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Gracias Peluchina por no permitir que mis sueños se apaguen jamás.  
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RESUMEN 

La fabricación del futuro afronta cuestiones esenciales relacionadas con la sostenibilidad y 

eficiencia que continúan siendo abordadas parcialmente, donde las Ciencias de la Computación 

e Inteligencia Artificial y la Automática son fundamentales para alcanzar altos niveles de 

modularidad, conectividad, autonomía y digitalización. La industria de fabricación requiere 

aumentar la eficiencia con menores tiempos de entrega al mercado y donde la optimización de 

la producción a través de los sistemas ciberfísicos de producción, el auto-aprendizaje y la auto-

organización son esenciales. 

Esta Tesis Doctoral está enfocada hacia el diseño e implementación de una arquitectura 

cognitiva artificial, de inspiración biológica, dotada de estrategias de autoaprendizaje y auto-

optimización para realizar tareas de monitorización y control. En primer lugar, el fundamento 

nace en el nexo entre el paradigma del control por modelo interno y la conectividad cerebro-

cerebelo como base de la inteligencia humana. La principal hipótesis radica precisamente en 

que el control por modelo interno a través de la conectividad cerebro-cerebelo es un 

componente único de la inteligencia humana. El segundo principio está basado en el modelo de 

los circuitos compartidos y la emulación de las capacidades y experiencias socio-cognitivas de 

los seres humanos. 

Tres cuestiones esenciales han sido el desarrollo y perfeccionamiento de un método libre de 

gradiente para permitir la auto-optimización multiobjetivo, el desarrollo de una estrategia de 

aprendizaje por refuerzo para el autoaprendizaje, y finalmente la evaluación experimental y 

validación en dos procesos esenciales en la micro-escala (microfresado y microtaladrado). 

La concepción de una metodología basada en la combinación e integración de métodos de 

investigación teóricos y experimentales se nutre de la selección, modificación, adaptación e 

integración de los más convenientes paradigmas dentro las Ciencias de la Computación, la 
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Automática y las técnicas de Inteligencia Artificial. Además, la elección del micromecanizado 

mecánico como caso real, se debió a razones científico-técnicas y económicas. El 

micromecanizado mecánico tiene un gran impacto en la economía mundial, en sectores como: 

la electrónica, el aeroespacial y la biomedicina, entre otros.  

Desde el punto de vista científico y de tratamiento de la información estos procesos se 

caracterizan por un comportamiento no lineal de las variables, gran sensibilidad e influencia 

del entorno en los procesos tales como temperatura, humedad, contaminación, ruido mecánico 

y eléctrico, incertidumbre en la información sensorial y dependencia de la composición y del 

tipo de material. De este modo, se produce un incremento exponencial en la especificidad de 

las tareas en la micro-escala dependiendo de las fuerzas predominantes, de las propiedades 

físicas, geométricas y químicas de la superficie y de las condiciones de entorno y las 

perturbaciones. Además, aumenta la complejidad funcional de la microfabricación debido a las 

no linealidades. Desde el punto vista de la monitorización y el control, aumentan 

exponencialmente los requisitos funcionales y de precisión de sensores, de los medios de 

cómputo y de las estrategias de procesamiento y de toma decisión. 

En esta memoria científica se presentan los algoritmos y métodos que componen las 

diferentes etapas o modos de actuación de la arquitectura propuesta. Se describen las 

capacidades para el procesamiento, modelado, optimización, monitorización y control a partir 

de señales captadas en tiempo real en sistemas complejos. En general, los sistemas clásicos de 

monitorización de los procesos en la microescala fallan debido a que carecen de información 

sensorial relevante, o porque las estrategias de toma de decisión no están suficientemente 

preparadas para hacer frente a determinados comportamientos emergentes y responder a 

determinados eventos.  

El diseño e implementación de la arquitectura computacional modular, en red y 

reconfigurable para la monitorización y el control en tiempo real, tiene en cuenta los análisis de 

diferentes tipos de sensores, estrategias de procesamiento y metodologías de extracción de 

patrones de comportamiento de las señales representativas en estos procesos complejos. La 

capacidad de reconfiguración y portabilidad de esta arquitectura está sustentada por dos grandes 

niveles: el nivel cognitivo (núcleo de la arquitectura) y el nivel ejecutivo (intercambio directo 

con el proceso) que a su vez están compuestos por los diferentes módulos que interactúan con 

el proceso que se va a monitorizar y/o controlar. Estos procedimientos, que son brevemente 

descritos a continuación, tienen una precisión dependiente de los diferentes modelos y 

algoritmos integrados en la arquitectura. El nivel cognitivo está compuesto por tres módulos 

fundamentales para el modelado, la optimización y el aprendizaje, necesarios para la toma de 

decisiones (acciones de control) desde el punto de vista computacional, así como la 

caracterización experimental en tiempo real de procesos complejos. En el caso específico de 

los procesos de microfabricación se obtuvieron un grupo de modelos basados en técnicas de 

regresiones lineales y no lineales, además de técnicas de Inteligencia Artificial. Las variables 
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principales que se han considerado han sido las componentes principales de fuerzas y 

vibraciones y el par del eje del husillo. Para la estimación de indicadores de calidad en las piezas 

elaboradas, se han utilizado cifras de mérito tales como la calidad de los agujeros, el 

descentrado (run-out) de la herramienta y la rugosidad superficial. Por otra parte, el nivel 

ejecutivo tiene una constante interacción con el proceso a monitorizar y/o controlar. Dicho nivel 

recibe la configuración y parametrización del nivel cognitivo para realizar las tareas de 

monitorización y control deseadas. El diseño e implementación de la arquitectura es la 

contribución y el elemento cohesionador de este trabajo. 

Otra de las contribuciones más importantes de la tesis es el desarrollo y perfeccionamiento 

de un método de optimización basado en entropía cruzada con una serie de modificaciones en 

cuatro parámetros (número máximo de iteraciones, tamaño de población, número de intervalo 

de histograma y fracción de élite). Se trata de mejorar la convergencia de un algoritmo de 

optimización de múltiples objetivos mediante entropía cruzada, demostrando la notable 

influencia del número de época y el tamaño de la población en el tiempo de ejecución y en la 

calidad del frente de Pareto. Se presenta un estudio comparativo utilizando cifras de mérito 

reportadas en la literatura para validar los cambios propuestos en el método de entropía cruzada, 

con resultados prometedores (mejor distancia generacional, hipervolumen, etc.) en relación con 

la calidad de los frentes de Pareto con respecto a otras técnicas reportadas. 

La tercera contribución es el diseño e implementación de un método de aprendizaje por 

refuerzos (Q-learning) para dotar de capacidad de auto-aprendizaje a la arquitectura propuesta. 

Se introdujeron algunas modificaciones y consideraciones para facilitar el despliegue en la 

definición de los conceptos de estado y acción, así como la función de recompensa en un sistema 

de autoaprendizaje. El enfoque se centra en el ajuste de los parámetros de los controladores. 

Como parte de la metodología científica de la Tesis Doctoral, todas las estrategias 

desarrolladas han sido validadas rigurosamente en una plataforma experimental, utilizada como 

soporte tecnológico. Desde el punto de vista de la microfabricación en esta Tesis Doctoral se 

presentan resultados muy positivos. En primer lugar, la caracterización experimental se ha 

corroborado mediante la comparación entre los resultados teóricos y experimentales obtenidos 

y la utilización de diferentes cifras de mérito o índices de comportamiento (p.ej., histogramas, 

estadígrafos, errores relativos, medios, cuadráticos, entre otros) durante operaciones de 

microtaladrado y microfresado. Durante la investigación se desarrollaron dos metodologías 

para la detección del descentrado y la predicción de la calidad de los agujeros en los procesos 

de microtaladrado, así como una metodología para la estimación de la rugosidad superficial en 

procesos de microfresado. Finalmente, además de las aportaciones expuestas anteriormente, se 

realizaron más de 400 pruebas, combinando todos los modos de control de los que está dotada 

la arquitectura (p.e., monitorización, lazo simple, anticipación, lazo simple + aprendizaje y 

anticipación + aprendizaje) descritos en la Tesis Doctoral. 
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De forma resumida, la contribución técnica fundamental de esta Tesis Doctoral es que a 

partir de la mínima información sensorial posible (señales de aceleración y señales de fuerzas) 

y de la mínima cantidad de información sobre las condiciones de corte (velocidad de corte, 

avance por diente y penetración axial), se puede monitorizar en tiempo real el estado del proceso 

de corte en la micro-escala y realizar acciones de control para garantizar buenos acabados 

superficiales y alargar la vida útil de la herramienta. Este resultado técnico supone un salto 

cualitativo importante sin precedentes en la investigación industrial en el campo de la 

microfabricación.  

El trabajo desarrollado y presentado en esta Tesis Doctoral ha sido posible gracias a una 

beca de formación de personal investigador (FPI), concedida en el proyecto del plan nacional 

de I+D DPI2012-35504 CONTROL COGNITIVO ARTIFICIAL EN PROCESOS DE 

MICROMECANIZADO MECÁNICO. MÉTODO Y APLICACIÓN (CONMICRO). 

Finalmente, un gran número de estos resultados parciales han sido sometidos a consideración 

de la comunidad científica internacional a través de la presentación en congresos 

internacionales y de las publicaciones en revistas de reconocido prestigio de diferentes áreas de 

conocimiento que han valorado positivamente el carácter heterogéneo, multidisciplinar e 

interdisciplinar de las aportaciones realizadas. La contemporaneidad de estos resultados 

armoniza con las líneas de investigación futuras en el campo de los sistemas ciberfísicos, la 

Industria 4.0 y la Fábrica del Futuro, en las que los sistemas cognitivos y las capacidades auto-

reconfiguración, auto-optimización y autoaprendizaje son claves para los sistemas productivos 

sostenibles del siglo XXI. 



 

IX 

ABSTRACT 

The sustainability and efficiency are essential issues on the future manufacturing industry. 

Nowadays, the main challenges around the manufacturing industry are only partially addressed 

in fields such as Computer Science, Artificial Intelligence, Mechanical Engineering and System 

Engineering, all relevant to achieve high levels of modularity, connectivity, autonomy and 

digitization. The manufacturing industry needs to increase efficiency with shorter delivery 

times, where the production optimization through cyber-physical systems, self-learning and 

self-adaptation are essential. 

This Doctoral Thesis is focused on the design and implementation of an artificial cognitive 

architecture, biologically inspired with strategies of self-learning and self-optimization to carry 

out monitoring and control tasks. Firstly, the foundations rely on the nexus between the 

paradigm of internal model control and the cerebellum-brain connectivity as the pillar of human 

intelligence. The main hypothesis is precisely that internal model control through the brain-

cerebellum connectivity is a unique component of human intelligence. The second principle is 

based on the shared circuits model and the capacities to emulate socio-cognitive skills of human 

beings. 

Three key issues have been addressed in this Thesis, as follows: the development and 

refinement of a gradient-free method to enable multi-objective self-optimization, the 

development of a reinforcement learning strategy to carry out self-learning and finally, the 

experimental evaluation and validation in two manufacturing processes at the micro-scale (i.e., 

micro-milling and micro-drilling). 

The conception of a methodology is based on the combination and integration of theoretical 

and experimental methods by selecting, modifying, adapting and integrating the most 

convenient paradigms within the Computer Sciences, Control Engineering and Artificial 
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Intelligence. In addition, the choice of micromachining processes as case study is based on 

scientific-technical and economic reasons. The micromachining has a great impact on the world 

economy, in sectors such as: electronics, aerospace and biomedicine, among others. 

From the scientific point of view, these processes are characterized by a non-linear 

behaviour of the variables, great sensitivity and influence of the environment such as 

temperature, humidity, pollution, mechanical and electrical noise, uncertainty in the sensory 

information and dependence of the composition and the material used for manufacturing. In 

this way, there is an exponential increase in the specificity of the tasks in the micro-scale 

depending on the predominant forces, the physical, geometric and chemical properties of the 

surface, the environmental conditions and disturbances. In addition, the functional complexity 

increases in the microfabrication due to nonlinearities. From the monitoring and control point 

of view, the functional and precision requirements of sensors, computing processing 

requirements and decision-making strategies exponentially increase. 

In this PhD thesis, the algorithms and methods for the different operating modes of the 

proposed architecture are presented. Furthermore, the capabilities for processing, modeling, 

optimization, learning, monitoring and control from signals captured in real time in complex 

systems are also described. In general, the classical monitoring systems for micro-scale process 

fail because they lack relevant sensory information or the decision-making strategies are not 

sufficiently prepared to deal with certain emerging behaviours and respond to particular events. 

The design and implementation of a computational architecture (modular, network and 

reconfigurable for real-time monitoring and control) take into account the analysis of different 

types of sensors, processing strategies and methodologies for extracting behaviour patterns 

from representative signals in complex processes. The reconfiguration capability and the 

portability of this architecture are supported by two major levels: the cognitive level (core of 

architecture) and the executive level (direct exchange with the process). At the same time, this 

is composed by different operating modes that interact with the process to be monitored and/or 

controlled. These procedures (briefly described below) depend on the models and algorithms 

integrated in the architecture. The cognitive level is composed by three fundamental modes: 

modeling, optimization and learning, necessary for decision-making (control signals) from the 

computational point of view, as well as the real-time experimental characterization of complex 

processes. In the specific case of the micromachining processes, a series of models based on 

linear regression, nonlinear regression and artificial intelligence techniques were obtained. The 

main considered variables were the principal components of forces, vibrations and the spindle 

torque. For the workpiece-tool quality indicators, estimation merit figures such as the quality 

of the holes, the run-out and the surface roughness were considered. On the other hand, the 

executive level has a constant interaction with the process to be monitored and/or controlled. 

This level receives the configuration and parameterization from the cognitive level to perform 
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the desired monitoring and control tasks. The design and implementation of the architecture is 

one of the main contributions and the cohesive element of this work. 

Another important contribution of this Doctoral Thesis is the development and improvement 

of a cross entropy- based optimization method with a series of modifications in four parameters 

(maximum epoch number, population size, histogram interval number and elite fraction). The 

objective is to improve the convergence of a multi-objective optimization cross-entropy based 

algorithm, demonstrating the notable influence of the epoch number and the population size in 

the execution time and the quality of the Pareto front. Furthermore, a comparative study using 

multiples merit figures reported in the literature to validate the proposed changes in the cross-

entropy method is presented, obtaining promising results (better generational distance, 

hypervolume, etc.) in relation to the quality of the Pareto fronts respect to other reported 

optimization techniques. 

The third contribution is the design and implementation of a reinforcement learning method 

(Q-learning) to provide self-learning capabilities for the proposed architecture. Some 

modifications and considerations were introduced to facilitate the deployment in the definition 

of the state and action concepts, as well as the reward function in a system of self-learning. This 

approach is focused on tuning controller parameters. 

As part of the scientific methodology of the Doctoral Thesis, all strategies developed have 

been rigorously validated in an experimental platform, used as technological support. From the 

micromachining point of view, this Doctoral Thesis presents very positive results. Firstly, the 

experimental characterization has been corroborated by comparing the theoretical and 

experimental results obtained and the use of different merit figures or behaviour indexes (e.g., 

histograms, statisticians, relative errors, means, quadratics, among others) during micro-drilling 

and micro-drilling operations. During the investigation, two methodologies were developed for 

the run-out detection and the hole quality prediction in micro-drilling processes. In addition, a 

methodology for the surface roughness estimation in micro-milling processes was introduced. 

Finally, more than 400 tests were performed, combining all the control modes incorporated to 

the architecture (e.g., monitoring, simple loop, anticipation, simple loop + learning and 

anticipation + learning). 

In summary, the fundamental technical contribution from this Doctoral Thesis is the use of 

the minimum possible sensory information (force and vibration signals) and the minimum 

cutting conditions information (cutting speed, feed rate per tooth and axial cutting deep) in 

order to monitor and to perform control actions to guarantee high surface finish quality and to 

extend the useful life of the tool in micromachining process. This technical result represents an 

unprecedented qualitative leap in micromachining industrial research. 

Finally, a large number of these partial results has been submitted to consideration by the 

international scientific community by the presentation at international congresses and 
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publications in prestigious journals. Referees from different knowledge areas have positively 

valued the heterogeneous, multidisciplinary character and interdisciplinary of the contributions 

made. The contemporaneity of these results harmonizes with the future research in the field of 

cyber-physical systems, Industry 4.0 and the Factory of the Future, in which cognitive systems, 

self-reconfiguration, self-optimization and self-learning capabilities are the key to the 

sustainable production systems in the 21st century.  

To conclude, this Doctoral Thesis has been developed within the framework of a research 

staff training grant (FPI) approved in the research project DPI2012-35504 ARTIFICIAL 

COGNITIVE CONTROL FOR MICROMECHANICAL MACHINING. METHOD AND 

APPLICATION (CONMICRO). 
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1 

INTRODUCTION 

For a long time, since the born of cybernetics in 1948, artificial cognitive systems have been 

associated with robotics because of the scientific assumption of robot design with human-like 

intelligence in terms of perception, performance and high level of cognition. Artificial cognitive 

systems have automatic adjustment capabilities based on continuous interaction with the 

permanent change of the environment. In order to understand the system behavior, for each 

particular problem a series of goals are defined or a set of objectives to be achieved by the 

cognition or learning process. This automatic tuning capability is also known as self-capacity, 

encompassing many techniques and procedures for self-learning, self-optimization and self-

organization [1, 2]. 

Many optimization methods are reported in the literature, ranging from genetic algorithms 

to particle swarm optimization [3-6]. Evolutionary algorithms (EAs) have demonstrated their 

suitability as a method for multi-objective optimization. EAs store a set of simultaneous trade-

off solutions with the potential to exploit the synergies of a parallel search across all possible 

solutions. However, EAs are usually experimentally assessed through various test problems 

because an analytical assessment of their behavior is very complex. Thus, the appropriate 

performance on some problems cannot be guaranteed a priori. Estimation-of-Distribution 

Algorithms (EDAs) have emerged in the middle ground between Monte-Carlo simulation and 

EAs [7, 8]. One of the main advantages of EDAs is that the fusion of prior information into the 

optimization procedure is straightforward, thereby reducing convergence time when such 

information is available. From the standpoint of computational costs, it involves fewer 

heuristics than the other gradient-free optimization methods.  

The optimal setting of models and controllers is a real challenge. Some reports on stochastic 

and gradient-free based optimization in fuzzy control systems demonstrate the potential of these 

techniques [9, 10]. However, many of these optimization techniques have not been applied to 
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real industrial processes, due to the high complexity of optimization algorithms, the need to 

define appropriate cost functions and performance indexes, the insufficient performance and 

the absence of commonly used empirical formulas in industrial contexts. The concept of cross-

entropy (CE) has been thoroughly addressed in the literature from different perspectives. For 

instance, very promising results have recently been described in the literature in relation to cross 

entropy for uncertain variables, the minimum cross-entropy principle for uncertain optimization 

and machine-learning problems [11]. Moreover, the theoretical background of CE enables 

theoretical studies of the method, which can provide sound guidelines on the potential 

applications of this algorithm in artificial cognitive architectures. 

By the other hand, the need of embedding new learning capability in robots and machines 

in complex and dynamic systems grows up very fast every day. One definition of the machine 

learning was given by  Arthur Lee Samuel “[…] gives computers the ability to learn without 

being explicitly programmed” [12]. In general terms, it is about to learn in the presence of 

uncertainty, noise and the absence of a traditional or conventional model of the process. In order 

to carry out this task, in the field of Artificial Intelligence several methods have been developed 

for supervised and unsupervised learning, depending on the information received. 

Reinforcement learning (RL) is one of the most popular unsupervised learning techniques. 

Numerous applications of reinforcement learning techniques applied to the model adjustment 

in the presence of dynamic environments can be found in the literature [13]. Initially, 

reinforcement learning techniques were conceived for a finite and discrete states and actions. 

Nowadays, for instance learning algorithms are capable to establish the relationship between 

states and action to obtain a determined current flow by observing the electric current behavior. 

RL has also been applied to dynamic systems whose states and actions to be taken are 

continuous. This feature can be seen, for example, in the application of reinforcement learning 

to the complex piloting of a helicopter [14]. Another application to realize the optimal energy 

allocation between the engine-generator and battery of a hybrid vehicle is reported by [15], 

based on a reinforcement learning-based real-time energy-management strategy.  

There is as yet no such complete scientific theory of intelligence [16]. Recent results in 

different disciplines, such as neuroscience, psychology, artificial intelligence, and robotics, and 

results related with new machines and intelligent processes, have laid the foundations for a 

computational theory of intelligence [17]. There are many definitions of intelligence, one of 

them is the ability of human beings to perform new, highly complex, unknown or arbitrary 

cognitive tasks efficiently and then explain those tasks with brief instructions. It has spurred 

many researchers in areas of knowledge such as control theory, computer science, and artificial 

intelligence (AI) to explore new paradigms to achieve a qualitative change and then to move 

from intelligent control systems to artificial cognitive control strategies [17, 18].  
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A natural cognitive system displays effective behavior through perception, action, 

deliberation, communication, and both individual interaction and interaction with the 

environment. What makes a natural cognitive system different is that it can function efficiently 

under circumstances that were not explicitly specified when the system was designed. In other 

words, cognitive systems have certain flexibility for dealing with the unexpected [19]. A 

cognitive system can also reason in different ways, using large quantities of knowledge 

adequately represented in advance. In addition, a cognitive system can learn from experience 

to improve how it operates. Furthermore, it can explain itself and accept new directions, it can 

be aware of its own behavior and reflect upon its own capabilities, and it can respond robustly 

to unexpected changes. Thus, artificial cognitive agents must share with natural cognitive 

systems key traits and some cognitive and neurobiological principles.  

General systems analysis about the heterogeneous aspects of cognitive phenomena 

demonstrates that, bearing in mind the known mechanisms of human mind, cognition can be 

defined as model-based behavior [20-22]. During cognitive or executive control, the human 

brain and some animal brains process a wide variety of stimuli in parallel and choose an 

appropriate action (task context), even in the presence of a conflict of objectives and goals. 

Thus, there is a shift from attention control (a selective aspect of information processing that 

enables one to focus on a relevant objective and ignore an unimportant one) to cognitive change 

in itself. 

Nowadays, there is a wide variety of strategies and initiatives related with the partial or full 

emulation of cognitive capacities in computational architectures. Each one is based on different 

viewpoints regarding the nature of cognitive capacity, how behaves a cognitive system, and 

how to analyze and synthesize such a system. However, there are two widespread trends, the 

cognitivist approach (reflected, for example, in architectures such as Soar, EPIC, and ICARUS), 

based on representational systems as a tool for processing information symbolically [23], and 

the approach that describes emerging systems (AAR, Global Workspace, and SASE), which 

include connectionist systems, dynamic systems, and enactive systems [24]. They are all based 

to a greater or lesser extent on the principles of self-organization [24, 25]. The cognitivist 

approach rests on cognition’s being developed on the basis of symbolic representations, while 

the connectionist approach treats cognition as an inactive system, that is, a system defined “… 

as a simple network of processes that it produces itself and that constitutes its identity”. This 

sense-making [26] has its roots in autonomy, an autonomous system being a distinguishable 

individual [27]. There are also hybrid models that combine the two visions; i.e., they use 

representations which are only constructed by the system itself when it interacts with and 

explores its environment.  

On the other hand, there are thousands of complex systems and processes which are waiting 

for artificial cognitive control strategies in order to behave adequately before disturbances and 

uncertainties [28]. In this century, the manufacturing is a clear example of a dynamic social and 
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technical system operating in a turbulent environment characterized by continuous changes at 

all levels, from the overall manufacturing system network right down to individual factories, 

production systems, machines, components, and technical processes. Nowadays, the highest 

priority goes to the development of technologies that enable faster, more efficient 

manufacturing by means of cooperative, self-organized, self-optimized behavior through 

process control systems. In addition, manufacturing processes are influenced by nonlinear and 

time-variant dynamics that are determined by forces, torques and other variables—even, in the 

case of nano-scale processes, with strong interactions at intermolecular level. These 

characteristics increase the functional complexity of manufacturing due to nonlinearities, and 

they exponentially increase the functional and precision requirements of sensors, actuators, and 

computing resources. 

The need to apply computational intelligent techniques to the conventional or non-

conventional machining processes increase over the years. In this multidisciplinary area, 

methods based on Artificial Intelligence techniques are determinant to model, to control, and 

to optimize high-performance machining processes focus on the zero defect and high 

productivity concepts. In Spain universities and research centers such as University of the 

Basque Country (EHU), IK4-Tekniker, University of Girona, among others are reported results 

in the applications of soft-computing techniques in machining processes. At international level, 

universities such as: Georgia Tech (Prof. Liang), Berkeley (Prof. P. Wright), Maryland (Prof. 

G. Walsh), M.I.T. (Prof. S. Mitter), among others are leaders in the research topics relative to 

monitoring, modeling, prediction and optimization system for manufacturing processes. Some 

projects at European level from FP7 to H2020 have been carried out such as DEXMART, 

ROBOCAST, HANDLE, HUMANOBS, AMARSi, NOPTILUS and NIFTi. For a better 

understanding of the impact and the novelty of the use of computational intelligent techniques 

for industrial applications, the general description, techniques, contributions and applications 

of multiples European projects are included in annex II.  

The fruitful interaction among Fuzzy Logic, Evolutionary Computation, Machine Learning 

and Probabilistic Reasoning techniques for dealing with industrial challenges is very rich, 

multidisciplinary and an important research area, covering from pure simulation and 

development software (Vanderbilt University), artificial cognitive architectures (Birmingham 

University), complex environment (CALTECH), real time systems (Lund University) to 

embedded and automatic solutions (IBM). 

Despite the large number of investigations reported in the current state of the art, there are 

still few implementations of reinforcement learning and optimization techniques in artificial 

cognitive architectures for control systems. In most cases, the principal challenge is to represent 

the full process complexity by good fitting model. In the particular case of micro-manufacturing 

processes, the design and implementation of a methodology to predict the overall behavior of 

process, it is still unsolved problem. 
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Objectives 

The main objective of this Doctoral Thesis is the design and implementation of a biological-

inspired artificial cognitive architecture with self-learning and self-optimization strategies, able 

to monitor and to produce control signals to deal with micromachining processes.  

An important aspect to take into account is the use of computationally efficient strategies to 

guarantee the correct application in industrial scenarios with multiple complex behavior 

variables in process time. In this sense, the selection and implementation of reliable models to 

represent the process behavior, as well as, the captured and processing signals cover an 

important magnitude to obtain the defined goals during execution. 

Three fundamental questions are the focus of this Doctoral Thesis from the design and 

implementation point of view:  

(i) a stochastic method to enable self-optimization capability;  

(ii) a reinforcement learning strategy to provide self-learning capabilities to the 

cognitive architecture and, 

(iii) the validation in two industrial scenarios: a micro-milling and a micro-drilling 

process. 

In order to achieve the above-mentioned goals, the following scientific and technical 

challenges are addressed: 

1. The study of different strategies for signal processing, feature extraction, modeling 

and self-capabilities techniques for complex processes reported in the literature, in 

particular, the influence of these techniques on the manufacturing processes. 

2. The development of an empirical model library to correlate the influence of the 

cutting parameters, forces and vibration signals for predicting key performance 

indicators such as the run-out, the hole quality and the surface roughness for multiple 

materials in micromachining process. 

3. The design and implementation of a gradient-free multi-objective optimization 

algorithm; adjust using a well-known complex test suites reported in the literature 

and validate based on signals captured during micro-milling and micro-drilling 

operations.  

4. The design and implementation of a reinforcement learning algorithm focus on a 

concept of self-capability to adjust direct and inverse models on the basis of the 

process behavior during the execution.  

5. Integration of modeling, self-optimization and self-learning techniques in different 

modules to compose an artificial cognitive framework. 
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6. Validation of the procedures for emulating socio-cognitive skills implemented in the 

suggested artificial cognitive architecture to control relevant process variables 

during micromachining operations.  

Methodology  

The present doctoral thesis is inspired on the combination and integration of theoretical and 

experimental research methods. The design of leaning and optimization strategies are based on 

the selection, modification, adaptation and integration of the most convenient paradigms within 

the Computer Sciences, System Engineering and Artificial Intelligence techniques. 

At the same time, the proposed methods are re-elaborated and re-designed according to the 

specific characteristics of the signals generated in the manufacturing processes. Data collection, 

signal processing and modeling tasks are performed and assessed using the multiples signals 

acquired in runtime. 

The adaptivity and reliability of the proposed architecture are studied and analyzed in 

industrial conditions with high variability and strong influence of noise is an essential aspect in 

this research. It is important the use of a representative and extensive experimental database, 

combined with the actual approaches reported in the literature, integrating the soft-computing 

techniques with the phenomenological models of these industrial processes. 

The selection of the case study (i.e., micromechanical machining) is supported by scientific, 

technical and economic reasons. In the last decades, mechanical machining processes have been 

used for manufacturing components made from a wide variety of different materials. In 

particular, the processing of metals and alloys such as titanium, aluminum, copper, brass and 

steels is used for precision fabrication, handling and joining of miniature parts for complex 

miniature electronic and mechanical products. The biomedical, electronic and aerospace 

industries are the major end users of high precision engineering components with micrometer-

precision in the last decades. Furthermore, the nonlinear and time-varying nature of the micro-

cutting processes influenced on this selection too. From the physical and information processing 

point of view, these processes are characterized by: (i) nonlinear behavior of the variables; (ii) 

high sensitivity and influence of the environment in the processes, such as: temperature, 

humidity, pollution, mechanical and electrical noise, etc.; (iii) high uncertainty in sensory 

information and (iv) dependence on composition and type of material. 

These characteristics and properties produce: (i) an exponential increase in the specificity 

of the microscale operations, depending on the predominant forces, the physical, geometric and 

chemical properties of the surface and the environmental conditions and disturbances; (ii) in 

the functional complexity of micromachining due to nonlinearities and (iii) in the precision 

requirements of sensors, computing capability and decision-making strategies. 
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The design and the implementation of artificial cognitive techniques and specifically 

learning and optimization to control manufacturing processes, are key issues to improve 

productivity in micromachining operations by controlling forces, to increase the surface quality 

of the workpieces and to extend the tool life of micro-drills and micro-mills based on the 

monitoring and supervision of the vibration signals. 

In order to achieve above-mentioned objective, it is necessary to design and implement an 

artificial cognitive control system for cutting forces, measured directly or indirectly. Facilities 

are essential to carry out experimental studies.  The availability of a unique laboratory in the 

Community of Madrid equipped with the necessary devices (sensors, real time platform, etc.), 

is undoubtedly an important issue in the scientific methodology based on the experimental 

evaluation. An ultra-precision Kern Evo machining center (E 0.5i.tm and Ra <0.1 pm) equipped 

with a Heidenhain iTNC-530 numerical control and Blum Laser Measurement system is will 

be the base to run the experimental validation of the proposed methods. 

Different measuring devices (sensors and DAQ cards) are also available to acquire force, 

acceleration and, acoustic emission signals. A tri-axial force and torque dynamometric sensor 

is from Kistler MiniDyn 9256C1 and the amplifier used is a Kistler 5070A 02100 (8 channels). 

The acceleration sensors are from Piezotronics pcb model WJT 352B and a Brüel & Kjaer 

model DeltaTron 4519-003 and an acoustic emission sensor model 8152B2 from Kistler with 

an impedance converter for the measurement above 50 kHz in machines is also available. A 

National Instruments PCI-6251 acquisition card is used for the signal processing captured from 

the force and acceleration sensors. For acoustic emission signals, a National Instruments PCI 

5922 (better sampling rate is demanded) acquisition card is available with a sampling rate or 

resolution from 24 bits to 500 kS/s up to 16 bits to 15 MS/s. All the acquisition cards are 

installed in an industrial PC.  

By the other hand, five different materials were selected for the experimental step. Two 

titanium-based alloys (Ti grade 2 and Ti6Al4V), a cupper-based alloy (W78Cu22), an iron-based 

alloy (Fe64Ni36) and an aluminum-based alloy (Al7075). The criterion for selecting these 

materials was the demand and applications in in biomedical and electronic industries. Finally, 

micro-drills and micro-mills tools with diameters ranging from 0.1 in to 1mm were used in the 

experimental phase. Based on the strong experimental equipment described before, one of the 

expected contribution of the present doctoral thesis is the validation of the proposed artificial 

cognitive system in a real and complex industrial process.  

Thesis structure  

The present dotoral thesis consists of 4 chapters, in addition to the conclusions, summarizing 

the most relevant contributions and future research lines. 
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Chapter 1 presents a critical review of the state of the art in the field of soft computing 

techniques  applied to artificial cognitive architectures,  theoretical and practical investigations, 

is  addressed. The current trend in the conjunction of different scientific areas such as: the 

General Theory of Systems, Control Systems, Artificial Intelligence techniques and Computer 

Sciences to emulate human socio-cognitive skills in artificial cognitive control architectures is 

highlighted with emphazis on manufacturing processes. 

In Chapter 2 an overview of the most commonly used techniques for modeling 

micromachining processes is presented, summarizing a group of the analytical, numerical, 

statistical, and intelligence-based tools reported in the literature in the last decades. 

Furthermore, the experimental setup (Kern Evo Ultra Precision Center and sensory equipment) 

and the experimental designs used during the research are described. Finally, a summary of the 

empirical micromachining (micro-drilling and micro-milling) models yielded in this research 

is presented. The influence of the force and vibration signals are modeled to estimate important 

behaviors and final product features such as: the run-out; the hole quality and the surface 

roughness in multiple materials.  

In Chapter 3 a Multi-Objective Cross Entropy method (MOCE) is introduced based on a 

new procedure for addressing constraints, i.e., the use of variable cutoff values for selecting the 

elitist population and filtering of the elitist population after each epoch. Furthermore, a 

comparison with some other well-known optimization methods is established. Finally, the 

proposed method is validated in the multi-objective optimization of a micro-drilling process. 

Two conflicting targets are considered, i.e., total drilling time and vibrations on the plane that 

is perpendicular to the drilling axis. The Pareto front, obtained through the optimization process, 

is analyzed through quality metrics and the available options in the decision-making process. 

In Chapter 4, an artificial cognitive architecture based on the shared circuits model for 

emulating socio-cognitive skills is proposed. The design and implementation is concentrated 

on self-optimization and self-leaning capabilities by an estimation of distribution method and a 

reinforcement-learning mechanism. Finally, the results of simulation and real-time application 

for controlling force in micromachining processes are presented as a proof of concept.  
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Chapter 1   

STATE OF THE ART 

In this chapter, a critical review of the scientific literature related with soft computing 

algorithm concepts based on cognitive architectures is presented. This chapter highlights the 

current trend to bring human socio-cognitive skills (self-capabilities) theoretical developments 

to computers enabling new communication and decision-making tasks and the application to 

manufacturing processes. Furthermore, the optimization techniques for complex processes are 

outlined. 

This chapter consists of five sections. In the first section (section 1.1) a review of the 

cognitive control architectures and application fields is presented. After that, some of the most 

widely applied techniques for multi-objective optimization are presented, from the genetic 

algorithms to particles warm optimization. Subsequently, a review of different reinforcement 

learning techniques is outlined in section 1.3. Furthermore, a classification of the multiple 

micro-manufacturing techniques is presented in section 1.4. Finally, the chapter conclusions 

are presented in section 1.5. 

1.1 Cognitive control architecture: An introduction 

1.1.1 Introduction to the cognitive control architectures 

In traditional artificial intelligence, the intelligence is often programmed on the basis of the 

programmer who is the creator and makes something and imbues it with its intelligence. Indeed, 

many traditional AI systems were also designed to learn (e.g. improving their game-playing or 

problem-solving competence) [29, 30]. On the other hand, biologically inspired computing gets 

sometimes a more bottom-up and decentralized approach. Bio-inspired techniques often 
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involve methods of specifying a set of simple generic rules or a set of simple nodes, from the 

interaction of which emerges the overall behavior [31, 32]. It is desired to build up complexity 

until the final result is something markedly complex [33]. However, it is also arguable that 

systems designed top-down on the observation basis what humans and other animals can do 

rather than on observations of brain mechanisms, are also biologically inspired, though in a 

different way [34, 35]. 

In particular, the artificial cognitive architectures belong to the bio-inspired techniques 

family. Cognitive architectures can be symbolic, connectionist, or hybrid [36]. Some cognitive 

architectures or models are based on a set of generic rules, as the Information Processing 

Language, e.g., Soar based on the unified theory of cognition [37]. Many of these architectures 

are based on the-mind-is-like-a-computer analogy. On the contrary, sub-symbolic processing 

specifies no such rules a priori and relies on emergent properties of processing units (e.g. 

nodes). 

Herbert A. Simon, one of the artificial intelligence field founders, stated that the 1960 thesis 

by his student Edward Feigenbaum, the Elementary Perceiver and Memorizer (EPAM) 

providing a possible architecture for cognition [38] . In this work were included some 

commitments for how more than one fundamental aspect of the human mind work. 

John R. Anderson started to research on human memory in the early 1970s and his 1973 

thesis with Gordon H. Bower provided a theory of human associative memory [39]. He included 

more aspects of his research on long-term memory and thinking processes into this research 

and eventually designed a cognitive architecture he eventually called Adaptive Control of 

Thought (ACT). He and his student used the term cognitive architecture in his lab to refer to 

the ACT theory as embodied in the collection of papers and designs since they didn't yet have 

any sort of complete implementation at the time. 

In 1983 John R. Anderson published the seminal work in this area, entitled The Architecture 

of Cognition [40]. The theory of cognition outlined the structure of the various parts of the mind 

and made commitments to the use of rules, associative networks, and other aspects. The 

cognitive architecture implements the theory on computers. Thus, a cognitive architecture can 

also refer to a blueprint for intelligent agents. It proposes artificial computational processes that 

act like certain cognitive systems, most often, like a person, or acts intelligent under some 

definition. Cognitive architectures form a subset of general agent architectures. The term 

architecture implies an approach that attempts to model, not only behavior, but also structural 

properties of the modelled system. 

There is an abundant literature on artificial cognitive architectures in the fields of sensory 

motor control and robotics. Although the actual application of artificial cognitive architectures 

in industry is still at embryonic [41, 42]. Hybrid cognitive architecture that relies on the 

integration of emergent and cognitivist approaches using evolutionary strategies is proposed in 



  Gerardo Beruvides López

 

 
STATE OF THE ART  11 

[43], with a cognitive level controlled by artificial immune systems based on genetic 

algorithms. Bannat, et al. [44] presented a seminal paper on how artificial cognition can be 

applied in production systems. The authors noted that self-optimizing and self-learning control 

systems are a crucial factor for cognitive systems and identified important gaps such as the 

individual worker internal model. Sanchez-Boza et al. [45] proposed an artificial cognitive 

control architecture based on the shared circuit model (SCM). Its main drawback is a lack of 

systematic procedures for learning and optimization in the proposed five-layer architecture. 

The way in which neuro-physiological mechanisms such as: reinforcement learning and 

cognitive control are integrated in the brain to produce efficient behavior has yet to be 

understood with sufficient clarity for effective systems to be modeled [46]. Nevertheless, 

reinforcement learning has been explored in artificial cognitive control by means of 

computational models to control robotic systems [47]. Recent investigations corroborate what 

is well known for a long time: automatic and flexible decision-making procedures are the 

cornerstone to reduce human intervention in the presence of complexity, uncertainty, 

background noise and large data volumes typical of production systems [48, 49].  

New initiatives in artificial cognitive systems are now emerging in response to specific 

challenges in industry and services [50]. Recent results in disciplines such as the neurosciences, 

psychology, artificial intelligence, robotics and other researches related to new machines and 

intelligent processes have begun to approach the foundation of a computational theory of 

intelligence [18]. Thus, the main purpose of this study is to emulate human socio-cognitive 

skills, to approach control engineering problems in an effective way at an industrial level. An 

integrated cognitive architecture from a control perspective can be defined as a system that is 

able to reproduce all aspects behavior, while remaining constant across different domains and 

knowledge bases [51-53]. Integrated cognitive architectures that seek to imitate the major 

capabilities of human intelligence have been used to explain a wide spectrum of human 

behavior [54]. Moreover, numerous publications reflect the current pace of its progress 

cognitive science, all of which cannot be summarized in the context of the present study [55]. 

Nevertheless, all above-mentioned researches are based on the role of internal (direct and 

inverse) models in cognitive tasks. From a physiological point of view, the connection between 

the paradigm of internal control and brain-cerebellum connectivity has been advanced as a basis 

for explaining human intelligence [56]. Researchers have corroborated this link as a key 

component of human intelligence from a functional point of view [21]. Moreover, the use of 

internal models to explain some socio-cognitive skills based on human experience is evident 

from a psychological point of view [57]. The architecture, based on the model of socio-

cognitive skills, overcomes the limitations of the neuroscientific approach [58-60] and takes 

into account the principles of simplicity and scalability. 
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1.1.2 Artificial cognitive architectures 

It would be difficult to summarize and review all the well-known cognitive architectures; 

some of the most relevant architecture reports in the literature are following described.  

Bratman, et al. [61] propose a belief-desire-intention (BDI) architecture with a high-level 

specification of the practical-reasoning component for a resource-bounded rational agent. He 

corroborates that an architecture for a rational agent should serve for means-end reasoning, for 

the weighing of competing alternatives and for interactions between these two forms of 

reasoning. Besides, a major role of the agent's plans to constrain the amount of further practical 

reasoning is performed. 

Lehman, et al. [62] consider the architecture such as a theory about what is common to 

cognition, the content in any particular model is a theory about the knowledge the agent has 

that contributes to the behavior. They propose the SOAR-architecture based in the theory posits 

that cognitive behavior has at least the following characteristics [53]: 

 Goal-oriented: Despite how it sometimes feels, we do not stumble through life, 

acting in ways that are unrelated to our desires and intentions. If we want to cook 

dinner, we go to an appropriate location, gather ingredients and implements. Then 

chop, stir and season until we have produced the desired result. We may have to 

learn new actions (braising rather than frying) or the correct order for our actions 

(add liquids to solids, not the other way around), but we do learn rather than simply 

act randomly. 

 Rich, complex, detailed environment: Although the ways in which we perceive 

and act on the world are limited, the world we perceive and act on is not a simple 

one. There are a huge number of objects, qualities of objects, actions and so on, any 

of them may be the key to understand how to achieve our goals. Think about what 

features of the environment you respond to when driving some place new, following 

directions you have been given. Somehow, you recognize the real places in all their 

details from the simple descriptions you were given and respond with gross and fine 

motor actions that take you to just the right spot, although you have never been there 

before. 

 Large amount of knowledge: Try to describe all the things you know about how to 

solve equations. Some of them are obvious: get the variable on one side of the equal 

sign, move constant terms by addition or subtraction and coefficients by 

multiplication or division. But you also need to know how to do the multiplication 

and addition, basic number facts, how to read and write numbers and letters, how to 

hold a pencil and use an eraser, what to do if your pencil breaks or the room gets 

dark, etc.  
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 Use of symbols and abstractions: Let’s go back to cooking dinner. In front of you 

sit a ten-pound turkey, something you have eaten but never cooked before. How do 

you know it is a turkey? You have seen a turkey before but never this one and 

perhaps not even an uncooked. Somehow some of the knowledge you have can be 

elicited by something other than your perceptions in all their detail. We will call that 

thing a symbol (or set of symbols), because we represent the world internally using 

symbols and we can create abstractions. You cannot stop seeing this turkey, but you 

can think about it as just a turkey. You can even continue to think about it if you 

decide to leave it in the kitchen and go out for dinner. 

 Flexible and a function of the environment: Driving to school along your usual 

route you see traffic jam ahead, so you turn the corner in order to go around it. 

Driving down a quiet street, a ball bounces in front of the car. While stepping on the 

brakes, you glance quickly to the sidewalk in the direction the ball came from, 

looking for a child who might run after the ball. As these examples show, human 

cognition is not just a matter of thinking ahead: it is also a matter of thinking in step 

with the world. 

 Learning from the environment and experience: We are not born knowing how 

to tell a joke, solve equations, play baseball or cook dinner. Yet, most of us become 

proficient (and some of us expert) at one or more of these activities and thousands 

of others. Indeed, perhaps the most remarkable thing about people is how many 

things they learn to do given how little they seem to be born knowing how to do it.  

Another cognitive architecture in Newell’s sense of that phrase also called ICARUS is 

presented by [63]. Like its predecessors, it makes strong commitments to memories, 

representations and cognitive processes. Another common theme is the incorporation of key 

ideas from theories of human problem solving, reasoning and skill acquisition. However, 

ICARUS is distinctive in its concern with physical agents that operate in an external 

environment and the framework also differs from many previous theories by focusing on the 

organization, use, and acquisition of hierarchical structures. These concerns have led to 

different assumptions than those found in early architectures such as ACT and Soar. 

ICARUS architecture is fed by five high-level principles about the rationale of intelligent 

systems: (1) cognition is based on perception and action; (2) concepts and skills have different 

cognition structures; (3) long-term memory is organized in a hierarchical fashion; (4) skill and 

concept hierarchies are acquired in a cumulative manner, and (5) long-term and short-term 

structures have a strong correspondence.   

The interplay between rule-based reasoning, (implicit) similarity-based reasoning and 

(implicit) associative memory (intuition) is explored by [64]. Doing this, both explicit and 

implicit forms of human reasoning are incorporated in a unified framework, which is embodied 
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in a cognitive architecture, CLARION [65].  By the other hand, Mathews, et al. [66] propose 

an integrated model of prediction, anticipation, sensation, attention and response (PASAR) for 

artificial autonomous systems. Franklin, et al. [67] describe a cognitive architecture learning 

intelligent distribution agent (LIDA). Furthermore, a number of neuro-computational control 

mechanisms is presented by [68].  

Different criteria such as properties and features, agent capacities, factors in the 

environment, generality, psychological validity and effectiveness have formed the basis for 

their comparisons in various cases. Vernon et al. [19] conducted a review of various cognitive 

architectures such as SOAR, ICARUS, Adaptive Control of Thought-Rational (ACT-R) [69]  

and others, which was limited to an analysis of relevant design aspects.  

Sanchez-Boza and Guerra [70] reported an initial attempt to design an artificial cognitive 

control system, although with two main limitations: a lack of specific procedures for enabling 

self-capacities such as self-optimization, learning and non-generalizable computational systems 

that could be deployed on low-cost computing platforms. 

An interesting approach is proposed by [57], based on the shared circuits model of socio-

cognitive skills, seeks to overcome limitations from the perspectives of computer science, 

neuroscience and systems engineering. The SCM is supported on a layered structure that 

reflects socio-cognitive skills (i.e., imitation, deliberation, and mindreading) by means of 

control mechanisms such as mirroring and simulation. Basically, SCM is based on the 

observation of the human brain. Some brain regions are in charge of coding actions for reaching 

objectives and how other regions code means for reaching objectives. So, the brain may be 

envisaged as making use of not only inverse models that estimate the necessary motor plan for 

accomplishing an objective in a given context, but also a forward model that enables the brain 

to anticipate the perceivable effects of its motor plan, with the object of improving response 

efficiency. The first kind of behavior is covered by the action of SCM layer 1, while the 

behavior described in the forward model is covered by SCM layer 2. Layer 4 of the scheme is 

in charge of controlling when one type of behavior or another should be performed. 

Imitations, in addition to playing an important role in both human sociability and 

development, are means of learning. Imitative learning takes place when mirroring the actions 

of others in response to the circumstances. The observer first copies previously observed 

input/output associations, in order to perform this task, which inhibits the mirroring mechanism. 

SCM represents this mirroring capacity in its layer 3. The interaction between layer 3 and the 

inhibition control performed by layer 4 serves to emulate the agent’s capability to distinguish 

self from others. 

SCM also describes, from a functional point of view, the way in which the agent can carry 

out the cognitive skill of mindreading. This capacity is emulated by the operation of layer 5, 
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which is in charge of simulating other possible related inputs that are external (exogenous) to 

the agent. A layer-based scheme of SCM is depicted in Figure 1.1. 

 

Figure 1.1 Conceptual scheme of the Shared Circuits Model approach based on [57] 

A modified shared circuits model (MSCM) based on Hurley’s work is proposed in [45]. 

Five modules, made up of one or more processes performed by the SCM layers, were 

implemented. The MSCM proposal defines each module in terms of an emulative cognitive 

ability. MSCM embodied a computational infrastructure that is plausible from a neuroscientific 

and psychological perspective, but which lacks a generalizable approach with optimization and 

learning mechanisms. More details about the five modules and the overall performance can be 

found in Figure 1.2.  

 

Figure 1.2 Expanded block diagram of MSCM from [45] 

The main drawbacks are: 

 A tailored design of the architecture without a systematic methodology means that 

it is not extendable to other types of processes or even to other execution 

configurations. 

 A lack of computational strategies to enable self-optimization and learning. These 

strategies improve the performance of the artificial cognitive control system facing 

different situations. 
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 Module-driven architecture is mapped from Hurley’s layer concept, but is solely 

based on a single type of model. For instance, only fuzzy models can be used in the 

single loop configuration. 

1.1.3 Applications 

Despite the importance of cognitive architectures as a research area, strategies for the 

application of artificial cognitive control at industrial level have many constraints and there are 

very few formal reviews on control engineering [71-73]. Moreover, relevant aspects of 

cognitive control architectures have to be addressed in detail: firstly, self-learning and self-

optimization based on interaction; secondly, procedures for assessing cognitive architectures 

are limited and their availability is often restricted. 

Several cognitive architectures are used in many applications [74-76]. Although their 

implementations are not publicly available with only few exceptions. The assessment of their 

evaluation criteria and performance indices is therefore not easy for control engineering and 

computers in industry. Such a task would require associating and defining figures of merit 

related to transient behavior, dynamic and steady state systems and control effort, among others, 

all of which hinders any comparison of the present-day capabilities and the performance of 

these architectures. Finally, many cognitive architectures lack biological inspiration. It is 

essential that computational implementation of architectures have both biological and 

psychological roots in real applications [77]. Computational architectures are at present 

somewhat limited to cognitive psychological validity.  

Manufacturing processes are characterized by the presence of nonlinear and time-variant 

dynamics that emerge from the behavior of temperature, forces, torques and other representative 

variables, characteristics that increase the functional complexity of micro-manufacturing and 

the functional requirements and precision of sensors, actuators and computing resources [9, 78]. 

Hong-Seok, et al. [79] present a new technology called cognitive agent to control the 

machining system. Cognitive agents with intelligent behaviors such as perception, reasoning 

and cooperation allow the manufacturing to overcome the disturbances. An innovative 

architectural solution to improve the capabilities and performance of modern production plants, 

so-called Cognitive Middleware for manufacturing is presented by [80]. They propose the use 

of ICT technologies (e.g. semantic, middleware, optimization algorithms) into a holistic 

framework to be transparently adopted into existing factories as well as embedded in the future 

designs. 

In particular, micro-manufacturing is a clear example of a dynamic system operating in an 

environment characterized by continuous change, being a perfect stage to proof new cognitive 

control and decision making strategies [81]. In this scenario, one of the main objectives is the 
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development of technologies and algorithms that enable faster, self-organized, self-optimized 

behavior process control systems [82, 83].  

Nowadays, it is impossible to talk about cognitive systems regardless concepts such as: 

cyber-physical systems (CPS), cloud computing and Internet of things (IoT). Lee, et al. [84] 

present the different steps of a CPS implementation, being the self-capabilities the top of this 

pyramid (see Figure 1.3).     

 

Figure 1.3 Five steps pyramid for CPS implementation [84] 

1.2 Optimization techniques 

1.2.1 General aspects 

Optimization is the problem of, given some scalar function, ( )f   (called objective 

function), of a vector variable, nx  (called decision variable), finding the value x* such 

that    *  f x f x  for all x , and also fulfill the conditions ( ) 0ig x  , i = 1, …, m (called 

inequality constraints) and ( ) 0ih x  , i = 1, …, p (called equality constraints). 

Certainly, this definition refers only to a minimization, but it is not a limitation as any 

maximization problem can be transformed into a minimization one just by multiplying the 

objective function by minus one.  

Some practical problems, however, require the simultaneous minimization (or 

maximization) of several objective functions. This is called multi-objective or multi-criteria 

optimization. 
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There are two main approaches for solving a multi-objective optimization: the first one, 

called a priori approach, is carried out by supplying information about the preferences between 

the objectives before executing the optimization. In this group are included the linear and 

nonlinear aggregation of objectives, the lexicographic method and the goal programming. 

In the second approach, called a posteriori, no information is supplied about the preferences 

between the objectives. The optimization process is carried out and then the decision maker 

chooses the most convenient solution from a set of non-dominated solutions. The optimal is in 

the wide sense and there is no other solution in the considered search space that improves at 

least one objective function without detriment of another function [85].  

These methods are based on the so-called Pareto front, which contains these non-dominated 

solutions. The set of Pareto solutions in the objective space is referred to as Pareto frontier or 

efficient frontier. Usually we select one final solution from Pareto solutions taking into account 

the total balance among objectives. As it is shown in Figure 1.4, while fixing an objective at 

the level of the weak Pareto solution, we can improve another objective. Therefore, weak Pareto 

solutions are not welcome as solutions in actual decision making, but we often encounter cases 

in which only weak Pareto optimality is guaranteed theoretically [86]. 

 

Figure 1.4 Weak Pareto solutions in the objective space from [86] 

In general, many Pareto solutions are available. The final decision should be made as a 

trade-off of criteria. This is a judgment problem for expert’s decision-making. The totally 

balancing over criteria is usually called trade-off. It should be noted that there are over one 

hundred criteria in some practical problems such as erection management of cable stayed bridge 

and camera lens design. Therefore, it is important to develop effective methods for helping 

decision making to trade-off easily even in problems with very many criteria. 
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1.2.2 Types 

1.2.2.1 Analytic Optimization Techniques 

Analytic are the oldest and the most exact optimization methods. They are based on 

determine the stationary points, i.e., the points where the first derivative of the objective 

function is zero (see Figure 1.5 (a)): 

 0
df

dx
   (1.1) 

When the decision variable is not scalar but vector, stationary points exists where all the 

components of the gradient of the function are zero (see Figure 1.5 (b)): 
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As this condition is necessary but not sufficient, the second derivative (or the Hessian 

matrix, for vector decision variable) must be checked in order to known if the given stationary 

point corresponds to a maximum, a minimum or a saddle point. 

 

Figure 1.5 Stationary points (a) Scalar decision variable (b) Vector decision variable 

Analytic techniques have strong mathematic foundations, but they only work properly in 

relatively simple problems. Another limitation is related to constrained optimization, although 

some methods such as the Lagrange multipliers have been developed to overcome this 

limitation. 

1.2.2.2 Numeric Optimization Techniques 

Numeric optimization techniques are also based on the gradient of the objective function, 

but unlike analytic methods do not require the computation of the root derivatives, which are 

often transcendental equations. 
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Figure 1.6 Iterative optimization method 

Numeric techniques start from some point, x0, and computes iteratively new points, xi, from 

previous point, xi–1, by following the gradient until some stop condition is reached (see Figure 

1.6). 

Within the numeric optimization techniques two major categories are the Hessian-

dependent approaches (such as the Newton’s method) and the conjugate gradient/gradient 

descent) techniques. Often the derivatives are not directly evaluated but approximated using 

finite differences. 

These iterative methods have two main drawbacks. Firstly, the selection of the start point 

heavily influences on the convergence of the method. Secondly, the found solution may be a 

local optimum instead a global one. Furthermore, for a successful application of most of the 

iterative methods, the objective function must be continuous and differentiable. 

1.2.2.3 Heuristic Optimization Techniques 

Many optimization problems in engineering, especially with regard to mechanical and 

manufacturing systems do not fulfill the conditions of continuity, differentiability and 

unimodality, required for applying the analytical or numeric methods. For solving this kind of 

problems many gradient-free techniques, so called heuristics methods, have been developed. 

Heuristic optimization, unlike analytical or numeric methods, do not rely on a solid 

mathematic foundation; they are inspired on natural systems, either physical or biological, and 

try to find near-optimal solutions, which although being different from the actual optimum, are 

good enough to be applied in practical situations. Currently there are a lot of heuristics for 

optimization. A thorough revision goes beyond the scope of this Dissertation. The reader may 

find a deep review in [87]. Some of the most popular ones from the viewpoint of monitoring 

and control systems are briefly described as follows. 

 Simulated annealing is based on the annealing processes in metals and other lattice 

structures, where the systems are conduced to a minimum energy state. The method 
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starts from some point creating and evaluating some neighbor points in each iteration. 

If the objective function is lower in the new point than in the actual one, this is replaced. 

However, this replacement is not deterministic by random, depending on some 

prescribed parameter called temperature by analogy with the physical annealing process 

[88]. 

 Evolutionary optimization is inspired by the natural evolution of biological organisms. 

These methods carry out parallel searches starting from an initial solution set (called 

population) and create, in each iteration, a new child population that inherits the 

characteristics of the best parents. Both, the selection of the parents and the creation of 

children include random processes. Evolutionary algorithms include two main 

branches, evolutionary strategies (European school) and genetic algorithms (American 

school) [89]. 

 Swarm intelligence is inspired by the behavior of natural decentralized systems, 

composed by a group of individuals which work together to achieve some common goal. 

This paradigm comprises a lot of algorithms, including the most popular, but not limited 

to: ant colony optimization, cuckoo search and particle swarm optimization [90]. 

 All these methods are strongly influence by randomly procedures that lead to local 

minimum instead of the global one. For this reason, these approaches are often referred to as 

stochastic optimization. 

1.2.3 Estimation-of-distribution algorithms 

In this chapter, the attention is concentrated on Estimation-of-distribution algorithms. The 

current literature on Estimation-of-distribution algorithms contains an abundant range of 

deterministic and stochastic methods for solving multi-objective optimization problems [91, 

92]. Figure 1.7 shows the basic steps to formulate a multi-objective optimization for a general 

process. The optimization of physical processes involves the use of models, represented by 

functions that will never fulfill the conditions of continuity, differentiability and unimodality, 

which are usually required for conventional analytical and numerical techniques [93]. The 

alternative is the use of heuristics for optimization, based on soft computing techniques [94]. 

Soft-computing is especially useful in multi-objective optimization when several different and 

often interconnected objectives are considered [95]. 

In fact, many optimization methods can be applied ranging from genetic algorithms to 

particles warm optimization [3, 5, 96-100]. Evolutionary algorithms have demonstrated their 

suitability as a method for multi-objective optimization [101]. EAs store a set of simultaneous 

trade-off solutions with the potential to exploit the synergies of a parallel search across all 

possible solutions. However, EAs are usually experimentally assessed through various test 

problems, because an analytical assessment of their behavior is very complex. Thus, their 
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performance on random problems cannot be guaranteed prior to application [102, 103]. 

Estimation-of-Distribution Algorithms have emerged in the middle ground between Monte-

Carlo simulation and EAs [7, 8]. A probabilistic model based on elite individuals is built and 

subsequently sampled to produce a new population of better individuals. One of the main 

advantages of EDAs is that the fusion of prior information into the optimization procedure is 

straight forward, thereby reducing convergence time when such information is available. From 

the standpoint of computational costs, it involves fewer heuristics than the other gradient-free 

optimization methods [104]. 

 

Figure 1.7 Classic procedure for optimization of physical processes 

Among the broad range of optimization possibilities for computational architectures, 

optimal tuning of the parameters was adopted, rather than the optimization of the structure or 

topology. It is computationally simpler and sometimes brings better results than non-linear 

systems [105]. One of the main applications of these techniques is the optimal setting of the 

parameters (scaling factors or gains) for non-trivial and sometimes intractable tasks [106].  

The optimal setting of fuzzy controller strategies based on stochastic gradient-based 

optimization has been reported in different works [10, 107, 108]. However, many of these 

optimization techniques have not been applied to real industrial processes yet, due to the high 

complexity of optimization algorithms, inappropriate cost functions and performance indexes, 
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insufficient performance, and limited empirical formulas in industrial context. Cross-Entropy 

method [109, 110] is indeed a good candidate for multi-objective optimization. The most 

attractive feature of cross entropy method is that, for a certain family of instrumental densities, 

the updating rules can be analytically calculated, making them extremely efficient and fast. 

Moreover, the theoretical background of CE enables theoretical studies of the method, which 

can provide sound guidelines on the potential applications of this algorithm in artificial 

cognitive control architectures. 

The concept of cross-entropy has been thoroughly addressed in the literature from different 

perspectives. For instance, very promising results have recently been described in the literature 

in relation to cross entropy forum of certain variables and the minimum cross-entropy principle 

for uncertain optimization and machine-learning problems [11]. The concept has also served as 

a foundation for developing a cross-entropy clustering method [111]. The optimal parameter 

settings are still an open research issue, mainly due to their varied influence on improving 

process behaviors. Evolutionary-based optimization algorithms have already shown 

improvements in performance with very promising results for iterative feedback tuning 

methods indiscrete-time single-input single-output systems currently reported in the literature 

[112]. On-going research in this field includes new methods derived from those that are already 

well-established such as the five-stage adaptive PSO algorithm proposed by [107]. Moreover, 

Fu, et al. [113] applied the cross-entropy method to optimize the scaling factors and the 

membership functions of fuzzy controllers and guarantee fail-safe navigation of unmanned 

autonomous vehicles. Finally, Giagkiozis, et al. [7] and Bekker and Aldrich [114] recently 

published two seminal papers on cross-entropy optimization. 

1.3 Machine learning techniques. General concepts 

1.3.1 General aspects 

Machine learning (ML) is the subfield of computer science that gives computers the ability 

to learn without being explicitly programmed [12]. Evolved from the study of pattern 

recognition and computational learning theory in artificial intelligence, machine learning 

explores the study and construction of algorithms that can learn from and make predictions on 

data [115]. Machine learning can be used for several different software data analytics tasks, 

providing useful insights into software processes and products. For example, it can reveal what 

software modules are most likely to contain bugs, what amount of effort is likely to be required 

to develop new software projects, what commits are most likely to induce crashes, how the 

productivity of a company changes over time, how to improve productivity, etc. The right 

machine learning algorithm depends on the data and the environment being modeled. Therefore, 
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in order to create good data models, it is important to investigate the data analytics problem in 

hand before choosing the type of machine learning algorithm to be used [116].  

Machine learning is closely related to computational statistics, which also focuses in 

prediction-making through the use of computers. It has strong ties to mathematical 

optimization, which delivers methods, theory and application domains to the field. Furthermore, 

ML sometimes converges to data mining techniques, where the latter subfield focuses more on 

exploratory data analysis and it is more concentrated on supervised learning [117, 118]. 

Besides, it can also be unsupervised and be used to learn and establish baseline behavioral 

profiles for various entities and then used to find meaningful anomalies  [119]. Within the field 

of data analytics, machine learning is a method used to devise complex models and algorithms 

that lend themselves to prediction; in commercial use, this is known as predictive analytics 

[120, 121]. These analytical models allow researchers, data scientists, engineers, and analysts 

to produce reliable, repeatable decisions and results and uncover hidden insights through 

learning from historical relationships and trends in the data. Machine learning tasks are typically 

classified into three broad categories, depending on the nature of the learning signal or feedback 

available to a learning system [122]:  

 Supervised learning consists in inputs-outputs data used as examples, given by a 

teacher, and the goal is to learn a general rule that maps inputs to outputs. 

 Unsupervised learning, on the contrary, no labels are given to the learning algorithm, 

leaving it on its own to find structure in its input. Unsupervised learning can be a 

goal in itself (discovering hidden patterns in data) or a means towards an end (feature 

learning). 

 Reinforcement learning, as particular case of unsupervised learning, a computer 

program interacts with a dynamic environment in which it must perform a certain 

goal, such as: driving a vehicle or playing a game against an opponent. The program 

produces a feedback in terms of rewards and/or penalties as it navigates its problem 

space. 

Between supervised and unsupervised learning is semi-supervised learning, where the 

teacher gives an incomplete training signal: a training set with some (often many) of the target 

outputs missing. Transduction is a special case of this principle where the entire set of problem 

instances is known at learning time, except the specific targets which are missing. 

Developmental learning, elaborated for robot learning, generates its own sequences (also 

called curriculum) of learning situations to cumulatively acquire repertoires of novel skills 

through autonomous self-exploration and social interaction with human teachers and using 

guidance mechanisms such as active learning, maturation, motor synergies, and imitation.  

Finally, bioinformatics, brain interfaces, computer vision, pattern recognition, game theory, 

medical diagnosis economics, natural language processing, optimization and metaheuristic, 
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robot locomotion, search engines, sequence mining, stock market analysis, user behavior 

analytics are the principal application fields of the machine learning techniques [123-126]. 

1.3.2 Reinforcement learning algorithms 

In reinforcement learning, an agent tries to maximize the accumulated reward over its life-

time. In an episodic setting, where the task is restarted after each end of an episode, the objective 

is to maximize the total reward per episode. If the task is on-going without a clear beginning 

and end, either the average reward over the whole life-time or a discounted return (i.e., a 

weighted average where distant rewards have less influence) can be optimized. In such 

reinforcement learning problems, the agent and its environment may be modeled being in a 

state s ∈ S and can perform actions a ∈ A, each of which may be members of either discrete or 

continuous sets and can be multidimensional. A state s contains all relevant information about 

the current situation to predict future states (or observables); an example would be the current 

position of a robot in a navigation task1. An action a is used to control (or change) the state of 

the system. For example, in the navigation task we could have the actions corresponding to 

torques applied to the wheels. For every step, the agent also gets a reward r, which is a scalar 

value and assumed to be a function of the state and observation [127].  

The reinforcement learning agent needs to discover the relations between states, actions, 

and rewards. Hence exploration is required which can either be directly embedded in the policy 

or performed separately and only as part of the learning process. Classical reinforcement 

learning approaches are based on the assumption that we have a Markov Decision Process 

(MDP) consisting of the set of states S, set of actions A, the rewards R and transition 

probabilities T that capture the dynamics of a system. Transition probabilities (or densities in 

the continuous state case) T(s’, a, s) = P(s’| s, a) describe the effects of the actions on the state. 

Transition probabilities generalize the notion of deterministic dynamics to allow for modeling 

outcomes are uncertain even given full state. The Markov property requires that the next state 

s’ and the reward only depend on the previous state s and action a [13], and not on additional 

information about the past states or actions. In a sense, the Markov property recapitulates the 

idea of state, a state is a sufficient statistic for predicting the future, rendering previous 

observations irrelevant.  

Different types of reward functions are commonly used, including rewards depending only 

on the current state R = R(s), rewards depending on the current state and action R = R(s, a), and 

rewards including the transitions R = R(s’, a, s). Most of the theoretical guarantees only hold if 

the problem adheres to a Markov structure, however in practice, many approaches work very 

well for many problems that do not fulfill this requirement. 

The goal of reinforcement learning is to discover an optimal policy p that maps states (or 

observations) to actions to maximize the expected return Jmax, which corresponds to the 
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cumulative expected reward. There are different models of optimal behavior [128]  which result 

in different definitions of the expected return. A finite-horizon model only attempts to maximize 

the expected reward for the horizon H, i.e., the next H (in time) steps i:  

 
0

H

i

i

maxJ R


   (1.3) 

This setting can also be applied to model problems where it is known how many steps are 

remaining.  

Alternatively, future rewards can be discounted by a discount factor  (0 ≤1)  
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 This is the setting most frequently discussed in classical reinforcement learning texts. The 

parameter  affects how much the future is taken into account and needs to be tuned manually. 

As illustrated in [128], this parameter often qualitatively changes the form of the optimal 

solution. Policies designed by optimizing with small  are myopic and greedy. It is 

straightforward to show that the optimal control law can be unstable if the discount factor is too 

low (e.g., it is not difficult to show this destabilization even for discounted linear quadratic 

regulation problems).  

 Off-policy methods learn independent of the employed policy, i.e., an explorative strategy 

that is different from the desired final policy can be employed during the learning process. On-

policy methods collect sample information about the environment using the current policy. As 

a result, exploration must be built into the policy and determines the speed of the policy 

improvements. Such exploration and the performance of the policy can result in an exploration-

exploitation trade-off between long- and short-term improvements of the policy. Modeling 

exploration models with probability distributions has surprising implications, e.g., stochastic 

policies have been shown to be the optimal stationary policies for selected problems [129, 130] 

and can even break the curse of dimensionality [126]. Furthermore, stochastic policies often 

allow the derivation of new policy update steps with surprising ease. 

A wide variety of methods of value function based reinforcement learning algorithms that 

attempt to estimate the optimal value function (V*(s’)) or the state-action value function Q*(s, 

a) have been developed. They can be split mainly into three classes [131]: (i) dynamic 

programming based optimal control approaches such as policy iteration or value iteration, (ii) 

rollout-based Monte Carlo methods and (iii) temporal difference methods such as: Temporal 

Difference learning (TD), Q-learning, and State-Action-Reward-State-Action (SARSA). 

In particular, Q-learning is a model-free reinforcement learning technique. Specifically, Q-

learning can be used to find an optimal action-selection policy for any given (finite) Markov 
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decision process [132]. It works by learning an action-value function that ultimately gives the 

expected utility of taking a given action in a given state and following the optimal policy (off-

policy learner) thereafter. When such an action-value function is learned, the optimal policy 

can be constructed by simply selecting the action with the highest value in each state [133]. One 

of the strengths of Q-learning is that it is able to compare the expected utility of the available 

actions without requiring a model of the environment. Additionally, Q-learning can handle 

problems with stochastic transitions and rewards, without requiring any adaptations. It has been 

proven that for any finite MDP, Q-learning eventually finds an optimal policy, in the sense that 

the expected value of the total reward return over all successive steps, starting from the current 

state, is the maximum achievable.  

The algorithm therefore has a function that calculates the Quantity of a state-action 

combination (Q: S × A ). Before learning has started, Q returns an (arbitrary) fixed value, 

chosen by the designer. Then, each time the agent selects an action, and observes a reward and 

a new state that may depend on both the previous state and the selected action, Q is updated as 

it is described in Eq. (1.5). The core of the algorithm is a simple value iteration update. It 

assumes the old value and makes a correction based on the new information [134]. 

 
1 1 1 1( , ) ( , ) ( max ( , ) ( , ))t t t t t t t t t

a A
Q s a Q s a R Q s a Q s a    


      (1.5) 

where, rt+1 is the reward observed after performing at in st, and  is the learning rate (0 <  

≤ 1). 

The learning rate or step size determines to what extent the newly acquired information will 

override the old information. A factor equal to 0 makes the agent not learn anything, while a 

factor of 1 would make the agent consider only the most recent information. In fully 

deterministic environments, a learning rate of  is optimal. When the problem is stochastic, 

the algorithm still converges under some technical conditions on the learning rate that require 

it to decrease to zero. In practice, often a constant learning rate is used between  0.1 … 0.3 

[126].  

In a real implementation of the Q-learning algorithm, two possible scenarios can be found 

in function of the rewards: R is known (e.g. game theory, localization problems, etc.) [135, 136] 

or R is estimated for each iteration (e.g. industrial applications) [82, 137]. The first scenario 

where the goal find the best route to way out, starting from a random s is shown in the Figure 

1.8. As it can be observed, after 100 iterations stating from an s = 3 the best route estimated for 

the algorithms are s(3,4,2,6) or s(3,4,5,6).   In the second scenario, the main modification from 

the general implementation (r is known) is assume that a state is a set of parameters of the 

model/models and the estimation of the reward in function of the possible actions in each state. 

Each parameters Ki has its own limits ( min max;i iK K ), considering mK possible values of each 

parameter, the range of values of this parameter would be:  
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As a consequence of the exposed above, the space of states is finite whose dimension is mK
n. 

For a given state 
1 2, ,...,t t t

t ns K K K  its available actions will be those that change st to 
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  , namely in each action only one step in each parameter can be done. 

 

Figure 1.8 Q-learning algorithm applied to a localization problem (R is known)  

Finally, RL resembles methods for classical optimal control, as well as dynamic 

programming, stochastic programming, simulation-optimization, stochastic search, and optimal 

stopping. Both RL and optimal control address the problem of finding an optimal policy (often 

also called the controller or control policy) that optimizes an objective function (i.e., the 

accumulated cost or reward), and both rely on the notion of a system being described by an 

underlying set of states, controls and a plant or model that describes transitions between states. 

However, optimal control assumes perfect knowledge of the system’s description in the form 

of a model. For such models, optimal control ensures strong guarantees, which, nevertheless, 

often break down due to model and computational approximations. In contrast, reinforcement 

learning operates directly on measured data and rewards from interaction with the environment. 

Reinforcement learning research has placed great focus on addressing cases that are analytically 

intractable using approximations and data-driven techniques [13].  

1.4 Micro-manufacturing processes: A brief introduction 

Nowadays, conventional industrial manufacturing has an enormous impact on the global 

economy. Large companies around the world have allocated funds and infrastructure to develop 

new machines, tools, sensors, and control systems, in order to increase their levels of production 

and competitiveness. Over the past two decades, the progressive growth of micro-

manufacturing processes has been reported in the industrial sector. Some processes unrelated 

to manufacturing, such as lithography and etching may be traced back over the decades. 

Actually, micro-manufacturing can be defined as a collection of technologies that are used to 

make micro-devices or micro-scale components for a wide range of aerospace, medical, and 

electronic industrial applications. Micro-manufacturing largely uses non-traditional 
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manufacturing methods, scaling down or modifying the traditional methods, as appropriate, to 

fully address micro-scale manufacturing issues. Overall, designers and manufacturers are 

obliged to consider new aspects, due to the miniaturization of tools and workpieces. Grain size, 

tool stiffness and workpiece weaknesses are often not taken into account in traditional macro-

manufacturing; most are established and standardized over decades of industrial applications 

[138]. 

1.4.1 Micro-manufacturing methods and processes 

Micro-manufacturing techniques are often categorized as micro-electro-mechanical systems 

(MEMS) manufacturing and non-MEMS manufacturing. In the last decades, the MEMS, 

optical-MEMS, radio frequency (RF-MEMS), Power-MEMS, Bio-MEMS have been extended 

into the micro-manufacturing methods. MEMS manufacturing largely involves techniques such 

as: photolithography, chemical etching, plating, lithography electroplating and moulding 

(LIGA), laser ablation, etc., while non-MEMS manufacturing often involves techniques such 

as: Electrical discharge machining (EDM), micro-mechanical cutting, laser cutting/patterning, 

micro-embossing, micro-injection moulding, micro-extrusion, microstamping among others.  

Micro-manufacturing processes can also be classified in five categories as follows: 

subtractive, additive, mass containing, joining and hybrid process as shown in Figure 1.9, based 

on the report of [139]. For the sake of clarity, only some examples of micro-manufacturing 

techniques are depicted in Figure 1.9. In the following subsections, the additive, mass 

containing, forming, hybrid process and subtractive subgroups are briefly addressed. All the 

acronyms used in the Figure 1.9 are explained in the following sections. 

Many additive processes in the micro-scale are associated with micro-electro-mechanical 

systems. Under this category, chemical vapor deposition (CVD); physical vapor deposition 

(PVD); stereolithography; and LIGA (German acronym: Lithographie Galvanoformung 

Abformung - Lithography, Electroplating and Molding) are some of the most widely reported 

in the industry and the scientific literature. The coating for wear resistance, corrosion resistance, 

high temperature protection and erosion protection applied to semiconductors industry, optical 

fibers and composites are the main application of the CVD process. In contrast, PVD is a 

coating technique in which material is transferred at the atomic level. A PVD coating is applied 

to improve hardness and wear resistance, to reduce friction, and to improve oxidation resistance 

increasing performance and lengthening component life cycles. In the context of MEMS, 

electron beam, ion beam, ion track and x-ray lithography are listed as possible techniques. In 

particular, the stereolithography is based on a rapid prototyping additive process, also called 

layered manufacturing uses ultraviolet or laser light to cure resins on a selective basis. LIGA is 

also an additive process used in the manufacture of complex microstructures with very high 

aspect ratios.  By the other hand, 3D printers for extrusion, light polymerized, powder bed, 

laminated and wire are the most common types using materials from polymers, ceramics to 
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complex metal alloys, composites and thermoplastics. Most of them are based in deposition, 

lithography and laser technologies having an accelerated application increase in the prototype 

industries. 

 

Figure 1.9 A short review of micro-manufacturing techniques 

More challenges arise when the sizes/features are reduced to tens or hundreds of microns. 

Major issues to be addressed include understanding of material deformation mechanisms and 

material/tool conditions, materials property characterization, process modeling and analysis, 

process design optimization, etc., with emphasis on the related size effects [140, 141]. Metal 

forming offers some attractive characteristics that are superior to those of other processes, e.g. 

machining and chemical etching, considering such features as higher production rates, better 

material integrity, less waste, lower manufacturing costs, etc. Furthermore, it is a key process 

in the fabrication of micro-tools and the preparation of micro-materials. Micro-casting 

processes can be classified into four different categories: capillary action, investment casting, 

vacuum pressure casting, and centrifugal casting. All of them are used in the production of 

metallic micro-workpieces with high mechanical strengths and a high aspect ratio [142]. 
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Finally, micro-moulding can be classified as injection moulding, reaction injection moulding, 

hot embossing and injection compression moulding [143]. 

The micro-joining process has been an integral part of the microelectronics, pharmaceutical, 

aerospace and others micro-manufacturing industries for many decades. Micro-welding, the 

micro-soldering, the micro-brazing and the adhesive bonding belong to the category of 

manufacturing and assembly processes. These micro-joining operations can be mechanical 

connections, electrical connections, and optical coupling [144]. Electron beam is a popular 

process for macro-scale applications and it is characterized by a low thermal load, precise 

energy input, and fine beam manipulation capabilities. However, this method is also gaining 

importance in micro applications, because of its capability to focus the beams exactly within a 

diameter of a few microns. Laser welding is a non-contact process that requires only single-

sided access [145]. Micro-adhesive bonding is also considered a micro-joining process. In the 

micro-scale workpiece, the assembly of micro-parts by the use of mechanical means such as 

screws, rivets, pins are an uncommon solution, becoming micro-adhesive bonding a feasible 

solution in these cases. Electronics in automotive components, high density packing of 

microelectronics, fiber-optic couplers, electro-optic transducers telecommunications, 

biotechnology and high definition sealing in microfluidics are the main applications of this 

process [146]. 

Nowadays, hybrid machines are one of the leading programs for researchers and 

manufacturers around the world. The latest concept for hybrid machine development is focused 

on the use of a single workstation for manufacturing micro-components. The idea is the 

reduction or the elimination of as many post-assembly operations as possible, which may 

involve changes in handling and high precision positioning [147, 148]. Ultra-precision 

manufacturing of self-assembled microsystems is another example of this emerging 

development, which combines ultra-precision micro-machining such as milling, turning, 

drilling, and grinding with sacrificial/structural multilayer manufacturing processes to produce 

self-assembled, 3D micro-systems and associated meso-scale interfaces from a variety of 

materials for MEMS applications [149] .  

1.4.2 Subtractive micro-manufacturing processes 

Special interest is put on the subtractive operations based on the case study presented in the 

doctoral thesis. The subtractive micro-manufacturing processes can be classified in two classes: 

traditional and advanced. Micromachining implies the removal of material in the form of chips 

or debris with tool sizes in the range of 1 mm to 999 microns. It may be also seen as an ultra-

precision material removal process that is able to achieve micro-form accuracy and roughness 

of several nanometers [150, 151]. These operations are still powerful technologies for the 

development of micro-components with systems that use electronic, mechanical, fluidic, optical 

and radiative signals. The micro-instrumentation, inertial sensing; biomedical devices, wireless 
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communication, high density data storage, as well as producing dies, micro-forming and 

injection moulding are among the main development lines [152] . 

1.4.2.1 Traditional micromachining processes 

Micro-turning, micro-milling, micro-drilling, micro-grinding, etc. are considered traditional 

micromachining processes. These operations are the result of the micro-scaled and continuous 

improvements in the design of the new machine-tool families. Several types of cutting processes 

are suitable for micromachining. Typical examples of traditional micro-cutting are drilling of 

micro-holes, milling of microgrooves and micro 3D shapes, and turning of micro-pins [153].  

The most attractive advantage of traditional micro-cutting technologies is the possibility of 

machining 3D microstructures characterized by a high aspect ratio and comparatively high 

geometric complexity. Traditional micro-cutting processes involve critical issues: cutting force 

must be as low as possible, rigidity of the machine tool should be high enough to minimize 

machining errors and tool edge radius must be smaller than the dimension of the feature that 

will be created. 

In particular, the capability of micro mechanical machining especially micro milling to 

manufacture a wide range of workpiece materials and complex three-dimensional geometries 

makes it one of the best candidates to produce the micro parts. The material removal in micro-

milling differs from macro-milling processes, due to the presence of minimum chip thickness, 

size effect, elastic recovery and the ploughing mechanism. These effects must be taken into 

consideration in micro-milling research. 

 

Figure 1.10 Micro-milling tools and operations measured by NeoScope JCM-5000  
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A new 0.5mm-diameter micro-end-milling tool was shown in Figure 1.10a). Chattering and 

run-out are normally presented during the cutting process as factors that cause external/internal 

perturbation of tool-workpiece vibrations [154, 155]. Furthermore, micro-cutting tools are tiny, 

fragile and easily broken by excessive deflections, forces, and vibrations (see Figure 1.10b)). 

Therefore, appropriate cutting tool geometry and cutting conditions must be selected in micro 

milling (see Figure 1.10c)) [156]. Finally, most micro products such as: medical equipment, 

micro-mould, micro tubular components need a high quality finished surface. Avoidance of 

cutting radius breakage and increments in vibrations are crucial to good surface roughness and 

will also lessen tool wear. Besides, researchers have found that burr size and surface roughness 

increase at a low ratio of feed per tooth to cutting edge radius [157]. Specifically, the formation 

of a burr during micro-end-milling is associated with such factors as: size effect, comparatively 

large edge radius and minimum chip thickness, etc. [158]. In particular, burr formation shown 

in the Figure 1.10d) of tool-radius breakage during the cutting process. 

1.4.2.2 Non-traditional micromachining processes 

Non-traditional micromachining processes aim to deal with stringent parts requirements 

used in high-tech industries in relation to new materials that are difficult to work with. Another 

interesting change arising from progress in micro-manufacturing is the use of non-conventional 

material removal procedures. Instead, these methods make direct use of some form of energy 

for micromachining. These processes may be classified into different groups on the basis of the 

working principle [139].  

The first group consists of mechanical micromachining processes: ultrasonic 

micromachining (USM), abrasive jet micromachining, abrasive water-jet micromachining and 

water-jet micromachining employing the kinetic energy of either abrasive particles or a water 

jet or both to remove waste material from a workpiece. The cutting process of brittle and ductile 

materials has some differences, being determinant factors the material hardness, strength and 

other mechanical properties of the workpiece material in the process performance [159, 160]. 

Another group is composed of beam-based micromachining processes, utilizing different 

forms of thermal energy such as: electron-beam [161], laser beam [162], the heat energy of 

sparks in electric-discharge, plasma-arc and the kinetic energy of ions in ion-beam 

micromachining [163]. The thermal energy (except in ion beam) is concentrated on a small area 

of workpiece, resulting in melting or vaporization or both. These processes are widely used for 

machining hard and tough materials. Electrical discharge machining is also considered a beam-

based micromachining technique. The manufacturing of micro-components by thermal material 

removal mechanism allows almost force-free process machining independently of the 

mechanical properties of the processed material. For this reason, EDM may be applied to 

functional materials such as: hardened steel, cemented carbide and electrically conductive 



Artificial Cognitive Architecture with Self-Learning and Self-Optimization Capabilities. Case Studies in 

Micromachining Processes 

 

 
34  CHAPTER 1 

ceramics with a high precision [164]. Its applications have extended so far beyond dies and 

moulds fabrication such as micro-gears, microfluidic devices, medical implants, etc.  [165]. 

The last group is composed of chemical or electrochemical micromachining processes, 

including mainly electrochemical (micro-ECM) and photochemical (micro-PCM). Micro-ECM 

has numerous advantages: there is no tool wear, no residual stresses developed in the machined 

workpiece, its performance does not depend on the physical and mechanical properties of the 

work material and using an anodic dissolution process yields a high material removal rate. Other 

attractive characteristics include burr-free surfaces, no thermal damage, and no distortion of the 

part. Based on its earlier descriptions, this process has a wide field of applications [166-168]. 

However, the work material should be electrically conductive. Moreover, micro-PCM is a type 

of etching process in which the workpiece is selectively etched by masking the area where no 

machining is required. The selection of an appropriate etchant depends on the properties of the 

workpiece material to be machined [169]. 

1.5 Conclusions 

In this chapter a review of the state of the art in of the field of cognitive architectures is 

presented with strong emphasis on those architectures and frameworks for monitoring and 

control. Moreover, gradient free optimization techniques and reinforcement learning strategies 

are roughly outlined. The study is also centered on the necessary techniques to enable self-

capabilities in artificial cognitive architectures for industrial applications. During the 

investigation, the embryonic state of this type of solutions for real industrial setup was 

demonstrated according to the scientific and technical literature considered in this Thesis. 

Furthermore, the review of some optimization techniques, relevant from system engineering 

viewpoint, was done. Among them, estimation of distribution algorithms is considered with 

attention on cross entropy technique to enable the self-optimization capability. Subsequently, 

the importance to include a reinforcement learning algorithm to enable self-learning capabilities 

in the architecture is also pointed out.  

Finally, a review of the different micro-manufacturing processes was done, explaining the 

principal applications fields and the impact in of the micromachining processes in the modern 

industry. 

In the next chapter, different techniques for analytical, numerical and empirical modeling 

are described. Modeling is one of the cornerstones of the theoretical and experimental research 

for extracting patterns and correlating the process behavior with representative signals and 

variables of micromachining processes. 
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Chapter 2   

MODELING TECNIQUES FOR MICROMACHINING 

PROCESSES 

Modeling is essential from system engineering viewpoint to drive quality improvement in 

physical processes. Therefore, modeling of micro-scale machining processes is a key issue for 

efficient manufacturing with dozens of worldwide reports. Good models not only reduce the 

need for expert operators, thereby lowering costs, but it also decreases the probability of 

unexpected tool breakage, which may involve damage to the workpiece or, even, to the 

machine-tool. Process monitoring is also of immense importance in view of the tiny tool 

diameters used in micro-mechanical machining and the high surface roughness quality desired 

in this operations. Some numerical, analytical and empirical modeling techniques will be 

analyzed in this chapter, concluding with a set of empirical micromachining models (i.e., micro-

drilling and micro-milling) obtained in different stages of the research. Furthermore, the 

experimental setup used in the multiples case studies is also described in the present chapter. 

The chapter is divided in six sections. Firstly, an overview of some of the most commonly 

used analytical, numerical, statistical, and intelligence-based techniques for modeling 

micromachining processes is presented in section 2.1. Following, the experimental setup (Kern 

Evo Ultra Precision Center and sensory equipment) used during the research is described in 

section 2.2. Subsequently, the forces and vibrations influence in function of the nominal cutting 

parameters are modeled in section 2.3. Furthermore, two models to estimate the run-out and the 

hole quality in micro-drilling processes were included in this section. After that, the surface 

roughness behavior is modeled in micro-milling processes for tungsten–copper alloys (section 

2.4). In section 2.5, a summary of the all models obtained during the research period is 

presented. Finally, conclusions of this chapter are presented in section 2.6. 
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2.1 Modeling techniques of micromachining processes 

2.1.1 General aspects 

A conceptual model is a model made of the composition of concepts, which are used to help 

people know, understand, or simulate a subject the model represents. The term conceptual 

model may be used to refer to models which are formed after a conceptualization or 

generalization process [170]. A conceptual model's primary objective is to convey the 

fundamental principles and basic functionality of the system in which it represents. Moreover, 

a conceptual model must be developed in such a way as to provide an easily understood system 

interpretation for the models users [171]. Data flow, Metaphysical, Logical, Business process, 

Statistical models, Mathematical models are the most common reported in the literature.    

 

Figure 2.1 General scheme of modeling process and utility   

In last decades, Computer Sciences and soft-computing techniques open up a new arsenal 

of methods for modeling processes. The computational model is a mathematical model that 

requires computer resources to estimate the behavior of a system by means of computer 

simulation. The system under study is often a complex nonlinear system for which simple, 

intuitive analytical solutions are not readily available. Examples of common computational 

models are weather forecasting models, earth simulator models, flight simulator models, 

molecular protein folding models, and neural network models. Artificial cognitive-based 

models are usually focused on a single cognitive phenomenon or process (e.g., learning), how 

two or more processes interact (e.g., visual search and decision making), or how to make 

behavioral predictions for a specific task or tool. 
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Undoubtedly, one of the most important steps for monitoring and control is to obtain at least 

a rough model to identify the relationship between the dependent and independent variables 

Figure 2.1 showed the general flow scheme with the modeling step as key issue. First of all, it 

is important to choose the correct input signals if you want to produce an appropriate model. 

Sometime, the input signals captured during a real process have a high level of noise or contain 

insufficient information. For this reason, a filtering or feature extraction is needed before the 

modeling step. In engineering, modeling can be divided into two major groups (see Figure 2.2): 

phenomenological modeling including analytical and numeric solutions and empirical 

modeling where statistical and Artificial Intelligence-based methods are very representative and 

useful [172]. Once the modeling phase is finished, other tasks are indeed facilitated depending 

on the model characteristics. For example, different simulation studies can be conducted, 

optimization tasks can be run, and even decision making can be performed on the basis of the 

model behavior (see Figure 2.1). Finally, the correlation coefficient and generalization 

capability influence on the model precision, being determinant metrics to select the correct 

model to represent a simulated or real process. 

 

Figure 2.2 Classification of modeling techniques based in [172] 

2.1.2 Filtering and feature extraction techniques for micromachining processes 

In signal processing, a filter is a device or process that removes from a signal some unwanted 

component or feature. Filtering is a class of signal processing, the defining feature of filters 

being the complete or partial suppression of some aspect of the signal [173]. Most often, this 

means removing some frequencies and not others in order to suppress interfering signals and 

reduce background noise. However, filters do not exclusively act in the frequency domain; 

especially in the field of image processing many other targets for filtering exist. There are 

different criteria for classifying filters with evident overlapping, therefore there is no simple 

hierarchical classification. Filters may be classified as [174]: linear or non-linear; time-invariant 

or variant; causal or not-causal; analog or digital; discrete-time or continuous-time; passive or 

active and infinite impulse response (IIR) or finite impulse response (FIR). Some terms used to 

describe and classify linear filters is the frequency response [175]: low-pass filter; high-pass 

filter; band-pass filter and band-stop filter are the most common. Besides, notch filter, to rejects 
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just one specific frequency; comb filter; cutoff frequency; transition band and ripple is also 

reported in the literature. Other filters such as the infinite impulse response and the finite 

impulse response are intensively applied [176].  

Feature extraction is essential for reducing the amount of resources required to describe a 

large set of data. When performing analysis of complex data one of the major problems stems 

from the number of variables involved. Analysis with a large number of variables generally 

requires a large amount of memory and computation power or a classification algorithm which 

overfitting the training sample and generalized poorly to new samples [177, 178]. The features 

can be extracted in the time, frequency and amplitude domains or with a combination between 

them [179]. Data types is an important characteristic to select a feature extraction method [180-

182]. In the particular case of the manufacturing processes techniques such as temporary 

statisticians, time series, Fast Fourier transform (FFT), Wavelet transform (WT) and Hilbert-

Huang transform (HHT) among others are the most widely applied.  

Statistics in the time domain are based on the application of statistical functions such as 

mean, minimum (MIN), maximum (MAX), standard deviation (STD), root mean square 

(RMS), skewness (SKEW) or the kurtosis (KURT). It is important to say that in most of the 

articles reviewed time domain methods are often combined with two or more techniques to 

guarantee completeness of the information extracted. In micromachining processes, feature 

extraction is quite frequently supported on the force signals [183], but some papers also report 

the use of the RMS component in vibration [184] and acoustic emission signals [185]. 

Features in frequency domain are determined through methods to estimate the energy 

distribution on the frequency spectrum. The fast Fourier transform is used to generate a spectral 

density function of energy. However, the FFT are not suitable for analyzing nonstationary 

signals. Nevertheless, the FFT is one of the most reported techniques to process signal captured 

by force, vibration and acoustic emissions sensors during micromachining [186, 187]. 

In mathematics, a wavelet series is a representation of a square integral function with real 

or complex values by a certain orthonormal series generated [188]. Nowadays, wavelet 

transform is one of the most popular of the time-frequency analysis. The WT shows an 

advantage over the Fourier transform, the temporal resolution. That is the ability to capture the 

frequency and location information (on time). Furthermore, the WT of a signal is calculated 

through a series of filters (filter bank), decomposing simultaneously using a low pass and a high 

pass filter [189]. It is important that the two filters are related to each other and this is known 

as the mirror filter numerical integration. Unlike the FFT, the WT has the ability to build a time-

frequency diagram of a signal behavior [190]. 

According to Huang and Shen [191] past applications of the Hilbert transform are limited 

only for narrow-band signals. Today, the real advantage of this transformation became evident 

when was introduced the empirical mode decomposition (EMD) dealing with nonlinear and 
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nonstationary processes. Hilbert-Huang transform is divided into two parts: an empirical mode 

decomposition and Hilbert spectral analysis. This method is strong in the nonstationary and 

nonlinear data analysis, especially in the amplitude-time-frequency domains for 

micromachining processes [192, 193].  

Others techniques reported with a lesser extent are the time series. They have the advantage 

of do not requiring tedious calculations for editing; compiling; debugging programs and 

acquisition of information quickly and easily. However, these features are less informative 

about the process and they are affected by noise and disturbances of the system. Although some 

authors have reported the used of these algorithms applied to micromachining processes [194]. 

Finally, the Table 2.1 described a comparison between three of the most used feature extraction 

techniques. 

Table 2.1 Comparison between FTT, WT and HTT presented by [193]  

Parameters Fast-Fourier Wavelet Hilbert-Huang 

Basis A priori A priori Adaptive 

Frequency Convolution: 

global  

uncertainty 

Convolution: 

regional  

uncertainty 

Differentiation:  

local  

certainty 

Presentation Amplitude-

frequency 

Amplitude-time-

frequency 

Amplitude-time-

frequency 

Nonlinear No No Yes 

Nonstationary No Yes Yes 

Feature extraction No Continuous: Yes Yes 

Theoretical base Theory complete Theory complete Empirical 

2.1.3 Analytical modeling in micromachining processes 

Analytical models are widely reported in macro-scale cutting process. Besides, a 

micromachining process is quite similar to a conventional cutting operation, i.e. all the 

geometrical features and the kinematic characteristics of the tool and the workpiece can be 

identified. However, downscaling all the phenomena, in order to apply the same theories in 

both the micro and the macro regimes has proven itself ineffective. There are features of 

machining and phenomena that are considerably different in micromachining that make no 

allowance for any simplifications; differences arise when considering the chip-formation 

process, the resulting cutting forces, surface integrity, and tool life [195]. Analytical models are 

considered the predecessors of numerical models, although they will never substitute them. 

Even today, lower and upper bound solutions, shear plane models, slip-line field models and 

shear zone models are still using analytical modeling [196]. 
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Another important aspect is the chip flow in all wedged-tool machining processes, in theory, 

in a common way by two different cutting schemes termed orthogonal cutting (Figure 2.3a)) 

and oblique cutting (Figure 2.3b)). Several models for force prediction [197] , chip formation 

[198, 199], temperature [200] and flow stress [201] have been developed using the analytical 

modeling in micromachining processes, principally based in orthogonal cutting models [202]. 

 

Figure 2.3 Orthogonal cutting (a) and oblique cutting (b) conditions [153]  

Besides, analytical models are reported when the influence on machining quality, efficiency, 

material removal rates, surface roughness and dimensional accuracy of the workpiece, even the 

tool and machine life are uncontrolled [203-205]. In almost all cases, efficient chatter vibration 

models will be critical to an understanding of chatter phenomena and to its prediction or 

avoidance during cutting processes [206, 207]. Likewise, Shi, et al. [208] demonstrated the 

effects of regenerative chatter on micro-end mill dynamics and stability behavior.  

2.1.4 Numerical modeling of micromachining processes 

Most engineering cases cannot be solved analytically and require a numerical solution. The 

numerical model usually needs to be carefully calibrated and validated against pre-existing data. 

Numerical modeling to solve forward and inverse problems has found extensive uses in 

industry. Forward problems include simulation of space shuttle flight, ground water flow, 

material strength, earthquakes, and molecular and medication formulae studies. Inverse 

problems consist of non-destructive evaluation, tomography, source location, image processing, 

and structural deformation during loading tests [209]. With the increase in computational 

technology, many numerical models and software have been developed for various engineering 

fields. 
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Specifically, in micromachining numerical techniques have grown in importance, in spite 

of the difficulties of modeling chip formation. Except for the physical phenomena explained 

above, two more challenges need to be addressed. The first one is to input accurate data into 

the model: this appears to be common sense, however, it can be problematic. The second is to 

choose a finite elements method [210], from among the different approaches or strategies 

proposed for metal machining modeling with FEM pertaining to formulation, friction treatment, 

material behavior, iteration schemes etc. used for approximating a solution [211-213]. 

Over the past decade, micromachining has established itself as a very important micro-

manufacturing process. Compared with other micro-manufacturing processes, such as advanced 

machining, its prominence is partly because, it can provide complex shapes in a wide variety 

of materials [214]. Many modeling and simulation techniques have been applied in 

micromachining and FEM is one of them. However, in the micro-scale some differences are 

considered with respect to macro scale processes. For instance, the assumption of a perfectly 

sharp cutting tool is non-realistic when micromachining is studied. In metal cutting, size effect, 

the non-linear increase in the specific energy and the depth of cut, influences process 

parameters, e.g. the minimum cutting edge radius, and therefore the analysis of the size effect 

is very important [215-217]. 

Various 3D FEM models that model micromachining processes have been reported in the 

literature. One example is the three-dimensional finite element for micro-cutting simulation 

based on the concept of a representative volume element (RVE) and constitutive material 

modeling proposed by [218]. The idea was to validate chip formation, feed force, size effects 

and torque with a realistic prediction model in micro drilling tests. Another interesting 3D 

model, in this case to estimate chip flow and tool wear in a micro-milling process is presented 

by [219]. The Figure 2.4 shows a comparison of predicted and measured 3-D chip formation 

and chip flow for half-immersion down micro-end milling. In addition, continuous chip 

formation and steady-state workpiece and tool cutting temperatures were analyzed by numerical 

modeling methods in micromachining. The empirical Johnson-Cook (JC) model to describe the 

thermomechanical flow behavior over the entire strain rate and temperature range is reported 

in several works [220, 221] to solve thermal modeling predictions.  

Finally, an emerging technique over the past decade to obtain numerical models is the 

molecular dynamic (MD). In principle, MD is used for simulating nano-metric cutting [222, 

223], i.e., the uncut chip thickness within the range of nanometers is possible to find some 

applications in the micro-scale [224] . MD models are used for the investigation of chip removal 

mechanisms, tool geometry optimization, cutting force estimations, subsurface damage 

identification, burr formation, surface roughness and surface integrity prediction. The results 

indicated that MD is a possible modeling tool for micro-cutting processes; atomistic modeling 

can provide a better representation of micro and nano-level characteristics than other modeling 
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techniques [225, 226]. Some disadvantages are the significant computational power required 

and the cutting speed that is considered to be unrealistically high [195]. 

 

Figure 2.4 Comparison of predicted and measured 3-D chip formation and chip flow for half-immersion 

down micro-end milling [219] 

2.1.5 Empirical modeling of micromachining processes 

An empirical model can be defined as the representation obtained from the relationships 

between inputs and outputs based on experimental data. A mathematical empirical model can 

relate a non-random n-input variable, nx  with a random variable scalar output variable, y(x). 

In multiple-input multiple-output models, the outputs can be separately handled and may 

therefore be considered multiple-input single-output models: the previous definition is 

sufficiently general [227]. Empirical modeling can also be conducted by any kind of computer 

modeling technique based on empirical observations rather than on descriptive mathematical 

relationships in the system that is modeled. This technique is a novel approach to computer-

based modeling that was developed at Warwick University, England [228]. In summary, the 

empirical modeling can be classified into statistical and Artificial Intelligence-based groups, 

both of which are described in the following subsections. 

2.1.5.1 Statistical models 

A statistical model embodies a set of assumptions concerning the generation of the observed 

data and similar data from a larger population. Often, a model represents the data-generating 

process in considerably idealized form. Model assumptions describe a set of probability 

distributions, some of which are assumed to provide a suitable approximation of the distribution 

to a particular data set [229]. In statistical modeling, regression analysis is a statistical process 

for estimating the relationships among variables. There are many regression modeling 

techniques reported in the literature, starting with linear and non-linear regression, through to 

Bayesian linear regression, and non-parametric regression, among others. The simplest multiple 

regression models are represented by the linear equation [193]:  
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relating some input variables, x, with an output, y. Coefficients, b, are obtained by 

minimizing the sum of the square of the difference between the predicted and observed values, 

y(P) and y, for a set of m input–output pairs: 
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the regression coefficients can be estimated through: 

  
1

T Tb X X X y


   (2.3) 

Although most of the models used in science and engineering are linear or can be linearized, 

some of them are nonetheless strictly nonlinear. In these kinds of models, the number of 

parameters, qreg, can differ from the number of input variables, n, but always less so than the 

number of input–output pairs in the dataset, Nreg, so as to prevent mathematical non-

determination [230] . An important issue in the use of non-linear models is overfitting, which 

takes place when the model not only fits the relationship between the input and output variables, 

but also the noise present in the data. This unwanted phenomenon negatively affects the 

generalization capability of the model and mainly takes place when the number of parameters 

becomes too large. The regression models are commonly applied  in the micromachining 

processes to establish a parametric correlation between force, vibration, and acoustic emission, 

among other factors, and productivity, surface quality and material removal rate [231-233].   

In the same way, Bhandari, et al. [234] develop a multi-lineal regression modeling to create 

a burr-control chart based on experimental results for micro-drilling process. In this 

investigation, three types of burrs depending on location are defined: entrance burrs, interlayer 

burrs and exit burrs, using an orthogonal array experimental design proposed by Genichi 

Taguchi to determine the relationship between the drilling parameters and the burr height. 

Something similar, but in this case applied to a micro-milling process is proposed by [235]. A 

statistical ANOVA is employed to determine the significance of mathematical model taken 

from regression analysis to characterize the surface roughness and depth of machined area. 

Finally, a predictive model used for micro-turning of ceramics was proposed by [236]. A 

mathematical model was developed to establish the various micro-machining parameters such 

as: laser-beam power, workpiece rotational speed, assisted air pressure and y-axis feed rate with 

response criteria such as: surface roughness and deviation in turned depth, so as to achieve the 
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desired surface quality and dimensional accuracy during micro-turning operations using laser 

systems. The multi-lineal regression correlation coefficients of the models obtained by the 

analysis of surface roughness and micro-turning depth deviations were 0.961 and 0.958, 

respectively. These correlation coefficients are near to 1 and clearly indicate that there is a very 

good fit between the predicted and the experimental values. 

2.1.5.2 Modeling on the basis of Artificial Intelligence 

Artificial intelligence methods refer to a set of tools and paradigms that are designed to 

understand and to emulate human intelligence and other complex natural systems. Although far 

from these final objectives, IA-based techniques have found a wide spectrum of applications in 

several knowledge branches. The most widely used techniques for modeling physical processes 

inspired in Artificial intelligence are Artificial Neural Networks, fuzzy & neuro-fuzzy systems, 

and probabilistic methods. These topics will be briefly reviewed in the following paragraphs 

[237, 238]. 

The development of AI technologies offers new opportunities to address not only 

conventional applications (expert systems, intelligent data bases, technical diagnostics, etc.), 

but also for full automation, control and monitoring of manufacturing processes [239]. Artificial 

neural networks are the most popular and well-established AI paradigm. This technique, 

inspired in the network structure of biological brains, has been extensively used for 

classification tasks and function approximation. The whole idea of the artificial neural network 

is based on the concept of the artificial neuron, a rough mathematical simulation of the 

biological neuron. Haber, et al. [240] was one the seminar works to analyze how Fuzzy Logic 

and Neural networks are essential for knowledge-based systems in industrial applications.  

The McCulloch-Pitts neuron [241] is a binary device, with two stable states of a neuron as 

shows the Figure 2.5. The McCulloch-Pitts model can be considered as a computing unit with 

an input n-vectors, nx , which are weighted (), linearly combined and them transformed by 

some transfer function (). Usually it can be: a sigmoid, a hyperbolic tangent, or simply a linear 

function to give a scalar output, y. A scalar term, bias, is often added to the linear combination 

which is called bias or threshold, representing the predisposition of the neuron to be activated. 

Each neuron has a fixed threshold. Furthermore, every neuron has excitatory and inhibitory 

synapses, which are inputs of the neuron. But if the inhibitory synapse is active, the neuron 

cannot turn on. If no inhibitory synapses are active, the neuron adds its synaptic inputs. If the 

sum exceeds or equals the threshold, the neuron becomes active. So the McCulloch-Pitts neuron 

performs simple threshold logic [242].  

If some neuron layers only receive inputs from neurons located in previous layers, then the 

network is called a feed-forward network ( Figure 2.6 a)) [243]. Examples of this structure are 

the multilayer perceptron (MLP) and the radial basis function networks (RBFN). In contrast, if 

connections exist between any one layer to a previous one, then they form a recurrent network 
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(Figure 2.6 b)) [244]. Examples of this architecture are the de Hopfield and the de Elman 

networks. The free parameters that select values (weights and biases) in the network are trained 

in what are known as learning or training processes. There are two main approaches to training 

a neural network: if the whole set of input–output pairs are known, supervised learning can take 

place. 

 

Figure 2.5 McCulloch-Pitts neuron model 

The most popular supervised learning algorithm is error back propagation, which is used 

for training MLPs and is, actually, a generalization of the Delta rule, a gradient descent 

algorithm. On the contrary, when the output information of the training dataset is not completely 

known, unsupervised learning algorithms must be used. This kind of learning is used principally 

for classification tasks and is widely used in self-organized maps (SOM) and adaptive 

resonance theory (ART) networks. 

 

Figure 2.6 a) Feed forward architecture and b) Recurrent architecture 

Fuzzy logic, unlike traditional or Boolean logics deals with uncertain relationships. In this 

approach, a statement can have a degree of truth ranging from zero to one, while in Boolean 

logic this degree of truth can be just zero (false) or one (true). The so-called membership 

functions determine the degree of membership of some element to some fuzzy subset [245] . A 

fuzzy inference system is a set of IF–THEN fuzzy rules, assembled together to offer some 

response to a given input. A fuzzy inference system is composed by a fuzzifier that converts 

the crisp inputs into fuzzy values. Then the inference engine applies the IF–THEN rules to 

produce a fuzzy output representing the response of the system and finally, this fuzzy set is 

transformed back into a crisp value by the defuzzifier. The design bottleneck is the selection 
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and tuning of the membership functions, although, fuzzy systems have been successfully 

applied for solving many control and modeling problems [246-248].  

An approach for solving this problem is the adaptive neuro-fuzzy inference system 

(ANFIS), an inference system organized by layers, some of which using fuzzy rules and others 

are tuned by an adaptive learning process (see Figure 2.7), like a neural network [249]. Rules 

provide the necessary information on the global behavior of the system. Once defined, the rules 

were normalized according to their importance. The next step was to calculate the consequent 

parameters, i.e., the Takagi–Sugeno function for each fuzzy rule. Finally, defuzzification is 

performed in the last layer to generate the crisp values. 

 

Figure 2.7 ANFIS model 

The probabilistic methods for uncertain reasoning represent another group of techniques. 

Although apparently similar to fuzzy logic, both approaches are fundamentally different. 

Probability theory predicts events from a state of partial knowledge. On the other hand, fuzzy 

logic deals with situations where vagueness is intrinsic. In probability theory, the truth is 

unknown but absolute, while it is by nature a relative concept in fuzzy logic. 

Bayesian and Hidden Markov models are the most widely applied probabilistic techniques 

in the various fields of modeling mechanical systems. A Bayesian network is a directed acyclic 

graph consisting of a set of nodes, representing random variables and a set of directed edges, 

representing their conditional dependencies. The dependencies in a Bayesian network can be 

adaptively determined from a dataset through a learning process. The objective of this training 

is to induce the network with the best description of the probability distribution over the dataset 

and can be considered as an unsupervised learning method, because the attribute values are not 

supplied in the dataset [250]. 

Hidden Markov models consist of a set of hidden states that form a chain described by a 

transition probability distribution over these states and an associated set of emission probability 
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distribution for the observed symbols. Unlike Bayesian networks, hidden Markov models can 

be represented as cyclic graphs and they have the ability to model the temporal evolution of 

signals [251]. The learning process in a hidden Markov model aims to find the best chain 

corresponding to a given set of output sequences. Several approaches have been proposed for 

obtaining local solutions in a computationally efficient way. 

Intelligence techniques are widely used due to the complexity and non-linearity of signals 

and events present in the micromachining processes. The principal objective is to correlate the 

information captured (force, vibrations, acoustic emissions and internals variables such as: 

position, current, power, etc.) during the cutting process with quality parameters (surface 

roughness, burr formation, geometry errors). Furthermore, models to predict, monitoring and 

controls to reduce costs and to increase the productivity (material removal rate) have been 

described in the literature. For a better understanding, some recent works were summarized in 

Table 2.2. 

Table 2.2 Intelligence models: a short review 

Operation* Objective Variables Algorithms Authors 

Milling Wear monitoring Vibrations Backpropagation neural 

network 

[252] 

Turning Machine stiffness 

and material 

characteristics 

Cutting force Fuzzy rule based [253] 

Drilling Online run out 

detection 

Force signals 

and cutting 

parameters 

Feed-forward neural 

network 

[254] 

Milling Surface roughness 

modeling 

Vibration signals Adaptive network-based 

fuzzy inference system 

[255] 

Turning Tool-wear 

prediction 

Pattern-

recognition 

Neural network [256] 

Milling Tool flank wear 

state identification 

Cutting force 

features 

Continuous Hidden 

Markov model 

[257] 

Drilling Tool breakage and 

wear detection 

Input current 

driving motor 

Neural network [258] 

Milling Tool life Cutting force 

component 

Takagi-Sugeno-Kang 

fuzzy logic modeling 

[259] 

* All the operations are referred to micro-scale processes.  

Quite often, the modeling techniques, especially those based on Artificial Intelligence 

techniques are the middle step for achieving the optimal setting of some parameters in the 
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production chain [260, 261]. Undoubtedly, at least a rough model is a must for performing the 

optimization, and this representation is needed to establish the correlation between the 

dependents and the independents variables. One example is adaptive control optimization in the 

micro-milling of hardened steels presented by [262]. These authors proposed an adaptive 

control optimization system to optimize cutting parameters using an artificial neural network to 

estimate cutting-tool wear. 

2.2 Experimental setup 

2.2.1 Kern Evo Ultra-precision machine 

As it was previously described, a solid experimental setup is required to obtain empirical 

models. In order to carry out this task during the experimental period, all experiments were 

conducted in a three axes Ultra Precision Kern Evo Machine. Furthermore, the machine is 

equipped with a laser control Nano NT to measure the tool geometry. The main components of 

the machine and the laser control system are shown in the Figure 2.8. 

 

Figure 2.8 Ultra Precision Kern Evo Machine 

Table 2.3 shows the parameters of the laser sensoring system. 
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Table 2.3 Technical data of the laser measuring device 

Parameters Manufacturer specifications 

Laser safety 

classification 

Class 2 acc. to IEC60825-1. 21 CFR 1040.10 

Laser type Visible red light laser |630. . .700 nm| < 1 mW 

Repeatability 0.1m 2 

Minimum tool 

diameter 

Standard: 15m 

Test speed (spindle) Up to 200,000 rpm 

Operating temperature –10ºC. . .+70ºC | +5ºC. . .+45ºC 

2.2.2 Real-time platform and sensory equipment  

The machine tool is also equipped with a dynamometer for capturing the three components 

of the force signal (Fx, Fy, Fz) and accelerometers for measuring the vibration on three axes 

(Vx, Vy, Vz). The tool position (x, y, z) is obtained through the Ethernet interface of the machine-

tool. Figure 2.9 shows the dynamometer and accelerometers for measuring force and vibration 

signals, respectively. 

 

Figure 2.9 Dynamometer, accelerometers, amplifier and Real-time platform 

The Kistler Minidyn 9256 piezoelectric dynamometer measures force on three axes. A 

measurement ranges of 250 N for 3-axis force and 8Nm for 2-axis torque measurement can be 

used. Natural frequencies above 5 kHz allow the measurement of signals with engagement 
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frequencies of up to about 2 kHz, which correlate with a rotational speed of 60,000 rpm for a 

two edge tool.  

By the other hand, three Brüel & Kjaer Deltatron 4519 mono-axial accelerometer were 

installed for measuring vibration on the three-axes. This sensor has a sensitivity of 103.7 mV/g 

and a measurement range of up to 20 kHz. All the accelerometers were connected to a Brüel & 

Kjaer 2694 series load amplifier. All data signals were fed into a NI 6251 National Instruments 

data acquisition card, with a sampling frequency of 50 kHz. A National Instruments high-

performance PXI-8187 embedded controller processes the signals.  

Finally, the sampling frequencies are shown in Table 2.4. 

Table 2.4 Sampling frequencies for the measured signals 

Variable Unit Sampling frequency (s−1) 

Position in x-axis, xcoord mm 795 

Position in y-axis, ycoord mm 795 

Position in z-axis, zcoord mm 795 

Vibration in x-axis, Vx mV 50000 

Vibration in y-axis, Vy mV 50000 

Vibration in z-axis, Vz mV 50000 

Force in x-axis, Fx N 50000 

Force in y-axis, Fy N 50000 

Force in z-axis, Fz N 50000 

Moment in z-axis, Mz Nm 50000 

2.3 Micro-drilling processes   

2.3.1 Forces and vibrations estimation models in micro-drilling operations 

During the research period the first results were published in [263]. The study on the signals 

of a micro-drilling process in order to extract relevant process features is presented. These 

patterns are correlated with the cutting tool condition, providing the foundations for further 

developments of indirect cutting tool monitoring systems. Forces and vibrations were recorded 

when micro-drilling of a tungsten-cooper alloy with TiAlN-coated tools. Three tools with 

diameters, D, of 0.1, 0.5 and 1.0 mm, respectively, were used and five consecutive holes were 
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elaborated with each tool as shown in Table 2.5. The nominal cutting conditions were 

represented by spindle rotation speed, nrpm; feed rate, frate and the drilling depth, hd.      

Table 2.5 Nominal condition of the micro-drilling process 

D 

(mm) 

nrpm 

(rev/min) 

frate (mm/min) hd1 

(mm) 

hd2 

(mm) frate1 frate2 

1.0 20 000 440 352 1.0 2.0 

0.5 40 000 440 352 0.5 1.0 

0.1 48 000 530 424 0.1 0.2 

Measured signals were processed by using time-domain statistics, Fast Fourier transform 

and Hilbert-Huang transform for extracting features. Figure 2.10 shows the correlation analyses 

between the obtained features and the number of elaborated holes (Nhole). Correlation analyses 

between the obtained features and the number of elaborated holes were then carried out in order 

to identify which of these features can be used for estimating the tool condition.  

 

Figure 2.10 Correlation analyses between the obtained features and the number of elaborated holes 

The maximum, mean value, standard deviation, skewness and kurtosis are computed for 

each signal Linear regression analysis to identify the possible dependence of the number of 

elaborated holes with any of these parameters are then carried out. The following Eqs. (2.4), 

(2.5) and (2.6) describe the lineal regression models obtained for the time-domain statistics, 

Fast Fourier transform and Hilbert-Huang transform. 

 
_ _ _

_ _ _

41.86 40.95 102.80 – 49.33 ...

22.06 0.11· 210.1

hole x mean x std y mean

y max y std z std

N F F F

F V V

   

  

     

   
   (2.4) 

 
_ _ _ _

_ _ _

3.08 – 1.18 – 0.02 – 0.17 0.04 ...

0.001 0.75 0.47

hole x mean x skew y mean y std

y kurt z mean z std

N F F F F

F V V

  

  

      

   
  (2.5) 

 
_ _ _ _ _1.93 6.29 5.14 1.28 0.36 3.91x std x max y skew y kurt z stdN F F F F V              (2.6) 

Time-domain statistics features did not show remarkable correlation with the tool usage 

level. On the contrary, FFT and HHT yielded very interesting outcomes, because some of the 
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analyzed features showed a clear relationship with the number of elaborated holes. Table 2.6 

shows a comparison between the correlation coefficients (R2) obtained for each model with 

95% confidence the parameters that have a significant relationship, with regard to the number 

of elaborated holes. After that, a micro-drilling process was experimentally studied. The 

analysis with three TiAlN-coated drills (diameters 0.1 mm; 0.5 mm and 1.0 mm) and a 

workpiece of tungsten–copper alloy was reported in [193]. Variations in tool dimensions were 

measured after the completion of each hole, while force and vibration signals were measured 

throughout the cutting process. The behavior of force and vibration for each tool diameter is 

depicted in Figure 2.11. For the sake of clarity, only the signals from the first hole are shown. 

Table 2.6 Correlation coefficients of the models 

Models Correlation coefficients, R2 

Time-domain statistics 0.2439 

Fast Fourier transform 0.5668 

Hilbert Huang transform 0.5307 

However, some interesting results can be inferred from Figure 2.11. The magnitude and 

amplitude of force signals are only relevant on the z-axis, which is consistent with the micro-

drilling operation. Another interesting issue is how the maximum force on the z-axis decreases 

from 42.7 N in the 1 mm diameter tool to 2.14 N in the 0.1 mm diameter tool. 

 This is more than a 20-fold reduction of force magnitude in the 0.1 mm tool diameter. 

Therefore, the influence of disturbances such as the offset of the dynamometer and air-coolant 

on force signals clearly limits the suitability of this sensorial information at a micro-scale, at 

least by means of time domain-based performance indices. Likewise, the magnitude of the 

vibration signals on the x and z-axes and the oscillations complicate direct use of this 

information in the time domain. 

Other features were extracted from the signals by using time-domain statistics, fast Fourier 

transform, wavelet transform, and Hilbert–Huang transform. These features were related with 

the number of drilled holes by using three modeling techniques: statistical regressions, neural 

networks and neuro-fuzzy systems. 

 In each case, the parameters obtained from the corresponding feature extraction technique 

were used as inputs of the model. When time-domain statistics were used (Figure 2.12 a)), the 

mean value, mean(), standard deviation, std(), and root mean squared value, rms(), of each 

measured signal were entered as inputs. When the feature extraction was based on FFT (Figure 

2.12 b)), the inputs of the models were the energies, Ei(), and frequencies, i(), of the five (i 

= 1,…, 5) most energetic values of the transform of each component. In a WT-based feature 

extraction (Figure 2.12 c)), the model inputs were the energy values of the four components, 

Ei(), i = 1,…,4, for each measured signal. Finally, when the feature extraction was based on 
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HHT (Figure 2.12 d)), the inputs were the energy value, Ei(), and the number of peaks, npeak, 

of the five (i = 1,…,5) most energetic IMFs. Moreover, the feed rate and the tool diameter were 

used as inputs in all the cases. The model output is the number of drilled holes. This variable 

was selected because it can be easily related to a threshold that represents the maximum 

allowable number of holes per drill. For training or fitting the models, each signal was divided 

into eight sections, so that, overall 600 samples of data were obtained. These data were divided 

into a training set of 570 elements and a validation set of 30 elements. 

 

Figure 2.11 Graphical representations of the measured signals 

 A feed-forward layered network of perceptron with twenty nodes that is used for data 

processing was used as second modeling technique. This is the most widely applied topology 

of the MLP, with only one hidden layer that guarantees its performance as a universal 

approximator, giving the MLP good modeling capabilities [264]. The training inputs as shown 

in the Figure 2.12 showed the same sequence before and once again, the output was tool usage. 

Finally, an adaptive neuro-fuzzy inference system (ANFIS) was used. ANFIS implements 

the Takagi-Sugeno model for the structure of the fuzzy system If-Then rules [265, 266]. The 

ANFIS architecture has five layers and the error back propagation is used as the learning 

strategy to determine the premise parameters of the rules. The parameters of each consequent 

are estimated using the least squares method. In the first step or forward pass, the input models 

are propagated and the optimum consequents are estimated with an iterative procedure of least 

squares, whereas the premises remain fixed. In the second step or backward pass the back 

propagation procedure is used to modify the premise parameters and the consequents remain 
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constant. This procedure is repeated until the stop condition is satisfied (error criterion). When 

the values of the premise parameters are set, the general system output is expressed as a linear 

combination of the consequents. 

 

Figure 2.12 Models of the feature extraction-techniques 

 The training parameters are 100 iterations (a higher number of iterations causes 

overtraining and, as a result of this, undesired peaks in the system output), using a hybrid 

training mode such that error back propagation did not reach the output value desired, and a 

step size of 0.05. The increase in step size did not produce a significant improvement in the 

output; however, it did increase operation computation time. 

In order to compare the results obtained during the modeling step, the R2 coefficient for each 

model is shown in Table 2.7. This value represents part of the variability of the modeled 

parameter, which is explained by the fitted model, which is usually taken as a measure of model 

quality. The statistical regression-based models have very poor prediction capabilities. On the 

contrary, ANN-based and ANFIS-based models show better correlations, but their values are 

relatively low. This is due to high non-linearity and noise caused by the complex nature of the 

cutting phenomena in micromechanical machining. 
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Table 2.7 Comparative evaluation of model performance 

 
Correlation, R2 Generalization capabilities 

Regr. ANN ANFIS Regr. ANN ANFIS 

Time domain 0.0000 0.8501 0.1846 0.2594 0.0491 0.6784 

FFT 0.0000 0.2265 0.2818 0.7498 0.1358 0.0598 

WT 0.0000 0.5195 0.3854 0.7515 0.7306 0.7319 

HHT 0.0000 0.5525 0.2727 0.7348 0.0346 0.8543 

Likewise, Table 2.5 also depicts the generalization capabilities of the models. This 

generalization capability was determined by using the probability value of the comparison of 

the means of the fitting and validation set residuals. If there is no statistically significant 

difference between both means, it can be concluded that this model has good generalization 

capabilities. It can be noted from the table, that the ANN-based model has higher correlation 

values, but lower generalization capabilities than the ANFIS-based model. Indeed, ANFIS is 

not only a pioneering work, but also the simplest computationally and the most viable for real-

time applications. One of the advantages of ANFIS is that it combines the semantic 

transparency and intrinsic robustness of fuzzy systems with the learning ability of neural 

networks. The good generalization capability of ANFIS is supported on its main principle based 

on extracting fuzzy rules in each level of a neural network. Once the rules have been obtained, 

they provide the necessary information on the global behavior of the system. 

Figure 2.13 show a graphical representation of these models, plotting the relationship 

between predicted and observed values for the training set and the validation set. These figures 

show the mean values with the respective confidence intervals, considering a statistical 

significance of 95%. The most convenient combinations of feature extraction technique and 

modeling strategy are WT+ANN (Figure 2.13a)), WT+ANFIS (Figure 2.13b)) and 

HHT+ANFIS (Figure 2.13c)). This result is consistent with the feature extraction step that 

demonstrates the good capability of HHT. Nevertheless, wavelets-based feature (in time-

frequency domain technique alone does not provide good enough results) in combination with 

ANFIS and ANN yields good results.  

From the scientific viewpoint, the combination of WT and ANN provides better tradeoff 

between appropriate correlation and good generalization capability. However, from the 

technical standpoint the implementation of the monitoring system at industrial scale has severe 

constraints. For instance, the computational cost (computation time, signal processing time, 

etc.) is lower for wavelets and ANFIS combination. This result makes WT+ANFIS a good 

candidate for the final implementation of the monitoring system at industrial scale. 



Artificial Cognitive Architecture with Self-Learning and Self-Optimization Capabilities. Case Studies in 

Micromachining Processes 

 

 
56  CHAPTER 2 

 

Figure 2.13 Relationship between predicted and observed values for most convenient combinations 

An additional advantage of the wavelet in the feature extraction stage is that it offers the 

possibility of filtering the signal in the various frequency bands and of separating the interesting 

frequency from the noise frequency, which considerably reduces the area for searching in the 

subsequent stage, achieving a better final prediction. 

Table 2.8 Factor levels for experimental factors 

Material Levels 
Vc 

(m/min) 

frate 

(mm/min) 

step 

(mm) 

hd 

(mm) 

W78Cu22 

min 31.4 200 0.05 0.00 

mean 47.1 300 0.10 1.25 

max 62.8 400 0.15 2.50 

Ti6Al4V 

min 11.0 30 0.05 0.00 

mean 16.5 45 0.10 1.25 

max 22.0 60 0.15 2.50 

Ti grade 2 

min 11.0 30 0.05 0.00 

mean 16.5 45 0.10 1.25 

max 22.0 60 0.15 2.50 

Invar 

min 31.4 240 0.05 0.00 

mean 47.1 360 0.10 1.25 

max 62.8 480 0.15 2.50 

Al7075 

min 31.4 700 0.05 0.00 

mean 47.1 800 0.10 1.25 

max 62.8 900 0.15 2.50 

An upgraded model  was presented in [254], being the main contribution the possibility to 

generalize the model developed before for a single material to a multiple material scenario. 

Furthermore, in this investigation one strategy for optimization was introduced. Experimental 

work has been carried out for measuring the thrust force for five different commonly used 

alloys, under several cutting conditions. In the experimental study, a micro-drilling process was 
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carried out on five commonly used alloys: a sintered tungsten-copper alloy (W78Cu22), two 

titanium-aluminum-vanadium alloys (B348 grade 2 and Ti6Al4V), an aluminum alloy (Al7075) 

and Invar. 0.5 mm-diameter drills were applied in all case studies.  

Three cutting parameters were considered in the processes: cutting speed, Vc; feed rate and 

drill step, step. Also, the drilling depth was taken into account as another factor. Three levels 

(minimum, mean and maximum) were considered for the experimental factors (see Table 2.8). 

A three-level orthogonal array was used as experimental design. One of the main 

contributions was the use of every material, mechanical and thermal properties (yield tensile, 

Y; hardness, HRB; Young’s modulus, E; elongation, m; mass density, m; thermal 

conductivity, kc; and heat capacity, ch (see Table 2.9) to be included as model inputs. 

Table 2.9 Properties of the workpiece materials 

Parameters 
Materials 

W78Cu22 Ti6Al4V Ti grade 2 Invar Al7075 

Y (MPa) 240 830 276 679 503 

HRB 90 108 80 109 87 

E (GPa) 240 114 103 148 71.7 

m%) 8 10 20 5.5 9 

mg/cm3) 15.12 4.43 4.51 8.05 2.81 

kc (W/m∙K) 198 6.7 16.4 10.15 130 

ch (kJ/kg∙K) 0.21 0.53 0.52 0.52 0.96 

Subsequently, a MLP neural network-based was chosen for modeling the behavior of the 

thrust force. It was composed by an eleven inputs layer (Vc, frate, step, hd, Y, HRB, E, m, m, 

kc, ch), 80 neurons in the hidden layers and a single output neuron, which offers the predicted 

value of the force. Hidden neurons use sigmoid transfer function while the output neuron uses 

linear transfer function. The available experimental data was randomly divided into a training 

set containing 1 973 samples (corresponding to the 80%) and a validation set with the remaining 

493 samples. All the inputs and output were normalized in the interval from zero to one, by 

using linear interpolation. 

 The training process was carried out through the error backpropagation algorithm, with 

adaptive learning rate and momentum. The following training parameters were selected: initial 

learning rate, 0.001; ratio to increase learning rate, 1.05; ratio to decrease learning rate, 0.70; 

momentum constant, 0.9; and minimum performance gradient, 10–10. The stop condition was 

established after the 300 000 epochs. The behavior of the sum of squared errors through the 

training process was shown in the Figure 2.14. 
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Figure 2.14 Sum of squared errors through the training process  

The obtained neural model has a correlation coefficient, R2, of 0.8969, so, it explains the 

89% of the variability in the response variable. The standard error of the estimations was 1.084 

and the mean absolute error was 0.7340. The ANOVA of the model (see Table 2.10) shows that 

there is a statistically significant relationship between the variables at the 95% confidence level. 

Table 2.10 ANOVA of the thrust force regression model 

Source 
Sum of 

Squares 

Degrees of 

Freedom 

Mean 

Square 
F-Ratio p-Value 

Model 20172 1040 19.40 7.796 0.0000 

Residuals 2319 932 2.49   

Total 22491 1972    

In order to determine the generalization capability of the model, the residuals coming from 

the training and validation sets were analyzed. If the model is able to generalize its predictions, 

the both residuals sets should have a similar normal distribution (i.e., a normal distribution with 

the same mean and standard deviation). Therefore, the mean values and standard deviations of 

both sets were compared, through a t-Student and an F tests, respectively. These tests gave 

associated probability values of 0.6125 and 0.1832, therefore, the null hypothesis (both means 

are equal and both standard deviations are equal) cannot be rejected with at the 95% confidence 

level. It can be concluded that both residuals sets come from the same distribution and the model 

has a good generalization capability. The points are located near the ideal model line and there 

is no indication of heteroscedasticity. Moreover, residuals coming from the training and 

validation sets show a similar distribution. Figure 2.15 shows a graphical representation of the 

obtained thrust force for the mean values of steps and initial drilling depth. 
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Figure 2.15 Graphical representation of the thrust force model for mean values of steps and initial drilling 

depth    

Finally, during the investigation an optimization process was executed by considered two 

different and conflicting objectives: the unit machining time and the thrust force (based on the 

previously obtained model). A multi-objective genetic algorithm was used for solving the 

optimization problem and a set of non-dominated solutions was obtained. The Pareto’s front 

representation was depicted and used for assisting the decision making process. These results 

were not included in the writing of this chapter, because it only considered the modeling 

techniques. In the following chapter (see Chapter 3 ), an optimization method based on cross 

entropy will be refined and applied to a micromachining process. 

2.3.2 Run-out and holes quality prediction models in micro-drilling operations 

Nowadays, monitoring systems are becoming a main component of the modern industry. 

The relevance of monitoring systems is even more evident in manufacturing processes from 

simple operations to overall manufacturing plant in order to produce high-quality products in a 

very short time [267]. In micro-manufacturing processes, the need of monitoring systems is 

growing up very fast, because of the small scale of processes, which make almost impossible 

to detect any failure by simple visual inspection. 

One of the more common and undesired phenomenon, which must be detected by the 

monitoring systems in micro-drilling processes, is the so-called run-out (see Figure 2.16). It 

consists in an eccentric motion of the drill caused by the excessive centrifugal force due to the 

high rotational speeds [268]. Run-out can cause not only the damage of the surrounding surface 

but also the breakage of the cutting tool [269]. 
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Figure 2.16 Three possible conditions of the drilled holes 

A two-step monitoring system for run-out detection is reported in [254]. The first step uses 

the fast Fourier transform for extracting features from the online measured force signals. The 

final goal was the design of a real-time run-out detection system. Therefore, it is very important 

to observe the transient behavior of the signals. For this purpose, a short-time Fourier transform 

(STFT) was chosen, which is used for determining the sinusoidal frequency and phase content 

of local sections of a signal as it changes over time. In the discrete time case, data could be 

broken up into chunks or frames. Each chunk is Fourier transformed, and the complex result is 

added to a matrix, which records magnitude and phase for each point in time and frequency. 

The typical behavior of the force signal power, in the selected band, for three different 

drilling processes (normal, run-out without breakage, and run-out with breakage) is shown for 

Ti6Al4V (see Figure 2.17) and W78Cu22 (see Figure 2.18). It was considered a time interval of 

0.45 s according to the corresponding feed rate (i.e., 5 mm/min). 

 

Figure 2.17 Power of the (50…200)-Hz band in the Ti6Al4V force signals 
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Figure 2.18 Power of the (50…200)-Hz band in the W78Cu22 force signals 

When run-out takes place, the three components of the forces increase their values. This 

increment is especially noticeable in the x- and y-components. This behavior can be explained 

by the drill buckling. On the other hand, when the run-out causes the breakage of the drill, there 

is a clear decrease in the z-component of the force. The x- and y-components also decrease, but 

as the value of the z-component is higher, the decrease is more evident. 

Another interesting issue is the presence of a lower frequency harmonic through the run-out 

(see Figure 2.19). The eccentric motion of the drill can be one of the possible causes. The 

relevant information is constrained to the first part of the signal because the run-out takes place 

during the tool entrance, when the drill must overcome the cohesive forces of the workpiece 

surface.  

In the second step, MLP-based model predicts the process condition from the previously 

obtained features. This is a feed-forward neural network, which is trained by using the so-called 

back-propagation algorithm. This technique is a variant of the gradient descendant method 

applied in two steps. The neural network was trained by using the Levenberg-Marquardt 

algorithm, because it is faster than other back propagation algorithms, although it requires a 

larger amount of memory. The training process was carried out with an initial value of μd = 10-

3; the μd decrease factor was 0.1, the μ increase factor was 10, the maximum value of μd was 

1010, and the minimum performance gradient was 10-7. The process was stopped after 5×105 

epochs. 



Artificial Cognitive Architecture with Self-Learning and Self-Optimization Capabilities. Case Studies in 

Micromachining Processes 

 

 
62  CHAPTER 2 

 

Figure 2.19 Power of the force signals (detail) when run-out takes place 

 The selected network model (see Figure 2.20) has eight input neurons (1 … 8); six of them 

corresponding to the two first FFT spectrum values of each force signal (Fx, Fy, and Fz) and the 

other two to the material (codified as 0 = Ti6Al4V and 1 = W78Cu22) and the used feed rate. All 

inputs were normalized in the interval [0, 1] by using linear interpolation. The hidden layer was 

composed of 20 neurons (1 … 20) using sigmoid activation functions. Finally, an output 

neuron (status) brings the predicted cutting status. 

 

Figure 2.20 Neural network-based model to predict run-out in micro-drilling processes 

Overall, 46 experiments were used for this purpose, distributed as shown in Table 2.11. This 

system takes 500 items per time from the force signals data. As each signal was divided into 

sets of 500 points, a total of 1734 sets were obtained; 1449 of them correspond to normal cutting 
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conditions, 112 to run-out situations, and 173 to breakage conditions. Features are extracted 

from these 500 points by using FFT analysis. Only the two first values of the transformed signal 

(100 and 200 Hz) are taken because, as it was shown before, the run-out and tool breakage are 

clearly revealed in the (50…200 Hz) band. The total amount of data was divided into a training 

dataset (70 % of the samples), which was used for fitting the neural network model, and a 

validation dataset (30 % of the samples), which was used to test the generalization capabilities 

of the previously fitted model. 

Table 2.11 Distribution of the training data 

Materials 
frate 

(mm/min) 

Drilling result 
Totals 

Normal Run-out Breakage 

Ti6Al4V 

5 16 2 1 19 

24 

46 

10 1 0 2 3 

15 1 0 1 2 

W78Cu22 

5 6 5 1 12 

22 8 6 1 1 8 

10 1 0 1 2 

The adjusted model had a R2, equal to 0.9586, indicating that the model as fitted explains 

95% of the variability in the dependent variable. The standard error of estimate is 0.0899, and 

the mean absolute error is 0.0266. From the analysis of variance (ANOVA) of the model (see 

Table 2.12), it is evident that the significant relationship between the variables is at the 99 % 

confidence level.  

Table 2.12 Analysis of variance of the neural network model for run-out detection 

Source 
Sum of 

Squares 

Degrees of 

Freedom 

Mean 

Square 
F-Ratio p-Value 

Model 189.30 200 0.9465 117.2 0.0000 

Residuals 8.17 1012 0.0081   

Total 197.47 1212    

In order to test the generalization capabilities of the model, the obtained predictions for the 

training and validation sets were compared (see Figure 2.21). The difference between the mean 

values of the predictions of the training and validation sets is neglected. In addition, the mean 

predicted values of both sets are very similar to the observed values. 

Nevertheless, the spread of the predictions for the training set is remarkably less than the 

spread for the validation set. Consequently, the predictions of the model, under different 

conditions, are not as reliable as those obtained for data used in the training process. 
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Figure 2.21 Predictions of the model for the training and validation sets 

Table 5 shows the probability of predicting a condition from some observed data. As it can 

be seen from these outcomes, the probability of misunderstanding some data is lower than 30% 

for any condition. Specially, the probability of wrongly classifying some data coming from a 

run-out condition (false acceptances) is 25.2%, while the probability of identifying wrongly a 

run-out from data coming from other condition (false rejects) is only 6.1%. In this validation, 

the system was able to detect more than 70% of the run-out conditions with less than 10 % of 

false detections. For micro-drills, detecting and reducing run-out can yield considerable gains 

in tool life and productivity. 

Table 2.13 Probability of predictions for the validation set 

 
Predicted condition 

No cutting Normal Run-out 

O
b
se

rv
ed

 

co
n
d
it

io
n

 No cutting 75.5% 23.9% 0.6% 

Normal 6.1% 88.4% 5.5% 

Run-out 0.9% 24.3% 74.8% 

By the other hand, holes quality errors are an undesired but unavoidable consequence in 

drilling operations. Due to the small dimensions involved in the micro-drilling processes, 

quality measurement and control must be carried out offline, by using microscopy or other high 

precision measurement devices. The study about the correlation between the holes quality and 
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the force signals in the micro-drilling process of 0.1 mm and 0.5 mm-diameter holes in a 

sintered tungsten-copper alloy was presented in [231].  

For analysis purposes, each signal was divided in four segments (see Figure 2.22): 

 Empty motion: corresponds to the period where the tool is not cutting yet; 

 Tool entrance: includes from the instant where the tool tip touches the metal surface 

until the tool tip is completely inside the metal; 

 Forward feed: comprises the rest of the downward motion of the tool; 

 Backward feed: includes from the upward motion of the tool until leaving the hole. 

This classification was carried out because each segment has its own physical characteristics 

and the corresponding force signals are, consequently, of different magnitude. The empty 

motion signals were used as a reference in order to differentiate from the other ones, the 

component actually created by the cutting process from what is just noise. 

The holes’ quality error at the entrance of the holes was measured through a three-

dimensional scanning of the top surface of the part. This scanning was carried out by a Zygo 

NewView 600s white-light interferometry microscope, having a camera resolution of 0.55 m 

and a measurement array of 640×480 points, corresponding to a field of view of (352×264) 

mm, provided by a 20X Mirau objective. The surface coordinate, z, was measured in the interval 

(–7 … 7) m; outside these bounds, the coordinate values cannot be determined and, 

consequently, it can be considered that these areas correspond to the damaged zone. 

 

Figure 2.22 Segments of the cutting operation 

Figure 2.23 shows the whole circumference scanned for a 0.1 mm-diameter hole. On the 

contrary, for 0.5 mm-diameter holes, the whole circumference is greater than the field of view 

of the microscope and, then, approximately a quadrant can be scanned at once. For obtaining 

the holes’ quality error, the first step is to identify the boundary of the holes’ entrance. This was 

done by taking some point as a provisionally center for referencing purposes. This provisionary 

reference center is located at the middle point of the area, if the whole circumference is included 

in the available data (see Figure 2.24 a)). On the contrary, if only a quadrant is included into 
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the available data, the eventual center is located at the corner nearest to the actual center (see 

Figure 2.24 b)).  

 

Figure 2.23 Scanned surfaces of the holes entrance 

From this provisionally center, the considered angle qcen (the entire circle, qcen = 2, or just 

a quadrant, qcen = 2, respectively) is divided by i-th rays, separated by an angle  = qcen/i. 

Then, for each ray, the place where it intersects the point having some value of surface 

measurement is taken as a boundary point (see Fig. 8). For this problem, an angle  = 1° was 

used. 

 

Figure 2.24 Determination of the holes entrance boundary 

Depending on the amount of available data, the holes’ quality error is determined by using 

different methods. When the whole circumference is available, the maximum inscribed circle 

(see Figure 2.25 a)) is determined because this method is more accurate for irregular boundaries. 

Nevertheless, this method requires the availability of the whole boundary; therefore, when only 

a sector of the boundary is available, the least square circle is computed (see Figure 2.25 b)). 

 

Figure 2.25 Determination of the holes quality error 
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This approach is based on the minimization of the expression [270]: 

    
2

2 2 2

1

nb

c i c i

i

x x y x radius


    
    (2.7) 

where, nb is the number of boundary points; xi and yi are the coordinates of the i-th boundary 

points; xC and yC are he coordinates of the center and radius is the average diameter of the circle. 

After determining the center and the radius for the average circle, the maximum and minimum 

radius, radiusmax and radiusmin, are computed as the higher and lower distances from the center 

to any boundary point. The difference between these radiuses is the, so-called, roundness error 

(see Figure 2.25), that in our case corresponds to the quality error: 

 
max minquality radius radius     (2.8) 

From the determined circles, i.e., maximum inscribed circle and least squares circles, 

depending on the case, the inner and outer circles are obtained for each hole and, therefore, the 

hole quality error, , is computed. Table 2.14 shows for each hole the obtained inner, outer and 

mean radiuses and the holes quality error. The three components of the forces were measured 

during the drilling process. The behavior of these signals, in three different intervals (tool 

entrance, forward motion and backward motion), was analyzed using a wavelet toolbox 

package. A Haar wavelet-based 6th order decomposition was used. The plotted frequency 

interval was limited by the cutoff frequency of the used force sensors (approx. 5kHz). The 

power spectra for the three components of the force in the 0.1 mm-diameters holes have a 

noticeable increase in the band near of 2.5 kHz. The Figure 2.26 analyzes the signal increase 

behavior and to relate this behavior with the holes quality error. The power of the x- and y-

components growths at high frequencies (around 4.0 kHz), while in the z-component increases 

at the lower frequencies. 

Table 2.14 Inner, mean and outer radiuses and holes quality error 

D 

(mm) 
No. 

Inner radius, 

radiusin (m) 

Outer radius, 

radiusout (m) 

Mean radius, 

radiusmean (m) 

Hole quality 

error, quality (m) 

0.1 

1 56.7 81.1 63.9 24.3 

2 56.9 82.2 63.2 25.2 

3 56.7 84.0 63.6 27.3 

4 56.3 113.4 67.6 57.2 

5 55.7 88.8 63.8 33.1 

0.5 

1 254.9 293.0 281.7 38.1 

2 239.6 267.4 252.5 27.9 

3 234.6 272.9 264.4 38.4 

4 248.0 286.1 297.4 38.1 

5 303.2 334.8 325.2 31.6 
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This behavior can be detected even before the cutting start (during the free motion), so it 

can be expected that it should be closely related to the natural frequencies of the machine-tool-

workpiece system. However, after the beginning of the cutting processes, the increase of the 

power in these frequency bands is significantly higher. 

 

Figure 2.26 Wavelet package spectra for the first 0.1 mm-diameter hole 

In the 0.5 mm-diameter power spectra (see Figure 2.27), the change of the signal power 

after the beginning of the cutting process is more evident due to the higher signal-to-noise ratio. 

The behavior of the x- and y-components of the force is very similar to the 0.1 mm-diameter 

signals, showing a raise in the neighborhood of the 2.5 kHz and 4.0 kHz bands, especially 

noticeable in the forward feed interval. On the contrary, the increasing in the lower band for the 

z-component of the force is not present in the 0.5 mm-diameter signals.  

In order to obtain key signatures associated to the signal behavior, each frequency band of 

each segment (i.e., tool tip entrance, forward feed and backward feed) was independently 

analyzed. The differences between the mean power value of every component of the force and 

the corresponding mean values of the empty motion signals were computed. This difference 

keeps only the information from the cutting process disregarding the contribution from the 

empty motion. 

The computed parameters representing the power spectra change (36 for each component 

of the force, i.e., three for each cutting interval and 12 for each frequency band obtained 

according to the used method for wavelet decomposition) are shown in Figure 2.28, for the first 

hole of each diameter. The power spectra for the force components show an irregular behavior 

for both diameters. However, the 0.5 mm-diameter signals show mostly positive values. That 
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is in full correspondence with the higher signal-to-noise ratio of the 0.5 mm-diameter drilling 

process. 

 

Figure 2.27 Wavelet package spectra for the 0.5 mm-diameter holes 

In order to determine the features that are more closely related to the holes’ quality error, 

linear regression analyses were carried out between the selected features and hole diameter (as 

independent variables) and the holes’ quality error (as dependent variable). Another interesting 

fact is that those features with a higher correlation only belong to the signal segments in the 

tool tip entrance and the backward feed. This can be explained if the damage is mainly produced 

at the tool tip entrance and, later on, this damage affects the chip exit during the backward 

motion. In addition, the frequency bands of the higher correlated features, corresponds to the 

natural frequencies of the systems, as was shown in the previous section.  

The final model, for representing the main force features, was also obtained by multiple 

regressions, but by considering only the previously selected features and the holes diameter as 

independent variables (see Table 2.15). 

The final model was obtained by removing the dependent variables from the model, one at 

once, until to maintain only those terms being statistically significant at 95% of confidence. 

The obtained model can be expressed by the equation: 

 
(0 391) (3906 4 297)

,back ,back32.4 350 1.05quality z zF F      (2.9) 

having a correlation coefficient, R2, equal to 0.8238, meaning that the model as fitted 

explains the 82% of the variability in the observed data. From the analysis of the variance of 
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the model (see Table 2.15), it can be concluded that there is a statistically significant 

relationship between the independent and dependent variables at a 99% of the confidence level. 

 

Figure 2.28 Mean values of the force signals power spectra change during the cutting process, for the first 

holes of each diameter 

There are some interesting results derived from the obtained model. Firstly, the only signal 

having features that are highly correlated with the holes’ quality error is the z-component of the 

force. This may be explained by the changes in the friction force between the tool, the chip and 

the holes’ entrance profile. 

 Evidently, these changes seem to affect more heavily the variations of the through force (z-

component) than the cross-section forces (x- and y-components). Another important aspect is 

the comparison between the different cutting intervals. The greater correlation appeared in the 

backward feed motion. It would be due to the friction between the tool, the chip and the holes’ 

profile. Finally, the frequency bands included in the model are also noteworthy. The first one 

is the frequency band from 3 906 Hz to 4 297 Hz, which has a direct relationship with the hole 

quality error. On the contrary, the lower frequency band (up to 391 Hz) has an inverse 

relationship with the holes quality error (see Figure 2.29). 
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Table 2.15 Values of the variables used in the multiple regression model 

D (mm) (3516 3906)

,entrancezF  
(0 391)

,backzF  
(3 906 4 297)

,backzF  
(2 344 2 734)

,entrancezF   (m) 

0.1 

0.00346 0.00850 0.00411 0.00190 24.3 

0.00164 0.00452 0.00727 0.06509 25.2 

0.01215 0.01316 0.00279 0.05434 27.3 

0.03612 0.04069 0.00950 0.04113 57.2 

0.00183 0.00000 0.00136 0.00827 33.1 

0.5 

0.06944 0.01260 0.00424 0.05464 38.1 

0.04414 0.00324 0.00414 0.05305 27.9 

0.04532 0.00577 0.00534 0.05671 38.4 

0.06223 0.00605 0.00230 0.05435 38.1 

0.06381 0.00527 0.00367 0.03474 31.6 

Table 2.16 ANOVA of the hole quality model 

Source 
Sum of 

Squares 

Degrees of 

Freedom 

Mean 

Square 
F-Ratio p-Value 

Model 701.3 2 350.7 10.37 0.002 

Residuals 150.0 7 21.4   

Total 851.3 9    

The rationale of this behavior relies on the difference between the vibration characteristics 

of the machine-tool-part system (see Figure 2.30). The increase in the holes’ quality error causes 

two simultaneous but essentially different phenomena: the increase in the gap between the tool 

and the holes’ surface, and the increase in the irregularities of the holes entrance. The first one 

produces a decrease in the pressure on the chip while the second one raises the frequency of the 

change in this pressure. It must be noted that there is not relationship between the gap and the 

pressure frequency or between the irregularities and the pressure mean value. 

 

 

Figure 2.29 Components effect on the model 
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The main effect of the mean value of the pressure is the chip deformation, which, in turn, 

causes a rising in the damping with the consequent decrease in the low frequencies amplitudes. 

On the other hand, the increase in the frequency of the pressure variation creates a high 

frequency excitation force that increases the high frequency vibrations. The main outcomes of 

this study are the basement for obtaining reliable models for monitoring systems in micro-

drilling operations. 

 

Figure 2.30 Phenomenological relationships between the model variables 

2.4 Micro-milling processes 

2.4.1 Surface roughness prediction models in micro-milling operations 

Nowadays, the micrometric and nanometric dimensional precision of industrial components 

is a common feature of micro-milling manufacturing processes. Hence, a great importance is 

given to key issues such as online metrology and real-time monitoring systems for accurate 

control of surface roughness and dimensional quality. A real-time monitoring system is 

proposed in [255] in order to predict surface roughness with an estimation error of 9.5%.  

In the experimental setup, the z-axis component vibration is measured using two different 

diameters (0.5 mm and 1 mm-diameter) under several cutting conditions on a sintered tungsten–

copper alloy (W78Cu22). Then, an ANFIS model is implemented for modeling surface 

roughness, yielding a high goodness of fit indices and a good generalization capability.  

A Multiple Linear Regression (MLR) technique was used to obtain the first model. MLR is 

a generalization of linear regression by considering more than one independent variable, and a 

specific case of general linear models formed by restricting the number of dependent variables 
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to one. In this particular case, the relationship between the dependent variable logarithm 

average surface roughness (Ra) and the logarithms of the independent variables: cutting speed 

(Vc), feed rate per tooth (ftooth) and axial cutting deep (ap) were employed to generate an 

exponential model, as described in Eq. (2.10). The available experimental data was divided into 

a training set, composed of 79 data samples (corresponding to 70% of the total dataset), and a 

validation dataset composed of the remaining 35 data samples. 

 71.74 0.4267 0.2955 0.5613

c tooth PRa e V f a   (2.10) 

The regression model has a correlation coefficient, R2, of 0.8956, which explains 89% of 

the variability in the response variable. Despite the good correlation coefficient obtained with 

the regression model, its principal problem was a generalization capability of below 30%. 

This generalization capability was determined by using the probability value of the 

comparison of the means of the fitting and the validation set residuals. If there is a statistically 

significant difference between both means, therefore the model has bad generalization 

capabilities. The ANOVA of the model is shown in Table 2.17. There is a statistically 

significant relationship between the variables dependents and independent at a confidence level 

of 95%. 

In micro-milling processes, the vibration signals captured during cutting time are very noisy 

and with many frequency bands (servo-motors noise, machine stiffness, etc.). It is therefore 

very difficult to obtain a regression model with a good generalization capability. An alternative 

approach is to apply Artificial Intelligence techniques, to filter uncertainty, background noise, 

and the time-variant behavior of micro-milling processes. An Adaptive Network-based Fuzzy 

Inference System was selected to create the model due to its computational simplicity and 

suitability for real-time applications [271]. In this particular case, Gaussian membership 

functions are used. Once defined, the rules are normalized according to their importance. The 

next step is to calculate the consequent parameters, i.e., the Takagi–Sugeno function for each 

fuzzy rule. Finally, defuzzification is performed in the last layer as shown in Fig. 3. The signal 

was filtered before the modeling step, using a Finite Impulse Response filter, to calculate the 

Root Mean Square. The window size of the filter, selected using the sampling frequency (fs), 

was 50 kHz, in all cases. The work frequency (fw) as a function of the rpm of the spindle was 

0.75 kHz for a diameter of 0.5 mm and 0.67 kHz for a diameter of 1.0 mm. 

Table 2.17 ANOVA of the Ra regression model 

Source 
Sum of 

Squares 

Degrees of 

Freedom 

Mean 

Square 
F-Ratio p-Value 

Model 21.35 3 7.12 205.77 0.0000 

Residuals 3.80 110 0.03   

Total 25.15 113    
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The model was used for estimating Ra, but, in this case, it included the vibration of the z-

axis (Vz) as an independent variable. The main difference with Eq. (2.10) is the use of z-axis 

vibrations as the main input of the model to predict average surface roughness. The same dataset 

and distribution, previously described in this chapter, were used to create the model. 

 

Figure 2.31 Surface roughness ANFIS model architecture 

ANFIS model has a correlation coefficient, R2, of 0.8735, and a generalization capability of 

0.9315. The residuals from the training and validation sets were analyzed through a comparison 

of the mean values and standard deviations of both sets, employing a t-Student and an F-test, 

respectively. Therefore, the null hypothesis (both means are equal and both standard deviations 

are equal) cannot be rejected at the 95% confidence level. Therefore, both sets of residuals may 

be found in the same distribution and the model has a good generalization capability. In 

conclusion, ANFIS was the model selected to correlate the influence of the cutting parameters 

on the surface roughness. 

Finally, the optimization task is executed by considering two contradictory objectives: unit 

machining time and surface roughness. A multi-objective genetic algorithm is also applied to 

solve the optimization problem, obtaining a set of non-dominated solutions. Pareto front 

representation is a useful decision-making tool for operators and technicians in the micro-

milling process. An example of the Pareto front utility-based approach that selects two points 

close to both extreme ends of the frontier, in the first case (point 1), machine time is of greater 

importance, and in the second case (point 2), importance is attached to surface roughness. In 

general terms, users can select different combinations, at all times moving along the Pareto 

front. The Pareto front and the behavior of the vibration are shown in Figure 2.32. As it was 

remarked before, the main objective of this chapter is to address the modeling of 

micromachining processes. The next chapter will be entirely focused on multi-objective 

optimization applied to micromachining processes. 
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Figure 2.32 z-axis vibration behavior at points 1 and 2 of the Pareto’s front 

2.5 Models summary for micromachining processes 

In this section, a summary of the principal models obtained during the research period are 

shown in Table 2.18. All the abbreviations presented in the summary are described along the 

chapter, also it is explained in the glossary of terms (see annex I).  

Table 2.18 Model summary obtained during the research period 

Process Inputs Output 
Feature 

Extraction 

Modeling 

techniques 
Optimization R2 Gc Reference 

Micro-

drilling 

Fx, Fy, 

Vy, Vz 
Nhole 

Stats, 

FFT, 

HHT  

Regression - - - [263] 

Micro-

drilling 

Fx, Fy, 

Fz, Vy, Vz 
Nhole 

Stats, 

FFT, 

WT, HHT 

Regression, 

MLP, 

ANFIS 

- 

0.75, 

0.85, 

0.38 

~0, 

0.73, 

0.85 

[193] 

Micro-

drilling 

Vc, frate, 

step, hd, 

Y, HRB, 

m, E, 

m, kc, 

ch 

Fz FIR MLP 
Genetic 

Algorithm 
0.89 0.61 [254] 
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Process Inputs Output 
Feature 

Extraction 

Modeling 

techniques 
Optimization R2 Gc Reference 

Micro-

drilling 

Material, 

frate, Fx, 

Fy, Fz 

status FFT MLP - 0.96 - [254] 

Micro-

drilling 
Fz  WT Regression - 0.83 - [231] 

Micro-

milling 

Vc, ftooth, 

ap 
Ra - Regression 

Genetic 

Algorithm 
0.89 ~.30 [255] 

Micro-

milling 
Vz Ra RMS ANFIS 

Genetic 

Algorithm 
0.87 0.93 [255] 

Micro-

drilling 

Vc, frate, 

step, hd, 

HRB, E, 

m, kc 

Fz FIR 
Regression, 

ANFIS 

Genetic 

Algorithm 

0.84, 

0.86 

~0, 

0.93 
[260] 

Micro-

drilling 

Vc, frate, 

step, hd, 

HRB, E, 

m, kc 

Fz FIR 

Regression, 

MLP, 

ANFIS 

- 

0.78, 

0.73, 

0.88 

0.65, 

0.97, 

0.62 

[272] 

Micro-

drilling 

Vc, frate, 

step, hd, 

HRB, E, 

m, k 

Vp RMS 

Regression, 

MLP, 

ANFIS 

- 

0.27, 

0.25, 

0.72 

0.67, 

0.85, 

0.34 

[272] 

Micro-

milling 
ftooth, Vp Ra RMS HIM 

Simulated 

Annealing 
- - [273] 

Micro-

drilling 

Vc, frate, 

step 
Fz FIR MLP 

Cross 

Entropy 
- - [274] 

Micro-

drilling 

Vc, frate, 

step 
Vp FIR MLP 

Cross 

Entropy 
- - [274] 

2.6 Conclusions 

The micro-scale processes are non-linear, time-variant processes that are difficult to 

represent with precise mathematical equations. Throughout this chapter, different modeling 

techniques for micromachining processes are presented to address the representation of 

important phenomena and characteristics such as run-out, hole quality and surface roughness.   

Firstly, a comparative study of different feature extraction techniques in time and frequency 

domains as well as traditional (i.e., linear regression) and Artificial Intelligence-based strategies 
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(multilayer perceptron, ANFIS) was presented. Among the extraction techniques under 

analysis, wavelet transform and HHT showed the best performance from the scientific 

viewpoint. On the other hand, multilayer perceptron yielded the best modeling results. The 

combination of wavelet transforms and multilayer perceptron was especially suitable, showing 

not only a high goodness of fit but also good generalization capabilities. Following, the use of 

artificial neural networks for modeling the behavior of the thrust force, in a micro-drilling 

process showed the advantages of using such a hybrid approaches. The neural network was 

capable of dealing with the complex, non-linear and noisy experimental data, acquired from 

real-time experiments in this study. 

Secondly, two modeling techniques were presented: a two-step monitoring systems for 

detecting the occurrence of run-out in micro-drilling processes of Ti6Al4V and W78Cu22 alloys 

and a relationship between the thrust force signals and the holes’ quality error in the micro-

drilling process of a tungsten-copper alloy was derived. The monitoring system was able to 

identify more than 70 % of the run out conditions, with less than 10 % of false run out 

detections. Due to the intolerance of micro-drills to run out, the proposed approach can yield 

considerable savings in tools usage and increment in productivity. By the other hand, the 

wavelet spectrum toolbox was used to obtain the signal power distribution in the time-frequency 

domain, showing the behavior of the signal during three intervals of the cutting process: the 

tool tip entrance, the forward feed motion and the backward feed motion. It was found that the 

higher correlation exists in the frequency bands 0~391 Hz and 3906~4297 Hz, during the 

backward feed motion. An explanation was proposed for this fact, based on the simultaneous 

rising of the mean value and the frequency changes of the pressure on the chip.  

Thirdly, a surface roughness modeling was carried out in this chapter for micro-milling 

operations. Nowadays, the micrometric and nanometric dimensional precision of industrial 

components is a common feature of micro-milling manufacturing processes. A real-time 

monitoring system based on a neuro-fuzzy model has been proposed as an alternative tool to 

predict surface roughness during micro-milling processes. This monitoring system was created 

to provide a reliable and economic procedure for predicting surface roughness. In this case, it 

combines a uniaxial vibration sensor and an AI-based procedure in a real-time monitoring 

platform. Furthermore, an ANFIS model was created to estimate surface roughness with a very 

good generalization capability, 0.93, and an estimation error of 9.5%. Finally, a summary of 

the principal models obtained during the research period was developed. 

The next chapter is focused on a multi-objective optimization strategy based on estimation 

of distribution algorithm (EDA). Some modifications are introduced in the cross-entropy multi-

objective optimization algorithm. The Simple Multi-Objective Cross-Entropy method 

(SMOCE) is proposed on the basis of a new procedure for addressing constraints, i.e., the use 

of variable cutoff values for selecting the elitist population and filtering of the elitist population 

after each epoch are some of the modifications presented in the algorithm. 
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Chapter 3   

CROSS ENTROPY MULTI-OBJECTVE 

OPTIMIZATION ALGORITHM 

 This chapter presents two set of modifications respect to the cross entropy multi-objective 

optimization algorithm (MOCE) introduced by Bekker and Aldrich [114]. First, a group of 

modifications are introduced in the cross entropy multi-objective optimization algorithm, also 

called (MOCE+), based on a new procedure for addressing constraints: (i) the use of variable 

cutoff values for selecting the elitist population; and, (ii) filtering of the elitist population after 

each epoch. The second and final modifications packages are introduced in the Simple Multi-

Objective Cross Entropy method (SMOCE), based on only four parameters (epoch number, 

working population size, histogram interval number, and elite fraction) stored in the algorithm, 

in order to facilitate the tuning process. The final proposed method (SMOCE) is evaluated using 

different test suites. Furthermore, a comparison with some other well-known optimization 

methods is carried out. The comparative study demonstrates the good figures of merit of the 

SMOCE method in complex test suites. Finally, the proposed method is validated in the multi-

objective optimization of a micro-drilling process. Two conflicting targets are considered: total 

drilling time and vibrations on the plane that is perpendicular to the drilling axis. The Pareto 

front, obtained through the optimization process, is analyzed through quality metrics and the 

available options in the decision-making process. 

This chapter consists of five sections. The first section explains the basic cross-entropy 

concepts and the modified (two set of modifications) introduced to the multi-objective cross-

entropy method (MOCE+ in subsection 3.1.1 and SMOCE in subsection 3.1.2). In the second 

section, the sensibility of the algorithm to the remaining parameters is experimentally studied. 

Below, a comparative study with all available gradient-free methods is beyond the scope in the 
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section 3.3. Subsequently, some solutions are presented that use both methods and the 

experimental study in which the empirical data was obtained from the micro-drilling process is 

described. Finally, the chapter conclusions are presented in the section 3.5. 

3.1 Algorithm description 

3.1.1 Multi-Objective Cross-Entropy algorithm (MOCE+) 

The Cross-Entropy method is inspired by an adaptive variance minimization algorithm for 

estimating the probabilities of rare events on stochastic networks [109]. The main rationale of 

CE is the construction of a random sequence of solutions which converges probabilistically to 

an optimal or a near-optimal solution in two iterative stages [275]. In the first iteration, a sample 

of random data is generated according to a specified random mechanism. A better sample is 

produced in the next iteration and the parameters of the random mechanisms (i.e. parameters of 

the probabilistic density functions) are updated with the corresponding data [276] and [277]. 

Let X be a random variable on a space X, Px is its probability density function (PDF), and let 

the score f be a real function in X. The CE method aims to find the minimum of f over X, and 

the corresponding states x* that satisfy this minimum: 

 * ( *) min ( )
x X

y f x f x


    (3.1) 

The CE method provides a methodology for creating a sequence of x0, x1, …, xN and levels 

y0, y1, …, yN such that y converges to y* and x converges to x*. 

We are concerned with estimating the probability ( )y  of an event 

 ( ) ,E x X f x y y

    . Defining a collection of functions I  for ,x X y    [106]. 

  ( )

1 ( )
( , )

0if x y

if f x y
I x y I

otherwise
 


  


  (3.2) 

Let (-,) a family of probability density functions on  parametrized by a real valued 

vector  and(x,)|. 

 ( ) ( ( ) ) ( , )y P f x y E I x         (3.3) 

where E denotes the corresponding expectation operator. 

In this manner Eq. (3.3) converts the optimization problem into an associated stochastic 

problem with very small probability using a variance minimization technique such as 

importance sampling where the random sample is drawn from an a priori appropriate 

probability density function h. Taking a random sample x0, x1, … xN from an importance 

sampling (different) density h on and evaluating: 
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  ( )
1

1ˆ max ( )
i

N

if x y
i

I W x
N




     (3.4) 

where ̂  is called the importance sampling and ( ) ( , ) ( )W x x h x   is called the 

likelihood ratio. 

Searching the optimal sampling density h*(x) is problematic, since determination of h*(x) 

requires ̂ , called the importance sampling, to be known. 

 
 ( )

( , )
*( )

ˆ
if x y

I x
h x

 





  (3.5) 

Thus the parameter vector, called the referenced parameter or tilting parameter *, should 

be chosen such that the distance between h* and (x,) is minimal, reducing the problem to a 

scalar case. 

A measure of distance between two densities  and h is the Kullback-Leibler distance, also 

called cross-entropy between  and h: 

 ( , ) ( ) ln ( ) *( ) ln ( )h x x dx h x x dx         (3.6) 

Minimizing ((x,), h*) is equivalent to maximizing *( ) ln ( )h x x dx  which implies: 

 
 ( )

max ( ) max ( ln ( , ))
if x y

Ep I x
 

  


    (3.7) 

Using again the importance sampling, we can rewrite Eq. (3.6) to compute the expectation 

in Eq. (3.7). Therefore we can draw a sample x0, x1, … xN from and estimate the maximum 

(or minimum) of ˆ ( )D  : 

  ( )
1

( )1ˆmax ( ) max ln ( , )
( )i

N
x i

f x y
i i

p x
I x

N h x 
  




     (3.8) 

However h is still unknown in Eq. (3.8). The CE algorithm tries to overcome this difficulty 

by adaptively constructing a sequence of parameters  1ty t  . 

The proposed algorithm, called MOCE+, is inspired by the multi-objective cross-entropy 

approach, proposed by [114] (see Figure 3.1). All the functions of the MOCE+ algorithm 

described below are available from the following repository: 

http://gamhe.eu/downloads/CEMOO/MOCE+/.  

The algorithm is focused on solving a multi-objective optimization problem, given by: 

 min ( ) : ,n m  y f x x y   (3.9) 

http://gamhe.eu/downloads/CEMOO/MOCE+/
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where: 

 , 1i i il x u i n     (3.10) 

constrained by: 

 ( ) 0, 1ig x i p    (3.11) 

It starts by creating an empty elite population,    *

ijx   , source which will store the best 

solutions throughout the execution time of the algorithm. 

 

Figure 3.1 General algorithm (black background elements represent introduced improvements) 

Then, a loop (outer loop) of N iterations is performed, where the values of the means and 

standard deviations, i  and i : i=1 … n, for each decision variable are computed from the 

corresponding intervals, by: 
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 (0,1)( ), 1i i i il u u l i n       (3.12) 

 10( ), 1i i iu l i n      (3.13) 

Note that while the means are randomly chosen from the interval, the standard deviation is 

deterministically computed as 10 times the length of the interval. Then, a nested loop (inner 

loop) takes place until it reaches some stopping conditions. It starts by creating the working 

population,  ij, 1 , 1x i Z j n   , which can be done in two different ways. If the elite 

population is empty or if it is the first iteration in the loop, the working population is generated 

from normal random distributions, with means i  and deviations i , truncated in the intervals 

 ,i il u , for each decision variable. Otherwise, the working population is created from the elite 

population (see Figure 3.2). 

During the investigation the first result were introduced in [274]. A new creation of the 

working population from the elite solutions is carried out in a different way, as suggested by 

[114]. In the original approach, a frequency histogram, with 2r t   intervals (where t is the 

epoch) is constructed for each variable, from the solutions contained in the elite population. 

Then, with some likelihood, 0 1  , the frequencies of the histogram are inverted, in order 

to avoid convergence to a narrow sector of the Pareto front. Finally, the mean and standard 

deviations are computed for each histogram interval and a subset of new solutions are created 

from a truncated normal random distribution; each subset contains a number of solutions that 

are proportional to the frequency of the corresponding histogram interval. As the number of 

elements in the subset is an integer, round errors may occur. In such cases, some elements are 

added to the last interval until the prescribed working population size, Z, is reached. 

Two improvements were introduced in this section of the algorithm: the number of 

histogram intervals, r, was computed as the minimum of 2t   and a fifth of the elite population 

size, Z*, avoiding an excessive number of intervals for small elite populations. A further 

improvement was integrated in which the added solutions compensated the rounded errors. 

These solutions were incorporated into randomly selected subsets, instead of into the subset. 

As modifications, they were intended to avoid inappropriate trends in the creation of those 

solutions. 

When the new working population was created, each solution was evaluated according to 

the procedure diagram shown in Figure 3.3, obtaining the corresponding set of objective 

vectors,  ij j i1 in( , , ), 1 , 1y f x x i Z j m   . After this step, a further improvement was 

added, in order to deal with constraints. This variation relies on the penalty approach that 

modifies the values of the objective functions through the expression: 
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 ij ij k k i1 in( max(0, ( , , ))), 1 , 1y y g x x i N j m      (3.14) 

where, k , 1k p  , are the prescribed weights for each constraint. 

 

Figure 3.2 Creating new working population 

 Then, each solution in the working population was ranked by its Pareto dominance: in other 

words, by considering the number of other solutions which dominate it. The elite population, 

 *ijx  source was increased, by adding all the solutions with a lower Pareto dominance than some 

threshold value, t. 
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Figure 3.3 Evaluating population 

In the next step, the means and the standard deviation of each variable were updated from 

the values of the elite population by using a smoothing factor, : 

 
t (t 1) *

i i i(1 ) ( ), 1mean x i n        (3.15) 

 
t (t 1) *

i i i(1 ) ( ), 1stddev x i n        (3.16) 

Three stopping conditions were evaluated. Firstly, the change in the standard deviation was 

computed for each variable: 

 old

j j j      (3.17) 

A condition that is fulfilled when all the changes are lower than or equal to a prescribed 

value, max : 

 
n

j max
j 1

max( ) 


   (3.18) 

The second condition is fulfilled, if the number of evaluations, Sc, which is incremented by 

Z in each iteration of the inner loop, is greater than or equal to a prescribed value, Scmax: 

 maxSc Sc   (3.19) 
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Finally, if any of the previously described conditions are fulfilled, the inner loop stops and 

the elite population is ranked and filtered to store only *

maxZ  source solutions. This procedure is 

depicted in Figure 3.4. 

 

Figure 3.4 MOCE+: Filtering elite population  

At this point, another modification was introduced, by decreasing the threshold value, t, by 

a factor, : 

 t t-1(1 )      (3.20) 

This change meant that we used broader threshold levels for the first iterations (where 

preservation of diversity is important) and finer threshold levels for the final iterations (yielding 

an elite population closer to the actual Pareto front). All the functions and flowcharts of the 

MOCE+ algorithm described below are available from the following repository [278]. 

3.1.2 Simple Multi-Objective Cross Entropy method (SMOCE) 

A new set of modifications was introduced in the Simple Multi-Objective Cross Entropy 

method (SMOCE) (see Figure 3.5) algorithm. It is based on the previous results  presented in 

the MOCE+ algorithm [274] but it includes several important improvements. In the first place, 

only one loop remains in the algorithm, which is executed N times. 

The other previously considered stopping conditions, such as evaluation number or 

convergence criterion, are not taken into account in this new version. This modification allows, 

on one hand, reducing the number of objective function evaluations and, on the other hand, 
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removing algorithm parameters such as the maximum evaluation number and the convergence 

limit. 

 

Figure 3.5 Block diagram representing the simple multi-objective cross entropy algorithm (SMOCE) 

As in any multi-objective optimization technique, SMOCE aims to solve the following 

problem: 

 min ( ) : , mnf  y x x y   (3.21) 

where:  

 , 1i i il u ix n    (3.22) 

which is constrained by: 

 ( ) ,0 1g i px   (3.23) 

The core of the SMOCE is the working population, at the epoch t:  

 
( )

, ,{( , , 1 1 ,) , 1 }t

i k j kx y i n j m k Z     (3.24) 

composed of the Z solutions xk = [x1,k, …, xn,k] and their respective evaluated objective 

functions, yk = [y1,k = f1(xk), …, ym,k = fm(xk)]. 

The evolutionary process takes place on a loop with a unique ending condition: arrival at 

the epoch number, N. These are two of the main differences between SMOCE and MOCE+, 

where two nested loops and three different ending conditions are considered. These 
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modifications permit, on one hand, a reduction of objective function evaluations and, on the 

other hand, the removal of algorithm parameters such as the maximum evaluation number and 

the convergence limit. 

In the first epoch, an initial working population is randomly created; in the following 

epochs, a new population [(xi,k, yj,k)
t] is created from the previous one [(xi,k, yj,k)

t-1]. The 

corresponding values of the objective function are evaluated for each solution after creating the 

population. 

Considering the elite solutions: 

 
( )

, ,[( , , 1 1 ,) , 1 ]t

i k j k i n j m k E       (3.25) 

where, the elite solution number, E = Z, and a parameter,  called the elite fraction, are 

extracted from the current working population. These elite solutions are included in the next 

epoch population, which introduces elitism in SMOCE (another improvement with respect to 

MOCE+). 

In the following subsections, the main steps of the SMOCE algorithms are explained in 

further detail. 

3.1.2.1 Creating initial population 

Another difference between SMOCE and MOCE+ is the creation of the initial population. 

In the MOCE+ algorithm, the initial population is created by using a normal random 

distribution, while a uniform random distribution is used in SMOCE, i.e.:  

 , ( , ), 1 , 1i j i ix l u i n j Z     (3.26) 

where, xi,j is the value of the i-th decision variable in the j-th solution; and (a, b) is the 

uniform random distribution in the interval [a, b]. 

This change means we can generate uniformly distributed individuals throughout the 

decision variables domain, which is especially convenient for dealing with problems where the 

Pareto solutions are concentrated in a small section of the whole domain. 

3.1.2.2 Creating a new population 

The creation of the new working population, from the current one at each epoch, is another 

important difference between the two methods. In the new approach, the elite solutions, [(, 

1, …, (, )Epop], are clustered by using the histogram of the objective functions, instead of 

the histogram of the decision variables. 

This approach appears to be the most appropriate as, in most of the problems, there is no 

correspondence between the variable domain and the objective domain; consequently, 
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individuals with similar decision variables values, could have very different objective function 

values. 

 intervals are created in each dimension of the objective space, to establish the histogram:  

 
, , , 1, , 1i k i k kc c i m        (3.27) 

Where the lower and upper bounds for each interval are:  

 min max min

,

( 1)
( )i k i i i

k
c b bb 




   (3.28) 

and;  

 min max min

, ( )i k i i ib
k

c b b 


  (3.29) 

where:  

 
min

,1 ,min({ , }), 1i i i Eb i m     (3.30) 

and; 

 
max

,1 ,max({ , }), 1i i i Eb i m     (3.31) 

are the minimum and maximum values of the i-th objective in the elite population.  

The  intervals, obtained by this way, are then combined with the m variables, to obtain am 

classes, and then all the Z elitist solutions are arranged into these classes. Thereafter, the mean 

value and the standard deviations are computed from the solutions of each class for each 

objective function: 

 
#

, ,

[ ]

1

1
, 1 , 1

#[ ]

k

k m

i k i jk
j

i m k 


   
ξ

ξ
  (3.32) 
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
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


υ

ξ
  (3.33) 

where, [(, k] is the subset of the elite population belonging to the k-th class, i.e.:  

 , ,[( [( ,]: 1, ) ] , )k i k i i kc c i m    ξ υ ξ υ   (3.34) 

Lastly, the new working population is composed of the Epop elite population and 

#[k](Z – Epop)/Epop, k = 1…m, which are sets of new solutions for each class, created by using 

a normal random distribution with mean i,k, and standard deviation i,k, and truncated to the 

interval [li, ui], for i = 1…m:  
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( )

, , ,( , , , ), 1t

i j i k i k i ix l u i n     (3.35) 

3.1.2.3 Evaluating the population 

The evaluation of the solutions implies not only computing the values of the objective 

functions, but also the constraints, which are considered by the penalty method. Therefore, the 

constrained objective functions take the following form:  

 
1

( ) ( ) ( )

, ( ) ( ), 1 , 1x x
pt t t

i k i k j j kj
y f g i n k Z


      (3.36) 

where, j  0 are the penalty coefficients assigned to each constraint. 

3.1.2.4 Extracting the elitist population 

Elitism is considered in SMOCE through including the elite solutions in the working 

population of the next epoch. 

Selection of the elitist population is also different in the new approach. In MOCE+, elite 

population includes all the individuals with rank lower than some threshold value (which 

decreases from some initial value to zero, through the algorithm execution). On the contrary, in 

SMOCE some prescribed fraction of the working population, including the individuals with the 

lower rank, is selected as the elite population in each epoch. 

This selection is carried out through the Pareto ranking criterion, which is based on the 

concepts of vector dominance. 

A vector, v m, dominates another vector, u m, (denoted as v  u) , if and only if all 

the components of v are less or equal than the respective components of u, and exists at least 

one component of v which is strictly less than the respective component of u:  

 ( {1 }, ( { )1 },)u v i i j ji m v u j m v u          (3.37) 

In a vector set  = [v1 … vn]  m, a vector v*  is said to be non-dominated if and only 

if:  

 *{1 }: v vkk n    (3.38) 

 By using these concepts, the Pareto ranking of a vector, in a vector set, is the number of 

other vectors which dominate it. The elite population is composed by the Efront solutions with 

the lower Pareto rank. 
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3.2 Analysis of the sensibility to the algorithm parameters values 

3.2.1 Screening 

The first step for selecting the most convenient values of the SMOCE algorithm parameters 

is to determine their influence on the Pareto front quality and on the execution time (i.e., on the 

efficacy and efficiency of the algorithm). In order to do that, a screening study was carried out. 

The four parameters of the SMOCE (epoch number, N; working population size, Z; histogram 

intervals number, ; and elite fraction, ) were considered in the intervals shown in Table 3.1. 

A 2-level half-fraction with center point design of experiments was selected for the simulations. 

Five replicates were executed for each experimental point. 

Thirteen commonly used test problems, coming from three suites conventionally known as 

MOP [279], ZDT [103] and WFG [102],  were considered in the simulations. All of them have 

two objectives, but are very different in the other features (see Table 3.2). 

Four metrics were used for evaluating the quality of the obtained Pareto fronts: the 

hyperarea ratio, HR; the generational distance, GD; the convergence, CV; and the spacing, SP. 

While the generational distance and convergence measure the front convergence (i.e., how 

closed is the obtained front to the true Pareto front), the spacing reflects its diversity (i.e., how 

uniformly are the solutions distributed through the obtained Pareto front), and the hyperarea 

ratio combines both criteria. 

Table 3.1 Levels of the Algorithm Parameters for the Screening 

Algorithm parameter 

Level values 

Low Medium High 

Epoch number, N 10 2505 5000 

Working population size, Z 50 525 1000 

Histogram intervals number, D 5 15 25 

Elite fraction,  0.10 0.35 0.60 

The influence of each parameter is evaluated through a multiple regression, by considering 

the t-Student test of the corresponding coefficients. The relationship is considered to be 

significant at a 95% confidence level. Figure 3.6 represents the obtained relationships. 

As can be seen, the epoch number has a direct relationship with the execution time in all the 

considered test problems. This fact can be expected from the same structure of the SMOCE 
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algorithm, as this parameter is the only included ending condition. An increase of the epoch 

number, also improves the front diversity (expressed by an inverse relationship with the 

spacing) in most of the test problems (except in MOP1 and MOP2) but it does not have a 

significant relationship with the other metrics. 

Table 3.2 Levels of the Algorithm Parameters for the Screening 

Problem Reference Variables Geometry Modality 

MOP1 [279] 1 Convex Unimodal/Unimodal 

MOP2  3 Concave Unimodal/Unimodal 

MOP3  2 Disconnected Multimodal/Unimodal 

MOP4  3 Disconnected Multimodal/Unimodal 

MOP6  2 Disconnected Unimodal/Multimodal 

ZDT1 [103] 30 Convex Multimodal/Unimodal 

ZDT2  30 Concave Multimodal/Unimodal 

ZDT3  30 Disconnected Unimodal/Multimodal 

WFG2 [102] 32 Disconnected Unimodal/Multimodal 

WFG3  32 Degenerated Unimodal/Unimodal 

WFG4  32 Concave Multimodal 

WFG5  32 Concave Deceptive 

WFG6  32 Concave Unimodal 

WFG7  32 Concave Unimodal 

WFG8  32 Concave Unimodal 

WFG9  32 Concave Multimodal, deceptive 

A rise in the population size also increases the execution time for all of the test problems. It 

also improves the quality (both, the convergence and diversity) of the obtained Pareto front for 

most of the test problems. 
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The execution time is not affected by the histogram interval number. A rise in this parameter 

causes an improvement in the front convergence (showed in the direct relationship with the 

convergence metric and the inverse relationship with the generational distance for most of the 

test problems), and in the front diversity (indicated by the inverse relationship with the spacing). 

There is also a direct relationship with the hyperarea for most of the problems. 

Finally, the elite ratio has no influence neither in the execution time nor in the quality 

metrics, except in the spacing for problems in sets ZDT and WFG, where and improvement 

takes place. 

By taking into account the previous analyses, the values of the histogram interval number 

and the elite fraction are chosen in their respective higher levels (i.e.,  = 25 and  = 0.65), 

because they correspond to the better Pareto front quality without worsening the execution time. 

 

Figure 3.6 Relationships resulting from the screening analysis 

3.2.2 Response surface 

For obtaining the relationship between the epoch number and the population size with the 

execution time and the front quality, the following response surface analysis was carried out. 

For doing that, a full 3-levels experimental design was selected. Both factors (population size, 

Z, and epoch number, N) were kept in their respective levels used for screening (see Table 3.2. 

Twenty replications were carried out for each experimental point. For analyzing the front 

quality, the hyperarea ratio was selected because this parameter characterizes both the 
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convergence and diversity. Figure 3.7 shows the graphical representation of the execution time 

and hyperarea ratio obtained for each experimental level for the MOP suite. 

As it is shown in Figure 3.7, both experimental factors have a direct influence on the execution 

time. On the contrary, they increase the front quality only up to medium levels. After this point, 

there is not a significant change in the front quality. Therefore, the most convenient values for 

the experimental factors are those corresponding (or near) to the middle levels, i.e., Z = 525, 

N = 2505. It can be pointed out that the hyperarea ratio values obtained for this suit are very 

high. Except for MOP6 problem, their higher values are close to one. This means that the 

obtained Pareto front is very close to the theoretical solution. 

 

Figure 3.7 Behavior of the execution time and hyperarea ratio vs. population size and epoch number for 

test problem suite MOP 
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Figure 3.8 and Figure 3.9 show the obtained results for the suite ZDT and WFG, 

respectively. In both, the behavior is similar not only for the execution time but also for the 

hyperarea ratio. In all the cases, the combination of medium levels (Z = 525, N = 2505) allows 

to obtain near-optimal front quality with reasonable execution time. 

The most noticeable difference is given by the lower values of hyperarea ratio in problem 

of the two last suites compared with MOP. This can be due to the higher complexity of this test 

suit. 

However, in spite of this fact, the differences in the execution time are neglected. This 

indicates that the execution time depends on the number of evaluation but not on the complexity 

of the optimization problem (number of variables, characteristics of the target function, etc.). 

 

Figure 3.8 Behavior of the execution time and hyperarea ratio vs. population size and epoch number for 

test problem suite ZDT 

The quality of the obtained Pareto front does not increase beyond some points by 

incrementing the parameters (population size and epoch number), at least, on the basis of the 

considered intervals. 
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Figure 3.9 Behavior of the execution time and hyperarea ratio vs. population size and epoch number for 

test problem suite WFG 

3.3 Comparative study. Advantages and drawbacks. 

A comparative study was performed on the basis of other approaches reported in the 

literature, to analyze the main drawbacks and advantages of the proposed algorithm. So, only 

some of the most well-established algorithms of similar scope are included in this study. Firstly, 

a comparison between the two algorithms described in the previous sections was performed 

(see Table 3.4). For this, series of widely used multi-objective optimization test problems (see 

Table 3.2) were evaluated. 



  Gerardo Beruvides López

 

 
CROSS ENTROPY MULTI-OBJECTVE OPTIMIZATION ALGORITHM  97 

MOP and ZDT problems were addressed by using the parameters shown in Table 3.3. These 

values were obtained by trial and error and by considering those reported in various studies. 

The tradeoff between the Pareto front quality was also taken into account for setting these 

parameters. 

Table 3.3 Parameters values for solving problems MOP’s and ZDT’s 

Parameter Value 

Convergence limit, max
  0.01 

Smoothing factor,  0.9 

Epochs number, N 100 

Population size, Z 50 

Frequency inversion likelihood,  0.3 

Initial elite threshold,  2 

Decreasing threshold factor,  0.05 

Maximum elite population size, *

maxZ   160 

Maximum evaluation number, Scmax 500 

The quality of the Pareto front was evaluated by using four metrics [114]. While 

generational distance, GD, and convergence, CV, measure front convergence (i.e., how close 

the obtained front is to the true Pareto front), and spacing, SP, measures diversity (i.e., how 

uniformly distributed the solutions are); the maximum Pareto front error, ME, combines both 

criteria. 

A total of 50 replications were performed for each problem. The mean values and 

confidence intervals (at a 95% confidence level) of each metric were shown in Table 3.4. The 

generational distances, GD, were worse than those generated by MOCE for MOPs, but the 

values were still low. There was no significant difference for ZDT2, but for ZDT1 and ZDT3 

the values offered by SMOCE were remarkably better. Convergence, CV, was lower for all the 

problems, except for MOP1 where no significant difference was found. Spacing, SP, was also 

low, except in MOP4. For MOP1, ZDT1 and ZDT2 the values from SMOCE was slightly better 

than those from MOCE, while they were slightly worse for both MOP2 and ZDT3. Finally, the 
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maximum Pareto front error, ME, was significantly lower for MOP2, MOP4 and ZDT3; it was 

notably higher in MOP1; while there were no significant differences in ZDT1 and ZDT2. 

Table 3.4 Comparison between MOCE and SMOCE for solving MOP and ZDT problems 

Problem Reference 

Metrics [×10-3] 

GD CV SP ME 

MOP1 

MOCE 0.0 6.8 20.23 3.8 

SMOCE 0.6 ± 0.0 6.8 ± 0.0 8.7 ± 0.4 10.4 ± 2.8 

MOP2 

MOCE 0.0 11.2 0.6 12.8 

SMOCE 1.0 ± 0.0 10.2 ± 0.0 2.2 ± 0.4 1.4 ± 0.2 

MOP4 

MOCE 0.2 95.7 15.7 290.3 

SMOCE 0.8 ± 0.1 5.5 ± 0.4 66.9 ± 3.6 6.2 ± 0.7 

ZDT1 

MOCE 1.2 71.6 3.9 23.5 

SMOCE 0.8 ± 0.0 8.0 ± 0.2 2.4 ± 0.0 23.1 ± 0.9 

ZDT2 

MOCE 1.2 254.5 2.7 23.5 

SMOCE 1.2 ± 0.1 12.6 ± 1.3 2.5 ± 0.1 25.2 ± 3.3 

ZDT3 

MOCE 3.9 28.9 2.4 130.0 

SMOCE 0.6 ± 0.0 5.8 ± 0.1 4.5 ± 0.2 17.4 ± 0.8 

A total of 50 replications were performed for each problem. The mean values and 

confidence intervals (at a 95% confidence level) of each metric were shown in Table 3.4. The 

generational distances, GD, were worse than those generated by MOCE for MOPs, but the 

values were still low. There was no significant difference for ZDT2, but for ZDT1 and ZDT3 

the values offered by SMOCE were remarkably better. Convergence, CV, was lower for all the 

problems, except for MOP1 where no significant difference was found. Spacing, SP, was also 

low, except in MOP4. For MOP1, ZDT1 and ZDT2 the values from SMOCE was slightly better 

than those from MOCE, while they were slightly worse for both MOP2 and ZDT3. Finally, the 

maximum Pareto front error, ME, was significantly lower for MOP2, MOP4 and ZDT3; it was 

notably higher in MOP1; while there were no significant differences in ZDT1 and ZDT2. 
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Summarizing, it can be concluded that the proposed algorithm, SMOCE, performed in a 

similar way to MOCE for the MOP and the ZDT test suites. It should be noted that its behavior 

was better for ZDT problems than for MOP problems. 

 

 

Figure 3.10 Comparison of different approaches for MOP’s and ZDT’s problems 

*Only for the ZDT’s test suite functions 

A comparison with other multi-objective algorithms, including the archive-based hybrid 

scatter search (AbYSS) [280], the strength Pareto evolutionary algorithm (SPEA2) [281], the 

non-dominated sorting genetic algorithm II (NSGAII) [282], the non-dominated sorting genetic 

algorithm II + learning paradigm based on jumping genes (NSGAII+JGBL) [283], the elite-

guided multi-objective artificial bee colony (EMOABC) [284], a self-adaptive multi-objective 

harmony search (SAMOHS) [285], a real-coded NSGA-II with simulated binary jumping gene 

operators (RNSGA-II-SBJG) [286] and the previously mentioned multi-objective cross entropy 

(MOCE) method [114], are all shown in Figure 3.10. It may be noted that the generational 

distance of the solutions provided by SMOCE are better than those provided by MOCE (except 

for MOP1 and MOP2), but they are worse than those provided by the other evolutionary 

approaches. Nevertheless, the generational distance values are very low in all the problems; 

therefore, the solutions are acceptable for many applications. 

Quite different results were obtained when attempting to solve more complex problems, 

especially those from the WFG test suite (see Table 3.2). These problems were addressed by 

using the parameters shown in Table 3.5. The increases in the epoch numbers, N, and the 
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population size, Z, were notable, while the convergence limit, , and the maximum evaluation 

number, max, all decreased. 

Table 3.5 Optimization problems solved by MOCE and SMOCE 

Parameter Value 

Convergence limit, max
  0.005 

Smoothing factor,  0.1 

Epochs number, N 2500 

Population size, Z 160 

Frequency inversion likelihood,  0.1 

Initial elite threshold,  4 

Decreasing threshold factor,  0.5 

Maximum elite population size, *

maxZ   160 

Maximum evaluation number, Scmax 130 

Quality metrics for the WFG problems are shown in Table 3.6. 

A comparison of the results, for the WFG test suite, with multi-objective cross-entropy 

(MACE) [7], multi-objective cross-entropy optimization using generalized decomposition 

(MACE-gD) [7], multi-objective evolutionary algorithms based on decomposition (MOEA/D) 

[287], real-coded NSGA-II with simulated binary jumping gene operators [286] and regularity 

model-based estimation of distribution algorithms (RM-MEDA) [288], were shown in Figure 

3.11. This figure shows a much better performance of SMOCE in relation to the WFG test suite 

and in comparison with the other approaches. 

Even though the performance of SMOCE for simple problems was no better than other 

previously published approaches, it is evident that SMOCE performed notably better for 

complex problems. The main rationale to explain this behavior is the complexity of SMOCE, 

which is a powerful tool for solving complex problems, but which requires more computational 

resources to be effective at solving simple problems. The main disadvantage of SMOCE is 

linked to problem-dependence parametrization. The optimal setting of most gradient-free multi-

objective algorithms is a challenging and unsolved problem. However, the fast convergence of 

SMOCE and the parameter settings serve as guidelines to help overcome this limitation. 
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Table 3.6 Comparison between MOCE and SMOCE for solving MOP and ZDT problems 

Problem 

Metrics [×10-3] 

GD CV SP ME 

WFG2 2.5 ± 0.3 6.8 ± 0.7 117.9 ± 10.2 28.7 ± 4.4 

WFG3 1.5 ± 0.2 6.8 ± 0.3 119.2 ± 13.6 20.3 ± 1.8 

WFG4 1.5 ± 0.4 10.3 ± 1.7 125.2 ± 7.9 18.7 ± 6.0 

WFG5 3.3 ± 0.3 8.7 ± 1.2 96.3 ± 10.0 45.9 ± 4.1 

WFG6 6.2 ± 0.8 39.2 ± 8.7 721.0 ± 32.0 52.7 ± 4.9 

WFG7 2.4 ± 0.2 7.4 ± 0.7 59.2 ± 11.7 33.7 ± 3.6 

WFG8 8.3 ± 1.1 36.7 ± 39.7 333.0 ± 68.3 96.9 ± 10.9 

WFG9 1.8 ± 0.4 8.7 ± 1.7 80.9 ± 22.0 22.6 ± 3.8 

 

Figure 3.11 Comparison of different approaches for WFG’s problems 
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3.4 SMOCE Application to micro-manufacturing processes 

3.4.1 Current techniques and procedures for the optimization of machining processes 

Selection of the optimal cutting conditions is a very important task in the design of 

machining processes [289]. The optimization of cutting conditions involves two different 

challenges: on the one hand, obtaining accurate robust models linking the objectives and 

constraints to the decision variables; on the other hand, developing effective and efficient 

strategies that can negotiate the optimization problems that have been formulated [290]. Both 

tasks are of high physical and mathematical complexity. 

Firstly, chip formation occurs over geometrically complex domains that change quickly 

over time [291]. Moreover, metal-cutting processes involve complex mechanical and thermal 

phenomena (such as, thermo-visco-plasticity, friction and fracture). Most of these issues have 

yet to be fully understood and there are, therefore, no reliable phenomenological models for 

these processes. Consequently, in spite of some partially successful approaches, such as Oxley’s 

predictive theory [292], there is at present no reliable analytical model of machining processes 

that can be used for industrial applications. 

Another commonly used approach is the finite-element method, which provides 

approximate solutions for problems where analytical solutions cannot be obtained [293]. 

Nevertheless, the accuracy of the finite-element-based model is not good enough for use in real 

machining processes. Moreover, the solutions of these models are computationally expensive, 

a key issue in optimization, where multiple evaluations of the model are required. 

Consequently, empirical models, either based on statistical regressions or based on fuzzy 

modeling [185] and artificial intelligence tools [294] are currently the most reliable choice in 

cutting-process modeling [295]. 

The optimization of the cutting processes involves the use of the above-mentioned models, 

represented by functions that do not fulfill the conditions of continuity, differentiability and 

unimodality, usually required for conventional analytical and numerical techniques. One 

alternative is the use of optimization heuristics, based on the use of soft-computing tools. These 

techniques are especially useful in multi-objective optimization, where several different, but 

often connected objectives are considered. 

Simulated annealing [296], the ant-colony algorithm [297] and particle swarm optimization 

[298] may all be mentioned among the most widely used heuristics for the optimization of 

machining processes. Nevertheless, genetic algorithms are still the most popular technique for 

a posteriori multi-objective optimization, due not only to their robustness and efficacy, but also 

to their ability to obtain the so-called Pareto front in a single processing run [299]. Several 

approaches have been proposed for this target; the most widely reported are perhaps the multi-
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objective genetic algorithm (MOGA), the fast non-dominated sorting genetic algorithm and the 

niched Pareto genetic algorithm (NPGA) [300], which have been widely applied to the 

optimization of cutting processes [105]. 

3.4.2 Cross-entropy-based multi-objective optimization: a micro-drilling process as case 

study 

The cross-entropy method requires a precise or an approximate mathematical model of the 

physical process yielded from input-output data. In the previous sections, the improved cross-

entropy method for multi-objective optimization was assessed using well-known benchmarks 

with mathematical models. Micro-scale processes are non-linear, time-variant processes that 

are difficult to represent with precise mathematical equations. Therefore, two models of force 

and acceleration were obtained using a well-established method inspired in Artificial 

Intelligence.  

For the sake of clarity, a feed-forward neural network was considered for modeling 

purposes. A multilayer perceptron was specifically selected for modeling the micro-drilling 

process. The neural network was composed of four input layers (each input corresponding to 

one independent variables), 5 neurons in the hidden layers and a single output neuron, which 

offer the predicted value of the force. Hidden neurons used a sigmoid transfer function while 

the output neuron used a linear transfer function. The training process was performed by means 

of the error backpropagation algorithm, with an adaptive learning rate and momentum. The 

following training parameters were selected: initial learning rate, 0.001; ratio to increase 

learning rate, 1.05; ratio to decrease learning rate, 0.70; momentum constant, 0.9; and minimum 

performance gradient, 10−10. The stop condition was established after 500000 epochs. 

The first model was obtained for representing the relationship between the thrust force, Fz, 

and the cutting parameters: cutting speed (vc), feed-rate per tooth, (ftooth), peck drilling step 

(step) and hole depth (hd). The available experimental data was divided into a training set, 

composed of 768 data samples (corresponding to the 80% of the total dataset), which was used 

for fitting the models, and a validation set composed of the remaining 192 data samples, which 

was used for testing their generalization capabilities (see Table 2.18). 

The second model was generated to represent the vibration on the plane perpendicular to 

the drilling axis (xy-plane), pr , source which also depends on the cutting parameters (vc, ftooth, 

step and hd). This parameter was selected because it is closely related to the quality of the drilled 

holes (see Table 2.18). 

Therefore, the main goal of the optimization process was to select the most convenient 

cutting parameters (i.e., speed, vc, feed rate, ftooth, and step) for carrying out the drilling process 

of a 0.8 mm-depth hole. All the implemented functions for the micro-drilling case study are 
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available at the following repository [278]. All these variables were considered in their 

respective experimental intervals: 

 

9.4 / min 27.6 / min

10 / min 300 / min

0.02 0.06

m v m

mm f mm

mm step mm

 

 

 

c

tooth   (3.39) 

The experiment was performed on a titanium–aluminum–vanadium alloy (Ti6Al4V), with 

0.2 mm-diameter drills. 

A Kern-Evo high-precision machining center (see Figure 2.8) was used in the experimental 

setup, equipped with a Kistler Minidyn 9256 piezoelectric force dynamometer for capturing the 

three components of the force signal (Fx, Fy, Fz). 

Before the modeling step, both signals were filtered using a finite impulse response filter. 

With regard to thrust force, the mean value of each peak was computed to characterize the 

signal at each peak, while the root mean square (RMS) was used in the case of vibrations for 

the same purpose. Two objectives were simultaneously considered. The first was drilling time, 

, which can be computed with the equation: 

 

2
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x
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f step step f
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  (3.40) 

where, ftooth_0 is the fast-feed rate used for the backward motion. The second objective was 

the amplitude of the vibrations on the plane perpendicular to the drilling axis, which was 

modeled, in the previous section, by using a neural network: 

 ( , , )r v f step
P NN c tooth   (3.41) 

Indeed, both objectives must be minimized. With this combination, a high-productivity 

drilling process that guarantees high-hole quality (closely related with the perpendicular 

vibrations) may be expected. 

Furthermore, certain constraints must be fulfilled. The thrust force, Fz, should be lower than 

the allowable thrust force, 
alF
z , which is pre-established to avoid buckling-based breakage of 

the tool. This constraint can be expressed by: 

 1 0
al

F

F
 Z

Z

  (3.42) 

while the thrust force is computed with the previously obtained neural network-based 

model: 
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 ( , , )F v f step
z NN c tooth   (3.43) 

and the allowable force can be determined with Euler’s equation: 

 
2 Ial E

F
L





 min

Z f

b

  (3.44) 

where, E = 650 MPa is the Young’s modulus of the tool material, Imin = 9.54 × 10-6 mm-4 is 

the minimum area moment of inertia of the drill cross-section, b = 2 is the Poisson’s 

coefficient, which takes into account the boundary conditions, L = 2.5 mm is the length of the 

drill flute, and f = 0.5 is a security factor. 

The optimization process was carried out with the parameters shown in Table 3.7. These 

parameters were selected based on the previously obtained results for standard test problems. It 

can be noted that the convergence limit was reduced to zero, keeping only the maximum 

evaluation number as the stopping criterion. 

Table 3.7 Parameters values for solving the drilling optimization problem 

Parameter Value 

Convergence limit, max
  0 

Smoothing factor,  0.5 

Epochs number, N 100 

Population size, Z 5000 

Frequency inversion likelihood,  0.1 

Initial elite threshold,  4 

Decreasing threshold factor,  0.1 

Maximum elite population size, *

maxZ   500 

Maximum evaluation number, Scmax 105 

Altogether, 25 runs were performed to increase the reliability of the optimization results. 

Figure 3.12 depicts the Pareto fronts that were obtained. Three zones can be easily noted in the 

graph. Zone I includes those solutions with lower vibration amplitudes and longer drilling 

times. Hence, it shows cutting parameters that will obtain high quality holes, but over excessive 
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operating times. Zone I comprises parameters in the intervals: 10.6m/mim≤vc≤24.8m/min; 

280mm/min≤ ftooth≤300mm/min; 0.025mm≤step≤0.060mm. 

 

Figure 3.12 Pareto front of the drilling process 

Table 3.8 Outcomes of the drilling process optimization 

Parameter Confidence interval 

Number of solutions 280 ± 57 

Execution time [s] 763.4 ± 30.4 

Hyperarea 1.8733 ± 0.0026 

Spacing 0.0117 ± 0.0078 

Minimum value 

Z1f    1.5292 ± 0.0001 

Z2 pf r  0.4444 ± 0.0002 

Maximum value

Z1f   3.0900 ± 0.0761 

Z2 pf r  0.7637 ± 0.0146 

Zone II contains the best combination of solutions in both objectives, so they are the most 

convenient parameters for most of the operations, giving reasonably good hole quality within 

low drilling times. The cutting parameters in this zone are the intervals: 

9.4m/mim≤vc≤23.2m/min; 245mm/min≤ftooth≤299mm/min; 0.031mm≤step≤0.060mm. 
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Finally, Zone III involves solutions with shorter execution times, but with higher vibration 

amplitudes. Consequently, these are only solutions for holes where quality is not an important 

requirement. Solutions in this zone have cutting parameters within the following intervals: 

10.0m/mim≤vc≤25.5m/min; 276mm/min≤ftooth≤300mm/min; 0.025mm≤step≤0.060mm. 

Regardless of their proper characteristics, the cutting parameters of the three zones share 

some features. The Pareto front solutions, in all the zones, cover almost all of the cutting speed 

intervals, vc, and steps, s. On the contrary, the values of the feed rates, frate, are higher than 

245 / minmm in all of the zones. Table 3.8 displayed 95% confidence intervals for the execution 

time and some characteristics and quality metrics of the Pareto fronts that were obtained. As 

may be noted, there is a good coincidence between most of the parameters, especially in the 

quality metrics (hyperarea and spacing), where the variability is lower than 1%. The minimum 

values of the objectives in the Pareto fronts are also of low variability, but the maximum values 

are a little more widespread. 

3.5 Conclusions 

A modified cross-entropy method to address simple multi-objective optimization problems 

is presented in this chapter. The proposed algorithm (SMOCE) is a simplification of a previous 

multi-objective cross-entropy method (MOCE+), where only four parameters (epoch number, 

working population size, histogram interval number, and elite fraction) are stored in the 

procedure, in order to facilitate the tuning process. 

In the analysis of the relationship of these parameters on the algorithm performance, both 

the histogram interval number, and the elite fraction showed not significant influence, so they 

were removed from the study. On the contrary, the epoch number and the working population 

size had a remarkable influence on the execution time. Both influenced the Pareto front quality, 

up to some level, but as from this value, the quality stopped improving. It should be noted that 

this behavior was similar for all the problems under consideration. 

Subsequently, a comparison of algorithm performance linked to SMOCE, MOCE+ and 

NSGA-II, showed no better results for the MOP and the ZDT suites. Nevertheless, SMOCE 

performed notably better than the other two approaches for problems from the WFG suite. As 

a result, it can be concluded that SMOCE, is especially suitable for highly complex optimization 

problems, particularly when the algorithm parameters are properly selected. 

Finally, the SMOCE is validated in an industrial study case (micro-drilling process). The 

resulting Pareto front demonstrated the suitability of the proposed approach for solving practical 

problems, including those involving constraints and using neural network-based models. The 

algorithm (SMOCE) developed in this chapter is one of the core element of the cognitive level. 

In the next chapter will be described the Artificial Cognitive Architecture. 
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Chapter 4   

ARTIFICIAL COGNITIVE ARCHITECTURE. DESIGN 

AND IMPLEMENTATION 

Nowadays, even though artificial cognitive architectures represent an emerging field of 

research, there are many constraints on the broad application of artificial cognitive control at 

an industrial level and very few systematic approaches truly inspired in biological processes, 

from the perspective of control engineering. One way to address the bio inspiration is the 

emulation of human socio-cognitive skills and to formalize this approach from the viewpoint 

of control engineering facing actual industrial problems.  

In this chapter, an artificial cognitive control architecture is proposed. It is based on the 

shared circuit model of socio-cognitive skills taking into account paradigms from Computer 

Sciences, Neuroscience and Systems engineering. The design and implementation of artificial 

cognitive control architecture is focused on four key areas: (i) self-optimization and self-leaning 

capabilities by estimation of distribution and reinforcement-learning mechanisms; (ii) 

portability and scalability based on low-cost computing platforms; (iii) connectivity based on 

middleware; and (iv) model-driven approaches. The results of simulation and real-time 

application to force control of micro-manufacturing processes are presented as a proof of 

concept. The proof of concept of force control yields good transient responses, short settling 

times and acceptable steady-state error. The artificial cognitive control architecture built into a 

low-cost computing platform demonstrates the suitability of its implementation in an industrial 

setup. 

The chapter in divided in six sections. The bases from layer to module architectures and 

module to modes architecture are introduced in the section 4.1. Subsequently, the self-

capabilities proposed in the cognitive architecture are described in section 4.2. Following, 
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section 4.3 describes the foundation of the artificial cognitive control architecture. After that, 

the design and development are presented in section 4.4. The simulation and the real time 

application to monitoring and control a micro-drilling processes are presented in section 4.5. 

Finally, some concluding remarks on the experimental results are outlined in section 4.6. 

4.1 Bases and general description 

The bio-inspiration roots of the Artificial Cognitive Architecture is based on the shared 

circuits model approach [57]. SCM approach serves as the foundation for designing an artificial 

cognitive system where imitation, deliberation, and mindreading processes are emulated 

through computational efficient algorithms in a computational architecture. Hurley’s approach 

suggests that these capacities can be achieved just by having control mechanisms, other-action 

mirroring, and simulation. An artificial cognitive system should incorporate these capacities 

and therefore it would be capable of responding efficiently and robustly to nonlinearities, 

disturbances and uncertainties.  

4.1.1 From layer-based approach to module-based approach.  

A computational architecture for an artificial cognitive system is underpinned by the 

modified shared circuits model. Therefore, it is necessary to enrich SCM approach from a 

computational science viewpoint. To develop a complex cognitive agent, it is necessary to make 

a global structure that would be a collection of information processing elements, linked by 

information forwarding elements layered atop physical/information interfaces [301]. 

This section explains the modifications introduced to SCM to enrich and improve its 

capacities, taking into account the suggestions reported in the state-of-the-art and the main 

constraints of the SCM approach. Since a layer-based model was incorporated in a 

computational architecture, five modules were constructed made up of one or more processes 

performed by the above-described layers. Moreover, some limitations of SCM approach and 

some modifications to enrich and improve the SCM approach are introduced. A functional 

parallelism between layers in SCM and modules in are established.  

The neural block control for synchronous generators presented by Felix, et al. [25] shows a 

cognitive solution for this problem, due to it has to face with nonlinearities in the synchronous 

generator dynamics. The nonlinearities at the control problem are present at MSCM control, 

but the neural block control uses a specific mathematical model developed to control a 

synchronous generator.  

SCM approach lies within the scope of philosophy, psychology, and neuroscience, so it does 

not consider essential aspects of the problems that must be addressed to represent and 

incorporate SCM to a computational architecture. The layer 1 (feedback control) is vaguely 
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described in Hurley’s paper [57], as a flow of information supplied by the effect of the actual 

output on the environment, taking account of the actual state of the environment, i.e., the 

exogenous signal. Therefore, SCM approach does not clearly justify how the agent learns from 

observing others, i.e., how successful instrumental of other agents in its behavior associations 

are incorporated.   

From the perspective on System Theory and Computational Science, module 1 of MSCM 

presented by [45] is equivalent to layer 1 in SCM introduced by [57]. Module 1 is represented 

by a controller C and an optimization/adjustment process for this controller. This controller 

performs the instrumental association between input and output, similar to the description in 

SCM and very similar to closed-loop control systems widely used since the early 20th century. 

For the sake of clarity, it is assumed that the feedback (y') is the process output with noise and 

disturbances (y**). Thus, the proposed system partakes of the enactive nature underlined by 

SCM. The feedback can be inhibited to benefit the output prediction (y2) generated by module 

2, as shown later. So, similar to layer 1 of SCM, the inputs are a reference signal r, according 

with the objectives, and the system output y’’. The control signal u’’ is the output of this module. 

In order to harmonize all components of the module 1, unlike SCM, an external module in 

charge of objectives management is proposed to run at the executive level. Moreover, the 

instrumental association-making process is equipped with an initial knowledge base of 

instrumental associations, which undergoes modification as agents learn from their 

environment. 

Apart from this own knowledge base, there is another knowledge base, a sort of common 

repository, which is enriched and modified by the successful input/output relationships the 

agents observe. This knowledge base is managed by module 3. In SCM, this process is 

equivalent to learning, and it is where observation is referred to, since an architecture made up 

of agents is proposed. In this work, there is a space to hold common, shared knowledge 

modified by all the agents that have the same role or belong to the same type. Inter-agent 

communications are thus eliminated, and the architecture is accordingly simplified. 

Nevertheless, this solution implies that a mechanism for controlling access to the knowledge 

base has to be included. 

Using these two knowledge bases, an agent learns through what modules 3 and 1 do. The 

knowledge base managed by module 3 collects and manifests the behavior of others on the basis 

of what is envisaged in the common repository, and it is in the second knowledge base managed 

by module 1, where this new knowledge is incorporated, as we shall see later. If neither the 

actions described in the instrumental associations used by module 1 nor any other imitable 

actions are successful, module 1 will be the module in charge of carrying out a new action 

resulting from a controller optimization/adjustment. Module 1 also contains an 

optimization/adjustment process.  
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An optimization/adjustment procedure is introduced in MSCM. This procedure uses a set 

of inverse models M that module 2 handles, as shown later. The minimization or maximization 

criterion in optimization is determined by performance index J (see Module a: Performance 

Index or Figures of Merit Computation). Also participating in this module is an anticipative 

stage C’ that attempts to speed up the control process by anticipating changes in the system 

reference.The system utilizes a performance index or a figure of merit J to assess its own 

behavior. Therefore, a performance index J is calculated by weighting the figures of merit Ji 

selected by selector Js according with the actual objectives and goals. These performance 

indices are basically error-based criteria (i.e., deviation of the process output with respect to the 

reference). 

It is important to note that SCM does not manage objectives and goals, therefore the 

management of objectives are not adequately addressed. Thus, it is necessary to include a 

module that carries out this task. The main role of module 0 is to supply a set of reference 

signals that module 1 uses to achieve the eventual objectives. MSCM can handle multi-

objectives by technical, production, economic, and other objectives into references ri and the 

corresponding figures of merit Ji at the system’s executive level. 

The user sets the objectives into the objective manager or module 0 which translates these 

input into a reference signal r to the basic adaptive feedback control implemented to the module 

1 (see Module 1: Basic Adaptive Feedback Control) and into a performance index switch Js 

(see Figure 4.1). The performance index switch selects a figure of merit that evaluates how well 

the objectives are being achieved (see Module A: Performance Index or Figures of Merit 

Computation). 

Layer 2 of SCM is the layer in charge of simulating the effects of a possible action on the 

future input signal anticipating and thus avoiding some negative effects of the feedback process 

(see Figure 4.1). However, it is too soon to predict the effect of an action on the environment 

when the action has never been observed before, as SCM approach assumed. Makino [59] also 

remarks that SCM does not specify when the operation of layer 2 should be inhibited. He also 

enunciates the self-observation principle (SOP) and establishes that, in order to enact the 

property of mindreading (one of the properties whose enactment SCM describes), one needs to 

develop a predictive model on the basis of observation of one’s own movements. In this sense, 

Llinás and Roy [56] suggest that it is needed that the nervous system evolves a set of strategic 

and tactical rules to optimize prediction in order to generate intelligent motricity. 

The SOP principle serves to adapt some modification basically in layer 2 of SCM. In module 

2 there is a set of forward models M on whose basis, given a control signal, a future output is 

generated. In order to perform this task, it is also relevant to take into account the actual 

characteristics of the environment, i.e., the exogenous input and/or the influence of noise and 
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disturbances. This input differs from the output of the actuator system because it consists of 

external events to the agent independent of the agent’s action. 

In order to be more specific, module 2 of this proposal runs before the action is performed 

in order to evaluate/deliberate about different action possibilities, depending on whether the 

agent’s criteria (module 1) are successful or not. However, it is always functioning with the 

object of its output’s being compared to the output of the actual process, so that module 1 can 

learn (see Module Interaction). 

SCM approach establishes that, when the actual input and the predicted input do not match, 

the actual input is used as module 1’s input. This rule is applied in this work at module 2 of the 

MSCM since the meaning of the deviations of the process models is the presence of noise or 

unknown behavior y*. An artificial mechanism can be introduced to update the model and to 

use the module 1 using a threshold for the level of noise. This mechanism is carried out by a 

process that observes the new effects and learns to incorporate these new effects into the model 

M. 

In layer 3 of SCM, the property of imitation is enacted. The agent carries out an action that 

mirrors or copies behavior observed in others. Hurley [57] underlines this fact as an important 

one in the learning process. However, as Carpendale and Lewis [58] critically observe, mere 

mirroring of an action does not lead to understanding of that action, as shown in the examples 

given by the authors. They identify the cause of this error as the interrelationship between layers 

in SCM, whose description evades the distinction between information and knowledge. In 

addition, SCM adopts imitation as conjunction, i.e., a phenomenon that conjugates at the same 

time: 

 Learning of an instrumental relationship between a body movement and its effect, 

and thus; 

 a way of carrying out such movement. 

In addition to the literature in this field, empirical evidence and daily experience support the 

idea that both learning through observation and imitation can occur independently. Under this 

philosophy, we tend to forget that the copying process often requires the observer to establish 

the necessary relationship between the visual information gained from observing the action and 

motor output, under conditions where it is not obvious how the necessary information for this 

sort of mapping has been acquired. So MSCM proposal enriches SCM work addressing learned 

knowledge as that knowledge that has been incorporated into the set of instrumental 

associations, that module 1 handles in MSCM. In the meantime, the knowledge that expresses 

imitation, used in layer 3 in SCM, remains in the set managed by module 3 in MSCM. 

Therefore, on the basis of error signal e the output generates action, mirroring the behavior 

of others, as depicted in Figure 4.1. The input for module 3 similarly to the input for module 1 
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may be determined either by the system input plus feedback or by the effects simulated by 

module 2, depending on whether module 4 is inhibiting module 2 or not. The module 3 supports 

a set of inverse models M-1 that obtains an imitative output action taking the error e as input 

(see Figure 4.1). 

Module 3 of MSCM is used to enact the capacity of imitation of a common knowledge base 

(discussed in detail in the description of module 1), a sort of repository shared by the agents, 

which is enriched and modified by the agent-observed relationships that prove successful.  

Layer 4 is the layer in charge of inhibiting the capacities for evaluating different possibilities 

of action according with SCM. However, SCM approach does not identify when to inhibit. In 

addition, the conceptual scheme of SCM does not clarify the influence of the action of layer 4 

on the interaction among layers 2 and 3. If layer 4 is not inhibiting the input simulation in layer 

2, layer 3 may have as inputs the actual input or the input simulated by layer 2. Likewise, if 

layer 4 is not inhibiting the output simulation in layer 3, layer 2 may have as its input this 

simulated output or the actual output. 

For this reason, from the perspective of computational science, it is necessary to define and 

implement some mechanisms to decide whether or not to perform imitation. That is why the 

decision whether to enact deliberation (which occurs through the operation of module 2) or 

imitation (which is enacted in layer 3) is proposed to be done in another module. The module 

that is in charge of managing any orders of this sort issued to SCM layers 2 and 3. So, very 

close to SCM layer 4, MSCM module 4, therefore performs executive functions within the 

system, as it is the module in charge of managing the aforesaid orders (see Figure 4.1). 

 

Figure 4.1 Expanded block diagram [45]  

Thus, as Makino [59] proposes concerning SCM approach, inhibition depends on failure 

monitoring. What kind of inhibition there is characterizes the deliberation, action, and imitation 

cycle, as described in Module Interaction. We might stress that, where there is a certain amount 
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of disturbance in the environment, there must be no imitation. The use of a performance index 

J is used as a figure of merit in module 4 is introduced in MSCM approach. 

The issue of the development of mindreading capacities is not convincingly addressed in 

the SCM. One possibility is to observe the behavior of others when layer 4 is not inhibiting 

layer 3, in order to acquire the observed input/output relationships. In this work, since there is 

a common knowledge base where each agent contributes, no observation entailing an exchange 

of messages among agents is necessary. 

A key issue is when module 1 is optimized or when a new learning is enabled at module 2, 

because it depends on the system’s status (deliberating, acting, etc.), forming part of the 

system’s operational cycle. Therefore, module 4 is in charge of checking if the system shifts 

from one state to another (see Module Interaction); accordingly, module 4 also decides when 

to perform optimization and learning. 

SCM describes a fifth layer in charge of simulating the effects of the behavior of other 

processes on the basis of self’s own behavior. In the computational system, this translates into 

a module in charge of simulating effects while running offline. The authors believe that, unlike 

as it is proposed in SCM, the decision to inhibit/not inhibit the operation of module 5 is not a 

self-decision, but may be made by module 4. The activation of one module alone or combined 

modules (modules 2, 3 and 5) enables one capacity or another; accordingly, it is advisable for 

the decision to be centralized in a single module. So deliberation on how a possible action would 

influence others or external noise (exogenous input) is made if module 2 and 5 are running at 

once. Deliberation on how a possible imitated action would influence others or external noise 

(exogenous input) is made if module 2, 3 and 5 are functioning together. 

4.1.2 Module Interaction 

The relationships and interactions among modules make possible to artificially emulate the 

cognitive capacities of deliberation, imitation, and mindreading. In order to develop a 

computational framework aiming at control system design, it is necessary to address module 

interactions. Layers interactions is one of the main weaknesses of the SCM approach. SCM 

approach just outlined these interactions, neglecting the temporal issues underneath how they 

operate. This temporal pattern is essential to clarify how and when the system acts, and 

therefore it is necessary to set a method or strategy to establish a sequence of actions for each 

module. In this section, one of the possible operating sequences of the different modules is 

explored, in view of the results already reported in the literature.  

SCM overlooks a crucial component for imitation: motivation. Whether or not imitation 

takes place, as we have seen, depends on whether or not module 3 has been inhibited from 

functioning. Under Makino’s assertions, the necessary motivation can be provided by failure 

monitoring: if the actual action is not successful, the imitation mechanisms are triggered. In 
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addition, SCM suggests that first self is related with actions of other, as evidenced by 

observation of newborns’ imitation of the facial gestures of others. And afterwards, those self 

is related bidirectionally with the mental states of self in a certain way, through learning. 

The above-mentioned arguments lead to introduce new mechanisms in the MSCM, as 

follows. If the result of evaluating the set of possible innate or already-acquired actions is not 

satisfactory, the action leading to the sought-after objective is imitated. If this action is 

satisfactory, the agent learns, incorporating the action into the set of instrumental associations 

that the module 1 control uses. Otherwise, module 1 acquires new knowledge by means of an 

optimization process. The optimization process is the last mechanism, because it is more costly 

than copying an observed association. 

The following knowledge bases, according with the described models, set upon the type of 

involved models, are proposed in this work: 

 Own set of forward models D, handled by module 5 to simulate the counterfactual 

effects of actions taken by the system. This set replaces process P if this simulation 

is required 

 Own set of forward models for effects M, available for the module 2 

 Set of inverse models for imitation M-1, available for the module 3 

In this approach the strategic deliberation that performs module 5 must participate in all 

deliberation phases of the procedure shown in figure 2, together with module 2. The rationale 

is that it is important to roughly know the eventual disturbances that could appear in deliberation 

to anticipate the influence of disturbance on the process. 

An artificial cognitive control system is designed according the method described in Figure 

4.2. In this iterative procedure, the evaluation of whether or not there is an excessive noise is 

determined by observing whether noise surpasses a certain threshold. 

We can point out that, when a decision’s success is evaluated in the action, imitation, and 

learning procedure, success will depend directly on the error found for the decision’s 

implementation. 

In order to carry out this process with the described modules, the modules are connected as 

shown in Figure 4.1. The main feature to stress here is that now module 4 is inhibiting module 

operation by acting on the switches to choose between the output calculated by modules 1, 2 

and/or 3. Thus, module 4 is in charge of governing the action, imitation, and learning cycle. 
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Figure 4.2 Algorithm of the system’s action, imitation, and learning cycle 

The comparator at the output of module 2 enables to discern whether the predicted input is 

similar to the actual input; if it is not, the actual input is used to calculate next control actions. 

The actuator system receives a signal and acts on the process input P. Module 2 is always 

operating, because it handles a representation of the process (model). The process model is 

necessary to enable the optimization/adjustment in module 1 from the results of comparing the 

process output and model output in the module 2. This optimization/adjustment is not the 

learning process to incorporate successful imitative knowledge of module 3 to module 1. The 

optimization/adjustment process is carried out when the imitative action is not successful at the 
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deliberation stage, and it is necessary that module 1 performs a new action enabled for this 

optimization/adjustment. 

For the sake of simplicity, the signal governing deliberation and module 5 can be treated as 

a single signal, since they act jointly on the suggested operating mechanism. However, this is 

an operating sequence procedure introduced in this work, and the two cases are considered 

separately aiming at further research on their activity independently. The interaction between 

modules is represented in detail in the expanded block diagram shown in the Figure 4.1. 

For example, if observations were under deliberation, module 4 would activate the imitate 

signal, not inhibiting the operation of module 3 (which covers the observations or instrumental 

associations to be imitated). Moreover, it would activate to simulate signal; and it would 

deactivate the no-deliberate signal, i.e., enabling feedback on the basis of the output of module 

2 without taking into account actual process P. 

4.1.3 From module-based to operating mode-based concept: model-driven approach. 

Drawbacks and challenges. 

The architecture presented in this Dissertation is inspired in neuroscience [302] in 

conjunction with control engineering strategies and methods [45]. It is widely accepted that the 

cerebellum acquires and maintain internal models for motor control. Recent reports corroborate 

by neuroimaging and clinical studies the cerebellar role in performance monitoring with focus 

on sensory prediction, error and conflict processing, response inhibition, and feedback learning 

[303]. Moreover, the characteristic input-output organization of the cerebral-cerebellum and 

how it may contribute to forward models for non-motor higher brain functions is also recently 

presented in a seminal paper [304]. 

In chapter 1, we showed how micro-scale manufacturing is a clear example of a dynamic 

system operating in an environment characterized by continuous change, being a perfect stage 

to proof new cognitive control strategy. In this scenario, one of the main objectives is the 

development of technologies and algorithms that enable faster, self-organized, self-optimized 

behavior process control systems. These manufacturing processes are characterized by the 

presence of nonlinear and time-variant dynamics that emerge from the behavior of temperature, 

forces, torques and other representative variables; characteristics that increase the functional 

complexity of micro-manufacturing and the functional requirements and precision of sensors, 

actuators and computing resources [9, 78]. 

In this case-study, we describe artificial cognitive control architecture with self-

optimization and self-leaning capabilities and its simulation and real-time application to the 

force control of micro manufacturing processes as a proof of concept. The architecture, based 

on the model of socio-cognitive skills, overcomes the limitations of the neuroscientific 

approach [58-60] and takes the principles of simplicity and scalability into account. A further 
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challenge is to implement the architecture in a portable programming language for its 

assessment and validation in simulated and real micro-manufacturing processes.  

In this chapter, the design and implementation of artificial cognitive control architecture is 

focused on four key areas: 

(i) self-optimization and self-leaning capabilities by estimation of distribution and 

reinforcement-learning mechanisms;  

(ii) portability and scalability based on low-cost computing platforms;  

(iii) connectivity based on middleware; and  

(iv) model-driven approaches. 

4.2 Self-capabilities  

4.2.1 Self-Learning 

Reinforcement learning belongs to a category of unsupervised learning techniques [127]. It 

is a learning paradigm by rewards/penalties with some interesting applications for controlling 

complex systems, so as to maximize numerical performance measures that express a long-term 

objective. The analysis of all available reinforcement learning methods is beyond the scope of 

this paper. Although [305] offers a fairly comprehensive catalog of learning problems with a 

description of an important number of state-of-the-art algorithms. 

Q-learning is one of the most intensively used reinforcement learning techniques, frequently 

used to find an optimal policy for Markov decision processes. The main rationale behind this 

choice is the simplicity of its approach, its model-free feature and the good results of this 

algorithm reported in the literature. It performs by learning an action-value function that 

ultimately generates the expected utility of taking a given action in a given state and then it 

follows the optimal policy. When such an action-value function is learned, the optimal policy 

can be constructed by simply selecting the action with the highest value in each state. 

Additionally, Q-learning can handle problems with stochastic transitions and rewards, with no 

further adaptation. 

Before learning started, Q can return any single value, chosen by the designer of the 

problem. Then, each time the agent selects an action; it receives its rewards and enters the new 

state. The core of the algorithm is a simple iteration to update values. It takes the old value and 

makes a correction based on the new information. Normally, Q-learning is periodically 

executed where an episode ends when state st+1 achieved the final state (see Eq. (1.5)). However, 

Q-learning can also learn in non-episodic tasks. It may be noted that Q-learning does not specify 

a method to select the action to perform in each state. However, there are several policies to 

select an action, i.e., the well-known  -greedy or softmax policies.  
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It is considered that the state is a set of parameters of the model or models, thus each state 

is identified unequivocally with a set of parameters. Thereby, the actions to change from one 

state to another are those that change at least one parameter of the set
( ) ( ) ( )

1 2( , , , )t t t

nK K K . Thus, 

the Q-values function is ( , ) ( )t t tQ s a Q s . The continuous space of the variables is discretized 

for simplicity as already reported in [306]. Therefore, each parameter Ki has its own bounds 

min max,i iK K   given by the model’s parameters. Then, if there are M possible values of each 

parameter, the range of values are: 
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  (4.1) 

 From the equation (1.5) is clear the that the space of states with a dimension of MN is 

finite. Due to the restrictions of a real environment, we cannot increase the step for specific 

parameter at a given time. 

For a given state 
( ) ( ) ( )

1 2( , , , )t t t

t ns K K K  its available actions will be those that change 

ts  to 
( 1) ( 1) ( 1)

1 1 2( , , , )t t t

t Ns K K K  

   where: 

 ( 1) min ( ) max ( )[max( , ),min( , )]t t t

i i i i iK K K step K K step      (4.2) 

In artificial cognitive control architectures, as in any hierarchical approach there are 

different time scales (bandwidths). The learning procedure runs at a lower frequency than the 

control mechanism, which resembles a cascade concept, because the process has to run for a 

sufficient length of time, in order to guarantee that appropriate learning takes place. If the 

control mechanism has a sampling time of pcontrol, the learning has to be performed at least ten 

times slower than the control, i.e., plearning = learn*pcontrol, where , 10learn learn    [82]. The 

reward function can be defined as: 
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  (4.3) 

where the performance index associated with the action that is taken, (t), has the following 

expression: 
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in which, t is the reference value in time controlt i p  and 
( )t

iy is the output of the process 

in time controlt i p with the parameter set 
( ) ( ) ( )

1 2( , , , )t t t

nK K K . As it can see, (t) is the mean 

square error evaluated in  , controlt t i p . For the sake of simplicity, we used the  -greedy 

policy in this first approach, to choose an action, because it is sufficient in almost all scenarios. 

The  -greedy policy algorithm is shown in Figure 4.3. 

 

Figure 4.3 Algorithm for -greedy policy 

All the steps in the modified Q-learning algorithm are presented in Figure 4.4. 

 

Figure 4.4 Modified Q-learning algorithm 

4.2.2 Self-optimization 

As it was explained in the section 1.2, the literature is very rich of deterministic and 

stochastic methods for solving optimization problems [99, 100]. In EDAs, a probabilistic model 

is built, based on elite individuals who are subsequently sampled to produce a new population 

of better individuals. A positive aspect of EDAs is that the fusion of prior information into the 


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optimization procedure is straightforward, thereby reducing convergence time when such 

information is available. From a computational cost viewpoint, the amount of heuristics 

compared with other gradient-free optimization methods is reduced, which means that, in 

practice, many heuristic optimization methods are not suitable [104]. 

For all the above reasons, the attention is focused on so-called Cross Entropy method [109], 

as the main self-optimization algorithm for the artificial cognitive control architecture. The 

most attractive feature of cross entropy is that, for a certain family of instrumental densities, the 

updating rules can be analytically calculated, making them extremely efficient and fast. The 

method can be described as: 

Let X be a random variable defined in the space   and :f    a score function. The CE 

method seeks to find x  such that: 

 ( ) min ( )
x

f x f x


    (4.5) 

The algorithm transforms this problem into an associated stochastic problem by defining a 

family of random variables with density function ( , )g x  ,    and solving it as the simulation 

of a rare event, where the event is sampling around the optimum of f. The algorithm can be 

summarized as follows: 

1. Initialize 0 . 

2. Generate a sample of size N, 1( )t

i i Nx   , from the density function ( , )tg x  . Let 

1 2 Nf f f   , . 

3. Update to 

  
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1 arg min ( ( )) ln ( , )
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t t

t i i ty t
i

I f x g x
N




 




     (4.6) 

4. Repeat from step 2 until convergence or ending criterion. 

5. Assuming that convergence has been reached at 0t t , the random variable defined by 

the density function '( , )tg x   should have all of its mass concentrated on x .  

Step 3 is performed using the best Z* samples, also called elite samples. The sampling 

density function needed in the 2nd step is usually unknown, but in most cases it can be assumed 

to be a normal distribution function. In this case,  represents the mean  and the standard 

deviation of the normal distribution is . The solution of the equation is simply the sample mean 

t  and sample deviation t  of the elite samples. It also follows that the mean should converge 
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to x  and the deviation should converge to zero. A smoothing parameter  for the mean vector 

and dynamic smoothing t for the deviation are applied, in order to prevent the occurrences of 

0 s and 1 s in the parameter vectors. 
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  (4.7) 

where 0.4 0.9;0.6 0.9;2 7q       . 

Finally, constrained optimization problems can be addressed from an engineering 

viewpoint, which therefore means to boundaries on the distribution function for the generation 

of samples, to ensure that sampling is from within the appropriate region. More details about 

the evolutionary algorithms, especially, on cross-entropy method are done in Chapter 3 . 

4.3 General design  

The architecture consists of cognitive and executive levels. The main differences in the 

implementation with regard to the MSCM architecture [45] developed in previous 

investigations by the GAMHE group are described below. MSCM embodies a computational 

infrastructure that is plausible from a neuroscience and psychological viewpoint. The overall 

diagram of the architecture is shown in Figure 4.5.  

 

Figure 4.5 Overall diagram of the artificial cognitive architecture 

A detailed scheme of the cognitive and the executive levels is shown in Figure 4.6 to gain a 

better understanding of the interconnection between the different parts of the architecture. There 

is a mirror of the execution level at the cognitive level (see Figure III.2), necessary for 
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organization, adaptation, and learning mechanisms that make use of real-time simulations. 

Otherwise, these mechanisms would have to use the processing time of the execution unit, 

thereby limiting real-time performance. 

 

Figure 4.6 Cognitive and executive levels of the artificial cognitive architecture 

On the other hand, in the executive unit (see Figure III.3), the most important input is the 

exec.conf.changes that serve to introduce modifications both in configuration and parameters. 

Parameter modifications change the parameters of a particular model (model i) from the 

learning mechanism and changes to its configuration can be of two types: new assignment of a 

model to a specific mode or switching between modes. 

 

Figure 4.7 Configuration diagram by Single Loop 
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Particularly, a simplified version of this architecture, focusing on three special 

configurations of the blocks of MSCM is proposed in this Thesis. The first configuration is 

composed exclusively of module 1 of MSCM, due to the nature of module 1, are going to call 

this configuration Single loop (see Figure 4.7). 

The second configuration is composed essentially of module 3. This module stores inverse 

models so, activating only this module, we achieve a configuration called Anticipation (see 

Figure 4.8).  

 

Figure 4.8 Configuration diagram by Anticipation 

The last configuration is called Anticipation + Mirroring. Its name comes from the 

activation of module 2 and 3 enabling such mirroring skill (see Figure 4.9). 

 

Figure 4.9 Configuration diagram by Anticipation + Mirroring 
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Therefore, the architecture is designed so that the user can easily add more types of models, 

which can lead also to other types of functioning modes. Now, it is necessary to address the 

concept of executing modes that is the mechanism for defining how to connect the different 

types of models for a certain operating mode of architecture. For the sake of clarity, only three 

operating modes are considered which are single feedback control, inverse control and internal 

model control with the novelty of incorporating self-optimization (see section 4.2.2) and self-

learning (see section 4.2.1). Similarly, Fatemi and Haykin [50] have also considered three main 

operating modes. The implementation of the above architecture is coded in Java, which 

guarantees greater portability between different operating systems. 

Note that the type of model is only described in the operating modes and not the model 

itself. The adaptation is in charge of choosing the type of model for each mode depending on 

the main process characteristics, know-how and available models. The organization mechanism 

is responsible for switching between execution modes without deciding on the type of model 

used for each mode. Therefore, adaptation is responsible for the transition between running 

modes and Execution Configuration, which is the concept that permits the interconnection of 

models in Execution Management. Learning is performed in MSCM through Module 2, while 

here it is done by a specific component that enables learning in all models of the architecture. 

A further component of the architecture, Optimal Searching, is in charge of optimization on the 

basis of simulation-type models (e.g., any computational representation of the controlled 

system that resembles well-known output error models). Therefore, the ability to emulate 

Module 5 can be carried out by simulation-type models. 

The initialization procedure starts with the optimal setting of parameters of each model 

(inverse model, forward model, single loop model) on the basis of the cross entropy method 

introduced in Chapter 3 and the simulation model of the process. Indeed, self-optimization is a 

basic step that can serve to carry out other tasks beyond this one. The use of an error-based 

performance index and a rough model of the process is enough to perform this task as it is 

shown later in the proof of concept of the artificial cognitive control system in section 4.5. 

Moreover, necessary variables for learning and organization will be initialized such as the 

Q-learning tables and the performance index table, in order to be later applied to set the initial 

conditions in the organization as well as to choose the appropriate execution mode. The 

performance index table is also updated using a forgetting factor. 

The self-organization procedure during each execution cycle consists of eight main steps. 

First, the system checks if the control signal (action) has yielded the expected results according 

to the performance index, if so, the artificial cognitive control remains in this execution mode 

(e.g., single loop control). If the execution mode does not achieve Artificial Cognitive 

Architectures appropriate results it is necessary to verify if the learning is enabled, otherwise, 

it is activated. The duration of the learning (set by the user) should be checked in the third step. 
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The performance index table is updated with the real-time computed value with a forgetting 

factor. All possible control signals (actions) are then computed and the control signal that 

produces the best behavior (i.e., the best performance index) is taken from the table. During the 

execution (with learning enabled), if the mode (controller) present in the executive level obtain 

a worse performance index than the other controllers, in the next iteration the cognitive level 

send a new mode to overwrite the previous one, also the old controller is penalized and the full 

performance index tables is updated.    

4.4 Implementation 

The development of the artificial cognitive architecture is described in this section. The 

artificial cognitive architecture was implemented in low-cost computing platforms. The 

analysis of the best available middleware to enable networked, transparent, portable and reliable 

communication, and low-cost computing platforms is a key step before selecting the most 

appropriate ones for the instantiation. All the results presented in this section have been partially 

reported in [82, 307]. 

4.4.1 Requirement analysis 

The artificial cognitive architecture should comply with both functional (FR) and non-

functional (NFR) requirements. The main functional requirements can be summarized as 

follows. 

 FR1 Control architecture: the main function of this architecture is to monitor and 

control processes; the implementation of the architecture permits to assign a process 

to the architecture and prepare the architecture to perform those tasks. 

 FR2 Models: the architecture has several models that serve to monitoring and 

control a process with different procedures. There are four types of models: single 

loop models, direct and inverse models, and simulation models. The configuration 

of direct and inverse models resembles the internal model control paradigm well 

known in the Control Engineering community, but also claimed as the main 

explanation and rationale behind brain-cerebellum interaction [21]. 

 FR3 Modes: the architecture must run in different modes. A mode is defined by a 

preset configuration of the different elements of the architecture (models, reference 

values and process entity) to control a process. A mechanism enables the application 

to switch between modes while running. Switching can be smoothed out by a first-

order filter to guarantee a seamless transition from one mode to another one. 
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 FR4 Adaptation: the application must provide a component for selecting models 

required by a specific mode. The choice of component may be to accomplish 

different objectives. 

 FR5 Optimization: the architecture must provide functionality for optimal setting 

of control models on the basis of a simulation model of the physical process. With 

this action, the architecture will be able to improve its behavior while running 

different processes. 

 FR6 Online learning: similar to optimization, the architecture should provide a 

mechanism to execute a learning algorithm during the regulation process. Once 

again, this mechanism will improve the behavior of the overall system. 

 FR7 Objectives: the architecture must ensure that the user provides the objectives 

to be achieved, e.g., productivity, performance, etc. 

 FR8 Data types: the architecture must allow different data types, such as integer, 

double or string. The main non-functional requirements are described as follows. 

 NFR1 Middleware: the architecture should be quite generic and flexible to enable 

the use of any middleware. For instance, the user may wish to use the architecture 

to control a process in a different place, i.e., to distribute the architecture to control 

remote process. 

 NFR2 Extensibility: the architecture shall be designed to ease the tasks of adding 

models, control algorithms, optimization and learning procedures, etc. 

4.4.2 Libraries and classes description 

In order to comply with the above-mentioned requirements, an object-oriented library was 

designed. Along with the general classes and interfaces, some classes are provided to ease the 

instantiation tasks of the architecture. The following will briefly explain the most important 

concepts of this library with different functions [308] as it can see in Table 4.1. 

As it is expected the most important packages are: app (see Figure III.1), data (see Figure 

III.4), model (see Figure III.6) and process (see Figure III.7). Below, the packages are 

explained. In this package are the classes necessary to represent a set of variables in the 

architecture. Firstly, VariableInfo represents the information of a given variable, namely, its 

type and its name. With this information a variable is uniquely determined, so a VariableInfo 

is perfect to identify variables (see Table 4.2). Using this class, a VariableSet is built. This class 

provides different methods to create and work with sets of variables, such as sums two sets, 

multiply by a scalar, etc. As it is supposed each variable inside the set is identified by its name 
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and type, i.e., its VariableInfo. With this data model the RF8 is considered, i.e., it is possible 

to use different data types in the architecture. 

Table 4.1 Main packages of the designed library 

Name Package Descriptions 

app 

contains all the classes representing the components of the 

articial cognitive architecture as well as classes that 

represent the application to control processes. 

 

data 
contains the classes that represent a variable set in the 

architecture. 

 

exceptions contains all the exception thrown in the architecture. 

 

model 
contains an interface that represents a model in the 

architecture an auxiliary class to ease the implementation. 

 

process 

contains interfaces that represents a process in the 

architecture and a process observer as well as some auxiliary 

class to ease the implementation. 

 

utils contains a Log class to show information while running.  

The model interface provides the sufficient methods to do almost everything it can need to 

do with a model (see Table 4.3). The ModelType represents the possible types of model that the 

architecture accepts: single loop, mirroring, also named forward models, simulation and 

anticipation, named inverse models. The AbstractModel class implements a template method 

common for all the models used in the architecture. 

Table 4.2 Overview of the data package 

Name Data Package Descriptions 

VariableInfo represents the information of a variable. 

VariableSet represents a set of variables. 

The process to be controlled by the architecture is represented by the process interface (see 

Table 4.4). As it will see in an example, each process to be controlled has to be encapsulated in 

a class that implements this interface. The ProcessObserver interface represents a process 

observer, this interface has to be implemented by those classes which needs to know the state 

of the process as well as its outputs. In order to ease the instantiation of a process an 

AbstractProcess class is provided. This class implements almost all the methods of process and 

run the process's logic in a different thread. This logic is represented by the ProcessLogic 

interface. 
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Table 4.3 Overview of the model package 

Name Model Package Descriptions 

AbstractModel auxiliary class to ease the task of instantiation. 

 

Model represents a model of the architecture. 

 

ModelType represents the possible types of a model. 

The app package contains two interfaces, App and AppObserver; an auxiliary class, 

AbstractApp; and two more packages, Executive Level and Cognitive Level. An overview of 

the two packages is shown in Table 4.5 and Table 4.6, respectively. 

Table 4.4 Overview of the process package 

Name Process Package Descriptions 

AbstractProcess auxiliary class to ease the task of instantiation. 

 

Process represents the process in the architecture. 

 

ProcessLogic auxiliary class used by AbstractProcess 

 

ProcessObserver represent a process observer. 

The app interface represents the control application itself. Namely, it is the object to 

interconnect all the components of the architecture and the coordinates to control a process. It 

will be the access point to work with the artificial cognitive architecture. The AppObserver is 

an interface that represent an observer subscribed to the application, normally it will be 

extended for classes that need to know what is happened in the architecture, e.g., when a control 

action is sent to the process. The AbstractApp implements several simple methods of the App 

interface. 

For a better understanding of the architecture, we begin explaining the Executive Level (see 

Table 4.5). In this package we can find three main interfaces, Module, ExecutionConfiguration 

and ExecutionManagement. 

The Module represents, mainly, a container of models, so the modules are very important 

in the architecture. However, the power of a module relies on the models it contains, i.e., an 

empty module is nothing for the architecture. Each model has a type and a module is not 

restricted to contain only models of one type, e.g., a module can contain two forward models 

and one inverse model. Due to, mainly, a Module is only a repository of models an 

implementation is provided in class SimpleModule. This class implements all the necessary 

methods and ensures that each execution has an independent copy of each model that it needs. 

This interface along the model interface satisfies the RF2. 
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Table 4.5 Overview of the app package for the Executive Level 

Name App Package Descriptions 

AbstractExecutionManagement 
Auxiliary class to ease the task of 

instantiation. 

 

ExecutionConfiguration 
represents an execution configuration 

of the architecture. 

 

ExecutionManagement 
represents the execution management 

of the architecture 

 

Module 
represents a module of the 

architecture. 

 

SimpleModule an useful implementation of module 

to be used directly. 

The second interface, the ExecutionManagement, represents the component that maintains 

the execution threads of the architecture. These threads are independent of the other components 

of the architecture and always try to run in the same frequency of the process to provide a better 

control. Then, the function of the ExecutionManagement is to interpret the 

ExecutionConfiguration and execute the models of each configuration in the right order with 

its correct inputs. In order to ease the implementation of the ExecutionManagement an abstract 

class, AbstractExecutionManagement, is provided. This class implements some simple methods 

of its interface in order the user can focus on the important methods. 

Finally, the ExecutionConfiguration is an auxiliary class that the ExecutionManagement 

uses to retrieve the information of how the models are connected in a given mode. The cognitive 

level is the recipient of the self-capabilities that will be implemented (see Table 4.6). Before 

describing these components, we will explain the modes of the artificial cognitive architecture.  

A mode in the architecture is simply a topology, or a pattern to interconnect some models. 

With this conception, a mode can be represented graphically by a graph like the common single 

loop of the control theory is represented (see Figure 4.10). This conception permits to 

interconnect different models to achieve different results in order to cover the objective. The 

class that represents a mode in the architecture is Mode. It is important to note that a mode does 

not specify a concrete model, it only specifies the type of models that are connected. All these 

considerations address the RF3. 

The Organization in the architecture has the function of loading the modes in the 

ExecutionManagement and switching between modes when it is necessary. To switch between 

modes, the Organization has to notify to the ExecutionManagement this change. However, the 

Organization does not know what models have to use in each mode, this task corresponds to 

the Adaptation. In this manner, the mission of the Adaptation is ideally choosing the best 
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models for each mode dependent of circumstances, e.g., the process status. This translation in 

the architecture corresponds to change between Mode and ExecutionConfiguration. 

Table 4.6 Overview of the app package for the Cognitive Level 

Name App Package Descriptions 

AbstractAdaptation auxiliary class to ease the task of instantiation. 

 

AbstractLearning auxiliary class to ease the task of instantiation. 

 

AbstractOptimalSearching auxiliary class to ease the task of instantiation. 

 

AbstractOrganization auxiliary class to ease the task of instantiation. 

 

Adaptation represents the adaptation of the architecture. 

 

Evaluation represents the evaluation of the architecture. 

 

GoalManagement 
represents the goal management of the 

architecture. 

 

Learning represents the learning of the architecture. 

 

Mode represents a mode of the architecture. 

 

OptimalSearching 
represents the optimal searching of the 

architecture. 

 

Organization represents the organization of the architecture. 

 

PerformanceIndex 
represents a performance index that will be 

used by the Evaluation. 

 

TrackValue represents a set of ideal values that the 

GoalManagement has to track. 

In addition, the Adaptation is prepared to run on-line to receive information in real-time and 

be able to execute one algorithm of self-adaptation to change the model parameters or, if it is 

necessary, change the model itself. With these two components along with the Mode class, the 

requirements RF3 y RF4 are achieved. 

 

Figure 4.10 General single loop graph 
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In order to provide the capability of running an optimal searching to find the best parameters 

for a given mode the OptimalSearching interface is provided. It presents all the necessary 

methods to implements an algorithm of off-line optimization. By this way, the RF5 is fulfilled. 

The Learning interface makes possible the implementation of a learning algorithm in the 

architecture. This interface presents the methods required to implements an algorithm of on-

line learning, thus achieving the RF6. 

In order to aid in the tasks that these components perform, a component that measures the 

behavior of the system according to different goals is the Evaluation. This component provides 

methods to facilitate the computation of a performance index that indicates the behavior of the 

system. Thanks to this index the other components can know if they have to act or not. To 

provide a common interface to easily use different performance indices in the architecture, the 

class PerformanceIndex is created. 

The GoalManagement is obtained based on the user goals and performance indices. The 

main role of this component is to parse the user goals and translates them, using some algorithm, 

into a combination of one or more performance indices. It is important to note that this is a very 

complex component and its correct implementation is out of the scope, due to that it is possible 

that in future versions of the architecture its interface may change. For now, its interface 

provides methods that permit a user with technical knowledge fix some objectives such as 

setting the set point to a fixed value. To represent this tracking objectives the TrackValue 

interface is created. 

The features of the GoalManagement make it possible to achieve the RF7. In order to ease 

the instantiation of the architecture four abstract classes are provided: 

 AbstractAdaptation 

 AbstractLearning 

 AbstractOptimalSearching 

 AbstractOrganization 

For a more complete insight, the whole class diagram can be found in ANNEX III. CLASS 

DIAGRAMS. Furthermore, a simplified graphical representation of the whole architecture was 

shown in Figure 4.5. All these considerations are achieved in the RF1, i.e., with this architecture 

design we are capable to control an industrial process. 

4.4.3 Controllers 

The control strategies summarized in Table 4.7 were selected to perform the proof of 

concept of the artificial cognitive control. Firstly, the Fuzzy Control Language (FCL) defined 

in the IEC 61131[309] was selected to implement a single loop controller. For the single loop 
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mode, the inputs selected were the error () and change of this error in time (). It does not 

mean that other inputs for the controller cannot be selected. The user can define and configure 

models and control strategies in the artificial cognitive control architecture. The main rationale 

for using fuzzy and neuro-fuzzy approaches can be briefly summarized as follows.  

Table 4.7 Algorithms implemented for each execution mode [82] 

Implemented algorithms Single loop Forward model Inverse model 

Algorithm  Fuzzy Logic ANFIS ANFIS 

System  Two-input/single 

output 

Single-input/single 

output 

Single-input/single 

output 

Inputs  Error () and change 

in Error () 
Feed rate (frate) Force (Fz) 

Outputs  Feed rate (frate) Force (Fz) Feed rate (frate) 

Membership functions 

type  
Triangular-shaped Gaussian Gaussian 

Number of membership 

functions  
7 3 3 

Inference system  Mamdani Takagi-Sugeno Takagi-Sugeno 

Number of rules  49 9 9 

Defuzzification  Center of area Weighted average Weighted average 

Iterations  – 100 100 

Learning rate  – 0.01 0.01 

Training algorithms  – GENFIS 2 GENFIS 2 

Training data set  – 62 samples 62 samples 

Validation data set – 82 samples 82 samples 

Neuro-fuzzy systems combine their ability to accurately model any nonlinear function, an 

excellent learning capacity, and an ability to represent human thought and robustness in the 

presence of noise and process uncertainty. These characteristics are essential to deal with 

uncertainties, nonlinearities, and time varying behavior. Some neuro-fuzzy systems cannot be 

applied to real-time process control, mainly because of the computational cost involved and 

because they are unable to meet the control system’s requirements. 

Furthermore, a graphical representation of the different control modes proposed in the 

cognitive architecture are shown in the Figure 4.11. As it can be seen, in all the cases the 

references signal (set point) is the force values (Fref) preset to control the process. In the 

particular case of the single loop mode the feedback signal is the z-component of the force 

measured (Fprocess) in process. Finally, a combination between direct and inverse models is 

presented in the internal control mode. In this case, the feedback is the algebraically sum of the 
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z-component of the force measured in the process (gross turning) and the z-component of the 

force estimated (Fest) in the mirroring model (fine turning). The error signal is defined as: 

 
ref processF F     (4.8) 

    

 

Figure 4.11 Schemes of control modes 

4.4.4 Middleware 

The scientific community is currently working to connect and to integrate sensors with other 

devices that will improve factory production. One key issue in the endeavor is the long-distance 

monitoring and control of complex plants, which requires synergetic strategies that link smart 

devices and communication technologies with advanced computational methods [310]. The 

solution chosen for this work employs distributed object computing middleware, which enables 

common network programming tasks to be automated, regardless of other considerations such 

as what communication protocols and networks are used to interconnect the distributed objects. 

The first middleware option analyzed was Common Object Request Broker Architecture 

(CORBA). CORBA technology provides a clear opportunity for process monitoring and 

strategic process control. In real-time CORBA (RT-CORBA) specification, mechanisms and 

policies are defined to control processor resources, communication resources and memory 
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resources to support the real-time distributed requirements of the application fields [311]. The 

second option was ZeroC Ice that provides a simple and easy-to-understand communication 

solution. Yet, despite its simplicity, Ice is flexible enough to accommodate even the most 

demanding and mission-critical applications. A comparison with other popular distributed 

computing solutions can be found here [312]. One of the most important features of Ice is its 

enhanced set of services, such as event distribution, firewall transversal with authentication and 

filtering, automatic persistence, automatic application deployment and monitoring, and 

automatic software distribution and patching. All services can be replicated for fault tolerance, 

so as to avoid the introduction of any single point of failure. The use of these services greatly 

reduces development time, because they eliminate the need to create distribution infrastructure 

as part of the application development. The third solution that was explored, Java Remote 

Method Invocation (RMI), enables the programmer to create distributed Java technology based 

applications, in which the methods of remote Java objects can be invoked from other Java 

virtual machines, possibly on different hosts. RMI uses object serialization to marshal and 

unmarshal parameters and does not truncate types, supporting true object-oriented 

polymorphism.  

Although the design and application of artificial cognitive control architecture based on 

middleware is essential, because the middleware facilitates communication between different 

hosts, the design of the architecture and its development is done in a middleware-free manner; 

independent of the middleware chosen to enable communication. ZeroC Ice was selected for 

the implementation, on the basis of good results previously reported in the literature, its 

advantages in relation to CORBA, its versatility and ease of use [313]. Three distributed units 

were considered in the deployment of the artificial cognitive control architecture, on the basis 

of the design and specificities of the case study with regard to proprietary software. 

 Cognitive level: This unit contains the components of the cognitive level: learning 

and optimization mechanisms, organization logic, execution logic and the 

application itself. It is expected that this unit will be deployed in a low-cost 

computational hardware. 

 Executive level: This unit contains the models that are used in the single loop, direct, 

inverse and simulation modes of the architecture. Once again, the unit is expected to 

be deployed in a low-cost computational hardware. 

 Process unit: A distributed process is needed, because that is one of the objectives, 

i.e., the control of a physical process. The Ice specification file is programmed with 

this description and parses it with the slice2java program. This program will 

generate several auxiliary classes needed by ZeroC Ice for communication over the 

net. In addition to the common use of Ice, IceGrid, is an important service that 

enables clients to discover the corresponding servers. Acting in an intermediary role, 
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IceGrid decouples clients from their servers and is intended to improve the 

performance and reliability of applications through support for replication, load 

balancing and automatic fail over. The program needed to execute the IceGrid 

registry process, IceGrid registry, and the program to run a server, IceGrid node are 

both provided with the Ice installation package. 

4.4.5 Auxiliary tools for the implementation 

UML is a general-purpose modeling language in the field of software engineering, which is 

designed to provide a standard means of visualizing the system design. It was applied to 

redesign and to implement the artificial cognitive architecture [314]. Java was selected as the 

programming language, because of its universal portability in different environments. In 

addition, the Real Time Specification for Java (RTSJ) provides an advantage to extend the 

simulation results to a full real time environment [315]. 

Having completed the UML-based design, the next step was the implementation of the 

architecture using Eclipse, as the integrated development environment (IDE) that facilitates 

work with Java. We also used SWIG [316], an interface compiler that connects programs 

written in C and C++ with several languages such as Perl, Python or Java. SWIG permits the 

re-use of models programmed in C/C++ and performs its tasks through the Java Native Interface 

(JNI) framework that enables assembly and communication between the Java Virtual Machine 

(JVM) and programs written in C, C++. 

4.4.6 Low-cost computing platforms 

Various state-of-the-art low-cost computing frameworks were analyzed, to choose the most 

suitable one to meet the objectives for deployment in a low-cost computational platform with 

artificial cognitive control. We reviewed three of the most popular low-cost computing 

platforms reported in the literature: Raspberry Pi 2 Model B, HummingBoard-i2 and 

BeagleBone Black. These computing platforms also have forums which share posts from the 

community of users that help others to make efficient use of the hardware. 

Raspberry Pi 2 is a low cost, credit-card sized computer capable of everything expected 

from a desktop computer, from browsing the Internet and playing high-definition videos, to the 

use of spreadsheets, word-processing, and gaming [317]. It is a small versatile low-cost device 

with a 900 MHz Single-Core ARM v7 and 1 GB SDRAM that enables users of all ages to 

explore computing, and to learn programming languages such as Scratch and Python. 

Raspberry Pi 2 can interact with the environment and devices in a wide range of digital 

maker projects, from gaming machines to open-source voice computing. The HummingBoard-

i2 and Raspberry Pi 2 both share a very similar layout and configuration, making transition 
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projects between both of them very easy. The former represents a good choice too, with a 1.0 

GHz Dual-Core ARM v7 and 1GB SDRAM, but over twice the cost of Raspberry PI 2. 

BeagleBone Black is suitable for users looking for a little more power that Raspberry Pi, an 

easier set up, easier commercialization, or users who have a need to interface with many 

external sensors. Its configuration consists of an AM335X 1 GHz ARM Cortex-A8 and 512 

MB of DDR3 RAM at a similar cost to Raspberry PI 2. 

The main criteria for selecting the low-cost computing platform were the world-wide 

support for a low-cost computing platform to facilitate implementation and to solve deployment 

problems and, less importantly, the cost of the platform. A large user community provides 

ample support for trouble shooting when using the platform. We finally chose Raspberry Pi 2 

Model B, partly because it is the most popular platform with an active user community. 

4.5 Application of the artificial cognitive control architecture in 

micromachining. Final validation 

4.5.1 Architecture setup for micromachining processes 

In order to show a real example to validate the architecture, a particular instantiation have 

been carried out. The instantiation is a simplified version of the architecture which will be 

distributed in order to perform monitoring and control tasks. It shows the potential of the 

architecture as well as its flexibility and scalability. The principals machine features used for 

the implementation and configuration of the artificial cognitive architecture are shown in Table 

4.8. 

 In order to achieve this task some general steps to instantiate the architecture must be 

followed: 

1. Class implementation in Java: it is recommended to extend from the abstract classes 

presented in the architecture. The number of classes or their complex depends of the 

tasks it wants to realize. In this particular case, the different steps to follow: 

(a) Implementation of the inference models using the technology SWIG to take 

advantage of the models implemented in C++ by GAHME research group. 

(b) Implementation of a self-optimization algorithm based on the cross-entropy 

method described in the Chapter 3 . 

(c) Implementation of an on-line learning algorithm based on the Q-learning 

algorithm (see section 4.2.1). 
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2. Implementation of the Ice classes needed to make the units of our architecture 

distributed. Particularly, it has followed the delegation pattern to make this task 

easier. 

3. Deployment of the cognitive unit in the Raspberry Pi 2 (Pi_cog). 

4. Deployment of the executive unit in the Raspberry Pi 2 (Pi_exe). 

5. Deployment of the process unit in the process host. 

6. Adjusting and tuning models' parameters with simulation. 

7. Adjusting and tuning models' parameters with experimentation and tests in a real 

manufacturing environment. 

Table 4.8 Machines features 

Type Process host 

Operating System 

 

Microsoft Windows XP Professional 

(version 2002), Service Pack 3 

CPU Intel(R) Pentium(R) 4 CPU 3.20Ghz 

3.19Ghz 

RAM 2GB 

Type Raspberry Pi 2 model B 

Operating System Raspbian 

CPU quad-core ARM Cortex A7,  900 MHz  

RAM 1GB 

Type Registry host 

Operating System Ubuntu 12.04 LTS 

CPU Intel(R) Core(TMT) 2 CPU 6400, 2.13Ghz 

RAM  2GB 

The deployment of all components in the architecture is shown in Figure 4.12 a) and b). 

Raspberry Pi 2 (Pi 1) and Raspberry Pi 2 (Pi 2) run the cognitive and executive part of the 

architecture, respectively.  

Process host has the mission of retrieving the process outputs from the KERN Evo machine 

(see section 2.2.1) and sending them to the architecture via ZeroC Ice, as well as receiving the 

action control from the architecture and sending it to the KERN Evo machine. As shown in the 

picture, communication between Process host and KERN Evo is done over the Ethernet. The 

Icegrid registry program is permanently running on the Registry host to enable the different 

hosts to identify each other. Finally, the Client host can use the developed graphical user 

interface to interact with the different components. 
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In order to simplify the implementation, it has taken several considerations that it is 

necessary to be explained. For the sake of clarity, we are grouping these considerations in 

different parts: 

 

Figure 4.12 a) Overall view of the industrial setup, b) Schematic diagram of the architecture of artificial 

cognitive control 

4.5.1.1 Models 

In this instantiation, it will use several models. Three of them are coded in C/C++. For this 

reason, the SWIG tool was used to be able to handle them in Java. The models that are exported 

from C/C++ are a fuzzy controller, an ANFIS forward model and an ANFIS inverse model. In 

this manner, the implementation of the models simply used them in a class that extends 

AbstractModel, an example of this can be seen in Figure IV.4. The others model was described 

in Chapter 2 . 

4.5.1.2 Process 

Two processes are implemented for testing scenarios, one for the simulation case and other 

for the real case. The connection between the machine and the real process was done via 

Dynamic Data Exchange (DDE) and some steps are needed to configure the machine before 

start it. A simplified snippet of code can be found in Figure IV.5. 

4.5.1.3 Modes 

Three modes of the MSCM were used. A simplified graph-shape version of these modes are 

depicted in Figure 4.11. The implementations are shown in the Figure IV.1; Figure IV.2 and 

Figure IV.3, respectively. 
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4.5.1.4 Evaluation 

In this instantiation only one performance index was considered, namely the relative Mean 

Squared Error (MSE). We choose this index because is a common criteria measurement used 

in both control theory and manufacturing processes. 

4.5.1.5 Learning, Optimal Searching and Organization  

Reinforcement learning mechanisms are essential to emulate actual functionalities of 

cognitive systems. The research is focused on a suitable reinforcement learning strategy to 

improve the overall performance of the artificial cognitive architecture. The design of a self-

learning mechanism can bring advantages with regard to other biologically-inspired control 

architectures. The deployment of a self-learning capability can facilitate further designs and 

implementation of other self-capabilities such as self-organization, self-optimization and self-

adaptation.  

In order to provide the instantiation with an on-line learning algorithm it has implemented 

the Q-learning algorithm described in section 4.2.1. The off-line optimization algorithm based 

on the cross-entropy method is presented in Chapter 3 . Finally, the organization algorithm is 

described in section 4.2.2.  

4.5.1.6 Execution Management 

It has done an implementation of ExecutionManagement that maintains each execution 

configuration running in a different thread. For each configuration the management gathers the 

inputs of each model, executes it and, if the configuration is the main configuration, the control 

action is sent to the process directly. 

4.5.1.7 Application 

Finally, the implementation of the Application is simply an organizer that receives the 

process's output and distributes it with the reference to the adaptation, organization and learning 

components. An interesting detail to be noted is that the process's output and the reference is 

distributed between the components if and only if the process's output exceeds a threshold, 

given by one process's parameter.   

It is important to note that this instantiation has used, when it is possible, the abstract classes 

that are provided with the library and has coded in order to be able to run correctly in both non-

distributed and distributed environments. In order to ease the implementation in the distributed 

environment we have used the ZeroC - Ice technology. To use this technology, it has written 

the specification of the three units we want to deploy remotely and generate the Ice-classes. To 

use IceGrid it is necessary to create some configuration files in order to set up the main the 

connection with the registry machine and to set up some needed parameters. To conclude the 

user interface of the artificial cognitive control architecture was shown in the Figure 4.13. 



Artificial Cognitive Architecture with Self-Learning and Self-Optimization Capabilities. Case Studies in 

Micromachining Processes 

 

 
142  CHAPTER 4 

 

Figure 4.13 User interface of the artificial cognitive control architecture  

4.5.2 Validation on a micromachining process 

Due to the small dimensions involved in the micro-drilling processes, the control is very 

difficult to carry out online. For this kind of processes, the use of online indirect monitoring is 

particularly important. Measurable process signals such as forces, vibration, acoustic emission 

and motor current have been often used for this purpose. Online quality control systems can 

provide real-time information, which can be supplied as a feedback to CNC for online adjusting 

cutting parameters. These kind of systems has been proposed for conventional machining. 

Monitoring and control systems have been also proposed in order to adaptively modify the 

cutting parameters in real-time for guaranteeing the geometric quality [231]. 

In the experimental study, the instantiation was tested in an industrial environment. All 

cutting operations were done on a Kern Evo Ultra-Precision Machine Centre, equipped with a 

Heidenhain iTNC540 CNC. The experimental platform included a cutting force sensor on three 

axes, two vibration sensors for y, z axes and a laser sensor for measuring variations in tool 

length and radius. The measurement of cutting force signals was done with a multi-component 

dynamometer (see section 2.2). 

This experimental setup is reported in [82, 83]. Several experiments were performed to 

validate the design and implementation of the artificial cognitive architecture. The experiment 

consisted of single and consecutive (10 holes) 0.5 mm drilling operations at a spindle speed of 

10,000 rpm and a feed rate of 100 mm/min. First, in order to assess each control mode (i.e., 

single loop, inverse control and internal model control) only one drilling action was carried out. 
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In order to validate the architecture 437 experiments were run (see Figure 4.14). The 

workpiece material was a tungsten-aluminum-vanadium alloy (Ti6Al4V) widely used in 

biomedical applications due to its excellent biocompatibility. In all the cases, a 0.5-diameter 

micro-drill was used. Figure 4.14 shows experiment matrix developed in the experimental test. 

 

Figure 4.14 Experiment matrix made with 0.5mm-diameter micro-drills [83] 

Figure 4.15 a) depicts the results of the simulation of each control mode. In order to carry 

out this simulation, the model of the micro-drilling process represented in Eq. (4.9) is 

considered as well the influence of noise represented by Eq. (4.9). Based on the technical 

knowledge of the process an input and output system is considered using the following 

variables: input is the feed rate (frate) and output, the cutting force (Fz). For the study an 

approximate representation of the process behavior was used. The linear model represented via 

difference equation is expressed accordingly: 

 
1 2 3 4

1 2 3

( ) ( ) ( 1) ( 2) ( 3)...

( ) ( 1) ( 2)

z rate rate rate rate

z z z

F k a f k a f k a f k a f k

b F k b F k b F k

      

    
  (4.9) 

where frate(k) is the feed rate and Fz(k) is the cutting force at k-instant. The coefficients of 

the difference equation are a1 = 0.0043, a2 = 0.0246, a3 = 0.0086, a4 = 0.0000217, b1 = -2.447, 

b2 = 1.993 and b3 = -0.541. 

This model roughly describes the dynamic behavior of the drilling process and it has been 

verified experimentally. However, model parameters depend on the workpiece material, cutting 

conditions, and tool wear. Therefore, model coefficients are time variant and variables of 

cutting conditions, workpiece material and tool wear. A disturbance d(t) (Eq. (4.10)) or noise 

input is included, in order to better replicate a real industrial process: 

 ( ) (sin(2 ) sin(3 ) sin(4 ) sin(5 ))d t Ap t t t t         (4.10) 

Where  = 7.61 rad/s. This frequency corresponds to the greatest frequency of the poles 

of the third-order system model of the drilling process given in Eq. (4.9). The amplitude of the 

disturbance is Ap = 10 (about 10% of additive noise). 
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Figure 4.15 Behavior of the a) drilling force and the control signal (overrated feed rate) for each execution 

mode isolated on the basis of the simulation;  b) drilling force and the control signal for each execution 

mode isolated from real time experiments 

Once the force model was defined the optimal searching algorithms (using SMOCE) is 

executed to fix the initial parameters for the controllers (see Table 4.9). For the single loop 

model, two gains are introduced for the error (KE) and the change of the error (KDE) and a gain 

(Kout) for the output of the controller. In the case of the forward and inverse models, the first 

one, the input (%frate) is multiplied for the gain Kfor and the output (Fref) for the output gain 

Kfor_out; in the second occurs the opposite, being the input (Fref) is multiplied for the gain Kinv 

and the output (%f) for the output gain Kinv_out. Furthermore, the initial process configuration 

for the override feed rate and the set point (reference force) and the learning rate, discount 

factor, rewards and penalties are also defined in Table 4.9. 

Figure 4.15 b) shows the behavior of drilling force in real time for three modes (single loop, 

inverse control and internal model control) of operations as well as the behavior of the drilling 

force without control (i.e., at constant feed rate). Each control mode is running isolated in each 

micro-drilling operation. For the sake of space, the experimental results depicted in Figure 4.15 

b) are running after the optimal setting of parameters on the basis of the cross entropy method. 

The dynamic response for the three operating modes is appropriate after running the 

initialization of the artificial cognitive control system. The optimal setting of parameters for 

each control modes is performed using the rough model of the process (Eq.(4.9)) and the mean 

square error performance index. 
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Table 4.9 Controller and learning configuration after the optimal searching 

Process 

Parameters Default values Range or types 

Fref 10N --- 

f 100% 10% 150% 

Controller models 

Mode Single loop 

KE 9.3783 -30 30 

KDE 0.1181 -30 30 

Kout 100 10 150 

Mode Inverse model  

Kinv 1.2480 0 10 

Kinv_out 35.80 10 150 

 Forward model 

Kfor 80 0 100 

Kfor_out 7 5 20 

Learning 

 0.1 --- 

 0.85 --- 

reward 0.9 (if the actual mode obtains the best 

performance index) 

penalty -0.1 (if the actual mode receives a performance 

index higher than 0.7) 

Table 4.10 shows a comparative study of the single loop operating mode with the inverse 

model (i.e., inverse control) and the inverse and forward models (i.e., internal model control). 

The integral of square error (ISE), the average of absolute error (AAE), the mean square error 

(MSE) and the overshoot (Ovt) are used. The error performance indices of the single loop 

controllers are better than the other controllers whereas the inverse control (inverse model) 

yields the better overshoot. It is important to remark that the micro-drilling process is non-linear 

and time variant process, and therefore the performance of each control mode may deteriorate 

due to nonlinearities, uncertainty and time-variant behavior of the process. 

Figure 4.16 a) shows the behavior of the drilling force when the learning is activated for the 

inverse model (i.e., inverse control mode). The drilling of 10 holes is performed, in order to 

show the influence of reinforcement learning on improving the performance of the inverse 

model. Initially the response is very poor and the system cannot reach the set point. The 

behavior of the drilling force is quite good from the 7th hole due to reinforcement learning. 
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Table 4.10 Performance indices for real time experiments 

Controllers ISE AAE MSE Ovt.(%) 

CNC alone (without control)  559.79 1207.39 25.66 12.15 

Single loop (fuzzy control) 338.45 628.23 17.62 7.16 

Inverse model (inverse control)  380.40 706.48 19.13 5.71 

Inverse and forward models (IMC 

control) 
418.81 742.48 20.26 6.74 

The single loop mode (i.e., the fuzzy control) is functioning in the first three holes. After 

that, the poor performance index motivates the change to the internal model control where direct 

and inverse models are activated (see Figure 4.16 b)). This is a clear case study where the single 

loop is deteriorating due to the influence of disturbance such as tool wear and the artificial 

cognitive control tries to find an adequate solution by changing the execution mode. The 

dynamic response and the performance index are then better in the new execution mode and the 

system remains in this mode.  

There are some issues to be analyzed. The offsets in the dynamic response (see Figure 4.16) 

is the result of the influence of air for tool refrigeration on measured force. This negative effect 

is not easy to be removed because it is not a constant value. The second issue is the 

parametrization of the threshold in the performance index to change from one mode to another 

one, which depends mainly on the application. The changing between the different models can 

be appreciated during the experiment running in the Figure 4.17. 

 

Figure 4.16 a) Reinforcement learning for the inverse model and b) Commutation between models in 

0.5mm real-time micro-drilling 
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Finally, in order to validate the performance of self-learning strategy in the frame of the 

cognitive control architecture, a set of micro-drilling experiments was run [83]. In the particular 

study case, the real-time constraints are the short cutting time and the delay in the 

communications. The cutting time per hole is about 5s with the considered cutting conditions. 

For this reason, it is difficult to control the process in real-time and exist a short delay between 

the machine center and the cognitive architecture. 

Firstly, the monitoring of the process without the cognitive control architecture was 

performed when drilling three holes. Later, the anticipation control and the single loop control 

modes were executed without the learning algorithm. The set point for the force control was 

10N. Finally, arrays of ten drills were used to assess the learning algorithm. 

The results of these experiments are depicted in Figure 4.18. Figure 4.18 a) shows the 

behavior of the force without control, with an evident increase beyond 10N. Despite the design 

and tuning of the control modes, the initial results were not encouraged due to the influence of 

uncertainty, noise, time-variant and nonlinear behavior of the micro-drilling process on 

deteriorating the real-time performance. In one scenario, with the anticipation control mode 

(see Figure 4.18 b)), the control signal cannot reach the set point meanwhile in the other, with 

the single loop mode (see Figure 4.18 c)) the behavior of the force surpasses for a long time the 

set point even beyond the transient state. 

 

Figure 4.17 Commutation between the different modes 

On the contrary, if the learning algorithm is activated the control signal is modified per 

iteration and the overall performance of the artificial cognitive control is improved. Different 

figures of merit or performance indices are calculated and depicted in Table 4.11. The results 
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corroborate how the Q-learning algorithm contributes to a better response and reduces the error-

based performance indices. 

Table 4.11 Performance indices for real time experiments 

Modes Iterations ISE AAE MSE Ovt.(%) 

Anticipation Mode 1 601.53  1869.50  25.03  -3.27 

Anticipation Mode + Learning 

2 503.04  1513.61  22.89  -3.44 

5 359.10  854.78  21.19  5.00 

10 257.20  599.35  19.17  6.28 

Single Loop Mode 1 283.79  714.09  23.14  14.04 

Single Loop Mode + Learning 

2 251.76  667.47  21.79  13.90 

5 173.48  450.72  17.29  12.34 

10 127.62  433.52  14.71  11.43 

Figure 4.18 shows how the anticipation mode + learning (see Figure 4.18 d)) and single loop 

+ learning (see Figure 4.18 e)) keep the cutting force value over the force point set (10N). This 

result corroborates the suitability of the learning algorithm in the cognitive architecture and the 

potential for industrial processes. 

 

Figure 4.18 Behavior of the force for the single loop and anticipation mode with and without learning 

4.6 Conclusions 

The shared circuit model approach is enriched and improved using the state-of-the-art on 

this field. Moreover, relevant reports on this issue as well as the contributions of the authors are 
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also outlined. The MSCM is postulated from the viewpoint of System Theory and Computer 

Science. Another contribution of the modified SCM is to enable more efficient and faster 

manufacturing through cooperative, self-organized, self-optimized behavior by process control 

systems. This work leads to a progress on artificial intelligent systems from the imitation of 

self-human mind evolution. From a theoretical point of view, MSCM provides an alternative 

conceptual framework to perform control tasks in an efficient fashion that characterizes human 

cognitive processes. 

The design and implementation of an artificial cognitive control system in a low-cost 

computing platform with self-optimization and self-learning capabilities presented in this 

chapter involves a transition from module-based implementation to an operating mode-based 

implementation. This change in the artificial cognitive architecture provides a new group of 

functionalities for the reconfiguration and the self-adaptability, changing the connection 

between the different elements (modes and models) to achieve a goal.    

In addition, self-capabilities, represented by the optimization procedure using cross-entropy 

algorithm and the online learning mechanism on the basis of a Q-learning algorithm, were 

designed and implemented in the architecture. Furthermore, different classes were developed 

that provide this instantiation with the ability to run in a distributed manner. The overall 

assessment of the instantiation was performed by simulating, and a real manufacturing 

environment either with very promising results. Beyond the case-study on force control for 

micro-drilling processes and the results that have been presented, the artificial cognitive control 

architecture built on a low-cost platform hardware has demonstrated the suitability of the 

implementation in an industrial setup. The functional and nonfunctional requirements are fully 

satisfied by means of a simple instantiation configured with middleware. 

This research work has provided an important starting point to address the main challenge 

of an artificial cognitive approach embedded in low-cost hardware industrial computing on the 

basis of low-cost hardware.  

Conclusions and future work of the Doctoral Thesis are presented in the next chapter. Fully 

aware of the difficulties to transfer of knowledge the artificial cognitive control architecture at 

industrial levels, the subsequent objectives in the near future are as follows: 

(i) to introduce actual concepts such as cloud computing, big data and cyber physical 

system to create a global mode (plant level); 

(ii)  to add further models to the repository for more complex tests, and 

(iii)  to improve the way in which the instantiation can execute the components for 

improved performance on this new low-cost computing platform. 



 

151 

CONCLUSIONS 

This Doctoral Thesis is based on a scientific methodology that combine theoretical and 

experimental research methods, dealing with the design, development and implementation of 

an artificial cognitive architecture for monitoring and control of complex processes. The roots 

of proposed bio-inspired architecture are the shared circuits model for emulating socio-

cognitive skills. The use of computational intelligence techniques for modeling, optimization 

and control in the different operating modes is key issue. The design and implementation of a 

modular and reconfigurable architecture is validated in several micromachining operations. 

During this multidisciplinary and interdisciplinary research, many scientific and technical 

challenges in different areas of knowledge are addressed, from mechanical engineering and 

micro-manufacturing to control and industrial informatics. 

The proposed artificial cognitive architecture has taken into account computational 

intelligence methods and paradigms from the Computer Sciences to provide a computationally 

efficient solution. A wide range of contemporary methods for signal processing, filtering, 

feature extraction, pattern identifications, modeling, optimization and learning has been 

considered to develop the proposed artificial cognitive architecture. 

Furthermore, the reconfiguration and the portability capability of the architecture has been 

assessed in low-cost computing platform using learning and optimization strategies in 

monitoring and control tasks. In addition, two micromachining processes have been selected to 

validate the cognitive and executive levels of the architecture. The selection of micro-

manufacturing processes as case studies is justified for the great impact on the economy, 

production and services this century.  

Following, a summary of the main results reported in each chapter are presented: 



Artificial Cognitive Architecture with Self-Learning and Self-Optimization Capabilities. Case Studies in 

Micromachining Processes 

 

 
152  CONCLUSIONS 

Review of the state of the art. Challenges and opportunities  

Firstly, the review of the state of the art is concentrated on methods and techniques in the 

conjunction of Artificial Intelligence, Systems Engineering and Computer Sciences. A special 

attention is focused on the theoretical foundations for modeling, optimization and machine 

learning methods prioritizing control and monitoring of industrial applications. In this sense, 

the review has focused on soft-computing techniques, analyzing current trend for monitoring 

and control of micro-scale manufacturing processes. This review is not only necessary to know 

the evolution of these techniques, but also to identify good candidates able to provide better 

performance in architectures for monitoring and control complex physical processes. 

Due to the multidisciplinary, interdisciplinary and heterogeneous nature of this doctoral 

thesis, the state of the art has been focused in order to generate scientific and technical 

contributions in each and every one of the fields of application, areas of knowledge and topics 

addressed during the investigation. In order to achieve the main objective, as it was described 

before, three main areas (modeling, optimization and learning) are specifically considered 

during the development of the artificial cognitive architecture. The most relevant results in each 

knowledge area are outlined. 

Signal processing and modeling. 

From the scientific viewpoint, the simulation and experimental study demonstrates that the 

combination of WT and ANN provides the best tradeoff between appropriate correlation and 

good generalization capability, reported in [193]. However, from the technical standpoint, the 

implementation of such a monitoring system at industrial scale has severe constraints. For 

instance, the computational cost (computation cost, signal processing time, etc.) is lower for the 

wavelets and ANFIS combination. This result means that WT + ANFIS is a good candidate for 

final implementation of the monitoring system at industrial scale. In all the cases a statistical 

significance of 95% was considered. An additional advantage of the wavelet in the feature 

extraction stage is that it offers the possibility of filtering the signal in the various frequency 

bands and of separating the interesting frequency from the noise frequency, which considerably 

reduces the area for searching in the subsequent stage, achieving a better final prediction.  

 Another interesting conclusion is the high correlation only belongs to the signal segments 

in the tool tip entrance and the backward feed with holes quality error in micro-drilling 

processes, shown in [231]. This can be explained if the damage is mainly produced at the tool 

tip entrance and, later on, this damage affects the chip exit during the backward motion. In 

addition, the frequency bands of the higher correlated features, corresponds to the natural 

frequencies of the systems. The greater correlation was found in the backward feed motion of 
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the tool, equal to 0.8238, meaning that the model as fitted explains the 82% of the variability 

in the observed data with a 99% of the confidence level. It would be explained by the friction 

between the tool, the chip and the holes’ profile. Finally, the frequency bands included in the 

model are also noteworthy. The first one is the frequency band from 3906 to 4297 Hz, which 

has a direct relationship with the hole quality error. On the contrary, the lower frequency band 

(up to 391 Hz) has an inverse relationship with the holes’ quality error. 

A two-step monitoring systems for detecting the occurrence of run out in microdilling 

processes of Ti6Al4V and W78Cu22 alloys was presented in [254]. It uses a FFT transform (first 

step) for extracting features from the online measured force data and a multilayer perceptron 

neural network (second step) for predicting the process condition from the previously obtained 

features. The monitoring system was able to identify more than 70 % of the run out conditions, 

with less than 10 % of false run out detections. Due to the intolerance of micro-drills to run out, 

the proposed approach can yield considerable gains in tool life and productivity. The adjusted 

model had a coefficient of determination, equal to 0.9586, indicating that the model as fitted 

explains 95%of the variability in the dependent variable. The standard error of estimate is 

0.0899, and the mean absolute error is 0.0266. In order to test the generalization capabilities of 

the model, the obtained predictions for the training and validation sets were compared. The 

difference between the mean values of the predictions of the training and validation sets is 

neglected. In addition, the mean predicted values of both sets are very similar to the observed 

values. Nevertheless, the spread of the predictions for the training set is remarkably less than 

the spread for the validation set. Consequently, the predictions of the model, under different 

conditions, are not as reliable as those obtained for data used in the training process. 

An artificial neural network model based on mechanical and thermal properties for five 

materials was reported in [318]. The available experimental data was randomly divided into a 

training set containing 1 973 samples (corresponding to the 80%) and a validation set with the 

remaining 493 samples. The training process was carried out on the basis of backpropagation 

algorithm, with adaptive learning rate and momentum. The following training parameters were 

selected: initial learning rate, 0.001; ratio to increase learning rate, 1.05; ratio to decrease 

learning rate, 0.70; momentum constant, 0.9; and minimum performance gradient, 10–10. The 

stop condition was established after the 300 000 epochs. The obtained neural model has a 

correlation coefficient of 0.8969, so, it explains the 89% of the variability in the response 

variable. The standard error of the estimations was 1.084 and the mean absolute error was 

0.7340. In order to assess the generalization capability of the model, the residuals coming from 

the training and validation sets were analyzed. It motivated to carry the comparison between 

mean values and standard deviations of both sets using t-Student and an F tests, respectively. 

These tests yielded associated probability values of 0.6125 and 0.1832, respectively. Therefore, 

the null hypothesis (both means are equal and both standard deviations are equal) cannot be 
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rejected with at the 95% confidence level. It can be concluded that both residuals sets come 

from the same distribution and the model has a good generalization capability. 

Self-Optimization.  

Thirteen non-dominated solutions for a two objective optimization problem were reported 

in [318]. The minimization of the unit machining time (inverse of the material removal rate, 

M), and the thrust force were the targets based on the optimal set of cutting parameters in the 

micro-drilling process. The selection of the most convenient solution depends on the specific 

conditions of the productions. For example, if the productivity is the most important issue, 

solution No. 13 should be selected, as it produces the lower unit machining time in spite of the 

relatively high thrust force value. On the contrary, if the tool cost is determinant, solution No. 

1 should be chosen, because its lowest force minimizes the risk of tool breakage. Finally, the 

other solutions may be suitable for other halfway situations. The Pareto’s front obtained 

demonstrated the useful of the heuristic technique to solve industrial problems, in this particular 

case, in micro-manufacturing of especial alloys, using this studies, the operator can choose a 

fast decision in function of accelerate the production or decrease the tool spending. 

The non-dominated sorting genetic algorithm was selected in [255] to approach multi-

objective optimization problem in a micro-milling process. Two objective functions were 

defined, the first function, surface roughness and the second one, the unit machining time. As 

in the previous example, the selection of the most convenient solution depends on the specific 

conditions of the productions. Two possible industrial decisions were analyzed: productivity 

was the most important issue in the first one and the surface roughness requirement was 

penalized and, in the second, the best surface roughness parameters were obtained with lower 

productivity.  

Furthermore, the behavior of the vibration signal, Vz, for the two points was described. The 

cutting parameter values for first scenario were a cutting speed of 125.2 m/min, a feed rate of 

1.9l m/tooth, and an axial deep of cut of 0.1 mm. The range of the z-axis vibration of between 

0.12g and 0.26g, with a mean of between 0.14g and 0.20g. For the second scenario, the cutting 

parameter values were a cutting speed of 71.4 m/min, a feed rate of 2.6 lm/tooth and an axial 

depth of cut of 0.1 mm with a range of the z-axis vibration at between 0.08g and 0.18g, with a 

mean of between 0.09g and 0.16g. 

The surface roughness prediction was based on the initial cutting parameters, an on-line 

feedback of the signal during the cutting process is necessary. The proposed real-time system, 

using the ANFIS models, is capable of predicting surface roughness as a function of the z-axis 

vibration captured during the cutting process. This system can provide a surface roughness 
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estimate with an error reading of 9.5% in an industrial setup, depending on the cutting 

parameters. 

The core of the contribution is the modified Multi-Objective Cross-Entropy (SMOCE) 

method that was reported in [274]. First, a comparison using MOP, ZDT, WFG test suits with 

other multi-objective algorithms was done. In general terms, the proposed method provides a 

better solution (except for MOP1 and MOP2), but they are worse than those provided by the 

other evolutionary approaches. Nevertheless, the generational distance values are very low in 

all the problems; therefore, the solutions are acceptable for many applications.  

Once defined the improved cross-entropy method for multi-objective optimization, a micro-

drilling process was selected to validate the implementation in a real industrial scenario. For 

the optimization, two process representative models of thrust force and vibration on the plane 

perpendicular to the drilling axis were obtained using a well-established method inspired in 

Artificial Intelligence. Below, two objectives were simultaneously considered: the drilling time 

and the amplitude of the vibrations on the plane perpendicular to the drilling axis. Furthermore, 

certain constraints must be fulfilled, defining the thrust force lower than the allowable thrust 

force is pre-established to avoid buckling-based breakage of the tool. 

Altogether, 25 runs were performed to increase the reliability of the optimization results. 

Three zones can be easily noted (see Figure 3.12): Zone I shown cutting parameters that will 

obtain high quality holes, but over excessive operating times; Zone II contained the best 

combination of solutions in both objectives, so they are the most convenient parameters for 

most of the operations, giving reasonably good hole quality within low drilling times and Zone 

III involved solutions with shorter execution times, but with higher vibration amplitudes. 

Consequently, these are only solutions for holes where quality is not an important requirement. 

The Pareto front solutions, in all the zones, cover almost all of the cutting speed intervals and 

steps. On the contrary, the values of the feed rates are higher than source in all of the zones. In 

all the cases, a 95% confidence intervals for the execution time and some characteristics and 

quality metrics of the Pareto fronts that were obtained. 

Self-learning 

In order to validate the performance of self-learning strategy in the frame of the cognitive 

architecture, a group of micro-drilling experiments were executed. The study was reported in 

[83]. Firstly, the monitoring of the process without control was performed. Later, the 

anticipation control and single loop control modes were executed without the learning 

algorithm. The set point for the force control was 10N. Finally, arrays of ten drills were used to 

assess the learning algorithm. 
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Despite the appropriate design of the control modes, the initial results were not too good 

due to the influence of uncertainty, noise, time-variant and nonlinear behavior of the micro-

drilling process on deteriorating the real-time performance. In one scenario, with the 

anticipation control mode, the control signal cannot reach the set point meanwhile in the other, 

with the single loop mode the behavior of the force surpasses for a long time the set point even 

beyond the transient state. 

On the contrary, if the learning algorithm is activated the control signal is modified per 

iteration and the overall performance of the artificial cognitive control is improved. The results 

corroborate how the Q-learning algorithm contributes to a better response and reduces the error-

based performance indices.  

The behavior of the drilling force when the learning is activated for the inverse model (i.e., 

anticipation mode) is reported in [82]. The drilling of 10 holes is performed, in order to 

corroborate the influence of reinforcement learning on improving the performance of the 

inverse model. Initially the response is very poor and the system cannot reach the set point. The 

behavior of the drilling force is quite good from the 4th hole due to reinforcement learning.  

The single loop mode is functioning in the first three holes. After that, the poor performance 

index motivates the change to the internal model control where direct and inverse models are 

activated. This is a clear case study where the single loop is deteriorating due to the influence 

of disturbance such as tool wear and the artificial cognitive control tries to find an adequate 

solution by changing the execution mode. The dynamic response and the performance index 

are then better in the new execution mode and the system remains in this mode. Finally, the 

combinations of anticipation mode + learning and single loop + learning keep the cutting force 

value over the force point set. This result validates the utility of the learning algorithm inside 

the cognitive control architecture and the utility of this in industrial processes.  

In order to conclude the main contributions, from the scientific and technical point of view, 

achieved during the realization of the present doctoral thesis are summarized as follows: 

1. A library of models was developed to correlate the cutting parameters and physical-

mechanical material properties with the forces and vibration signals captured during the 

elaboration of micro-drilling and micro-milling operations. 

2. Two methodologies were developed for detecting run-out and predicting the holes’ 

quality in micro-drilling processes. In addition, a methodology was proposed for the 

estimation of surface roughness in micro-milling processes. In all cases, the prediction 

models are based on soft-computing techniques such as neural networks and neuro-

fuzzy algorithms. 

3. Some modifications of a multi-objective cross-entropy method were introduced, where 

four parameters (epoch number, working population size, histogram interval number, 
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and elite fraction) are stored in the algorithm, in order to facilitate the tuning process. In 

the analysis of the relationship of these parameters on the algorithm performance, both 

the histogram interval number, and the elite fraction showed not significant influence, 

so they were removed from the study. On the contrary, the epoch number and the 

working population size had a remarkable influence on the execution time. Both 

influenced the Pareto front quality, up to some level, but as from this value, the quality 

stopped improving. 

4. A reinforcement learning technique based on Q-learning algorithm was implemented. 

Due to the nature of the Q-learning algorithm some modifications and considerations 

were introduced to facilitate the deployment in the definition of the concepts of state 

and action, as well as the reward function.  

5. An artificial cognitive architecture was designed and implemented for the monitoring 

and control of micromachining processes. The present architecture is divided in two 

main levels: the cognitive level, which includes all the functionalities (modeling, 

optimization, learning, ...) developed during the doctoral thesis; the executive level, 

which execute the monitoring and control actions in the processes, using an optimal 

configuration for each iteration (self-optimization algorithm) in function of the 

experience accumulated (self-learning algorithm) during the previous iteration between 

the cognitive level and the information captured from the process. Furthermore, several 

modes were developed to provide the modular and reconfigurable capabilities able to 

adapt to the non-linearity and non-stationarity behaviors of micro-manufacturing 

processes. 

6. Finally, the proposed architecture was validated monitoring and controlling the force 

value in micro-drilling operations. During this stage, more than 400 tests were 

performed, combining all the controller modes (monitoring, single loop, anticipation, 

single loop + learning and anticipation + learning) described in the doctoral thesis, 

validating the utility of the learning and optimization algorithm inside the artificial 

cognitive architecture for the monitoring and control industrial processes. 

List of contributions  

Following, the list of the scientific and technical contributions put into consideration in the 

scientific community is shown. During the research period different results have been published 
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Future works  

The present doctoral thesis has opened new research lines to be addressed in future works. 

From the scientific-technical point of view, a new version of proposed architecture will be 

developed. The objective is integration of advanced techniques from the paradigms of Cloud 

Computing, Cyber-Physical Systems, Big Data and Internet of Things within the actual 

implementation. This objective is supported with the new trends in the principal researches lines 

in Europe to develop the Factory of the Future. Besides, another concept to support the new 

research lines is the known as Industry 4.0 (Europe), also called Smart Factory (USA, Japan, 

etc.) based on strategy for the strong customization of products under the conditions of highly 
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flexibility in mass production. The required automation technology is improved by the 

introduction of methods of self-optimization, self-configuration, self-diagnosis, cognition and 

intelligent support of workers in their increasingly complex work.  

In this sense, the first steps were taken in the framework of the research project 

CONMICRO [319]. The main objective was embedded self-optimized controllers and cognitive 

capacities in the real-time, modular, network and reconfigurable platform. Furthermore, the 

ability to interact with middleware systems for global distributed monitoring systems, providing 

the basis for the development of intelligent distributed control systems based on cognitive 

capacities at the highest level. 

Secondly, a real time device will be developed to predict phenomena such as: chatter and 

run-out using vibration signals captured in micro-milling processes with a relation of diameters 

between 30m-500m. At present, a series geometrical, wear and surface roughness measures 

are done with two high resolution measure techniques: a 3D micro coordinate measurement 

machine and surface roughness measurement device. The main objective is correlated the 

frequency-amplitude variations in real-time with the vibration signals captured during milling 

and micro-milling process. Based on these results, it is currently working on the phases of 

design of the hardware configuration and implementation of the different modules to compose 

the device for predictive tasks. This investigation line is carried out between three research 

groups: GAMHE (Centre for Automation and Robotic, Spain), CEFAS (University of 

Matanzas, Cuba) and IPK (Institute for Production Systems and Design Technology 

Fraunhofer, Germany) supporting the interaction during the research period with multi-

disciplinary team from different latitudes.  

Thirdly, based on the same multi-disciplinary interaction during the formation period, but 

in this case applied to a different research line are the bases of collaboration between GAMHE; 

CEFAS and DLM (Warwick Manufacturing Group, UK). The main objective is to bring the 

artificial cognitive architecture developed in the present doctoral thesis to address pattern 

recognition strategies during part assembly processes for the automobile industry. The car 

industry is a complex scenario with multiple layers or station during the assembly process, 

interacting machines, robots, measurement devices, etc. at the same time. The new proposal 

includes an adaptive artificial cognitive architecture able to control in real-time the key 

characteristic based on specific key indicators measured multi-level assembly process using 

data classification, modeling, optimization and decision making. The new design includes Big 

Data, Cloud Computing and CPS techniques supporting to current concepts introduced in the 

Factory of the Future program.   

Finally, a two level (machine level (local mode) and cloud server (global mode)) 

architecture to predictive maintenance strategies is introduced in the project AM4G [320]. This 

condition-based monitoring system is also focused on challenges of cyber-physical systems 
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applied to manufacturing networks. Furthermore, a modular and configurable event and alarm 

register is developed. The main objective is to detect which local actions on the machine must 

be carried out immediately (emergency stop, programmed shutdown, slow speed ...) in close 

coordination with the machine PLC/CNC system. Furthermore, the signals, alarm records, etc.  

storage during a window time are interchanged with the cloud server. Finally, in the global 

mode, information of the same machine family is used to obtain a best algorithm coefficient 

configuration for each machine connected in the manufacturing network, updating the 

parameters configuration (local model), in the next connection machine-cloud server.   
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CONCLUSIONES 

 

La presente tesis doctoral se basa en una metodología científica que combinas métodos de 

investigación teórica y experimental, abordando el diseño, desarrollo e implementación de una 

arquitectura cognitiva artificial para la monitorización y el control en procesos complejos. El 

método propuesto un conjunto de técnicas de inteligencia computacional como base para el 

diseño e implementación de una arquitectura modular y reconfigurable, que ha sido validada en 

varias operaciones de micromecanizado. Durante la investigación el carácter multidisciplinario 

e interdisciplinario está presente en varios desafíos científicos y técnicos en diferentes áreas del 

conocimiento, desde la ingeniería mecánica y la microfabricación hasta el control y la ingeniería 

informática. 

La hipótesis de partida de este trabajo se ha materializado en una implementación en Java 

sobre un computador de bajo coste de la arquitectura cognitiva artificial. De este modo el 

fundamento que nace en el nexo entre el paradigma del control por modelo interno y la 

conectividad cerebro-cerebelo como base de la inteligencia humana, se ha materializado en una 

biblioteca de modelos directos e inversos como veremos más adelante. El segundo principio 

que ha sido considerado en la arquitectura basada en modelos y modos de operación, es el 

modelo de los circuitos compartidos y la emulación de las capacidades y experiencias socio-

cognitivas de los seres humanos. 

Durante la investigación se ha re-elaborado y aplicado una amplia gama de métodos 

contemporáneos para el procesamiento de señales, filtrado, extracción de características, 

identificación de patrones, modelado, optimización y aprendizaje para dotar a la arquitectura 

cognitiva artificial de las capacidades necesarias. 
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Por otra parte, la capacidad de reconfiguración y portabilidad de la arquitectura se ha basado 

en el acondicionamiento de los diferentes modos, utilizando estrategias de aprendizaje y 

optimización. Además, en la tesis doctoral se han seleccionado dos procesos de 

micromecanizado para validar los niveles cognitivo y ejecutivo de la arquitectura. La selección 

de dichos procesos de fabricación como casos de estudio se justifica por el gran impacto que 

tienen en la economía, producción, servicios y estrategias sociales en el siglo XXI. 

A continuación, se presentan un resumen por capítulos de los principales resultados 

obtenidos durante la presente tesis doctoral: 

Revisión del estado del arte. Retos y oportunidades 

En primer lugar, se ha realizado una revisión del estado en los paradigmas de la teoría 

general de los sistemas, la teoría del control, las técnicas de computación blanda y la ciencia de 

la computación. Se ha prestado especial atención a la base teórica de los algoritmos de 

modelización, optimización y aprendizaje de máquinas enfocados en aplicaciones industriales 

desde las perspectivas de monitoreo y control. En este sentido, la revisión se ha centrado en las 

técnicas de soft-computing, analizando su evolución desde sus inicios hasta las tendencias 

actuales. Esta revisión no sólo permite conocer la evolución de estas técnicas, sino que también 

se identificaron un grupo de técnicas para proporcionar un mejor desempeño en las nuevas 

generaciones de arquitecturas para la supervisión y control de procesos físicos complejos. 

Debido a la naturaleza multidisciplinaria, interdisciplinaria y heterogénea de esta Tesis 

Doctoral, la revisión del estado del arte se ha centrado en generar contribuciones científicas y 

técnicas en todos y cada uno de los campos de aplicación, áreas de conocimiento y temas 

abordados durante la investigación. Para lograr el objetivo principal, como se ha descrito 

anteriormente, se abordan tres cuestiones específicas, a saber: modelado, auto-optimización y 

auto-aprendizaje para dotar a la arquitectura cognitiva artificial de las funcionalidades 

necesarias. A continuación, se presentan los resultados más relevantes. 

Principales resultados durante las etapas de procesamiento y modelado 

Desde el punto de vista científico se demostró en [193], que la combinación de ondeletas o 

wavelets (WT) y ANN proporciona un mejor equilibrio entre el coeficiente de correlación y 

capacidad de generalización. Sin embargo, desde el punto de vista técnico, la implementación 

de un sistema de monitoreo a escala industrial tiene severas limitaciones. Por ejemplo, el coste 

computacional (tiempo de cálculo, tiempo de procesamiento de la señal, etc.) es menor para las 

combinaciones WT y ANFIS. Este resultado significa que WT + ANFIS es un buen candidato 

para la implementación final del sistema de monitoreo a escala industrial. En todos los casos se 



  Gerardo Beruvides López

 

 
  167 

consideró una significación estadística del 95%. Una ventaja adicional de la ondeleta en la etapa 

de extracción de características es que ofrece la posibilidad de filtrar la señal en las diversas 

bandas de frecuencia y de separar la frecuencia interesante de la frecuencia de ruido, lo que 

reduce considerablemente el área de búsqueda en la etapa siguiente y una mejor predicción 

final. 

 Otro hecho interesante fue que la correlación más alta con errores de calidad de los agujeros 

en los procesos de microtaladrado sólo guardan relación a los segmentos de señal en la entrada 

y la salida de la herramienta [231]. Esto se explica si el daño se produce principalmente en la 

entrada de la punta de la herramienta y, posteriormente, este daño afecta la salida de la viruta 

durante el movimiento hacia atrás. Además, las bandas de frecuencia de las características 

correlacionadas más altas, corresponde a las frecuencias naturales de los sistemas. Durante el 

modelado, la mayor correlación se encontró en el movimiento de salida de la herramienta, igual 

a 0.8238, lo que significa que el modelo presenta un 82% de la variabilidad en los datos 

observados, con un 99% del nivel del intervalo de confianza. Dicho fenómeno se explica por la 

fricción entre la herramienta, la viruta y el perfil de los agujeros. Por último, también son dignas 

de mención las bandas de frecuencias incluidas en el modelo. El primero es la banda de 

frecuencia de 3906 a 4297 Hz, que tiene una relación directa con el error de calidad de agujero. 

Por el contrario, la banda de frecuencia más baja (hasta 391 Hz) tiene una relación inversa con 

el error de calidad de los agujeros. 

Otro resultado interesante fue el propuesto en [254]. En este se desarrolló un sistema de 

monitoreo en dos etapas para detectar la ocurrencia de agotamiento en los procesos de 

microtaladrado de las aleaciones Ti6Al4V y W78Cu22. El mismo, utiliza una transformada FFT 

(primer paso) para extraer características de los datos de fuerza medidos en línea y una red 

neuronal perceptron multicapas (segundo paso) para predecir la condición del proceso a partir 

de las características obtenidas previamente. El sistema de monitoreo fue capaz de identificar 

más del 70% de las condiciones de descentrado de la herramienta, con menos del 10% de falsas 

detecciones. Debido a la predicción de perdida de tolerancia dimensionales en los 

microtaladros, el enfoque propuesto puede producir ganancias considerables en la vida de la 

herramienta y la productividad. El modelo ajustado tuvo un coeficiente de determinación, igual 

a 0.9586, lo que indica que el modelo presenta un 95% de variabilidad en la variable 

dependiente. El error estándar de estimación es 0.0899, y el error absoluto medio es 0.0266. 

Con el fin de probar las capacidades de generalización del modelo, se compararon las 

predicciones obtenidas para los conjuntos de entrenamiento y validación. La diferencia entre 

los valores medios de las predicciones de los conjuntos de entrenamiento y validación se 

desecha. Además, la media de los valores predichos de ambos conjuntos fue muy similares a 

los valores observados. Sin embargo, la propagación de las predicciones para el conjunto de 

entrenamiento fue notablemente menor que la propagación para el conjunto de validación. En 
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consecuencia, las predicciones del modelo, en diferentes condiciones, no fueron tan fiables 

como las obtenidas para los datos utilizados en el proceso de formación. 

Por último, se introdujo un modelo de red neuronal artificial basado en propiedades 

mecánicas y térmicas para cinco materiales [318]. Los datos experimentales disponibles se 

dividieron aleatoriamente en un conjunto de entrenamiento con 1973 muestras (correspondiente 

al 80%) y un conjunto de validación con las 493 muestras restantes. El proceso de modelación 

se llevó a cabo sobre la base del algoritmo de retropropagación, con velocidad de aprendizaje 

adaptativo y momento. Para el mismo, se seleccionaron los siguientes parámetros de 

entrenamiento: tasa de aprendizaje inicial, 0.001; ratio para aumentar la tasa de aprendizaje, 

1.05; ratio para disminuir la tasa de aprendizaje, 0.70; constante de momento, 0.9 y gradiente 

de rendimiento mínimo, 10-10. La condición de parada se estableció después de las 300 000 

iteraciones. El modelo neural obtenido tiene un coeficiente de correlación de 0.8969, por lo que 

explica el 89% de la variabilidad en la variable de respuesta. El error estándar de las 

estimaciones fue 1.084 y el error absoluto medio fue de 0.7340. Con el fin de evaluar la 

capacidad de generalización del modelo, se analizaron los residuos procedentes de los conjuntos 

de entrenamiento y validación, llevando a cabo la comparación entre los valores medios y las 

desviaciones estándar de ambos conjuntos utilizando las pruebas t-Student y F-Fisher, 

respectivamente. Estas pruebas arrojaron valores de probabilidad asociados de 0.6125 y 0.1832, 

respectivamente. Por lo tanto, la hipótesis nula (ambos medios son iguales y ambas 

desviaciones estándar son iguales) no pudo ser rechazada con un nivel de confianza del 95%. 

Finalmente, se pudo concluir que ambos conjuntos de residuos provienen de la misma 

distribución y además el modelo presentó una buena capacidad de generalización. 

Auto-optimización 

Trece soluciones no dominadas para un problema de optimización de dos objetivos se 

obtuvieron en [318]. La minimización del tiempo de mecanizado de la unidad (inverso de la 

tasa de arranque de material, MRR) y la fuerza de empuje fueron los objetivos basados en el 

conjunto óptimo de parámetros de corte en un proceso de microtaladrado. La selección de la 

solución más conveniente dependió de las condiciones específicas. Por ejemplo, si la 

productividad es la cuestión más importante, se debió seleccionar la solución No. 13, ya que 

produce el menor tiempo de mecanizado unitario a pesar del relativamente alto valor de la 

fuerza de empuje. Por el contrario, si el coste de la herramienta es determinante, se debió elegir 

la solución No. 1, debido a la fuerza mínima, se minimiza el riesgo de rotura de la herramienta. 

Finalmente, las otras soluciones pueden ser adecuadas para otras situaciones intermedias. El 

frente de Pareto demostró la utilidad de la técnica heurística para resolver problemas 

industriales, en este caso particular, en micro-fabricación de aleaciones especiales. Basándose 
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en estos estudios, el operador puede tomar una decisión de marera rápida en función de acelerar 

la producción o disminuir el gasto de herramientas.  

En Beruvides, et al. [255], se seleccionó un algoritmos genético de clasificación no 

dominado (NSGA-II)  para abordar el problema de optimización multiobjetivo en un proceso 

de microfresado. Para este, se definieron dos funciones objetivos, la primera, la rugosidad de la 

superficie; y la segunda, el tiempo de mecanizado unitario. Como en el ejemplo anterior, la 

selección de la solución más conveniente depende de las condiciones específicas de las 

producciones. En este aspecto, se analizaron dos posibles decisiones industriales: la 

productividad fue la cuestión más importante en el primero, penalizando la calidad superficial; 

en el segundo, se obtuvieron los mejores parámetros de rugosidad superficial con menor 

productividad. Además, se describió el comportamiento de la componente de la señal de 

vibración en el eje z, Vz, para dos puntos. Los valores de los parámetros de corte seleccionados 

para el primer escenario fueron una velocidad de corte de 125,2 m/min, una velocidad de avance 

de 1,9 m/diente y una profundidad axial de corte de 0,1 mm. El rango de la vibración del eje 

z alcanzado estuvo entre 0,12g y 0,26g, con una media entre los 0,14g y 0,20g. Para el segundo 

escenario, los valores de los parámetros de corte fueron: una velocidad de corte de 71,4m/min, 

una velocidad de avance de 2,6 m/diente y una profundidad axial de corte de 0,1 mm con un 

rango de la vibración del eje z entre 0,08g y 0,18g, con una media entre 0,09g y 0,16g. El 

sistema en tiempo real propuesto, está basado en modelos ANFIS, capaces de predecir la 

rugosidad superficial en función de la vibración del eje z capturada durante el proceso de corte. 

Este sistema puede proporcionar una estimación de rugosidad superficial con una lectura de 

error del 9,5% en una configuración industrial, dependiendo de los parámetros de corte. 

Por último, un método de optimización multiobjetivo mediante entropía cruzada se 

introdujo en [274]. En primer lugar, se realizó una comparación utilizando funciones de prueba 

MOP, ZDT, WFG con otros algoritmos multiobjetivos, obteniendo en términos generales, una 

mejor solución, excepto para MOP1 y MOP2, donde si fueron peores que algunos de los 

proporcionados por los otros enfoques evolutivos. Sin embargo, los valores de distancia 

generacional fueron muy bajos en todos los problemas; por lo tanto, dichas soluciones son 

aceptables para muchas aplicaciones. 

Una vez definido el método, se seleccionó un proceso de micro-taladrado para validar la 

implementación en un escenario industrial real. Para la optimización, se obtuvieron dos 

modelos representativos del proceso de fuerza de corte y vibración en el plano perpendicular al 

eje de taladrado, utilizando un método bien establecido inspirado en técnicas de inteligencia 

artificial. A continuación, se consideraron simultáneamente dos objetivos: el tiempo de 

taladrado y la amplitud de las vibraciones en el plano perpendicular al eje de taladrado. Además, 

se introdujeron una serie de restricciones, definiendo la fuerza de pandeo inferior a la fuerza de 

empuje admisible, evitando así la rotura por pandeo de la herramienta. 



Artificial Cognitive Architecture with Self-Learning and Self-Optimization Capabilities. Case Studies in 

Micromachining Processes 

 

 
170  CONCLUSIONES 

En total, se realizaron 25 ejecuciones para aumentar la fiabilidad de los resultados de 

optimización. Tres zonas se pueden observar fácilmente: Figure 3.12 se mostraron parámetros 

de corte que obtendrán agujeros de alta calidad (Zona I), pero durante excesivos tiempos de 

operación; en la Zona II de la misma figura se encontraron la mejor combinación de soluciones 

en ambos objetivos, por lo que son los parámetros más convenientes para la mayoría de las 

operaciones, dando una calidad de agujero razonablemente buena en tiempos de perforación 

bajos y finalmente, la Zona III se implicaron soluciones con tiempos de ejecución más cortos 

pero con mayores amplitudes de vibración. En consecuencia, estas son sólo soluciones para 

agujeros donde la calidad no es un requisito importante. Las soluciones de la frontera Pareto, 

en todas las zonas, cubrieron casi todos los intervalos y escalones de velocidad de corte. Por el 

contrario, los valores de las velocidades de avance fueron superiores a la fuente en todas las 

zonas. En todos los casos se establecieron intervalos de confianza del 95% para el tiempo de 

ejecución. 

Auto-aprendizaje 

Con el fin de validar el rendimiento de la estrategia de auto-aprendizaje en el marco de la 

arquitectura cognitiva, se ejecutaron un grupo de experimentos de microtaladrado [82]. En 

primer lugar, se realizó el monitoreo del proceso sin control. Posteriormente, los modos de 

control de anticipativo y de control por lazo simple se ejecutaron sin activar el algoritmo de 

aprendizaje, fijando como variable de control una fuerza de corte de 10N. Finalmente, se 

utilizaron matrices de taladros de diez agujeros para la evaluación del algoritmo de aprendizaje. 

A pesar del diseño apropiado de los modos de control, los resultados iniciales no fueron 

demasiado satisfactorios debido a la influencia de la incertidumbre, el ruido, el tiempo y el 

comportamiento no lineal del proceso de microtaladrado del rendimiento en tiempo real. En un 

escenario, con el modo de control anticipativo, la señal de control no pudo alcanzar el punto de 

ajuste, mientras que en el otro, con el modo de control por lazo simple, el comportamiento de 

la fuerza supera durante mucho tiempo el punto de fijado incluso más allá del estado transitorio. 

Por el contrario, si se activa el algoritmo de aprendizaje, la señal de control se modifica por 

iteración y se mejora el rendimiento global del control cognitivo artificial. Los resultados 

corroboraron cómo el algoritmo Q-learning contribuye a una mejor respuesta y reduce los 

índices de rendimiento basados en errores. 

Los resultados obtenidos en [83] mostraron el comportamiento de la fuerza de taladrado 

cuando el aprendizaje se activó para el modelo inverso (es decir, el modo de anticipación). 

Durante el mismo, se realizaron 10 agujeros, con el fin de mostrar la influencia del aprendizaje 

de refuerzo en la mejora del rendimiento del modelo inverso. Inicialmente la respuesta fue muy 

pobre y el sistema no pudo alcanzar el punto de fijado (fuerza igual 10N). Posteriormente, el 
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comportamiento de la fuerza fue bueno a partir del 4to agujero debido a la influencia del método 

de aprendizaje del refuerzo propuesto. 

En otro ensayo, inicialmente, el modo de control por lazo simple funcionó bien durante los 

tres primeros agujeros, después, debido a un pobre índice de desempeño el algoritmo de 

organización realiza el cambio al control del modelo interno donde se activaron los modelos 

directo e inverso. Este es un caso de estudio claro en el que el control por lazo simple está 

desajustado debido a la influencia de perturbaciones tales como: el desgaste de la herramienta 

o la vibración de la misma, demostrando la utilizad del sistema de control cognitivo artificial 

propuesto para encontrar una solución adecuada cambiando el modo de ejecución en tiempo 

real. Finalmente, las combinaciones de modo de anticipación + aprendizaje y lazo simple + 

aprendizaje mantuvieron el valor de la fuerza de corte sobre el punto de fuerza establecido 

(10N). Este resultado validó la utilidad del algoritmo de aprendizaje dentro de la arquitectura 

de control cognitivo y la utilidad de éste en procesos industriales. 

Para concluir, las principales contribuciones desde el punto de vista científico y técnico 

archivadas durante la realización de la presente tesis doctoral se resumen a continuación: 

1. Se desarrolló una biblioteca de modelos para correlacionar los parámetros de corte y las 

propiedades físico-mecánico del material con las fuerzas y señales de vibración 

capturadas durante la elaboración de las operaciones de microtaladrado y microfresado. 

2. Se desarrollaron dos metodologías para la detección del descentrado de la herramienta 

y la predicción de la calidad de los agujeros en los procesos de microtaladrado. Además, 

se propuso una metodología para la estimación de la rugosidad superficial en los 

procesos de microfresado. En todos los casos, los modelos de predicción se basan en 

técnicas de soft-computing tales como: redes neuronales y algoritmos neuroborrosos. 

3. Se introdujo un nuevo grupo de modificaciones para un método de optimización 

multiobjetivo mediante entropía cruzada. Dichas modificaciones se aplicaron a cuatro 

parámetros claves del algoritmo (número de iteraciones, tamaño de población, número 

de intervalo de histograma y fracción de elite) para facilitar el proceso convergencia. En 

el análisis de la relación de estos parámetros en el rendimiento del algoritmo, tanto el 

número de intervalo de histograma como la fracción de elite mostraron una influencia 

no significativa, por lo que se retiraron del estudio. Por el contrario, el número de 

iteraciones y el tamaño de la población trabajadora tuvieron una notable influencia en 

el tiempo de ejecución. Además, ambos influenciaron la calidad del frente de Pareto, 

hasta cierto nivel, en el cual la calidad dejó de mejorar. 

4. Se implementó una técnica de aprendizaje por refuerzo basada en el algoritmo Q-

learning. Debido a la naturaleza del algoritmo Q-learning, se introdujeron algunas 

modificaciones y consideraciones para facilitar el despliegue en la definición de los 

conceptos de estado y acción, así como la función de recompensa. 
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5. Se diseñó e implementó una arquitectura cognitiva artificial para el monitoreo y control 

de procesos de micromecanizado. La arquitectura se divide en dos niveles principales: 

el nivel cognitivo, que incluye todas las funcionalidades (modelización, optimización, 

aprendizaje, ...) desarrolladas durante la tesis doctoral y el nivel ejecutivo que ejecuta 

las acciones de monitoreo y control en los procesos, utilizando una configuración 

óptima para cada iteración (algoritmo de auto-optimización) en función de la 

experiencia acumulada (algoritmo de auto-aprendizaje) durante la interacción previa 

entre el nivel cognitivo y la información obtenida del proceso. Además, se desarrollaron 

varios modos para proporcionar las capacidades modulares y reconfigurables capaces 

de adaptarse a los comportamientos de no-linealidad y no-estacionario de los procesos 

de microfabricación. 

6. Por último, se validó la arquitectura propuesta para la monitorización y control de la 

fuerza de corte en el microtaladrado. Durante esta etapa, se realizaron más de 400 

pruebas, combinando todos los modos de operación (monitorización, lazo simple, 

anticipación, lazo simple + aprendizaje y anticipación + aprendizaje) descritos en la tesis 

doctoral, validando la utilidad del algoritmo de aprendizaje y optimización dentro de la 

arquitectura cognitiva artificial propuesta. 

Lista de contribuciones 

A continuación, se muestra la lista de las contribuciones científicas y técnicas que se 

pusieron a consideración de la comunidad científica internacional. Durante el período de 

investigación se han publicado diferentes resultados en revistas de impacto (Science Citation 

Index, SCI), conferencias internacionales y nacionales. Además, dos estancias de investigación 

en el extranjero, la dirección de tesis de maestría y las actividades como revisor que han 

formado parte del proceso formativo. 

Revistas de impacto (SCI): 

 Beruvides, G.; Castaño, F.; Quiza, R.; Haber, R. (2016) “Surface Roughness Modeling 

and Optimization of Tungsten-copper Alloys in Micro-milling Processes”. In: 

Measurement, Elsevier, 86, pp.246-252, doi: doi:10.1016/j.measurement.2016.03.002. 

 Beruvides, G.; Quiza, R.; Haber, R. (2016) “Multi-objective optimization based on an 

improved cross-entropy method. A case study of a micro-scale manufacturing process”. 

In: Information Sciences, Springer, 334-335, 9, pp. 161-173, doi: 

10.1016/j.ins.2015.11.040. 
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 Castaño, F; del Toro, R; Haber, R; Beruvides, G. (2015) “Conductance sensing for 

monitoring micromechanical machining of conductive materials” In: Sensors and 

Actuators A: Physical, Elsevier, 232, pp.163-171, doi: 10.1016/j.sna.2015.05.015 

 Haber, R; Juanes, C; Beruvides, G. (2015) “Artificial cognitive control with self-x 

capabilities: a case study of a micro-manufacturing process”, in: Computers in Industry, 

74, pp.135-150, doi: 10.1016/j.compind.2015.05.001.  

 Beruvides, G.; Quiza, R.; Rivas, M.; Castaño, F; Haber, R. (2014) “Online Detection of 

Run Out in Microdrilling of Tungsten and Titanium Alloys”. In: The International Journal 

of Advanced Manufacturing Technology, Springer, 74, 9, pp. 1567-1575, doi: 

10.1007/s00170-014-6091-1. 

 Beruvides, G.; Quiza, R.; del Toro, R.; Castaño, F; Haber, R. (2014) “Correlation of the 

Holes Quality with the Force Signals in a Microdrilling Process of a Sintered Tungsten-

Copper Alloy”. In: International Journal of Precision Engineering and Manufacturing, 

Springer, 15, 9, pp. 1801-1808, doi: 10.1007/s12541-014-0532-5. 

 Beruvides, G.; Quiza, R.; del Toro, R.; Haber, R. (2013). “Sensoring System and Signals 

Analysis for Tool use Monitoring in Microdrilling of a Sintered Tungsten-Copper 

Composite Material”. In: Sensors and Actuators A: Physical, Elsevier, 199, pp. 165-175, 

doi: 10.1016/j.sna.2013.05.021. 

 Beruvides, G.; Quiza, R.; Haber, R.; del Toro, R. (2013). “Extracción de Rasgos de las 

Señales para la Monitorización Indirecta de la Herramienta en el Microtaladrado”. In: 

Revista Dyna, 88, 4, pp. 405-413. Bilbao, Spain, doi: 10.6036/DYNAII. 

Capítulos de libros: 

 Quiza, R.; Beruvides, G.; Davim, J.P. (2014) “Modeling and optimization of mechanical 

systems and processes” (Chapter 8). In: Davim, J.P. (ed.), Modern mechanical 

engineering. Berlin (Germany): Springer, ISBN 978-3-642-45175-1, pp. 169-198. 

Conferencias Internacionales: 

 Beruvides, G.; Villalonga, A.; Franciosa, P.; Quiza, R.; Rivas, M.; Castaño, F; Haber, R. 

(July 19-21th, 2017) “Self-adaptive Architecture for Pattern Recognition on Multi-Stage 

Assembly Processes” CIRP - 11th CIRP Conference on Intelligent Computation in 

Manufacturing Engineering (ICME), Naples, Italy. 

 La Fe, I.; Quiza, R.; Beruvides G.; Haber, R. E. (November 21-25th, 2016) “Modelalción 

Empírica de la Fuerza de Corte en el Proceso de Microfresado de Ti6Al4V”, In: II 

Simposio Internacional de Modelación Aplicada a la Ingeniería (MAI), La Habana, Cuba. 

ISBN: 978-959-261-533-5. 
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 Castaño, F.; Del Toro, R. M.; Haber, R. E.; Beruvides, G., (March 14-17th, 2016) 

“Monitoring tool usage on the basis of sensory information in microdrilling operations”, 

IEEE International Conference on Industrial Technology (ICIT), Taipei, Taiwan. 

 Beruvides, G.; Juanes, C; Castaño, F; Haber, R. (July 22-24th, 2015) “A self-learning 

strategy for artificial cognitive control systems”, IEEE International Conference on 

Industrial Informatics – INDIN15, Cambridge, UK pp. 1180-1185, doi:  

10.1109/INDIN.2015.7281903. 

 Cannavacciuolo, C; Rivas, M; Quiza, R; Haber, R; Beruvides, G. (April 6-10th, 2015) 

“Efectividad del diseño ortogonal y los algoritmos genéticos en la optimización multi-

objetivo del proceso de torneado” CIUM 2015. Matanzas, Cuba. ISBN: 978-959-16-

2442-0. 

 Castaño, F; Haber, R; del Toro, R; Beruvides, G. (March 17-19th, 2015) “Conductance 

Sensor for Micromachining. A Case Study on Monitoring Tool-Workpiece Contact”, 

IEEE International Conference of Industrial Technology – ICIT, Sevilla, Spain, pp. 1422-

1426. doi: 10.1109/ICIT.2015.7125296   

 Beruvides, G.; Quiza, R.; Rivas, M.; Castaño, F; Haber, R. (December 9-12th, 2014) 

“Artificial intelligence-based modeling and optimization of microdrilling processes”, 

IEEE Symposium Series on Computational Intelligence- SSCI 2014, Orlando, USA, 

pp.49-53. doi: 10.1109/CIES.2014.7011830.  

 Castaño, F; Haber, R; del Toro, R; Beruvides, G. (December 9-12th, 2014) “Application 

of hybrid incremental modeling strategy for surface roughness estimation in 

micromachining processes”, IEEE Symposium Series on Computational Intelligence- 

SSCI 2014, Orlando, USA, pp. 54-59. doi: 10.1109/CIES.2014.7011831.  

 Beruvides, G.; Quiza, R.; Rivas, M.; Castaño, F; Haber, R. (November 10-12th, 2014) 

“Intelligent Models for Predicting the Force and Perpendicular Vibrations in 

Microdrilling Processes”, IEEE 26th International Conference on Tools with Artificial 

Intelligence- ICTAI 2014, Limassol, Cyprus, pp. 506-511. doi: 10.1109/ICTAI.2014.82. 

  Beruvides, G.; Quiza, R.; Rivas, M.; Castaño, F; Haber, R. (October 29th – November 

1st, 2014) “A Fuzzy-Genetic System to Predict the Cutting Force in Microdrilling 

Processes”, 40th annual conference of IEEE industrial electronics society-IECON 2014, 

Dallas, USA, pp. 34-37. doi: 10.1109/IECON.2014.7048473. 

Conferencias nacionales: 

 Castaño, F.; Haber, R. E.; Beruvides, G., (September 07-09th, 2016) “Inteligencia 

Computacional Embebida Para La Supervisión De Procesos De Microfabricación”, In: 
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 Beruvides, G.; Castaño, F; Haber, R. (June 22-24th, 2016) “Surface Quality Prediction 

using Hybrid Incremental Modeling”, In: XII Simposio CEA de Control Inteligente, 

Gijón, España. ISBN: 978-84-16664-18-4  

 Beruvides, G.; Juanes, C; Haber, R; Castaño, F. (June 24-26th, 2015) “Arquitectura de 

Control Cognitivo Artificial usando una plataforma computacional de bajo costo”, In: XI 

Simposio CEA de Control Inteligente, Badajoz, España. ISBN: 978-84-606-9052-8. 

 Beruvides, G.; Haber, R; del Toro, R; Castaño, F. (June 10-12th, 2015) “On-line 

Artificial Cognitive Control for Micromanufacturing Processes”, In: Congreso máquinas-

herramienta y tecnologías de fabricación, San Sebastián, España.  

 Beruvides, G.; Quiza, R.; Rivas, M.; Castaño, F; Haber, R. (June, 2014) “Modelo 

Neuronal de la Fuerza de Corte en el Microtaladrado de Aleaciones Especiales”. In: X 
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óptimos en el microfresado de ranuras”, Universidad de Matanzas, Cuba. 
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procesos y sistemas mecánicos”, Universidad de Matanzas, Cuba. 
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 IEEE Transitions on Industrial Informatics 
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 Expert Systems with Applications 

 Fuzzy Information and Engineering 

 Measurement 

 Dyna 

 Materials Research Innovations 

 Journal of Precision Engineering and Manufacturing 

 Revista Iberoamericana de Automática e Informática Industrial RIAI 

Trabajos futuros 

La presente tesis doctoral ha abierto nuevas líneas de investigación que se abordarán en 

futuros trabajos: 

Desde el punto de vista científico-técnico, se desarrollará una nueva versión de la 

arquitectura propuesta. El objetivo es la integración de técnicas avanzadas como: Cloud 

Computing, Sistemas Cibernéticos, Big Data e Internet de Cosa con los modos desarrollados 

durante la tesis doctoral. Este objetivo se basa en las nuevas tendencias en las principales líneas 

de investigación en Europa para desarrollar la Fábrica del Futuro (Factory of Future, FoF). 

Además, otro concepto, son las nuevas líneas de investigación conocidas como Industry 4.0 

(Europa), también llamado Smart Factory (EE.UU., Japón, etc.) basado en la estrategia para la 

personalización fuerte de productos en las condiciones de alta flexibilidad para producciones 

en masa. La tecnología de automatización necesaria se mejora mediante la introducción de 

métodos de auto-optimización, autoconfiguración, autodiagnóstico, cognición y sistemas 

inteligentes para apoyar a los trabajadores en entornos de trabajo cada vez más complejo. 

En este sentido, los primeros pasos se dieron en el marco del proyecto de investigación 

CONMICRO [319]. El objetivo principal era incorporar controladores auto-optimizados y 

capacidades cognitivas en la plataforma en tiempo real, modular, de red y reconfigurable. 

Además, la capacidad de interactuar con sistemas de middleware para sistemas globales de 

monitoreo distribuido, proveyendo la base para el desarrollo de sistemas inteligentes de control 

distribuido basados en capacidades cognitivas al más alto nivel. 
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En segundo lugar, se desarrollará un dispositivo en tiempo real para predecir fenómenos 

tales como: vibración y apagado mediante señales de vibración capturadas en procesos de 

microfresado con una relación de diámetros entre 30m-500m. En la actualidad, una serie de 

medidas de rugosidad geométrica, de desgaste y de superficie se realizan con dos técnicas de 

medición de alta resolución: una máquina de medición de coordenadas 3D y un dispositivo de 

medición de la rugosidad de la superficie. El objetivo principal es correlacionar las variaciones 

frecuencia-amplitud en tiempo real con las señales de vibración capturadas durante el proceso 

de fresado y microfresado. Basándose en estos resultados, actualmente está trabajando en las 

fases de diseño de la configuración de hardware y la implementación de los diferentes módulos 

para componer el dispositivo para tareas predictivas. Esta línea de investigación se desarrolla 

entre tres grupos de investigación: GAMHE (Madrid, España), CEFAS (Matanzas, Cuba) e IPK 

(Fraunhofer, Alemania) apoyando la interacción durante el periodo de investigación con 

equipos multidisciplinarios de diferentes latitudes. 

En tercer lugar, en base a la misma interacción multidisciplinaria durante el período de 

formación, pero en este caso aplicada a una línea de investigación diferente son las bases de 

colaboración entre GAMHE; CEFAS y DLM (Warwick, Reino Unido). El objetivo principal 

es traer la arquitectura cognitiva artificial desarrollada en la presente tesis doctoral para abordar 

las estrategias de reconocimiento de patrones durante los procesos de ensamblaje de piezas para 

la industria del automóvil. La industria del automóvil es un escenario complejo con múltiples 

capas o estación durante el proceso de montaje, interactuando con máquinas, robots, 

dispositivos de medición, etc. al mismo tiempo. La nueva propuesta incluye una arquitectura 

cognitiva artificial adaptativa capaz de controlar en tiempo real la característica clave basada 

en indicadores clave específicos medidos en el proceso de ensamblaje de multinivel utilizando 

la clasificación de datos, la modelización, la optimización y la toma de decisiones. El nuevo 

diseño incluye técnicas Big Data, Cloud Computing y CPS que soportan los conceptos actuales 

introducidos en el programa FoF. 

Por último, en el proyecto AM4G [320] se introduce una arquitectura de dos niveles (nivel 

local (modo local) y servidor de nube (modo global)) para estrategias de mantenimiento 

predictivo. Este sistema de monitoreo basado en la condición también se centra en los retos de 

los sistemas cibernéticos aplicados a las redes de fabricación. Además, se desarrolla un registro 

de alarma y evento modular y configurable. El objetivo principal es detectar qué acciones 

locales en la máquina deben realizarse inmediatamente (parada de emergencia, parada 

programada, velocidad lenta ...) en estrecha coordinación con el sistema PLC / CNC de la 

máquina. Además, las señales, los registros de alarma, etc., almacenados durante una ventana, 

se intercambian con el servidor de la nube. Por último, en el modo global, se utiliza información 

de la misma familia de máquinas para obtener una mejor configuración de coeficientes de 

algoritmo para cada máquina conectada en la red de fabricación, actualizando la configuración 

de parámetros (modelo local) en la conexión máquina-nube. 
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ANNEX I. GLOSSARY OF TERMS 

Acronymics 
 

AAE Average of absolute error 

AAR Cognitive Architecture 

AbYSS Archive-based hybrid scatter search 

ACT Adaptive Control of Thought 

ACT-R Adaptive Control of Thought-Rational 

AI Artificial Intelligence 

AMARSi Adaptive Modular Architecture for Rich Motor Skills 

ANFIS Adaptive Neuro-Fuzzy Inference System 

ANN Artificial neural network 

ANOVA ANalysis Of VAriance 

ART Adaptive Resonance Theory 

BDI Belief-desire-intention 

C General-purpose, imperative computer programming language, 

supporting structured programming, lexical variable scope and 

recursion. 

C++ General-purpose programming language, object-oriented, generic 

programming features and low-level memory manipulation 

CE Cross-Entropy method 

CEFAS Research Centre of Advanced and Sustenible Manufacturing, 

University of Matanzas, Matanzas, Cuba  

CLARION Connectionist Learning with Adaptive Rule Induction On-line 

CNC Computer numeric control 

CPS Cyber-physical Systems 
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CORBA   Common Object Request Broker Architecture 

CONMICRO Artificial Cognitive Control for Micromechanical Machining 

CV Convergence 

CVD Chemical Vapor Deposition 

DDE Dynamic Data Exchange 

DEXMART DEXterous and autonomous dual-arm/hand robotic manipulation 

with sMART sensory-motor skills: A bridge from natural to artificial 

cognition 

DLM Digital Lifecycle Manufacturing group, Warwick Manufacturing 

Group, Warwick, United Kingdom   

EAs Evolutionary Algorithms 

EDAs Estimation-of-Distribution Algorithms 

EHU/UPV University of the Basque Country 

EDM Electrical Discharge Machining 

EMD Empirical Mode Decomposition 

EMOABC Elite-guided multi-objective artificial bee colony 

EPAM Elementary Perceiver and Memorizer 

EPIC Explicitly Parallel Instruction Computing 

FCL Fuzzy Control Language 

FEM Finite Element Method 

FFT  Fast Fourier Transform 

FIR Finite Impulse Response 

FPI Research Staff Training Grant 

FR Functional requirements 

GAMHE Group of advanced Automation of Machines, Highly complex 

processes and Environments, Centre for Automation and Robotic, 

Madrid, Spain 

GD Generational distance 

HANDLE  Developmental pathway towards autonomy and dexterity in robot in-

hand manipulation 

HHT Hilbert-Huang Transform 

HR Hyperarea ratio 

HUMANOBS Humanoids that Learn Socio-Communicative Skills by Observation  

IBM International Business Machines Corp 

ICARUS A cognitive architecture for physical agents 

IceGrid Suite of frameworks that provide object-oriented load balancing, 

failover, object-discovery and registry services 

ICT Information and communications technology 
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IDE Integrated development environment 

IIR Infinite Impulse Response 

IK4 IK4 Research Alliance 

IMC Internal mode control 

IPK Institut für Produktionsanlagen und Konstruktionstechnik, 

Fraunhofer, Berlin, Germany 

IoT Internet of Things 

ISE Integral of square error 

JC empirical Johnson-Cook model 

JNI Java Native Interface 

JVM Java Virtual Machine 

KURT Kurtosis 

LIDA Learning Intelligent Distribution Agent 

LIGA Lithography Electroplating and Moulding 

MACE Multi-objective cross-entropy 

MACE-gD Multi-objective cross-entropy using generalized decomposition 

MAX Maximum 

MD Molecular Dynamic 

ME Maximum Pareto front error 

MEAN Mean value 

MEMS Micro Electrical-Mechanical Systems 

ML Machine learning 

MLR Multiple Linear Regression 

micro-ECM Micro Electro Chemical Machining 

micro-PCM Micro Photo Chemical Micromachining 

MIN Minimum 

MLP Multilayer Perceptron 

MOEA/D Multi-objective evolutionary algorithms based on decomposition 

MOCE Cross entropy multi-objective optimization algorithm 

MOCE+ Cross entropy multi-objective optimization algorithm modified 

MOGA Multi-objective genetic algorithm 

MOP Multi-objective optimization test functions 

MSCM Modified Shared Circuits Model 

MSE Mean square error 

NFR Non-functional requirements 

NPGA Niched Pareto genetic algorithm 

NSGAII Non-dominated sorting genetic algorithm II 
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NSGAII+JGBL Non-dominated sorting genetic algorithm II + learning paradigm 

based on jumping genes 

NIFTi Natural human-robot cooperation in dynamic environments 

non-MEMS non-Micro Electrical-Mechanical Systems 

NOPTILUS autoNomous, self-Learning, OPTImal and compLete Underwater 

Systems 

Ovt Overshoot 

PASAR Prediction, Anticipation, Sensation, Attention and Response 

PDF Probability density function 

PSO Particle Swarm Optimization Algorithm 

PVD Physical Vapor Deposition 

RBFN Radial Basis Function Networks 

RF-MEMS Radio Frequency Micro Electrical-Mechanical Systems 

RL Reinforcement learning 

RMS Root Mean Square 

RM-MEDA Regularity model-based estimation of distribution algorithms 

RMI Java Remote Method Invocation 

RNSGA-II-SBJG Real-coded NSGA-II with simulated binary jumping gene operators 

ROBOCAST ROBOt and sensors integration as guidance for enhanced Computer 

Assisted Surgery and Therapy 

RT-CORBA Real-time Common Object Request Broker Architecture  

RTSJ Real Time Specification for Java 

RVE Representative Volume Element 

SAMOHS Self-adaptive multi-objective harmony search 

SARSA State-Action-Reward-State-Action 

SASE Cognitive Architecture 

SCM Shared Circuit Model 

SKEW Skewness 

SMOCE Simple Multi-Objective Cross Entropy method 

SP Spacing 

SPEA2 Strength Pareto evolutionary algorithm 

SOAR Cognitive Architecture 

SOM Self-organized Maps 

SOP Self-observation principle 

STD Standard Deviation 

STFT Short-time Fourier transform 
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SWIG Open-source software tool used to connect computer programs or 

libraries written in C or C++ with scripting languages such as: Python, 

C#, Java, JavaScript,  and Octave. 

TD Difference learning 

TiAlN Titanium Aluminum Nitrate coated   

UML Unified Modeling Language 

USM Ultrasonic Micromachining 

WFG Set of multi-objective optimization test functions 

WT Wavelet Transform 

ZeroC Focus-deliver best-of-breed tools to help the Network  Software 

ZDT Set of multi-objective optimization test functions 

Equations 
 

a Action (Q-learning) 

a1… a4 Coefficients of force differential model  

Ap Axial cutting deep 

at Action taken in time 

A Set of actions in a Markov Decision Problem 

Ap Amplitude 

b Coefficient obtained by minimizing the sum of the square  

b1… b3 Coefficients of force differential model 
min max[ , ]i ib b  Minimum and maximum values of the i-th objective in the elite 

population 

bias Linear combination which is called bias or threshold 

ch Heat capacity 
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1[ , ], 1 2k kc c k r  
 

Bounds of the k-th histogram interval 

, ,,i k i kc c    
Lower and upper bounds for each interval 

d(t) Disturbance or noise 

, 1...id i Z  Pareto ranking of the i-th element 

* *, 1...id i Z  Pareto ranking of the i-th elite solution 

D Diameter  

D Own set of forward models 

e Output action error taking as input in the modules 

E Young’s modulus 

Epop Elite population 

Ei Energy component of a signal 

E Event 

%frate Override feed rate 

( ) : n mf    Optimization objectives function 

fs Sampling frequency 

frate Feed rate 

ftooth Feed rate per tooth 

fw Work frequency 

f  Gradient of the function 

Fx  Force in x-axis 

Fy Force in y-axis 

Fz Force in z-axis or thrust force 

alF
z  Allowable thrust force 

Fref Force values preset to control the process 

Fprocess Force values measured in process 

Fest z-component of the force estimated in the mirroring 

( ) : n pg    Constraints function 

Gc Generalization capabilities 

h A priori appropriate probability density function 

( )ih   Equality constraints 

hd drilling depth 

H Finite-horizon 

HRB Hardness 

i, j, k Iteration variables 

Imin Minimum area moment of inertia of the drill cross-section 

I Collection of functions 
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J Performance index 

Jmax To actions to maximize the expected return 

Js Performance index switch 

kc Thermal conductivity 

K Set of model/models parameters 

KE Error gains 

KDE Change in error gains 

Kout Gain of the output of the controller 

Kfor Gain of the input of the forward controller 

Kfor_out Gain of the output of the forward controller 

Kinv Gain of the input of the inverse controller 

Kinv_out Gain of the output of the inverse controller 

min max,i iK K  
 own bounds given by the model’s parameters 

, 1jl j n   Lower bound of the j-th variable 

L Length of the drill flute 

m   Number of optimization objectives 

mK Possible values of each K parameter 

M Models 

Mz Moment in z-axis 

n   Number of decision variable 

npeak Number of peaks 

nrpm Spindle rotation speed 

N   Epochs number 

Nhole Number of elaborated holes 

Nreg Number of input–output pairs in the dataset 

p   Number of constraints 

pcontrol Control mechanism sampling time 

plearning Learning sampling time 

P Probabilities matrix 

P Process inputs 

Px Probability density function 

qcen Considered angle from the provisionally center 

qreg Number of parameters in a regression model 

Q(s,a) Quality of a state-action combination in a Markov Decision Problem 

r Number of inner histogram intervals 

pr  Plane perpendicular to the drilling axis 

radius Circle radius for holes quality error determination 
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radiusmax Maximum possible circle radius for holes quality error 

radiusmin Minimum possible circle radius for holes quality error 

R Reward received after performing action 

R2 Correlation coefficients 

Ra Surface roughness 

s State (Q-learning) 

st State in time 

s’ Next state 

step Drill step 

S Set of states in a Markov Decision Problem 

Sc Evaluations count 

maxSc   Maximum evaluation number 

t Time  

T Transition probabilities matrix 

, 1ju j n   Upper bound of the j-th variable 

v* No-dominate vector 

V*(s’) Optimal value function in a reinforcement learning algorithm 

Vc Cutting speed 

Vx Vibration in x-axis 

Vy Vibration in y-axis 

Vz Vibration in z-axis 

W(x) Likelihood ratio 

x Vector input variables 

xcoord Position in x-axis 

, 1... , 1ijx i Z j n   Value of the j-th variable for the i-th solution 

* *, 1... , 1ijx i Z j n   Value of the j-th variable for the i-th elite solution 

X Matrix input variables 

y Vector output variables 

ycoord  Position in y-axis 

, 1... , 1ijy i Z j n   Value of the j-th objective for the i-th solution 

* *, 1... , 1ijy i Z j n   Value of the j-th objective for the i-th elite solution 

zcoord  Position in z-axis 

Z   Population size 

*Z   Elite population size 

*

maxZ   Maximum elite population size 

 Learning rate 
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t Dynamic smoothing 

 Discount factor 

, 1j j n    Weight of the j-th constraint 

 Kullback-Leibler distance or cross-entropy 

learn Learning correction factor 

m Material elongation 

*, 1i i Z   Distance between the i-th and (i + 1)-th elite elements 

 Error in the single loop controller 

 Variation of error in the single loop controller 

, 1j j n   Change in the standard deviation for the j-th variable 

max   Convergence limit 

quality Hole quality error 

, 1 2k k r    Number of children for the k-th histogram interval 

 Neurons number 

f Security factor 

 Transfer function in MLP 

   Elite threshold decreasing factor 

0
  Initial elite threshold 

, 1t t N   Elite threshold at the t-th epoch 

b Poisson’s coefficient 

d Decrease factor 

, 1j j n   Mean value of the j-th variable 

i() Frequency component of a signal 

1[( , ) ,..., ( , ) ]E      Elite solutions clustered by using the histogram of the objective 

functions 

min max,   Minimum and maximum ordinal position for children 

 Circle angles 

, 1 2k k r    Frequency of the k-th histogram interval 

(t) Performance index associated with the action that is taken 

p Optimal policy 

 Density function 

m Material mass density 

, 1j j n   Standard deviation of the j-th variable 

Y Yield tensile 
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 Unit machining time 

[0,1]  Frequency inversion likelihood 

[0,1]   Smoothing factor 

 Artificial neural network weights 

  Third-order frequency poles model of the drilling process 

  Decision variable 

̂   Importance sampling 

 Normal random distribution 

 Uniform random distribution 

 



 

 

ANNEX II. PREVIOUS PROJECT REVIEW 

Acronym 
Techniques Contributions Applications 

ChiRoPing - Embodied active sonar perception 

systems 

- Model bat’s coordination of its acoustic, 

behavioural and morphological choices 

- Engineering versatile and robust systems 

able to respond sensible to challenges not 

precisely specified in their design 

- Navigation 

CHRIS 

 

- Exploration of engineering principles 

for safe movement and dexterity 

- Language, communication and 

decisional action planning 

- Safe human robot interaction 

- Integration of cognition in Co-operative 

manipulation of real world objects 

- Service robotics 

DEXMART - Decision between different 

manipulation options 

- Allows a dual-arm robot to grasp and 

manipulate objects used by human beings 

- Service robotics 
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Acronym 
Techniques Contributions Applications 

- Acquisition knowledge by learning new 

action sequences 

- Designing new hand components and 

sensors 

-  Safe human robot interaction 

- Integration of cognition in Co-operative 

manipulation of real world objects 

CoFRIEND - Identification of objects and events 

- Feedback and multi-data fusion 

- Heterogeneous sensor network 

- Prototype system for the representation and 

recognition of human activity and behaviour 

- Knowledge 

representation 

CogX - Identifying gaps in its own 

understanding of the environment and 

then plans how to fill those gaps to deal 

with novelty and uncertainty in task 

execution 

- Creates a theory of how a cognitive system 

can model its own knowledge 

- Models the environment of a cognitive 

system, its own understanding of the 

environment and how it changes under 

action 

- Extends knowledge so as to perform future 

tasks more efficiently 

- Task execution 

- Knowledge modeling 

DIPLECS - Bootstrapping and learning 

- Defining hierarchical perception-action 

cycles 

- Using scenario of a driver assistance 

system, it continuously improves its 

capabilities by observing the human 

driver, the car data, and the environment 

- Designs an Artificial Cognitive System 

architecture that learns and adapts in 

dynamic and interactive real-world scenarios  

- Navigation 

- Control 
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Acronym 
Techniques Contributions Applications 

LIREC - Studying human-pet interactions - Establishes a multi-faceted (memory, 

emotions, cognition, communication, 

learning, etc.) theory of artificial long-term 

companions 

- Safe robotics 

- Interactions between 

robots 

ROBOCAST - Learning and interactive plan updating 

capabilities 

- Fuzzy representation 

- Context-based interpretation of surgeon 

commands 

- Aids surgeons in keyhole neurosurgery 

- A interface allows surgeons to receive 

maximum feedback data with minimum 

extra effort on their side 

- Surgery 

ROSSI - Sensorimotor and neural/computational 

mechanism 

- Flexibly manipulate and use objects in the 

environment 

- Novel approaches to the grounding of 

robotic conceptualization and language 

- Manipulator robots 

- Communications 

between agents 

SPARK II - Hierarchical architecture 

- Parallel sensory-motor pathways 

- Insect brain inspired 

- Implements reflex-driven basic behaviours 

- Self-organizing complex dynamics 

- Control 

BRICS - Studying to harmonize interfaces, 

communications and data exchange 

between agents 

- Developing a software repository of 

best practice robotics algorithms 

- Researches shortening the development 

cycles for new robot systems and 

applications 

- Telecommunication 

- Automotive industry 

- Embedded systems 

industry 

Co3 AUVs  

 

- 3D perception and mapping 

- Online data process 

- Coordination and cooperative control of 

multiple Autonomous Underwater Vehicles 

- Navigation 

- Multi-agent coordination 
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Acronym 
Techniques Contributions Applications 

- Robustness with respect to failures and 

environmental changes 

ECCEROBOT  

 

- Anthropo-mimetic robots for human-

like action and interaction in the world 

- Motion capture 

- Causal analysis 

- Classical control theory 

- Internal models  

- Sensory-motor strategies 

- Exploits human-like characteristics to 

produce some human-like cognitive features 

- Control in robots 

EUROPA  - Probabilistic scene interpretation 

- Modeling of the environment 

- Robustly and reliable addressing the 

autonomous navigation problem in complex 

and populated environments 

 - Reasons based on the verbal and natural 

interaction with users  

- Navigation 

- Commercial applications 

of service robots 

FILOSE  - Detecting hydrodynamic patterns in the 

surrounding environment  

 

- Develops technologies in underwater 

robotics navigation and understanding fish 

biology 

- Understands how fish do and robots could 

sense the underwater environment, 

adaptability and reliability.  

- Underwater humanitarian 

- Anti-terrorist activities 

- Surveillance of harbours 

- Coast security 

- Entertainment 

- Edutainment and fishery 

HANDLE  - Integrating disciplines such as 

neuroscience, developmental psychology, 

- Works in requirement for robots to carry 

out accurate and intelligent tasks on behalf 

of and in collaboration with people  

- Robot grippers 

- Service robotics 
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Acronym 
Techniques Contributions Applications 

cognitive science, robotics, multimodal 

perception and machine learning 

- Learning and predicting behaviours 

from imitation and motor babbling 

observing human manipulation gestures 

 

HUMANOBS  

 

- Model-driven architectures 

- Integrated cognitive control  

- Distributed real-time systems  

- Automatic learning of multi-dimensionally 

constrained problems 

- Automatic control of human-like 

communications skills and in large-scale 

perception-action architectures 

- Cognitive architectural for learning human 

interaction modeling  

- Interpersonal 

communication systems in 

virtual environments 

HUMOUR 

 

- Combining behavioural studies on 

motor learning and its neural correlates 

with design, implementation, and 

validation of robot agents 

- Agents learns using information of 

human sensor motor systems 

- Develops robot strategies to facilitate the 

acquisition of motor skills  

 

- Services robotics 

- Robot rehabilitation 

- Helping professionals 

(arts, sports, medicine…) 

I'M Clever  - Abstraction of sensory information 

- Study of mechanism underlying 

intrinsic motivations 

- Hierarchical recursive architectures 

which permit cumulative learning  

- Designs robot controllers that learns 

cumulatively new skills and reuse them for 

accomplishing multiple, complex, and 

externally-assigned tasks 

- High versatility in solving task 

- Autonomous learning 

systems and robots 
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Acronym 
Techniques Contributions Applications 

ROSETTA  - Sensor-based task execution skills 

- Management of knowledge repository 

- Robot controller technology for dual-arm 

industrial robots that works together with 

humans 

- A knowledge repository enriched by 

interactions with humans and other 

machines 

- Service robotics 

- Assembly of consumer 

devices 

ALIZ-E - Studying how long-term experience can 

be acquired to ground actions and 

interactions across time 

- Studying how a system can deal 

robustly with inevitable differences in 

quality in perceiving  

- Understanding how a system can adapt 

its interaction based on the way user 

behaviour changes 

- Mobile robots that can adapts of a possibly 

non-continuous succession of interactions 

- Human-robot interactions 

(robotics services) 

- Evaluation of interactive 

robots 

AMARSi - Compliant mechanics, pervasive 

learning and dynamical-systems based 

control architectures 

- Morphological computing 

- Study of principles of reservoir 

computing 

- Control architectures based on 

dynamical (neural) systems 

- Achieves biological richness in robotic 

motor skills 

- Motor control 
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Acronym 
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FIRST-MM - Specification language in robot 

programming 

- Learning by instruction 

- Statistical relational learning 

- Technology for flexible autonomous 

mobile manipulation robots 

-  Novel robot programming environment 

that allows non-expert users to specify 

complex manipulation tasks in real-world 

environments 

- Service robotics 

IURO - Environment perception, 

communication, navigation 

- Information retrieval from humans 

- Knowledge representation and 

assessment 

- Information retrieval from humans into 

robot control architectures to complement 

their perception and action control 

capabilities 

- Identification of knowledge gaps arising 

from dynamically hanging situations and 

missing information from humans 

- Commercial service 

robots 

NIFTi - Cognitive control model 

- Interconnecting contents across 

modules 

- Using prediction models to anticipate 

how adapt acting and communication to 

align with the human 

- Learning off- and online: reinforcement 

learning and statistical (relational) 

learning 

- Investigates how natural behaviour in 

human-robot cooperation can arise 

- Aims at operationalizing natural 

cooperation by balancing operational and 

cooperation demands in a cognitive 

architecture 

- Urban search and rescue 
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Acronym 
Techniques Contributions Applications 

RoboEarth - Object recognition and localization 

- Control strategies by linking perception 

and action 

- Learning 

- World-wide web-style database 

- Allows robots to share any reusable 

knowledge independently of their hardware 

and configuration 

- Modular design of robotic system 

- Multi-agent interactions 

CoCoRo - Locally and globally acting self-

organizing mechanisms 

- Cognition-generating algorithms to 

mimic each other's behaviour and to learn 

from each other 

-  principles of swarm-level cognition 

-  Creates a swarm of interacting, cognitive, 

autonomous robots to improve of collective 

performance 

- Multi-agent  systems 

COMPLACS - Bandit problems 

- Markov Decision Processes (MDPs) 

- Partially Observable MDPs (POMDPs) 

- Continuous stochastic control 

- Multi-agent systems 

- A unified framework in machine learning 

to intelligent systems that can address a 

wide variety of control problems of many 

different types 

- A toolkit that provides methods for the 

automatic 

construction of representations and 

capabilities 

- Development of 

intelligent systems 

CORBYS - High-level cognitive control modules 

- A semantically-driven self-awareness 

module,  

- A cognitive framework for anticipation  

- A cognitive robot control architecture to 

cope with highly dynamic environments as 

humans are demanding, curious and 

often act unpredictably 

- Control architectures 
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PREVIOUS PROJECT REVIEW  

Acronym 
Techniques Contributions Applications 

- Biologically-inspired information 

theoretic principles 

eSMCs - Definition of object concepts and action 

plans 

- Goal-oriented behaviour 

- Investigating learning and adaptivity in 

artificial systems 

- Sensorimotor interactions 

- Object recognition  

- Action planning 

- Sensorimotor contingencies: law-like 

relations between actions and associated 

changes in sensory input  

- Object concepts and action plans and that 

their mastery can lead to goal-oriented 

behaviour 

- Controllers for 

autonomous robots 

IntellAct - Parsing scenes into spatiotemporal 

graphs and semantic Event Chains 

- Probabilistic models of objects and their 

manipulation 

- Probabilistic rule learning 

- Dynamic motion primitives for trainable 

- Descriptions of robotic motor behaviour 

- Understands and exploits the meaning of 

manipulations in terms of objects, actions 

and their consequences for reproducing 

human actions with machines 

- Analysis of low-level observation data for 

semantic content 

(Learning) and the synthesis of concrete 

behaviour (Execution) 

- Interaction human-robot 

NeuralDynamics - Detection and selection of scene 

representation and sequence operation 

- Links cognition to sensory and motor 

surfaces developing low-level mechanisms 

- Study of cognition 

NOPTILUS - Cooperative & cognitive-based 

communications  

-  An effective fully-autonomous multi-

AUV concept/system  to overcome human 

- Navigation 
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  ANNEX II  

Acronym 
Techniques Contributions Applications 

- Gaussian Process-based estimation as 

well 

- Perceptual sensory-motor 

- Learning motion control 

- Learning/cognitive based situation 

understanding and motion strategies 

shortcomings, by replacing human-operated 

operations by a fully autonomous one 

RUBICON - Robotics & Multi-agent systems 

- Novelty detection 

- Dynamic planning 

- Statistical and computational 

neuroscience methods 

- Robot/wireless sensor network 

middleware 

- Self-learning robotic ecology consisting of 

a network of sensors, effectors and mobile 

robot devices, supporting one another's 

learning, fulfilling tasks more effectively 

and efficiently 

- Self-adaptation to environment changes 

- Ambient assisted living 

- Security 

- Multi-agent system 

interactions 

XPERIENCE - Exploits prior experience via generative 

inner models 

- Automating introspective, predictive, and 

interactive understanding of actions and 

dynamic situations based on structural 

bootstrapping, based on inferring new 

actions and knowledge from their locations 

and use in the process 

- Autonomous robotics 

applications 



 

 

ANNEX III. CLASS DIAGRAMS 

 

Figure III.1 Class diagram of app package 
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  ANNEX III  

 

Figure III.2 Class diagram of cognitive level package 
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Figure III.3 Class diagram of executive level package 
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Figure III.4 Class diagram of data package 
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Figure III.5 Class diagram of exceptions package 

 

Figure III.6 Class diagram of model package 
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  ANNEX III  

 

Figure III.7 Class diagram of process package 

 

Figure III.8 Class diagram of utils package



 

 

ANNEX IV. CODE LIST 

 

Figure IV.1 Single loop mode implementation 
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  ANNEX IV  

 

Figure IV.2 Anticipation mode implementation 

 

Figure IV.3 Internal control (Anticipation+Mirroring) mode implementation 
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CODE LIST  

 

Figure IV.4 Fuzzy controller implementation 
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  ANNEX IV  

 

Figure IV.5 Microprocess implementation 
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