efficient algorithms to solve them, so they are able to cope with the rapid increase in the amount
of available data. The contributions of the thesis can be summarized as:

• A thorough review of the Lasso and the different algorithms to solve the underlying
optimization problem. We will begin with the earlier methods, such as LARS, and finish
with some recent advances regarding coordinate and stochastic optimization.

• A review of SVMs and the different variants: SVC, SVR, ν-SVC and One-class SVM. We
will also analyze different algorithms to solve the SVM problem, focused on its non-linear
SVC variant.

• A refined version of the recent relation between the Lasso and the SVC problems, that
opens the way to solve one problem using algorithms designed for the other and viceversa,
among others. We will also exploit this equivalence to suggest another algorithm to solve
the Lasso problem in practice (Alaíz et al., 2015).

• The proposal and analysis of two modifications of the SMO algorithm, related to Conjugate
Gradient Descent (Torres-Barrán and Dorronsoro, 2015; Torres-Barrán and Dorronsoro,
2016a) and Nesterov’s Accelerated Gradient (Torres-Barrán and Dorronsoro, 2016b). First
we will review two classic acceleration techniques for Gradient Descent, Heavy Ball and
Nesterov’s Acceleration. Then, we will establish the connections between Heavy Ball
and Conjugate Gradient, as well as Heavy Ball and Nesterov’s Acceleration. Finally, we
integrate these techniques in the SMO algorithms and derive the complexity in terms of
floating point operations.

• Experimental results comparing the behavior of all the suggested algorithms.

• Software implementations of such algorithms.

4 Chapter 1. Introduction

Chapter 2

Mathematical background

2.1 Machine Learning
This section reviews the fundamentals of regression, classification and model selection. We start
by introducing the basic learning theory concepts through the simplest linear regression model,
least squares. Then, we give its classification counterpart, logistic regression. Finally we move on
to the topics of model selection and regularization. For a more extensive treatment of machine
learning we refer the reader to Shalev-Shwartz and Ben-David (2014).

2.1.1 Regression

A linear regression model has the form

y = f(X) = Xw + w0, (2.1.1)

where X is the n × d data matrix and y is the n × 1 response vector (n number of samples
or observations, d number of variables). The linear model either assumes that the regression
function E(y|X) is linear or that the linear model is a reasonable aproximation, which is usually
the case. Therefore we assume that the true underlying model is

y = f(X) = Xw + w0 + ε, (2.1.2)

where ε ∼ N(0, σ) is the noise, and it stresses the fact that the linear model is only an
aproximation of the underlying true model, since it is very difficult in practice to have real data
that comes from a perfectly linear model.

The term w0 is known as the bias or intercept and it is usually included into the vector w.
That way, if we also add a column of 1s to the matrix X, we can write the model in the more
convenient form

y = Xw.

The bias can also be omitted if the response vector y and the columns of X are centered to
have zero mean, that is, E[y] = 0 and E[Xj] = 0 for j = 1, . . . , d.

The components of the vector w, wj , are known as parameters or coefficients and the columns
of the matrix xj are the variables or features. These variables can come from different sources
(Hastie et al., 2003):

• quantitative inputs;

• transformations of quantitative inputs, x3 = x>1 x2;

5

6 Chapter 2. Mathematical background

• basis expansions, such as x2 = x2
1;

• “dummy” variables coding of the levels of qualitative inputs. For instance if we have a
feature with 5 possible values we might create five different variables that are all set to 0
but one.

Let xi be now the ith pattern, that is, the ith row of the matrix X. Typically we have a training
set {xi, yi}, i = 1, . . . , n, from which to estimate the parameters w. The most popular estimation
method is ordinary least squares (OLS), in which coefficients are obtained by minimizing the
residual sum of squares, defined as

RSS(w) =
n∑
i=1

(yi − x>i w)2 = (y−Xw)>(y−Xw) = ‖y−Xw‖22, (2.1.3)

that is
ŵ = argmin

{
‖y−Xw‖22

}
, (2.1.4)

where

‖w‖22 =
d∑
j=1

w2
j ,

It is easy to show that the optimization problem (2.1.4) has a closed-form solution. Differen-
tiating in (2.1.3) with respect to w we obtain

∂RSS
∂w = −2X>(y−Xw), (2.1.5)

∂2RSS
∂w2 = 2X>X.

Assuming that X has full column rank and hence X>X is positive definite, we set the first
derivative to zero

X>(y −Xw) = 0, (2.1.6)

to obtain the unique solution
ŵ = (X>X)−1X>y. (2.1.7)

The fitted values at the training inputs are

ŷ = Xŵ = X(X>X)−1X>y. (2.1.8)

The matrix H = X(X>X)−1X> is sometimes called the “hat” matrix. We can also make
predictions for new data X̃ that was not used to fit the model. The predicted values are given
by f(X̃) = X̃ŵ.

From a geometrical point of view, the least squares solution is the d+1 dimensional hyperplane
that minimizes the sum of squared residuals. The coefficients are chosen so that the residual
vector y− ŷ is orthogonal to the subspace spanned by the columns of the input matrix X. This
orthogonality is expresed in Eq. (2.1.5), and the resulting estimate ŷ is the orthogonal projection
of y into this subspace. Hence the matrix H is also known as the projection matrix. Figure 2.1
shows an example of the regression hyperplane in a two-dimensional space for randomly generated
data with w1 = 0.2, w0 = 2 and ε ∼ N(0, 2.5).

It may happen that the columns of X are not linearly independent so that X is not full rank.
This is the case, for example, if two of the variables are perfectly correlated. Then the matrix

2.1. Machine Learning 7

●

●

●●

●●

●

●

●

●

●

●●
●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

0 20 40 60 80 100

0
5

10
15

20
25

x

y

Figure 2.1: Linear least squares fitting with X ∈ R

X>X is singular, the inverse in Eq. (2.1.7) cannot be computed and the coefficients w are not
uniquely defined. The natural way to solve this non-unique representation is to remove from the
matrix X all the redundant variables. Another option is to control the fit by regularization, as
we will discuss in Section 2.1.4.

Rank deficiencies also occur when the number of variables d is bigger than the number of
observations n. This happens frequently in fields such as image processing and bioinformatics.
Redundant variables are non-existent in this case, so the less important ones must be filtered for
the problem to be solvable.

2.1.2 Classification

As explained before, in the classification problem the predictor G(x) takes values in a discrete
set G. Therefore we can always divide our input space into regions labeled according to the
classification label. In the linear methods for classification, these decision boundaries will be
linear.

One of the most common models is logistic regression, where we estimate the posterior
probabilities of the K classes via linear functions in x, while at the same time we make sure that
they sum one. Let xi be the ith observation (row) of the input matrix X and yi the associated
label. For the sake of simplicity, we are going to assume that K = 2 and we are going to label the
two classes as 0/1. Then, the probability of belonging to the positive class (yi = 1) is defined as

p(yi = 1|xi) = π(xi) = 1
1 + exp(−w>xi)

, (2.1.9)

and the probability of belonging to the negative class (yi = 0) is then

p(yi = 0|xi) = 1− π(xi) = π(−xi) = 1
1 + exp(w>xi)

. (2.1.10)

8 Chapter 2. Mathematical background

Logistic regression models are usually fit by maximum likelihood, using the conditional
likelihood of G given X. The log-likelihood for n observations is

L(w) =
n∑
i=1

yi log π(xi) + (1− yi) log π(−xi)

=
n∑
i=1

yiw>xi + log π(−xi).

Next we have to maximize the log-likelihood (or minimize the negative log-likelihood, which
is usually more convenient). The derivatives of the log-likelihood with respect to w are

∂L(w)
∂w =

n∑
i=1

xi(yi − π(xi)), (2.1.11)

that is, d + 1 equations nonlinear in w. This optimization can be performed with different
algorithms such as iteratively reweighted least squares (IRLS) or Newton-Raphson. It is worth
mentioning that maximum likelihood can exhibit severe overfitting for datasets that are linearly
separable (Bishop, 2007). Once the weights are estimated, new observations can be classified
using the rule

ŷ = G(x) =
{

0 if π(x) ≥ 0.5
1 if π(x) < 0.5

Last, it is also important to mention that logistic regression can be extended to the multinomial
setting (K > 2). See Hastie et al. (2003) and Bishop (2007) for more details.

2.1.3 Model selection

Let’s assume that data comes from a model

Y = f(X) + ε (2.1.12)

with E[ε] = 0 and Var(ε) = σ2. Throughout this section we will also assume that the matrix X
is fixed in advance. Then, the expected prediction error of an estimator f̂(X) at a point x, also
know as simply prediction, test or generalization error is defined as

PE = E[(Y − f̂(x))2] (2.1.13)

and it can be decomposed into

PE =
(
E[f̂(x)]− f(x)

)2
+ E

[
f̂(x)− E[f̂(x)]

]2
+ Var(ε)

=
(
E[f̂(x)]− f(x)

)2
+ E

[
f̂(x)− E[f̂(x)]

]2
+ σ2

= Bias2 + Variance + Noise.

The third term is the irreducible error, the inherent uncertainty in the true relationship and
cannot be reduced by any model. The first and second terms are under our control and make up
the mean squared error of f̂(x) in estimating f(x).

In practice, for every model there is a bias-variance tradeoff (Geman et al., 1992), when
varying its “complexity” parameters. A common problem is known as overfitting, and it occurs
when a statistical model is too complex and exhibits poor generalization.

2.1. Machine Learning 9

●

●

●

●

●

●
●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

x

y

w0 + w1x
w0 + w1x + w2x

2

w0 + w1x + w2x
2 + w3x

3 + … + w9x
9

●

●

Figure 2.2: Points are generated from a random quadratic model with Gaussian noise and they
are fitted to linear (purple line), quadratic (blue) and polynomial functions (red). Green points
are also drawn from the same model but not used to fit the functions.

This means that the model is memorizing the particular structure of the training data, but it
is unable to learn the underlying relationship. As a result, such model will perform poorly on
new unseen data, also known as test data.

As an example consider the linear model,

y = 1.5x− x2 +N (0, 0.05).

If we fit a linear model to the variable x we obtain the straight line depicted in purple in Fig. 2.2.
This model is clearly miss-specified, since the true model used to generate the data contains also
x2. This behavior is known as underfitting. On the other hand, we could always add higher-order
exponents of the variable x until we achieve a perfect fit, since the model is still linear in the
coefficients w. In general, if we have n data points we could achieve zero training error using a
polynomial of degree n− 1. This is represented as the red line in the figure and it will clearly
exhibit poor generalization because it is also learning the noise of the data. We simulate the test
data as the two green points, also drawn from the same model, but not used to compute any of
the fits. It is clear that they are much closer to the blue line than to the red line, even though
the latter achieves a zero error in the training points. Thus we could consider the quadratic
model to be a better estimation of the true model. As we mentioned before this is known as
overfitting and it is a very important problem when fitting statistical models since in practice
the true model is usually not known.

In the previous example we could consider the degree of the polynomial d to be the complexity
parameter. If d ≥ 9 the model is very complex and it fits the training points perfectly, i.e the
bias is 0. However, the variance is very large, since for any other point not in the training set
the model will perform poorly, for instance the green points in Fig. 2.2. On the other hand, if
d = 2, the model is much simpler. Now the bias is clearly not zero but the variance is reduced
significantly, so we may consider this to be a better model.

Typically we would like to choose our model complexity to trade bias off with variance in

10 Chapter 2. Mathematical background

Test error

Train error

Model complexity

P
re

d
ic

ti
o
n

 e
rr

o
r

Low High

High bias
Low variance

Low bias
High variance

Figure 2.3: Test and training error as a function of the model complexity (Hastie et al., 2003)

such a way as to minimize the test error, which is the error of new observations (not used to fit
the model). Figure 2.3 shows the typical behavior of train and test error as model complexity
is changed. The training error tends to decrease whenever we increase the model complexity,
overfitting the data. However, with too much fitting the model adapts too closely and will not
generalize well. In contrast, if the model is not complex enough, it will underfit and may have
large bias.

2.1.4 Regularization

In the previous sections, given some data D, we minimize some kind of error function ED(w).
However, as we mentioned before, minimizing the error term alone is often an ill-posed problem:
solutions are not unique and sensitive to data variations. Therefore, a regularization term is
usually added to enforce some desirable properties on the solution, such us smoothness, sparsity,
low-rank, and so on, changing the criterion function to

J(w) = ED(w)︸ ︷︷ ︸
error

+ω(w)︸ ︷︷ ︸
reg.

. (2.1.14)

Regularization also helps to control the complexity of the problem and avoid overfitting. For
instance if we consider the least square estimates, in theory Theorem 2.1 states that they are the
Best Linear Unbiased Estimates (BLUE), where “best” refers to having the lowest variance.

Theorem 2.1 (Gauss-Markov (Plackett, 1950)). Given a linear model with noise ε ∼ N(0, σ),
i.e

y = Xw + ε, (2.1.15)

then the Ordinary Least Squares (OLS) estimates,

ŵ = argmin
{
‖y−Xw‖22

}
, (2.1.16)

are the Best Linear Unbiased Estimates (BLUE).

2.1. Machine Learning 11

Proof. We begin by showing that they are indeed unbiased. Substituting Eq. (2.1.15) into
Eq. (2.1.7) we get,

ŵ = (X>X)−1X>y
= (X>X)−1X>(Xw + ε)
= w + (X>X)−1X>ε.

Finally, we fix the data matrix X and take expectations on both sides,

E[ŵ] = w + E[(X>X)−1X>ε] = w + (X>X)−1X>E[ε] = w, (2.1.17)

since E[ε] = 0 and X is constant. Now we are going to prove that they are the ones with the
lowest variance. Let Var(y) = σ2, then the variance of the OLS estimates is

Var(ŵ) = Var
(
(X>X)−1X>y

)
= ((X>X)−1X>) Var(y)

(
(X>X)−1X>

)>
= Var(y)((X>X)−1X>)(X(X>X)−1)
= σ2(X>X)−1.

Suppose that w̃ is another linear estimator,

w̃ =
(
(X>X)−1X> + D

)
y, (2.1.18)

where D is a p× n non-zero matrix. The expectation of w̃ is

E[w̃] = E[((X>X)−1X> + D)y]
= E[((X>X)−1X> + D)(Xw + ε)]
= E[((X>X)−1X> + D)(Xw)] + E[(X>X)−1X> + D)ε]
= ((X>X)−1X> + D)(Xw) + ((X>X)−1X> + D)E[ε]
= (X>X)−1X>Xw + DXw
= (I + DX)w.

From this we conclude that DX = 0 for this estimator to be unbiased. The variance of w̃ is

Var(w̃) = Var
(
(X>X)−1X> + D

)
y)

= Var(y)((X>X)−1X> + D)((X>X)−1X> + D)>

= σ2((X>X)−1X> + D)(X(X>X)−1 + D>)
= σ2((X>X)−1 + (X>X)−1X>D> + DX(X>X)−1 + DD>)
= σ2((X>X)−1 + 2(X>X)−1(DX)> + DD>)
= σ2((X>X)−1 + DD>)
= σ2(X>X)−1 + σ2DD>

= Var(ŵ) + σ2DD>

≥ Var(ŵ),

since DD> is a positive semidefinite matrix, that is, DD> ≥ 0. Therefore the least squares
estimators ŵ are the unbiased linear estimators with the lowest variance, concluding the proof.

12 Chapter 2. Mathematical background

However, in practice there are many reason why the least square estimates are not a satisfactory
solution to the regression problem. One of these reasons was the non-uniqueness of the OLS
solution when the number of variables is larger than the number of observations. Another
important one is overfitting.

The simplest example of a regularized model is Ridge Regression, that adds a `2-penalty
term to the least squares objective function,

ŵ = argmin


n∑
i=1

yi −∑
j

wjxij

2

+ λ
∑
j

w2
j


= argmin

{
‖y−Xw‖22 + λ‖w‖22

}
. (2.1.19)

The previous optimization problem is equivalent to (Hastie et al., 2003)

min
n∑
i=1

yi −∑
j

wjxij

2

s.t
∑
j

w2
j ≤ t. (2.1.20)

Using similar arguments to the ordinary least squares case, it is easy to show that Ridge
Regression has also a closed form solution

ŵ = (X>X + λI)−1X>y. (2.1.21)

Note that, in contrast to ordinary least squares, now the matrix (X>X+λI) is always positive
definite if λ > 0 and therefore invertible, resulting in a unique solution for the ridge estimates.
Furthermore, the previous models favors smaller coefficients and therefore it is less prone to
overfitting.

2.2 Convex optimization
We will start these section by defining some basic concepts about convexity in the Euclidean
space, although with some more careful work they can be extended to Hilbert spaces. Rn and E
are used interchangeably throughout this section to denote the Euclidean space.

Definition 2.1. An Euclidean space E is a finite-dimensional real vector space with an inner
product and its induced norm.

Definition 2.2 (Convex set). A set C ⊆ E is a convex set if for all t ∈ (0, 1) the following holds

tx+ (1− t)y ∈ C, ∀x, y ∈ C.

Intuitively, the previous definition means that all the points of the segment joining x and
y must be inside the set C, and this has to be true for any two points in C. For instance an
hyperplane H = {x ∈ Rn : w>x− β = 0} or a ball B = {x ∈ Rn : |x− x0| ≤ β} are examples
of convex sets. However, the sphere S = {x ∈ Rn : |x− x0| = β} provides an example of a set
that is not convex (β > 0). Figure 2.4 (left) shows another example of an arbitrary convex set.
On the other hand, Fig. 2.4 (right) is an example of a non-convex set. It is easy to see that any
intersection of two convex sets is also convex. Given I convex sets Si, the finite sum is a new set
S formed by taking all the terms

∑
si, where si ∈ Si, i = 1, . . . , I. Finite sums of convex sets

are also convex. We now introduce the concept of effective domain and convex function.

2.2. Convex optimization 13

Figure 2.4: Example of convex set (left) and non-covex set (right) [Wikipedia, “Convex set”]

Definition 2.3 (Effective domain). The effective domain of f is the set

dom(f) = {x ∈ E : f(x) < +∞}.

If dom(f) is not empty, the function f is called proper.

Definition 2.4 ((Strictly) convex function). A function f : E→ R∪ {+∞} is a convex function
if dom(f) is a convex set and, for every x, y ∈ E and any t ∈ [0, 1],

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).

The same function is said to be strictly convex if for every x, y ∈ E, x 6= y and any t ∈ (0, 1)

f(tx+ (1− t)y) < tf(x) + (1− t)f(y).

The previous definition does not take into account functions that take the value −∞, although
it can be expanded to do so (Balder, 2008).

Most machine learning problems are defined as convex optimization problems. The basic
definition of an optimization problem has the form:

Definition 2.5 (Primal optimization problem). Given functions f , gi, i = 1, . . . , k, and hi,
i = 1, . . . ,m, defined over a domain Ω ⊆ Rn, the primal problem solves

min f(w), w ∈ Ω,
s.t gi(w) ≤ 0, i = 1, . . . , k,

hi(w) = 0, i = 1, . . . ,m,

where f(w) is known as objective function, gi(w) are the inequality constraints and hi(w) are
the equality constraints. From now on we are going to write g(w) ≤ 0 to indicate gi(w) ≤ 0,
i = 1, . . . , k, and the same with h(w).

Definition 2.5 is general, since maximization problems can be transformed into minimization
ones simply by flipping the sign of the objective function f(w). In the same way, every constraint
can be re-written in one of the previous forms. For instance, if we have the constrain

∑
w < t,

we can always write it as
∑

w− t < 0.
The domain region where the objective function is defined and all the constraints are satisfied

is known as the feasible region

R = {w ∈ Ω | g(w) ≤ 0, h(w) = 0}. (2.2.1)

14 Chapter 2. Mathematical background

Definition 2.6. An optimization problem where the objective function and all the constraints
are linear is a linear problem. If the objective function is convex quadratic and the constraints
are linear is a quadratic problem.

One of the most well studied problems in optimization is the convex quadratic where the
objective function is convex and quadratic and the constraints are linear. The solution of a
convex optimization problems is a point w∗ ∈ Rn such that there is no other point w ∈ Rn
for which f(w) < f(w∗). This means that any local minimizer w∗ is also a global minimizer.
However, note that the minimum does not have to be unique and there can be many points with
the same value f(w∗) of the objective function. Thus, the solution may be a set instead of a
single point. If the objective function is strictly convex then it follows from the definition the
minimum is indeed unique.

2.2.1 Duality

Lagrange duality is a very important concept in optimization. Given an optimization problem of
the form (2.5), it provides us with an equivalent optimization problem that often has comple-
mentary properties. Thus, we can choose to indistinctly solve one or the other depending on the
situation. We are going to define first the generalized Lagrangian:

Definition 2.7 (Lagrangian function). Given the optimization problem (2.5), we define the
generalized Lagrangian function as

L(w,α,β) = f(w) +
k∑
i=1

αigi(w) +
m∑
i=1

βihi(w)

= f(w) +α>g(w) + β>h(w).

We can now define the Lagrangian dual problem

Definition 2.8 (Dual optimization problem). The Lagrangian dual problem of the primal
problem of Definition 2.5 is the following problem:

max Θ(α,β)
s.t α ≥ 0

where Θ(α,β) = infw L(w,α,β)

One of the fundamental relationships between the primal and the dual problem is given by
the weak duality theorem, presented next.

Theorem 2.2. (Weak duality theorem) Let w ∈ Ω be a feasible solution of the primal problem
(2.5) and (α,β) a feasible solution of the dual problem (2.8). Then f(w) ≥ Θ(α,β).

Proof. From the definition of Θ(α,β) for w ∈ Ω we have

inf
u
L(u,α,β) ≤ L(w,α,β) = f(w) +α>g(w) + β>h(w) ≤ f(w). (2.2.2)

The last inequality holds since the feasibility of w implies that

g(w) ≤ 0 and h(w) = 0 (2.2.3)

while the feasibility of α implies
α ≥ 0. (2.2.4)

2.2. Convex optimization 15

Therefore from Eqs. (2.2.3) and (2.2.4)

β>h(w) = 0 and α>g(w) ≤ 0.

The difference between the values of the primal and dual problems is known as duality gap.
The strong duality theorem characterizes what kinds of optimization problems are guaranteed to
have a duality gap equal to 0. This means that the dual and the primal problems have the same
value. The proof of the strong duality theorem can be found in Ben-Tal and Nemirovski (2001).

Theorem 2.3. (Strong duality theorem) Given an optimization problem like the one in Defini-
tion 2.5, where the gi and hi are affine functions, that is

a(w) = Aw− b, (2.2.5)

for some matrix A and vector b, the duality gap is 0.

The last theorem of this section characterizes the optimum solution of a general optimization
problem (Cristianini, 2000).

Theorem 2.4. (Khun-Tucker) Given an optimization problem in the convex domain Ω ⊆ Rn

min f(w), w ∈ Ω,
s.t gi(w) ≤ 0, i = 1, . . . , k,

hi(w) = 0, i = 1, . . . ,m,

with convex f , affine gi, hi, the necessary and sufficient conditions for a normal point w∗ to be
an optimum are the existence of α∗ and β∗ such that

∂L(w∗,α∗,β∗)
∂w = 0,

∂L(w∗,α∗,β∗)
∂β

= 0,

α∗i gi(w∗) = 0, i = 1, . . . , k,
gi(w∗) ≤ 0, i = 1, . . . , k,

α∗i ≥ 0, i = 1, . . . , k.

2.2.2 Subgradients

We begin this section by briefly reviewing some important definition that will be used in the
subsequent chapters.

Definition 2.9 (Subdifferential). The subdifferential of a proper convex function is the set-valued
map ∂f : E→ 2E, defined as

∂f(x) = {ξ ∈ E : f(x) + ξ>(y − x) ≤ f(y), ∀y ∈ E}

where 2E is the power set, that is, the set of all subsets of E.

16 Chapter 2. Mathematical background

Figure 2.5: A convex function (blue) and “subtangent” lines at x0 (red) [Wikipedia “Subdiffer-
ential”]

Let x ∈ E. Then f is subdifferentiable at x if ∂f(x) 6= ∅. The elements of ∂f(x) are the
subgradients of f at x. Observe that this definition is only non-trivial if the function is proper,
that is, x ∈ dom f . Otherwise f(x) = +∞ and ∂f(x) = ∅. Some properties of the subdifferential
are:

(i) For any x ∈ E, ∂f(x) is either empty or a closed convex set (see Bauschke and Combettes,
2011, Proposition 16.3).

(ii) For any x ∈ int(dom(f)), ∂f(x) is not empty and bounded (see Balder, 2008, Lemma 2.16).

(iii) ∂f(x) = {∇f(x)} if and only if f is differentiable at x ∈ E (see Balder, 2008, Proposition
2.6).

(iv) A point x ∈ E is a (global) minimizer of f if and only if

0 ∈ ∂f(x).

This is known as the Fermat’s rule in convex optimization, and it will be proven later in
this chapter.

Let us define first the concept of convex hull, which will be important in what follows. There
is also a generalization, the reduced convex hull, where the coefficients are upper-bounded by
µ ≤ 1.

Figure 2.6: Convex hull of a set of points

2.2. Convex optimization 17

Definition 2.10 (µ-Reduced Convex hull). The µ-reduced convex hull of a set X = {xi}n1 of
points in a d-dimensional Euclidean space is the set of all convex combinations of points in X or,
more formally,

convµ(X) =
{

n∑
i=1

αixi

∣∣∣∣∣ 0 ≤ αi ≤ µ, ∀i and
n∑
i=1

αi = 1
}
, (2.2.6)

where µ = 1 for the standard convex hull and 1
n ≤ µ < 1 for the reduced convex hull. For

simplicity we will get rid of the subscript when referring to standard convex hulls. It is easily
seen that conv(X) is also the smallest convex set that contains X . This is illustrated in Fig. 2.6.

We will also need some technical results regarding subgradients.

Proposition 2.1 (Maximum of subdifferentiable functions, Boyd and Vandenberghe, 2008).
Suppose f is the pointwise maximum of convex functions f1, . . . , fm, i.e.,

f(x) = max
i

fi(x),

where the functions fi are subdifferentiable. Then, the subdifferential of f(x) is the convex hull
of the union of subdifferentials of the “active” functions at x, i.e.,

conv (∪{∂fi(x) | fi(x) = f(x)}).

Proof. Let k be any index for which fk(x) = f(x) and let g ∈ ∂fk(x). Then, by the definition of
subdifferential (Definition 2.9) we have,

f(z) ≥ fk(z) ≥ fk(x) + g>(z− x) = f(x) + g>(z− x),

and g ∈ ∂f(x). Thus, to find a subgradient of the maximum of functions, we can choose one
of the functions that achieves the maximum at the point, and choose any subgradient of that
function at the point. The subdifferential is the set of all such subgradients. Doing that for every
point i = 1, . . . ,m we get that the subdifferential of f is the convex hull of all subdifferentials
constructed this way,

conv (∪{∂fi(x) | fi(x) = f(x)}).

Example. The `1-norm
f(x) = ‖x‖1 = |x1|+ · · ·+ |xn|

is a non-differentiable convex function. Note that it can be expressed as the maximum of 2n
linear functions (Boyd and Vandenberghe, 2008):

‖x‖1 = max
{

s>x
∣∣∣ si ∈ {−1, 1}

}
.

Therefore we can apply Proposition 2.1 to find the subdifferential. First we have to identify an
active function s>x, that is, find an s ∈ {−1, 1}n such that s>x = ‖x‖1. Since the `1-norm is the
sum of the absolute values of the components of xi, we can take si = +1 if xi > 0 and si = −1 if
xi < 0. If xi = 0, more than one function is active and both −1 and 1 work. Thus we can take

si =


+1 if xi > 0,
−1 if xi < 0,
−1 or 1 if xi = 0.

18 Chapter 2. Mathematical background

and apply Proposition 2.1. The subdifferential is the convex hull of all the subgradients that can
be generated this way (Boyd and Vandenberghe, 2008):

∂f(x) =
{

s
∣∣∣ ‖s‖∞ ≤ 1, s>x = ‖x‖1

}
. (2.2.7)

Global minimizers of unconstrained convex optimization problems are characterized by
Fermat’s theorem. We need first the definition of proximal mapping:

Definition 2.11 (Proximal mapping). Let f be a lower semicontinuous, proper convex function.
Then, te proximal mapping is the operator,

proxf = (I + ∂f)−1.

Note also that x = proxf (z) ⇔ z − x ∈ ∂f(x) ⇔ 0 ∈ x− z + ∂f(x).

Alternatively, the proximal mapping can be defined also as an optimization problem:

Definition 2.12 (Proximal mapping). Let f be a lower semicontinous, proper convex function.
For every z ∈ Rn, the proximal mapping of f is defined as

proxf (z) = argmin
y∈R

(
f(y) + 1

2 ||z − y||
2
)
.

An important example of proximal operator, which will use later in Chapter 3, is the proximal
of the `1-norm, f(x) = λ||x||1 =

∑n
i=1 |xi|,

[proxf (x)]i = sign(xi) max(0, |xi| − λ). (2.2.8)

This is known as the soft-thresholding operator (see Appendix A for a formal derivation). Fermat’s
theorem, presented next, characterizes the solutions of unconstrained optimization problems and
it is one of the most important result in convex optimization.

Theorem 2.5 (Fermat’s rule). Let f be a proper convex function. Then,

argmin f = zer ∂f = {x ∈ E | 0 ∈ ∂f(x)} (2.2.9)

and x = proxf (x).

In many optimization problems we further decompose the objective function into two functions:
the loss function and the regularizer, as we have seen in Section 2.1.4. The minimization problem
then becomes

min
x∈E

f(x) + g(x). (2.2.10)

Theorem 2.6 (Moreau-Rockafellar). Let f and g be proper convex functions. Then, for every
x0 ∈ Rn

∂f(x0) + ∂g(x0) ⊂ ∂(f + g)(x0).

Moreover, suppose that int(dom f ∩ dom g) 6= ∅. Then for every x0 ∈ Rn we also have

∂(f + g)(x0) ⊂ ∂f(x0) + ∂g(x0).

2.2. Convex optimization 19

Proof. For the first part, let ξ1 ∈ ∂f(x0) and ξ2 ∈ ∂g(x0). Then, for all x ∈ Rn

f(x) ≥ f(x0) + ξ>1 (x− x0)
g(x) ≥ g(x0) + ξ>2 (x− x0)

Adding the previous inequalities gives

f(x) + g(x) ≥ f(x0) + g(x0) + (ξ1 + ξ2)>(x− x0)

and hence (ξ1 + ξ2) ∈ ∂(f + g)(x0). For the second part, check Balder (2008).

Using Fermat’s rule and the previous theorem it is easy to see that the optimality condition
for problem (2.2.10) is

0 ∈ ∂f(x) + ∂g(x).

The previous result does not assume that either f or g are differentiable functions. Most
of the times in practice we find that one of them it is indeed differentiable, while the other is
not. This can be further exploited to simplify the optimality condition. If the function f is
differentiable and Lipschitz continuous, the new optimality condition is

0 ∈ ∇f(x) + ∂g(x),

where we have used the third property of the subdifferential. The next theorem and proposition
summarize the previous results.

Proposition 2.2. Let f , g be proper convex functions and f differentiable. Then, the following
are equivalent:

(i) x is a solution of the problem (3.3.17).

(ii) 0 ∈ ∇f(x) + ∂g(x).

(iii) x = proxηg(x− η∇f(x)).

Proof. If x is a solution of the problem (2.2.10) then, using Fermat’s theorem (Theorem 2.5),

0 ∈ ∂(f + g)(x) ⇔ 0 ∈ ∂f(x) + ∂g(x)
⇔ 0 ∈ {∇f(x)}+ ∂g(x)
⇔ −∇f(x) ∈ ∂g(x)
⇔ x− η∇f(x) ∈ x+ η∂g(x)
⇔ x = proxηg(x− η∇f(x)).

2.2.3 Algorithms

Item (iii) of Proposition 2.2 gives the idea of iterating

xk+1 = proxηg(xk − η∇f(xk)), (2.2.11)

starting from an initial point x0. It is important to note that, on one hand, when g = 0, (2.2.11)
reduces to the gradient descent method.

xk+1 = xk − η∇f(xk) (2.2.12)

20 Chapter 2. Mathematical background

for minimizing a Lipschitz-differentiable function (Combettes and Pesquet, 2009). On the other
hand, when f = 0, (2.2.11) reduces to the proximal point algorithm

xk+1 = proxηg(xk), (2.2.13)

for minimizing a non-differentiable function (Combettes and Pesquet, 2009). The convergence
of this algorithm is guaranteed for an appropriate choice of the parameter η. First we need to
precisely define smoothness,

f(z) ≤ f(x) +∇f(x)>(z − x) + L

2 ‖z − x‖
2
2, (2.2.14)

for all x, z ∈ Rn. The previous definition is equivalent to

‖∇f(x)−∇f(z)‖ ≤ L‖x− z‖. (2.2.15)

This condition means that the gradient of the function f is Lipschitz continuous with constant
L. We will sometimes refer to a function f satisfying the previous inequality as L-smooth. The
following theorem states the convergence of the Proximal Gradient method:

Theorem 2.7 (Convergence of the proximal gradient method). If f has Lipschitz continuous
gradient with constant L, (f + g) admits minimizers and

η ∈
(

0, 2
L

)
,

then the proximal-gradient iterations {xk} converge to a minimizer.

The proof of Theorem 2.7 can be found in Bauschke and Combettes (2011, Corollary 27.9).

Chapter 3

Theory and algorithms for the Lasso

3.1 Lasso

The two standard techniques to improve Ordinary Least Squares (OLS) estimates, subset selection
(Hastie et al., 2003) and Ridge Regression, both have disadvantages (Tibshirani, 1994). Subset
selection obtains interpretable models but it can be very variable since it is a discrete process:
features are either kept in the model or dropped from it. On the other hand, Ridge Regression is
a continuous process, in the sense that all coefficients are shrunk (but not dropped) and hence
more robust. However, it is very rare that coefficients become strictly 0 and therefore models are
not interpretable.

Lasso (Least Absolute Shrinkage and Selection Operator) is a technique that reduces (shrinks)
some coefficients and sets others to 0; therefore it tries to maintain the advantages of both
subset selection and Ridge Regression. Let’s assume, without loss of generality, that the xij are
normalized to have zero mean and unit variance, that is,

∑
i xij/n = 0,

∑
i x

2
ij/n = 1 and the

output variables yi have zero mean. Let ŵ = (ŵ1, ŵ2, . . . , ŵd)> be the Lasso estimate, defined by

ŵ = argmin


n∑
i=1

yi −∑
j

wjxij

2
 s.t

∑
j

|wj | ≤ t, (3.1.1)

where t is a tuning parameter. This parameter controls the amount of shrinking that is applied
to the estimates. Let ŵ0

j be the full OLS estimates and t0 =
∑
j |ŵ0

j |. Values of t < t0, will cause
shrinking of the coefficients towards 0, and some coefficients may be strictly 0. For instance if
t = t0/2, the effect will be similar to finding the best subset of size p/2 (Tibshirani, 1994). On
the other hand, if t ≥ t0, ŵ0 is also the solution of the Lasso problem.

The motivation for the Lasso came from an interesting proposal of Breiman, the non-negative
garotte (Breiman, 1995)

min
n∑
i=1

yi −∑
j

cjŵ
0
jxij

2

s.t cj ≥ 0,
∑

cj ≤ t. (3.1.2)

The garotte starts with the full OLS estimates, ŵ0
j , and shrinks them using non-negative factors

cj whose sum is bounded. The ŵj(t) = cjŵ
0
j are the new predictor coefficients. As t is decreased,

more of the {cj} become 0, and the remaining non-zero ŵj(t) are shrunk.

21

22 Chapter 3. Theory and algorithms for the Lasso

Orthonormal case The orthonormal design case is a highly simplified situation (it is never
the case in real-world datasets) where Lasso, subset selection, non-negative garrote and Ridge Re-
gression solutions can be computed exactly. This can give interesting insight into the comparative
behavior of those methods.

Recall that X is the n× d matrix with ij-th entry xij and suppose that X>X = I. Let ŵ0

be the ordinary least squares solution (Chapter 1),

ŵ0 = (X>X)−1X>y. (3.1.3)

In the case of an orthogonal design, Eq. (3.1.3) simplifies to

ŵ0 = X>y.

Using Lagrangian theory, it can be seen (Hastie et al., 2003) that the Lasso problem (3.1.1) is
equivalent to

ŵ = argmin
{
‖y−Xw‖22 + λ‖w‖1

}
, (3.1.4)

where

‖w‖1 =
d∑
j=1
|wj |

and λ ≥ 0. We will prove this equivalence later in Chapter 5. Note that the Lasso penalty is
convex, but not strictly convex (refer to Chapter 1 for the definitions). Expanding the first term
of the previous equation and using the fact that X is orthonormal, we get y>y− 2ytXw + w>w.
Since y>y does not contain any of the variables to minimize and noting that ŵ0 = X>y, we can
rewrite the problem (3.1.4) as

ŵ = argmin
{

2ŵ0w + ‖w‖22 + λ‖w‖1
}

= argmin

∑
j

2w0
jwj + w2

j + λ|wj |

 , (3.1.5)

where (·)+ = max(·, 0) denotes the positive part.
The objective function is now a sum of objectives, each corresponding to a separate variable

wj , so they may be solved individually. Fixing a certain j, then we want to minimize

2w0
jwj + w2

j + λ|wj |.

Note that if w0
j > 0 then wj ≥ 0 since otherwise we could flip the sign and get a lower value for

the objective function. Similarly, if w0
j < 0 then wj ≤ 0. For the first case, differentiating with

respect to wj and setting equal to 0 we get

wj = w0
j −

λ

2 .

But this is only positive if the right-hand side is non-negative, that is, we have to take

ŵj =
(
ŵ0
j −

λ

2

)
+

= sign(ŵ0
j)
(
|ŵ0
j | −

λ

2

)
+
. (3.1.6)

Using a similar argument the same solution is obtained for the w0
j < 0 case. Finally, letting

γ = λ
2 we get that the Lasso solutions for the orthonormal case are

ŵj = sign(ŵ0
j)(|ŵ0

j | − γ)+, (3.1.7)

3.2. Elastic Net 23

where γ is determined by the condition
∑
ŵj = t. In fact, for every t ≥ 0 it is possible to find a

γ ≥ 0 for which the solution of the problem is the same (Chapter 5).
In this scenario, the best subset selection of size k reduces to choosing the k largest coefficients

in absolute value and setting the rest to 0. This is equivalent to

ŵj =
{
ŵ0
j if |ŵ0

j | > λ

0 otherwise .

for some choice of λ (Tibshirani, 1994). Recall from Chapter 1 that Ridge Regression solutions
are

ŵ = (X>X + λI)−1X>y.

If X>X = I and noting again that ŵ0 = X>y, the solutions for the orthonormal case can be
rewritten as

ŵj = 1
1 + λ

ŵ0
j .

Last, the solutions for the garotte are (Breiman, 1995)

ŵj =
(

1− λ2

(ŵ0
j)2

)
+
ŵ0
j .

Figure 3.1 shows the comparison between Lasso, Ridge Regression, garotte and best subset
selection solutions as a function of the OLS estimates. As it can be seen the Lasso often obtains
some coefficients equal to 0, while shrinking the rest towards 0. Best subset selection also obtains
coefficients equal to 0, but the rest remain unchanged. The garotte is similar to the Lasso, with
less shrinkage for larger coefficients. According to Tibshirani (1994), the differences can be large
if the design is not orthonormal. Finally, Rigde Regression shrinks all coefficients, but none of
them is strictly 0.

Geometry Now let’s look at the Lasso penalty from a geometrical point of view. Figure 3.2
shows the elliptical contours of the objective function, centered at the OLS estimates. The
Lasso solution is the first place where these estimates intersect with the unit square. Sometimes
this will happen at a corner and thus the coefficient associated with that axis will be 0. For
example in Fig. 3.2 the optimal value for the coefficient associated to the x-axis is 0. In the
Ridge Regression case, the constrain region is a circle and hence zero solutions will rarely result.
As it can be deduced from the figure, Ridge Regression contour plots intersect with the circle in
a point (0, y) only if the corresponding OLS estimate is already in the y-axis, i.e. the coefficient
is already 0, which is a much more unlikely event.

3.2 Elastic Net
We consider the usual regression model (2.1.1) with d features. As shown before there are several
options to find the weight vector ŵ, such as OLS, Ridge Regression or the Lasso. It is well known
that OLS estimates often do poorly in both prediction and interpretation. As a continuous
shrinkage method, Ridge Regression achieves better prediction performance, although it does
not produce sparse and, hence, interpretable models.

The Lasso fixes both problems, since it does simultaneously continuous shrinkage and
automatic variable selection. Tibshirani (1994) and Fu (1998) compare the prediction performance
of the Lasso and Ridge Regression and found that none uniformly dominates over the other.

24 Chapter 3. Theory and algorithms for the Lasso

0 1 2 3 4 5

0
1

2
3

4
5

Best subset

w

0 1 2 3 4 5

0
1

2
3

4
5

Ridge regression

w

0 1 2 3 4 5

0
1

2
3

4
5

Lasso

w

0 1 2 3 4 5

0
1

2
3

4
5

Garotte

w

Figure 3.1: Subset regression, Ridge Regression, Lasso and garotte shrinkage comparison in the
case of an orthonormal design.

However, as data is rapidly increasing in both number and dimension, Lasso is more appealing
due to its sparse representation. Although Lasso has shown success in many situations, it has
some limitations:

1. In the d > n case, the Lasso selects at most n variables, because of the nature of the convex
optimization problem (Efron et al., 2004). From a variable selection point of view, this
seems like a limiting feature. However, from a regression point of view this is not a bad
property since the problem is ill-posed.

2. If there is a group of variables for which pairwise correlations are very high, then the Lasso
tends to select somewhat randomly only one variable from the group (Grave et al., 2011).

3. In the n > d case, if there are high correlations between variables, it has been empirically
observed that the Ridge Regression prediction is better than the Lasso prediction.

In addition, for some problems such as the gene selection problem in microarray data, the
Lasso may not be a good variable selection method (Zou and Hastie, 2005). Typical micro-array
data has many thousands of variables (genes) and often fewer than 100 samples. There are also
some genes with high correlations between them, forming a group. The ideal gene selection

3.2. Elastic Net 25

Figure 3.2: Lasso (a) and Ridge Regression (b) estimates (Tibshirani, 1994)

method should be able to eliminate the trivial genes and automatically include whole groups
into the model. For this kind of d � n and grouped variables situation, the Lasso is not the
ideal method, because it can only select at most n variables out of d candidates and it lacks the
ability to reveal grouping information.

The Elastic Net is a method that tries to improve on both Lasso and Ridge Regression as it
simultaneously does automatic selection and continuous shrinkage like the Lasso, but it can also
select groups of correlated variables. It also lacks the limitation of selecting at most n features
out of d when d > n.

3.2.1 Naïve Elastic Net

Suppose that the dataset has n observations and d features. Let y ∈ Rn be the response vector
and X ∈ Rn×d the data matrix. As in the Lasso, we assume that the response has zero mean
and the variables are standarized. The naïve Elastic Net criterion is defined as

L(w, λ1, λ2) = ‖y−Xw‖22 + λ2‖w‖22 + λ1‖w‖1. (3.2.1)

The naïve Elastic Net estimator ŵ is the minimizer of Eq. (3.2.1):

ŵ = argmin
w
{L(w, λ1, λ2)}. (3.2.2)

Let α = λ2/(λ1 + λ2), then Eq. (3.2.2) is equivalent to (Zou and Hastie, 2005)

ŵ = argmin
w
‖y−Xw‖22, s.t. (1− α)‖w‖1 + α‖w‖22 ≤ t. (3.2.3)

The function (1− α)‖w‖1 + α‖w‖22 is the Elastic Net penalty, which is a convex combination
of the Lasso penalty (`1-norm) and the Ridge Regression penalty (`2-norm). When α = 1, the
naïve Elastic Net becomes simply Ridge Regression. For all α ∈ (0, 1) the Elastic Net penalty
is strictly convex. Recall that the Lasso penalty (α = 0) is convex but not strictly convex and
non-differentiable. See Fig. 3.3 for a graphical representation of the Elastic Net penalty.

We discuss next how to solve the Elastic Net problem. It turns out that minimizing Eq. (3.2.1)
is equivalent to a Lasso-type optimization problem.

26 Chapter 3. Theory and algorithms for the Lasso

Elastic Net
Lasso

Ridge Regression

Figure 3.3: Lasso, Ridge Regression and Elastic Net penalties for the two variable case

Lemma 3.1. Given a dataset (X,y) and (λ1, λ2), define an artificial dataset (X̃, ỹ) by

X̃(n+d)×d = (1 + λ2)−1/2
(

X√
λ2Id

)
, ỹ(n+p) =

(
y
0

)
. (3.2.4)

Let γ = λ1/
√

(1 + λ2) and w̃ =
√

(1 + λ2)w. Then the naïve Elastic Net criterion can be
written as

L(w, γ) = L(w̃, γ) =
∥∥∥ỹ− X̃w̃

∥∥∥2

2
+ γ‖w̃‖1. (3.2.5)

Let also

w̃∗ = argmin
w̃
{L(w̃, γ)};

then the Elastic Net optimum w(Naive) is given by

w(Naive) = 1√
(1 + λ2)

w̃∗. (3.2.6)

Proof. We are going to show how to recover the criterion function (3.2.1) from the function
(3.2.5). First, substituting the values of γ and w̃ in Eq. (3.2.5) we get

L(w̃, γ) =
∥∥∥∥ỹ− X̃

√
(1 + λ2)w

∥∥∥∥2

2
+ λ1√

(1 + λ2)

∥∥∥∥√(1 + λ2)w
∥∥∥∥

1

=
∥∥∥∥ỹ− X̃

√
(1 + λ2)w

∥∥∥∥2

2
+ λ1‖w‖1.

3.2. Elastic Net 27

Now substituting the values of X̃ and ỹ into the previous equation we get

L(w, λ1, λ2) =
∥∥∥∥∥
(

y
0

)
− (1 + λ2)−1/2

(
X√
λ2Ip

)√
(1 + λ2)w

∥∥∥∥∥
2

2
+ λ1 ‖w‖1

=
∥∥∥∥∥
(

y
0

)
−
(

Xw√
λ2w

)∥∥∥∥∥
2

2
+ λ1 ‖w‖1

= ‖y−Xw‖22 + ‖ − λ1/2
2 w‖22 + λ1 ‖w‖1

= ‖y−Xw‖22 + λ2‖w‖22 + λ1‖w‖1,

which is exactly the same as Eq. (3.2.1)

Lemma 3.1 shows that we can transform the naïve Elastic Net problem into a equivalent
Lasso problem on augmented data. Note that the sample size in the augmented problem is n+ d
and X̃ has rank d, which means that the naïve Elastic Net can potentially select all d features
in all situations. This property overcomes the limitation of the Lasso that were described in
Section 3.1. Lemma 3.1 also shows that naïve Elastic Net can perform an automatic variable
selection in a similar fashion to the Lasso.

Let’s briefly discuss now the grouping effect in the Elastic Net model. In the d � n
case, the grouped variables situation is particularly important, for the reasons mentioned
before. Qualitatively speaking, a regression method exhibits the grouping effect if the regression
coefficients of a group of highly correlated variables tend to be equal in absolute value. In
particular, in the extreme situation where some variables are exactly identical, the regression
method should assign identical coefficients to the identical variables. In order to quantify the
grouping effect, Zou and Hastie (2005) consider the following generic penalization problem

ŵ = argmin
w
{‖y−Xw‖22 + λJ(w)}, (3.2.7)

where J(·) is positive valued for w 6= 0. The following lemma from Zou and Hastie (2005)
characterizes the grouping effect depending on the penalty term J(·).

Lemma 3.2. Assume that xi = xj, i 6= j ∈ {1, . . . , p}.

1. If J(·) strictly convex, then ŵi = ŵj, ∀λ > 0.

2. If J(w) = ‖w‖1, then ŵiŵj ≥ 0 and for any s ∈ [0, 1], the weights ŵ∗(s)

ŵ∗k(s) =


ŵk if k 6= i and k 6= j,
(ŵi + ŵj) s if k = i,
(ŵi + ŵj)(1− s) if k = j,

are also minimizers of Eq. (3.2.7).

Lemma 3.2 shows a clear distinction between strictly convex penalty functions and the Lasso
penalty. Strict convexity guarantees the grouping effect, i.e., equal coefficients in the extreme
situation with identical variables. In contrast, the Lasso does not even have an unique solution.
The Elastic Net penalty is strictly convex for λ2 > 0, thus enjoying property 1 of Lemma 3.2.
The following Theorem quantifies the grouping effect of the Elastic Net.

28 Chapter 3. Theory and algorithms for the Lasso

Theorem 3.3 (Theorem 1 in Zou and Hastie, 2005). Given data (X,y) and parameters (λ1, λ2),
assume y has zero mean and the variables X are standarized. Let ŵ(λ1, λ2) be the naïve Elastic
Net estimate. Suppose that ŵi(λ1, λ2)ŵj(λ1, λ2) > 0 and define

Dλ1,λ2(i, j) = 1
‖y‖1

|ŵi(λ1, λ2)− ŵj(λ1, λ2)|;

then
Dλ1,λ2(i, j) ≤ 1

λ2

√
2(1− ρij),

where ρij = x>i xj is the xi,xj sample correlation.

Proofs of Lemma 3.2 and Theorem 3.3 can be found in Zou and Hastie (2005, Appendix A).
The quantity Dλ1,λ2(i, j) describes the difference between the coefficient paths of variables i and
j. If xi and xj are highly correlated, Theorem 3.3 says that the difference between the coefficient
paths of predictor i and predictor j is almost 0, that is, the final weights associated to those
variables are very similar.

3.2.2 General Elastic Net

As an automatic variable selection model, the naïve Elastic Net overcomes the limitations of the
Lasso in scenarios 1 and 2 (Section 3.2). However, empirical evidence (see Zou and Hastie, 2005,
Sections 4 and 5) shows that Elastic Net may not perform well unless it is very close to either
Ridge Regression or the Lasso.

As we have mentioned before in Chapter 1, an accurate penalization method achieves good
prediction performance through the bias-variance tradeoff. The naïve Elastic Net estimator is a
two stage procedure: for each fixed λ2 first the Ridge Regression coefficients are found and then
a Lasso-type shrinkage is done along the Lasso coefficient solution paths. This suggests that a
double amount of shrinkage is being performed in the coefficients. This double shrinkage does
not help to reduce the variance much and introduces unnecessary extra bias.

In order to improve the prediction performance of the naïve Elastic Net estimate this double
shrinkage has to be corrected. Given data (X,y), penalty parameters (λ1, λ2), and augmented
data (X̃, ỹ), the naïve Elastic Net solves the Lasso-type problem

w̃∗ = argmin
w̃

{∥∥∥ỹ− X̃w̃
∥∥∥2

2
+ λ1√

(1 + λ2)
‖w̃‖1

}
(3.2.8)

The corrected Elastic Net estimates are defined by Zou and Hastie (2005) as

w(ENet) =
√

(1 + λ2)w̃∗. (3.2.9)

We had before w(Naive) = (1/
√

(1 + λ2))w̃∗, therefore it follows that

w(ENet) = (1 + λ2)w(Naive). (3.2.10)

Hence the Elastic Net coefficients are a rescaled version of the naïve Elastic Net coefficients.
Such an scaling transformation preserves the variable selection property of the naïve Elastic Net
and it is the simplest way to undo the double shrinkage. Empirically it was also found by Zou
and Hastie (2005) that the Elastic Net performs very well when compared with the Lasso and
Ridge Regression.

3.3. Algorithms 29

3.3 Algorithms

The Lasso problem (3.1.4) is a convex quadratic unconstrained optimization problem that, in
principle, could be solved using standard optimization techniques such as gradient descent.
However, there are two main difficulties when working with the `1-norm:

1. It it not differentiable. Hence, the gradient must be replaced by its generalization, the
subgradient. In practice it does not make a big difference since the non-differentiability
only occurs at zero, but it makes the analysis a little bit more involved.

2. It is not strongly convex. Many theoretical convergence rates enjoy a linear convergence
only for strongly convex functions and thus they do not hold for the Lasso.

Despite everything mentioned above, the primal problem is usually the formulation of choice
when solving the Lasso and many algorithms exist in the literature. In the following sections we
will review the main ones, starting with LARS, which was the first efficient procedure to solve
the Lasso, and moving on to more modern algorithms. LARS is an important one since it was
the first procedure specifically tailored for this problem and before that only standard Quadratic
Programming (QP) techniques were used.

More modern algorithms are usually concerned with scalability, and thus batch methods were
slowly replaced by online-style algorithms, where the samples are all available but still streamed
to the algorithm in mini-batches, in some pre-defined or random order. In the extreme case these
mini-batches only contain one sample. This idea not only applies to the samples but also to the
coordinates or variables, and we will also explore algorithms where the optimization occurs one
coordinate at a time. The name stochastic algorithms is used when the samples or coordinates
are drawn at random following some distribution, usually uniformly.

It is important to note that these algorithms usually tackle the more general problem of
differentiable loss plus a convex regularizer (not necessarily differentiable) since the analysis
barely changes. We will only cover here the Lasso case although they can usually be easily
extended to cover any differentiable loss and one or more differentiable regularizers, for example
the Elastic Net problem.

As mentioned before most of the procedures solve the unconstrained primal formulation,
although some works also explore the constrained primal formulation (3.1.1), by using projections,
or the dual formulation. In particular, the latter is often use to derive screening rules to discard
variables early during the optimization algorithm, which we will briefly discuss in Section 3.4.

3.3.1 Least Angle Regression

Least Angle Regression (LARS) (Efron et al., 2004) was the first algorithmic procedure to
efficiently solve the Lasso and related problems. More specifically, LARS is a model selection
algorithm also related to others such as Forward Stagewise regression and Forward Stepwise
regression. In fact, simple modifications of the LARS procedure implement algorithms to solve
these problems using less computer time.

One of the first model selection method was Forward Stepwise regression (Roush, 1982).
Given a collection of possible features, we select the one having largest absolute correlation with
the response y, say x1, and perform a linear regression of y on x1. This leaves a residual vector
orthogonal to x1 that is now considered to be the response. We project the other variables
orthogonally to x1 and repeat the selection process. After k steps we have a set of variables
x1,x2, . . . ,xk that can be used to construct a linear model with k parameters. This procedure

30 Chapter 3. Theory and algorithms for the Lasso

may be overly greedy since useful predictors can be discarded too early if they are very correlated
to previously selected xi variables.

Next we describe Forward Stagewise regression (Efron et al., 2004), which is a much more
cautious version of Forward Stepwise regression, since it makes a lot of tiny steps (more than
k) as it moves towards a final model. Forward Stagewise starts with ŵ = 0 and builds up the
regression function in successive small steps. If ŵ is the current estimated weight vector and
ŷ = Xŵ, let c(ŷ) be the vector of current correlations, i.e.,

ĉ = c(ŷ) = X>(y− ŷ), (3.3.1)

so that its j-th component ĉj is proportional to the correlation between covariate xj and the
current residual vector. The next step of the algorithm is taken in the direction of the largest
current correlation j, i.e., we first find j∗ as

j∗ = argmax |ĉj |

and then we update the estimate

ŷ = ŷ + ε sign(ŷj∗)xj∗ , (3.3.2)

with sign(·) being the ±1-valued sign function and ε some small constant. Note that if ε = |ĉj |
this reduces to the Forward Stepwise algorithm and the number of iterations is equal to k, the
number of parameters in the final model (Efron et al., 2004). As ε approaches 0, the algorithm
is going to increase the number of iterations (taking more computer time), but possibly also its
accuracy, since it will not discard early useful variables very correlated with the response.

LARS is an intermediate approach (Efron et al., 2004), since a simple formula allows to
implement Forward Stagewise with fairly large steps, although not as large as those in Forward
Stepwise, reducing the computational burden. LARS builds up the estimates ŷ = Xŵ in k steps,
adding one covariate to the model in each step, so at the end only k of the ŵj are non-zero.

First we start with ŵ = 0 and find the predictor most correlated with the response using
Eqs. (3.3.1) and (3.3.2). We take the largest step possible in that direction until some other
predictor has as much correlation with the current residual. At this point, LARS proceeds in a
direction equiangular to the current variables until a third variable earns its way into the most
correlated set, and so on.

More formally, we begin at ŵ = 0, that is, ŷ0 = 0, and suppose that ŷA is the current LARS
output estimate. Then, the vector of current residual correlations is given by Eq. (3.3.1)

ĉ = X>(y− ŷA).

The active set A is the set of indices corresponding to covariates with the greatest absolute
current correlations,

Ĉ = max
j
{|ĉj |} and A =

{
j
∣∣∣ |ĉj | = Ĉ

}
. (3.3.3)

Assuming that the feature vectors x1,x2, . . . ,xp are linearly independent, we define the n× |A|-
matrix

XA = (. . . sign(ĉj)xj . . .)j∈A. (3.3.4)

Let
GA = X>AXA and AA = (1>AG−1

A 1A)−1/2 (3.3.5)

with 1A the vector of 1’s of lenght |A|. Then the equiangular vector

uA = XAωA, (3.3.6)

3.3. Algorithms 31

where
ωA = AAG−1

A 1A, (3.3.7)

is the unit-norm vector making equal angles, less than 90◦, with the columns of XA, that is,

X>AuA = AA1A and ||uA||2 = 1. (3.3.8)

We also compute the vector of length |A|

a = X>uA. (3.3.9)

Then the next step of the LARS algorithm selects first the new covariate j∗ to be added as

j∗ = argmin+

j∈Ac

{
Ĉ − ĉj
AA − aj

,
Ĉ + ĉj
AA + aj

}
= argmin+

j∈Ac
{γj} , (3.3.10)

where by argmin+ we indicate that the minimum is taken only over positive components. Then
ŷA is updated as

ŷA+ = ŷA + γ̂uA, (3.3.11)

where γ̂ = γj∗ , i.e.,

γ̂ = min+
j∈Ac

{
Ĉ − ĉj
AA − aj

,
Ĉ + ĉj
AA + aj

}
. (3.3.12)

Here min+ indicates again that the minimum is taken only over positive components for each
choice of j.

We discuss next the rationale for the above choices (see Efron et al., 2004 for more details).
Define

y(γ) = ŷA + γuA (3.3.13)

for γ > 0, so that the new residual correlation is

cj(γ) = x>j (y− y(γ))
= x>j (y− ŷA − γuA)
= x>j (y− ŷA)− γx>j uA
= ĉj − γaj . (3.3.14)

For j ∈ A, Eqs. (3.3.1), (3.3.3) and (3.3.8) yield

|cj(γ)| = Ĉ − γAA, (3.3.15)

showing that all of the maximal absolute correlations of the features already selected will decline
equally for any value of γ. For j ∈ Ac, γ is selected so that the next covariate to join the active
set has a new correlation exactly equal to Eq. (3.3.15). Equating (3.3.14) with (3.3.15) shows
that cj(γ) reaches its maximum value at γ = (Ĉ − ĉj)/(AA − aj). Likewise −cj(γ) achieves its
maximum at γ = (Ĉ + ĉj)/(AA + aj). Therefore we want to choose γ̂ in Eq. (3.3.12) as the
smallest possible such value of γ. In other words, we select the next covariate j to join the active
set, i.e., A+ = A ∪ {j∗}, as

j∗ = argmin+

j∈Ac

{
Ĉ − ĉj
AA − aj

,
Ĉ + ĉj
AA + aj

}
.

32 Chapter 3. Theory and algorithms for the Lasso

The new maximum absolute correlation Ĉ+ verifies then Ĉ+ = Ĉ − γ̂AA.
It is important to note that the procedure described previously does not yield solutions for

the Lasso problem, but they are closely related. In fact, Efron et al. (2004) show how the LARS
algorithm can be slightly modified to generate the full set of Lasso solutions.

Let ŵ be a Lasso solution with ŷ = Xŵ; then the sign of any non-zero coordinate ŵj must
agree with the sign sj of the current correlation ĉj = x>j (y− ŷ) (Efron et al., 2004),

sign(ŵj) = sign(ĉj) = sj . (3.3.16)

This restriction is not enforced in the LARS procedure, but it can be easily modified to do so.
Assume we have just finished a LARS step giving a new active set as in Eq. (3.3.3), and the

corresponding LARS estimate ŷA corresponds to a Lasso solution ŷ = Xŵ. Define the d-vector
d whose components are

dj =
{
sjωA if j ∈ A
0 else

with ωA as in Eq. (3.3.7). Moving in the positive γ direction of the LARS line (Eq. 3.3.13), we
see that y(γ) = Xw(γ), where

wj(γ) = ŵj + γdj .

Therefore wj(γ) will change sign at

γj = −ŵj
dj

.

Let γ̃ be the first of such γj ; then if γ̃ < γ̂ (Eq. (3.3.12)), wj(γ) cannot be a Lasso solution for
γ > γ̃ since the sign restriction (Eq. (3.3.16)) must be violated: ŵj(γ) has changed sign while ĉj
has not (Eq. (3.3.15) is always positive within a single LARS step).

Summing up, we can modify the LARS procedure to check whether γ̃ < γ̂ at every iteration.
If that is the case, we stop the ongoing LARS step at γ = γ̃ and remove the current covariate j̃
from the calculation of the next equiangular direction, that is, we replace Eq. (3.3.11) by

ŷA+ = ŷA + γ̂uA and A+ = A−
{
j̃
}
.

Theorem 1 of Efron et al. (2004) states that, under this modification, the LARS procedure
yields all the Lasso solutions. It is important to note that now covariates in the active set can be
removed by the algorithm. These covariates may later re-enter the active set or be completely
removed from the final solution. As a result, the maximum number of steps is no longer upper
bounded by the number of covariates d, as it was the case in the original LARS procedure. Note
also that Theorem 1 assumes that these increments or decrements of the active set only involve
one index j at a time, that is, in Eq. (3.3.10) there are not two indexes with the same γ value.
Efron et al. (2004, Section 5) discuss what to do when such ties occur, although they are very
rare in real-world data.

3.3.2 Proximal Gradient Descent

As we have seen in Chapter 1, Ridge Regression can be solved analytically by computing the
inverse of (X>X + λI>I), where I is the identity matrix. However, in practice this operation can
be very expensive and numerically unstable. Thus, other alternatives are usually preferred. One
option is to use gradient descent to iteratively find the optimum of the function by taking small
steps in the direction of the negative gradient. For the Lasso, since the `1-norm is not differentiable
at 0, we have to use a generalization of gradient descent described in Section 2.2.3, Proximal

3.3. Algorithms 33

Gradient Descent. This algorithm is also known as forward-backward splitting (Combettes and
Pesquet, 2009).

Given the standard optimization problem,

min
x∈E

f(x) + g(x), (3.3.17)

where f has Lipschitz continuous gradient with constant L, Proximal Gradient Descent iterates
(Section 2.2.3)

xk+1 = proxηg(xk − η∇f(xk)). (3.3.18)

Recall that the Lasso can be stated as the following optimization problem:

min
w
‖Xw− y‖22 + λ‖w‖1. (3.3.19)

As it can be seen, it takes the general form of Eq. (3.3.17), where f(w) = ‖Xw− y‖2 and
g(w) = λ‖w‖1. The gradient of f is

∇f(w) = 2X>(Xw− y), (3.3.20)

and the proximal mapping of the `1-norm is the soft-thresholding operator (Appendix A).

[proxg(w)]i = [Sλ(w)]i = sign(wi)(|wi| − λ)+. (3.3.21)

Substituting Eqs. (3.3.20) and (3.3.21) in Eq. (3.3.18) we get:

wk+1 = Sλ(wk − 2ηX>(Xwk − y)), (3.3.22)

where η is an appropriate stepsize. If we iterate Eq. (3.3.22) until convergence we get an
algorithm usually referred in the literature as Iterative Soft-Thresholding Algorithm or simply
ISTA. The name comes from the fact that we are applying the proximal operator of the `1-norm
or soft-thresholding operator after each gradient step.

Now let’s see an alternative, more general, derivation of the algorithm from (Beck and
Teboulle, 2009a). Consider the general formulation:

min{F (w) ≡ f(w) + g(w) : w ∈ Rn}. (3.3.23)

The following assumptions are made:

• g : Rn → R is a continuous convex function which is possibly nonsmooth.

• f : Rn → R is a smooth convex function of the type C1,1, i.e, continuously differentiable
with Lipschitz continuous gradient L(f):

||∇f(x)−∇f(y)|| ≤ L(f)||x− y||,

where || · || denotes the standard Euclidean norm and L(f) > 0 is the Lipschitz constant of
∇f .

• The problem is solvable, i.e. argminF 6= ∅. This is almost always the case, excluding
pathological cases.

34 Chapter 3. Theory and algorithms for the Lasso

Algorithm 1: ISTA with constant stepsize
Input: L := L(f).
Initialize :w0 = 0.
for k = 1, 2, . . . do

wk = pL(wk−1)
end

Now we are going to consider the following quadratic approximation of F (w) := f(w) + g(w) at
a given point y:

QL(w,y) := f(y) + 〈w− y,∇f(y)〉+ L

2 ||w− y||2 + g(w), (3.3.24)

which admits an unique minimizer

pL(y) := argmin{QL(w,y) : w ∈ Rn}. (3.3.25)

Simple algebra shows that (ignoring constant terms in y)

pL(y) = argmin
w

{
g(w) + L

2

∥∥∥∥w− (y− 1
L
∇f(y)

)∥∥∥∥2
}
. (3.3.26)

Note that the operator pL is just the proximal operator of (1/L)g,

proxg(x) = argmin
z∈R

(
g(z) + 1

2 ||x− z||
2
)
,

evaluated at the point y− 1
L∇f(y),

prox 1
L
g

(
y− 1

L
∇f(y)

)
= argmin

w

{
1
L
g(w) + 1

2

∥∥∥∥(y− 1
L
∇f(y)

)
−w

∥∥∥∥2
}

= argmin
w

{
g(w) + L

2

∥∥∥∥w− (y− 1
L
∇f(y)

)∥∥∥∥2
}

= pL(y).

that is, after taking a small step in the direction of the negative gradient of f . Finally, the basic
step of the algorithm is

wk = pL(wk−1). (3.3.27)

Note that this is actually an alternative derivation of the proximal gradient method since g(w)
could be any nonsmooth regularizer and f(w) any smooth convex function. However, Beck and
Teboulle (2009a) still refer to this more general method as ISTA, which may be confusing. If
f(w) = ||Xw− y||2 and g(w) = λ||w||1 (λ > 0) then Eq. (3.3.27) reduces to Eq. (3.3.22) with
t = 1/L(f).

In practice, a possible drawback of the basic scheme showed in Algorithm 1 is that the
Lipschitz constant L(f) is not always known or computable. For instance, the Lipschitz constant
in the Lasso problem depends on the maximum eigenvalue of X>X. For large-scale problems,
this quantity is very expensive to compute. The trivial algorithm to compute eigenvalues needs
O
(
n3) operations, where n is the size of the matrix, although there are faster approaches if we

3.3. Algorithms 35

Algorithm 2: ISTA with backtracking
Initialize :L0 > 0, η > 1, and w0 = 0.
for k = 1, 2, . . . do

L̄ = ηikLk−1
Find the smallest nonnegative integers ik such that
F (pL̄(wk−1)) ≤ QL̄(pL̄(wk−1),wk−1)
Lk = ηikLk−1
wk = pLk

(wk−1)
end

Algorithm 3: FISTA with constant stepsize
Input: L := L(f).
Initialize : y1 = w0 = 0, t1 = 1
for k = 1, 2, . . . do

wk = pL(yk)

tk+1 = 1+
√

1+4t2
k

2
yk+1 = wk +

(
tk−1
tk+1

)
(wk −wk−1)

end

only need a few of the eigenvalues, such as the maximum. Therefore we also analyse ISTA with
a backtracking stepsize rule in Algorithm 2.

Theorem 3.4 states the convergence rate of the ISTA algorithm. The proof can be found in
Beck and Teboulle (2009a).

Theorem 3.4. Let {wk} be the sequence generated by Algorithm 1 or Algorithm 2. Then, for
any k > 1

F (wk)− F (w∗) ≤ αL(f)‖w0 −w∗‖2

2k ∀w∗ ∈W∗ (3.3.28)

where W∗ is the set of possible solutions, α = 1 for the constant stepsize setting and α = η for
the backtracking stepsize setting.

The previous result can be interpreted as follows: the number of iterations required to obtain
a solution w̃ such that F (w̃)− F (w∗) ≤ ε, is at most dC/εe, where C = αL(f)‖w0 −w∗‖2/2 or,
in other words, the convergence rate is O(1/k).

Recall that ISTA is just a specific version of the more general proximal gradient method
(3.3.18), which reduces to the gradient method when g(x) = 0. Nesterov (1983) shows that it
exists a gradient method with convergence rate O

(
1/k2) which is an “optimal” first order method

for smooth problems. We will describe in detail Nesterov’s Acceleration in Section 6.1. Beck
and Teboulle (2009a) extended the previous method to composite functions, where one of them
is (possibly) non-smooth. This algorithm is known as Fast Iterative Shrinkage-Thresholding
Algorithm (FISTA), an improved version of ISTA with convergence rate of O

(
1/k2). The

pseudocode for FISTA is showed in Algorithm 3.
FISTA can be also modified in the same way as ISTA in order to get rid of the Lipschitz

constant L(f). The pseudocode for FISTA with a backtracking stepsize rule can be seen in
Algorithm 4.

36 Chapter 3. Theory and algorithms for the Lasso

Algorithm 4: FISTA with backtracking
Input: L := L(f)
Initialize :L0 > 0, η > 1, w0 = y1 = x0 = 0 and t1 = 1.
for k = 1, 2, . . . do

L̄ = ηikLk−1
Find the smallest nonnegative integers ik such that
F (pL̄(wk−1)) ≤ QL̄(pL̄(wk−1),wk−1)
Lk = ηikLk−1
wk = pL(yk)

tk+1 = 1+
√

1+4t2
k

2
yk+1 = wk +

(
tk−1
tk+1

)
(wk −wk−1)

end

Note that the only important difference between Algorithms 1 and 2 and Algorithms 3 and 4
is that the operator pL is not applied to the previous point wk−1 but to a smartly chosen linear
combination of the previous two, wk−1 and wk−2. Since the computational burden is in the
pL operator and both algorithms require the same number of pL evaluations, the O(·) cost per
iteration is almost identical. Clearly, the extra computation performed by FISTA is marginal in
comparison to the pL evaluation. In order to compute FISTA iteration complexity note that we
can rewrite Eq. (3.3.22) as

wk+1 = Sλ(wk − 2t(X>Xwk −X>y)).

Thus, assuming X>X and X>y are precomputed at a fixed initial cost O
(
nd2), the cost per

iteration of FISTA is O
(
d2), i.e., that of computing

(
X>X

)
wk, which dominates the O(d) costs

of the soft-thresholding and w updates.

Theorem 3.5. Let {wk} and {yk} be generated by FISTA. Then, for any k > 1

F (wk)− F (w∗) ≤ 2αL(f)‖w0 −w∗‖2

(k + 1)2 ∀w∗ ∈W∗, (3.3.29)

where α = 1 for the constant stepsize setting and α = η for the backtracking stepsize setting.

Theorem 3.5 shows that the number of iterations required by FISTA to obtain an ε-optimal
solution w∗, F (w)− F (w∗) ≤ ε, is at most, dC/

√
ε− 1e, where

C =
√

2αL(f)‖w0 −w∗‖2.

Therefore FISTA has worst-case convergence rate of O
(
1/k2), which clearly improves upon ISTA,

and, since both algorithms have the same iteration complexity, in practice FISTA should also be
much faster than ISTA. The proof of the theorem can be found in Beck and Teboulle (2009a).
The convergence of ISTA and FISTA is also illustrated in Fig. 3.4. It is worth mentioning that
the value of the function in FISTA it is not guaranteed to decrease in every iteration. Beck
and Teboulle (2009b) suggest a modification of the algorithm, known as Monotone FISTA or
MFISTA that guarantees descent at each iteration, that is

f(wk) ≤ f(wk−1).

3.3. Algorithms 37

1e−05

1e−02

1e+01

0 50 100 150 200

Iterations

O
bj

ec
tiv

e

Algorithm
FISTA
ISTA

Figure 3.4: Convergence of ISTA and FISTA

The theoretical complexity of this new algorithm is the same as FISTA, and it can be found also
in (Beck and Teboulle, 2009b).

Finally note that, similarly to ISTA, FISTA provides a general framework for projected
gradient descent, that can be used in many other problems besides Lasso. As an example we
mention here two of them, namely Elastic Net and Group Lasso. Elastic Net minimizes the
function (3.2.1), thus we can select f(w) = ||y −Xw||22 + λ2||w||22 and g(w) = λ1||w||1. The
gradient of f is now

∇f(w) = 2(X>(Xw− y) + λ2w), (3.3.30)

and the proximal mapping is the same as in the Lasso problem (Eq. 3.3.21). Group Lasso has
the same loss function as Lasso but the regularization term is now the l2,1-norm,

||w||2,1 =
J∑
j=1

√
||wj ||2. (3.3.31)

where J is the number of groups and wj a vector with the weights in group j. Therefore, the
gradient of f is given by Eq. (3.3.20) and the proximal mapping of the mixed norm is (Puig
et al., 2009)

[proxg(w)]i = wji

(
1− λ

‖wj‖2

)
+
. (3.3.32)

This flexibility and wide applicability implies a computational trade-off with the efficiency of
problem-specific methods, that can usually take advantage of particular characteristics of the
problem at hand.

38 Chapter 3. Theory and algorithms for the Lasso

3.3.3 Coordinate Descent

Early works on coordinate descent to solve the Lasso or, in general, `1-regularized problems
include Fu (1998), Shevade and Keerthi (2003), Daubechies et al. (2004), and Kooij (2007).
Extensive reviews can be found in Friedman et al. (2010) and Shalev-Shwartz and Tewari (2011).
In particular, Friedman et al. (2007) recognize the importance of solving the problem along
an entire path of values for the regularization parameters, using the current estimates for the
warm-starts. Following the Gauss-Siedel approach of Zhang and Oles (2001), Genkin et al. (2007)
describe a coordinate descent method (called BBR) for minimizing `1-regularized objectives.

Friedman et al. (2010) extend the work of Friedman et al. (2007) and develop fast cyclic
coordinate descent algorithms for fitting generalized linear models with the more general Elastic
Net penalties. In a series of experiments the authors show how these algorithms outperform
many alternative methods such as LARS, l1logreg (Koh et al., 2007), BBR (Genkin et al.,
2007) and the Lasso Penalized Logistic (LPL) program (Wu and Lange, 2008). Although no
theoretical guarantees are provided, they also released an R package called glmnet that still is
one of the most widely used Lasso solvers up to this day, popularizing the method. The success of
the glmnet software can be also partly explained by its efficiency and ease of use: the package is
written in Fortran with a R wrapper and it is highly optimized for solving the Lasso, with some
ad-hoc tricks that make the solver very fast. On the negative side the code is pretty difficult to
understand and not many contributions are built on top of it.

GLMNet builds the full regularization path by defining a sensible range of values for the
regularization parameters, using the solution for a given value as a warm-start for the next. At
every step the algorithm solves the problem for a given λ value by cyclically choosing one variable
at a time and performing a simple analytical update until convergence. More formally, suppose
we have estimates w̃l for l 6= j and we want to partially optimize (3.1.4) with respect to wj . The
gradient at wj = w̃j only exists if w̃j 6= 0. In that case,

∂F

∂wj
= − 1

n

n∑
i=1

xij(yi − x>i w̃) + λ sign(wj)

and the wj update is given in Friedman et al. (2010) as

w̃j = Sλ

(
1
n

n∑
i=1

xij(yi − ỹ(j)
i)
)
, (3.3.33)

where Sλ(·) is the soft-thresholding operator (3.3.21)

Sγ(z) = sign(z)(|z| − γ)+ =


0, if z ∈ [−γ, γ]
z − γ, if z > γ
z + γ, if z < −γ

and
ỹ

(j)
i =

∑
l 6=j

xilw̃l

is the partial fitted value, without the contribution from the variable j. It is useful for the
computations to rewrite the previous equation as a function of the full fitted value ŷi,

ỹ
(j)
i =

∑
l 6=j

xilw̃l =
d∑

k=1
xikw̃k − xijw̃j = ŷi − xijw̃j . (3.3.34)

3.3. Algorithms 39

Algorithm 5: Cyclic Coordinate Descent (CCD), naive updates
Input :w = 0 ∈ Rd, r = y−Xw = y ∈ Rn and λ
for t = 1, 2, . . . do

for j = 1, 2, . . . , d do
g = 1

n

∑n
i=1 xijri

δ =


g − λ, if wj − g > λ
g + λ, if wj − g < −λ
−wj , otherwise.

wj ← wj + δ
if wj 6= 0 then

r← r + δxj
end

end
end

Now, let ri = yi − ŷi be the residuals; then by substituting Eq. (3.3.34) into Eq. (3.3.33) we get
the final expression for the updates,

w̃j = Sλ

(
1
n

n∑
i=1

xij(yi − ỹ(j)
i)
)

= Sλ

(
1
n

n∑
i=1

xij(yi − ŷi + xijw̃j)
)

= Sλ

(
1
n

n∑
i=1

xijri + w̃j

)
, (3.3.35)

since we assumed earlier that the xj are standardized. The computational cost of each iteration
is discussed by Friedman et al. (2010). Many coefficients are zero and remain zero after the
thresholding, and thus nothing needs to be changed. The cost for such step is O(n) operations
corresponding to the sum in Eq. (3.3.35). On the other hand, if a coefficient does change after
the thresholding we need O(n) operations to update ri on top of the ones to compute the sum,
for a total cost of O(2n). Thus a complete cycle through all d variables costs O(dn) operations.
Friedman et al. (2010) refer to Algorithm 5 as the naive algorithm, since we can obtain a more
efficient update by carefully rearranging the computations.

Let us rewrite now the first term in Eq. (3.3.35) as

n∑
i=1

xijri =
n∑
i=1

xij(yi − ŷi) =
n∑
i=1

xijyi −
n∑
i=1

xij ŷi = xj · y−
n∑
i=1

xij

d∑
k=1

xikw̃k =

= xj · y−
n∑
i=1

d∑
k=1

xijxikw̃k = xj · y−
d∑

k=1

n∑
i=1

(xijxik)w̃k = xj · y−
∑

k : |w̃k|>0
(xj · xk)w̃k

First, the inner products of each variable with y can be computed up front and then, each time
a new variable xj enters the model for the first time, we can compute and store its inner product
with all the rest of the features in O(nd) operations. If one of the coefficients already in the
model appears again we can update each gradient with only O(d) operations. Hence, the cost
of a complete cycle is O

(
d2) if no new variables become non-zero. This updates are called in

40 Chapter 3. Theory and algorithms for the Lasso

Algorithm 6: Cyclic Coordinate Descent (CCD), covariance updates
Input :w = 0 ∈ Rd, z = X>y ∈ Rd, Q ∈ Rd×d and λ
for t = 1, 2, . . . do

for j = 1, 2, . . . , d do
if j not in the model then

for k = 1, 2, . . . , d do
Qjk ← xj · xk

end
end
g = zj −

∑
k : |wk|>0 Qjkwk

wj ← Sλ (wj + g) =


wj + g − λ, if wj − g > λ
wj + g + λ, if wj − g < −λ
0, otherwise.

end
end

Friedman et al. (2010) covariance updates, since we fill the entries of the covariance matrix X>X
as shown in Algorithm 6, which is then stored in memory for later iterations.

Note that, since we are cycling trough all the variables, both versions will greatly benefit if
we are able to identify variables that are zero in the current iteration and will be zero also in
the final model. Assume that is the case and let m be the number of non-zero variables, then
the cost of a complete cycle can be further reduced to O(md) in the covariance updates setting.
That is the goal of the screening methods that we will discuss later in Section 3.4. In particular,
glmnet implements some strong rules for discarding predictors early (Tibshirani et al., 2012).
Note that these rules are not safe in the sense that they may incorrectly discard predictors whose
value is not zero in the final model. To solve that problem glmnet checks after every complete
cycle if the KKT conditions of the problem are violated, in which case the offending predictors
are brought back into the model.

As mentioned before, another trick that contributes to the speed of the algorithm is the
regularization path, that is, glmnet does not compute only the solution for a single value of λ
but for a decreasing sequence of values, starting at the smallest value λmax for which w∗ = 0.
The strategy is to select a minimum value λmin = ελmax and construct a sequence from λmax to
λmin of size K on the log scale. The value λmax can be computed analytically and only depends
of the data (Proposition 5.2),

λmax = ‖X
>y‖∞
n

. (3.3.36)

However both K and ε are constants that have to be selected. Computing the whole path of
solutions for a given λ its often faster and more stable than solving the problem for that λ due
to warm starts (the solution of one problem is used as a starting point for the next).

The convergence of coordinate descent has been extensively studied in a series of works,
starting with Luo and Tseng (1992), and continuing with Tseng (2001), Tseng and Yun (2009a),
and Tseng and Yun (2009b), just to mention a few. In particular, Luo and Tseng (1992) establish
a linear convergence after an unspecified number of iterations. However, as noted by Shalev-
Shwartz and Tewari (2011), the initial number of iterations scales at least quadratically with
the number of samples n and it is thus useless if n is very big. In an attempt to improve that

3.3. Algorithms 41

dependence, Tseng and Yun (2009b) propose an algorithm with a runtime bound of order

O
(
nd2‖w∗‖22

ε

)

(equations 21 y 25), which scales only linearly with n. The previous result still holds only if
the iteration counter is “large enough”. Thus, motivated by the success of the experiments in
Friedman et al. (2010), Saha and Tewari (2013) are able to prove a non-asymptotic convergence
bound of O(1/k) for cyclic coordinate descent under some assumptions, where k is the number
of iterations. This result is summarized in Theorem 3.6.

Theorem 3.6 (Theorem 16 in Saha and Tewari, 2013). Starting from a super- or sub-solution
w0, let

{
wk
}
denote the Cyclic Coordinate Descent (CCD) iterates. Under Assumptions 1 and

2 (Saha and Tewari, 2013), for any minimizer w∗ of (3.1.1), and for all k ≥ 1,

F (wk)− F (w∗) ≤ L
∥∥w∗ −w0∥∥2

2k
Note that the previous convergence result is the same as ISTA, and thus worse that the

O
(
1/k2) from FISTA. However, in practice Cyclic Coordinate Descent is faster to solve the

Lasso problem since the updates are n times cheaper (Nesterov, 2012). Finally, even though the
assumptions needed by (Saha and Tewari, 2013) to prove Theorem 3.6 are quite restrictive, the
same convergence is to be expected even without them, but there has not been a formal proof
yet.

3.3.4 Stochastic Coordinate Descent

In general, all the standard methods seen so far to solve the Lasso problem scale poorly with the
size of the problem (n and d). To overcome that difficulty, Shalev-Shwartz and Tewari (2011) were
one of the first to explore stochastic variants of well-known algorithms like coordinate descent
and gradient descent. In particular, they propose a stochastic coordinate descent algorithm
that chooses the next feature to optimize uniformly at random instead of cyclically. A similar
approach is used by Richtárik and Takáč (2014), where they extend the results of Nesterov (2012)
on stochastic gradient descent for composite smooth functions, to cover the non-smooth case,
including functions like the `1-penalty. Although a more general algorithm is discussed in the
previous works, able to solve also other problems like logistic regression, we only present here the
Lasso version (Algorithm 7). Note that other choices for the next coordinate are also possible,
like the greedy approach by Tseng and Yun (2009a), where they select the feature to optimize
next as the one with the most promising descent.

There are two main differences between Algorithms 6 and 7:

1. The cyclic pass through all the coordinates is replaced by an uniform sampling.

2. We now have a step size β different from 1.

Thus, setting β = 1, Algorithm 7 is just a stochastic version of coordinate descent with naive
updates (Algorithm 6). In order to see that, simply note that the residuals are defined now as
r = Xw− y instead of r = y−Xw, so some signs have to be reverted. Again the r variable is
kept for efficiency purposes, since it allows us to compute g in O(sn) operations where

s = |{(i, j) | xij 6= 0}|
nd

42 Chapter 3. Theory and algorithms for the Lasso

Algorithm 7: Stochastic Coordinate Descent (SCD)
Input :w = 0 ∈ Rd, r = Xw− y = −y ∈ Rn, λ and β
for t = 1, 2, . . . do

Sample j uniformly at random from {1, . . . , d}
g = 1

n

∑
i : xij 6=0 rixij

δ =


−g+λ

β , if wj − g+λ
β > 0

−g−λ
β , if wj − g−λ

β < 0
−wj , otherwise

wj ← wj + δ
r← r + δxj

end

is the average number of non-zeros in our data. Interestingly, some experiments by Shalev-Shwartz
and Tewari (2011) report SCD to be indistinguishable from CCD in terms of efficiency, measured
by data accesses.

The step size β is related to the Lipschitz constant of the loss function, which for the squared
loss is set to β = maxj Lj = 1 in Shalev-Shwartz and Tewari (2011), where Lj are the coordinate
constants. However, Richtárik and Takáč (2014) argue that this choice necessarily produces very
small step lengths and they suggest to use a different constant per coordinate, computed as

Lj = ‖xj‖22.

Using the previous value for β, they are able to improve the bound to obtain a ε-optimal solution
from (Shalev-Shwartz and Tewari, 2011),

O
(
dmβ‖w∗‖22

ε

)
, (3.3.37)

to
O
(
dm‖w∗‖2L

ε

)
.

Other differences between those works is that Richtárik and Takáč (2014) analyse a block version
and considers different sampling probabilities, whereas Shalev-Shwartz and Tewari (2011) do not.
In fact, the experiments in Richtárik and Takáč (2014) and recent results like Allen-Zhu et al.
(2016), Qu and Richtárik (2016a), and Qu and Richtárik (2016b) suggest that a non-uniform
sampling could yield even faster algorithms. Finally it is also worth mentioning that there are
some parallel versions of Algorithm 7 like Shotgun (Bradley et al., 2011), Scherrer et al. (2012),
Fercoq and Richtárik (2015), and Richtárik and Takáč (2016).

3.3.5 Stochastic Gradient Descent

In Section 3.3.2 we described FISTA, a batch method with a convergence rate of O
(
1/k2).

However, every FISTA iteration needs the full gradient of the loss function and thus it scales
poorly with the number of samples n. A natural idea for trying to improve this dependence is
to explore an online version of FISTA using stochastic gradient descent. In stochastic gradient
descent (SGD) we pick one sample uniformly at random at each iteration and update the weights
based on the chosen sample (Shalev-Shwartz and Tewari, 2011). Thus, the asymptotic runtime
of the algorithm does not depend at all on the number of samples.

3.3. Algorithms 43

Algorithm 8: Truncated Gradient Descent (TGD)
Input :w = 0 ∈ Rd, learning rate η ∈ (0, 1), K and λ
for k = 1, 2, . . . do

Sample i uniformly at random from {1, . . . , n}
every K iterations do

for j = 1, 2, . . . , d do

wj ←
{

max(wj −Kλη, 0), if wj ∈ [0, λ]
min(wj +Kλη, 0), if wj ∈ [−λ, 0]

end
end
w← w + 2η(yi − xi ·w)xi

end

As noted by Shalev-Shwartz and Tewari (2011), a big problem with these algorithms is that
they fail to produce sparse solutions, which is usually the main reason to use `1-regularization in
the first place. To overcome that problem there are a few options, the main ones being (Langford
et al., 2009):

• Consider the constrained Lasso formulation (3.1.1), which is equivalent to the usual
unconstrained form and project the weights into an `1-ball after every online step. The
main disadvantage of this approach is the projection operation, since it is difficult to
implement efficiently for large-scale data. This algorithm was proposed by Duchi et al.
(2008), where they also reduce the amortized time of the projection operator from O(d) to
O(m log(d)) where m is the number of non-zero entries. Other works involving efficient
projections include Liu and Ye (2009) and Liu and Ye (2010). This algorithm is implemented
in the SLEP package (Liu et al., 2009).

• Truncate the weights that cross 0 after every online step, achieving an online version of
the Proximal Gradient Methods for the `1-norm. A simplified version of the procedure
from Langford et al. (2009) is shown in Algorithm 8. Note that every iteration where the
coefficients are not truncated is just a standard stochastic gradient descent update, and
equivalent to setting for those iterations λ = 0. Langford et al. (2009) also provide the
following runtime bound for the general case

O
(
dx̄‖w∗‖22

ε2

)
, (3.3.38)

where x̄ = 1/n
∑
i‖xi‖

2
2 is the average square norm of the samples.

Algorithm 8 has two hyper-parameters: the number of online steps before the truncation K
and the learning rate η. Setting K = 1 is the most aggressive choice since it performs the
truncation at every iteration and leads to sparser intermediate coefficients; see Langford
et al. (2009) for more details and experiments.

Following Langford et al. (2009), Shalev-Shwartz and Tewari (2011) suggest the use of a
slightly more sophisticated descent rule, stochastic mirror descent, together with the truncation
operation to obtain sparse solutions. They call their algorithm SMIDAS (Stochastic MIrror

44 Chapter 3. Theory and algorithms for the Lasso

Descent Algorithm Made Sparse), and provide the following upper bound on the runtime to
achieve an ε-expected accuracy:

O
(
d log(d)‖w∗‖21

ε2

)
. (3.3.39)

Comparing bounds (3.3.38) and (3.3.39) it can be seen that none of them dominates the other
and the relative performance depends on properties of the training set and the optimal solution
w∗, although Eq. (3.3.39) is superior if w∗ is sparse (see Shalev-Shwartz and Tewari, 2011, for
more details).

In general, mirror descent algorithms (Nemirovskii et al., 1983, Chapter 3) maintain two
weight vectors: primal w and dual θ. The connection between the two is via a link function
θ = f(w), which is always taken to be the gradient map of some strongly convex function
and is therefore invertible. Shalev-Shwartz and Tewari (2011) use the p-norm link function,
f(w) = ∇1

2‖w‖
2
q , where ‖w‖q = (

∑
j |wj |

q)1/q. That is, the jth element of f and f−1 are,
respectively,

fj(w) = sign(wj)|wj |q−1

‖w‖q−2
q

and f−1
j (θ) = sign(θj)|θj |p−1

‖θ‖p−2
p

, (3.3.40)

where p = q/(q − 1).
These algorithms can be applied to the Least Squares problem similarly to stochastic gradient

descent. At each iteration of the algorithm we first sample a training sample i uniformly at
random. Then the gradient is estimated using only that sample as

g = (w · xi − yi)xi.

Next the dual vector is updated as θ = θ − ηg, where η is again a learning rate. Finally, the
update on θ translates into an update on w via the inverse of the link function, w = f−1(θ).
In this step it is important to note that if the link function is the identity mapping we recover
standard stochastic gradient descent.

When working with the Lasso, the same procedure can be used simply by subtracting any
subgradient of the `1-regularization term when updating the weights,

θj = θj − η(gj + λ sign(wj)).

As discussed earlier, these updates produce a dense θ, which also leads to a dense w. Shalev-
Shwartz and Tewari (2011) adopt the solution from Langford et al. (2009) and truncate the
weights that crossed the zero value. The pseudocode of SMIDAS is shown in Algorithm 9.

Let us compare now the previous algorithms to stochastic coordinate descent. On one hand,
the runtime bound of stochastic gradient descent and variants avoid the dependence on n. On the
other hand, the dependence of stochastic coordinate descent on the dimension d is better both
because the lack of the term log(d) and because ‖w∗‖22 is always smaller than ‖w∗‖21. Another
important practical drawback is the fact that Truncated Gradient Descent and SMIDAS both
have hyper-parameters to tune, like the learning rate η. Finally, it is worth mentioning that other
variants of Stochastic Gradient Descent applied to the Lasso have appeared in the literature in
recent years, for instance RDA (Xiao, 2010), ProxSVRG (Xiao and Zhang, 2014), SAGA (Defazio
et al., 2014) and mS2GD (Konečnỳ et al., 2016).

3.3.6 Stochastic Dual Coordinate Ascent

After the success of the basic Stochastic Gradient Descent and Stochastic Coordinate Descent
algorithms to solve the Lasso problem many variants have appeared in recent years. One proposal

3.3. Algorithms 45

Algorithm 9: Stochastic MIrror Descent Algorithm made Sparse (SMIDAS)
Input :w = 0 ∈ Rd, θ = 0 ∈ Rd, learning rate η > 0, f−1 as in (3.3.40) with p = 2 log(d)

and λ
for k = 1, 2, . . . do

Sample i uniformly at random from {1, . . . , n}
g = (w · xi − yi)xi
θ̃ = θ − ηg
forall j do

θj = sign(θ̃j) max{0, |θ̃j | − ηλ}
end
w = f−1(θ)

end

that is very interesting to us for its relation to the SMO algorithm (Section 4.3.3) is the Proximal
Stochastic Dual Coordinate Ascent (Prox-SDCA) by Shalev-Shwartz and Zhang (2014). Let
φ1, . . . , φn be a sequence of scalar convex functions, let g(·) be a convex function defined on Rd
and define the convex conjugate of φi as φ∗i (u) = maxz(zu − φi(z)) . The goal is to solve the
problem

min
w∈Rd

P (w) where P (w) = 1
n

n∑
i=1

φi(xi ·w) + λg(w). (3.3.41)

Now, let

v(α) = 1
λn

n∑
i=1

xiαi,

the dual problem of (3.3.41) is

max
α∈Rn

D(α) where D(α) = 1
n

n∑
i=1
−φ∗i (−αi)− λg∗ (v(α)) (3.3.42)

We will assume that g is strongly convex which implies that g∗(·) is continuous differentiable. If
we define,

w(α) = ∇g∗(v(α)) (3.3.43)

then it is known that w(α∗) = w∗, where α∗ is a solution of (3.3.42) and w∗ is a solution of
(3.3.41). It is also known that P (w∗) = D(α∗). Thus, Eq. (3.3.43) relates the solution of the
primal and dual problems.

Prox-SDCA optimizes at every iteration the dual objective with respect to a single dual
variable, which is associated with a single training example. In that sense the method is a mix
between SCD and SGD, since a single random coordinate is updated at every iteration but now
the coordinates are actually associated with training examples, since we are solving the dual
problem. In the same fashion SMO could belong to the Greedy Dual Block Coordinate Ascent
family where, at every iteration, two coefficients are selected in a greedy manner to maximize
ascent.

Finally, if we were to apply Prox-SDCA to solve the Lasso we simply let φ(a) = 1
2(a− y)2.

The conjugate function is

φ∗(b) = max
a
{ab− 1

2(a− y)2} = 1
2b

2 + yb.

46 Chapter 3. Theory and algorithms for the Lasso

The regularizer is g(w) = ‖w‖1. However, the `1-norm is not strongly convex and thus not
directly applicable in Prox-SDCA, since we cannot compute the derivative. Shalev-Shwartz and
Zhang (2014) solve that problem by adding a slight `2-regularization

g(w) = 1
2‖w‖

2
2 + σ

λ
‖w‖1.

Note that λg(w) = λ
2‖w‖

2
2 + σ‖w‖1, so if we make λ small enough we get λg(w) ≈ σ‖w‖1.

More specifically, let ε be the target accuracy. If we set λ = ε(σ/ȳ)2, where ȳ = 1
2n
∑n
i=1 y

2
i , we

can show that a solution w∗ of the `1-`2 regularized problem is also a ε-optimal solution of the
original Lasso problem with parameter σ. The conjugate of g is then (Shalev-Shwartz and Zhang,
2014)

g∗(v) = max
w

{
w · v− 1

2‖w‖
2
2 −

σ

λ
‖w‖1

}

= 1
2
∑
i

([
|vi| −

σ

λ

]
+

)2

and its gradient

∇g∗(v) = argmax
w

{
w · v− 1

2‖w‖
2
2 −

σ

λ
‖w‖1

}
= argmin

w

{1
2‖w− v‖22 + σ

λ
‖w‖1

}
.

Solving the previous problem (Shalev-Shwartz and Zhang, 2014) we get that the ith component
of the gradient is ∇ig∗(v) = sign(vi)

[
|vi| − σ

λ

]
+. Shalev-Shwartz and Zhang (2014) also suggest

some acceleration technique inspired by Nesterov’s Acceleration. The full algorithm can be found
in Shalev-Shwartz and Zhang (2012). Putting everything together, they are able to prove a
runtime bound of,

Õ

d
n+ min

R2‖w∗‖22
ε

,

√
nR2‖w∗‖22

ε


, (3.3.44)

where R = maxi‖xi‖2 and w∗ is the solution of the Lasso problem, without the small `2-
regularization. The notation Õ (·) or “soft O” ignores logarithmic terms,

∃k : Õ (g(n)) = O(g(n) logk g(n)).

Comparing bound (3.3.44) with the ones from previous sections we have, for FISTA

O

dn
√
R2‖w∗‖22

ε

,
which is worse by a factor of at least

√
n (Shalev-Shwartz and Zhang, 2014). Recall also the

runtime bounds for Stochastic Coordinate Descent Eq. (3.3.37),

O
(
dn‖w∗‖22

ε

)

and Stochastic Gradient Descent Eq. (3.3.38),

O
(
dR2‖w∗‖22

ε2

)
.

3.4. Screening 47

SGD is much slower, specially when ε is small. Concerning the SCD bound, it depends on
R2 and Prox-SDCA is faster if R2 = O(1). In the general case, Prox-SDCA is the same or
better whenever d = O(n) (see Shalev-Shwartz and Zhang, 2014 for more details). Other works
regarding SDCA have also appeared in the literature, like Csiba et al. (2015) and Qu et al. (2015),
where they consider adaptive probabilities instead of an uniform distribution.

3.4 Screening
As we briefly mentioned before, almost any Lasso algorithm will benefit from having a smaller
set of active features. Starting with the seminal work of El Ghaoui et al. (2010), there has been
quite a substantial amount of recent proposals to accelerate Lasso by screening, i.e., removing
those features that will result on zero Lasso coefficients in the final model. A good review can be
found in Xiang et al. (2017). The main idea is to consider the Lasso dual problem and exploit
the KKT conditions. More precisely, we can introduce a new variable z and write the following
contrained Lasso version,

min
w,z

{1
2‖z‖

2 + λ‖w‖1
}

s.t. z = y−Xw. (3.4.1)

By introducing dual variables β ∈ Rn we get the Lagrangian of the previous problem (Wang
et al., 2013)

L(w, z,β) = 1
2‖z‖

2
2 + λ‖w‖1 + β>(y−Xw− z).

The dual problem is,

max
β

{
min
w,z

L(w, z,β) = min
z

{1
2‖z‖

2
2 − β

>z
}

+ min
w

{
λ‖w‖1 − β

>Xw
}

+ β>y
}

(3.4.2)

Note that the objective function is separable and thus we can solve the two inner optimization
problems independently. Let us consider first

min
w

f1(w) = min
w

{
λ‖w‖1 − β

>Xw
}
. (3.4.3)

We can write the subgradient of f1 as

∂f1(w) = λ∂‖w‖1 − β
>X.

Now we have to find a w′ such that

0 ∈ ∂f1(w′) =
{
λs′ − β>X

}
,

where
s′ ∈ ∂‖w‖1 =

{
s
∣∣∣ ‖s‖∞ ≤ 1, s>w = ‖w‖1

}
.

Putting everything together, w′ and β′ should satisfy

s′ = β>X
λ

, (3.4.4)∥∥s′∥∥∞ ≤ 1, (3.4.5)
s′>w = ‖w‖1. (3.4.6)

48 Chapter 3. Theory and algorithms for the Lasso

By substituting Eq. (3.4.4) into Eq. (3.4.5) we get the equivalent constraint∣∣∣x>j β∣∣∣ ≤ λ, j = 1, . . . , d.

Then we substitute Eqs. (3.4.4) and (3.4.6) into the objective function of problem (3.4.3)

f1(w′) = λs′>w′ − βXw′ = λ

(
β>X
λ

)
w′ − β>Xw′ = 0.

Thus the optimal value of problem (3.4.3) is 0. Next, let us consider the sub-problem

min
z
f2(z) = min

z

{1
2‖z‖

2
2 − β

>z
}
. (3.4.7)

The gradient is ∇f2(z) = z− β and thus the minimum is attained at z′ = β. Therefore,

f2(z′) = f2(β) = 1
2‖β‖

2
2 − β

>β = −1
2‖β‖

2
2,

since ‖β‖22 = β>β. Substituting the value of the sub-problems in (3.4.2) we get

max
β

{
β>y− 1

2‖β‖
2
2

}
s.t.

∣∣∣x>j β∣∣∣ ≤ λ, j = 1, 2, . . . , d.

The objective function in the previous problem can be written as

β>y− 1
2‖β‖

2
2 = 1

2‖y‖
2
2 −

1
2‖y‖

2
2 + β>y− 1

2‖β‖
2
2

= 1
2‖y‖

2
2 −

1
2‖β − y‖22,

and by simple re-scaling of the dual variables θ = β/λ we can also write it as

max
θ

{
1
2‖y‖

2 − λ2

2

∥∥∥∥θ − y
λ

∥∥∥∥2
}

s.t.
∣∣∣x>j θ∣∣∣ ≤ 1, j = 1, 2, . . . , d. (3.4.8)

Now the solutions of the primal and dual problem are related via the KKT conditions. Let w∗ ,
z∗ and θ∗ be the optimal primal and dual variables. The Lagrangian is

L(w, z,θ) = 1
2‖z‖

2
2 + λ‖w‖1 + λθ>(y−Xw− z),

and from the KKT conditions we have

0 ∈ ∂wL(w∗, z∗,θ∗) = −λX>θ∗ + λs (3.4.9)
0 = ∇zL(w∗, z∗,θ∗) = z∗ − λθ∗ (3.4.10)
0 = ∇θL(w∗, z∗,θ∗) = λ(y−Xw∗ − z∗) (3.4.11)

where s ∈ ∂‖w∗‖. From Eqs. (3.4.10) and (3.4.11) we get

y = Xw∗ + λθ∗,

i.e., λθ∗ is the optimal residual. Using Eq. (3.4.9) and the subgradient of the `1-norm we can
also conclude

x>j θ∗ = sign(w∗j) if w∗j 6= 0,
x>j θ∗ ∈ [−1, 1] if w∗j = 0.

3.4. Screening 49

Note that F =
{
θ
∣∣∣ ∣∣∣x>j θ∣∣∣ ≤ 1, 1 ≤ j ≤ d

}
, that is, the feasible set of (3.4.8) is a closed convex

polytope, and problem (3.4.8) can be interpreted as finding the projection

θλ = PF (y/λ)

of y/λ on F .
The general idea in screening is to exploit this by identifying a convex region R = Rλ ⊂ F

that contains θλ and then screen out all features j for which supR|xj · θ| < 1. This can be done
taking R to be an appropriate ball. More precisely, assume we know θλ0 for some λ0; then, if
λ < λ0, the non-expansiveness of the projection operator ensures that

‖θλ − θλ0‖ ≤
∥∥∥∥y
λ
− y
λ0

∥∥∥∥ =
(1
λ
− 1
λ0

)
‖y‖ . (3.4.12)

Thus, the ball B
(
θλ0 , R

λ0
λ

)
with Rλ0

λ = (1/λ− 1/λ0)‖y‖ is an example of a screening region Rλ
for any λ < λ0. An extra advantage of working with balls is that their support function

σB(c,R)(z) = max
X∈B

X · z

has a simple analytic form (Fercoq et al., 2015), namely σB(c,R)(z) = z · c +R‖z‖, and thus for
B = B

(
θλ0 , R

λ0
λ

)
,

sup
θ∈B
|xj · θ| = max{σB(+xj), σB(−xj)}

= |xj · θλ0 |+Rλ0
λ ‖xj‖ .

Slightly more complicated and more precise dome regions are also used for screening (Xiang
et al., 2017; Fercoq et al., 2015), as their support functions are also relatively simple to compute.

We briefly discuss now how to find a ball center θλ0 . Since 0 ∈ F , we have y/λ ∈ F for λ big
enough. In fact, setting

λmax = max
j
{|xj · y|},

it is well known that wλmax = 0, i.e., θλ = y/λ if λ ≥ λmax. Therefore B
(
y/λmax, R

λmax
λ

)
is a

screening region for any λ < λmax. However it is easy to see that a small enough λ results in
an empty test for the basic SAFE procedure in El Ghaoui et al. (2010), as no feature meets it
(Fercoq et al., 2015). The same is true for the basic strong rule of Tibshirani et al. (2012), that
for unit norm features xj screens out those j for which |xj · y| < 2λ− λmax. The set of values
that pass the previous test becomes empty if λ < λmax/2. Another drawback is that it may
incorrectly screen out a feature, as it is also a sphere test over B(y/λ,R) for an appropriate R
but θλ may not lie in that sphere; see Xiang et al. (2017, Sect. 4.2.2).

The usual way to get more precise regions is to work in a regularization path setting where
solutions θλk

are successively computed over a sequence λmax = λ0 > λ1 > . . . and (recursive)
SAFE (El Ghaoui et al., 2010) or (sequential) strong rules (Tibshirani et al., 2012) are applied
when computing θλk+1 once θλk

is known. In fact, there has been a substantial number of recent
contributions (Wang et al., 2013; Liu et al., 2014; Bonnefoy et al., 2015) with great promise
and in some cases (for instance Bonnefoy et al., 2015) with publicly available Python or Matlab
implementations. However, note that full regularization paths have to be found when looking for
an optimal λ, but not so for the repeated construction of models with a previously fixed λ.

50 Chapter 3. Theory and algorithms for the Lasso

Chapter 4

Theory and algorithms for Support
Vector Machines

4.1 Support Vector Classification
Support Vector Machines (SVM) are a classification method capable of dealing with high
dimensional non-linear data. SVMs belong to the class of algorithms known as kernel methods,
since they depend on data only through dot-products. Therefore, they can be replaced by kernel
functions, that compute these products in another feature space, different from the input space,
and possibly with higher dimension. This presents two main advantages:

1. The ability to generate non-linear decision functions using methods designed for linear
classifiers.

2. The classifier can be applied to data that do not have a representation in a fixed dimension
space.

4.1.1 Hard-margin SVC

Given a training set {xi, yi}, i = 1, . . . , n, yi ∈ {−1, 1}, xi ∈ Rd, let’s assume that there is an
hyperplane that separates positive samples from the negative ones. The points x that are on the
hyperplane satisfy w>x + b = 0, where w is normal to the hyperplane, |b|/‖w‖2 is the distance
perpendicular from the hyperplane to the origin and ‖w‖2 is the Euclidean norm of w. Let d+
(d−) be the distance from the hyperplane to the closest positive (negative) point. Then, we define
the margin of the hyperplane as d+ + d−. For the linearly separable case, the SVM simply tries
to find the maximum-margin separating hyperplane. This can be formulated more formally as
follows: assume that the points satisfy the restrictions

x>i w + b ≥ +1 for yi = +1 (4.1.1)
x>i w + b ≤ −1 for yi = −1 (4.1.2)

These can be combined in
yi(x>i w + b)− 1 ≥ 0 ∀i. (4.1.3)

The points that satisfy the equality constraint in Eq. (4.1.1) are on the hyperplane x>i w+b = 1 and
the points that satisfy the equality constraint in Eq. (4.1.2) are on the hyperplane x>i w + b = −1.

If the data is linearly separable, these hyperplanes separate the data perfectly and there are no
points between them. The distance from this hyperplanes to x>i w + b = 0 is d+ = d− = 1/‖w‖2

51

52 Chapter 4. Theory and algorithms for Support Vector Machines

and the margin defined above is simply 2/‖w‖2. Thus, the maximum-margin hyperplane can be
found by minimizing ‖w‖22 subject to the constraints (4.1.3)

min
w,b

1
2‖w‖

2
2

s.t yi(x>i w + b)− 1 ≥ 0 ∀i,
(4.1.4)

where the 1/2 is introduced for convenience. Now lets transform the previous problem into the
dual equivalent. The objective function (4.1.4) is clearly convex and the restrictions are affine,
therefore the Lagrangian of the problem is

LP = 1
2‖w‖

2
2 −

n∑
i=1

αiyi(x>i w + b) +
n∑
i=1

αi, (4.1.5)

with αi ≥ 0, ∀i. The dual problem is thus defined as

max
α

{
min
w,b

LP

}
s.t. α ≥ 0 (4.1.6)

Next we have to minimize LP with respect to w and b, requiring also that the derivatives of
LP with respect to αi are 0 and everything under the constraints αi ≥ 0. The derivatives of LP
with respect to w and b are

∂LP
∂w = w−

n∑
i=1

αiyixi (4.1.7)

∂LP
∂b

= −
n∑
i=1

αiyi. (4.1.8)

As we have seen in Theorem 2.4, the optimum (w∗, b∗) must satisfy the following KKT
conditions:

w−
∑
i

αiyixi = 0, (4.1.9)∑
i

αiyi = 0, (4.1.10)

yi(x>i w + b)− 1 ≥ 0 ∀i, (4.1.11)
αi ≥ 0 ∀i, (4.1.12)

αi(yi(x>i w + b)− 1) = 0 ∀i. (4.1.13)

Equation (4.1.13) is called the KKT dual complementary condition, and it will be important later
to show that the optimal solution of the SVC problem depends only on the coefficients α∗i > 0,
which are called the support vectors. Substituting Eqs. (4.1.7) and (4.1.8) in Eq. (4.1.5) we
get

LD =
∑
i

αi −
1
2
∑
i,j

αiαjyiyjx>i xj . (4.1.14)

Therefore the new dual problem is defined as

max
α

∑
i

αi −
1
2
∑
i,j

αiαjyiyjx>i xj

s.t αi ≥ 0 ∀i,∑
i

αiyi = 0.

(4.1.15)

4.1. Support Vector Classification 53

The dual problem is much easier to solve since the constraints are simpler. Note that
Eq. (4.1.9) relates the solutions of the primal and dual problem. Therefore, if we were to solve
the dual formulation we could recover the optimal primal weights as

w∗ =
∑
i

α∗i yixi

where α∗ ∈ Rn is the solution of problem (4.1.15). Similarly, Eq. (4.1.13) implies that,

yi(x>i w + b∗)− 1 = 0

for any i such that α∗i > 0. From that we can obtain the optimal value of the bias as

b∗ = 1
yi
− x>i w∗ = yi − x>i w∗,

since yi ∈ {−1, 1}. Although the previous equation should yield the same value for every support
vector i, in practice it is recommended for numerical stability to compute the bias as the average
among all of them,

b∗ = 1
|S|

∑
i∈S

yi − x>i w∗

where S = {i | α∗i > 0}, that is, the set of indices of the support vectors.
In the following section we are going to introduce the most common case in practice, that is,

when data is not linearly separable.

4.1.2 Soft-margin SVC

In order to allow classification errors when data is not linearly separable, we replace the constraints
(4.1.3) by

yi(x>i w + b) ≥ 1− ξi ∀i, (4.1.16)

where ξi ≥ 0 are slack variables that make possible for a point to be inside the margin (0 ≤ ξi ≤ 1)
or to be misclassified (ξ > 1). Since a data point is wrongly classified if the value of its slack
variable is larger than 1,

∑
i ξi is an upper bound on the number of classification errors. The

new goal is to maximize the margin i.e. minimize ‖w‖22 but penalizing classification errors with
the term C

∑
i ξi. The parameter C > 0 controls the tradeoff between margin maximization and

error minimization. The optimization problem is now

min
w,b,ξ

1
2‖w‖

2
2 + C

∑
i

ξi

s.t yi(x>i w + b) ≥ 1− ξi ∀i
ξi ≥ 0 ∀i.

(4.1.17)

The dual formulation of this problem is obtained similarly to the linearly separable case. The
Langrange dual function is

LP = 1
2‖w‖

2
2 + C

∑
i

ξi −
∑
i

αi(yi(x>i w + b)− 1 + ξi)−
∑
i

βiξi (4.1.18)

54 Chapter 4. Theory and algorithms for Support Vector Machines

where α ≥ 0 ∈ Rn and β ≥ 0 ∈ Rn are the Lagrange dual variables. The KKT conditions are,

0 = ∂LP
∂w = w−

n∑
i=1

αiyixi, (4.1.19)

0 = ∂LP
∂b

= −
n∑
i=1

αiyi, (4.1.20)

0 = ∂LP
∂ξi

= C − αi − βi. (4.1.21)

Substituting the previous equations into the dual function yields the equivalent dual problem

max
α

∑
i

αi −
1
2
∑
i,j

αiαjyiyjx>i xj

s.t 0 ≤ αi ≤ C ∀i∑
i

αiyi = 0.

(4.1.22)

We can also write the previous problem more compactly in vector form

min
α

{1
2α
>Qα−α>1

}
s.t. α>y = 0, 0 ≤ αi ≤ C, i = 1, . . . , n, (4.1.23)

where Q ∈ Rn×n is a matrix whose entries are Qij = yiyjx>i xj and 1 ∈ Rn is a vector of ones.
Note how we transformed the maximization problem into a minimization problem just by flipping
the sign of the objective function.

4.1.3 Kernel trick

Despite extending SVMs to deal with non-separable data, the decision function is still linear,
that is, the surface that separates both classes is an hyperplane. Most problems in practice are
in fact nonlinear and thus it is useful to extend the SVM formulation for this type of problems.
The nonlinear SVM is based on the kernel trick explained next.

The kernel trick comes from the idea of transforming the input variables into another set
of features in a higher dimensional space, where the data points are linearly separable. More
formally, let φ(xi) be a function that takes a point in a d-dimensional space and returns another
point in a D-dimensional space, D >> d. If φ is choosen correctly then we obtain another
problem that is linearly separable in this new feature space.

However, if we try to compute explicitly the value of φ(xi), we run into two main problems,
one of them practical and another one theoretical:

1. The feature space can have a very large dimension, even infinite.

2. It can be very computationally expensive to compute the mapping values every time they
are needed, or even storing them in memory.

The kernel trick comes from the observation that the dual function (4.1.22) only depends on
x through dot products, that is, they always appear in pairs. If we define the kernel function as

k(xi,xj) = φ(xi)>φ(xj), (4.1.24)

4.1. Support Vector Classification 55

the dual problem can be rewritten as

max
α

∑
i

αi −
1
2
∑
i,j

αiαjyiyjk(xi,xj)

s.t 0 ≤ αi ≤ C ∀i,∑
i

αiyi = 0.

(4.1.25)

Note that the compact formulation (4.1.23) does not change, only the definition of the matrix Q,
Qij = yiyjk(xi,xj). We will refer to the matrix Q as kernel matrix.

Therefore it is not neccessary to know the mapping function φ but only the kernel function
k(·, ·). The only condition is that the kernel function must be decomposed into a dot product of
two functions. Mercer’s theorem states which types of kernels can be used, although in practice
there are a few known kernels that met Mercer’s condition and they are the most used. An
example is the RBF kernel

k(xi,xj) = exp
(
−γ‖xi − xj‖22

)
. (4.1.26)

where γ is a hyper-parameter that represents the width of the kernel.
Last, the value of w in the transformed space is

w =
∑
i

αiyiφ(xi)

and usually it cannot be computed explicitly. However, a new point x can be classified using
again the kernel trick

w>φ(x) =
∑
i

αiyik(xi,x). (4.1.27)

Note also that only patterns with αi > 0 (support vectors) are needed for the classification of a
new point, which is a nice property.

The selection of the hyper-parameters is a big problem, since the SVM performance depends
greatly on their value. For the kernel SVC formulation we need to select both the complexity
parameter C and the parameters of the kernel function. In the case of the RBF kernel we only
have one additional hyper-parameter, namely, the width of the kernel γ.

4.1.4 ν-Support Vector Classification

As we mentioned before, given a particular problem, it is not straightforward to select the best
value for the hyper-parameter C. In general, C controls the trade-off between minimizing the
errors and maximizing the margin. Thus, as C grows, the complexity of the hypothesis space
also grows and the SVC becomes more intolerant to errors. Relating this to Section 2.1.4, if C is
too large the model could exhibit overfitting. On the other hand, if C is very small the model
could suffer from underfitting. In the extreme case where C = 0 the soft-margin SVC reverts to
the hard-margin case, and the model only cares about maximizing the margin.

In practice, the most common method to set the C hyper-parameter is to perform cross-
validation over a grid of values and select the one with the lowest error. However this computation
is quite expensive since, for a given dataset we would have to train many models just to find a
good value for C, with no guarantees of optimality. To alleviate this problem, Schölkopf et al.
(2000) suggest a new SVC formulation which replaces the C paramater by ν ∈ (0, 1] which is in

56 Chapter 4. Theory and algorithms for Support Vector Machines

principle easier to tune. The primal optimization problem of the ν-SVC is

min
w,b,ξ,ρ

1
2‖w‖

2
2 − νρ+ 1

n

n∑
i=1

ξi

s.t yi(w>φ(xi) + b) ≥ ρ− ξi,
ξi ≥ 0, i = 1, . . . , n, ρ ≥ 0.

(4.1.28)

And the corresponding dual problem is (Schölkopf et al., 2000)

min
α

1
2α
>Qα

s.t α>y = 0,
α>1 ≥ ν,
0 ≤ αi ≤ 1/n, i = 1, . . . , n.

(4.1.29)

Compared to the original SVC dual (4.1.23), there are two differences. First, there is an additional
constraint, involving the new hyper-parameter ν. Second, the linear term α>1 has disappeared
from the objective function.

Regarding the new hyper-parameter ν, Schölkopf et al. (2000) prove that it is an upper-bound
on the fraction of margin errors and a lower bound on the fraction of SVs. Thus, ν has an
intrinsic meaning and it is more easy to interpret its value compared to C. Chang and Lin (2011)
also give a tighter range for the feasible values of ν,

ν ≤ 2
n

min (|{i | yi = 1}|, |{i | yi = −1}|) ≤ 1,

so the usable range of ν in practice is actually smaller than (0, 1].

4.1.5 One-class Support Vector Machine

The One-class SVM was proposed by Schölkopf et al. (2001) for estimating the support of
a high-dimensional distribution. Another application of this formulation is the problem of
novelty detection, which is often reduced to estimating the density of the probability of the data.
Therefore the SVM classifies examples as “novel” if the density function has high probability and
viceversa. The primal problem is

min
w,ξ,ρ

1
2‖w‖

2
2 − ρ+ 1

νn

n∑
i=1

ξi

s.t w>φ(xi) ≥ ρ− ξi,
ξi ≥ 0, i = 1, . . . , n, ρ ≥ 0.

(4.1.30)

and the corresponding dual problem

min
α

1
2α
>Qα

s.t α>1 = 1,
0 ≤ αi ≤ 1/(νn), i = 1, . . . , n.

(4.1.31)

4.2. Support Vector Regression 57

Figure 4.1: Linear Support Vector Regression (left) and ε-insensitive loss (right). Support
vectors are drawn with a black outline (Yu et al., 2014)

4.2 Support Vector Regression

The full kernel SVM problem (4.1.25) is a binary classfication problem, since the possible values
for the targets are either −1 or +1. However, the SVM formulation can be extended in order to
solve regression problems, and we are going to do so in this section.

SVMs applied to a regression problem perform a linear regression in the feature space using
the ε-insensitive loss as cost function and, at the same time, regularizing the weights so large
values are penalized (more on regularization in Chapter 1). It is important to note that the
feature space is different from the input space, and thus depending on the kernel the problem
could be nonlinear on the input variables. The ε-insensitive loss is defined as

Lε(y, f(x,w)) =
{

0 if |y − f(x,w)| ≤ ε
|y − f(x,w)| − ε otherwise . (4.2.1)

where f(x,w) = w>φ(x)+ b denotes the linear model in the feature space. The previous function
is plotted in Fig. 4.1 (right).

Let y ∈ Rn be now continuous target values. The regression SVM solves the following
optimization problem

min
w,b,ξ,ξ′

1
2‖w‖

2
2 + C

n∑
i=1

(ξi + ξ′i)

s.t yi − f(xi,w)− b ≤ ε+ ξ′i,

f(xi,w) + b− yi ≤ ε+ ξi,

ξi, ξ
′
i ≥ 0, i = 1, . . . , n,

(4.2.2)

where the parameter the parameter ε controls the width of the ε-insensitive tube and the
parameter C determines the tradeoff between model complexity and the amount of deviations
larger than ε allowed.

The objective function of the ε-SVR is illustrated in Fig. 4.1 (left). Only the points outside
the ε-insensitive tube, depicted with a black outline, are penalized and contribute to the solution
of problem (4.2.2) (support vectors). This penalty is proportional to the distance to the ε-tube.
On the other hand, errors in the interval [−ε, ε] are ignored. It can be shown that a good value
for ε has to be proportional to the input noise level, i.e. ε ∝ σ (Cherkassky and Ma, 2004).

58 Chapter 4. Theory and algorithms for Support Vector Machines

The dual of problem (4.2.2) can be computed similarly to the classification case, arriving at

min
α,α′

1
2(α−α′)>Q(α−α′) + ε

n∑
i=1

(αi + α′i) +
n∑
i=1

yi(αi − α′i)

s.t (α−α′)>1 = 0,
0 ≤ αi, α′i ≤ C, i = 1, . . . , n.

where Qij = k(xi,xj) := φ(xi)>φ(xj). It will be useful in the following sections to rewrite the
previous problem into a more compact form. Let us define

α̃ =
[
α′

α

]
∈ R2n,

Q̃ =
[

Q −Q
−Q Q

]
∈ R2n×2n,

p =
[
ε1n − y
ε1n + y

]
∈ R2n,

ỹ = [1, . . . , 1,−1, . . . ,−1]> ∈ R2n.

Then it can be shown that problem (4.2.3) is equivalent to the following:

min
α̃

1
2α̃
>Q̃α̃+ p>α̃

s.t α̃>ỹ = 0,
0 ≤ α̃i ≤ C, i = 1, . . . , 2n.

(4.2.3)

Note how formulations (4.1.23) and (4.2.3) share a lot of similarities, simply by assigning in the
first case p = 1 ∈ Rn. Thus SVR can be seen as a classification problem with carefully chosen
artificial labels and in an enlarged space.

Again, the selection of the hyper-parameters is even a bigger problem, since now we have
three hyper-parameters to tune instead of two. One possible option is to use cross-validation
over a 3D grid of (C, σ, ε) values, selecting the tuple with the lowest generalization error.

4.3 Algorithms

In this section we are going to review the main ideas to solve the SVM problem. In what follows
we will usually write SVM to refer to the C-SVC problem, which is the most common and well
known formulation. Nonetheless, many of these solvers can also be extended to the regression
setting (ε-SVR) but not to other formulations like the ν-SVM, which are only considered in
LIBSVM (Chang and Lin, 2011).

SVM solvers can be broadly classified into primal solvers and dual solvers. Historically, SVM
solvers usually tackle the dual problem since the constrains are simpler and they can be extended
seamlessly to the kernel setting, but they usually scale poorly with the sample size n. Popular
dual solvers are SVM-Light (Joachims, 1998), SVM-Perf (Joachims, 2006; Joachims and Yu,
2009), LIBLINEAR (Fan et al., 2008) and LIBSVM (Chang and Lin, 2011). If we wanted to
solve the primal problem directly we could in principle absorb the constraints into the objective
function, similarly to the Lasso problem. However, this only works for the linear SVM, since

4.3. Algorithms 59

the primal problem of kernel SVMs involves the non-linear functions φi, which may not even be
available for some common kernels like the RBF kernel.

Although the primal of the kernel SVM can not be solved in its usual formulation (4.3.1), the
representer theorem (Kimeldorf and Wahba, 1971) allows us to re-parametrize the weights w and
tackle the primal objective directly (Chapelle, 2007). This formulation does not depend directly
on the functions φi, has no constraints and can handle kernels. Another advantage of the primal
formulation is that is easy to safely stop the algorithm early to obtain an approximate solution.
However, when working with the dual there are no guarantees that an ε-optimal solution of
the dual problem corresponds to an ε-optimal solution of the primal problem, and thus more
sophisticated stopping conditions are needed. Some examples of primal solvers include NORMA
(Kivinen et al., 2004), SGD-SVM (Bousquet and Bottou, 2008; Bottou, 2010) and Pegasos
(Shalev-Shwartz et al., 2007).

In the following sections we are going present what we believe are the main algorithms to
solve the SVM problem, not only in terms of popularity but also in quality of the software
packages implementing them and reported efficiency. One of them is a primal solver, that works
for both the linear and non-linear SVMs (Pegasos), and the other two are dual solvers, both from
the same authors, one solving only the linear SVM (LIBLINEAR) and the other one solving
both linear and nonlinear SVMs (LIBSVM). The former implements stochastic dual coordinate
descent while the latter uses greedy dual block coordinate descent with the smallest block size
possible (two coefficients). Note that, in general, even though LIBSVM solves both formulations
it works specially well for the nonlinear one. Therefore, in general, either LIBLINEAR or Pegasos
should be used to solve the linear SVM .

4.3.1 Primal gradient methods

The primal formulation of the SVM, (4.1.17) can be rewritten as an unconstrained minimization
problem

min
w

n∑
i=1

[1− yif(xi)]+ + λ

2 ‖w‖
2
2, (4.3.1)

where f(x) = φ(x)>w + b and the subscript “+” indicates the positive part. This has the form
loss+ penalty (Eq. (2.1.14)) and it can be shown that the solution to (4.3.1), with λ = 1

C , is the
same as that for (4.1.17) (Hastie et al., 2003).

The loss function L(y, f(x)) = [1− yf(x)]+ is known as the “hinge” loss and it is a particular
case of the ε-insensitive loss (4.2.1) used for SVR with ε = 0.Figure 4.2 shows that it is reasonable
for two-class classification, when compared with the logistic regression loss function.

As we mentioned before, the previous unconstrained problem depends on the non-linear
functions φi(·), which sometimes can not be computed explicitely. Thus, in order to extend the
primal formulation to handle kernels, Chapelle (2007) considers first the equivalent problem

min
f∈H

λ

2 ‖f‖
2
H + 1

n

n∑
i=1

L(yi, f(xi)),

where H is a reproducing kernel Hilbert space (RKHS) with associated kernel k and L is any
loss function, for instance the hinge-loss. Then, using the representer theorem (Kimeldorf and
Wahba, 1971), the previous problem can also be written as

min
α

λα>Kα+ 1
n

n∑
i=1

L(yi,K>i α) (4.3.2)

60 Chapter 4. Theory and algorithms for Support Vector Machines

−3 −2 −1 0 1 2 3

0
1

2
3

4

yf

Lo
ss

Hinge loss
Binomial log−likelihood

Figure 4.2: Support Vector Machines loss function (hinge loss) compared to the logistic regression
loss (negative log-likelihood loss). They are shown as a function of yf rather than f because of
the symmetry between the y = +1 and y = −1 case (Hastie et al., 2003).

where K is the kernel matrix and Ki the ith column of K. Problem (4.3.2) is quadratic,
unconstrained and no longer depends on the non-linear functions φi. However, note that the
bias term b is dropped from the calculations for simplicity, but they can be easily modified to
take it into account (Chapelle, 2007, Appendix B).

The previous problem can be solved by standard techniques like gradient descent, conju-
gate gradient or Newton’s method, as long as L is differentiable. Since the hinge-loss is not
differentiable, Chapelle (2007) considers first the squared hinge-loss

L(yi, f(xi)) = max(0, 1− yif(xi))p, (4.3.3)

with p = 2. This is sometimes referred as L2-SVM, in contrast to the L1-SVM, where p = 1.
Another option also suggested by Chapelle (2007) is to approximate the hinge-loss by the Huber
loss

L(y, t) =


0 if yt > 1 + h,
(1+h−yt)2

4h if |1− yt| ≤ h,
1− yt if yt < 1− h,

(4.3.4)

where h is a parameter to choose, typically between 0.01 and 0.5 (Chapelle, 2007). A similar
approach is considered by Shalev-Shwartz et al. (2007), but instead of covering only smooth
functions they cope with the non-differentiability of the hinge-loss by using subgradients instead
of gradients.

For linear SVMs the Pegasos algorithm (Shalev-Shwartz et al., 2007) is a straight application
of stochastic gradient descent, which we also considered to solve the Lasso problem (Section 3.3.5).
The Lasso is the sum of a differentiable loss function and a convex regularizer, while the SVM is the
other way around, that is, we have a differentiable regularizer (`2-norm) but a non-differentiable
loss (hinge-loss).

4.3. Algorithms 61

Algorithm 10: Pegasos for the linear SVM
Input :w = 0 ∈ Rd and λ
for k = 1, 2, . . . do

Sample i uniformly at random from {1, . . . , n}
ηk = 1/λk
if yix>i wk < 1 then

wk+1 ← (1− ηkλ)wk + ηkyixi
else

wk+1 ← (1− ηkλ)wk

end
end

Every iteration Pegasos selects an index i uniformly at random and considers the following
approximation of the SVC objective function:

f(xi, yi) = λ

2 ‖w‖
2
2 + L(yi,x>i w),

where L(yi, t) = max(0, 1− yit). The subgradient of the hinge-loss is

∂kL(yi, t) =
{
−yixi if yit < 1
0 otherwise, (4.3.5)

and thus the subgradient of the approximate objective is

∂kf(xi, yi) = λw− s,

where s ∈ ∂kL. Let ηk = 1/(λk) be a step-size; the weight updates of stochastic subgradient
descent can be written as

wk+1 = wk − ηk∂kf(xi, yi)
= wk − ηk(λwk + s)
= (1− ηkλ)wk − ηks.

The pseudo-code of Pegasos is shown in Algorithm 10.
Theorem 1 from Shalev-Shwartz et al. (2007) shows that Algorithm 10 finds an ε-optimal

solution with high probability over the choice of the random examples using only Õ (1/(λε))
iterations. Since each iteration involves one dot product between w and xi, the total runtime of
the algorithm is

Õ
(
d

λε

)
. (4.3.6)

Pegasos can also be extended to the nonlinear case using the representer theorem. This
theorem let us write w as a linear combination of the training examples

w =
∑
j

αjyjφ(xj). (4.3.7)

For each k, let αk ∈ Rn be the vector such that αkj counts how many times example j has been
selected so far and it had a non-zero loss, namely,

αkj =
∣∣∣{k′ ≤ k ∣∣∣ i = j and yjφ(xj)>wk′ < 1

}∣∣∣.

62 Chapter 4. Theory and algorithms for Support Vector Machines

Algorithm 11: Pegasos for the nonlinear SVM
Input :α = 0 ∈ Rd and λ
for k = 1, 2, . . . do

Sample i uniformly at random from {1, . . . , n}
forall j 6= i do

αk+1
j = αkj

end
if yi

1
λk

∑
j α

k
j yik(xi,xj) < 1 then

αk+1
i = αki + 1

else
αk+1
i = αki

end
end

Although we cannot compute the feature map φ directly, note that in Algorithm 10 we only
perform two operations on w: scaling by a constant and dot-product. This last operation can be
written only in terms of kernel evaluations,

w =
∑
j

αjyjφ(xj)

w>φ(xi) =
∑
j

αjyjφ(xj)>φ(xi)

w>φ(xi) =
∑
j

αjyjk(xj ,xi)

Thus, instead of keeping in memory the vector w, nonlinear Pegasos maintains the vector α.
The pseudocode of the implementation of Pegasos for nonlinear SVMs is shown in Algorithm 11.

Since the iterates remain the same and only the representation of the w changes, the
convergence results for the linear case are still valid. However, the runtime complexity to obtain
an ε-accurate solution is now

Õ
(
n

λε

)
.

As pointed out by Shalev-Shwartz et al. (2007), even though the solution is represented in
terms of the variables α, the subgradient is still computed with respect to the original weights
w. In contrast the approach from Chapelle (2007) is to rewrite the primal problem as a function
of α (4.3.2) and then taking gradients with respect to α.

The previous discussion only considers the hinge-loss. However Pegasos can be adapted to any
other convex losses with the same convergence guarantees (see Shalev-Shwartz et al., 2007, for more
details). An important example is the ε-insensitive loss used in SVRs, L(yi, t) = max(0, |yi−t|−ε).
The subgradient is

∂kL(yi, t) =


xi if t− yi > ε
−xi if yi − t > ε
0 otherwise.

Finally, note that we have ignored the bias term b, since it makes the analysis much easier.
Extending Pegasos to include this term is not that simple, since the two trivial extensions both
have important drawbacks. We show next four different approaches (Shalev-Shwartz et al., 2007),
pointing out potential disadvantages:

4.3. Algorithms 63

1. Add an artificial constant feature to the data and incorporate the bias as a new dimension
into the weight vector w. The disadvantage of this method is that b is also regularized and
thus we are solving a slightly different optimization problem.

2. The bias can be incorporated in the loss function and in the analysis, obtaining the same
algorithm since the subgradient does not change. However the objective function ceases to
be strongly convex and thus the convergence rate is much slower.

3. We can consider a mini-batch version of Pegasos, able to incorporate the bias with the
same convergence rate but at the price of a more complex algorithm (see Shalev-Shwartz
et al., 2007, for more details).

4. We can search over the bias term b in an external loop, optimizing the weight vector w
for different values of b. For a fixed b the optimization can be performed using Pegasos
and the b search can be done by binary search using O(log 1/ε) evaluations. This method
maintains the same runtime bound, although it is clear that in practice the iterations are
more expensive.

4.3.2 Dual coordinate methods

The ideas behind the previous algorithms could be extended to the dual SVM. If our aim is to
solve very large linear SVM problems and we ignore the bias term b, problem (4.1.23) becomes

min
α

{1
2α
>Qα−α>1

}
s.t. 0 ≤ αi ≤ C, i = 1, . . . , n, (4.3.8)

where Qij = yiyjx>i xj . Note that when removing the bias the constraint
∑
αiyi = 0 disappears.

Hsieh et al. (2008) consider coordinate descent methods to solve the previous problem. We have
already explored these kinds of procedures in Sections 3.3.3, 3.3.4 and 3.3.6. Coordinate descent
picks an index i and optimizes the objective function with respect to the coefficient αi only,
keeping the rest fixed. Let f(α) be the objective function of the dual SVM (4.3.8), to update
the coefficient αi we solve the following one-variable sub-problem:

min
d
{f(α+ dei)} s.t. 0 ≤ αi ≤ C. (4.3.9)

Ignoring terms that do not depend on αi, we get

f(α+ dei) = 1
2Qiid

2 +∇if(α)d+ Const. = d

(1
2Qiid+∇if(α)

)
+ Const.

Problem (4.3.9) has an optimum at d = 0 if and only if the projected gradient,

∇Pi f(α)i =


∇if(α) if 0 < αi < C,
min(0,∇if(α)) if αi = 0,
max(0,∇if(α)) if αi = C,

vanishes (Hsieh et al., 2008), and in that case αi does not need to be updated. Otherwise, the
unconstrained optimal d value is

d∗ = −∇if(α)
Qii

and the update on αi is

αk+1
i = min

{
max

{
αki −

∇if(α)
Qii

, 0
}
, C

}
,

64 Chapter 4. Theory and algorithms for Support Vector Machines

Algorithm 12: Dual coordinate descent for the Linear SVM
Input :α = 0 ∈ Rn, w = 0 ∈ Rd and C
while α is not optimal do

Pick an index i from {1, . . . , n}
g = yiw>xi − 1

p =


min(g, 0) if αi = 0,
max(g, 0) if αi = C,
g if 0 < αi < C

if |p| 6= 0 then
α′i ← αi
αi ← min(max(αi − g/Qii, 0), C)
w← w + (αi − α′i)yixi

end
end

where Qii = x>i xi. Thus, Qii can be precomputed and stored in memory. The gradient of the
objective function with respect to αi is

∇if(α) = [Qα]i − 1 =
n∑
j=1

Qijαj − 1.

The matrix Q may be too large to be precomputed and stored in memory, so we need to compute
n dot products to evaluate the gradient on the fly, for a total cost of O(nd̄), where d̄ is the
average of nonzero elements per instance. Such operation is expensive, with a worst case of
O(nd) operations when the instances are dense.

However, since we are only solving the linear formulation, we have an explicit representation
of the primal weights,

w =
n∑
i=1

yiαixi. (4.3.10)

Thus, we can compute the gradient as

∇if(α) = yiw>xi − 1

in O(d̄) operations, by maintaining both primal and dual weights. Again, the cost of computing
(4.3.10) is O(nd̄), but we can update it in only O(d̄) as

wk+1 = wk + (αk+1
i − αki)yixi.

This algorithm is implemented in the well-know software package LIBLINEAR (Fan et al., 2008).
The pseudo-code is shown in Algorithm 12.

To compare the update of w with Stochastic Gradient Descent and Stochastic Coordinate
Descent, we have to discuss first how to select the index i. As it was the case for the Lasso
problem, there are several options: we can cycle through all the indices, cycle through a random
permutation of the indices or pick an index uniformly at random. In the latter, the algorithm
would be a stochastic dual coordinate descent method, very similar to the one we analyzed for
the Lasso (Section 3.3.6). The main difference is that now we need to project the gradient and
clip the coefficients in order to satisfy the box constraints.

4.3. Algorithms 65

The convergence of this method was analyzed by Hsieh et al. (2008), where they report a
convergence rate to obtain an ε-optimal solution |f(α)− f(α∗)| ≤ ε of O(log(1/ε)) iterations. A
recent result by Wang and Lin (2014) improves the constant hidden in the O notation. Since
every iteration has a worst case complexity of O(d), the total runtime of the algorithm is

O
(
d log

(1
ε

))
, (4.3.11)

which is better than the Pegasos bound (4.3.6). This was also confirmed empirically by the
experiments in Fan et al. (2008), where they report LIBLINEAR to be faster than Pegasos to
solve the linear SVM. Interestingly, they also mention that, although dual coordinate descent
could also be modified to handle the nonlinear SVM, it is not efficient to do so since we cannot
maintain an explicit representation of the primal weights. Thus, even if we keep the full gradient
in memory, the updates

∇f(αk+1) = ∇f(αk) + Qi(αk+1
i − αki)

require O(nd̄) operations. Thus decomposition methods, which we will review in the following
section, are faster in that case.

4.3.3 Decomposition methods

The main difficulty of solving the dual problem (4.1.23) of the non-linear SVM is that computing
the whole kernel matrix Q is very expensive, hence we do not want to do it at every iteration.
Although Q only depends on the training data {X,y}, pre-computing the whole matrix may not
be a very good idea (Bottou and Lin, 2007) for at least two reasons:

• It’s wasteful: The expression of the gradient only depends on kernel values k(xi,xj) that
involve at least one support vector, and we can also recognize the optima using those kernel
values only. In general, no more than 15% to 50% kernel values are actually needed to
train the whole model.

• It may not fit into memory: Even if we were willing to spend time pre-computing the
full kernel matrix, as n grows it may become prohibitively large and cannot be stored in
memory.

Decomposition methods were designed to handle such difficulties. Some earlier works on
decomposition methods for SVM include, for example, Osuna et al. (1997), Joachims (1998),
Platt (1998), Keerthi et al. (2001), and Hsu and Lin (2002). Subsequent developments include,
for example, Fan et al. (2005b), Palagi and Sciandrone (2005), and Glasmachers and Igel (2006).
A good review can be found in Chang and Lin (2011). Popular software to train the SVM dual
using decomposition methods include LIBSVM (Chang and Lin, 2011) and SVM-Light (Joachims,
1998).

Similarly to block coordinate descent, in decomposition methods only a subset of the coeffi-
cients α are updated at every iteration, namely, the working set B. This subset leads to a small
sub-problem being optimized at every iteration. More formally, let us define the complement of
the working set, N = {1, . . . , n} \B. Then, in every iteration decomposition methods fix all the
coefficients αi ∈ N and optimize only the ones in the working set B,

min
αi, i∈B

1
2
∑
i∈B

∑
j∈B

αiαjyiyjk(xi,xj) +
∑
i∈B

∑
j∈N

αiαjyiyjk(xi,xj)−
∑
i∈B

αi

s.t 0 ≤ αi ≤ C i ∈ B,∑
i∈B

αiyi +
∑
i∈N

αiyi = 0,

66 Chapter 4. Theory and algorithms for Support Vector Machines

where we have ignored some constant factors that only depend on the coefficients in the set N .
An extreme case is the Sequential Minimal Optimization (SMO) algorithm (Platt, 1998),

which updates only two coefficients per iteration. Then, for the SVM dual problem it can be
shown that this sub-problem can be solved analytically and thus no actual optimization is needed.
SMO working set has only two elements B = {i, j}, so the previous problem is equivalent to

min
αi,αj

1
2
(
α2
iQii + 2αiαjQij + α2

uQjj
)

+ αi
∑
k∈N

Qikαk + αj
∑
k∈N

Qjkαk − αi − αj

s.t yiαi + yjαj = −
∑
k∈N

ykαk,

0 ≤ αi, αj ≤ C.

(4.3.12)

Note that, in a given iteration, problem (4.3.12) only depends on the kernel rows Qi and Qj .
Those rows can be computed on-the-fly and thus there is no need to keep the full matrix in
memory.

Suppose we are at iteration k and our current estimate of the coefficients is αk. Then, SMO’s
update can be written as

αk+1
i = αki + δi,

αk+1
j = αkj + δj ,

αk+1
l = αkl , ∀l 6= i, j.

Since the linear constraint must hold for the updated coefficients αk+1 and assuming αk is
feasible we have

y>αk+1 = 0
y>αk + yiδi + yjδj = 0

yiδi + yjδj = 0.

Thus, for an update δi, δj to be feasible it must hold that

yiδi = −yjδj = ρ.

Since y ∈ {−1, 1}, we can parametrize both steps as a function of ρ,

δi = yiρ and δj = −yjρ,

arriving at the updates

αk+1
i = αki + yiρ,

αk+1
j = αkj − yjρ,

αk+1
l = αkl , ∀l 6= i, j.

or, in vector form,
αk+1 = αk + ρ(yiei − yjej) = αk + ρd, (4.3.13)

where d = yiei − yjej and ek is the vector with all 0 but a 1 in the kth entry. The vector d is
actually a descent direction and thus, in this context, ρ can be interpreted as a positive stepsize
that gets us closer to the optimum by taking a step in the direction d.

4.3. Algorithms 67

As a result, due to the equality constraint, we can write both updates in αi and αj as a
function of a single parameter ρ. Therefore, we have effectively transformed the decomposition
problem associated with the working set B = {i, j} (4.3.12) into a new problem depending only
on the stepsize ρ,

min
ρ

1
2(αk + ρd)>Q(αk + ρd)− (αk + ρd)>1

s.t. 0 ≤ αi + yiρ ≤ C,
0 ≤ αj − yjρ ≤ C.

The previous problem is one-dimensional, quadratic, convex and only has two inequality con-
straints, thanks to the fact that every αl, ∀l 6= i, j is not updated. Minimizing the previous
quadratic function with respect to ρ we get,

0 = 1
2d>Qdρ+ d>Qαk − d>1,

and the optimum is attained at

ρ∗ = −d>Qαk − d>1
d>Qd . (4.3.14)

To compute the previous optimum value we have ignored the inequality constraints so it may
need to be modified. However, it turns out that we can simply check if it belongs to the feasible
region and clip the stepsize accordingly

ρ̂∗ = max{yiαi, −yjαj , min{−yi(C − αi), yj(C − αj), ρ∗}} (4.3.15)

The final SMO updates are

αk+1
i = αki + yiρ̂

∗,

αk+1
j = αkj − yj ρ̂∗,

So far we have not said anything about how to select the two coefficients i and j to be updated
at each iteration. The original working set selection by Platt (1998) was a quite complicated
heuristic. It was improved by Keerthi et al. (2001), where they also introduce a new working
set selection based on the concept of “maximal violating pair”. The idea behind this selection
method is to update the coefficients that violate the most the KKT conditions,

i ∈ argmax
l∈Iup

{
−yl∇lf(αk)

}
, (4.3.16)

j ∈ argmin
l∈Ilow

{
−yl∇lf(αk)

}
, (4.3.17)

where

Iup := {l | αl < C, yl = 1 or αl > 0, yl = −1}, (4.3.18)
Ilow := {l | αl < C, yl = −1 or αl > 0, yl = 1}, (4.3.19)

and ∇f(α) = Qα− 1. Fan et al. (2005b) further refined the previous procedure by trying to
maximize the decrease in the dual objective function. This is sometimes referred to as second

68 Chapter 4. Theory and algorithms for Support Vector Machines

order working set selection. The new value of the objective function after an update is

f(αk+1) = f(αk + ρ∗d)

= 1
2(αk + ρ∗d)>Q(αk + ρ∗d)− (αk + ρd)>1

= 1
2(αk)>Qαk + 1

2(ρ∗)2d>Qd + ρ∗d>Qαk − (αk)>1− ρd>1

= f(αk) + 1
2(ρ∗)2d>Qd + ρ∗d>(Qαk − 1)

= f(αk) + 1
2(ρ∗)2d>Qd + ρ∗d>∇f(αk).

Since we already need the gradient of the dual function for finding the working set, it is useful to
rewrite Eq. (4.3.14) as

ρ∗ = −d>Qαk + d>1
d>Qd = −d>(Qαk − 1)

d>Qd = −d>∇f(αk)
d>Qd . (4.3.20)

Using the value of the dual function at the new coefficients and Eq. (4.3.20), we can compute
the unconstrained gain in the dual objective

f(αk)− f(αk+1) = −1
2(ρ∗)2d>Qd− ρ∗d>∇f(αk)

= −1
2

(
−d>∇f(αk)

d>Qd

)2

d>Qd + d>∇f(αk)
d>Qd d>∇f(αk)

= −1
2

(d>∇f(αk))2

d>Qd + (d>∇f(αk))2

d>Qd

= 1
2

(d>∇f(αk))2

d>Qd

= 1
2

(yi∇if(αk)− yj∇jf(αk))2

Kii +Kjj − 2Kij
,

where we abbreviate Kij = k(xi,xj). Since it is difficult to maximize with respect to both indices
i and j at the same time, Fan et al. (2005b) suggest to do it approximately. First we select i as
in Eq. (4.3.16) and then we maximize the previous gain given the selected i,

i ∈ argmax
l

{
−yl∇lf(αk)

∣∣∣ l ∈ Iup
}
, (4.3.21)

j ∈ argmin
l

{
−(yi∇if(αk)− yl∇lf(αk))2

Kii +Kll − 2Kil

∣∣∣∣∣ l ∈ Ilow, −yl∇lf(αk) < yi∇if(αk)
}
, (4.3.22)

with Iup and Ilow as in Eqs. (4.3.18) and (4.3.19). The SMO iterates continue until a stopping
condition M(αk)−m(αk) < εKKT is met for a pre-selected KKT tolerance εKKT, where

m(α) = max
l∈Iup

−yl∇lf(α) and M(α) = min
l∈Ilow

−yl∇lf(α).

The floating point cost per iteration of SMO is determined by the choice of j and the
computation of the gradient ∇f(αk). Selecting j requires 2n products and to compute the
gradient efficiently just note that

∇f(α+ ρd) = Q(α+ ρd)− 1
= ∇f(α) + ρQd
= ∇f(α) + ρ(yiQi − yjQj), (4.3.23)

4.3. Algorithms 69

Algorithm 13: Sequential Minimal Optimization (SMO)
Input :α = 0 ∈ Rd and C
while stopping condition not met do

Select working set (i, j)
Compute unconstrained stepsize ρ as in Eq. (4.3.14)
Clip the stepsize if necessary as in Eq. (4.3.15)
αi ← αi + yiρ̂

∗

αj ← αj − yj ρ̂∗
end

where Qk is the kth column of the matrix Q. Thus, a vector with the current gradient is
maintained during the optimization and updated with a cost of n products. In total 3n floating
point operations are needed for each SMO update.

The convergence of SMO has been discussed in Fan et al. (2005b, Sect. 3) and Chen et al.
(2006). Given a tolerance ε, Theorem 4.1 shows that exists a k̄ such that an ε-optimal solution
|f(αk)− f(α∗)| ≤ ε is obtained in

k̄ +O(log(1/ε))
iterations. That is, SMO converges linearly to an approximate solution. However, this linear
convergence only holds after an unspecified initial number of iterations k̄. List and Simon (2007)
also discuss the convergence of decomposition methods and prove linear convergence but without
making the assumptions used by Chen et al. (2006). They also characterize the initial number
of iterations k̄, which scale quadratically with the number of samples n (List and Simon, 2007,
Theorem 4),

O
(

4n2LmaxC
2

ε

)
,

where Lmax is related to the largest eigenvalue of the matrix Q. The following theorem formally
states SMO’s linear convergence.

Theorem 4.1 (Theorem 6 in Fan et al., 2005b). Assume problem (4.1.23) satisfies

1. Q is positive definite. Therefore, (4.1.23) has a unique solution α∗.

2. The non-degeneracy condition. That is, the optimal solution α∗ satisfies that

∇f(α∗)i + b̄yi = 0 if and only if 0 < α∗i < C,

where b̄ = m(α∗) = M(α∗).

For the sequence
{
αk
}
generated by Algorithm 13, there are c < 1 and k̄ such that for all k ≥ k̄,

f(αk+1)− f(α∗) ≤ c(f(αk)− f(α∗)).

We conclude this section by noting another important advantage of SMO compared to the
other algorithms considered. SMO is a very flexible framework that can be used to solve not
only the standard C-SVC, but also another formulations such as ε-SVR, ν-SVC, One-class SVM
and so on, with little extra effort.

For the special case of the ν-SVC this is due to the fact that the primal problem has an
extra constraint that makes it harder to optimize, while the constraints of the dual problem are
simpler. Besides, the dual formulations of both ν-SVC and C-SVC are very similar and thus it is
easier to extend a C-SVC dual solver to consider also the ν-SVC.

70 Chapter 4. Theory and algorithms for Support Vector Machines

4.3.4 Shrinking

An optimal solution α∗ of the SVM dual problem may contain some bounded elements, i.e.,
αi = 0 or C. Similarly to the screening technique for the Lasso problems, these elements are
bounded in the middle of the optimization procedure and its value will stay the same in the final
model. Some recent papers (Wang et al., 2013; Ogawa et al., 2013) also deal with non-support
vector screening for SVM classifiers. We will concentrate here on the well-known shrinking
technique for SMO, implemented in the LIBSVM software (Chang and Lin, 2011).

SMO shrinking tries to identify and remove bounded dual coefficients, effectively reducing
the size of the problem to solve and thus saving training time (Joachims, 1998). It relies on the
fact that after some iteration K the non-SVs coefficients do not change from their bound values.
This fact is formalized in Theorem 4.2 by Fan et al. (2005b).

Theorem 4.2 (Theorem 5.1 in Chang and Lin, 2011). Consider problem (4.1.23) and assume
Q is positive semi-definite.

1. The following set is independent of any optimal solution α∗.

I := {i | −yi∇if(α∗) > M(α∗) or − yi∇if(α∗) < m(α∗)}.

Further, for every i ∈ I, problem (4.1.23) has an unique and bounded optimal solution at
αi.

2. Assume Algorithm 13 generates an infinite sequence
{
αk
}
. There exists K such that after

k > K, every αki , i ∈ I has reached the unique and bounded optimal solution. That is, αki
remains the same in all subsequent iterations. In addition, ∀k > K:

i /∈
{
l
∣∣∣M(αk) ≤ −yl∇lf(αk) ≤ m(αk)

}
.

Thus after K iterations, provided K is guessed correctly, we can reduce the active set to
those xi such that their αi are not bounded. The LIBSVM implementation of shrinking (Chang
and Lin, 2011, Sect. 5.1) is as follows:

• Every min{n, 1 000} iterations it tries to select non-SV candidates xi according to whether
αki is bounded and the ith gradient component of the SVM dual function at αki goes
“against” the bounding box constraint. Details of the exact method can be found in Chang
and Lin (2011).

• The previous strategy is sometimes too aggressive. Using Lasso screening terminology, it is
not a “safe” procedure and may lead to a wrong solution of the whole problem. Hence,
when the algorithm achieves the following condition for the first time

m(αk) ≤M(αk) + 10εKKT,

the whole gradient is reconstructed to perform the shrinking procedure on more accurate
information.

• Finally, once the stopping condition

m(αk) ≤M(αk) + εKKT

of the smaller problem is satisfied, LIBSVM checks if the stopping condition of the original
problem is also satisfied. If not, all coefficients are incorporated into the optimization

4.3. Algorithms 71

problem again and the algorithm is restarted. Note that when solving the smaller problems
LIBSVM only maintains the gradient of the coefficients being optimized. Thus, when all
variables are reactivated the full gradient has to be reconstructed. More details on the
gradient reconstruction can be found in Chang and Lin (2011, Sect. 5.3).

Obviously, over very large samples for which the kernel matrix does not fit into memory,
gradient reconstruction is very expensive and SMO training with shrinking may actually be
costlier. In LIBSVM (Chang and Lin, 2011, Sect. 5.6) the sizes of the set

F = {j | 0 < αj < C}

of unbounded coefficients and of the active set A are compared and a warning is issued if
2|F| < |A|. Shrinking will reduce the iteration cost of SMO, O(3n), by a fraction r ' m/2d,
with m = |A|, i.e., the number of non-zero features in the final α∗ solution.

72 Chapter 4. Theory and algorithms for Support Vector Machines

Chapter 5

Relation between the Lasso and
SVMs

In this chapter we will explore the relation between two previously defined problems: the Lasso
and the SVM. Both are very popular tools widely used in predictive modeling, each with its own
advantages in disadvantages. Although they seem very different in principle, we will show in the
following sections how one can construct a SVM instance which is equivalent to the Lasso for a
given value of the hyper-parameters, and viceversa.

This reduction was suggested by Jaggi (2014) and is not only interesting from a theoretical
point of view, but also, as we will show, from an algorithmic one. With this goal in mind, we
will deviate from Jaggi’s original reduction in order to arrive to a ν-SVC instance, which can
be solved by standard software such as LIBSVM. In fact, using well known equivalences in the
literature we could go all they way from the Elastic Net (Section 3.2) to the C-SVC, passing
through the Lasso and the ν-SVC.

On a deeper level, we are actually transforming a regression problem into a classification one,
which may suggest that they are not two very different types of problems after all. Another
example of this regression-classification equivalence was shown in Section 4.2, where we demon-
strated how a SVR can be formulated as a SVC problem in an enlarged space with carefully
selected artificial labels.

5.1 Previous work
The relationship between the SVC and the Lasso was first investigated by Jaggi (2014). He
considers SVM variants whose dual optimization problem is of the form

min
x

{
‖Ax‖22

}
s.t. 0 ≤ x ≤ 1,

∑
xi = 1, (5.1.1)

where A ∈ Rd×n contains all n datapoints as columns and x ∈ Rn is the coefficient vector. Note
that x lies in the unit simplex in Rn, i.e. the set of probability vectors

Mn=
{

x
∣∣∣ 0 ≤ x ≤ 1,

∑
xi = 1

}
. (5.1.2)

This formulation includes the soft-margin C-SVC with `2-loss, both with or without a kernel.
However, note that it does not include the bias term nor the more common `1-loss SVC. To
incorporate the bias term we could simply add it as an extra dimension to x, but the optimization
problem is still slightly different from the original formulation since we are also regularizing the
bias b (see the last paragraph in Section 4.3.1, Item 1).

73

74 Chapter 5. Relation between the Lasso and SVMs

Jaggi (2014) also considers a slightly different Lasso problem,

min
x

{
‖Ax− b‖22

}
s.t. ‖x‖1 ≤ 1, (5.1.3)

where b ∈ Rn is the target vector and A, x are defined as before. This differs from the usual
Lasso formulation in two things:

1. The constraint ‖x‖1 ≤ 1 is usually written as ‖x‖1 ≤ ρ for some ρ > 0. However, without
loss of generality we can consider the unit-norm case and simply re-scale the coefficients x
and the target vector b by a factor 1/ρ.

2. The interpretation of the problem is different from the usual one, where the rows of A are
samples (1, . . . , n) and the columns of A are features or variables (1, . . . , d). Here the roles
of n and d are reversed.

We are going to show now that the two problems (5.1.1) and (5.1.3) are equivalent, in the
following sense. For any Lasso instance given by (A,b) a hard-margin SVM instance can be
constructed with the same optimal solution. On the other hand, it can also be shown that given
a SVM there always exists an equivalent Lasso instance, although it is more difficult to construct
explicitly.

5.1.1 Lasso to SVM

This is the easiest direction of the equivalence, that is, given a Lasso instance constructing the
equivalent SVM instance. The main idea behind this reduction is to parametrize the `1-ball,

�n = {x ∈ Rn | ‖x‖1 ≤ 1}, (5.1.4)

by the simplex M2n, using two non-negative variables to represent each real variable. Formally,
any vector x ∈ �n can be written as (Jaggi, 2014)

x = (In | −In) x̃,

where x̃ ∈M2n and (A |B) denotes the horizontal concatenation of two matrices A and B. With
this representation, given a Lasso instance of the form (5.1.3) we can write the equivalent
non-negative Lasso problem

min
x̃

{
‖(A | −A) x̃− b‖22

}
s.t. x̃ ∈M2n . (5.1.5)

Finally, we can translate each column of the new data matrix by the vector −b, that is,
Ã = (A | −A) − b1>2n. The term b1>2n just means that the vector b is subtracted from every
column of A and −A. Doing so we obtain the equivalent SVM instance,

min
x̃

{∥∥∥Ãx̃
∥∥∥2

2

}
s.t. x̃ ∈M2n . (5.1.6)

Here we have crucially used the simplex domain so that b1>2nx̃ = b. As Jaggi (2014) points
out, this equivalence not only means that the optimal solutions coincide, but it gives us a
correspondence of all the feasible points, preserving the objective value: for any solution x ∈ Rn
to the Lasso, we have a feasible SVM solution x̃ ∈ R2n of the same objective value and vice versa.

5.1. Previous work 75

5.1.2 SVM to Lasso

Although a lot harder to accomplish, this reduction can also go in the other direction, that is,
given a SVM instance we can construct an equivalent Lasso instance. We will need the following
definition, that measures the quality of an approximate solution x of the SVM problem as the
attained margin:

Definition 5.1 (Definition 1 in Jaggi, 2014). A vector w ∈ Rd is called σ-weakly-separating for
the SVM instance (5.1.1) for a parameter σ > 0, if it holds that

A>i
w
‖w‖2

≥ σ ∀i,

meaning that w attains a margin of separation of σ.

The soft-margin SVC with `2-loss, without bias term, is given by the primal optimization
problem (Jaggi, 2014)

min
w,ρ,ξ

1
2‖w‖

2
2 − ρ+ C

2
∑
i

ξi
2

s.t. yi ·w>Xi ≥ ρ− ξi, i = 1, . . . , n,
(5.1.7)

where C > 0 is the regularization parameter and ρ/‖w‖2 is the final margin of separation. Note
that in the classical SVC (Section 4.1) ρ is usually fixed to one, while it is explicitly used in
the equivalent ν-SVC formulation (Section 4.1.4). The equivalence of the soft-margin SVC dual
problem (5.1.1) to the previous optimization problem is stated in the following Lemma:

Lemma 5.1 (Lemma 2 in Jaggi, 2014). The dual of the soft-margin SVC (5.1.7) is a instance
of (5.1.1), that is

min
x

{
‖Ax‖22

}
s.t. x ∈Mn,

with
A :=

(
Z

1√
C

In

)
∈ R(d+n)×n

where the data matrix Z ∈ Rd×n consists of the n columns Zi := yiXi.

We are ready now to start with the reduction. Given an instance of the `2-loss dual SVC
(5.1.1), let us show first how to obtain a (possibly non-optimal) σ-weakly-separating vector
w ∈ Rd for some small σ > 0. Let

w :=
(

0d
1√
n

1n

)
∈ Rd+n,

then by Lemma 5.1 this direction w obtains a separation margin of

Ai
w
‖w‖2

=
(

yiXi
1√
C

ei

)>(0d
1√
n

1n

)
= 1√

nC
> 0

for all points in Definition 5.1 (Jaggi, 2014). The equivalent Lasso instance (Ã, b̃), can be defined
as the translated SVM datapoints

Ã :=
{

Ai + b̃
∣∣∣ i = 1, . . . , n

}

76 Chapter 5. Relation between the Lasso and SVMs

where
b̃ := − w

‖w‖2
· D

2

σ
.

Here D > 0 is a strict upper bound on the length of the original SVM datapoints, that is,
‖Ai‖2 < D for all i. By the definition of Ã, the Lasso objective function coincides with the
original SVM objective (5.1.1) for any x ∈Mn,∥∥∥Ãx− b̃

∥∥∥2

2
=
∥∥∥(A + b̃1>)x− b̃

∥∥∥2

2
=
∥∥∥Ax + (1>x− 1)b̃

∥∥∥2

2
= ‖Ax‖22,

since 1>x = 1. However, as Jaggi (2014) points out, this does not necessarily hold for the larger
part of the Lasso domain when x ∈ �\ M. It turns out that for this constructed Lasso instance
all the feasible points are contained in the simplex, and thus all the candidates x ∈ �\ M can be
discarded from the problem, since they do not contribute to any optimal solution. This is shown
in Theorem 3 from Jaggi (2014), which we reproduce below.

Theorem 5.2 (Theorem 3 in Jaggi, 2014). For any candidate solution x̃ ∈ � to the Lasso
problem (5.1.3) defined by (Ã, b̃), there is a feasible vector x ∈M in the simplex, of the same or
better Lasso objective value γ. Furthermore, this x ∈M attains the same objective value γ in the
original SVM problem (5.1.1).

5.1.3 Elastic Net to SVM

After the observation in Jaggi (2014), a new relation between the Elastic Net and the SVM was
suggested by Zhou et al. (2014). In particular, a Constrained Elastic Net instance is reduced to a
`2-loss SVC by using a similar approach. Starting from the Constrained Elastic Net formulation,
the first step is to re-scale the weights by 1/ρ,

min
w

{
1
2

∥∥∥∥Xw− 1
ρ

y
∥∥∥∥2

2
+ λ2‖w‖22

}
s.t. ‖w‖1 ≤ 1. (5.1.8)

As before, we can use two non-negative variables to represent each real variable and split the
coefficient vector w into the positive components, w+ ≥ 0, an the negative components, w− ≥ 0.
Let w̃ ∈ R2d be the new weight vector, resulting from the concatenation of w+ and w−. Then,
the previous problem can be written as,

min
w̃≥0

{
1
2

∥∥∥∥(X | −X) w̃− 1
ρ

y
∥∥∥∥2

2
+ λ2

2d∑
i=1

w̃2
i

}
s.t.

2d∑
i=1

w̃i ≤ 1. (5.1.9)

Note that, as long as λ2 6= 0 the solution to the previous problem is unique and satisfies that
either w+

i = 0 or w−i = 0 for all i (Zhou et al., 2014). Now Zhou et al. (2014) define the following:
Z =

(
X̃1 | −X̃2

)
, where X̃1 = X − 1

ρy1>d and X̃2 = X + 1
ρy1>d . Substituting Z into (5.1.9) it

becomes

min
w̃≥0

{
1
2‖Zw̃‖22 + λ2

2d∑
i=1

w̃2
i

}
s.t.

2d∑
i=1

w̃i = 1, (5.1.10)

since 1>2dw̃ = 1. Also note that the `1-norm constraint in (5.1.9) will always be tight, excluding
the uninteresting case where ρ is extremely large (Zhou et al., 2014).

Finally Zhou et al. (2014) show that an optimal solution w̃∗ for the problem (5.1.10) can be
obtained as w∗ = α∗/‖α∗‖1, where α∗ is the solution of the `2-loss SVC dual problem with no

5.2. Constrained and unconstrained Lasso 77

bias term for a carefully constructed binary classification dataset with 2d samples and n features.
More specifically, the data matrix is constructed as the horizontal concatenation of X̃1 and X̃2,

X̃ =
(
X̃1 | X̃2

)
∈ R2d×n,

and the labels are ỹ ∈ R2d, where ỹi = +1 for i = 1, . . . , d and ỹi = −1 for i = d+ 1, . . . , 2d.
To solve the problem they use their own implementation based the approach in Chapelle

(2007) to solve `2-loss SVMs, Suport Vector Elastic Net (SVEN), which is able to perform the
training in parallel using multiple cores or a GPU. The results in Zhou et al. (2014) show that
the GPU implementation is faster than the multicore one and that both are usually faster than
GLMNet. SVEN also outperforms other Elastic Net algorithms, namely, LARS (Efron et al.,
2004), L1_LS (Kim et al., 2007), SLEP (Liu et al., 2009), Shotgun (Bradley et al., 2011) and
Accelerated Prox-SDCA (Shalev-Shwartz and Zhang, 2014).

5.2 Constrained and unconstrained Lasso
Recall that the original Lasso formulation solves the following constrained optimization problem

min
w

{1
2‖Xw− y‖22

}
s.t. ‖w‖1 ≤ ρ. (5.2.1)

We will call this the Constrained Lasso or C-Lasso for short. However the previous problem is
usually written in its unconstrained version,

min
w

{1
2‖Xw− y‖22 + λ‖w‖1

}
, (5.2.2)

which we will denote by Unconstrained Lasso or U-Lasso. As we shown in Chapter 3, most of the
solvers work with the unconstrained formulation due to the absence of constraints. However the
Lasso-SVM reduction by Jaggi (2014) starts with the constrained formulation. In this section we
are going to show that both formulations are actually equivalent. This is something that was
mentioned as early as the original Lasso paper (Tibshirani, 1994), so it its often assumed but
rarely explicitly proved.

We must point out that, as we will see, they are equivalent in the sense that for a given ρ
we can always find a value λ such as both problems share the same solution, and vice versa.
However, there is not a one to one correspondence and, for example, there could be many values
for ρ whose equivalent λ is the same, since the “useful” regions of these hyper-parameters are
quite different. By “useful” region we mean values of the parameters for which the constraint is
active (the solution is not OLS) and the solution is not the trivial one, i.e, w = 0.

In problem (5.2.2) it is obvious that we can disable the constraint simply by taking λ = 0,
obtaining the original Ordinary Least Squares problem. The following proposition (Tibshirani,
1994) characterizes the ρ values for which the constraint in the C-Lasso problem is not active.

Proposition 5.1 (Inactive constraints). Let w0 be the full OLS solution and ρ0 = ‖w0‖1. Then,
for every ρ ≥ ρ0, the C-Lasso solution is also w0. We can also get the same solution w0 in the
U-Lasso problem simply by taking λ = 0.

On the other hand, in problem (5.2.1) it is clear that ρ = 0 will yield the zero solution.
Proposition 5.2 characterizes the values for λ where the same happens in the U-Lasso problem.
This result is also given in Osborne et al. (2000, Remark 2) and Friedman et al. (2010). Note
that in Friedman et al. (2010) they are minimizing the average squared error and thus in that
case λmax can be also scaled by 1/n.

78 Chapter 5. Relation between the Lasso and SVMs

Proposition 5.2 (Trivial solution). Let λmax = ‖X>y‖∞. Then, for every λ ≥ λmax wλ = 0.
We can also get the trivial solution in the C-Lasso problem simply by taking ρ = 0.

Proof. Let F (w) = 1
2‖Xw− y‖22 + λ‖w‖1 be the objective function of the U-Lasso problem.

Taking the subgradient with respect to w,

∂wF (w) = X>(Xw− y) + λs,

where s ∈ ∂‖w‖1, we get the optimality condition

X>(Xw− y) + λs = 0.

For the solution w∗ to be zero we need

X>y + λs = 0

or equivalently

s = X>y
λ

.

But s must also be a subgradient of the `1-norm and thus ‖s‖∞ ≤ 1. Putting everything together,

1 ≥ ‖s‖∞ =
∥∥∥∥∥X>y

λ

∥∥∥∥∥
∞
,

which implies λ ≥ ‖X>y‖∞ for w∗ = 0 to be a solution of U-Lasso.

We begin by showing first the easiest direction of the equivalence between the two Lasso
formulations, that is, given a U-Lasso instance we construct a C-Lasso one with the same solution.

Lemma 5.3 (U-Lasso to C-Lasso). Given 0 < λ < λmax let

wλ = argmin
w

{1
2‖Xw− y‖22 + λ‖w‖1

}
,

be the solution of the U-Lasso problem (5.2.2). Then, if we let ρ = ‖wλ‖1 the solution of the
C-Lasso problem (5.2.1) is also wλ.

Proof. Suppose that there exits a better minimizer w∗ of (5.2.1) such that ‖w∗‖1 ≤ ‖wλ‖1 and
1
2‖Xw∗ − y‖22 <

1
2‖Xwλ − y‖22.

In that case, it is clear that w∗ would be also a better solution of problem (5.2.2), contradicting
the assumption that wλ was the minimum.

Next lets prove the second direction of the equivalence, i.e., starting with a given instance of
the C-Lasso problem and obtaining the equivalent U-Lasso one.

Lemma 5.4 (C-Lasso to U-Lasso). Given ρ0 as in Proposition 5.1 and 0 < ρ < ρ0 let

wρ = argmin
w

{1
2‖Xw− y‖22

}
s.t. ‖w‖1 ≤ ρ,

be a solution of the C-Lasso problem (5.2.1). Then, if we let

λ =
−w∗ρ ·X>

(
Xw∗ρ − y

)
ρ

. (5.2.3)

the solution of the U-Lasso problem (5.2.2) is also wρ.

5.2. Constrained and unconstrained Lasso 79

Proof. Let f(w) = 1
2‖Xw− y‖22, g(w) = ‖w‖1 − ρ and define

h(w) = max{f(w)− f(wρ), g(w)}. (5.2.4)

The function h(w) is convex because it is the maximum of two convex functions. In addition we
also have h(w) ≥ 0, since when g(w) < 0 we necessarily have

f(w) ≥ f(wρ) ⇒ f(w)− f(wρ) ≥ 0,

otherwise wρ would not be a solution of problem (5.2.1). On the other hand, if g(w) > 0,
h(w) ≥ g(w) > 0. Let us compute now the value of the function h at wρ,

h(wρ) = max{f(wρ)− f(wρ), ‖wρ‖1 − ρ}
= max{0, ‖wρ‖1 − ρ} = 0

since
‖wρ‖1 ≤ ρ ⇒ ‖wρ‖1 − ρ ≤ 0.

Putting everything together we get that the minimum of the function h is also attained at wρ,
since h(wρ) = 0 and it is always positive. This implies that 0 ∈ ∂h(wρ). To construct the
subdifferential note that h is the maximum of two convex functions and thus by Proposition 2.1
its subdifferential at w can be constructed as the convex hull generated by

∂(f(·)− f(wρ))(wρ) = ∂f(wρ) = {∇f(wρ)}

and Eq. (2.2.7)
∂g(wρ) =

{
s
∣∣∣ ‖s‖∞ < 1, s>wρ = ‖wρ‖1

}
;

that is,

∂h(wρ) =
{
γ∇f(wρ) + (1− γ)s

∣∣∣ 0 ≤ γ ≤ 1, ‖s‖∞ < 1, s>wρ = ‖wρ‖1
}
. (5.2.5)

Now let λ = (1− γ)/γ with γ > 0, then Eq. (5.2.5) can be rewritten into

∂h(wρ) =
{
∇f(wρ) + λs

∣∣∣ λ ≥ 0, ‖s‖∞ < 1, s>wρ = ‖wρ‖1
}
,

which is exactly the subdifferential of problem (5.2.2). Note that γ > 0 since otherwise the only
possible solution would be wρ = 0, contradicting the fact ‖wρ‖1 = ρ. The conclusion is that wρ

is also a solution for the U-Lasso with a specific value for λ that we derive next. Let 0 < γ ≤ 1
and s ∈ ∂g(wρ); then we have

s>wρ = ‖wρ‖1 = ρ, (5.2.6)

and
0 = ∇f(wρ) + λs = X>(Xwρ − y) + λs.

Multiplying both sides of the previous equation by wρ and substituting Eq. (5.2.6) yields

−X>(Xwρ − y) ·wρ = λs>wρ = λρ,

and we can solve for λ to get the final value

λ = −X>(Xwρ − y) ·wρ

ρ
.

80 Chapter 5. Relation between the Lasso and SVMs

We now summarize the equivalence between the U-Lasso and the C-Lasso in the following
Theorem.

Theorem 5.5 (Equivalence between C-Lasso and U-Lasso). Let w0 be the Ordinary Least
Squares solution,

w0 = argmin
w

{1
2‖Xw− y‖22

}
,

let wλ be the solution of the U-Lasso problem,

wλ = argmin
w

{1
2‖Xw− y‖22 + λ‖w‖1

}
,

and let wρ be the solution of the C-Lasso problem,

wρ = argmin
w

{1
2‖Xw− y‖22

}
s.t. ‖w‖1 ≤ ρ.

Then, for the U-Lasso:

wλ =


0, if λ ≥ λmax,
w0, if λ = 0,
wρ∗ , if 0 < λ < λmax,

where ρ∗ = ‖wλ‖1 and λmax =
∥∥∥X>y

∥∥∥
∞
, and for the C-Lasso:

wρ =


0, if ρ = 0,
w0, if ρ ≥ ρ0,
wλ∗ , if 0 < ρ < ρ0,

where ρ0 = ‖w0‖1 and

λ∗ = −X>(Xwρ − y) ·wρ

ρ
.

Proof. Combine the results in Propositions 5.1 and 5.2 and Lemmas 5.3 and 5.4.

The conclusion of Theorem 5.5 is that both problems are equivalent in the sense that, given
ρ and a solution wρ of problem C-Lasso, then the problem U-Lasso shares the same solution if
we take the regularization parameter λ as in Eq. (5.2.3). Likewise, given λ and a solution wλ of
problem U-Lasso, an instance of C-Lasso with ρ = ‖wλ‖1 also has solution wλ.

Finally it is important to note that we can only go from one problem to the other after it has
been solved. Therefore given, for example, a ρ we can not choose to solve the equivalent U-Lasso
instance before solving C-Lasso for that ρ and the other way around. However, in practice the
value for the hyper-parameters is selected using procedures such as cross-validation. In that case
we can indeed choose to solve one or the other since the cross-validation is finding the “best”
value for either ρ or λ for that specific problem.

5.3 Constrained Lasso to Nearest Point Problem
We are also going to follow the approach by Jaggi (2014) but with some slight variations in order
to arrive at an instance of the ν-SVC problem, which is directly solvable by well-established
software such as LIBSVM (Chang and Lin, 2011). Since we have already shown that the C-Lasso
problem is equivalent to the U-Lasso, which is the formulation usually chosen by Lasso solvers,

5.3. Constrained Lasso to Nearest Point Problem 81

this will allow us to first, solve an instance of the U-Lasso for a given λ, compute the ρ for which
both problems are equivalent (Lemma 5.3), transform that C-Lasso instance into a ν-SVC, solve
it using LIBSVM and finally check which one was faster from an empirical point of view. In
other words, this equivalence could potentially provide a faster way to solve the C-Lasso problem
which, in turn, could also mean a faster way to solve the general Lasso problem.

Starting with problem (5.2.1), the first step is to re-scale w and y by 1/ρ, that is,

min
w

{
‖Xŵ− ŷ‖22

}
s.t. ‖ŵ‖1 ≤ 1, (5.3.1)

where ŵ = w/ρ and ŷ = y/ρ. For simplicity we will revert again to the notation w, y in the
rest of the derivation and assume that the problem is scaled by 1/ρ. As before, the main part of
the equivalence is to represent the `1-ball as the 2d-dimensional simplex of probability vectors

M2d=
{
α ∈ R2d

∣∣∣ 0 ≤ α ≤ 1,
∑

αi = 1
}
.

The trick here is to use two non-negative artificial features to represent each coefficient w. Let
us denote the horizontal concatenation of matrices A and B as (A |B), then the new coefficients
are w̃ = (Id | −Id)>w. Now we can rewrite problem (5.3.1) as

min
w̃

{
‖(X | −X) w̃− y‖22

}
s.t. 0 ≤ w̃ ≤ 1,

2d∑
i=1

w̃i = 1. (5.3.2)

{Xj}{−Xj}

y

Figure 5.1: Geometrical interpretation of problem (5.3.2)

Now let X̃ = (X | −X), i.e the new artificial data matrix, constructed by horizontally
concatenating X and −X. Then X̃w̃ lies in the convex hull spanned by the columns of X̃,

S =


2d∑
j=1

αjX̃j

∣∣∣∣∣∣ 0 ≤ α ≤ 1,
2d∑
j=1

αj = 1

,
where X̃k denotes the kth column of the matrix X̃. Therefore problem (5.3.2) could also be
interpreted as finding the closest point between the convex hull S and the singleton {y}, which
is a convex hull containing only one point. This is shown in Fig. 5.1. A more general version of
this geometrical problem, the Nearest Point Problem, is given in Definition 5.2.

82 Chapter 5. Relation between the Lasso and SVMs

Definition 5.2 (µ-Nearest Point Problem). Given a set of d-dimensional points {xi}n1 belonging
to either a positive or a negative (reduced) convex hull, according to some label yi = ±1, the
problem of finding the closest point between the hulls can be stated as the following minimization,

min
α

1
2

∥∥∥∥∥∥
∑
yi=1

αixi −
∑

yj=−1
αjxj

∥∥∥∥∥∥
2
 s.t. 0 ≤ α ≤ µ.

or, equivalently,

min
α

1
2

n∑
i

n∑
j

αiαjyiyjx>i xj

 s.t. 0 ≤ α ≤ µ,
∑
yi=1

αi =
∑
yi=−1

αi = 1, ∀i.

As mentioned above, one of the hulls only contains only one point an thus we carefully construct
the following artificial binary classification dataset: data matrix A =

(
X̃ |y

)
∈ Rn×(2d+1) and

labels b = (1>2d,−1)> ∈ R2d+1, i.e we assign positive labels to every column of X̃ and a negative
label to y. Then, (5.3.2) can be written as the following geometrical problem,

min
α

1
2

n∑
i

n∑
j

αiαjbibjA>i Aj

 s.t. 0 ≤ α ≤ 1,
2d∑
i=1

αi = α2d+1 = 1, (5.3.3)

where Ak represents each one of the 2d+ 1 columns of the matrix A. Note that we have added
a spurious coefficient α2d+1 associated with the point y that, according to the constraint has to
be 1 when the optimization finishes. Therefore is not going to be used in order to recover the
original Lasso weights.

One option for trying to solve problem (5.3.3) is to do it directly using a geometrical based
algorithm. In particular, Zhou et al. (2015) suggest a Wolfe-type algorithm that directly solves
the following problem,

min
α

{∥∥∥Ãα∥∥∥2
}

s.t. 0 ≤ α ≤ 1,
∑

αi = 1, (5.3.4)

where Ã := X̃ − y1>2d, i.e, they translate the matrix X̃ = (X | −X) by substracting y from
each one of its columns. This is known as the Minimum Norm Problem (MNP) and it can be
interpreted as trying to find the closest point from the convex hull to the origin. In general, Wolfe’s
method performance for the MNP problem is sublinear and can be improved by other variants,
such as the MDM algorithm (Torres-Barrán and Dorronsoro, 2015; López and Dorronsoro, 2015).
MDM is closely related to SMO and, in fact, the MNP problem can also be solved by LIBSVM:
simply note that the MNP problem is a particular case of the Nearest Point Problem taking the
vector {0} as the second hull. Alternatively, it is also easy to see that (5.3.4) is the dual of the
following one-class problem (Section 4.1.5)

min
w,ρ,ξ

{
1
2‖w‖

2 − ρ+
∑
i

ξi

}
s.t. w>X̃i − ρ+ ξi ≥ 0, ξi ≥ 0, i = 1, . . . , 2d, (5.3.5)

which can also be solved by LIBSVM.
We deviate from the previous approach and use the well-known equivalence between the

Nearest Point Problem and ν-SVC to solve problem (5.3.3). To show that equivalence, it is
useful to define the following primal optimization problem:

5.4. Numerical experiments 83

Definition 5.3 (µ-Margin Nearest Point Problem). Given a set of d-dimensional points {xi}n1
and µ ≥ 0 we define the following optimization problem:

min
w,ξ,γ,η

1
2‖w‖

2
2 − γ + η + µ

∑
i

ξi

s.t. w>xi ≥ γ − ξi, ∀i : yi = 1
w>xi ≤ η + ξi, ∀i : yi = −1
ξi ≥ 0, ∀i.

It turns out that problem (5.2) is the dual of problem (5.3), which is equivalent to the ν-SVC
formulation (Section 4.1.4) given the following transformations

ν = 2
µn

, ρ∗ = γ∗ − η∗

2 , b∗ = −γ
∗ + η∗

2 ,

and scaling the coefficients by 1/(µn) (López and Dorronsoro, 2015). Thus, in our case, we can
obtain a solution α of the NPP problem by solving a ν-SVM instance, that is,

min
w,ξ,b,ρ

1
2‖w‖

2
2 − νρ+ 1

n

∑
i

ξi

s.t. yi(w>xi + b) ≥ ρ− ξi,
ξi ≥ 0, i = 1, . . . , n.

(5.3.6)

with ν = 2/n and scaling the resulting coefficients by 1/n. It is important to note that here the
n represents the number of points in the convex hulls or, in other words, the number of columns
of matrix A which is 2d+ 1. Thus, the original number of samples n and the dimensionality d
switch places, since now we have (2d+ 1) n-dimensional points. Note also that we have effectively
transformed a regression problem into a classification problem, which are sometimes regarded as
two very different settings in supervised learning.

5.4 Numerical experiments

The goal of this section is to empirically test the performance of the SMO algorithm (Section 4.3.3),
as implemented by LIBSVM (Chang and Lin, 2011), for solving the Lasso problem via its
equivalent ν-SVC instance. This is one of the many implications of the reduction from the
previous section, that is, any algorithmic advances in one problem can be directly translated to
the other one. Other implications will be discussed further in Section 5.5.

For comparison purposes, we have selected the Cyclic Coordinate Descent algorithm as
implemented by the Lasso class in scikit-learn. This implementation is based on the well known
GLMNet R package (Friedman et al., 2010), but it does not contain all of its features. In
particular, it is lacking in 1) a screening procedure and 2) covariance updates (Section 3.3.3).
Therefore in theory it should be less efficient than the R implementation. However we still choose
here to use the scikit-learn version since the main Coordinate Descent algorithm is implemented
in a few lines of Cython, and thus it is easy to modify it to measure, say, the runtime as a
function of the distance to the optimum. On the other hand GLMNet’s core is implemented in
Fortran and we were not able to modify it to produce plots as the ones in Section 5.4.3. As an
example, it is coded in a very low level programming style, using branch statements instead of
loops.

84 Chapter 5. Relation between the Lasso and SVMs

Although SMO is quite an old algorithm, it is still probably one of the best available options
to solve the non-linear SVC problem. In the issue at hand, the equivalent ν-SVC instance it
is actually the linear version, so one may ask if there is not a better alternative. However, we
are not aware of any other software that is able to solve the linear ν-SVC, whether it be the
primal or dual formulation. For example neither Pegasos nor LIBLINEAR, which are two of the
most popular solvers besides LIBSVM, consider the ν-SVC problem. One possible reason may
be because the ν-SVC is actually harder to optimize due to having an extra equality constraint,
and since it is equivalent to the C-SVC this drawback outweighs the possible benefits.

Finally, it is also worth mentioning the tight relationship between Cyclic Coordinate Descent
and SMO. Recall that SMO was just an specific instance of the more general Greedy Block
Coordinate Descent family of algorithms, where two coefficients are selected using the rules
explained in Section 4.3.3 and optimized at the same time. On the other hand, Cyclic Coordinate
Descent optimizes one coefficient at a time, selected in cyclical order. However this selection
could also be random (Stochastic Coordinate Descent) or using some greedy rules, such as
the Gauss-Southwell rule. In general either the Cyclic or Stochastic updates are considered to
be more efficient (Nesterov, 2012) but some recent works like Nutini et al. (2015) show that
Greedy Coordinate Descent actually performs better empirically, contradicting the theoretical
convergence rates. In this fashion we consider worth exploring whether SMO, another variant of
Greedy Coordinate Descent is actually faster than Cyclic Coordinate Descent for solving the
Lasso problem in an empirical setting.

5.4.1 Implementation details

First we summarize the whole procedure. Given a Lasso instance with n samples and d variables,
represented by the data matrix X ∈ Rn×d, target vector y ∈ Rn and hyper-parameter ρ, we
perform the following steps:

1. Create an artificial dataset (A, b), with A = (X | −X | ỹ)> ∈ R(2d+1)×n and labels b =
(1>2d, −1)> ∈ R2d+1, where ỹ = y/ρ.

2. Solve the associated ν-SVC problem with data matrix A, target vector b and ν = 2
2d+1 via

the dual formulation, obtaining dual coefficients α∗ ∈ R2d+1.

3. Discard the last coefficient α2d+1 and recover original Lasso weights as

w∗ = ρ (Id | −Id)α∗.

Note that, in practice, when we are solving the Lasso-NPP problem (5.3.3) through its
equivalent ν-SVM instance (5.3.6), we are not assuming any kind of structure in the kernel
matrix. However, due to the artificial nature of the matrix A it contains many redundancies.
Indeed if we take into account how the kernel matrix K of the dual problem is computed we can
see that it has the following structure:

K = AA> =


X>X −X>X X>ỹ

−X>X X>X −X>ỹ

ỹ>X −ỹ>X ỹ>ỹ︸ ︷︷ ︸
2d+1


 2d+1

5.4. Numerical experiments 85

As a result, we only need to compute X>X, ỹ>ỹ and X>ỹ and fill the rest of the kernel matrix
accordingly. In addition, the matrix X>X is also symmetric and only half of the dot products
are actually needed.

Thus, we have implemented a modified kernel in LIBSVM, namely K-SVM, where we have
exploited the specific structure of the kernel matrix for this problem. It is important to note
that the kernel matrix is not precomputed before the algorithm starts, since we have already
seen in Section 4.3.3 that it is counterproductive. Instead, in the same manner as the original
SMO, the rows of the kernel matrix (or columns, since it is symmetric) are computed on-the-fly,
at most two per iteration, taking into account the structure of the kernel to avoid computing the
same dot product twice.

Newly computed rows are then stored in a simple First-In-First-Out (FIFO) cache so they
can be reused if SMO selects again the same pair of coefficients at a later iteration. When looking
for a previously computed row in the cache we also take into account the structure of the kernel
matrix. If we need an index j ∈ d, . . . , 2d we actually look for the index i = j − d and negate
the result, since we now that the resulting rows are going to be identical. This way we avoid
filling up the cache with redundant information, reducing the effective size of the kernel matrix
to (d+ 1)× (d+ 1). This is specially important for problems where d ≤ n.

It is also worth mentioning that the changes to LIBSVM are minor and only involve the way
SMO gets the kernel row associated to each multiplier from the cache; no other change is made
to the LIBSVM code. Theoretically, these changes could perform up to 8 times less dot products
compared to the naive LIBSVM implementation for this specific problem, although in practice
we observe gains of about a factor of 4.

Solving the ν-SVC instance associated to the Lasso should be specially beneficial in problems
where d < n, since SVC are known to scale poorly with the number of samples (d in our case),
whether in runtime or memory storage (O

(
d2)). On the other hand, if d� n it may be better

to either solve directly the Lasso or the primal formulation of the ν-SVC, although we are not
aware of any popular implementation for the latter.

5.4.2 Datasets and methodology

We have selected eleven datasets, trying to cover a broad amount of different problems. Of these,
eight correspond to regression problems: prostate, used by Tibshirani (1994) in the original
Lasso paper; housing, year, ctscan and cpusmall from the UCI repository; trajectory,
from the Machine Learning Dataset Repository; ree and mnist_reg.

The ree datasets is built with 2 years of Numerical Weather Forecasts (NWP) for eight
meteorological variables, namely, temperature, pressure, wind speed at surface level (u-component,
v-component and modulus) and wind speed at 100m (u-component, v-component and modulus).
They are arranged in a rectangular grid of 35 latitudes and 57 longitudes with an spatial resolution
of 0.25◦, for a total of 1995 points covering the whole peninsular Spain. Thus, the total dimension
is 1995× 8 = 15960. The temporal resolution of the forecasts is every three hours, so the number
of samples is approximately 2× 365× 24/3 = 5840. The actual number of samples is actually
less due to some missing data. The targets are the total wind energy productions every three
hours as a percentage of the total installed power in Spain.

The mnist_reg is a regression problem built using the MNIST dataset. We proceed as
Xiang et al. (2017), randomly selecting 500 feature images from each digit as well as a random
digit target image. Then we build 28× 28 = 784 samples with feature dimension 5 000 by pairing
the i, j pixels of the 5 000 feature images with the i, j pixel of the target image. The idea is that,
when trying to predict the value of a pixel of the target image, only the corresponding pixels

86 Chapter 5. Relation between the Lasso and SVMs

Table 5.1: Optimal λ values, λ/λmax ratio, sample sizes and input dimensions of the datasets
considered.

Dataset Optimal λ∗ λ∗/λmax Size Dim.

prostate 2.035× 10−3 0.003 67 8
cpusmall 1.631× 10−2 0.048 6 143 12
housing 8.186× 10−3 0.011 378 13
year 4.534× 10−4 0.002 46 215 90
trajectory 1.021× 10−2 0.129 20 000 298
ctscan 3.748× 10−3 0.007 53 500 385
mnist_reg 7.760× 10−3 0.036 784 5 000
ree 1.290× 10−1 0.164 5 698 15 960

colon_cancer 6.191× 10−3 0.071 62 2 000
leukemia 5.294× 10−3 0.497 72 7 129
breast_cancer 3.537× 10−2 0.347 44 7 129

in the images containing the same digit should be relevant features. Therefore this is a way to
construct a regression dataset where 1) only about 10% of the features should be relevant and
2) we could have a dimension up to 60000, which is the total number of digits in the MNIST
dataset, assuming all the digits are represented equally. Note that we have arbitrarily selected
here only 500 images per digit for a total dimension of 5000.

In addition to the previous regression datasets, we also consider three classification datasets
for biomedical problems: leukemia, colon_cancer and breast_cancer, from the LIBSVM
dataset repository. These two-class datasets are transformed to a regression problem by simply
predicting the value of the -1/1 class label. The reason for this addition is to further explore the
case where the number of features is much greater than the number of patterns, which is easier
to find in classification problems from the medical domain.

Table 5.1 summarizes in columns 4 and 5 the sample sizes and input dimensions of all the
previous datasets. It is worth mentioning that all of them correspond to real-world problems
with a wide variety of sizes. Some of them are also quite big for a regression setting, either
in number of patterns (ctscan, year) or input dimension (mnist_reg, ree, leukemia,
breast_cancer).

It is well known that training complexity greatly depends on λ. We will consider in the
experiments three possible λ values for U-Lasso: an optimal λ∗ obtained as the one with the
lowest cross-validation error in the regularization path (Section 3.3.3), a smaller λ∗/2 value which
should result in longer training and possibly less sparsity, and a stricter penalty 2λ∗ value with
the opposite effect. Another possibility would be to fix a desired level of sparsity as measured
by the ratio λ/λmax (for instance 10−3) and then compute the corresponding λ for each specific
problem, possibly with different multiples as well.

As discussed by Xiang et al. (2017), the ratio λ/λmax is invariant to scaling and is thus a
better measure of the regularization strength being applied in the Lasso. However we choose the
λ∗ with the lowest cross-validation error because is the procedure applied in practice if one wants
to train the best performing models. In any case, we give the optimal λ∗ and their λmax scalings
for the problems considered in the second and third columns of Table 5.1. Most problems have
small scaled λ values; they are higher and close to 0.5 in leukemia and breast_cancer.

Since GLMNet solves the U-Lasso (5.2.2) and we are solving the C-Lasso formulation (5.2.1),
we proceed as follows. First we run GLMNet for each λ, obtaining an ε-optimal solution w∗λ

5.4. Numerical experiments 87

with ε = 10−6. Then we compute ρ = ‖w∗λ‖1 and solve the C-Lasso problem via the associated
ν-SVM instance, as described in the previous section. Finally we compare for each algorithm the
evolution of f(wk)− f(w∗), with wk the coefficients at iteration k.

As mentioned, we will use the scikit-learn implementations of GLMNet and of ν-SVM, which
is actually a wrapper over LIBSVM (Chang and Lin, 2011), to which we add the modified
LIBSVM code described also in the previous section to reduce the number of kernel operations
and cache misses. We denote these algorithms as GLMNet, SVM and K-SVM respectively. Note
that all methods have a C core, so we may expect time comparisons to be broadly homogeneous.
As we discussed before we could have also compared to other algorithms since many of them
have reported to be better than GLMNet. However, very recent works on Lasso algorithms such
as Frandi et al. (2016) still compare to GLMNet, which suggest that it is performing very good
empirically and it should be the first one to beat. Other classical algorithms such as FISTA
(Section 3.3.2) are at a clear disadvantage with respect to SMO and GLMNet, since they have
to compute the full gradient at every iteration. Furthermore Alaíz et al. (2015) have observed
that FISTA needs more iterations than GLMNet or SMO to achieve the same precision on the
objective function so we believe that it is not competitive with the others.

5.4.3 Results

All the experiments were run in an Intel(R) Xeon(R) server with 16 E5-2680 2.70GHz CPUs
and 128 Gb of RAM. Table 5.2 shows in columns 3 to 5 the number of iterations that GLMNet,
SVM and K-SVM respectively require to compute a ε-optimal solution with ε = 10−6. Columns
6 to 8 show the runtimes needed to achieve the same precision.

We consider GLMNet and SVM iterations to be roughly equivalent even though GLMNet
only changes one coefficient per iteration and SVM two. Table 5.2 shows that K-SVM beats
GLMNet for all datasets and λ values except for the trajectory problem. Besides, for the
regression datasets, K-SVM improves SVM running times by a factor that approximately lies
between 2 and 4, while both perform the same number of iterations in all problems, as it should
be. However, for the classification datasets, SVM is faster than K-SVM. We believe this is due
to these datasets having a very small number of patterns and dimensions between 40 and 100
times larger; therefore the dot products computed are very cheap while the kernel matrix is
rather large. This, combined with the fact that the optimization finishes in very few iterations
(note that at most two dot products are computed in each iteration), makes the overhead of
taking into account the kernel matrix structure to be worse than just computing the full dot
products. As a conclusion, SVM may be better suited for problems where the ratio d/n is very
big. However, for the three classification datasets both SVM and K-SVM are still faster than
GLMNet in our experiments.

Problems with a large dimensionality, such as mnist_reg, ree and the classification datasets,
do need very few SVM iterations. This is related to the sparsity of the final solutions, given
in the second column of Table 5.2, in the form s/d, with s the number of non-zero coefficients
and d the problem dimension. Note that this sparsity is given in terms of the original Lasso
weights w, and not ν-SVC dual weights α. However, as pointed out by Jaggi (2014), the number
of non-zero coefficients of the Lasso instance is related to the number of α elements different
from zero (i.e. support vectors). Thus this is another implication of the reduction, and we could
try to gain understanding about the final number of support vectors by looking at known results
about Lasso sparsity. This assumes that those results are applicable for the type of translation b
that Jaggi (2014) uses to construct the equivalent the Lasso instance and it is not clear how to
apply this in practice.

88 Chapter 5. Relation between the Lasso and SVMs

Table 5.2: Sparsity of final solutions, number of iterations and running times.

Iterations Time (ms)

Dataset Spars. GLMNet SVM K-SVM GLMNet SVM K-SVM

prostate 8/8 102 40 40 0.051 0.030 0.023
8/8 103 35 35 0.052 0.026 0.020
7/8 93 28 28 0.048 0.023 0.017

housing 12/13 607 71 71 0.567 0.160 0.073
12/13 594 53 53 0.555 0.152 0.064
11/13 216 33 33 0.204 0.143 0.053

year 90/90 5 153 693 693 456.753 757.949 182.591
89/90 5 148 559 559 451.329 731.710 176.815
85/90 4 998 445 445 425.374 718.278 175.916

ctscan 273/385 101 130 944 944 8 371.474 11 334.768 3 707.740
226/385 78 710 629 629 5 949.542 9 316.175 3 354.670
165/385 53 630 387 387 3 488.810 6 755.625 2 702.005

cpusmall 9/12 135 21 21 1.126 1.363 0.366
8/12 144 13 13 1.150 1.201 0.338
6/12 45 11 11 0.337 0.896 0.308

mnist_reg 40/5 000 1 040 395 87 87 1 451.346 371.682 217.461
22/5 000 635 452 42 42 940.499 185.491 106.909
13/5 000 550 356 24 24 694.931 109.587 63.693

trajectory 45/297 8 555 164 164 228.461 583.402 264.339
17/297 2 588 32 32 61.546 253.426 108.617
6/297 1 313 9 9 28.673 84.417 36.852

ree 73/15 960 1 784 764 185 185 9 949.901 17 033.588 9 386.198
43/15 960 1 385 271 108 108 7 058.281 8 691.214 5 078.536
23/15 960 1 114 658 52 52 5 541.830 5 097.402 2 789.337

leukemia 28/7 129 415 227 71 71 197.762 49.557 87.672
20/7 129 225 846 28 28 58.096 26.253 50.891
8/7 129 115 898 9 9 60.959 10.155 22.217

colon_cancer 47/2 000 184 353 469 469 88.677 31.467 63.017
33/2 000 101 231 227 227 45.856 19.183 38.180
25/2 000 62 377 54 54 29.894 7.411 14.476

breast_cancer 29/7 129 219 503 100 100 97.303 50.856 92.861
16/7 129 107 397 27 27 47.075 23.024 40.219
7/7 129 59 597 8 8 26.265 5.919 16.873

5.4. Numerical experiments 89

In the other direction, which is the one of interest here, there are also some results about the
asymptotic number of support vectors as the number of samples grow, for example Steinwart
(2003). Note that in theory the Lasso and SVM solutions could potentially have different numbers
of non-zero coefficients: a fully sparse w = 0 Lasso solution can be derived from a fully non-sparse
α, where αj = 1/2d for j = 1, . . . , d and αj = −1/2d for j = d+ 1, . . . , 2d. However we have not
observed that to happen in practice and both the sparsity in α and the sparsity in w coincide in
our experiments. Thus we report sparsity values in just a single column. As the table shows, the
sparsities in mnist_reg, 22 non-zero coefficients out of 5 000 for λ∗, or ree, 43 out of 15 960,
are very large. In the mnist_reg case this is to be expected since, as we mentioned before,
many features correspond to zero pixels and also only 1/10 of the features correspond to images
from the digit that we are trying to predict. In ree it is possibly due to the large correlation
between weather variables at nearby grid points. The classification datasets have also a very big
sparsity factor, probably because the ratio d/n is huge and therefore there are many irrelevant
variables, as it is usually the case in medical data.

0 10 20 30 40 50 60

Time (ms)

10-6

10-5

10-4

10-3

10-2

10-1

O
b
je

ct
iv

e

leukemia

K-SVM

GLMNet

SVM

0 10 20 30 40 50

Time (ms)

10-6

10-5

10-4

10-3

10-2

10-1

O
b
je

ct
iv

e

colon_cancer

K-SVM

GLMNet

SVM

0 10 20 30 40 50

Time (ms)

10-6

10-5

10-4

10-3

10-2

10-1

O
b
je

ct
iv

e

breast_cancer

K-SVM

GLMNet

SVM

Figure 5.2: Time evolution of the objective function for the three classification datasets with λ∗
as the penalty factor

Figure 5.2 shows the evolution of the objective function with respect to time for the three
classification problems. As mentioned, in this setting where d � n there are very few kernel
operations (because of the small number of iterations until convergence) and they are also very
cheap (because of a very small n). Thus, for these datasets reducing the number the cache misses
it is not critical, since the cache is probably not filling up in the first place, and the SVM without
any modifications performs very well. Even though they are very sparse problems, the inner loop
of GLMNet still has to cycle through all coefficients and thus the number of iterations for this

90 Chapter 5. Relation between the Lasso and SVMs

0.00 0.01 0.02 0.03 0.04 0.05 0.06

Time (ms)

10-6

10-5

10-4

10-3

10-2

10-1

100

O
b
je

ct
iv

e

prostate

K-SVM

GLMNet

SVM

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Time (ms)

10-6

10-5

10-4

10-3

10-2

10-1

100

101

O
b
je

ct
iv

e

housing

K-SVM

GLMNet

SVM

0 100 200 300 400 500 600 700 800

Time (ms)

10-6

10-5

10-4

10-3

10-2

10-1

100

101

O
b
je

ct
iv

e

year

K-SVM

GLMNet

SVM

0 2000 4000 6000 8000 10000

Time (ms)

10-6

10-5

10-4

10-3

10-2

10-1

100

101

O
b
je

ct
iv

e

ctscan

K-SVM

GLMNet

SVM

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Time (ms)

10-6

10-5

10-4

10-3

10-2

10-1

100

101

O
b
je

ct
iv

e

cpusmall

K-SVM

GLMNet

SVM

0 50 100 150 200 250 300

Time (ms)

10-6

10-5

10-4

10-3

10-2

10-1

O
b
je

ct
iv

e

trajectory

K-SVM

GLMNet

SVM

0 200 400 600 800 1000

Time (ms)

10-6

10-5

10-4

10-3

10-2

10-1

O
b
je

ct
iv

e

mnist_reg

K-SVM

GLMNet

SVM

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Time (ms)

10-6

10-5

10-4

10-3

10-2

10-1

100

O
b
je

ct
iv

e

ree

K-SVM

GLMNet

SVM

Figure 5.3: Time evolution of the objective function for the eight regression datasets with λ∗ as
the penalty factor

5.4. Numerical experiments 91

algorithm is still very high. These problems could probably benefit from some kind of feature
screening which is not yet included in the CCD algorithm implemented by scikit-learn. However,
as discussed in Section 3.4, in theory the strong rules (Tibshirani et al., 2012) only produce
significant gain when λ/λmax > 0.5 which implies no gain in the case of the classification datasets
considered here. These are the rules implemented in GLMNet R package, but not in the current
scikit-learn version.

This convergence behaviour is further illustrated in Fig. 5.3 that depicts for the λ∗ penalty
the evolution of running times until the ε threshold is reached. In the small sample regression
problems of housing, prostate and mnist_reg, where kernel operations are less costly, the
running time of SVM is smaller than that of GLMNet even for rather modest values of ε (about
10−3), but consistently larger in all the others. Futhermore, K-SVM obtains an ε-optimal solution
faster than GLMNet for ε ≥ 10−3 in prostate, housing, mnist_reg and cpusmall, for
ε ≥ 10−4 in year, and for ε ≥ 10−5 in ctscan and ree. On the other hand, GLMNet is the
clear winner in trajectory no matter the ε value. The conclusion is that the speed of the
algorithm is always relative to the precision up to which the solution is computed. Note that
this precision is arbitrary although it is very rare to see a value for ε < 1× 10−2 in optimization
software, and one could argue that ε > 1× 10−6 is unnecessarily accurate for most applications.
As an example, Chang and Lin, 2011 lets ε = 10−3 by default.

0 10 20 30 40 50 60 70 80 90

Iteration

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

T
im

e

housing

No shrinking

Shrinking

0 500 1000 1500 2000 2500 3000

Iteration

0

100

200

300

400

500

600

700

800

T
im

e

year

No shrinking

Shrinking

Figure 5.4: Time versus iterations for the housing and year datasets with penalty 2λ∗ with
and without shrinking

Besides, it is important to emphasize that the shrinking feature of LIBSVM was also
disabled for all the regression and classification experiments, so we believe the comparisons
reported to be fair. Although it was disabled, recall from Section 4.3.3 that LIBSVM only
applies shrinking after the first min{2d+ 1, 1 000} iterations. Comparing the dimensions in
Table 5.1 and the number of iterations in Table 5.2, this implies that it will have no effect on
the large dimensional ctscan, trajectory, mnist_reg, ree and classification datasets. In
the remaining datasets, we believe shrinking would have little to no effect in prostate and
cpusmall, most likely because the gradient conditions for shrinking are not met, and a very
small one in housing and year. The evolution of training times versus iterations in these
problems with and without shrinking is given in Fig. 5.4 for the stronger sparsity inducing 2λ∗
case. Note that we have used here the standard version of LIBSVM. As it can be seen, the
effect is very modest, something to be partially expected given the small sparsity of the optimal
solutions.

92 Chapter 5. Relation between the Lasso and SVMs

5.5 Discussion and further work
Following Jaggi (2014), in this chapter we have proposed a reduction from the Lasso problem to
the Nearest Point Problem which, in turn, can be further transformed into a ν-SVC instance.
In particular, the reduction starts from the Constrained formulation of the problem, although
we have shown it is equivalent to the more usual Unconstrained one. Besides, the ν-SVC is
also equivalent to the standard C-SVC (Section 4.1), although similarly to the Constrained and
Unconstrained Lasso one can only go from one to the other once we get an optimal solution.
Jaggi (2014) discusses many implications of this equivalence:

1. Algorithmic advances on one problem can be translated to the other For instance solvers
for the SVM can now compete with well-established Lasso solvers, such as, GLMNet.

2. As we discussed in Chapter 4, SVMs can be extended to the non-linear setting through
kernels. Thus, this equivalence could also provide a new kernelized Lasso formulation.

3. Theoretical results, such as theorems characterizing the sparsity of the solutions of one of
the problems can also be useful to the other one.

4. Homotopy methods, which exploit the regularization path to compute faster solutions, are
very well studied for the Lasso (Mairal and Yu, 2012; Giesen et al., 2012; Gärtner et al.,
2012). In this sense maybe some new homotopy methods can de derived for the SVM using
this equivalence.

We have already mentioned several works that exploit Item 1. The approach in Zhou et al.
(2014) has the considerable advantage of working on GPU architectures. In addition, it can solve
either a primal or a dual SVM problem, while LIBSVM only solves the dual one. On the other
hand, they consider the Constrained Elastic Net, which is then transformed into a `2-regularized,
`2-loss SVM, which is equivalent to Constrained Elastic Net. Although it is trivial to obtain the
Lasso problem just by setting λ2 = 0, they do not consider it in the numerical experiments. Also
note that using the transformation from Section 3.2 any Elastic Net instance can be transformed
into a Lasso problem using an extended dataset. The Lasso is addressed directly in Zhou et al.
(2015) but we believe that the Wolfe solver proposed there should be less efficient than SMO,
and no GLMNet comparisons are reported.

Besides making the reduction more precise, we have also demonstrated empirically that the
straight use of the SMO algorithm, as implemented by LIBSVM, is competitive with GLMNet
in six out of eleven problems. In four out of the five remaining ones, its running times remain
close. We have also suggested how to exploit in practice the particular structure of the kernel
matrix of the equivalent ν-SVC problem to achieve further time gains. Following this path we
have experimentally shown that this small modification of LIBSVM results in a procedure that
is faster than GLMNet in all of the problems considered except trajectory.

Recently several screening procedures have been proposed to speed up solving Lasso by
reducing the size of the active feature set. While very elegant and powerful on concrete setups,
screening procedures face two drawbacks. First, one usually needs to know the solution of Lasso
w(λ0) on a previous λ0 penalty when applying screening over a new λ < λ0; this can be done
advantageously on a sequential, regularization path setting while looking for an optimal λ but
less so when that λ is already fixed and Lasso solutions have to be repeatedly computed for
that λ. The second drawback is that screening will reduce running times more effectively the
sparser a problem is. In fact, for the datasets considered the screening procedure using the
strong rules would only reduce training times for penalty ratios λ/λmax larger than 0.5. Other

5.5. Discussion and further work 93

sequential methods in Xiang et al. (2017) produce, in some problems, runtime reductions for
ratios as small as 0.05. In all our experiments this ratio (computed for a λ∗ optimal obtained
by cross-validation) was below 0.165, in six of them below 0.05 and in four below 0.02. Besides,
high sparsity usually corresponds to large λ penalties but, on the other hand, large penalties
may result in poorer models; again, in our problems the optimal λ values derived using the
regularization path procedure of Friedman et al. (2010) yielded quite small penalty ratios.

Although different in many aspects, shrinking is a natural counterpart to screening when
training SVMs. We have not used it in our comparisons with GLMNet but have independently
observed that it would have had only slight effects on just two datasets. This may be partially
due to the conservative way shrinking is applied in LIBSVM. A conservative approach is certain
sensible when SVMs are to be trained using non-linear kernels such as Gaussian ones, since
shrinking is not a safe procedure and it may initially lead to wrong solutions and a very costly
reconstruction of the entire SVM gradient afterwards. On the other hand, a more aggressive
shrinking could be safer in the linear SVM problems that arise from the Lasso reduction. In fact,
another way to speed up solving the related ν-SVC instance is to consider specialized solvers,
either for the primal or dual formulation, that only work on the linear problem. However, as of
now, ν-SVC is not included in the most popular linear SVM solver, LIBLINEAR (Fan et al.,
2008).

As we discussed earlier, although we only consider here Cyclic Coordinate Descent, we also
point out that there has been lately a large research effort dealing with algorithms to solve
the Lasso problem. We have already discussed some of them in Section 3.3. Among the many
relevant papers, (see Yuan et al., 2012, for a review up to 2012) we can mention Tomioka et al.
(2011) as an example of the broad range of techniques applied and that we have not covered.

One specific example that stands out is Stochastic Coordinate Descent, where the next
coefficient to update is selected uniformly at random instead of cyclically. This version enjoys
better theoretical convergence rates (Richtárik and Takáč, 2014), although empirically it was
found in Shalev-Shwartz and Tewari (2011) to perform similarly to the cyclic one. Among
recent algorithms we highlight Shalev-Shwartz and Zhang (2014), which is closely related to
SMO. Another trend in coordinate descent algorithms is to scale them by paralellizing and/or
distributing the computations. A prominent example is Richtárik and Takáč (2016). In contrast
to single CPU algorithms, this paper proposes distributed multicore coordinate descent methods
which rely on very clever sub-block sampling techniques and can handle very efficiently huge
data matrices with 2× 109 rows, 109 features and up to 20× 109 non-zero entries. Clearly, they
will beat any single CPU algorithm.

Increasing amount of work is also being done trying to extend SVM solvers to the parallel
setting, so they can take advantage of the many recent hardware advances in multiple core
CPU and general purpose graphics processing units (GPUs). An empirical analysis of SVM
parallelization for multi-core CPUs and GPU architectures is in Tyree et al. (Parallel Support
Vector Machines in Practice) and such settings are exploited in Zhou et al. (2014). Parallelization
requirements often entail working with specific solvers that may introduce problem simplifications
(such as the homogeneous model assumption of LIBLINEAR). However, the analysis in Tyree
et al. (Parallel Support Vector Machines in Practice) suggests that simpler, implicit approaches
to SVM parallelism may result in substantial computational gains with a less costly programming
effort. We can directly take advantages of this new parallel algorithms to solve in parallel, not
only the ν-SVC, but also the equivalent Lasso instance thanks to the reduction presented here.
It would be interesting to see, from a practical point of view, if solving the Lasso this way is
faster than doing it directly through some of the specific parallel solvers available.

Finally, we observe that the Lasso and related problems receive a constant attention in many

94 Chapter 5. Relation between the Lasso and SVMs

application areas (Vidaurre et al., 2013; Xu et al., 2014; Ren et al., 2016) and, moreover, they
are at the core of many other problems in convex regularized learning, such as Fused Lasso,
wavelet smoothing or trend filtering, currently solved using specialized algorithms. A ν-SVC
approach could provide for them the same faster convergence that we have illustrated here for
the standard Lasso.

Chapter 6

Accelerating SVM training

In this chapter we are going to revisit two classical acceleration techniques, the Heavy Ball method
from Polyak (1964) and Nesterov’s Acceleration (Nesterov, 1983). Both of these algorithms
involve adding some kind of momentum term to the basic gradient step, although they differ in
the amount of information used. Heavy Ball combines the previous two iterates and the gradient
at the current step, while Nesterov’s method also adds the gradient at the last step. Another
important difference that we will discuss in detail later is that the convergence analysis of Heavy
Ball requires the objective function to be twice differentiable. On the other hand, Nesterov’s
Acceleration works for any convex function but its iterations are not monotone, rendering it
unusable in some applications. However, this can be solved by checking the monotonicity of the
function at every iteration.

Despite these two algorithms being around for quite some time, recently there has been a
renewed research interest in the application of similar acceleration techniques to more modern
models. In particular novel advances in deep neural networks suggest that adding momentum to
the gradient step is beneficial for speeding up training. This also suggest a recent trend where
old methods that were not very popular when they came out (probably because they were much
ahead of their time) are being re-discovered and successfully applied to many problems.

Following the previous trend, we will explore the application of both regular momentum and
Nesterov’s momentum to the descent direction provided by the SMO algorithm. This procedure,
as discussed earlier in Section 4.3.3, is probably still the state-of-the-art algorithm to solve
non-linear SVM. Furthermore, recent research seems more focused on adapting the algorithm
to modern hardware, such as parallelization and distributed computing, rather than in new
algorithmic advances.

The dual objective function of the C-SVC is an instance of the more general convex quadratic
optimization problem but with additional constraints. Furthermore, when using the Gaussian
kernel the objective function is also strongly convex, since the kernel matrix is positive definite
if all the data points are distinct. Thus this momentum could provide for SMO the same
acceleration than for Gradient Descent. We will discuss in this chapter two new proposals.

The first option is to apply Nesterov’s Accelerated Gradient (NAG) ideas to SMO. In section
6.1.1 we will consider the use of NAG for solving the dual SVM problem, and check whether
it reduces the number of iterations of standard SMO. The second one tries to improve SMO’s
descent direction by adding a momentum term mk = αk −αk−1. This is known in the classical
convex optimization literature as the Heavy Ball algorithm, and we will show that it is equivalent
to Conjugate Gradient Descent. As we will discuss in section 6.2.2 this momentum term implies
some extra computation per iteration and, potentially, a projection step to ensure that the new
coefficients satisfy the box constrains. We will derive a new conjugate version of SMO that,

95

96 Chapter 6. Accelerating SVM training

1. only needs 4
3n extra float products per iteration and,

2. reduces the projection step to a simple clipping of the ρ coefficient.

Finally, we will empirically evaluate all the approaches to see if they perform less iterations
than SMO and, as a final goal, also exhibit faster execution time.

6.1 Nesterov Accelerated Gradient
Previously we have seen in Section 3.3.2 that the plain Gradient Descent algorithm has a
rate of convergence of order 1/k when minimizing a L-smooth convex function f . Recall that
Gradient Descent is just a particular case of the Iterative Soft-Thresholding Algorithm, also
called Proximal Point Algorithm or Projected Gradient Descent. Nesterov’s Accelerated Gradient
(NAG) (Nesterov, 1983) is an improved version which attains a rate of 1/k2. First define the
sequences:

t0 = 1, tk+1 =
1 +

√
1 + 4t2k
2 , and µk = tk − 1

tk+1
. (6.1.1)

Then, the algorithm is given by the equations

xk+1 = yk − 1
L
∇f(yk), (6.1.2)

yk+1 = xk+1 + µk(xk+1 − xk), (6.1.3)

starting from an arbitrary initial point x0 = y0. In other words, NAG performs a simple step of
gradient descent to go from yk to xk+1 and then brings xk+1 a little bit further in the direction
of the previous point xk. The following theorem shows that NAG achieves the O

(
1/k2) converge

rate:

Theorem 6.1 (Theorem 1 in Nesterov, 1983). Let f be a convex an L-smooth function, then
the sequence {xk} generated by Eqs. (6.1.1) to (6.1.3) satisfies

f(xk)− f(x∗) ≤
4L
∥∥y0 − x∗

∥∥2
2

(k + 2)2 . (6.1.4)

The intuition behind the previous choices for tk and µk is quite difficult to grasp. Recently,
there has been a large research effort trying to understand why and when the acceleration is
possible. These works involve re-interpreting NAG from a different point of view, either as a
linear coupling of Gradient Descent and Mirror Descent (Allen-Zhu and Orecchia, 2014), as a
discretization of a second-order ordinary differential equation (Su et al., 2014; Flammarion and
Bach, 2015; Arjevani et al., 2015), from a geometrical perspective (Bubeck et al., 2015) or others
(Lessard et al., 2016; Wibisono et al., 2016). There have also been some practical applications
of Nesterov’s Accelerated Gradient such as the already mentioned FISTA algorithm (Beck and
Teboulle, 2009a), deep network training (Sutskever et al., 2013) and, more recently, adaptive
restarts (O’Donoghue and Candès, 2015).

In practice, it is often very expensive or even impossible to compute the Lipschitz constant L.
In those cases, we can rewrite Eq. (6.1.2) as

xk+1 = yk − ηk∇f(yk),

where ηk may be interpreted as a learning rate that can change during the optimization, or
even be dynamically estimated (Sutskever et al., 2013). As an example, Beck and Teboulle

6.1. Nesterov Accelerated Gradient 97

(2009a) suggest a backtracking rule to estimate the value of ηk at every iteration. It is also worh
mentioning that there have been other proposals for the sequence {tk}. Chambolle and Dossal
(2014) analyze the standard one, used by FISTA, (Eq. (6.1.1)) and conclude that, even though it
is nearly optimal from a theoretical point of view, other sequences of the form

tk = k + a+ 1
a

for a ≥ 2 may have some desirable properties in practice.
The previous analysis can also be extended to strongly convex functions, obtaining a linear

convergence rate for Nesterov’s Accelerated Gradient. Recall that a function f is `-strongly
convex if for some ` > 0 and all x, z ∈ Rn,

f(z) ≥ f(x) +∇f(x)>(z− x) + `

2‖z− x‖22. (6.1.5)

Let f : Rn → R be a twice differentiable `-strongly convex and L-smooth quadratic function,
for instance

f(x) = 1
2x>Ax− b>x,

where A ∈ Rn×n is a positive definite matrix and b ∈ Rn is a vector. For such f , the above
conditions are equivalent to the following spectral condition

`I � A � LI,

that is, ` and L are a lower and upper bound on the smallest and largest eigenvalues of A for all
x. The gradient of f can be computed as

∇f(x) = Ax− b,

so clearly f as an unique minimizer x∗ = A−1b. Let κ = L
` be the condition number of the

matrix A, then the following theorem shows that Nesterov’s Accelerated Gradient (Eqs. (6.1.2)
and (6.1.3)) obtains a linear convergence rate for

µk =
√
κ+ 1√
κ− 1 .

Theorem 6.2 (Theorem 3.18 in Bubeck, 2015). Let f be `-strongly convex and L-smooth; then
Nesterov’s Accelerated Gradient satisfies

f(xk)− f(x∗) ≤ `+ L

2 ‖y0 − x∗‖22 exp
(
−k − 1√

κ

)
. (6.1.6)

Note that the previous theorem does not need f to be of the form described above. However,
if f is a quadratic function the strong convexity assumption boils down to the matrix A being
positive definite, and this will be useful in the following section. Again, this rate can only be
obtained if we are able to compute both L and ` and, in practice, this is rarely the case. In the
following sections we will:

• Present a basic set up for the application of NAG to the SMO algorithm.

• Propose a naïve version of Nesterov’s Acceleration for SMO and a strictly monotone one,
where the µ parameter in Nesterov’s method is analytically computed.

• Numerically study both approaches and show that they do indeed reduce the number of
iterations of standard SMO.

98 Chapter 6. Accelerating SVM training

6.1.1 Naïve Nesterov Accelerated SMO

Recall that the C-SVC formulation solves the following dual problem (4.1.23),

min
α

{1
2α
>Qα−α>1

}
s.t. α>y = 0, 0 ≤ αi ≤ C, i = 1, . . . , n.

One of the main algorithms to solve the previous problem is Sequential Minimal Optimization
(SMO) (Section 4.3.3). At every iteration SMO selects two coefficients and updates them by
computing the gradient of the resulting quadratic problem analytically.

If one uses the Gaussian kernel and there is no pattern x that appears in the sample with
both y = 1 and y = −1, the kernel matrix Q is positive definite (Chen et al., 2006), i.e. we have
`I � Q � LI, 0 ≤ ` ≤ L or, in other words, f(α) is L-smooth and `-strongly convex. Then, the
sequence generated by the SMO algorithm {αk} globally converges to the unique minimum of
(4.1.23) with a linear rate, i.e. f(αk)− f(α∗) ≤ cr for some r < 1 at iteration k (Theorem 4.1).
For such Q, we have also seen in the previous section that Nesterov’s Accelerated Gradient
achieves a linear convergence rate. Since ` and L are not known, we cannot apply that version in
practice but, in any case, we consider worth exploring the potential effectiveness of Nesterov’s
Acceleration for the SMO algorithm.

The first idea in order to apply Nesterov’s procedure to SMO would be to first compute
the intermediate point x, then select the two SMO coefficients according to the gradient ∇f(y)
and finally update the original point α. Assuming we are at iteration k, first we compute and
intermediate point x using Eq. (6.1.3),

xk+1 = αk + µk(αk −αk−1). (6.1.7)

Then, the gradient at that point is

gk+1 = ∇f(xk+1) = ∇f(αk) + µk(∇f(αk)−∇f(αk−1)).

Next we select the working set (i, j) as in SMO (Eqs. (4.3.21) and (4.3.22)) using the previous
gradient, to define the following descent direction

dk+1 = yiei − yjej .

Equation (6.1.2) in Nesterov’s Accelerated Gradient would be thus replaced by the update

αk+1 = xk+1 + ρkdk+1 (6.1.8)

where
ρk = − dk+1 · gk+1

dk+1 ·Qdk+1 (6.1.9)

is the unconstrained step (Eq. (4.3.14)). To perform the previous computations efficiently, we
can store the gradient and update it every iteration as in Eq. (4.3.23),

∇f(αk+1) = ∇f(αk) + ρ (yiQi − yjQj) .

Finally, we still need to show the feasibility of xk+1. First, it is easy to see that the constraint
xk+1 · y =

∑
xk+1
i yi = 0 is met as long as both αk and αk−1 are feasible. Let γ = −µ; then we

can rewrite Eq. (6.1.7) as
xk+1 = (1− γ)αk + γαk−1.

6.1. Nesterov Accelerated Gradient 99

Algorithm 14: Naïve Nesterov’s Accelerated SMO
Input: C > 0
Initialize :α0 = 0, t0 = 1.
while stopping condition not met do

Compute µk as in Eq. (6.1.1) and clip it
xk+1 ← αk + µk(αk −αk−1)
gk+1 ← ∇f(αk) + µk(∇f(αk)−∇f(αk−1))
Select working set (i, j)
dk+1 = yiei − yjej
Compute ρk as in Eq. (6.1.9) and clip it
αk+1 ← xk+1 + ρkdk+1

∇f(αk+1)← ∇f(αk) + ρ (yiQi − yjQj)
end

Multiplying both sides by y

xk+1 · y = (1− γ)αk · y + γαk−1 · y

and using the feasibility of both αk and αk−1 we get the desired result. The other constraint
0 ≤ xk+1 ≤ C is not immediately satisfied but it can be easily achievable, relying again on the
feasibility of αk and clipping accordingly.

Suppose we have an update of the form a′ = a + µb with 0 ≤ ai ≤ C for all i and µ > 0. We
start by defining the index sets

P+ = {i | bi > 0} and P− = {i | bi < 0}.

Then, we want to make sure that the following inequalities holds

0 < µ ≤ C − ai
bi

if i ∈ P+,

0 < µ ≤ −ai
bi

if i ∈ P−.

Thus, we take µ = min
{
µ, µ+, µ−

}
where

µ+ = min
{
C − ai
bi

∣∣∣∣ i ∈ P+
}
,

and
µ− = min

{
−ai
bi

∣∣∣∣ i ∈ P−}.
Note that Eq. (6.1.7) is of the previous form with a = αk, b = αk −αk−1 and µ = µk. Note also
that if µ < 1, xk+1 will automatically verify the box constraints. If µ > 1 we can also simply clip
it to µ = 1, i.e. take xk+1 = αk and perform a standard SMO update.

Once µk is clipped then xk+1 satisfies the box constraints and thus we can apply the same
procedure to make sure that αk+1 is also feasible, letting a = xk+1, b = dk+1 and µ = ρk. In this
case the clipping is performed in ρk instead of µk and it is easier since b only has two non-zero
components.

The full pseudocode is given in Algorithm 14. The iteration complexity of the previous
algorithm is:

100 Chapter 6. Accelerating SVM training

• n operations to compute xk+1,

• n operations to compute gk+1,

• 2n operations to select the working set,

• n operations to update the gradient,

for a total cost of O(5n) operations, in contrast to the O(3n) needed by standard SMO. However,
the convergence of Algorithm 14 is not guaranteed, since the NAG step is not monotone and
SMO convergence relies upon the fact that the value of the objective function decreases at every
iteration, i.e. f(αk+1) < f(αk). We will solve this in the next section by deriving a monotone
version of the previous procedure.

6.1.2 Monotone Nesterov’s Accelerated SMO

A possible solution is to use the ideas of the monotone FISTA algorithm suggested by Beck and
Teboulle (2009b). This version works by computing the new coefficient α′ as in equation (6.1.8)
and checking whether f(α′) < f(αk). If that is the case, α′ becomes the new αk+1. Otherwise
we keep the old αk and compute a new intermediate point yk+1 as

zk+1 = γα′ + (1− γ)αk,

where γ = tk/tk+1 and
α′ = xk+1 + ρkdk+1.

Then, the new coefficient is computed as

αk+1 = zk+1 + ρkdk+1.

Since 0 ≤ γ ≤ 1, zk+1 can be seen as a convex combination of α′ and αk and thus it is
automatically feasible. However, it is possible that even after using zk+1 to compute the new
αk+1 we end up with a possibly long sequence of coefficients where the value of the function
remains constant. It is also worth mentioning that in order to check if the function decreases we
have to compute its value, which is costly in the case of the SVC dual objective function.

We will take advantage of the quadratic structure of the function f to compute the exact
value of γ that guarantees f(zk+1) < f(αk). Let

zγ = γα′ + (1− γ)αk = αk + γ(α′ −αk) = αk + γ∆,

where ∆ = α′ −αk. Then the SVM dual function evaluated at zγ is

f(zγ) = 1
2(αk + γ∆) ·Q(αk + γ∆)−

∑
[αk + γ∆]i

= 1
2(αk ·Qαk + 2γαk ·Q∆ + γ2∆ ·Q∆)−

∑
αki − γ

∑
∆i.

The derivative with respect to γ is,

∂f(zγ)
∂γ

= αk ·Q∆ + γ∆ ·Q∆−
∑

∆i

= γ∆ ·Q∆ + ∆ · (Qαk − 1)
= γ∆ ·Q∆ + ∆ · ∇f(αk)

6.1. Nesterov Accelerated Gradient 101

and the minimum is reached at

γ∗ = −∆ · ∇f(αk)
∆ ·Q∆ = − (α′ −αk) · ∇f(αk)

(α′ −αk)Q(α′ −αk) . (6.1.10)

To compute the previous value as efficiently as possible, note that we need the value of the
function f(α) = 1

2α ·Qα−α ·1 to verify the monotonicity, which implies α ·Qα = 2(f(α)+α ·1).
The value of the function can also be written as a function of the gradient

f(α) = 1
2α ·Qα−α · 1

= 1
2(α ·Qα−α · 1)− 1

2α · 1

= 1
2(α · (Qα− 1))− 1

2α · 1

= 1
2(α · ∇f(α)−α · 1).

Using the previous equivalences we can rewrite Eq. (6.1.10) as

γ∗ = − (α′ −αk) · ∇f(αk)
α′ ·Qα′ +αk ·Qαk − 2α′ ·Qαk

= − α′ · ∇f(αk)−αk · ∇f(αk)
2f(α′) + 2α′ · 1 + 2f(αk) + 2αk · 1− 2α′ ·Qαk

= − α′ · ∇f(αk)− 2f(αk)−αk · 1
2f(α′) + 2f(αk) + 2αk · 1− 2α′ · (Qαk + 1)

= 1
2

2f(αk) +αk · 1−α′ · ∇f(αk)
f(α′) + f(αk) +αk · 1−α′ · ∇f(αk)

= 1
2

2f(αk) + sk − a
f(α′) + f(αk) + sk − a ,

(6.1.11)

where sk = αk · 1 and a = α′ · ∇f(αk). The pseudocode is shown in Algorithm 15.
Lines 2 to 9 are the same as Algorithm 14. After obtaining αk+1, we then compute f(αk+1)

and check in Line 12 if the value of the objective function has decreased. If that is not the case,
we compute the exact value µk = γ∗ using Eq. (6.1.11) that satisfies the inequality and start
again the iteration from Line 3.

To estimate the complexity of the previous steps, note that we need an extra n products
to compute the value of the objective function in Line 11, on top of the 5n from the naïve
procedure. If f(αk+1) > f(αk), we need another n products to compute a and 6n to repeat the
iteration, for a total of O(13n) products. Note that the values f(αk) and ∇f(αk) are kept from
the previous iterations, so they do not introduce any extra cost. Summing things up, a standard
iteration of Algorithm 15 would cost O(6n) products, that is, twice of SMO’s iteration, while a
monotone iteration would be O(13n). Of course, we would expect non-monotone iterations to
be much less frequent than monotone ones. In any case, the reduction of Algorithm 15 in the
number of iterations would have to be quite large with respect to SMO’s to make the extra cost
per iteration worth it. For that reason we are going to explore in the next section a different
algorithm, Conjugate Gradient Descent. This algorithm is another modification of gradient
descent that also adds a momentum term but guarantees monotone descent at every iteration.

102 Chapter 6. Accelerating SVM training

Algorithm 15: Monotone Nesterov’s Accelerated SMO (MNAS)
Input: C > 0
Initialize :α0 = 0, t0 = 1.

1 while stopping condition not met do
2 Compute µk as in Eq. (6.1.1) and clip it
3 xk+1 ← αk + µk(αk −αk−1)
4 gk+1 ← ∇f(αk) + µk(∇f(αk)−∇f(αk−1))
5 Select working set (i, j)
6 dk+1 = yiei − yjej
7 Compute ρk as in Eq. (6.1.9) and clip it
8 αk+1 ← xk+1 + ρkdk+1

9 ∇f(αk+1)← ∇f(αk) + ρ (yiQi − yjQj)
10 sk+1 = αk+1 · 1
11 f(αk+1) = 1

2(αk+1 · ∇f(αk+1)− sk+1)
12 if f(αk+1) > f(αk) then
13 a = αk+1 · ∇f(αk)

14 µk = 1
2

2f(αk) + sks − a
f(αk+1) + f(αk) + sk − a

15 go to Line 3
16 end
17 end

6.2 Conjugate Gradient Descent
We start again with the simple gradient descent algorithm, where the weights are updated by
making a small step in the gradient direction,

xk+1 = xk − η∇f(xk).

We have already seen that for step-size η small enough gradient descent has a monotone
improvement at every iteration and it always converges to a minimum. Furthermore, if the
function f is strongly convex gradient descent converges linearly, i.e. there exists r ∈ (0, 1) such
that

‖xk − x∗‖ ≤ rk‖x0 − x∗‖.

The scalar r is known as convergence factor. For gradient descent the optimal convergence factor
is

r = L− `
L+ `

,

attained for
η = 2/(L+ `). (6.2.1)

This factor can also be written in terms of the condition number κ = L/`,

r = L− `
L+ `

= κ− 1
κ+ 1 =

(
1− 2

κ+ 1

)
. (6.2.2)

However, this convergence can be improved by adding a momentum term,

xk+1 = xk − η∇f(xk) + β(xk − xk−1). (6.2.3)

6.2. Conjugate Gradient Descent 103

In the classic convex optimization literature this is known as the Heavy Ball method (Polyak,
1964) and belongs to the family of multi-step methods, where the next iterate depends not
only on the current iterate but also on the previous ones. When the objective function is twice
continuously differentiable, strongly convex and has Lipstchitz continuous gradient, the previous
algorithm has a convergence factor

r = 1− 2√
κ+ 1 ,

attained for (Wright, 2013)

η = 4

L
(
1 + 1√

κ

)2 and β =
(

1− 2√
κ+ 1

)2
. (6.2.4)

The previous factor leads to a faster convergence than gradient descent (Eq. (6.2.2)). This
difference increases with the condition number κ, so in practice the improvement is significant for
poorly conditioned problems. As an example, to reduce ‖xk−x∗‖2 by a factor ε we approximately
need

k ≥ κ

2 |log ε|

for Gradient Descent and
k ≥
√
κ

2 |log ε|

for the Heavy Ball method, which translates to
√
κ times more iterations in the case of Gradient

Descent. For a realistic value of κ = 1000 this is approximately 30 times less iterations when
using momentum (Wright, 2013). Consider also the simple two variable convex quadratic model,

f(x) = 1
2x>Ax− b>x,

with
x =

(
x1
x2

)
, A =

(
1 0
0 10

)
, and b =

(
15
15

)
.

Since A is positive definite this problem is strongly convex and has an unique minimum obtained
at x∗ = (15, 1.5)>. We also know that L = 10 and ` = 1 and thus we can compute the condition
number κ = L/` = 10. Then, for the optimal choices for η and β given by Eqs. (6.2.1) and (6.2.4)
both Gradient Descent and Heavy Ball obtain a linear convergence, but the latter should have a
better convergence rate.

This is shown in Fig. 6.1, where we plot the level curves of the quadratic objective function,
together with the sequences generated by Gradient Descent (black) and the Heavy Ball method
(red). In the figure we can see the theoretical linear convergence (also called geometrical) of both
methods, but the Heavy Ball method arrives faster to the optimum. As we mentioned before,
the difference would have been even more significant for larger condition numbers.

The Heavy Ball method is strongly related to Nesterov’s momentum,

xk+1 = yk − ηk∇f(yk), (6.2.5)
yk+1 = xk+1 + µk(xk+1 − xk). (6.2.6)

Now let mk+1 = xk+1 − xk, then we can rewrite the second equation as

yk+1 = xk+1 + µkmk+1

104 Chapter 6. Accelerating SVM training

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●

●

●

●

●

●
●●

−5

0

5

10

0 10 20 30
x1

x 2

Algorithm
GD
HB

Figure 6.1: Convergence of Gradient Descent (GD) and the Heavy Ball (HB) methods for the
optimal choices of η and β.

and thus yk = xk + µk−1mk. Substituting into the first equation we get

xk+1 = xk − ηk∇f(xk + µk−1mk) + µk−1mk.

This is the same as the classical momentum but using ∇f(xk + µk−1mk) instead of ∇f(xk),

xk+1 = xk − ηk∇f(xk) + βkmk.

It is not surprising that Heavy Ball and Nesterov’s Accelerated Gradient share the same fast
convergence, although NAG factor is slightly worse,

r = 1− 1√
κ
.

However, note that the analysis for the Heavy Ball method requires the function to be twice
differentiable, while Nesterov’s Acceleration only requires strong convexity. Another important
difference is that the Heavy Ball method uses the information about the previous two iterates
when computing the next, but in contrast to Nesterov’s method it only includes the gradient at
the current one.

Therefore, much like Nesterov’s Acceleration, adding a momentum term to the SMO algorithm
could help improving the descent direction. We face again the problem of computing the
parameters η and β, since in practice L and ` are unknown. In this case, Fig. 6.2 shows, using
the same simple example as before, that adding a momentum term is still beneficial as long as η
and β are properly tuned.

Figure 6.2 illustrates the common “zig-zagging” behavior of Gradient Descent, which is
partially corrected by the momentum term. Using the well-known analogy, we can interpret the
momentum term as a heavy ball rolling down a hill, adding a certain inertia to the direction of

6.2. Conjugate Gradient Descent 105

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●
●

●
● ● ● ●●●

−5

0

5

10

0 10 20 30
x1

x 2

Algorithm
GD
HB

Figure 6.2: Convergence of Gradient Descent (GD) and the Heavy Ball (HB) methods for
η = 0.18 and β = 0.3.

the gradient. This inertia has a “damping” effect, both smoothing and accelerating the path to
the minimum (Goh, 2017). Here the key is how to select η and β to guarantee a fast convergence.

To partially solve the previous problem we are going to introduce a more practical version
of the Heavy Ball method, known as Conjugate Gradient Descent (Nocedal and Wright, 2006).
The basic step is

xk+1 = xk + ηkpk, pk = −∇f(xk) + γkpk−1. (6.2.7)

Although Conjugate Gradient looks in theory quite different from the Heavy Ball method, they
both exploit the idea of using information not only from the current iteration but also the
previous ones. In fact, it turns out that they are both equivalent for an appropriate choice of γk.
Let m = xk − xk−1 be the momentum term; then Eq. (6.2.3) can be rewritten as

xk+1 = xk − ηk∇f(xk) + βk(xk − xk−1)

= xk + ηk

(
−∇f(xk) + βk

ηk
mk
)

= xk + ηkpk,

where pk = −∇f(xk) + (βk/ηk)mk. Now, since xk = xk−1 + ηk−1pk−1 we have

mk = xk − xk−1 = xk−1 + ηk−1pk−1 − xk−1 = ηk−1pk−1

and
pk = −∇f(xk) + βk

ηk
ηk−1pk−1.

Finally, letting
γk = βkηk−1

ηk

106 Chapter 6. Accelerating SVM training

we get back Conjugate Gradient Descent.
Although harder to analyze, Conjugate Gradient Descent maintains the same fast convergence

as the Heavy Ball method but it can be implemented without knowledge of L and `. In practice
ηk can be computed at every iteration by approximately minimizing the objective function f
along the direction pk. In addition, if f is convex quadratic we can also choose (Nocedal and
Wright, 2006)

γk = ‖∇f(xk)‖22
‖∇f(xk−1)‖22

.

6.2.1 Conjugate MDM

Recall from Section 5.3 that given a set of n points in Rd, S = {x1, · · · ,xn}, the Minimum Norm
Problem can be defined as finding the point x in the convex hull conv(S) closest to the origin.
More formally, the MNP can be written as the following minimization problem:

min
α
{α ·Qα} s.t. 0 ≤ α ≤ 1,

∑
αi = 1, (6.2.8)

where Q denotes the kernel matrix, Qi,j = xi · xj . Although this problem is one of the simplest
convex constrained optimization problem, it has received more or less constant attention over
the past 50 years. In fact, it was one of the problems considered by Frank and Wolfe in his
seminal paper (Frank and Wolfe, 1956), it is intimately linked with the SVM problem (López
and Dorronsoro, 2015), it has been recently revisited, accompanying the renewed interest in
Frank-Wolfe (FW) optimization (Clarkson, 2010) and it has also been shown to be equivalent to
the constrained version of the Lasso problem (Jaggi, 2014; Alaíz et al., 2015).

Starting from an initial guess α0, MNP is usually solved by iterating

αk+1 = αk + ρkdk,

where dk is some descent direction (i.e., dk · ∇f(αk) < 0). In the original Frank-Wolfe algorithm
dk is given by

dkFW = el −αk

with l = argminj ∇f(αk)j . Then, for 0 ≤ ρk ≤ 1, we get αk+1 = (1− ρk)αk + ρkel, or in other
words, the new value of the coefficient is a convex combination of the previous coefficient and
el. This means that it lies in ∆n since both points belong also to the simplex, an thus it is
automatically feasible. Therefore the main advantage of the original Frank-Wolfe algorithm is
that its iterations are projection-free. On the other hand, its main drawback is that the dkFW
direction may result in a slow sublinear convergence (Gilbert, 1966) that cannot be improved.
Several variants of Frank-Wolfe, such as the away steps in Wolfe (1970) and GuéLat and Marcotte
(1986) have been suggested; the better suited for the MNP is the Mitchell-Dem’yanov-Malozemov
(MDM) algorithm (referred as the swap FW method in Ñanculef et al. (2014)).

The MDM descent direction is dk = el − eu with u = argmaxj
{
∇f(αk)j

∣∣∣ αkj > 0
}
. Note

that the update
αk+1 = αk + ρk(el − eu)

may not lie in ∆n, i.e., MDM is not projection–free, but, if needed, the projection turns out to
be a simple clip of ρk. MDM is guaranteed to have linear convergence (López and Dorronsoro,
2015), that is, to have ‖αk+1 −α∗‖ ≤ r‖αk −α∗‖, with r < 1. In addition, its iterations only
need n products to update the gradient

∇f(αk+1) = ∇f(αk) + ρk(Ql −Qu),

6.2. Conjugate Gradient Descent 107

since MDM’s descent direction has only two non zero components (standard FW may need
close to 2n products to update αk+1 and ∇f(αk+1)). However, MDM linear convergence is only
guaranteed once the face of conv(S) facing the origin is reached, and it is easy to find examples
where r is very close to 1 and convergence is thus slow.

Now, following the Conjugate Gradient Descent algorithm, we are going to replace the descent
direction dk by a conjugate direction pk,

αk+1 = αk + ρkpk,

where pk = dk +γkpk−1. In the same fashion as Conjugate Descent, we choose the unconstrained
ρ̃k to minimize the objective function f(α) along pk, i.e

∇f(αk + ρ̃kpk) = 2αk ·Qpk + ρ̃kpk ·Qpk = 0.

This yields

ρ̃∗k = −∇f(αk) · pk

pk ·Qpk

= −∇f(αk) · dk − γk∇f(αk) · pk−1

pk ·Qpk (6.2.9)

(6.2.10)

If the previous line minimization along pk−1 has been unclipped, i.e. the following orthogonality
condition must hold

∇f(αk) · pk−1 = 0.

With that in mind we can simplify Eq. (6.2.9) to

ρ̃k = −∇f(αk) · dk

pk ·Qpk .

Note that the direction pk is always a descent direction, ∇f(αk) · pk = ∇f(αk) · dk < 0. The
unconstrained gain in f is now

f(αk)− f(αk+1) = 1
2

(∇f(αk) · dk)2

pk ·Qpk (6.2.11)

and we can maximize that gain by choosing γk to minimize the denominator in Eq. (6.2.11),
which is a function of γk, namely

φ(γk) = pk ·Qpk = (dk + γkpk−1) ·Q(dk + γkpk−1).

The derivative is
φ′(γk) = 2γkpk−1 ·Qpk−1 + 2dkQpk−1,

and equating to zero we get the value for the minimum

γ∗k = − dk ·Qpk−1

pk−1 ·Qpk−1 .

We can summarize now our conjugate MDM updates. If the iteration ending in αk along pk−1

has not been clipped, we

108 Chapter 6. Accelerating SVM training

Algorithm 16: Conjugate MDM (CMDM)
Initialize :α0 = g0 = 0,p−1 = q−1 = 0, δ−1 = 1

1 while stopping condition not met do
2 l = argmini gi
3 u = argmaxαk

i >0 gi

4 Compute the kernel matrix columns Ql and Qu

5 γk = (qk−1
l − qk−1

u)/δk−1
6 pk = dk + γkpk−1

7 qk = Ql −Qu + γkqk−1

8 δk = qkl − qku
9 Compute ρ̃k using Eq. (6.2.12) and clip it to ρk if needed

10 αk+1 = αk + ρkpk
11 gk+1 = gk + ρkqk
12 if ρ̃k was clipped then
13 qk = pk = 0
14 δk = 1
15 end
16 end

1. Compute γk and pk,

2. Compute ρ̃k and αk+1 and, finally,

3. Check whether αk+1 lies in the simplex ∆n and, if not, clip ρ̃k accordingly.

On the other hand, if clipping has happened, i.e. the boundary of ∆n has been hit, we simply
reset pk = dk as it may lead to further boundary hits. Then, we just perform a standard MDM
update in the next iteration.

Working with MDM descent directions d = el−eu greatly simplifies the previous computations.
Let

qk = Qpk = Q(dk + γkpk−1) = Ql −Qu + γkqk−1

and
δk = pk ·Qpk = dk ·Qpk = dk · qk = qkl − qku.

Then we have
γk = − dk ·Qpk−1

pk−1 ·Qpk−1 = −dk · qk−1

δk−1
= qk−1

u − qk−1
l

δk−1
,

where Qj denotes Q’s jth column and

ρ̃k = −∇f(αk) · dk

pk ·Qpk = gu − gl
δk

(6.2.12)

where gk = ∇f(αk) is the gradient of the objective function at αk. Note that the gradient can
be efficiently updated as

gk+1 = ∇f(αk + ρkpk) = ∇f(αk) + ρkQpk = gk + ρkqk.

This results in the general conjugate MDM precedure shown in Algorithm 16. We can recover
standard MDM from the previous algorithm by setting γ = 0, p = d and q = Ql−Qu. If np and

6.2. Conjugate Gradient Descent 109

nq denote the number of non-zero components of p and q, the cost in products of each iteration
is

1. np to update p in Line 6 and α in Line 10,

2. nq to update q in Line 7 and

3. n to update the gradient g in Line 11.

We expect nq ' n but np � n and similarly the number of non-zero αi should also be� n. Thus
a conjugate iteration should have a theoretical cost about twice as large as that of a standard
MDM iteration and should lead to faster training if the number of MDM iterations is more than
twice the number of Conjugate MDM (CMDM) ones. In any case, note that the cost of the
iterations in which a non-cached kernel column matrix has to be computed will require a much
larger n× d number of products when working with patterns in a d dimensional space or even
more in a kernel setting.

We finish this section by briefly discussing the clipping step. First, note that if
∑
j p

k−1
j = 0,

we also have
∑
j p

k
j = 0 and, hence,

∑
j α

k+1
j = 1. Thus, to ensure α ∈ ∆n, we only have to use

a ρk value so that 0 ≤ αkj + ρkp
k
j ≤ 1. Let Pk+ =

{
i
∣∣∣ pki > 0

}
and Pk− =

{
i
∣∣∣ pki < 0

}
; we want

0 < ρk ≤
1− αki
pki

if i ∈ Pk+

and

0 < ρk ≤ −
αki
pki

if i ∈ Pk−.

Thus, setting ρ+ = min
{

1−αk
i

pk
i

∣∣∣∣ i ∈ Pk+} and ρ− = min
{
−αk

i

pk
i

∣∣∣∣ i ∈ Pk−}, we just take ρk =
min{ρ̃k, ρ+, ρ−}. In summary, we have derived a conjugate version of the MDM algorithm that

1. only needs 2× n extra float products per iteration and,

2. reduces the projection step to a simple clipping of the ρ coefficient.

We will also numerically compare standard and conjugate MDM in Section 6.3.1.

6.2.2 Conjugate SMO

We have already mentioned that the MDM algorithm is just a special case of SMO (López and
Dorronsoro, 2015). In fact, if we take at look at the dual problem of the C-SVC,

min
α

{1
2α
>Qα−α>1

}
s.t. α>y = 0, 0 ≤ αi ≤ C, i = 1, . . . , n (6.2.13)

and the Minimum Norm Problem (6.2.8) they both look very similar. Thus, it seems sensible to
derive a conjugate version of the SMO algorithm, much like the conjugate version of the MDM
algorithm from the previous section.

Recall that SMO updates are of the form (Eq. (4.3.13))

αk+1 = αk + ρkdk

110 Chapter 6. Accelerating SVM training

where dk = yiei − yjej and (i, j) are the indexes selected by the procedure described in
Section 4.3.3. Thus, we can replace the descent direction d by a conjugate direction p,

αk+1 = αk + ρkpk (6.2.14)

where
pk = dk + γkpk−1. (6.2.15)

Note that this conjugate direction is equivalent to adding a momentum term mk = αk −αk−1

that takes into account the previous two iterates, as we have already shown in Section 6.2.
As before, once this conjugate direction pk has been chosen, we find the unconstrained ρ̃k

factor by minimizing f along the line of pk. Let gk = ∇f(αk) = Qαk − 1 be the gradient of the
SVC objective function at αk; then we solve

∇f(αk + ρ̃kpk) = ρ̃kpk ·Qpk + pkQαk − pk · 1
= ρ̃kpk ·Qpk + pk(Qαk − 1)
= ρ̃kpk ·Qpk + gk · pk = 0.

Writing pk in terms of pk−1 this yields

ρ̃∗k = −gk · pk

pk ·Qpk = −gk · (dk + γk · pk−1)
pk ·Qpk = −gk · dk − γkgk · pk−1

pk ·Qpk . (6.2.16)

If the previous line minimization along pk−1 has been unclipped, i.e. we have αk = αk−1 +
ρk−1pk−1, the following orthogonality condition must hold

gk · pk−1 = 0. (6.2.17)

We will call Eq. (6.2.17) the first orthogonality condition. As a consequence,

gk · pk = gk · dk + γkgk · pk−1 = gk · dk < 0,

i.e. pk is also a descent direction. In addition Eq. (6.2.16) simplifies to

ρ̃∗k = −gk · dk

pk ·Qpk , (6.2.18)

and is easy to see that the unconstrained gain in f is now

f(αk)− f(αk+1) = 1
2

(gk · dk)2

pk ·Qpk
, (6.2.19)

where we have used our previous choice of the unconstrained ρ̃∗k. Now we can approximately
maximize this gain by choosing γk to minimize the denominator pk ·Qpk. Writing it as a
function of γ, we have

φ(γk) = (dk + γkpk−1) ·Q(dk + γkpk−1),

and it follows that
φ′(γk) = 2(dk ·Qpk−1 + γkpk−1 ·Qpk−1) = 0.

Finally, this implies

γ∗k = − dk ·Qpk−1

pk−1 ·Qpk−1 . (6.2.20)

6.2. Conjugate Gradient Descent 111

Now it is easy to see that this choice results in

pk ·Qpk−1 = 0. (6.2.21)

We will call Eq. (6.2.21) the second orthogonality condition. We can summarize now our
conjugate SMO updates. If the iteration ending in αk along pk−1 has not been clipped, we

1. compute γk and pk using Eqs. (6.2.15) and (6.2.20),

2. compute ρ̃k and αk+1 using Eqs. (6.2.14) and (6.2.18) and, finally,

3. check whether αk+1 satisfies the box constraints

0 ≤ αk+1 ≤ C

and, if not, clip ρ̃k accordingly to get ρk and compute again αk+1.

Note that if the preceding pk−1 verifies
∑
yipk−1

i = 0, then∑
yipki =

∑
yi(dk + γkpk−1

i) = 0

and the new αk verifies the linear constraint, i.e.,∑
yiα

k+1
i =

∑
yiα

k
i + ρk

∑
yip

k
i = 0.

On the other hand, if we have had to apply clipping to arrive at αk+1, i.e., we have hit the
boundary of the box region, we will simply reset pk to 0 after the update, as keeping the current
conjugate direction may lead to further boundary hits. We will then have pk+1 = dk+1 at the
new iteration, which becomes then a standard SMO update.

At first sight, the possible advantages of working with the conjugate directions may be offset
by the higher cost that deriving them imposes on the standard SMO iterations, particularly
that of computing the values pk ·Qpk required in the different denominators. However, working
with the SMO descent directions d = yiei − yjej greatly simplifies these computations. For this,
we will keep an auxiliary vector q = Qp and constant δ = p ·Qp that we will update at each
iteration and use to simplify the computation of the other elements as follows:

γk = − dk ·Qpk−1

pk−1 ·Qpk−1 = −dk · qk−1

δk−1

=
yjqk−1

j − yiqk−1
i

δk−1 ,

(6.2.22)

qk = Q(dk + γkpk−1)
= yiQi − yjQj + γkqk−1,

(6.2.23)

δk = pk ·Qpk = dk ·Qpk = dk · qk

= yiqki − yjqkj ,
(6.2.24)

ρ̃k = −gk · dk

δk
=

yjgkj − yigki
δk

, (6.2.25)

where Qj denotes Q’s jth column. Note that using Eq. (6.2.23) the gradient can be efficiently
updated as

gk+1 = ∇f(αk + ρkpk) = Qαk + ρkQpk − 1 = gk + ρkqk. (6.2.26)

112 Chapter 6. Accelerating SVM training

Algorithm 17: Conjugate SMO (CSMO)
Initialize :α0 = g0 = 0,p−1 = q−1 = 0, δ−1 = 1

1 while stopping condition not met do
2 Select working set (i, j) using Eqs. (4.3.21) and (4.3.22)
3 Compute the kernel matrix columns Qi and Qj , if not previously cached
4 γk = (yjqk−1

j − yiqk−1
i)/δk−1

5 pk = dk + γkpk−1

6 qk = yiQi − yjQj + γkqk−1

7 δkyiqki − yjqkj
8 Compute ρ̃k as in (6.2.25) and clip it accordingly to get ρk
9 αk+1 = αk + ρkpk

10 gk+1 = gk + ρkqk
11 if ρ̃k was clipped then
12 qk = pk = 0
13 δk = 1
14 end
15 end

The pseudocode for the conjugate version of SMO is shown in Algorithm 17. Regarding the
clipping of ρ̃k, we need a value that ensures for all j

0 ≤ αkj + ρkp
k
j ≤ C.

As before, let us define the index sets

Pk+ =
{
i
∣∣∣ pki > 0

}
and Pk− =

{
i
∣∣∣ pki < 0

}
.

Thus, to make sure that the following inequalities hold

0 < ρk ≤
C − αki
pki

if i ∈ Pk+,

0 < ρk ≤ −
αki
pki

if i ∈ Pk−,

we take ρk = min
{
ρ̃k, ρ

+, ρ−
}
, where

ρ+ = min
{
C − αki
pki

∣∣∣∣∣ i ∈ Pk+
}

and

ρ− = min
{
−α

k
i

hki

∣∣∣∣∣ i ∈ Pk−
}
.

We finish this section discussing the computational cost of the conjugate SMO updates. If np
and nq denote the number of non-zero components of p and q respectively, the cost in products
of each iteration is

1. 2n floating point operations in Line 2 when selecting i and j;

6.3. Numerical experiments 113

2. np operations to update p in Line 5, to update α in Line 9, and to compute a clipped ρk
in Line 8;

3. nq operations to update q in Line 6 and

4. n operations to update the gradient g in Line 10.

We expect nq ' n but np should coincide with the number of non-zero components in α; this
number should be � n and, similarly, we should have np � n. Thus a conjugate iteration should
theoretically add a cost of

3n+ nq + 2np ' 3n+ nq ' 4n,
in contrast with 3n for a standard SMO iteration. Therefore, it should lead to a faster training if
the number of SMO iterations is more than 4/3 the number of CSMO ones. In any case, note that
the cost of the iterations in which a non-cached kernel column matrix has to be computed will
require a much larger n× d number of products when working with patterns in a d dimensional
space or even more in a kernel setting. Thus, in the starting iterations the cost of the SMO
and conjugate SMO would be dominated by the much larger cost of computing the required Q
columns.

6.3 Numerical experiments
Since this section contains a lot of experiments, we have divided it into four subsections, organized
as follows:

• MDM. Section 6.3.1. As a first step towards a Conjugate SMO version we have derived a
Conjugate MDM algorithm, since they are closely related. In this section we will compare
both standard MDM and its conjugate variant in terms of the number of iterations and
running time for several regression datasets. These datasets will be converted to a Minimum
Norm problem using the transformation from Chapter 5.

• Algorithm correctness. Section 6.3.2. We have implemented SMO, Conjugate SMO
and Monotone Nesterov’s Accelerated SMO in Python and compare the solutions obtained.
Since they all solve the dual of the SVC, we would expect that all of them converge to the
same model, up to numerical precision.

• Iteration comparison. Section 6.3.3. Once we know all the algorithms are correctly
implemented in Python, we measure the number of iterations until convergence for each
one. We would expect that our accelerated variants, CS and MNAS, perform significantly
less iterations than SMO. However, less iteration do not mean faster running times, since
the cost per iteration is increased. Thus, we also measure running times and check if our
theoretical iteration complexities, measured as the number of floating point operations,
also translate into practice.

• Comparison versus LIBSVM. Section 6.3.4. Given the results of the previous subsection,
we conclude that the CS variant is more promising than the MNAS one. We also move away
from Python and implement Conjugate SMO inside the LIBSVM framework. LIBSVM is
one of the most widely used SVM libraries, which contains a state-of-the-art implementation
of SMO in the C language. Finally, we compare the running times of both SMO and CS
for different hyper-parameter values. We also discuss extensively the effect of the cache,
which is one of the most important features of LIBSVM and crucial to any efficient SMO
implementation.

114 Chapter 6. Accelerating SVM training

6.3.1 MDM

Table 6.1: Sample sizes and input dimensions of the datasets considered.

Dataset Size Dim.

prostate 67 8
cpusmall 6 143 12
housing 378 13
year 46 215 90
trajectory 20 000 298
ctscan 53 500 385
mnist_reg 784 5 000
ree 5 698 15 960

In this section we are going to validate the theoretical findings and compare both the standard
MDM and its conjugate version (CMDM) empirically. Both algorithms were implemented in the
C language so we expect the timing results to be broadly homogeneous. Since it is difficult to find
interesting geometrical problems to benchmark these algorithms, we are going to take advantage
of the equivalence presented in Chapter 5 and consider instead regression problems. The datasets
used for the numerical experiments are prostate, from Tibshirani (1994), housing, year,
ctscan and cpusmall from the UCI repository, trajectory, from the Machine Learning
Dataset Repository, ree, the problem of predicting wind energy production over peninsular
Spain using numerical weather forecasts, and mnist_reg, a regression problem built from the
MNIST dataset. Note that these datasets are the same as the ones in Section 5.4.2, but for
convenience we give here again the number of samples and dimensionality in Table 6.1.

As mentioned, we apply first the transformation from Chapter 5 of the constrained Lasso
problem with data matrix X, target y and constraint ρ to a Nearest Point Problem between y/ρ
and the convex hull spanned by the columns of X and −X, originally proposed by Jaggi (2014).
This can be easily transformed to an MNP instance by subtracting y/ρ from the columns of the
new enlarged data matrix (Alaíz et al., 2015). Thus, the new data matrix can be constructed as

X̃ = (X | −X)− 1
ρ

y1>2d.

Since MDM’s running time is very sensitive on the starting point, we will run both MDM
algorithm and its conjugate variant considering all sample patterns as starting points and counting
the number of iterations until a convergence threshold is achieved. For this we use the KKT
conditions of the MNP that imply, at an optimal α∗,

∆ = ∆(α) = max
αi>0
∇f(α)i −min

j
∇f(α)j ≤ 0.

Accordingly, we will stop the iterations when ∆ ≤ ε for some fixed ε. Finally we compute
the median of the time and number of iterations. As it can be seen in Table 6.2 the conjugate
version of MDM always perform less iterations in median compared to standard MDM. However,
note also that this does not always implies faster execution time, since the CMDM iteration cost
is approximately twice of a MDM iteration. The number of iterations ratio that also translates
into faster execution times is roughly 2.5. Therefore, in general, for ratios smaller than 2.5 the
lower number of iterations of CMDM does not compensate the higher computational cost per
iteration.

6.3. Numerical experiments 115

Table 6.2: Median of the execution times and number of iterations for all possible values of the
initial point for both standard MDM and conjugate MDM (CMDM).

Iterations Time (ms)

Dataset log10 ε MDM CMDM Ratio MDM CMDM Ratio

prostate −1 66 23 2.89 0.020 0.018 1.11
−2 74 30 2.41 0.020 0.021 0.95
−3 86 36 2.42 0.022 0.023 0.96
−4 98 42 2.35 0.024 0.025 0.96
−5 111 48 2.34 0.026 0.027 0.96
−6 124 54 2.28 0.028 0.029 0.97

housing −1 108 46 2.35 0.093 0.097 0.96
−2 144 61 2.36 0.101 0.102 0.99
−3 182 72 2.52 0.108 0.109 0.99
−4 219 85 2.58 0.115 0.116 0.99
−5 258 100 2.58 0.123 0.122 1.01
−6 296 112 2.63 0.130 0.130 1.00

cpusmall −1 31 26 1.17 0.940 1.027 0.92
−2 38 32 1.21 0.985 1.001 0.98
−3 43 38 1.13 0.952 1.009 0.94
−4 48 43 1.13 0.945 1.002 0.94
−5 54 47 1.16 0.952 1.021 0.93
−6 60 53 1.13 0.979 1.025 0.96

year −1 1 184 628 1.88 622.768 624.971 1.00
−2 1 483 760 1.95 622.873 625.039 1.00
−3 1 804 895 2.02 622.697 624.606 1.00
−4 2 136 1 038 2.06 623.493 624.842 1.00
−5 2 479 1 178 2.11 632.417 637.002 0.99
−6 2 816 1 322 2.13 623.666 626.001 1.00

ctscan −1 2 869 1 111 2.58 10 244.815 10 090.548 1.02
−2 4 316 1 461 2.95 9 845.849 9 710.350 1.01
−3 5 854 1 807 3.24 9 575.900 9 447.781 1.01
−4 7 436 2 160 3.44 9 028.077 8 902.731 1.01
−5 9 025 2 510 3.60 8 878.653 8 758.532 1.01
−6 10 000 2 855 3.50 7 947.531 7 843.266 1.01

trajectory −1 83 60 1.38 193.118 193.120 1.00
−2 105 73 1.44 193.156 193.279 1.00
−3 127 86 1.48 192.252 192.227 1.00
−4 150 99 1.52 191.045 187.127 1.02
−5 173 111 1.56 190.115 186.730 1.02
−6 196 124 1.58 193.075 193.292 1.00

mnist_reg −1 87 67 1.30 3.906 7.093 0.55
−2 146 105 1.39 6.445 10.746 0.60
−3 207 143 1.45 9.121 14.524 0.63
−4 271 181 1.50 11.864 18.259 0.65
−5 335 220 1.52 14.664 21.996 0.67
−6 402 259 1.55 17.536 25.801 0.68

ree −1 724 263 2.75 2 554.903 2 172.459 1.18
−2 1 153 366 3.15 4 211.407 3 189.228 1.32
−3 1 590 470 3.38 5 795.421 3 978.882 1.46
−4 2 032 576 3.53 6 830.010 4 423.721 1.54
−5 2 478 682 3.63 7 699.295 4 836.374 1.59
−6 2 927 789 3.71 9 175.000 5 620.889 1.63

116 Chapter 6. Accelerating SVM training

2 4 6 8 10 12 14

Time (ms)

0

200

400

600

800

1000

1200

1400

MDM
CD-MDM

20 40 60 80 100 120 140

Iterations

0

200

400

600

800

1000

MDM
CD-MDM

mnist reg ε = 0.1

4 6 8 10 12 14 16 18 20 22

Time (ms)

0

200

400

600

800

1000

1200

1400

MDM
CD-MDM

50 100 150 200 250 300

Iterations

0

200

400

600

800

1000

1200

MDM
CD-MDM

mnist reg ε = 0.001

10 15 20 25 30 35

Time (ms)

0

200

400

600

800

1000

1200

MDM
CD-MDM

150 200 250 300 350 400 450 500 550

Iterations

0

200

400

600

800

1000

1200

1400

MDM
CD-MDM

mnist reg ε = 1e− 06

Figure 6.3: Execution times and iterations histograms for the dataset mnist_reg and tolerance
ε = 0.1, ε = 0.001 and ε = 1e− 06.

Figures 6.3 and 6.4 show some example histograms of the execution time and number of
iterations needed by standard and conjugate MDM for the mnist_reg and ree problems
respectively and different ε values. Here we can see that the number of iterations distribution of
the MDM algorithm are clearly to the right of the conjugate ones and in almost every case the

6.3. Numerical experiments 117

1000 1500 2000 2500 3000 3500 4000

Time (ms)

0

500

1000

1500

2000

2500

3000

MDM
CD-MDM

200 400 600 800 1000

Iterations

0

2000

4000

6000

8000

10000

MDM
CD-MDM

ree ε = 0.1

2000 4000 6000 8000 10000 12000

Time (ms)

0

1000

2000

3000

4000

5000

6000

7000

MDM
CD-MDM

0 500 1000 1500 2000 2500

Iterations

0

2000

4000

6000

8000

10000

12000

MDM
CD-MDM

ree ε = 0.001

4000 5000 6000 7000 8000 9000 10000 11000 12000

Time (ms)

0

1000

2000

3000

4000

5000

6000

MDM
CD-MDM

500 1000 1500 2000 2500 3000 3500 4000

Iterations

0

2000

4000

6000

8000

10000

12000

14000

16000

MDM
CD-MDM

ree ε = 1e− 06

Figure 6.4: Execution times and iterations histograms for the dataset ree and tolerance ε = 0.1,
ε = 0.001 and ε = 1e− 06.

ratio of the medians grows with the precision ε.
Finally, note that for the bigger problems mnist_reg and ree the number of points in the

convex hull is quite big, around 10 000 and 30 000 respectively. Thus there are many possible
starting points and each run of the algorithm is also quite expensive, so to make that computation

118 Chapter 6. Accelerating SVM training

tractable we have pre-computed the kernel matrix Q. In the rest of the algorithms the kernel
rows are instead computed on-the-fly as needed. That is the main reason why the median
execution time for a problem such as ctscan is larger than the bigger ones, when in reality if
all of them were run without precomputing the kernel matrix both ree and mnist_reg would
have been much slower. However, since we have pre-computed the matrix for both MDM and
CMDM it should not affect the comparison very much or, at most, it should be detrimental for
the conjugate variant since kernel computations are not taken into account in the theoretical
complexity. In practice the cost of an iteration without pre-computing Q is dominated by the
kernel computation and thus the extra cost of CMDM is barely noticeable. On the other hand, if
the matrix is pre-computed no kernel operations are performed, which is beneficial for standard
MDM.

In conclusion the conjugate variant of MDM achieves a substantial reduction in running time
for most of the “big” problems except for mnist_reg, while having little to no effect in the
small ones. In general the improvement grows with the inverse of the target precision ε, so the
running time ratios are better for smaller ε values.

6.3.2 SMO: Algorithm correctness

Table 6.3: Dimensions, data sizes and class sizes of the datasets considered.

Dataset d n n+ n−

heart 13 270 120 150
diabetes 8 768 500 268
australian 14 690 307 383
german 24 1 000 300 700
adult4 123 4 781 1 188 3 593
adult8 123 22 696 5 506 17 190
web7 300 24 692 740 23 952
web8 300 49 749 1 479 48 270

In this section we will put everything together and compare the behavior of second order
SMO, Conjugate SMO (CS) and Monotone Nesterov’s Accelerated SMO (MNAS) in 8 binary
classification datasets, heart, diabetes, australian, german (in its numeric version),
adult4, adult8, web7 and web8, that are all available in LIBSVM’s website. Table 6.3 shows
for every dataset the number of samples for each class and dimension. We will work with the
Gaussian kernel

k(x,x′) = exp
(
−γ
∥∥x− x′

∥∥2
)
. (6.3.1)

Features for the first four problems are scaled to [−1, 1] while the adult and web problems
already have binary (0− 1) features.

Following the previous outline, we begin the SMO experiments by checking if the three
algorithms, namely SMO, Conjugate SMO (CS) and Monotone Nesterov’s Accelerated SMO
(MNAS), yield the same final SVM model, in the sense that they arrive with high precision at
the same value f(α∗) of the SVC objective function and have very similar number of support
vectors (SVs). We shall consider in these experiments two different values for the precision of the
stopping criteria ε, 0.1, 0.001; three C values, 1, 10, 100; and two γ values, 1.0× 1/d, 0.1× 1/d.

For each one of those hyper-parameters sets we are going to measure the final value of the
coefficients α∗, objective function f(α∗) and number of support vectors. These values for the

6.3. Numerical experiments 119

Table 6.4: Final value of SMO’s objective function and number of support vectors (nSV) for
ε = 0.1 and ε = 0.001

ε = 0.1 ε = 0.001

Dataset C γ f(α∗) nSV f(α∗) nSV

heart 1 1 −100.824 128 −100.877 132
0.1 −135.337 160 −135.428 163

10 1 −660.276 113 −660.429 115
0.1 −998.592 116 −999.108 117

100 1 −2 526.000 109 −2 526.925 107
0.1 −8 338.725 107 −8 340.956 106

diabetes 1 1 −413.466 446 −413.564 447
0.1 −498.245 536 −498.448 538

10 1 −3 724.647 404 −3 725.665 400
0.1 −4 182.714 441 −4 183.452 442

100 1 −34 129.822 392 −34 138.208 383
0.1 −39 066.799 407 −39 074.251 408

australian 1 1 −201.436 238 −201.643 244
0.1 −236.795 276 −237.271 289

10 1 −1 710.259 238 −1 711.443 231
0.1 −2 021.438 230 −2 025.824 226

100 1 −12 795.859 236 −12 801.354 226
0.1 −19 244.482 228 −19 252.758 220

german 1 1 −502.638 591 −502.770 599
0.1 −584.171 604 −584.418 611

10 1 −3 527.235 563 −3 528.445 561
0.1 −5 259.519 566 −5 260.384 563

100 1 −16 754.209 547 −16 760.502 539
0.1 −46 325.338 541 −46 333.257 538

adult4 1 1 −1 695.480 1 863 −1 696.051 1 876
0.1 −1 988.261 2 163 −1 989.040 2 185

10 1 −14 034.475 1 844 −14 039.028 1 847
0.1 −17 368.956 1 835 −17 373.817 1 835

100 1 −91 469.480 1 910 −91 501.068 1 880
0.1 −160 535.300 1 780 −160 568.229 1 758

adult8 1 1 −7 771.713 8 203 −7 774.383 8 242
0.1 −8 543.447 8 898 −8 546.102 8 935

10 1 −70 155.050 8 165 −70 180.534 8 102
0.1 −80 498.816 8 261 −80 519.906 8 254

100 1 −563 143.596 8 530 −563 347.241 8 394
0.1 −766 082.352 8 164 −766 313.332 8 086

web7 1 1 −1 182.406 1 433 −1 184.225 1 595
0.1 −1 431.004 1 481 −1 437.244 1 548

10 1 −7 663.946 1 235 −7 672.213 1 474
0.1 −11 944.053 1 396 −11 967.272 1 435

100 1 −46 928.113 1 189 −46 965.997 1 424
0.1 −85 132.550 1 120 −85 258.038 1 123

web8 1 1 −2 135.394 2 625 −2 137.950 2 834
0.1 −2 787.795 2 962 −2 795.051 3 016

10 1 −13 792.669 2 100 −13 804.975 2 416
0.1 −21 729.045 2 598 −21 760.912 2 617

100 1 −92 659.990 2 056 −92 720.179 2 335
0.1 −155 840.796 1 950 −156 088.417 2 089

120 Chapter 6. Accelerating SVM training

SMO algorithm, excluding the coefficients, can be found in Table 6.4. Then, we are going to
compute the relative error of the final objective function and number of support vectors between
SMO and CS/MNAS, defined as,

Errorf =
∣∣∣∣∣f(α∗SMO)− f(α∗)

f(α∗SMO)

∣∣∣∣∣,
and

ErrornSV =
∣∣∣∣nSVSMO − nSV

nSVSMO

∣∣∣∣.
The previous measure can also be extended to vectors by replacing the absolute value with
any norm. In our case we are going to use the `1-norm to compute the relative error of the
coefficients,

Errorα∗ = ‖α
∗
SMO −α∗‖1
‖α∗SMO‖1

.

Tables 6.5 and 6.6 show for ε = 0.1 and ε = 0.001 respectively the relative error of the final
coefficients, objective function and number of support vectors obtained by each of the three
algorithms. The conclusion is that the three methods obtain the same model up to numerical
precision.

6.3.3 SMO: Iteration comparison

We report in Tables 6.7 and 6.8 for each dataset, C and γ values the number of iterations
(columns 4 and 5) and running times (columns 7 and 8) of plain SMO and Monotone Nesterov’s
Accelerated SMO (MNAS), together with their respective ratios, SMO/MNAS. Thus, ratios
above 1 mean that MNAS is faster than SMO while ratios below 1 mean the opposite. The first
table corresponds to an ε = 0.1 and the second table shows the results for ε = 0.001. All the
experiments were run in an Intel(R) Xeon(R) server with 16 E5-2680 2.70GHz CPUs and 128
Gb of RAM.

In general, MNAS only performs less iterations than SMO, and thus the ratio is bigger than
1, for large C values (10, 100). However, due to MNAS increased iteration complexity these
iteration gains do not always translate into faster execution times. The iteration and time gains
are generally better for larger C and γ and smaller ε.

The same results comparing SMO and Conjugate SMO are given in Tables 6.9 and 6.10,
again for ε = 0.1 and ε = 0.001. As it can be seen in the previous tables CS always performs less
iterations than SMO except for the following cases:

• ε = 0.1; datasets australian, web7; C = 1, 10 and γ = 0.1.

• ε = 0.001, dataset web7, C = 1 and γ = 0.1.

As an example we show in Fig. 6.5 the number of iterations needed by plain SMO and
Conjugate SMO for different C values, γ = 1 and ε = 0.001 (LIBSVM’s defaults). Here we can
see how the problem becomes more difficult as C is increased, which is beneficial to our conjugate
implementation.

A similar behaviour is illustrated in Fig. 6.6, where we plot the evolution of the objective
function for SMO, CS and MNAS. For the adult4 dataset the convergence starts improving
much earlier for C = 100, while in web7 CS performs less iterations than SMO but not MNAS.
Furthermore, these iteration gains in CS almost always correspond to running times that are

6.3. Numerical experiments 121

Table 6.5: Relative error with respect to SMO in the coefficients, objective value and number of
support vectors for CS and MNAS (ε = 0.1)

α∗ (×10−4) f(α∗) (×10−4) nSV (×10−2)

Dataset C γ MNAS CS MNAS CS MNAS CS

heart 1 1 1.169 1.429 2.710 2.255 2.344 0.000
0.1 0.000 0.003 0.000 0.037 0.000 0.000

10 1 1.086 1.469 0.158 0.938 0.885 0.000
0.1 0.732 0.715 2.039 2.580 0.000 0.862

100 1 0.878 0.997 1.992 2.929 1.835 1.835
0.1 0.650 0.969 1.255 1.151 0.935 0.935

diabetes 1 1 0.188 0.229 0.741 1.615 0.673 0.000
0.1 0.000 0.146 0.000 2.221 0.000 0.000

10 1 0.199 0.309 0.462 1.902 0.248 0.990
0.1 0.124 0.077 0.398 0.259 0.000 0.680

100 1 0.273 0.273 1.101 1.158 0.765 0.510
0.1 0.150 0.158 0.569 0.861 0.491 0.983

australian 1 1 1.052 1.290 2.539 5.713 1.681 0.840
0.1 0.257 2.368 2.863 4.867 0.000 0.000

10 1 0.928 1.021 1.468 4.417 0.420 2.941
0.1 1.227 2.793 10.283 7.142 0.870 0.435

100 1 0.500 0.571 2.241 3.165 0.848 2.119
0.1 0.761 0.792 0.173 1.052 0.877 1.316

german 1 1 0.203 0.235 0.775 0.687 0.000 0.846
0.1 0.057 0.198 0.048 2.463 0.331 0.331

10 1 0.252 0.260 1.499 2.477 0.533 0.355
0.1 0.165 0.167 0.371 1.099 0.000 0.530

100 1 0.161 0.229 0.977 3.001 0.000 1.097
0.1 0.148 0.139 0.459 0.862 0.185 0.185

adult4 1 1 0.025 0.056 0.983 2.351 0.268 0.215
0.1 0.000 0.039 0.008 0.213 0.000 0.000

10 1 0.061 0.057 0.813 2.487 0.651 0.325
0.1 0.027 0.035 0.845 1.436 0.000 0.000

100 1 0.031 0.042 1.358 2.760 0.157 1.047
0.1 0.045 0.034 0.178 1.367 0.112 0.618

adult8 1 1 0.006 0.011 0.511 1.494 0.159 0.012
0.1 0.000 0.005 0.000 0.237 0.000 0.000

10 1 0.014 0.014 0.632 2.402 0.184 0.318
0.1 0.003 0.007 0.377 0.355 0.121 0.012

100 1 0.010 0.012 0.878 2.542 0.117 1.079
0.1 0.010 0.010 0.990 1.843 0.196 0.233

web7 1 1 0.016 0.022 1.085 3.280 0.279 0.977
0.1 0.011 0.024 3.242 3.093 0.135 0.000

10 1 0.020 0.023 1.677 3.807 0.081 0.405
0.1 0.022 0.027 5.037 6.157 0.716 0.215

100 1 0.012 0.018 2.274 4.481 0.421 0.084
0.1 0.019 0.022 2.475 5.786 0.893 1.607

web8 1 1 0.009 0.009 5.110 0.031 0.038 0.229
0.1 0.004 0.010 4.119 6.017 0.034 0.135

10 1 0.009 0.011 0.393 2.087 0.000 0.429
0.1 0.010 0.010 3.448 1.561 0.039 0.308

100 1 0.006 0.008 1.235 2.538 0.973 0.632
0.1 0.010 0.013 0.836 3.349 0.051 0.769

122 Chapter 6. Accelerating SVM training

Table 6.6: Relative error with respect to SMO in the coefficients, objective value and number of
support vectors for CS and MNAS (ε = 0.001)

α∗ (×10−6) f(α∗) (×10−6) nSV (×10−3)

Dataset C γ MNAS CS MNAS CS MNAS CS

heart 1 1 0.895 1.003 0.022 0.031 0.000 0.000
0.1 2.465 1.269 0.063 0.041 6.135 0.000

10 1 1.515 1.895 0.008 0.029 8.696 0.000
0.1 0.725 1.458 0.036 0.041 0.000 0.000

100 1 1.358 1.644 0.051 0.072 0.000 0.000
0.1 2.977 2.532 0.036 0.061 0.000 0.000

diabetes 1 1 0.341 0.331 0.038 0.029 0.000 0.000
0.1 0.072 0.000 0.012 0.000 0.000 0.000

10 1 0.368 0.316 0.021 0.020 0.000 0.000
0.1 0.281 0.122 0.020 0.011 0.000 6.787

100 1 0.386 0.391 0.025 0.038 0.000 2.611
0.1 0.117 0.219 0.010 0.028 0.000 2.451

australian 1 1 3.225 3.516 0.148 0.214 4.098 4.098
0.1 12.081 17.888 0.190 0.814 3.460 6.920

10 1 1.120 1.461 0.052 0.079 0.000 0.000
0.1 5.155 5.452 0.293 0.474 8.850 0.000

100 1 0.746 0.830 0.002 0.026 8.850 4.425
0.1 5.968 3.446 0.318 0.347 18.182 4.545

german 1 1 0.481 0.430 0.014 0.036 0.000 0.000
0.1 0.281 0.880 0.007 0.019 1.637 1.637

10 1 0.294 0.338 0.014 0.037 0.000 0.000
0.1 0.368 0.360 0.011 0.035 5.329 0.000

100 1 1.130 1.173 0.108 0.132 1.855 0.000
0.1 0.404 0.339 0.032 0.047 0.000 1.859

adult4 1 1 0.066 0.110 0.021 0.043 2.132 1.599
0.1 0.116 0.150 0.006 0.025 0.458 0.458

10 1 0.306 0.599 0.010 0.036 2.166 1.083
0.1 0.041 0.076 0.015 0.049 0.545 0.000

100 1 0.206 0.282 0.016 0.040 1.596 1.064
0.1 0.097 0.143 0.019 0.036 5.119 1.706

adult8 1 1 0.044 0.131 0.029 0.054 0.728 1.699
0.1 0.026 0.068 0.041 0.085 0.112 0.336

10 1 0.216 0.236 0.022 0.049 2.469 2.222
0.1 0.044 0.072 0.013 0.036 0.485 0.363

100 1 0.221 0.261 0.018 0.048 2.264 0.715
0.1 0.153 0.121 0.019 0.063 1.360 1.237

web7 1 1 0.205 0.349 0.070 0.197 0.000 2.508
0.1 0.265 0.354 0.583 0.706 0.646 0.646

10 1 0.424 0.452 0.040 0.144 2.035 4.749
0.1 0.372 0.316 0.237 0.059 2.787 2.091

100 1 0.171 0.341 0.033 0.070 1.404 0.000
0.1 0.214 0.245 0.122 0.115 6.233 1.781

web8 1 1 0.109 0.133 0.208 0.255 1.764 2.823
0.1 0.096 0.103 0.070 0.284 0.995 0.000

10 1 0.239 0.205 0.086 0.161 2.897 8.278
0.1 0.102 0.120 0.072 0.139 1.146 1.528

100 1 0.128 0.203 0.028 0.086 3.854 4.711
0.1 0.219 0.271 0.131 0.238 10.053 36.381

6.3. Numerical experiments 123

Table 6.7: Number of iterations and time for SMO and Monotone Nesterov Accelerated SMO
(MNAS), together with their ratios SMO/MNAS (ε = 0.1)

Iterations Time (×10s)

Dataset C γ SMO MNAS Ratio SMO MNAS Ratio

heart 1 1 91 92 0.99 0.223 0.222 1.00
0.1 86 91 0.95 0.224 0.224 1.00

10 1 257 203 1.27 0.229 0.228 1.01
0.1 108 97 1.11 0.221 0.220 1.00

100 1 627 581 1.08 0.249 0.250 0.99
0.1 336 287 1.17 0.229 0.230 1.00

diabetes 1 1 256 274 0.93 0.315 0.318 0.99
0.1 277 284 0.98 0.320 0.323 0.99

10 1 407 362 1.12 0.322 0.322 1.00
0.1 264 273 0.97 0.314 0.316 1.00

100 1 2 196 1 343 1.64 0.479 0.426 1.12
0.1 476 393 1.21 0.325 0.319 1.02

australian 1 1 166 178 0.93 0.289 0.292 0.99
0.1 142 143 0.99 0.288 0.289 0.99

10 1 437 364 1.20 0.315 0.312 1.01
0.1 158 159 0.99 0.286 0.289 0.99

100 1 1 532 1 331 1.15 0.435 0.427 1.02
0.1 553 414 1.34 0.324 0.319 1.02

german 1 1 402 406 0.99 0.408 0.412 0.99
0.1 365 369 0.99 0.406 0.410 0.99

10 1 1 259 1 061 1.19 0.576 0.549 1.05
0.1 454 430 1.06 0.404 0.406 1.00

100 1 4 596 3 151 1.46 1.405 1.093 1.29
0.1 1 729 1 106 1.56 0.619 0.511 1.21

adult4 1 1 1 237 1 224 1.01 2.996 2.982 1.00
0.1 1 209 1 219 0.99 3.227 3.290 0.98

10 1 3 537 2 717 1.30 4.711 4.377 1.08
0.1 1 231 1 202 1.02 3.771 4.119 0.92

100 1 16 732 9 864 1.70 21.029 15.384 1.37
0.1 4 248 2 967 1.43 7.685 7.005 1.10

adult8 1 1 5 407 5 250 1.03 55.951 75.598 0.74
0.1 5 147 5 166 1.00 68.013 64.519 1.05

10 1 15 542 11 203 1.39 117.635 87.811 1.34
0.1 5 578 5 258 1.06 64.063 66.485 0.96

100 1 86 525 48 306 1.79 474.306 383.019 1.24
0.1 17 450 11 912 1.46 90.786 87.884 1.03

web7 1 1 1 090 1 085 1.00 20.873 24.657 0.85
0.1 920 923 1.00 24.229 33.725 0.72

10 1 2 195 2 312 0.95 32.190 34.375 0.94
0.1 1 120 1 103 1.02 21.771 28.157 0.77

100 1 5 651 6 750 0.84 41.168 61.798 0.67
0.1 2 864 2 906 0.99 30.042 38.724 0.78

web8 1 1 2 029 2 014 1.01 82.362 100.968 0.82
0.1 2 004 1 975 1.01 93.546 104.719 0.89

10 1 3 666 3 762 0.97 84.536 102.106 0.83
0.1 2 209 2 098 1.05 71.077 92.176 0.77

100 1 9 543 9 833 0.97 121.137 193.014 0.63
0.1 4 921 4 813 1.02 103.120 155.713 0.66

124 Chapter 6. Accelerating SVM training

Table 6.8: Number of iterations and time for SMO and Monotone Nesterov Accelerated SMO
(MNAS), together with their ratios SMO/MNAS (ε = 0.001)

Iterations Time (×10s)

Dataset C γ SMO MNAS Ratio SMO MNAS Ratio

heart 1 1 140 158 0.89 0.219 0.223 0.99
0.1 127 114 1.11 0.226 0.259 0.87

10 1 578 435 1.33 0.295 0.263 1.12
0.1 191 144 1.33 0.234 0.227 1.03

100 1 1 691 1 239 1.36 0.334 0.341 0.98
0.1 1 016 525 1.94 0.287 0.268 1.07

diabetes 1 1 317 323 0.98 0.316 0.322 0.98
0.1 283 294 0.96 0.362 0.381 0.95

10 1 893 601 1.49 0.475 0.453 1.05
0.1 334 308 1.08 0.432 0.398 1.09

100 1 6 379 3 877 1.65 0.922 0.749 1.23
0.1 990 586 1.69 0.392 0.381 1.03

australian 1 1 404 401 1.01 0.303 0.309 0.98
0.1 594 383 1.55 0.375 0.412 0.91

10 1 1 403 795 1.76 0.495 0.432 1.15
0.1 1 129 613 1.84 0.500 0.400 1.25

100 1 4 586 3 668 1.25 0.928 0.755 1.23
0.1 3 090 1 419 2.18 0.456 0.373 1.22

german 1 1 672 672 1.00 0.442 0.510 0.87
0.1 444 423 1.05 0.536 0.547 0.98

10 1 3 189 2 046 1.56 1.265 0.983 1.29
0.1 849 609 1.39 0.510 0.436 1.17

100 1 12 560 6 868 1.83 3.165 2.384 1.33
0.1 4 565 2 110 2.16 1.123 0.904 1.24

adult4 1 1 1 898 1 681 1.13 3.425 4.015 0.85
0.1 1 404 1 349 1.04 5.342 4.269 1.25

10 1 8 965 5 193 1.73 7.916 5.273 1.50
0.1 2 102 1 669 1.26 3.415 3.641 0.94

100 1 47 162 22 049 2.14 47.067 33.673 1.40
0.1 10 099 5 732 1.76 11.725 9.777 1.20

adult8 1 1 8 316 7 200 1.16 63.417 78.300 0.81
0.1 5 520 5 458 1.01 69.731 74.364 0.94

10 1 43 727 24 654 1.77 151.736 163.908 0.93
0.1 8 076 6 945 1.16 58.124 78.874 0.74

100 1 284 637 137 391 2.07 917.887 654.244 1.40
0.1 52 340 26 364 1.99 155.788 98.025 1.59

web7 1 1 2 458 2 411 1.02 29.930 32.162 0.93
0.1 1 544 1 586 0.97 28.078 37.567 0.75

10 1 8 047 8 333 0.97 51.505 79.330 0.65
0.1 2 396 2 209 1.08 24.005 29.680 0.81

100 1 23 507 24 361 0.96 99.852 176.081 0.57
0.1 10 381 9 083 1.14 41.799 47.612 0.88

web8 1 1 3 951 4 014 0.98 110.758 126.512 0.88
0.1 2 685 2 640 1.02 100.198 117.453 0.85

10 1 14 127 15 889 0.89 179.241 226.285 0.79
0.1 4 821 4 342 1.11 82.783 94.568 0.88

100 1 41 112 43 336 0.95 296.160 469.777 0.63
0.1 25 492 27 172 0.94 212.816 392.636 0.54

6.3. Numerical experiments 125

Table 6.9: Number of iterations and time for SMO and Conjugate SMO (CS), together with
their ratios SMO/CS (ε = 0.1)

Iterations Time (×10s)

Dataset C γ SMO CS Ratio SMO CS Ratio

heart 1 1 91 90 1.01 0.238 0.236 1.01
0.1 86 86 1.00 0.239 0.240 1.00

10 1 257 186 1.38 0.244 0.241 1.02
0.1 108 93 1.16 0.236 0.235 1.01

100 1 627 502 1.25 0.265 0.259 1.02
0.1 336 246 1.37 0.243 0.238 1.02

diabetes 1 1 256 252 1.02 0.340 0.339 1.00
0.1 277 277 1.00 0.347 0.350 0.99

10 1 407 366 1.11 0.355 0.349 1.02
0.1 264 265 1.00 0.338 0.338 1.00

100 1 2 196 1 387 1.58 0.597 0.501 1.19
0.1 476 404 1.18 0.360 0.355 1.01

australian 1 1 166 154 1.08 0.302 0.306 0.99
0.1 142 144 0.99 0.299 0.301 0.99

10 1 437 352 1.24 0.328 0.321 1.02
0.1 158 164 0.96 0.297 0.299 0.99

100 1 1 532 1 137 1.35 0.448 0.412 1.09
0.1 553 434 1.27 0.338 0.327 1.03

german 1 1 402 392 1.03 0.433 0.434 1.00
0.1 365 365 1.00 0.431 0.431 1.00

10 1 1 259 1 100 1.14 0.600 0.581 1.03
0.1 454 414 1.10 0.430 0.433 1.00

100 1 4 596 3 221 1.43 1.436 1.128 1.27
0.1 1 729 1 276 1.36 0.649 0.586 1.11

adult4 1 1 1 237 1 221 1.01 30.090 30.044 1.00
0.1 1 209 1 209 1.00 32.143 32.374 0.99

10 1 3 537 3 095 1.14 47.185 44.524 1.06
0.1 1 231 1 237 1.00 29.553 29.659 1.00

100 1 16 732 12 087 1.38 169.069 133.088 1.27
0.1 4 248 3 383 1.26 50.759 46.420 1.09

adult8 1 1 5 407 5 369 1.01 509.799 531.405 0.96
0.1 5 147 5 147 1.00 531.060 534.185 0.99

10 1 15 542 12 983 1.20 1 103.060 1 017.529 1.08
0.1 5 578 5 497 1.01 665.697 660.533 1.01

100 1 86 525 62 217 1.39 4 499.463 3 769.622 1.19
0.1 17 450 14 511 1.20 1 420.154 978.171 1.45

web7 1 1 1 090 1 078 1.01 214.144 203.638 1.05
0.1 920 933 0.99 199.133 201.360 0.99

10 1 2 195 2 101 1.04 235.153 221.263 1.06
0.1 1 120 1 151 0.97 200.844 201.301 1.00

100 1 5 651 5 053 1.12 364.014 406.679 0.90
0.1 2 864 2 668 1.07 355.006 344.876 1.03

web8 1 1 2 029 1 971 1.03 700.775 703.616 1.00
0.1 2 004 1 979 1.01 805.382 1 026.556 0.78

10 1 3 666 3 393 1.08 918.371 887.179 1.04
0.1 2 209 2 114 1.04 877.262 792.532 1.11

100 1 9 543 8 206 1.16 1 485.928 1 360.474 1.09
0.1 4 921 4 527 1.09 772.865 979.809 0.79

126 Chapter 6. Accelerating SVM training

Table 6.10: Number of iterations and time for SMO and Conjugate SMO (CS), together with
their ratios SMO/CS (ε = 0.001)

Iterations Time (×10s)

Dataset C γ SMO CS Ratio SMO CS Ratio

heart 1 1 140 129 1.09 0.234 0.236 0.99
0.1 127 110 1.15 0.239 0.237 1.01

10 1 578 388 1.49 0.251 0.246 1.02
0.1 191 151 1.26 0.236 0.236 1.00

100 1 1 691 1 119 1.51 0.314 0.290 1.08
0.1 1 016 543 1.87 0.259 0.251 1.03

diabetes 1 1 317 297 1.07 0.345 0.341 1.01
0.1 283 283 1.00 0.344 0.348 0.99

10 1 893 642 1.39 0.398 0.375 1.06
0.1 334 297 1.12 0.338 0.334 1.01

100 1 6 379 2 984 2.14 1.073 0.708 1.51
0.1 990 587 1.69 0.452 0.410 1.10

australian 1 1 404 368 1.10 0.310 0.312 0.99
0.1 594 399 1.49 0.332 0.322 1.03

10 1 1 403 885 1.59 0.387 0.355 1.09
0.1 1 129 645 1.75 0.354 0.327 1.08

100 1 4 586 3 276 1.40 0.683 0.583 1.17
0.1 3 090 1 367 2.26 0.460 0.374 1.23

german 1 1 672 601 1.12 0.442 0.436 1.01
0.1 444 412 1.08 0.424 0.423 1.00

10 1 3 189 2 414 1.32 0.892 0.793 1.12
0.1 849 654 1.30 0.489 0.476 1.03

100 1 12 560 8 584 1.46 2.834 2.006 1.41
0.1 4 565 2 454 1.86 0.829 0.654 1.27

adult4 1 1 1 898 1 694 1.12 3.445 3.352 1.03
0.1 1 404 1 357 1.03 3.475 3.476 1.00

10 1 8 965 6 743 1.33 7.469 6.276 1.19
0.1 2 102 1 819 1.16 3.259 3.207 1.02

100 1 47 162 31 328 1.51 35.349 24.621 1.44
0.1 10 099 6 721 1.50 7.034 5.459 1.29

adult8 1 1 8 316 7 516 1.11 56.870 53.942 1.05
0.1 5 520 5 486 1.01 60.916 51.440 1.18

10 1 43 727 30 965 1.41 128.214 106.017 1.21
0.1 8 076 7 086 1.14 51.818 50.165 1.03

100 1 284 637 185 062 1.54 800.948 540.952 1.48
0.1 52 340 32 686 1.60 133.235 100.693 1.32

web7 1 1 2 458 2 241 1.10 35.887 30.494 1.18
0.1 1 544 1 607 0.96 31.853 26.562 1.20

10 1 8 047 6 912 1.16 55.316 48.842 1.13
0.1 2 396 2 366 1.01 34.098 27.217 1.25

100 1 23 507 18 161 1.29 111.429 93.021 1.20
0.1 10 381 8 508 1.22 54.440 54.864 0.99

web8 1 1 3 951 3 859 1.02 114.615 113.130 1.01
0.1 2 685 2 687 1.00 133.199 108.624 1.23

10 1 14 127 11 939 1.18 152.126 127.094 1.20
0.1 4 821 4 408 1.09 77.032 76.533 1.01

100 1 41 112 30 286 1.36 294.980 237.012 1.24
0.1 25 492 21 416 1.19 193.592 167.208 1.16

6.3. Numerical experiments 127

0

200

400

600

800

1000

1200

1400

1600
Ite

ra
tio

ns

Dataset = heart
Method

SMO
CS
MNAS

0

1000

2000

3000

4000

5000

6000

Dataset = diabetes

0

1000

2000

3000

4000

Ite
ra

tio
ns

Dataset = australian

0

2000

4000

6000

8000

10000

12000

Dataset = german

0

10000

20000

30000

40000

Ite
ra

tio
ns

Dataset = adult4

0

50000

100000

150000

200000

250000

Dataset = adult8

1 10 100
C

0

5000

10000

15000

20000

25000

Ite
ra

tio
ns

Dataset = web7

1 10 100
C

0

10000

20000

30000

40000

Dataset = web8

Figure 6.5: Evolution of the number of iterations with respect to C for the eight datasets

128 Chapter 6. Accelerating SVM training

0 2000 4000 6000 8000
Iterations

10 5

10 3

10 1

101

103

Ob
je

ct
iv

e

C = 10
SMO
CSMO
MNAS

0 10000 20000 30000 40000
Iterations

10 6

10 4

10 2

100

102

104

Ob
je

ct
iv

e

C = 100
SMO
CSMO
MNAS

0 2000 4000 6000 8000
Iterations

10 6

10 4

10 2

100

102

104

Ob
je

ct
iv

e

C = 10
SMO
CSMO
MNAS

0 5000 10000 15000 20000 25000
Iterations

10 5

10 3

10 1

101

103

105

Ob
je

ct
iv

e

C = 100
SMO
CSMO
MNAS

Figure 6.6: Evolution of the objective function with ε = 0.001 for the adult4 (top) and the
web7 datasets

at least equal or better than SMO’s. One notable exception is the dataset web7, where CS
performs much worse in running time for ε = 0.1, C = 1, 100 and γ = 0.1. In general, similarly
to the MNAS case, both the iterations and times ratios are better for ε = 0.001 and the larger
the C and γ.

Theoretically, these gains in iterations would correspond to faster execution times if the ratio
is bigger than 4/3 in CS and 2 in MNAS, but in practice we observe it to happen for slightly
smaller ratios. In particular, we have found that the average iteration ratio for which the time
ratio is bigger than 1 in MNAS is 1.31 for ε = 0.1 and 1.68 for ε = 0.001. On the other hand CS
average iteration ratios, 1.20 and 1.35 respectively, are closer to the theoretical ratio, 4/3 = 1.33,
and are better than their MNAS counterpart.

As we already mentioned, the previous results have been obtained using our own Python
implementation of SMO, Monotone Nesterov’s Accelerated SMO and Conjugate SMO. This
implementation has an unlimited cache and thus the SMO algorithm has a slight advantage
since its iterations are cheaper. In practice, when the kernel matrix is too big to fit in the cache,
reducing the number of iterations also reduces the probability of a cache miss. Thus, since kernel
computations take most of the iteration time, the extra computations performed by CS and
MNAS should be negligible when compared with the time spent in the kernel operation.

In conclusion MNAS and CS would have an slight advantage in settings where the kernel
matrix is very big and/or the size of the available cache is small. On the other hand, it is
also important to note that there are better SMO implementations in low level languages, such
as LIBSVM. For that reason we believe it is necessary to implement both methods inside the

6.3. Numerical experiments 129

LIBSVM framework to perform a runtime comparison closer to a real setting. However, we
will only implement in C the Conjugate SMO variant, since the preliminary Python results for
Nesterov’s Acceleration are not very encouraging.

6.3.4 SMO: Comparison versus LIBSVM

The cache is one of the most important features of LIBSVM, which is also critical to an efficient
SMO implementation. In the previous Python experiments we implemented a very simple
unlimited cache. However, this is not realistic since it could be the case where all the necessary
rows of the kernel matrix do not fit entirely into memory. Thus LIBSVM implements a simple
yet effective “First In First Out” (FIFO) cache where the most recently used kernel rows are
stored. Furthermore, the size of the cache can be specified in Mb by using a parameter. This is
preferred to pre-computing the whole matrix since, in general, not all the samples are going to
be support vectors and thus it is wasteful to compute their corresponding rows in advance.

0 20 40 60 80 100
Time (s)

10­6

10­5

10­4

10­3

10­2

10­1

100

101

102

103

104

105

O
bj

. f
un

ct
io

n

adult8, C=10

Cache size (Mb) = 1
Cache size (Mb) = 10
Cache size (Mb) = 100
Cache size (Mb) = 1000
Cache size (Mb) = 10000

1 10 100 1000 10000
Cache size (Mb)

0

5000

10000

15000

20000

25000

30000

35000
N

um
be

r
of

 k
er

ne
l o

pe
ra

tio
ns

Figure 6.7: Time evolution of the objective function (left) and number of kernel operations
(right) for different cache sizes.

First we show empirically how critical is the cache size when solving the SVC problem. For
this we have selected the adult8 dataset, C = 10 and γ = 1/d. Figure 6.7 shows how the
execution time grows as a function of the cache size. In this example having no cache can be up
to 4 times slower than an unlimited cache.

We investigate next the effect of the cache size in Conjugate SMO by implementing the
algorithm inside the LIBSVM framework. The datasets used in this experiment are adult9,
which is a bigger version of adult8 with 32561 samples, and web8. The reason for this is that
the rest of the datasets have a very low number of samples and thus a relatively small cache is
already able to store all the necessary kernel rows.

We set the precision and γ to LIBSVM’s default values, ε = 0.001 and γ = 1/d. Then, for
every dataset we measure the execution time for three different C values, 1, 10, 100, and six
different cache sizes 1, 50, 100, 500, 1000, 5000 Mb. Every C and cache size combination was run
10 times and we repeated this procedure 3 times. At the end we computed the average of the 10
runs and for every value took the min of the 3 repetitions. Table 6.11 reports the number of
iterations, final objective value and number of support vectors of SMO and Conjugate SMO (CS).
As it can be seen, our C implementation of the CS algorithm is correct since it yields basically
the same models as SMO. Besides, CS always performs less iterations than standard SMO in
this two datasets, although as we discussed before each iteration is costlier.

The execution time in seconds is given in Table 6.12 for every C and cache size values and

130 Chapter 6. Accelerating SVM training

Table 6.11: Iterations, objective value and number of support vectors for the adult9 and web8
datasets

Iterations f(α∗) nSV

Dataset C SMO CS Ratio SMO CS SMO CS

adult9 1 8 225 7 907 1.04 −11 596.356 −11 596.356 11 953 11 949
10 21 256 16 736 1.27 −110 168.640 −110 168.643 11 465 11 473

100 189 292 110 864 1.71 −1 036 086.460 −1 036 086.481 11 267 11 292

web8 1 3 089 2 976 1.04 −2 594.670 −2 594.670 2 951 2 952
10 7 759 7 164 1.08 −18 638.315 −18 638.317 2 448 2 438

100 32 556 26 909 1.21 −133 993.552 −133 993.563 2 035 2 043

Table 6.12: Running time in seconds for the adult9 and web8 datasets

Time (s)

adult9 web8

C Cache (Mb) SMO CS Ratio SMO CS Ratio

1 1 10.843 10.660 1.02 2.847 2.781 1.02
50 5.732 5.878 0.98 2.019 2.059 0.98

100 5.723 5.788 0.99 1.970 2.017 0.98
500 5.728 5.952 0.96 1.788 1.845 0.97

1 000 5.653 5.760 0.98 1.767 1.808 0.98
5 000 5.659 5.717 0.99 1.759 1.823 0.96

10 1 29.301 21.768 1.35 7.392 7.010 1.05
50 6.891 6.966 0.99 2.575 2.751 0.94

100 6.207 6.256 0.99 1.921 2.027 0.95
500 6.080 6.203 0.98 1.655 1.778 0.93

1 000 5.989 6.080 0.99 1.660 1.785 0.93
5 000 5.826 5.953 0.98 1.671 1.778 0.94

100 1 155.368 88.948 1.75 30.597 27.013 1.13
50 72.974 50.073 1.46 13.169 13.468 0.98

100 29.823 24.959 1.19 3.725 4.183 0.89
500 13.696 12.283 1.12 2.442 2.740 0.89

1 000 12.518 11.367 1.10 2.445 2.763 0.88
5 000 11.875 10.659 1.11 2.441 2.760 0.88

6.3. Numerical experiments 131

both datasets. Comparing the two tables we can see that better iteration ratios not always
correspond to faster execution times. In general CS is faster than SMO the smaller the cache and
the larger the C value. Also note that the number of iterations is independent of the cache size.

The same results are also depicted in Fig. 6.8. The conclusions are two fold. First, as it was
expected, the execution time decreases the larger the cache since more kernel rows can be stored
and reused. However, there is a critical value for the size of the cache from where improvement
is almost non-existent. This value depends on both the data and C value. Second, CS is faster
than plain SMO in settings with low-to-medium cache sizes for the adult9 dataset and low
cache sizes for the web7 dataset. Note that LIBSVM default cache size is 100 Mb.

Table 6.13: Dimensions, data sizes and class sizes of the datasets considered.

Dataset d n n+ n−

adult8 123 22 696 5 506 17 190
web8 300 49 749 1 479 48 270
ijcnn1 22 49 990 4 853 45 137
cod-rna 8 59 535 19 845 39 690
mnist1 784 60 000 6 742 53 258
skin 3 245 057 50 859 194 198

In the next experiment we are going to measure the execution time and number of iterations
of the two biggest problems from Section 6.3.2, adult8 and web8, together with ijcnn1,
cod-rna, mnist1 and skin. The dimensionality and number of samples for these problems is
shown in Table 6.13. As it can be seen in the table, we have selected these problems since they
are much bigger than the ones in the previous experiments. Thus, since the C implementation in
LIBSVM is much faster we are looking to obtain more meaningful results. Furthermore LIBSVM
could probably solve the heart or diabetes datasets in less than a millisecond. As before,
these datasets correspond to binary classification problems and can be found in LIBSVM’s data
repository, except from mnist1. The MNIST database consists on 28×28 images of handwritten
digits that have been preprocessed and normalized. Since it is a multi-class classification problem
we use here the binary version that tries to distinguish the number 1 from the rest.

We are going to compare three different cache sizes (1, 100, 1000 Mb), C values (1, 10, 100)
and γ values (1, 0.1, 0.01). As before, γ values are given as multiples of the default 1/d. Thus,
for instance, γ = 0.1 is actually γ = 0.1× 1/d. Note that in this experiment we have fixed the
precision ε = 0.001, since we have introduced the cache size as a new variable to the comparison.

The running times of SMO and Conjugate SMO (CS), together with the relative time
difference can be found in Tables 6.14 to 6.19, columns 4, 5 and 7. The running times are the
averages of 50 executions. We define the relative time difference as

RTD = Time(SMO)− Time(CS/HS)
Time(SMO) × 100.

Note that, using the previous definition, if the relative time difference is positive then it means
that either CS or HS are faster than SMO, if it is negative they are slower. For completeness
iteration results are given in Appendix C, Tables C.1 to C.6. In general, Conjugate SMO is faster
than standard SMO in the problems skin, mnist1, adult8 and cod-rna, while it is slower
in web8 and ijcnn1. As we discussed before the conjugate version is usually better the smaller
the cache size and the bigger the C and γ.

132 Chapter 6. Accelerating SVM training

0

20

40

60

80

100

120

140

160

Ti
m

e
(s

)

Dataset = adult9
Method

SMO
CS

C = 1
Dataset = web8

0

20

40

60

80

100

120

140

160

Ti
m

e
(s

) C = 10

1 50 100 500 1000 5000
Cache (Mb)

0

20

40

60

80

100

120

140

160

Ti
m

e
(s

)

1 50 100 500 1000 5000
Cache (Mb)

C = 100

Figure 6.8: Comparison between SMO and CS of the running time as a function of the cache
size for the adult9 and web7 datasets and different C values

6.3. Numerical experiments 133

Table 6.14: Comparison of the running time in seconds between SMO, Conjugate SMO (CS)
and Hybrid SMO (HS) for the adult8 dataset

Time (s) RTD (%)

Cache (Mb) C log10 γ SMO CS HS CS HS

1 1 −2 2.16 2.16 2.13 0.14 1.71
−1 1.97 2.01 1.97 −2.13 −0.15

0 2.05 2.03 1.98 1.31 3.60
1 4.36 3.85 3.86 11.81 11.49

10 −2 2.31 2.45 2.39 −6.37 −3.60
−1 2.45 2.50 2.37 −1.84 3.14

0 5.44 4.32 4.37 20.50 19.62
1 23.06 18.77 20.12 18.63 12.77

100 −2 2.21 2.39 2.34 −8.09 −5.60
−1 5.88 4.47 4.71 23.93 19.90

0 46.29 30.01 34.47 35.18 25.53
1 107.93 83.18 89.30 22.93 17.27

1 000 −2 6.33 5.05 5.03 20.31 20.50
−1 42.55 27.31 31.47 35.82 26.04

0 384.45 202.98 248.07 47.20 35.47
1 271.10 166.22 199.24 38.69 26.51

100 1 −2 2.39 2.51 2.44 −5.03 −2.14
−1 2.03 2.02 1.97 0.74 2.95

0 1.79 1.82 1.82 −1.51 −1.67
1 2.29 2.40 2.29 −4.63 0.04

10 −2 2.15 2.27 2.21 −5.59 −3.12
−1 1.76 1.81 1.76 −2.96 −0.28

0 1.87 1.94 1.87 −4.02 −0.11
1 15.01 12.74 13.40 15.09 10.70

100 −2 2.07 2.12 2.05 −2.56 1.11
−1 2.02 2.11 2.04 −4.66 −1.09

0 5.44 5.28 5.45 2.85 −0.22
1 73.44 58.92 64.08 19.77 12.75

1 000 −2 2.18 2.25 2.15 −3.40 1.33
−1 5.25 4.82 5.01 8.20 4.50

0 88.28 65.33 76.48 26.00 13.36
1 147.08 109.23 120.86 25.74 17.83

1 000 1 −2 2.42 2.51 2.32 −3.47 4.37
−1 2.20 2.27 2.14 −3.55 2.69

0 1.96 2.02 1.96 −2.91 0.00
1 2.04 2.11 2.03 −3.49 0.20

10 −2 1.88 1.90 1.90 −0.96 −0.80
−1 1.96 2.01 1.97 −2.55 −0.41

0 2.03 2.11 2.03 −4.04 −0.15
1 3.12 3.36 3.11 −7.86 0.13

100 −2 1.75 1.84 1.74 −5.32 0.57
−1 1.80 1.86 1.82 −3.39 −1.06

0 3.45 3.32 3.34 3.68 3.25
1 6.48 6.87 6.77 −6.08 −4.62

1 000 −2 2.05 2.19 2.11 −6.99 −3.22
−1 3.83 3.70 3.64 3.26 4.91

0 19.17 17.17 18.23 10.48 4.95
1 13.72 12.36 12.85 9.90 6.33

134 Chapter 6. Accelerating SVM training

Table 6.15: Comparison of the running time in seconds between SMO, Conjugate SMO (CS)
and Hybrid SMO (HS) for the web8 dataset

Time (s) RTD (%)

Cache (Mb) C log10 γ SMO CS HS CS HS

1 1 −2 1.45 1.51 1.46 −4.56 −0.76
−1 1.51 1.51 1.50 −0.13 0.93

0 1.83 1.79 1.73 1.75 5.37
1 3.34 3.23 3.25 3.24 2.55

10 −2 1.59 1.63 1.61 −2.26 −1.26
−1 1.96 1.87 1.90 4.49 3.21

0 4.97 4.77 4.60 3.99 7.45
1 9.83 8.53 8.74 13.27 11.14

100 −2 1.86 1.84 1.87 1.13 −0.59
−1 4.51 4.53 4.46 −0.44 1.02

0 20.54 18.82 19.59 8.40 4.65
1 16.38 13.04 13.79 20.40 15.81

1 000 −2 5.74 5.42 5.10 5.51 11.19
−1 27.50 22.73 24.87 17.36 9.56

0 75.33 64.17 66.95 14.82 11.13
1 24.53 16.27 18.51 33.67 24.54

100 1 −2 1.38 1.41 1.38 −2.24 −0.22
−1 1.45 1.50 1.47 −3.31 −1.45

0 1.27 1.31 1.28 −3.39 −1.10
1 1.94 2.02 2.03 −4.02 −4.44

10 −2 1.40 1.45 1.43 −3.42 −1.99
−1 1.32 1.37 1.33 −3.88 −0.99

0 1.24 1.30 1.27 −5.59 −2.83
1 6.08 5.71 5.69 6.02 6.29

100 −2 1.31 1.37 1.32 −4.98 −1.07
−1 1.24 1.40 1.30 −12.57 −4.92

0 2.58 3.07 2.90 −19.16 −12.53
1 9.33 8.23 8.33 11.84 10.75

1 000 −2 1.24 1.40 1.33 −13.32 −7.67
−1 2.19 2.55 2.47 −16.70 −13.23

0 24.34 25.42 25.01 −4.44 −2.76
1 11.20 9.63 9.79 13.94 12.52

1 000 1 −2 1.20 1.25 1.22 −4.34 −1.50
−1 1.18 1.21 1.18 −2.64 −0.60

0 1.14 1.19 1.15 −3.67 −0.26
1 1.11 1.18 1.15 −5.57 −3.14

10 −2 1.21 1.24 1.21 −2.56 0.08
−1 1.16 1.24 1.21 −6.10 −3.52

0 1.10 1.23 1.18 −12.11 −7.10
1 1.39 1.57 1.50 −13.07 −7.97

100 −2 1.21 1.27 1.21 −4.87 0.00
−1 1.09 1.27 1.14 −16.57 −4.60

0 1.65 1.99 2.02 −20.75 −22.63
1 1.60 1.76 1.68 −9.80 −5.06

1 000 −2 1.04 1.15 1.09 −10.72 −5.12
−1 1.67 1.99 1.93 −19.57 −15.67

0 4.42 5.76 5.37 −30.32 −21.54
1 2.10 2.04 1.98 2.90 5.86

6.3. Numerical experiments 135

Table 6.16: Comparison of the running time in seconds between SMO, Conjugate SMO (CS)
and Hybrid SMO (HS) for the ijcnn1 dataset

Time (s) RTD (%)

Cache (Mb) C log10 γ SMO CS HS CS HS

1 1 −2 4.58 4.84 4.66 −5.70 −1.81
−1 4.29 4.53 4.43 −5.64 −3.31

0 3.29 3.33 3.22 −1.12 2.37
1 2.48 2.48 2.37 −0.08 4.16

10 −2 4.64 5.03 4.75 −8.29 −2.28
−1 3.52 3.63 3.52 −3.18 −0.03

0 3.80 3.87 3.75 −1.90 1.21
1 5.67 4.93 5.00 13.20 11.97

100 −2 3.70 3.77 3.61 −1.70 2.56
−1 5.44 4.83 4.61 11.30 15.27

0 10.07 7.61 8.18 24.47 18.79
1 25.50 18.63 22.88 26.94 10.25

1 000 −2 7.13 5.56 5.74 22.04 19.55
−1 15.64 10.30 11.40 34.12 27.09

0 67.21 47.18 52.90 29.80 21.28
1 110.51 79.89 87.64 27.71 20.69

100 1 −2 4.03 4.14 4.07 −2.71 −1.02
−1 3.89 4.03 3.89 −3.62 −0.03

0 2.87 2.99 2.92 −4.15 −1.81
1 2.23 2.35 2.25 −5.29 −1.03

10 −2 4.15 4.52 4.41 −8.99 −6.29
−1 3.25 3.38 3.20 −4.28 1.33

0 2.73 2.81 2.77 −2.78 −1.28
1 1.61 1.69 1.65 −4.53 −2.23

100 −2 3.59 3.87 3.76 −7.89 −4.99
−1 3.09 3.28 3.12 −5.99 −1.00

0 2.24 2.33 2.25 −4.07 −0.76
1 4.94 4.99 5.07 −0.87 −2.59

1 000 −2 3.75 3.79 3.67 −1.12 2.29
−1 3.48 3.43 3.45 1.44 0.66

0 5.96 6.09 6.17 −2.11 −3.57
1 35.55 38.06 41.53 −7.06 −16.82

1 000 1 −2 4.00 4.16 4.08 −4.07 −1.90
−1 3.70 3.97 3.72 −7.16 −0.51

0 3.49 3.67 3.51 −5.33 −0.52
1 2.21 2.26 2.22 −2.12 −0.09

10 −2 3.77 3.97 3.86 −5.25 −2.36
−1 3.65 3.78 3.70 −3.37 −1.29

0 2.10 2.19 2.11 −4.13 −0.14
1 1.29 1.38 1.33 −6.50 −2.55

100 −2 3.59 3.77 3.63 −4.93 −1.03
−1 2.81 2.91 2.82 −3.78 −0.64

0 1.92 1.99 1.93 −3.70 −0.68
1 2.06 2.38 2.19 −15.63 −6.07

1 000 −2 3.45 3.75 3.56 −8.70 −3.19
−1 2.98 2.98 2.88 −0.03 3.39

0 4.60 5.62 5.63 −22.19 −22.43
1 7.14 9.95 9.34 −39.36 −30.84

136 Chapter 6. Accelerating SVM training

Table 6.17: Comparison of the running time in seconds between SMO, Conjugate SMO (CS)
and Hybrid SMO (HS) for the cod-rna dataset

Time (s) RTD (%)

Cache (Mb) C log10 γ SMO CS HS CS HS

1 1 −2 26.21 17.07 18.51 34.88 29.36
−1 37.90 26.03 26.00 31.31 31.39

0 39.69 25.62 25.88 35.45 34.80
1 14.63 14.69 14.42 −0.46 1.38

10 −2 108.47 53.59 56.65 50.59 47.77
−1 154.73 77.41 82.37 49.97 46.76

0 114.23 57.70 62.13 49.49 45.61
1 15.11 15.30 15.06 −1.31 0.32

100 −2 464.84 201.95 209.17 56.55 55.00
−1 589.36 274.15 285.78 53.48 51.51

0 324.78 143.22 174.44 55.90 46.29
1 21.40 20.44 20.58 4.48 3.82

1 000 −2 2 679.69 1 073.81 1 152.11 59.93 57.01
−1 2 721.41 1 136.50 1 330.60 58.24 51.11

0 1 080.81 447.39 595.28 58.61 44.92
1 35.46 27.57 30.07 22.25 15.21

100 1 −2 10.27 10.79 10.65 −5.07 −3.69
−1 16.77 16.58 16.28 1.16 2.93

0 22.83 19.82 19.58 13.22 14.23
1 12.47 12.99 12.86 −4.21 −3.18

10 −2 18.15 16.57 16.80 8.73 7.46
−1 37.72 30.73 32.13 18.53 14.82

0 44.82 35.88 37.16 19.94 17.09
1 14.29 14.77 14.54 −3.37 −1.72

100 −2 49.91 40.20 40.42 19.44 19.01
−1 109.66 83.25 84.41 24.08 23.03

0 95.19 69.10 75.81 27.41 20.35
1 20.14 21.02 20.39 −4.37 −1.26

1 000 −2 245.58 184.08 190.81 25.04 22.30
−1 467.06 319.20 350.41 31.66 24.98

0 294.61 191.81 207.00 34.89 29.74
1 27.85 26.43 26.48 5.07 4.90

1 000 1 −2 8.20 8.20 8.20 −0.02 0.05
−1 9.64 10.44 10.12 −8.31 −4.99

0 9.99 10.55 10.09 −5.61 −1.08
1 11.84 12.46 12.21 −5.23 −3.15

10 −2 14.28 12.99 13.10 9.04 8.27
−1 18.12 17.52 16.12 3.27 11.01

0 16.72 16.48 15.73 1.48 5.97
1 12.87 13.52 13.08 −5.03 −1.62

100 −2 39.52 29.87 29.29 24.42 25.88
−1 49.95 43.82 41.77 12.29 16.38

0 37.20 33.31 32.85 10.45 11.71
1 16.72 17.89 17.76 −6.98 −6.20

1 000 −2 200.06 148.61 146.89 25.71 26.58
−1 185.88 139.70 146.65 24.84 21.10

0 112.95 93.98 100.01 16.80 11.45
1 19.60 19.72 19.61 −0.62 −0.04

6.3. Numerical experiments 137

Table 6.18: Comparison of the running time in seconds between SMO, Conjugate SMO (CS)
and Hybrid SMO (HS) for the mnist1 dataset

Time (s) RTD (%)

Cache (Mb) C log10 γ SMO CS HS CS HS

1 1 −2 59.57 56.48 56.26 5.19 5.57
−1 24.58 24.17 24.14 1.67 1.79

0 44.21 42.55 46.66 3.75 −5.53
1 58.35 55.59 55.92 4.75 4.16

10 −2 25.64 25.31 25.23 1.30 1.61
−1 55.92 55.36 57.33 1.00 −2.53

0 143.71 111.79 104.75 22.21 27.11
1 94.37 93.13 87.82 1.32 6.94

100 −2 30.03 25.74 26.49 14.28 11.81
−1 271.66 174.21 160.50 35.87 40.92

0 154.94 118.63 128.48 23.43 17.08
1 99.29 96.68 89.10 2.63 10.27

1 000 −2 151.94 113.04 121.32 25.60 20.15
−1 653.42 479.17 447.26 26.67 31.55

0 168.23 116.85 126.87 30.54 24.59
1 94.52 92.85 86.79 1.77 8.18

100 1 −2 131.12 118.44 96.93 9.67 26.07
−1 38.86 37.89 39.43 2.51 −1.44

0 17.00 16.56 17.54 2.59 −3.20
1 40.12 40.02 39.57 0.25 1.37

10 −2 51.02 51.50 51.54 −0.94 −1.02
−1 14.89 14.95 14.83 −0.38 0.40

0 33.81 32.56 33.83 3.71 −0.05
1 51.58 50.01 49.12 3.05 4.77

100 −2 36.42 38.52 38.12 −5.77 −4.68
−1 34.78 33.69 34.88 3.14 −0.30

0 117.64 91.86 83.18 21.91 29.29
1 103.72 97.23 88.29 6.26 14.88

1 000 −2 19.36 18.67 20.08 3.56 −3.76
−1 229.43 161.16 162.76 29.75 29.06

0 148.02 99.32 91.31 32.90 38.31
1 47.27 45.62 45.17 3.49 4.43

1 000 1 −2 54.18 54.62 53.44 −0.81 1.36
−1 23.22 23.08 23.09 0.60 0.56

0 10.40 10.38 10.44 0.23 −0.41
1 17.19 17.34 16.63 −0.87 3.28

10 −2 49.17 46.51 45.92 5.43 6.63
−1 19.59 19.68 19.77 −0.45 −0.89

0 6.81 6.94 6.92 −1.91 −1.57
1 30.20 30.09 27.85 0.35 7.79

100 −2 16.12 16.19 15.88 −0.47 1.45
−1 16.33 17.14 13.53 −4.94 17.17

0 6.33 6.43 6.41 −1.52 −1.17
1 13.78 13.76 13.94 0.14 −1.17

1 000 −2 11.43 11.54 11.46 −0.94 −0.21
−1 20.57 21.54 21.13 −4.71 −2.70

0 13.39 14.04 13.44 −4.84 −0.42
1 29.51 27.21 26.77 7.81 9.28

138 Chapter 6. Accelerating SVM training

Table 6.19: Comparison of the running time in seconds between SMO, Conjugate SMO (CS)
and Hybrid SMO (HS) for the skin dataset

Time (s) RTD (%)

Cache (Mb) C log10 γ SMO CS HS CS HS

1 1 −2 11.03 10.50 10.38 4.84 5.90
−1 123.77 109.23 109.82 11.75 11.27

0 189.29 190.54 177.36 −0.66 6.30
1 114.25 123.30 121.64 −7.92 −6.46

10 −2 12.65 10.69 10.95 15.51 13.50
−1 124.41 113.44 110.41 8.81 11.25

0 181.57 181.26 176.78 0.17 2.64
1 157.65 175.70 164.93 −11.45 −4.62

100 −2 34.51 23.16 23.60 32.89 31.62
−1 118.52 104.39 104.99 11.92 11.41

0 186.75 189.37 174.73 −1.40 6.44
1 153.79 168.18 159.77 −9.36 −3.89

1 000 −2 172.00 88.92 108.53 48.30 36.90
−1 115.65 101.33 101.10 12.38 12.58

0 185.17 185.34 171.80 −0.10 7.22
1 152.15 165.21 158.80 −8.59 −4.37

100 1 −2 10.13 10.11 10.00 0.23 1.24
−1 110.49 98.79 98.63 10.59 10.73

0 185.21 187.06 170.46 −1.00 7.96
1 122.17 142.05 131.50 −16.27 −7.64

10 −2 8.73 8.40 8.41 3.68 3.58
−1 113.39 105.28 104.43 7.16 7.90

0 178.33 170.59 167.36 4.34 6.15
1 158.67 175.68 168.31 −10.72 −6.08

100 −2 7.42 7.60 7.47 −2.44 −0.62
−1 108.99 101.15 100.31 7.20 7.97

0 186.96 184.09 182.90 1.53 2.17
1 154.13 168.54 161.91 −9.35 −5.05

1 000 −2 22.90 22.47 24.88 1.85 −8.64
−1 106.83 100.08 98.94 6.32 7.39

0 176.79 169.66 166.38 4.03 5.88
1 154.30 170.44 162.68 −10.46 −5.43

1 000 1 −2 4.98 5.80 5.68 −16.45 −14.16
−1 108.89 102.26 97.92 6.09 10.08

0 178.25 174.17 172.24 2.29 3.37
1 116.24 130.91 123.52 −12.62 −6.26

10 −2 3.56 4.29 4.15 −20.29 −16.30
−1 104.61 97.46 97.03 6.84 7.25

0 178.76 172.96 169.18 3.25 5.36
1 157.77 176.86 162.57 −12.10 −3.04

100 −2 3.10 4.53 4.10 −46.14 −32.39
−1 103.47 96.27 96.49 6.96 6.75

0 184.46 172.18 166.91 6.66 9.51
1 158.96 173.93 158.01 −9.42 0.60

1 000 −2 14.02 16.61 17.54 −18.51 −25.12
−1 99.89 92.02 91.40 7.88 8.50

0 180.83 176.25 166.77 2.54 7.78
1 157.46 167.73 157.80 −6.52 −0.22

6.3. Numerical experiments 139

We also experiment with an hybrid SMO/CS version, where we perform standard SMO
iterations until we achieve a precision ε = 0.1 and then we switch to the conjugate iterations
until the final ε-optimal solution is reached. In our case we set the precision for this final solution
to ε = 0.001. The results are given in columns 6 and 8 of Tables 6.14 to 6.19. In general, when
the CS is faster than SMO, HS is also faster but with lower ratio. On the other hand, we don’t
observe any noticeable improvements in HS over SMO when CS is slower.

To better visualize the dependence on C and γ we have plotted in Fig. 6.9 heatmaps of the
relative time difference between SMO, Conjugate SMO and Hybrid SMO for LIBSVM default
cache size, 100 Mb. Here we can see, for each of the datasets, combinations of C and γ where
CS/HS is faster than SMO (in red) and where it is slower (in blue). Thus, for the datasets
cod-rna, mnist1 and skin, CS and HS are always faster or at least equally fast than SMO
for every C and γ with the exception of C = 10, γ = 0.01 in mnist1 and C = 10, γ = 1.0 in
skin. For the dataset adult8 CS/HS are better for the upper triangular part of the heatmap,
that is, large C and γ. Finally, for the datasets web8 and ijcnn1 CS/HS are usually slower
except for C = 100 and γ = 1.0 in ijcnn1.

Table 6.20: Relative time difference as a percentage between SMO and CS for a full hyper-
parameter search with ε = 0.001 and a 100 Mb cache

Time (s)

Dataset SMO CS RTD (%)

heart 0.025 0.020 20.00
diabetes 0.419 0.386 7.88
australian 0.262 0.213 18.70
german 0.841 0.705 16.17
adult4 10.857 9.212 15.18
web7 153.561 155.992 −1.58
adult8 2 546.097 1 608.115 36.84
web8 748.557 752.478 −0.52
ijcnn1 495.470 439.572 11.28
mnist1 95 460.910 85 319.661 10.62
cod-rna 23 320.557 13 029.203 44.13
skin 2 541.449 2 484.472 2.24

Although in our experiments we have only checked a few values for C and γ, when tuning
an SVM to build the final model it is common to search a bigger grid. As an example, in Fan
et al. (2005b) they search from C = 2−5 = 3.125 × 10−2 to C = 215 = 32768 with steps of 2
in the log2 scale, that is, 2−5, 2−3, . . . , 213, 215. For the optimal γ value a similar technique is
used, starting in γ = 2−15 = 3.052× 10−5 and ending up in γ = 23 = 8, again in the log2 scale
and with steps of 2. For that reason, and given that CS seems to perform better than SMO
in a fairly large section of the previous grid, it is interesting to compare the running time of
both when performing a full hyper-parameter search. The results of this experiment are given in
Table 6.20, where we show the total time of performing the search for the grid described above,
with ε = 0.001 and a cache size of 100 Mb (LIBSVM’s defaults). As before, the running times
are the average of 50 executions, but here we have also repeated the previous process 3 times,
taking the minimum among them. CS significantly outperforms SMO in 9 out of the 12 datasets
considered and it is also almost as fast as SMO in skin, web7, web8.

140 Chapter 6. Accelerating SVM training

10
.0

1.
0

0.
1

0.
01

­4.63 15.09 19.77 25.74

­1.51 ­4.02 2.85 26.00

0.74 ­2.96 ­4.66 8.20

­5.03 ­5.59 ­2.56 ­3.40

Method = CS

0.04 10.70 12.75 17.83

­1.67 ­0.11 ­0.22 13.36

2.95 ­0.28 ­1.09 4.50

­2.14 ­3.12 1.11 1.33

D
ataset = adult8

Method = HS

10
.0

1.
0

0.
1

0.
01

­4.02 6.02 11.84 13.94

­3.39 ­5.59 ­19.16 ­4.44

­3.31 ­3.88 ­12.57 ­16.70

­2.24 ­3.42 ­4.98 ­13.32

­4.44 6.29 10.75 12.52

­1.10 ­2.83 ­12.53 ­2.76

­1.45 ­0.99 ­4.92 ­13.23

­0.22 ­1.99 ­1.07 ­7.67

D
ataset = w

eb8

1 10 100 1000
C

10
.0

1.
0

0.
1

0.
01

­5.29 ­4.53 ­0.87 ­7.06

­4.15 ­2.78 ­4.07 ­2.11

­3.62 ­4.28 ­5.99 1.44

­2.71 ­8.99 ­7.89 ­1.12

1 10 100 1000
C

­1.03 ­2.23 ­2.59 ­16.82

­1.81 ­1.28 ­0.76 ­3.57

­0.03 1.33 ­1.00 0.66

­1.02 ­6.29 ­4.99 2.29

D
ataset = ijcnn1

Figure 6.9: Relative time difference heatmap with a cache size of 100 Mb (a)

6.3. Numerical experiments 141

10
.0

1.
0

0.
1

0.
01

0.25 3.05 6.26 3.49

2.59 3.71 21.91 32.90

2.51 ­0.38 3.14 29.75

9.67 ­0.94 ­5.77 3.56

Method = CS

1.37 4.77 14.88 4.43

­3.20 ­0.05 29.29 38.31

­1.44 0.40 ­0.30 29.06

26.07 ­1.02 ­4.68 ­3.76

D
ataset = m

nist1

Method = HS
10

.0
1.

0
0.

1
0.

01

­4.21 ­3.37 ­4.37 5.07

13.22 19.94 27.41 34.89

1.16 18.53 24.08 31.66

­5.07 8.73 19.44 25.04

­3.18 ­1.72 ­1.26 4.90

14.23 17.09 20.35 29.74

2.93 14.82 23.03 24.98

­3.69 7.46 19.01 22.30

D
ataset = cod­rna

1 10 100 1000
C

10
.0

1.
0

0.
1

0.
01

­16.27 ­10.72 ­9.35 ­10.46

­1.00 4.34 1.53 4.03

10.59 7.16 7.20 6.32

0.23 3.68 ­2.44 1.85

1 10 100 1000
C

­7.64 ­6.08 ­5.05 ­5.43

7.96 6.15 2.17 5.88

10.73 7.90 7.97 7.39

1.24 3.58 ­0.62 ­8.64

D
ataset = skin

Figure 6.9: Relative time difference heatmap with a cache size of 100 Mb (b)

142 Chapter 6. Accelerating SVM training

3
1

-1
-3

-5
-7

-9
-1

1
-1

3
-1

5
lo

g 2

Dataset = adult8 Dataset = web8

3
1

-1
-3

-5
-7

-9
-1

1
-1

3
-1

5
lo

g 2

Dataset = ijcnn1 Dataset = mnist1

-5 -3 -1 1 3 5 7 9 11 13 15
log2C

3
1

-1
-3

-5
-7

-9
-1

1
-1

3
-1

5
lo

g 2

Dataset = cod-rna

-5 -3 -1 1 3 5 7 9 11 13 15
log2C

Dataset = skin
50

25

0

25

50

Figure 6.10: Relative time difference heatmap with a cache size of 100 Mb for the different C
and γ values of a full hyper-parameter search

6.4. Discussion and further work 143

These results are also displayed in Fig. 6.10 for the six largest datasets. Here we can see how
there is usually an upper-triangle in the C-γ grid where Conjugate SMO consistently outperforms
standard SMO. It is also interesting to see that, in general, larger γ values benefit the Conjugate
implementation but only up to a certain threshold, from where SMO starts to be better. On the
other hand it is quite clear that Conjugate SMO outperforms SMO for large C values.

6.4 Discussion and further work

We have shown how a conjugate variant of the MDM algorithm (i.e., the Frank-Wolfe algorithm
with swap steps) for the MNP achieves a substantial reduction of the number of iterations needed
to arrive at a given convergence precision. We have also showed how this reduction in the number
of iterations also translates in most cases to a reduction in the running time of the algorithm.

The Minimum Norm Problem is interesting not only on its own but also because it provides
an alternative way of solving the constrained Lasso problem, using the equivalence described in
Chapter 5. Another application of the conjugate directions lies with the similarity between the
MDM and SMO algorithms. The basic structure of the SMO iterations is very similar to the
MDM ones and so it is the construction of conjugate descent directions.

In this chapter we have also reviewed two classical variants of momentum, the Heavy Ball
algorithm and Nesterov’s Accelerated Gradient, and derived the corresponding SMO versions:
Monotone Nesterov’s Accelerated SMO and Conjugate SMO. This two algorithms achieve a
substantial reduction of the number of iterations needed for SMO to arrive at a given convergence
precision at the cost of some extra iteration complexity. They also obtain essentially the same
final model in terms of the final number of SVs and the final value of the SVC cost function.

For Nesterov’s Acceleration our complexity analysis in floating point operations suggests that
the reduction in the number of iterations can be achieved with an iteration cost about twice
as large as SMO’s. On the other hand Conjugate SMO is a little bit cheaper, performing only
4/3 more floating point operations than SMO. In our experiments comparing our own Python
implementation of the three algorithms we have seen that the empirical average iteration ratios
that also yield faster execution times are 1.68 and 1.35 for MNAS and CS respectively, with
ε = 0.001. However, note that the these timing results were obtained using a possibly inefficient
Python implementation of the SMO algorithm.

In general Conjugate SMO obtained relative good time ratios, specially for large C and γ.
The running times are also better for lower values of the precision ε. On the other hand, the
ratios for Monotone Nesterov SMO are not as promising except for the adult dataset, where
MNAS works better than CS for C = 100. Thus, from a practical point of view, and as we have
made clear, implementing MNAS inside the LIBSVM framework is not likely to result in training
times smaller than those of standard SMO.

We have also implemented the Conjugate SMO algorithm inside the LIBSVM framework,
the state of the art solver for non-linear SVMs. Using this implementation we have compared
SMO and CSMO in terms of the number of iterations and running times for different variables
like C value, kernel width and the size of the cache, which directly impacts the performance of
these methods. As we have seen, in general the Conjugate variant is better than SMO for larger
C and γ values. A discussion of the effects of these parameters for SVC and Gaussian kernels is
made in Keerthi and Lin (2003) and in principle, large γ and C should lead to more difficult
SVM problems.

An hybrid SMO/Conjugate SMO version was also implemented, where we start the opti-
mization performing standard SMO iterations and then switch to the conjugate ones when a
threshold precision ε is reached. This version performed similarly to Conjugate SMO empirically,

144 Chapter 6. Accelerating SVM training

although it opens the way to explore another variants. First, in our experiments we have set the
threshold precision to a fixed values ε = 0.1. However, this precision could be estimated based
on the problem we are solving, deciding on-the-fly at what threshold it is beneficial to start our
conjugate iterations (if at all!). Thus, we could try to automatically determine if for the given
data, C, γ and cache size is worth to use the conjugate or plain updates and where to make the
switch.

Second, if there is a cache miss the iteration cost is dominated by the kernel operation. Thus,
the extra cost of Conjugate SMO would be negligible in the initial iterations, since the cache of
the kernel matrix is still being built. Following that idea we could also test an hybrid method
that starts with the conjugate updates, which are more expensive, and then switches back to the
standard ones. As a conclusion, SMO acceleration may be worthwhile if it initially achieves a
substantial reduction of the objective function while the kernel matrix cache is built, even if one
reverts to standard SMO afterwards. This should be more pronounced in large sample problems
and also with large C values.

All these remarks also suggest that performance evaluation of an improved SVM procedure
over fixed C, γ values should be complemented with more comprehensive comparisons over wider
hyperparameter ranges, perhaps on a dynamic hyperparameter selection context. A particular
example is Hyperopt (Bergstra and Bengio, 2012), that focuses on the evaluation of near-optimal
hyper-parameters. In our experiments we have seen how Conjugate SMO is faster in ten out of
the twelve datasets considered when performing a full hyper-parameter search, using the same
grid as in Fan et al. (2005b). As a further work these experiments could also be extended to
more datasets and also larger ones.

Another key factor in the effectiveness of an acceleration method is the condition number
of SVM’s kernel matrix Q. For unconstrained quadratic problems over a positive definite Q,
gradient descent has linear convergence with an approximate rate of 1− 2/κ (Nesterov, 2004),
with κ being Q’s condition number. Conjugate Gradient and Nesterov’s Acceleration improve this
rate to approximately 1− 2/

√
κ. This implies that, in principle, larger gains could be achieved in

problems with kernel matrices having worse condition numbers. SMO also has linear convergence
rate for positive definite kernel matrices Q, which is also loosely related to the condition number
of the matrix (Fan et al., 2005a).

Finally, understanding NAG behavior can still be considered as an open problem but in
the past couple of years there has been a flurry of activity on the subject (Wibisono et al.,
2016; Su et al., 2014; Allen-Zhu and Orecchia, 2014; Bubeck et al., 2015), particularly for the
unconstrained, strongly convex case. As we have already mentioned, most of them are theoretical
works based on the knowledge of the condition number κ of f , which makes it very difficult to
exploit in practical algorithms. Of particular interest here is the work in O’Donoghue and Candès
(2015), where they suggests to restart Nesterov’s sequence µk when it yields a non-monotone
step to control the over- or under-damping effect of a possibly too large momentum term. While
very simple, in the experiments of O’Donoghue and Candès (2015) this results in a convergence
for strongly convex f much faster than the one achieved working with the standard NAG µk
schedule. In turn, if properly applied, this may help to improve the gains in the number of
MNAS iterations reported here, since we could avoid having to compute the objective value in
order to check the monotonicity.

In addition, while we only report results for SVC problems, the Conjugate SMO iterations
immediately carry over to SVR problems and, in fact, they can also be extended to the ν-SVC
and ν-SVR. These models are already implemented in LIBSVM.

Chapter 7

Conclusions

7.1 Discussion
The thesis has two different parts. In the first one, we have studied the Lasso model, proposed
by Tibshirani in 1996. The main idea is to add a `1-penalty to the least squares loss function,
achieving not only a good generalization error but also some sparsity in the final coefficients. In
this sense the Lasso is not only a regression model but also a feature selection method, since the
features that correspond to zeroed out coefficients can be eliminated from the final model. The
underlying optimization problem has two main characteristics, both related to the `1-penalty,
that make it more challenging to tackle than, say, Ridge Regression:

1. The objective function is not strongly convex.

2. The `1-norm is not differentiable.

Among the first algorithms to efficiently solve the Lasso we highlight FISTA, which is just
Nesterov’s Acceleration applied to Proximal Gradient Descent. Research on algorithms that scale
to larger problems went in two main directions: Stochastic Coordinate Descent and Stochastic
Gradient Descent.

In Stochastic Coordinate Descent, we randomly select one coefficient and optimize with
respect to that coordinate using the full gradient. This algorithm is specially beneficial to the
Lasso, since the `1-norm is separable and thus the inner optimization problem can be solved
analytically. On the other hand, in Stochastic Gradient Descent we compute an approximation
of the gradient with respect to all coordinates but using only a single data point. In general
Coordinate Descent is faster in problems with moderately large sample sizes, up to the hundred
thousands. Contributing to the popularity of the algorithm is also GLMNet, a very efficient
Fortran/R implementation.

Building on a recent result by Jaggi, where he shows the equivalence between the constrained
Lasso and SVMs, we have considered here SMO as a potential Lasso solver and show empirically
that it is at least competitive. In particular, our contributions are:

• A refined version of the equivalence between the Lasso and SVMs problems. In particular
we arrived at an instance of a geometrical problem known as Nearest Point Problem, which
aims at finding the closest points between two convex hulls. The NPP is also equivalent to
the ν-SVC formulation, and thus it can be solved directly by LIBSVM.

• A modified version of the SMO algorithm implemented by LIBSVM, especially tailored
for this reduction. When solving the Lasso trough its equivalent ν-SVC instance we have

145

146 Chapter 7. Conclusions

to double the number of variables, obtaining a new artificial data matrix (X | −X). Thus,
when computing the kernel matrix there are many redundancies. We exploit this fact to
suggest a new “kernel-aware” SVM algorithm (K-SVM), which solves the Lasso problem
performing up to 8 times less kernel operations than the standard SVM.

• An empirical comparison between Cyclic Coordinate Descent, as implemented in the scikit-
learn library, SVM and K-SVM. The results show that K-SVM obtains an ε-optimal solution
faster than its SVM counterpart for ε = 10−6, as expected. K-SVM also outperforms Cyclic
Coordinate Descent in all the datasets considered except from one.

• A software implementation of the reduction from the Lasso to an SVM instance, in Python,
and an implementation of K-SVM inside the LIBSVM framework.

In the second part of this thesis we have focused on acceleration methods for the SMO
algorithm. In particular we have developed two SMO variants, one based on the Conjugate
Gradient Descent algorithm and another one inspired by Nesterov’s Accelerated Gradient. Both
acceleration techniques come from the classic convex literature and were known as early as 1963
and 1983, respectively. However, it wasn’t until recently that these algorithms were applied to
modern Machine Learning models such as deep networks, especially Nesterov’s Acceleration.
This is in part due to all the recent theoretical work trying to understand why and when the
acceleration is possible.

Sequential Minimal Optimization was proposed by Platt in 1998 and since then, it is
one of the most widely used algorithms to solve SVMs, mainly the non-linear formulation.
This is partially due to the LIBSVM library, which appeared in 2001 and offers a fast and
efficient implementation. LIBSVM recieves periodic updates but, apart from bugfixes and code
optimizations, the algorithm is essentially SMO together with second order working set selection
(Fan et al., 2005b). Furthermore, recent successful advances in SVM optimization try to make the
algorithms scale by parallelizing the algorithm, distributing the computation, or both. Motivated
by this ideas, we have followed here a different approach. Instead of focusing on the technological
side, we tried to make SMO more efficient from an algorithmic point of view. As a result, we
have obtained:

• A detailed analysis of the Heavy Ball method and Nesterov’s Accelerated Gradient, showing
how they improve on the basic Gradient Descent scheme.

• Two novel variants of the SMO algorithm, Conjugate SMO and Nesterov’s Accelerated
SMO. We have also analyzed the complexity of both algorithms in terms of floating point
operations.

• Experimental results showing how, in general, our Nesterov’s Accelerated and Conjugate
versions reduce the number of iterations needed by SMO to converge to a given precision ε.
In particular, we have studied the convergence for several values of the hyper-parameters
C and γ, using our own Python implementation of the three methods.

• A software implementation of Conjugate SMO inside the LIBSVM framework.

• Experimental results comparing the running time of Conjugate SMO and standard SMO,
as implemented by LIBSVM. In these experiments we have settled for a precision ε = 0.001
and instead we have varied the cache size and SVC’s hyper-parameters C and γ. As a
conclusion Conjugate SMO is usually faster the larger the C and γ and the lower the cache
size, that is, more difficult problems. This suggest that Conjugate Gradient is beneficial in

7.2. Further work 147

an hyper-parametrization setting, since the common practice is to explore a fairly big grid
of values for C and γ.

7.2 Further work

This thesis is just a step in obtaining faster and more efficient algorithms to solve the Lasso and
SVMs problems. Therefore, we finish our discussion by providing some ideas to extend the work
presented here:

• As noted by Jaggi (2014), there are many implications of the equivalence between the
Lasso and SVMs. We have exploited here one particular direction to solve the Lasso using
essentially SMO. However, it may be profitable to apply in practice other results. As a
particular example novel homotopy methods for the SVM could be developed.

• Although the Cyclic Coordinate Descent solver implemented in scikit-learn is of high
quality, it is still not as fast as the original GLMNet package. The exact reasons for this
discrepancy are very hard to know, but the scikit version could at least improve in two
areas: implement a cache of recently computed dot products and implement screening rules.
Thus, it would be of great interest to add these features to scikit-learn and then redo the
comparison in Chapter 5.

• Stochastic Coordinate Descent offers an alternative to Cyclic Coordinate Descent that
sometimes converges faster when the number of features is very large. Therefore it would
also be interesting to include it in the experiments performed in Chapter 5.

• We have already mentioned screening as a potential technique to speed up solving the
Lasso problem by discarding early unused coefficients. As we discussed, the effectiveness
of the screening rules greatly depends on the problem. Similarly, the shrinking feature in
LIBSVM discards coefficients during the optimization that are not going to be support
vectors. Although we have disable shrinking when running K-SVM, it has the potential to
further reduce training times. Thus, more experiments comparing shrinking and screening
are needed.

• LIBSVM was the library chosen to perform the experiments in Chapter 5. However,
LIBSVM is the state-of-the-art only for non-linear SVM models. In this case, we transform
the Lasso problem into a linear ν-SVC instance and the question remains whether it can be
solved more efficiently. As of now other popular libraries such as LIBLINEAR and Pegasos
that contain more sophisticated algorithms for the linear case do not include the ν-SVC.

• Regarding the Conjugate and Nesterov’s Accelerated SMO, it should be easy to extend
them to work for the SVR model. In the same fashion, novel Conjugate and Nesterov
Accelerated versions could also be derived for the ν-SVM. However, in this case more work
is involved since this problem has an extra constraint.

• Currently, we believe our Monotone Nesterov’s Accelerated SMO not to be competitive with
either SMO or Conjugate SMO. One of the main reasons is that checking the monotonicity
at every iteration involves computing the value of the objective function, which is quite
expensive in the case of SVC’s dual. However, in a recent work O’Donoghue and Candès
(2015) suggest to test the monotonicity by using the gradient and to restart Nesterov’s
µk sequence when it does not hold. Since this information is already needed by SMO, it

148 Chapter 7. Conclusions

could provide a faster convergence for Nesterov’s Accelerated version. Furthermore, we also
compute the exact coefficient in the convex combination that ensures monotone decrease.
This could also be avoiding using the restarts mentioned above.

Chapter 8

Conclusiones

8.1 Discusión
Esta tesis tiene dos partes diferenciadas. En la primera, se ha estudiado el modelo Lasso,
propuesto por Tibshirani en 1996. La idea principal es añadir una penalización `1 a la función
de pérdida de mínimos cuadrados, obteniendo no solo un buen error de generalización sino
también coeficientes finales dispersos. Bajo este punto de vista Lasso no es únicamente un
modelo de regresión sino también un método de selección de características, ya que las variables
que se corresponden con coeficientes iguales a cero se pueden eliminar del modelo final. El
problema de optimización subyacente tiene dos características principales, ambas relacionadas
con la penalización `1, y que hacen que este sea más complicado de abordar que otros problemas
similares, como por ejemplo Ridge Regression:

1. La función objetivo no es fuertemente convexa.

2. La norma `1 no es diferenciable.

Entre los primeros algoritmos para resolver el Lasso de forma eficiente destaca FISTA, que
consiste en la aceleración de Nesterov aplicada a Proximal Gradient Descent. La investigación
en algoritmos que escalan a problemas más grandes se resume en dos direcciones principales:
Stochastic Coordenate Descent y Stochastic Gradient Descent.

En Stochastic Coordinate Descent se selecciona un coeficiente de forma aleatoria y se optimiza
con respecto a esa coordenada usando el gradiente completo. Este algoritmo es especialmente
beneficioso para el problema Lasso, ya que la norma `1 es separable y por tanto el sub-problema
de optimización tiene solución analítica. Por otra parte, en Stochastic Gradient Descent se calcula
una aproximación del gradiente con respecto a todas las coordenadas pero usando un único
ejemplo. En general Coordinate Descent es más rápido en problemas con tamaños muestrales
moderadamente grandes, hasta los cientos de miles. Algo que también contribuye a la popularidad
de este algoritmo es GLMNet, una implementación en Fortran/R muy eficiente.

Basándonos en un resultado reciente de Jaggi, donde muestra la equivalencia entre el Lasso
con restricciones y las SVMs, hemos considerado en esta tesis el uso de SMO como un algoritmo
para resolver el problema Lasso, mostrando empíricamente que es por lo menos competitivo. En
particular, nuestras contribuciones son:

• Una versión refinada de la equivalencia entre el Lasso y las SVMs. En particular se construye
una instancia de un problema geométrico conocido como el Nearest Point Problem, cuyo
objetivo es encontrar los puntos más cercanos de dos envolventes convexas. El NPP es

149

150 Chapter 8. Conclusiones

también equivalente a la formulación ν-SVC, y por tanto se puede resolver de forma directa
usando LIBSVM.

• Una versión modificada del algoritmo SMO implementado por LIBSVM especialmente
diseñado para la reducción anterior. Cuando se resuelve el Lasso a través de la instancia
ν-SVC equivalente tenemos que doblar el número de variables, obteniendo una nueva matriz
de datos artificial (X | −X). Por tanto, cuando se calcula la matriz de núcleos esta contiene
muchas redundancias. Aprovechándonos de ese hecho, sugerimos un nuevo algoritmo que
tiene en cuenta esta estructura (K-SVM) y resuelve el problema Lasso realizando hasta 8
veces menos operaciones de kernel que la SVM estándar.

• Una comparación empírica entre Cyclic Coordinate Descent, tomando como referencia la
implementación de la libreria scikit-learn, SVM y K-SVM. Los resultados muestran que
K-SVM obtiene una solución ε-óptima más rápido que SVM para ε = 10−6, como era de
esperar. K-SVM también supera a Cyclic Coordinate Descent en todos los conjuntos de
datos considerados excepto en uno.

• Implementación en Python de la reducción del Lasso a una instancia de SVM y una
implementación de K-SVM dentro de la libreria LIBSVM.

En la segunda parte de esta tesis nos hemos centrado en métodos de aceleración para el
algoritmo SMO. En particular hemos desarrollado dos variantes de SMO, una basada en el
algoritmo Conjugate Gradient Descent y otra inspirada por el gradiente acelerado de Nesterov.
Ambas técnicas provienen de la literatura clásica de optimización convexa, y son conocidas desde
1963 y 1983, respectivamente. Sin embargo recientemente estos algoritmos, sobre todo el gradiente
acelerado de Nesterov, han sido aplicados a modelos actuales de Aprendizaje Automático como
por ejemplo redes neuronales profundas. Esto se debe en parte a todo el trabajo teórico que se
está realizando para tratar de comprender por qué y cuándo la aceleración es posible.

Sequential Minimal Optimization fue propuesto por Platt en 1998 y, desde entonces, es uno de
los algoritmos más usados para resolver las SVMs, principalmente su formulación no lineal. Esto
se debe, parcialmente, a la libreria LIBSVM, que fue creada en 2001 y ofrece una implementación
muy eficiente. LIBSVM recibe actualizaciones periódicas pero, aparte de correcciones menores y
optimizaciones del código, el algoritmo es esencialmente SMO con selección de coeficientes de
segundo orden (Fan et al., 2005b). Además, los avances recientes en la optimización del problema
de las SMVs se centran en escalar los algoritmos usando paralelización, computación distribuida
o ambas. Motivados por estas ideas, nosotros hemos considerado en esta tesis un enfoque distinto.
En lugar de centrarnos en los avances tecnológicos, hemos intentado hacer que SMO sea más
eficiente desde un punto de vista algorítmico. Como resultado, hemos obtenido:

• Un análisis detallado del método Heavy Ball y el gradiente acelerado de Nesterov, mostrando
como mejoran el esquema básico de descenso por gradiente.

• Dos nuevas variantes del algorimo SMO, Conjugate SMO y Nesterov’s Accelerated SMO.
También hemos analizado la complejidad de ambos algoritmos en términos de operaciones
de coma flotante.

• Resultados experimentales mostrando como, en general, los algoritmos Nesterov’s Acceler-
ated y Conjugate reducen el número de iteraciones de SMO necesarias para la convergencia
con una precisión ε determinada. En particular, hemos estudiado la convergencia para
múltiples valores de los hiper-parámetros C y γ, usando una implementación propia de los
tres métodos en Python.

8.2. Trabajo futuro 151

• Una implementación de Conjugate SMO en la librería LIBSVM.

• Resultados experimentales comparando el tiempo de ejecución de Conjugate SMO y SMO
estándar, ambos implementados en LIBSVM. En estos experimentos hemos fijado una
precisión ε = 0.001 y hemos explorado en su lugar distintos valores para el tamaño de la
cache y de los hiper-parámetros C y γ. La conclusión es que Conjugate SMO es más rápido
cuanto más grande sean C y γ y cuanto más pequeño sea el tamaño de la cache, es decir,
problemas de optimización más complejos. Esto sugiere que Conjugate SMO es beneficioso
en un esquema de hiper-parametrización, ya que la práctica común consiste en explorar
una rejilla más o menos grande de valores de C y γ.

8.2 Trabajo futuro
Esta tesis es solo un pequeño paso en el camino de obtener algorimos más rápidos y eficientes
para resolver el Lasso y las SVMs. Por tanto, terminamos nuestra discusión proporcionando
algunas ideas para extender el el trabajo aquí presentado:

• Como ya indicó Jaggi (2014), hay múltiples implicaciones de la equivalencia entre el Lasso y
las SVMs. En esta tesis nos hemos aprovechado de una dirección en particular para resolver
el Lasso usando SMO. Sin embargo, también puede ser beneficioso aplicar en la práctica
otros resultados. Un ejemplo concreto podría ser desarrollar métodos de homotopía para
las SVMs.

• A pesar de que el algoritmo Cyclic Coordinate Descent implementado en scikit-learn es de
mucha calidad, todavía no es tan rápido como el paquete GLMNet original. Es complicado
conocer las razones exactas de esta discrepancia, pero la versión de scikit-learn podría
mejorar por lo menos en dos áreas: implementar una cache de productos escalares recientes e
implementar reglas de screening. Por tanto, sería de gran interés añadir estas características
a scikit-learn y rehacer la comparación en el Capítulo 5.

• Stochastic Coordinate Descent ofrece una alternativa a Cyclic Coordinate Descent que
en ocasiones converge más rápido cuando el número de variables es muy grande. Por
tanto también sería interesante incluir este algoritmo en los experimentos realizados en el
Capítulo 5.

• Ya hemos mencionado el screening como una técnica que potencialmente puede acelerar la
resolución del problema Lasso descartando coeficientes antes de que termine la optimización.
Como ya hemos mencionado anteriormente, la efectividad de las reglas de screening depende
en gran parte del problema en concreto. De forma similar, la función de shrinking de
LIBSVM descarta coeficientes durante el proceso de optimización que no van a ser vectores
de soporte. A pesar de que hemos deshabilitado shrinking en la realización los experimentos
de K-SVM, existe la posibilidad de que reduzca todavía más el tiempo de ejecución. Por
tanto, son necesarios más experimentos teniendo en cuenta tanto shrinking como screening.

• Hemos elegido la librería LIBSVM para realizar los experimentos del Capítulo 5. Sin
embargo LIBSVM es únicamente el estado del arte para resolver SVMs no lineales. En
este caso, Lasso se transforma en una instancia de la ν-SVC lineal y por tanto existe la
duda de si este problema se puede resolver de manera más eficiente usando otro algoritmo
distinto de SMO. Actualmente otras librerías populares como LIBLINEAR y Pegasos, que
contienen algoritmos más sofisticados para resolver la formulación lineal, no incluyen la
ν-SVC.

152 Chapter 8. Conclusiones

• Con respecto a Conjugate y Nesterov’s Accelerated SMO, deberían de ser fácilmente
aplicables al la SVR. De la misma forma, se podrían desarrollar nuevas versiones Conjugate
y Nesterov’ Accelerated para la ν-SVM. En este caso sería algo más complicado ya que el
problema de optimización tiene una restricción extra.

• En este momento no consideramos que nuestra versión Monotone Nesterov’s Accelerated
SMO sea competitiva con SMO o Conjugate SMO. Uno de los motivos principales es que
comprobar la monotonocidad conlleva calcular el valor de la función objetivo, que es muy
costoso en el caso del dual de la SVC. Sin embargo, un trabajo reciente de O’Donoghue
and Candès (2015) propone comprobar la monotonicidad usando el gradiente y reiniciar la
secuencia de Nesterov µk cuando no se cumpla. Puesto que esta información ya es necesaria
en SMO, podría proporcionar una convergencia más rápida para la versión Nesterov’s
Accelerated. Además también calculamos el valor exacto del coeficiente que controla la
combinación convexa y asegura el descenso monótono. Esto también se podría evitar
usando los reinicios mencionados anteriormente.

Appendices

153

Appendix A

Derivation of the soft-thresholding
operator

Let f(x) = λ‖x‖1, then the proximal mapping of f is defined as

proxf (x) = argmin
z
{‖x− z‖22 + λ‖z‖1}. (A.1)

The optimality condition for the previous problem is (Proposition 2.2)

0 ∈ ∇(‖x− z‖22) + ∂(λ‖z‖1) ⇔ 0 ∈ z − x+ λ∂‖z‖1 (A.2)

The l1-norm is additive and thus we can consider each of its components separately. Let’s
examine first the case where zi 6= 0. Then, ∂‖zi‖ = sign(zi) and the optimum z∗i is obtained as

0 = zi − xi + λ sign(zi) ⇔ z∗i = xi − λ sign(z∗i) (A.3)

Note also that if z∗i < 0, then xi < −λ and equivalently if z∗i > 0 ⇒ xi > λ. Thus sign(z∗i) =
sign(xi) and |xi| > λ. Substituting in Eq. (A.3) we get

z∗i = xi − λ sign(xi). (A.4)

In the case where zi = 0, the subdifferential of the l1-norm is the interval [−1, 1] and the
optimality condition is

0 ∈ −xi + λ[−1, 1]⇔ xi ∈ [−λ, λ]⇔ |xi| ≤ λ. (A.5)

Putting all together we get

z∗i = [proxf (x)]i =
{

0 if |xi| ≤ λ,
xi − λ sign(xi) if |xi| > λ.

(A.6)

Equation (A.6) can also be written as

[proxf (x)]i = sign(xi) max(|xi| − λ, 0)
= sign(xi)(|xi| − λ)+

= xi
|xi|

(|xi| − λ)+

= xi

(
1− λ

|xi|

)
+

where (·)+ denotes the positive part.

155

156 Appendix A. Derivation of the soft-thresholding operator

Appendix B

Convergence rates

Suppose that {xk} is a sequence of points in Rn. The sequence converges to some point x∗,
written

lim
k→∞

xk = x∗

if for any ε > 0, there is an index k0 such that

‖xk − x∗‖ ≤ ε,

for all k > k0 (Nocedal and Wright, 2006).
Given two different algorithms that generate a sequence {xk} approaching to the same limit,

it is useful to characterize which one arrives to the limit faster. The speed at which a convergent
sequence approaches the limit is called rate of convergence. Assume that the sequence {xk}
converges to x∗. Then, we say that the sequence converges linearly to x∗ if there exists a constant
r ∈ (0, 1) such that

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ = r (B.1)

for all k > k0. The number r is called the rate of convergence and it means that the distance to
x∗ decreases at each iteration by at least that factor,

‖xk+1 − x∗‖
‖xk − x∗‖ ≤ r.

Furthermore, if r = 0 we say that the sequence converges superlinearly and if r = 1 it converges
sublinearly.

We can also distinguish different cases of superlinear convergence. A sequence {xk} converges
superlinearly with order q if there exists a constant r ∈ (0, 1) such that

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ = r (B.2)

for k > k0. In particular, if q = 2 is called quadratic convergence, if q = 3 cubic convergence and
so on. Figure B.1 shows the differences between sublinear, linear and quadratic convergences.
Note that a linear convergence is often better than sublinear convergence but not always. For
instance in this example, if we were to choose ε = 10−3 the sequence 1/k2 would have converge
faster than rk for r = 0.85, but maybe not for other rates.

157

158 Appendix B. Convergence rates

1e−05

1e−03

1e−01

0 25 50 75 100

k

V
al

ue

Rate

Sublinear (1/k)

Sublinear (1/k^2)

Linear (r=0.85)

Superlinear (quadratic)

Figure B.1: Comparison of sublinear (1/k and 1/k2), linear and superlinear (quadratic) conver-
gences.

Appendix C

Iteration results

We include here for completeness the iteration results of the experiments in 6.3.4. Note that
these do not necessarily coincide exactly with the ones in 6.3.3, since those were obtained using
Python code. Thus, even though they implement the same algorithm there are many subtleties
that may slightly change the results. One such example is the stopping criterion.

159

160 Appendix C. Iteration results

Table C.1: Comparison of the number of iterations between SMO, Conjugate SMO (CS) and
Hybrid SMO (HS) for the adult8 dataset

Iterations Ratio

Cache (Mb) C log10 γ SMO CS HS CS HS

1 1 −2 6 250 6 251 6 251 1.00 1.00
−1 5 786 5 774 5 774 1.00 1.00

0 5 968 5 748 5 731 1.04 1.04
1 12 746 10 939 11 240 1.17 1.13

10 −2 5 779 5 788 5 788 1.00 1.00
−1 6 168 5 923 5 823 1.04 1.06

0 15 460 12 075 12 308 1.28 1.26
1 65 787 51 253 55 034 1.28 1.20

100 −2 6 136 5 830 5 863 1.05 1.05
−1 14 886 11 110 11 997 1.34 1.24

0 117 776 72 499 82 834 1.62 1.42
1 269 486 191 220 215 867 1.41 1.25

1 000 −2 16 341 12 761 12 795 1.28 1.28
−1 110 050 66 836 75 228 1.65 1.46

0 941 352 489 477 612 510 1.92 1.54
1 661 900 397 725 486 109 1.66 1.36

100 1 −2 6 250 6 251 6 251 1.00 1.00
−1 5 786 5 774 5 774 1.00 1.00

0 5 968 5 748 5 731 1.04 1.04
1 12 746 10 939 11 240 1.17 1.13

10 −2 5 779 5 788 5 788 1.00 1.00
−1 6 168 5 923 5 823 1.04 1.06

0 15 460 12 075 12 308 1.28 1.26
1 65 787 51 253 55 034 1.28 1.20

100 −2 6 136 5 830 5 863 1.05 1.05
−1 14 886 11 110 11 997 1.34 1.24

0 117 776 72 499 82 834 1.62 1.42
1 269 486 191 220 215 867 1.41 1.25

1 000 −2 16 341 12 761 12 795 1.28 1.28
−1 110 050 66 836 75 228 1.65 1.46

0 941 352 489 477 612 510 1.92 1.54
1 661 900 397 725 486 109 1.66 1.36

1 000 1 −2 6 250 6 251 6 251 1.00 1.00
−1 5 786 5 774 5 774 1.00 1.00

0 5 968 5 748 5 731 1.04 1.04
1 12 746 10 939 11 240 1.17 1.13

10 −2 5 779 5 788 5 788 1.00 1.00
−1 6 168 5 923 5 823 1.04 1.06

0 15 460 12 075 12 308 1.28 1.26
1 65 787 51 253 55 034 1.28 1.20

100 −2 6 136 5 830 5 863 1.05 1.05
−1 14 886 11 110 11 997 1.34 1.24

0 117 776 72 499 82 834 1.62 1.42
1 269 486 191 220 215 867 1.41 1.25

1 000 −2 16 341 12 761 12 795 1.28 1.28
−1 110 050 66 836 75 228 1.65 1.46

0 941 352 489 477 612 510 1.92 1.54
1 661 900 397 725 486 109 1.66 1.36

161

Table C.2: Comparison of the number of iterations between SMO, Conjugate SMO (CS) and
Hybrid SMO (HS) for the web8 dataset

Iterations Ratio

Cache (Mb) C log10 γ SMO CS HS CS HS

1 1 −2 2 449 2 501 2 501 0.98 0.98
−1 2 679 2 643 2 643 1.01 1.01

0 3 089 2 976 2 893 1.04 1.07
1 5 378 5 041 5 092 1.07 1.06

10 −2 2 637 2 643 2 643 1.00 1.00
−1 3 144 2 960 3 018 1.06 1.04

0 7 759 7 164 7 009 1.08 1.11
1 16 344 12 997 13 345 1.26 1.22

100 −2 3 027 2 921 3 001 1.04 1.01
−1 7 147 6 887 6 831 1.04 1.05

0 32 556 26 909 28 168 1.21 1.16
1 28 525 20 717 22 262 1.38 1.28

1 000 −2 8 846 8 063 7 670 1.10 1.15
−1 41 168 32 089 34 422 1.28 1.20

0 124 013 92 767 97 653 1.34 1.27
1 45 755 26 271 30 442 1.74 1.50

100 1 −2 2 449 2 501 2 501 0.98 0.98
−1 2 679 2 643 2 643 1.01 1.01

0 3 089 2 976 2 893 1.04 1.07
1 5 378 5 041 5 092 1.07 1.06

10 −2 2 637 2 643 2 643 1.00 1.00
−1 3 144 2 960 3 018 1.06 1.04

0 7 759 7 164 7 009 1.08 1.11
1 16 344 12 997 13 345 1.26 1.22

100 −2 3 027 2 921 3 001 1.04 1.01
−1 7 147 6 887 6 831 1.04 1.05

0 32 556 26 909 28 168 1.21 1.16
1 28 525 20 717 22 262 1.38 1.28

1 000 −2 8 846 8 063 7 670 1.10 1.15
−1 41 168 32 089 34 422 1.28 1.20

0 124 013 92 767 97 653 1.34 1.27
1 45 755 26 271 30 442 1.74 1.50

1 000 1 −2 2 449 2 501 2 501 0.98 0.98
−1 2 679 2 643 2 643 1.01 1.01

0 3 089 2 976 2 893 1.04 1.07
1 5 378 5 041 5 092 1.07 1.06

10 −2 2 637 2 643 2 643 1.00 1.00
−1 3 144 2 960 3 018 1.06 1.04

0 7 759 7 164 7 009 1.08 1.11
1 16 344 12 997 13 345 1.26 1.22

100 −2 3 027 2 921 3 001 1.04 1.01
−1 7 147 6 887 6 831 1.04 1.05

0 32 556 26 909 28 168 1.21 1.16
1 28 525 20 717 22 262 1.38 1.28

1 000 −2 8 846 8 063 7 670 1.10 1.15
−1 41 168 32 089 34 422 1.28 1.20

0 124 013 92 767 97 653 1.34 1.27
1 45 755 26 271 30 442 1.74 1.50

162 Appendix C. Iteration results

Table C.3: Comparison of the number of iterations between SMO, Conjugate SMO (CS) and
Hybrid SMO (HS) for the ijcnn1 dataset

Iterations Ratio

Cache (Mb) C log10 γ SMO CS HS CS HS

1 1 −2 9 006 9 006 9 006 1.00 1.00
−1 8 402 8 369 8 369 1.00 1.00

0 6 758 6 669 6 610 1.01 1.02
1 5 657 5 386 5 341 1.05 1.06

10 −2 8 509 8 495 8 495 1.00 1.00
−1 7 611 7 399 7 376 1.03 1.03

0 7 508 6 717 6 756 1.12 1.11
1 11 146 8 647 9 062 1.29 1.23

100 −2 7 857 7 686 7 768 1.02 1.01
−1 10 651 8 846 8 786 1.20 1.21

0 19 427 13 794 14 951 1.41 1.30
1 48 591 32 657 37 825 1.49 1.28

1 000 −2 14 105 10 621 11 144 1.33 1.27
−1 34 956 21 978 24 741 1.59 1.41

0 129 905 82 096 93 399 1.58 1.39
1 238 126 161 662 183 527 1.47 1.30

100 1 −2 9 006 9 006 9 006 1.00 1.00
−1 8 402 8 369 8 369 1.00 1.00

0 6 758 6 669 6 610 1.01 1.02
1 5 657 5 386 5 341 1.05 1.06

10 −2 8 509 8 495 8 495 1.00 1.00
−1 7 611 7 399 7 376 1.03 1.03

0 7 508 6 717 6 756 1.12 1.11
1 11 146 8 647 9 062 1.29 1.23

100 −2 7 857 7 686 7 768 1.02 1.01
−1 10 651 8 846 8 786 1.20 1.21

0 19 427 13 794 14 951 1.41 1.30
1 48 591 32 657 37 825 1.49 1.28

1 000 −2 14 105 10 621 11 144 1.33 1.27
−1 34 956 21 978 24 741 1.59 1.41

0 129 905 82 096 93 399 1.58 1.39
1 238 126 161 662 183 527 1.47 1.30

1 000 1 −2 9 006 9 006 9 006 1.00 1.00
−1 8 402 8 369 8 369 1.00 1.00

0 6 758 6 669 6 610 1.01 1.02
1 5 657 5 386 5 341 1.05 1.06

10 −2 8 509 8 495 8 495 1.00 1.00
−1 7 611 7 399 7 376 1.03 1.03

0 7 508 6 717 6 756 1.12 1.11
1 11 146 8 647 9 062 1.29 1.23

100 −2 7 857 7 686 7 768 1.02 1.01
−1 10 651 8 846 8 786 1.20 1.21

0 19 427 13 794 14 951 1.41 1.30
1 48 591 32 657 37 825 1.49 1.28

1 000 −2 14 105 10 621 11 144 1.33 1.27
−1 34 956 21 978 24 741 1.59 1.41

0 129 905 82 096 93 399 1.58 1.39
1 238 126 161 662 183 527 1.47 1.30

163

Table C.4: Comparison of the number of iterations between SMO, Conjugate SMO (CS) and
Hybrid SMO (HS) for the cod-rna dataset

Iterations Ratio

Cache (Mb) C log10 γ SMO CS HS CS HS

1 1 −2 42 950 27 177 29 578 1.58 1.45
−1 61 078 38 103 38 938 1.60 1.57

0 91 229 54 369 55 372 1.68 1.65
1 37 381 35 850 36 107 1.04 1.04

10 −2 170 421 77 285 82 945 2.21 2.05
−1 261 206 119 248 127 991 2.19 2.04

0 241 711 115 265 126 190 2.10 1.92
1 43 026 40 150 40 563 1.07 1.06

100 −2 749 551 298 121 313 889 2.51 2.39
−1 1 003 438 427 601 450 801 2.35 2.23

0 707 542 285 249 364 116 2.48 1.94
1 60 297 52 595 54 480 1.15 1.11

1 000 −2 4 419 404 1 633 647 1 768 231 2.71 2.50
−1 4 696 452 1 806 054 2 132 620 2.60 2.20

0 2 508 529 948 047 1 315 501 2.65 1.91
1 105 650 74 924 85 085 1.41 1.24

100 1 −2 42 950 27 177 29 578 1.58 1.45
−1 61 078 38 103 38 938 1.60 1.57

0 91 229 54 369 55 372 1.68 1.65
1 37 381 35 850 36 107 1.04 1.04

10 −2 170 421 77 285 82 945 2.21 2.05
−1 261 206 119 248 127 991 2.19 2.04

0 241 711 115 265 126 190 2.10 1.92
1 43 026 40 150 40 563 1.07 1.06

100 −2 749 551 298 121 313 889 2.51 2.39
−1 1 003 438 427 601 450 801 2.35 2.23

0 707 542 285 249 364 116 2.48 1.94
1 60 297 52 595 54 480 1.15 1.11

1 000 −2 4 419 404 1 633 647 1 768 231 2.71 2.50
−1 4 696 452 1 806 054 2 132 620 2.60 2.20

0 2 508 529 948 047 1 315 501 2.65 1.91
1 105 650 74 924 85 085 1.41 1.24

1 000 1 −2 42 950 27 177 29 578 1.58 1.45
−1 61 078 38 103 38 938 1.60 1.57

0 91 229 54 369 55 372 1.68 1.65
1 37 381 35 850 36 107 1.04 1.04

10 −2 170 421 77 285 82 945 2.21 2.05
−1 261 206 119 248 127 991 2.19 2.04

0 241 711 115 265 126 190 2.10 1.92
1 43 026 40 150 40 563 1.07 1.06

100 −2 749 551 298 121 313 889 2.51 2.39
−1 1 003 438 427 601 450 801 2.35 2.23

0 707 542 285 249 364 116 2.48 1.94
1 60 297 52 595 54 480 1.15 1.11

1 000 −2 4 419 404 1 633 647 1 768 231 2.71 2.50
−1 4 696 452 1 806 054 2 132 620 2.60 2.20

0 2 508 529 948 047 1 315 501 2.65 1.91
1 105 650 74 924 85 085 1.41 1.24

164 Appendix C. Iteration results

Table C.5: Comparison of the number of iterations between SMO, Conjugate SMO (CS) and
Hybrid SMO (HS) for the mnist1 dataset

Iterations Ratio

Cache (Mb) C log10 γ SMO CS HS CS HS

1 1 −2 4 479 4 479 4 479 1.00 1.00
−1 2 137 2 108 2 108 1.01 1.01

0 1 761 1 549 1 619 1.14 1.09
1 3 058 2 914 2 934 1.05 1.04

10 −2 2 119 2 093 2 093 1.01 1.01
−1 2 319 2 019 2 093 1.15 1.11

0 5 848 4 631 4 890 1.26 1.20
1 4 043 3 867 3 845 1.05 1.05

100 −2 2 484 2 122 2 175 1.17 1.14
−1 11 287 9 098 9 087 1.24 1.24

0 11 516 8 808 9 555 1.31 1.21
1 4 043 3 867 3 845 1.05 1.05

1 000 −2 13 075 9 762 10 446 1.34 1.25
−1 49 430 34 627 38 456 1.43 1.29

0 12 303 9 084 9 941 1.35 1.24
1 4 043 3 867 3 845 1.05 1.05

100 1 −2 4 479 4 479 4 479 1.00 1.00
−1 2 137 2 108 2 108 1.01 1.01

0 1 761 1 549 1 619 1.14 1.09
1 3 058 2 914 2 934 1.05 1.04

10 −2 2 119 2 093 2 093 1.01 1.01
−1 2 319 2 019 2 093 1.15 1.11

0 5 848 4 631 4 890 1.26 1.20
1 4 043 3 867 3 845 1.05 1.05

100 −2 2 484 2 122 2 175 1.17 1.14
−1 11 287 9 098 9 087 1.24 1.24

0 11 516 8 808 9 555 1.31 1.21
1 4 043 3 867 3 845 1.05 1.05

1 000 −2 13 075 9 762 10 446 1.34 1.25
−1 49 430 34 627 38 456 1.43 1.29

0 12 303 9 084 9 941 1.35 1.24
1 4 043 3 867 3 845 1.05 1.05

1 000 1 −2 4 479 4 479 4 479 1.00 1.00
−1 2 137 2 108 2 108 1.01 1.01

0 1 761 1 549 1 619 1.14 1.09
1 3 058 2 914 2 934 1.05 1.04

10 −2 2 119 2 093 2 093 1.01 1.01
−1 2 319 2 019 2 093 1.15 1.11

0 5 848 4 631 4 890 1.26 1.20
1 4 043 3 867 3 845 1.05 1.05

100 −2 2 484 2 122 2 175 1.17 1.14
−1 11 287 9 098 9 087 1.24 1.24

0 11 516 8 808 9 555 1.31 1.21
1 4 043 3 867 3 845 1.05 1.05

1 000 −2 13 075 9 762 10 446 1.34 1.25
−1 49 430 34 627 38 456 1.43 1.29

0 12 303 9 084 9 941 1.35 1.24
1 4 043 3 867 3 845 1.05 1.05

165

Table C.6: Comparison of the number of iterations between SMO, Conjugate SMO (CS) and
Hybrid SMO (HS) for the skin dataset

Iterations Ratio

Cache (Mb) C log10 γ SMO CS HS CS HS

1 1 −2 4 911 4 252 4 225 1.15 1.16
−1 50 717 41 502 41 674 1.22 1.22

0 137 848 121 036 122 190 1.14 1.13
1 102 095 102 051 102 095 1.00 1.00

10 −2 5 992 4 373 4 641 1.37 1.29
−1 49 967 41 127 41 411 1.21 1.21

0 140 022 122 164 123 916 1.15 1.13
1 137 600 137 310 137 599 1.00 1.00

100 −2 17 879 10 486 11 005 1.71 1.62
−1 48 983 39 846 40 284 1.23 1.22

0 140 197 122 229 123 949 1.15 1.13
1 137 599 137 297 137 599 1.00 1.00

1 000 −2 90 214 39 705 50 058 2.27 1.80
−1 48 401 40 069 40 395 1.21 1.20

0 139 763 122 435 123 992 1.14 1.13
1 137 600 137 297 137 599 1.00 1.00

100 1 −2 4 911 4 252 4 225 1.15 1.16
−1 50 717 41 502 41 674 1.22 1.22

0 137 848 121 036 122 190 1.14 1.13
1 102 095 102 051 102 095 1.00 1.00

10 −2 5 992 4 373 4 641 1.37 1.29
−1 49 967 41 127 41 411 1.21 1.21

0 140 022 122 164 123 916 1.15 1.13
1 137 600 137 310 137 599 1.00 1.00

100 −2 17 879 10 486 11 005 1.71 1.62
−1 48 983 39 846 40 284 1.23 1.22

0 140 197 122 229 123 949 1.15 1.13
1 137 599 137 297 137 599 1.00 1.00

1 000 −2 90 214 39 705 50 058 2.27 1.80
−1 48 401 40 069 40 395 1.21 1.20

0 139 763 122 435 123 992 1.14 1.13
1 137 600 137 297 137 599 1.00 1.00

1 000 1 −2 4 911 4 252 4 225 1.15 1.16
−1 50 717 41 502 41 674 1.22 1.22

0 137 848 121 036 122 190 1.14 1.13
1 102 095 102 051 102 095 1.00 1.00

10 −2 5 992 4 373 4 641 1.37 1.29
−1 49 967 41 127 41 411 1.21 1.21

0 140 022 122 164 123 916 1.15 1.13
1 137 600 137 310 137 599 1.00 1.00

100 −2 17 879 10 486 11 005 1.71 1.62
−1 48 983 39 846 40 284 1.23 1.22

0 140 197 122 229 123 949 1.15 1.13
1 137 599 137 297 137 599 1.00 1.00

1 000 −2 90 214 39 705 50 058 2.27 1.80
−1 48 401 40 069 40 395 1.21 1.20

0 139 763 122 435 123 992 1.14 1.13
1 137 600 137 297 137 599 1.00 1.00

166 Appendix C. Iteration results

Appendix D

Published papers

Alaíz, C., Torres-Barrán, A., and Dorronsoro, J. R. “nu-SVM Solutions of Constrained Lasso
and Elastic Net”. Manuscript submitted for publication.

Alaíz, C., Torres, A., and Dorronsoro, J. (2012). “Sparse linear wind farm energy forecast”. In:
Artificial Neural Networks and Machine Learning–ICANN 2012, pp. 557–564.

Alaíz, C., Torres, A., and Dorronsoro, J. R. (2015). “Solving Constrained Lasso and Elastic
Net Using ν–SVMs”. In: Proceedings of ESANN 2015, Bruges, Belgium, 22-24 April 2015,
pp. 1382–1390.

Alonso, Á., Torres, A., and Dorronsoro, J. R. (2015). “Random Forests and Gradient Boosting
for Wind Energy Prediction”. In: International Conference on Hybrid Artificial Intelligence
Systems. Springer, pp. 26–37.

Azegrouz, H., Karemore, G., Torres, A., Alaíz, C. M., Gonzalez, A. M., Nevado, P., Salmerón, A.,
Pellinen, T., Pozo, M. A. del, Dorronsoro, J. R., and Montoya, M. C. (2013). “Cell-based fuzzy
metrics enhance high-content screening (HCS) assay robustness”. In: Journal of Biomolecular
Screening 18.10, pp. 1270–1283.

Catalina, A., Torres-Barrán, A., and Dorronsoro, J. R. (2016). “Machine Learning Prediction of
Photovoltaic Energy from Satellite Sources”. In: ECML/PKDD 4th International Workshop
on Data Analytics for Renewable Energy Integration (DARE).

Catalina, A., Torres-Barrán, A., and Dorronsoro, J. R. (2017). “Satellite Based Nowcasting of
PV Energy over Peninsular Spain”. In: International Work-Conference on Artificial Neural
Networks. To appear. Springer.

Díaz-Vico, D., Omari, A., Torres-Barrán, A., and Dorronsoro, J. R. (2017a). “Deep Fisher
Discriminant Analysis”. In: International Work-Conference on Artificial Neural Networks. To
appear. Springer.

Díaz-Vico, D., Torres-Barrán, A., Omari, A., and Dorronsoro, J. R. (2017b). “Deep Neural
Networks for Wind and Solar Energy Prediction”. In: Neural Processing Letters, pp. 1–16.

Díaz, D., Torres, A., and Dorronsoro, J. R. (2015). “Deep Neural Networks for Wind Energy
Prediction”. In: International Work-Conference on Artificial Neural Networks. Springer,
pp. 430–443.

Torres-Barrán, A. and Dorronsoro, J. R. (2015). “Conjugate Descent for the Minimum Norm
Problem”. In: NIPS Workshop on Optimization for Machine Learning (OPT).

167

168 Appendix D. Published papers

Torres-Barrán, A. and Dorronsoro, J. R. (2016a). “Conjugate descent for the SMO algorithm”.
In: International Joint Conference on Neural Networks (IJCNN). IEEE, pp. 3817–3824.

Torres-Barrán, A. and Dorronsoro, J. R. (2016b). “Nesterov Acceleration for the SMO Algorithm”.
In: International Conference on Artificial Neural Networks. Springer, pp. 243–250.

Torres-Barrán, A., Alonso, Á., and Dorronsoro, J. R. (2017). “Regression Tree Ensembles for
Wind Energy and Solar Radiation Prediction”. In: Neurocomputing. In press.

Torres, A., Prada, J., and Dorronsoro, J. R. (2014a). “Nowcasting Meteorological Readings for
Wind Energy Prediction”. In: EWEA 2014.

Torres, A., Díaz, D., and Dorronsoro, J. R. (2014b). “Sparse one hidden layer MLPs.” In:
Proceedings of ESANN 2014, Bruges, Belgium, 23-25 April 2014, pp. 655–660.

Bibliography

Alaíz, C., Torres-Barrán, A., and Dorronsoro, J. R. “nu-SVM Solutions of Constrained Lasso
and Elastic Net”. Manuscript submitted for publication.

Alaíz, C., Torres, A., and Dorronsoro, J. (2012). “Sparse linear wind farm energy forecast”. In:
Artificial Neural Networks and Machine Learning–ICANN 2012, pp. 557–564.

Alaíz, C., Torres, A., and Dorronsoro, J. R. (2015). “Solving Constrained Lasso and Elastic
Net Using ν–SVMs”. In: Proceedings of ESANN 2015, Bruges, Belgium, 22-24 April 2015,
pp. 1382–1390.

Allen-Zhu, Z. and Orecchia, L. (2014). “Linear coupling: An ultimate unification of gradient and
mirror descent”. In: Arxiv 1407.1537.

Allen-Zhu, Z., Richtárik, P., Qu, Z., and Yuan, Y. (2016). “Even faster accelerated coordinate
descent using non-uniform sampling”. In: Proceedings of the 33rd International Conference
on Machine Learning. Vol. 48. ICML’16. JMLR.org.

Alonso, Á., Torres, A., and Dorronsoro, J. R. (2015). “Random Forests and Gradient Boosting
for Wind Energy Prediction”. In: International Conference on Hybrid Artificial Intelligence
Systems. Springer, pp. 26–37.

Arjevani, Y., Shalev-Shwartz, S., and Shamir, O. (2015). “On lower and upper bounds for smooth
and strongly convex optimization problems”. In: arXiv preprint arXiv:1503.06833.

Azegrouz, H., Karemore, G., Torres, A., Alaíz, C. M., Gonzalez, A. M., Nevado, P., Salmerón, A.,
Pellinen, T., Pozo, M. A. del, Dorronsoro, J. R., and Montoya, M. C. (2013). “Cell-based fuzzy
metrics enhance high-content screening (HCS) assay robustness”. In: Journal of Biomolecular
Screening 18.10, pp. 1270–1283.

Balder, E. J. (2008). “On subdifferential calculus”. handout. Available as http://www.staff.
science.uu.nl/~balde101/cao10/cursus10_1.pdf.

Bauschke, H. H. and Combettes, P. L. (2011). Convex Analysis and Monotone Operator Theory
in Hilbert Spaces. Springer, p. 468. isbn: 978-1-4419-9466-0.

Beck, A. and Teboulle, M. (2009a). “A Fast Iterative Shrinkage-Thresholding Algorithm for
Linear Inverse Problems”. In: SIAM J. Img. Sci. 2.1, pp. 183–202. issn: 1936-4954.

Beck, A. and Teboulle, M. (2009b). “Fast Gradient-Based Algorithms for Constrained Total
Variation Image Denoising and Deblurring Problems”. In: Image Processing and IEEE
Transactions on 18.11, pp. 2419–2434. issn: 1057-7149.

169

http://www.staff.science.uu.nl/~balde101/cao10/cursus10_1.pdf
http://www.staff.science.uu.nl/~balde101/cao10/cursus10_1.pdf

170 Bibliography

Ben-Tal, A. and Nemirovski, A. (2001). Lectures on modern convex optimization: analysis and
algorithms and and engineering applications. Philadelphia, PA, and USA: Society for Industrial
and Applied Mathematics. isbn: 0-89871-491-5.

Bergstra, J. and Bengio, Y. (2012). “Random Search for Hyper-Parameter Optimization”. In:
Journal of Machine Learning Research 13, pp. 281–305.

Bishop, C. (2007). Pattern Recognition and Machine Learning (Information Science and Statistics).
1st ed. 2006. Corr. 2nd printing 2011. Springer. isbn: 0387310738.

Bonnefoy, A., Emiya, V., Ralaivola, L., and Gribonval, R. (2015). “Dynamic screening: Acceler-
ating first-order algorithms for the lasso and group-lasso”. In: IEEE Transactions on Signal
Processing 63.19, pp. 5121–5132.

Bottou, L. (2010). “Large-scale machine learning with stochastic gradient descent”. In: Proceedings
of COMPSTAT’2010. Springer, pp. 177–186.

Bottou, L. and Lin, C.-J. (2007). “Support vector machine solvers”. In: Large scale kernel
machines, pp. 301–320.

Bousquet, O. and Bottou, L. (2008). “The tradeoffs of large scale learning”. In: Advances in
neural information processing systems, pp. 161–168.

Boyd, S. and Vandenberghe, L. (2008). Subgradients. Lecture notes for EE364b, Winter 2006-07.

Bradley, J. K., Kyrola, A., Bickson, D., and Guestrin, C. (2011). “Parallel coordinate descent for
l1-regularized loss minimization”. In: ICML’11.

Breiman, L. (1995). “Better Subset Regression Using the Nonnegative Garrote”. English. In:
Technometrics 37.4, pp. 373–384. issn: 00401706.

Bubeck, S. (2015). “Convex optimization: Algorithms and complexity”. In: Foundations and
Trends® in Machine Learning 8.3-4, pp. 231–357.

Bubeck, S., Lee, Y. T., and Singh, M. (2015). “A geometric alternative to Nesterov’s accelerated
gradient descent”. In: Arxiv 1506.08187.

Catalina, A., Torres-Barrán, A., and Dorronsoro, J. R. (2016). “Machine Learning Prediction of
Photovoltaic Energy from Satellite Sources”. In: ECML/PKDD 4th International Workshop
on Data Analytics for Renewable Energy Integration (DARE).

Catalina, A., Torres-Barrán, A., and Dorronsoro, J. R. (2017). “Satellite Based Nowcasting of
PV Energy over Peninsular Spain”. In: International Work-Conference on Artificial Neural
Networks. To appear. Springer.

Chambolle, A. and Dossal, C. (2014). “How to make sure the iterates of FISTA converge”.

Chang, C.-C. and Lin, C.-J. (2011). “LIBSVM: a Library for Support Vector Machines”. In:
ACM Trans. Intell. Syst. Technol. 2.3, 27:1–27:27. issn: 2157-6904.

Chapelle, O. (2007). “Training a support vector machine in the primal”. In: Neural computation
19.5, pp. 1155–1178.

Chen, P.-H., Fan, R.-E., and Lin, C.-J. (2006). “A study on SMO-type decomposition methods
for support vector machines”. In: IEEE Trans. Neural Networks 17.4, pp. 893–908.

Bibliography 171

Cherkassky, V. and Ma, Y. (2004). “Practical selection of SVM parameters and noise estimation
for SVM regression”. In: Neural Networks 17, pp. 113–126.

Clarkson, K. L. (2010). “Coresets, Sparse Greedy Approximation, and the Frank-Wolfe Algorithm”.
In: ACM Trans. Algorithms 6.4, 63:1–63:30. issn: 1549-6325.

Combettes, P. L. and Pesquet, J.-C. (2009). “Proximal Splitting Methods in Signal Processing”.
In: ArXiv e-prints.

Cristianini, N. (2000). An Introduction to Support Vector Machines and Other Kernel-based
Learning Methods. 1st ed. Cambridge University Press. isbn: 0521780195.

Csiba, D., Qu, Z., and Richtárik, P. (2015). “Stochastic Dual Coordinate Ascent with Adap-
tive Probabilities”. In: Proceedings of the 32nd International Conference on International
Conference on Machine Learning. Vol. 37. ICML’15. Lille, France: JMLR.org, pp. 674–683.

Daubechies, I., Defrise, M., and De Mol, C. (2004). “An iterative thresholding algorithm for
linear inverse problems with a sparsity constraint”. In: Communications on pure and applied
mathematics 57.11, pp. 1413–1457.

Defazio, A., Bach, F., and Lacoste-Julien, S. (2014). “Saga: A fast incremental gradient method
with support for non-strongly convex composite objectives”. In: Advances in Neural Informa-
tion Processing Systems, pp. 1646–1654.

Díaz-Vico, D., Omari, A., Torres-Barrán, A., and Dorronsoro, J. R. (2017a). “Deep Fisher
Discriminant Analysis”. In: International Work-Conference on Artificial Neural Networks. To
appear. Springer.

Díaz-Vico, D., Torres-Barrán, A., Omari, A., and Dorronsoro, J. R. (2017b). “Deep Neural
Networks for Wind and Solar Energy Prediction”. In: Neural Processing Letters, pp. 1–16.

Díaz, D., Torres, A., and Dorronsoro, J. R. (2015). “Deep Neural Networks for Wind Energy
Prediction”. In: International Work-Conference on Artificial Neural Networks. Springer,
pp. 430–443.

Duchi, J., Shalev-Shwartz, S., Singer, Y., and Chandra, T. (2008). “Efficient projections onto the
l 1-ball for learning in high dimensions”. In: Proceedings of the 25th international conference
on Machine learning. ACM, pp. 272–279.

Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). “Least angle regression”. In:
Annals of Statistics 32, pp. 407–499.

El Ghaoui, L., Viallon, V., and Rabbani, T. (2010). “Safe feature elimination in sparse supervised
learning”. In: EECS Department, University of California, Berkeley, Tech. Rep.

Fan, R.-E., Chen, P.-H., and Lin, C.-J. (2005a). “Working Set Selection using Second Order
Information for Training Support Vector Machines”. In: Journal of Machine Learning Research
6, pp. 1889–1918. issn: 1533-7928.

Fan, R.-E., Chen, P.-H., and Lin, C.-J. (2005b). “Working set selection using second order
information for training support vector machines”. In: Journal of machine learning research
6.Dec, pp. 1889–1918.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin, C.-J. (2008). “LIBLINEAR:
A library for large linear classification”. In: Journal of machine learning research 9.Aug,
pp. 1871–1874.

172 Bibliography

Fercoq, O. and Richtárik, P. (2015). “Accelerated, parallel, and proximal coordinate descent”. In:
SIAM Journal on Optimization 25.4, pp. 1997–2023.

Fercoq, O., Gramfort, A., and Salmon, J. (2015). “Mind the duality gap: safer rules for the Lasso”.
In: Proceedings of The 32nd International Conference on Machine Learning, pp. 333–342.

Figueiredo, M. A. T., Nowak, R. D., and Wright, S. J. (2007). “Gradient Projection for Sparse
Reconstruction: Application to Compressed Sensing and Other Inverse Problems”. In: Selected
Topics in Signal Processing and IEEE Journal of 1.4, pp. 586–597.

Flammarion, N. and Bach, F. R. (2015). “From Averaging to Acceleration, There is Only a
Step-size.” In: COLT, pp. 658–695.

Frandi, E., Ñanculef, R., and Suykens, J. A. K. (2015). “A PARTAN-accelerated Frank-Wolfe
algorithm for large-scale SVM classification”. In: 2015 International Joint Conference on
Neural Networks, IJCNN 2015, Killarney, Ireland, July 12-17, 2015, pp. 1–8.

Frandi, E., Ñanculef, R., Lodi, S., Sartori, C., and Suykens, J. A. (2016). “Fast and scalable Lasso
via stochastic Frank–Wolfe methods with a convergence guarantee”. In: Machine Learning
104.2-3, pp. 195–221.

Frank, M. and Wolfe, P. (1956). “An algorithm for quadratic programming”. In: Naval Research
Logistics Quarterly 3.1-2, pp. 95–110. issn: 1931-9193.

Friedman, J. H., Hastie, T., and Tibshirani, R. (2010). “Regularization Paths for Generalized
Linear Models via Coordinate Descent”. In: Journal of Statistical Software 33.1, pp. 1–22.
issn: 1548-7660.

Friedman, J., Hastie, T., Höfling, H., Tibshirani, R., et al. (2007). “Pathwise coordinate opti-
mization”. In: The Annals of Applied Statistics 1.2, pp. 302–332.

Fu, W. J. (1998). “Penalized Regressions: The Bridge versus the Lasso”. In: Journal of Computa-
tional and Graphical Statistics 7.3, pp. 397–416. issn: 10618600.

Gärtner, B., Jaggi, M., and Maria, C. (2012). “An exponential lower bound on the complexity of
regularization paths”. In: Journal of Computational Geometry 3.1, pp. 168–195.

Geman, S., Bienenstock, E., and Doursat, R. (1992). “Neural Networks and the Bias/Variance
Dilemma”. In: Neural Computation 4.1, pp. 1–58. issn: 0899-7667.

Genkin, A., Lewis, D. D., and Madigan, D. (2007). “Large-scale Bayesian logistic regression for
text categorization”. In: Technometrics 49.3, pp. 291–304.

Giesen, J., Jaggi, M., and Laue, S. (2012). “Approximating parameterized convex optimization
problems”. In: ACM Transactions on Algorithms (TALG) 9.1, p. 10.

Gilbert, E. (1966). “Minimizing the Quadratic Form on a Convex Set”. In: SIAM Journal on
Control 4, pp. 61–79.

Glasmachers, T. and Igel, C. (2006). “Maximum-gain working set selection for SVMs”. In: Journal
of Machine Learning Research 7.Jul, pp. 1437–1466.

Goh, G. (2017). “Why Momentum Really Works”. In: Distill. url: http://distill.pub/
2017/momentum.

Grave, E., Obozinski, G., and Bach, F. R. (2011). “Trace Lasso: a trace norm regularization for
correlated designs”. In: CoRR abs/1109.1990.

http://distill.pub/2017/momentum
http://distill.pub/2017/momentum

Bibliography 173

GuéLat, J. and Marcotte, P. (1986). “Some comments on Wolfe’s ‘away step’”. In: Mathematical
Programming 35.1.

Hastie, T., Tibshirani, R., and Friedman, J. (2003). The Elements of Statistical Learning: Data
Mining and Inference and and Prediction. Corrected. Springer. isbn: 0387952845.

Hsieh, C.-J., Chang, K.-W., Lin, C.-J., Keerthi, S. S., and Sundararajan, S. (2008). “A dual coor-
dinate descent method for large-scale linear SVM”. In: Proceedings of the 25th international
conference on Machine learning. ACM, pp. 408–415.

Hsu, C.-W. and Lin, C.-J. (2002). “A simple decomposition method for support vector machines”.
In: Machine Learning 46.1-3, pp. 291–314.

Jaggi, M. (2014). “An equivalence between the lasso and support vector machines”. In: Reg-
ularization, optimization, kernels, and support vector machines. Chapman and Hall/CRC,
pp. 1–26.

Joachims, T. (1998). Making large-scale SVM learning practical. Tech. rep. Technical Report,
SFB 475: Komplexitätsreduktion in Multivariaten Datenstrukturen, Universität Dortmund.

Joachims, T. (2006). “Training linear SVMs in linear time”. In: Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery and data mining. ACM, pp. 217–
226.

Joachims, T. and Yu, C.-N. J. (2009). “Sparse kernel SVMs via cutting-plane training”. In:
Machine Learning 76.2-3, pp. 179–193.

Keerthi, S. S., Shevade, S. K., Bhattacharyya, C., and Murthy, K. R. K. (2001). “Improvements to
Platt’s SMO algorithm for SVM classifier design”. In: Neural computation 13.3, pp. 637–649.

Keerthi, S. S. and Lin, C. J. (2003). “Asymptotic behaviors of support vector machines with
Gaussian kernel”. In: Neural Comput. 15.7, pp. 1667–1689. issn: 0899-7667.

Kim, S.-J., Koh, K., Lustig, M., Boyd, S., and Gorinevsky, D. (2007). “An Interior-Point Method
for Large-Scale `1-Regularized Least Squares”. In: IEEE journal of selected topics in signal
processing 1.4, pp. 606–617.

Kimeldorf, G. and Wahba, G. (1971). “Some results on Tchebycheffian spline functions”. In:
Journal of mathematical analysis and applications 33.1, pp. 82–95.

Kivinen, J., Smola, A. J., and Williamson, R. C. (2004). “Online learning with kernels”. In: IEEE
transactions on signal processing 52.8, pp. 2165–2176.

Koh, K., Kim, S.-J., and Boyd, S. (2007). “An interior-point method for large-scale l1-regularized
logistic regression”. In: Journal of Machine learning research 8.Jul, pp. 1519–1555.

Konečnỳ, J., Liu, J., Richtárik, P., and Takáč, M. (2016). “Mini-batch semi-stochastic gradient
descent in the proximal setting”. In: IEEE Journal of Selected Topics in Signal Processing
10.2, pp. 242–255.

Kooij, A. J. (2007). “Prediction accuracy and stability of regression with optimal scaling trans-
formations”. PhD thesis. Department of Data Theory, University of Leiden. url: https:
//openaccess.leidenuniv.nl/dspace/handle/1887/12096.

Langford, J., Li, L., and Zhang, T. (2009). “Sparse online learning via truncated gradient”. In:
Journal of Machine Learning Research 10.Mar, pp. 777–801.

https://openaccess.leidenuniv.nl/dspace/handle/1887/12096
https://openaccess.leidenuniv.nl/dspace/handle/1887/12096

174 Bibliography

Lázaro, J. L. and Dorronsoro, J. R. (2012). “Simple Proof of Convergence of the SMO Algorithm
for Different SVM Variants”. In: IEEE Trans. Neural Netw. Learning Syst. 23.7, pp. 1142–
1147.

Lessard, L., Recht, B., and Packard, A. (2016). “Analysis and design of optimization algorithms
via integral quadratic constraints”. In: SIAM Journal on Optimization 26.1, pp. 57–95.

List, N. and Simon, H. U. (2007). “General polynomial time decomposition algorithms”. In:
Journal of Machine Learning Research 8.Feb, pp. 303–321.

Liu, J. and Ye, J. (2009). “Efficient Euclidean projections in linear time”. In: Proceedings of the
26th Annual International Conference on Machine Learning. ACM, pp. 657–664.

Liu, J. and Ye, J. (2010). Efficient l1/lq norm regularization. Version 1. arXiv: 1009.4766v1
[cs.LG].

Liu, J., Ji, S., Ye, J., et al. (2009). “SLEP: Sparse learning with efficient projections”. In: Arizona
State University 6, p. 491.

Liu, J., Zhao, Z., Wang, J., and Ye, J. (2014). “Safe screening with variational inequalities and
its application to lasso”. In: International Conference on Machine Learning, pp. 289–297.

López, J. and Dorronsoro, J. R. (2015). “Linear convergence rate for the MDM algorithm for the
Nearest Point Problem”. In: Pattern Recognition 48.4, pp. 1510–1522.

Luo, Z.-Q. and Tseng, P. (1992). “On the convergence of the coordinate descent method for
convex differentiable minimization”. In: Journal of Optimization Theory and Applications
72.1, pp. 7–35.

Mairal, J. and Yu, B. (2012). “Complexity Analysis of the Lasso Regularization Path”. In:
Proceedings of the 29th International Conference on Machine Learning (ICML-12), pp. 353–
360.

Ñanculef, R., Frandi, E., Sartori, C., and Allende, H. (2014). “A novel Frank-Wolfe algorithm.
Analysis and applications to large-scale SVM training”. In: Inf. Sci. 285, pp. 66–99.

Nemirovskii, A., Yudin, D. B., and Dawson, E. R. (1983). Problem complexity and method
efficiency in optimization. Wiley.

Nesterov, Y. (2012). “Efficiency of coordinate descent methods on huge-scale optimization
problems”. In: SIAM Journal on Optimization 22.2, pp. 341–362.

Nesterov, Y. (1983). “A method of solving a convex programming problem with convergence rate
O(1/k2)”. In: Soviet Mathematics Doklady 27.2, pp. 372–376.

Nesterov, Y. (2004). Introductory lectures on convex optimization : a basic course. Applied
optimization. Boston, Dordrecht, London: Kluwer Academic Publ. isbn: 1-4020-7553-7.

Nocedal, J. and Wright, S. J. (2006). Numerical optimization. 2nd ed. Springer.

Nutini, J., Schmidt, M. W., Laradji, I. H., Friedlander, M. P., and Koepke, H. A. (2015).
“Coordinate Descent Converges Faster with the Gauss-Southwell Rule Than Random Selection.”
In: ICML, pp. 1632–1641.

O’Donoghue, B. and Candès, E. J. (2015). “Adaptive Restart for Accelerated Gradient Schemes”.
In: Foundations of Computational Mathematics 15.3, pp. 715–732.

http://arxiv.org/abs/1009.4766v1
http://arxiv.org/abs/1009.4766v1

Bibliography 175

Ogawa, K., Suzuki, Y., and Takeuchi, I. (2013). “Safe Screening of Non-Support Vectors in
Pathwise SVM Computation”. In: Proceedings of the 30th International Conference on
Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013, pp. 1382–1390.

Osborne, M. R., Presnell, B., and Turlach, B. A. (2000). “On the lasso and its dual”. In: Journal
of Computational and Graphical statistics 9.2, pp. 319–337.

Osuna, E., Freund, R., and Girosi, F. (1997). Support vector machines: Training and applications.
Tech. rep.

Palagi, L. and Sciandrone, M. (2005). “On the convergence of a modified version of SVM light
algorithm”. In: Optimization methods and Software 20.2-3, pp. 317–334.

Plackett, R. L. (1950). “Some Theorems in Least Squares”. In: Biometrika 37.1-2, pp. 149–157.

Platt, J. (1998). Sequential minimal optimization: A fast algorithm for training support vector
machines. Tech. rep.

Polyak, B. T. (1964). “Some methods of speeding up the convergence of iteration methods”. In:
USSR Computational Mathematics and Mathematical Physics 4.5, pp. 1–17.

Puig, A. T., Wiesel, A., and Hero, A. O. (2009). “A multidimensional shrinkage-thresholding
operator”. In: Statistical Signal Processing, 2009. SSP’09. IEEE/SP 15th Workshop on. IEEE,
pp. 113–116.

Qu, Z. and Richtárik, P. (2016a). “Coordinate descent with arbitrary sampling I: Algorithms
and complexity”. In: Optimization Methods and Software 31.5, pp. 829–857.

Qu, Z. and Richtárik, P. (2016b). “Coordinate descent with arbitrary sampling II: Expected
separable overapproximation”. In: Optimization Methods and Software 31.5, pp. 858–884.

Qu, Z., Richtárik, P., and Zhang, T. (2015). “Quartz: Randomized dual coordinate ascent with
arbitrary sampling”. In: Advances in neural information processing systems, pp. 865–873.

Ren, Z., Yang, Y., Bao, F., Deng, Y., and Dai, Q. (2016). “Directed Adaptive Graphical Lasso
for causality inference”. In: Neurocomputing 173, pp. 1989–1994.

Richtárik, P. and Takáč, M. (2014). “Iteration complexity of randomized block-coordinate descent
methods for minimizing a composite function”. In: Mathematical Programming 144.1-2, pp. 1–
38.

Richtárik, P. and Takáč, M. (2016). “Parallel coordinate descent methods for big data optimiza-
tion”. In: Mathematical Programming 156.1-2, pp. 433–484.

Roush, F. W. (1982). “Applied linear regression”. In: Mathematical Social Sciences 3.1, pp. 92–93.

Saha, A. and Tewari, A. (2013). “On the nonasymptotic convergence of cyclic coordinate descent
methods”. In: SIAM Journal on Optimization 23.1, pp. 576–601.

Scherrer, C., Halappanavar, M., Tewari, A., and Haglin, D. (2012). “Scaling Up Coordinate Descent
Algorithms for Large L1 Regularization Problems”. In: Proceedings of the 29th International
Coference on International Conference on Machine Learning. ICML’12. Edinburgh, Scotland,
pp. 355–362.

Schölkopf, B., Smola, A. J., Williamson, R. C., and Bartlett, P. L. (2000). “New support vector
algorithms”. In: Neural computation 12.5, pp. 1207–1245.

176 Bibliography

Schölkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J., and Williamson, R. C. (2001).
“Estimating the support of a high-dimensional distribution”. In: Neural computation 13.7,
pp. 1443–1471.

Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding machine learning: From theory to
algorithms. Cambridge university press.

Shalev-Shwartz, S. and Tewari, A. (2011). “Stochastic methods for l1-regularized loss minimiza-
tion”. In: Journal of Machine Learning Research 12.Jun, pp. 1865–1892.

Shalev-Shwartz, S. and Zhang, T. (2012). “Proximal stochastic dual coordinate ascent”. In: arXiv
preprint arXiv:1211.2717.

Shalev-Shwartz, S. and Zhang, T. (2014). “Accelerated proximal stochastic dual coordinate ascent
for regularized loss minimization.” In: ICML, pp. 64–72.

Shalev-Shwartz, S., Singer, Y., and Srebro, N. (2007). “Pegasos: Primal estimated sub-gradient
solver for svm”. In: Proceedings of the 24th international conference on Machine learning.
ACM, pp. 807–814.

Shevade, S. K. and Keerthi, S. S. (2003). “A simple and efficient algorithm for gene selection
using sparse logistic regression”. In: Bioinformatics 19.17, pp. 2246–2253.

Steinwart, I. (2003). “Sparseness of support vector machines”. In: Journal of Machine Learning
Research 4.Nov, pp. 1071–1105.

Su, W., Boyd, S., and Candes, E. (2014). “A Differential Equation for Modeling Nesterov’s
Accelerated Gradient Method: Theory and Insights”. In: Advances in Neural Information
Processing Systems 27. Ed. by Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and
K. Q. Weinberger. Curran Associates, Inc., pp. 2510–2518.

Sutskever, I., Martens, J., Dahl, G. E., and Hinton, G. E. (2013). “On the importance of
initialization and momentum in deep learning”. In: Proceedings of the 30th International
Conference on Machine Learning (ICML-13). Ed. by S. Dasgupta and D. Mcallester. Vol. 28.
3. JMLR Workshop and Conference Proceedings, pp. 1139–1147.

Tibshirani, R. (1994). “Regression Shrinkage and Selection Via the Lasso”. In: Journal of the
Royal Statistical Society and Series B 58, pp. 267–288.

Tibshirani, R., Bien, J., Friedman, J., Hastie, T., Simon, N., Taylor, J., and Tibshirani, R. J.
(2012). “Strong rules for discarding predictors in lasso-type problems”. In: Journal of the
Royal Statistical Society: Series B (Statistical Methodology) 74.2, pp. 245–266.

Tomioka, R., Suzuki, T., and Sugiyama, M. (2011). “Super-linear convergence of dual augmented
Lagrangian algorithm for sparsity regularized estimation”. In: Journal of Machine Learning
Research 12.May, pp. 1537–1586.

Torres-Barrán, A. and Dorronsoro, J. R. (2015). “Conjugate Descent for the Minimum Norm
Problem”. In: NIPS Workshop on Optimization for Machine Learning (OPT).

Torres-Barrán, A. and Dorronsoro, J. R. (2016a). “Conjugate descent for the SMO algorithm”.
In: International Joint Conference on Neural Networks (IJCNN). IEEE, pp. 3817–3824.

Torres-Barrán, A. and Dorronsoro, J. R. (2016b). “Nesterov Acceleration for the SMO Algorithm”.
In: International Conference on Artificial Neural Networks. Springer, pp. 243–250.

Bibliography 177

Torres-Barrán, A., Alonso, Á., and Dorronsoro, J. R. (2017). “Regression Tree Ensembles for
Wind Energy and Solar Radiation Prediction”. In: Neurocomputing. In press.

Torres, A., Prada, J., and Dorronsoro, J. R. (2014a). “Nowcasting Meteorological Readings for
Wind Energy Prediction”. In: EWEA 2014.

Torres, A., Díaz, D., and Dorronsoro, J. R. (2014b). “Sparse one hidden layer MLPs.” In:
Proceedings of ESANN 2014, Bruges, Belgium, 23-25 April 2014, pp. 655–660.

Tseng, P. (2001). “Convergence of a block coordinate descent method for nondifferentiable
minimization”. In: Journal of optimization theory and applications 109.3, pp. 475–494.

Tseng, P. and Yun, S. (2009a). “A coordinate gradient descent method for nonsmooth separable
minimization”. In: Mathematical Programming 117.1, pp. 387–423.

Tseng, P. and Yun, S. (2009b). “Block-coordinate gradient descent method for linearly constrained
nonsmooth separable optimization”. In: Journal of optimization theory and applications 140.3,
p. 513.

Tyree, S., Gardner, J. R., Weinberger, K. Q., Agrawal, K., and Tran, J. Parallel Support Vector
Machines in Practice. arXiv: 1404.1066v1 [cs.LG].

Vidaurre, D., Bielza, C., and Larrañaga, P. (2013). “Classification of neural signals from sparse
autoregressive features”. In: Neurocomputing 111, pp. 21–26.

Wang, J., Zhou, J., Wonka, P., and Ye, J. (2013). “Lasso screening rules via dual polytope
projection”. In: Advances in Neural Information Processing Systems, pp. 1070–1078.

Wang, P.-W. and Lin, C.-J. (2014). “Iteration complexity of feasible descent methods for convex
optimization.” In: Journal of Machine Learning Research 15.1, pp. 1523–1548.

Wibisono, A., Wilson, A., and Jordan, M. (2016). “A Variational Perspective on Accelerated
Methods in Optimization”. In: Arxiv 1603.04245.

Wolfe, P. (1970). “Convergence theory in nonlinear programming”. In: Integer and Nonlinear
Programming. Ed. by J. Abadie. North–Holland, pp. 1–36.

Wright, S. (2013). Optimization.

Wu, T. T. and Lange, K. (2008). “Coordinate descent algorithms for lasso penalized regression”.
In: The Annals of Applied Statistics, pp. 224–244.

Xiang, Z. J., Wang, Y., and Ramadge, P. J. (2017). “Screening tests for lasso problems”. In:
IEEE transactions on pattern analysis and machine intelligence 39.5, pp. 1008–1027.

Xiao, L. (2010). “Dual averaging methods for regularized stochastic learning and online opti-
mization”. In: Journal of Machine Learning Research 11.Oct, pp. 2543–2596.

Xiao, L. and Zhang, T. (2014). “A proximal stochastic gradient method with progressive variance
reduction”. In: SIAM Journal on Optimization 24.4, pp. 2057–2075.

Xu, B., Huang, K., King, I., Liu, C.-L., Sun, J., and Satoshi, N. (2014). “Graphical lasso quadratic
discriminant function and its application to character recognition”. In: Neurocomputing 129,
pp. 33–40.

http://arxiv.org/abs/1404.1066v1

178 Bibliography

Yu, K., Leufen, G., Hunsche, M., Noga, G., Chen, X., and Bareth, G. (2014). “Investigation of
Leaf Diseases and Estimation of Chlorophyll Concentration in Seven Barley Varieties Using
Fluorescence and Hyperspectral Indices”. In: Remote Sensing 6.1, pp. 64–86. issn: 2072-4292.

Yuan, G.-X., Ho, C.-H., and Lin, C.-J. (2012). “An improved glmnet for l1-regularized logistic
regression”. In: Journal of Machine Learning Research 13.Jun, pp. 1999–2030.

Zhang, T. and Oles, F. J. (2001). “Text categorization based on regularized linear classification
methods”. In: Information retrieval 4.1, pp. 5–31.

Zhou, Q., Chen, W., Song, S., Gardner, J. R., Weinberger, K. Q., and Chen, Y. (2014). “A
reduction of the elastic net to support vector machines with an application to gpu computing”.
In: arXiv preprint arXiv:1409.1976.

Zhou, Q., Song, S., Huang, G., and Wu, C. (2015). “Efficient Lasso training from a geometrical
perspective”. In: Neurocomputing 168, pp. 234–239.

Zou, H. and Hastie, T. (2005). “Regularization and variable selection via the elastic net”. In:
Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67.2, pp. 301–320.
issn: 1467-9868.

	Abstract
	Resumen
	Acknowledgments
	Contents
	Introduction
	Outline
	Contributions

	Mathematical background
	Machine Learning
	Regression
	Classification
	Model selection
	Regularization

	Convex optimization
	Duality
	Subgradients
	Algorithms

	Theory and algorithms for the Lasso
	Lasso
	Elastic Net
	Naïve Elastic Net
	General Elastic Net

	Algorithms
	Least Angle Regression
	Proximal Gradient Descent
	Coordinate Descent
	Stochastic Coordinate Descent
	Stochastic Gradient Descent
	Stochastic Dual Coordinate Ascent

	Screening

	Theory and algorithms for Support Vector Machines
	Support Vector Classification
	Hard-margin SVC
	Soft-margin SVC
	Kernel trick
	nu-Support Vector Classification
	One-class Support Vector Machine

	Support Vector Regression
	Algorithms
	Primal gradient methods
	Dual coordinate methods
	Decomposition methods
	Shrinking

	Relation between the Lasso and SVMs
	Previous work
	Lasso to SVM
	SVM to Lasso
	Elastic Net to SVM

	Constrained and unconstrained Lasso
	Constrained Lasso to Nearest Point Problem
	Numerical experiments
	Implementation details
	Datasets and methodology
	Results

	Discussion and further work

	Accelerating SVM training
	Nesterov Accelerated Gradient
	Naïve Nesterov Accelerated SMO
	Monotone Nesterov's Accelerated SMO

	Conjugate Gradient Descent
	Conjugate MDM
	Conjugate SMO

	Numerical experiments
	MDM
	SMO: Algorithm correctness
	SMO: Iteration comparison
	SMO: Comparison versus LIBSVM

	Discussion and further work

	Conclusions
	Discussion
	Further work

	Conclusiones
	Discusión
	Trabajo futuro

	Appendices
	Derivation of the soft-thresholding operator
	Convergence rates
	Iteration results
	Published papers
	Bibliography

