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RESUMEN

 

La química supramolecular es conocida como la “química más allá de la molécula” y 

se centra en el estudio de las interacciones débiles y reversibles que se dan entre las 

moléculas, conocidas como interacciones no covalentes. La importancia de la química 

supramolecular fue puesta de manifiesto con el Premio Nobel en Química de 1987, que fue 

otorgado a Cram, Lehn y Pedersen en reconocimiento a su trabajo en esta área. Décadas 

después del nacimiento de la química supramolecular, se pueden encontrar muchas técnicas 

para medir las interacciones no covalentes en condiciones de equilibrio. Debido a que los 

conjuntos de moléculas pierden coherencia rápidamente, no podemos extrapolar los datos en 

bulk a eventos de una sóla molécula en condiciones de no equilibrio, de mayor relevancia para 

la dinámica de los sistemas biológicos. El tema central de esta tesis, consiste en el estudio de 

la química supramolecular, y en particular sistemas unidos por enlaces de hidrógeno, desde 

una perspectiva de una sola molécula.  

Los capítulos 2 y 4 se centran en la naturaleza misma de los enlaces de hidrógeno, a 

través del estudio de sistemas huésped-receptor unidos por enlace de hidrógeno. Los enlaces 

de hidrógenos, son posiblemente la interacción no covalente más importante. Las propiedades 

físicas del agua y el almacenamiento de información en el ADN dependen de los enlaces de 

hidrógeno, por nombrar tan solo dos ejemplos cruciales. En el capítulo 2 hemos desarrollado 

un nuevo método que explota la alta resolución de fuerza de las pinzas ópticas (OT) para 

medir, a nivel de una sola molécula, la resistencia mecánica de sistemas huésped-receptor 

unidos por enlaces de hidrógeno, fuera del equilibrio y bajo condiciones cuasi-fisiológicas. 

Para aislar inequívocamente eventos de unión individuales, utilizamos un espaciador de ADN. 

El sistema receptor de Hamilton–ácido cianúrico, que se mantiene unido a través de seis 

enlaces de hidrógeno, fue el sistema huésped-receptor estudiado. La fuerza requerida para 

romper el sistema es ~17 pN y aumenta con la velocidad de estiramiento como se espera para 

un sistema en condiciones de no equilibrio. El bloqueo de uno de los sitios de enlace de 

hidrógeno da como resultado una disminución significativa de la fuerza para romper el sistema 

en 1-2 pN, lo que indica la capacidad del método para resolver cambios sutiles en la 

resistencia mecánica del enlace debido a componentes individuales de enlaces de hidrógeno. 

Hasta el día de hoy, todavía existe un debate acalorado sobre el equilibrio entre las 

contribuciones Coulombicas y covalentes a los enlaces de hidrógeno. En esta línea, el objetivo 

principal del capítulo 4 fue contribuir experimentalmente a una mejor comprensión de la 
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naturaleza de los enlaces de hidrógeno. Para ello, comparamos las constantes de asociación 

(Ka) de cuatro sistemas huésped-receptor unidos por enlaces de hidrógeno, que presentan 

dadores y aceptores fuertes enlaces de hidrógeno, en disolventes orgánicos y en 

tris(pentafluoroetil) trifluoro fosfato de 1-etil-3-metilimidazolio ([emim][FAP]), un líquido iónico 

a temperatura ambiente (RTIL), a través de valoraciones UV-vis espectroscópicas. Los RTILs 

son sales puras con punto de fusión por debajo de la temperatura ambiente, en las cuales las 

interacciones electrostáticas dipolo-dipolo (proporcionales a r−6) deberían ser insignificantes 

en comparación con las interacciones carga-dipolo (proporcionales a r−2). Obtuvimos Ka más 

pequeñas en [emim][FAP] que en disolventes orgánicos (Ka(Ben-AcOH) = 2.51 x 103 M-1 en 

CH3Cl; Ka(HR-cy) = 6.31 x 105 M-1 en acetonitrilo; Ka(18_crown_6-Am) = 3.98 x 103 M-1 en 

acetonitrilo; Ka(DMTU-BzO−) = 3.98 x 104 M-1 en CH3Cl), como se esperaba, pero 

sorprendentemente, del mismo orden de magnitud. Además, observamos desplazamientos 

en la huella dactilar en los espectros ATR-IR para las parejas HR-cy y Ben-AcOH en RTIL; 

por lo tanto, la caracterización espectroscópica de estos sistemas huésped-receptor confirmó 

su formación a través de enlaces H, en lugar de interacciones solvofóbicas inespecíficas. 

También comparamos mediciones a nivel de una sola molécula en uno de los sistemas 

huésped-receptor en orto-diclorobenceno (o-DCB) y [emim][FAP], usando espectroscopía de 

fuerza de una sóla molécula basada en AFM. El evento de asociación fue claramente 

detectable y mostró valores de fuerza de ruptura comparables en ambos disolventes, y de 

nuevo menores en RTIL (230 ± 37 pN en o-DCB frente a 94 ± 30 pN en RTIL). Nuestros 

resultados indican que la fuerza de los enlaces de hidrógeno se ve afectada por el cambio en 

el disolvente, pero no se suprime por completo en entornos compuestos completamente de 

moléculas cargadas, lo que sugiere que el equilibrio entre contribuciones Coulombicas y 

covalentes en los enlaces de hidrógeno, no se inclina hacia el primero en el caso de enlaces 

de hidrógeno fuertes. En comparación, observamos que el agua, con dadores y aceptores de 

enlaces de hidrógeno más débil se une exclusivamente al anión del RTIL, como se espera 

para los enlaces H dominados por interacciones electrostáticas. 

El estudio de motores moleculares sintéticos ha dado lugar a que recientemente 

Sauvage, Stoddart y Feringa recibieran el Premio Nobel de Química 2016. Los motores 

moleculares naturales rectifican el movimiento Browniano aleatorio para generar fuerzas 

direccionales y llevar a cabo tareas macroscópicas. Inspirados en los ejemplos naturales, se 

han desarrollado dispositivos sintéticos que exhiben control sobre el movimiento rotatorio o 

lineal. Incluso hay algunos ejemplos seleccionados de sistemas sintéticos capaces de utilizar 

el movimiento Browniano rectificado para realizar trabajos e inducir colectivamente el 

movimiento de objetos mucho más grandes. Sin embargo, observar los mecanismos de 

trabajo de tales sistemas a nivel de una sola molécula sigue siendo un gran desafío. En el 
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capítulo 3, hemos manipulado mecánicamente rotaxanos individuales de dos estaciones 

unidos por enlace de hidrógeno, aprovechando la gran sensibilidad en fuerza, espacio y 

tiempo que caracteriza a las OT. Pudimos estudiar el ciclo mecano-químico de esta molécula 

en condiciones cuasi-fisiológicas. Hemos sido capaces de controlar la posición promedio del 

macrociclo aplicando una carga mecánica en el sistema. Sorprendentemente, aplicando 

fuerzas próximas a la fuerza de coexistencia, es decir, la fuerza a la cual el macrociclo 

presenta la misma probabilidad de encontrarse en ambas estaciones, observamos el 

movimiento de desplazamiento inducido térmicamente de macrociclos individuales durante 

minutos, registrando cientos de eventos de “salto”. Estas mediciones nos han permitido 

caracterizar la dinámica del sistema de operación en términos de la diferencia de energía libre 

de Gibbs (G = 34 ± 2 kBT), la fuerza de coexistencia (F1/2 = 8.92 pN), la coordenada del 

estado de transición (𝑥𝑠
≠= 7 ± 2 nm) y las velocidades cinéticas a un rango amplio de fuerzas. 

Finalmente en el capítulo 5, estudiamos la química supramolecular desde un punto de 

vista biológico, durante una estancia de investigación (3 meses) en el laboratorio de Barbara 

Imperiali en MIT. Nos centramos en el estudio de ligandos basados en proteínas para 

desarrollar un nuevo biosensor solvatocrómico. Específicamente, en este capítulo nos 

centramos en la ingeniería de la proteína ultaestable Sso7d (de la archaeon hyperthermophilic 

Sulfolobus solfataricus), buscamos Sso7d que fueran capaces de unir selectivamente el factor 

de crecimiento epidérmico humano (hEGF), y que dieran lugar a un aumento de la 

fluorescencia cuando se produce la unión de hEGF. Para ello, hemos llevado la evolución 

dirigida del scaffold Sso7d, y obtuvimos un binder que enlazaba selectivamente hEGF y que 

presentaba constantes de disociación en el rango de 10-8 M. Una vez encontrado este binder, 

lo decoramos con el fluoróforo 4-N,N-dimetilamino-1,8-naftalimida (4-DMN) en las posiciones 

31 y 33, lo que dio como resultado aumentos de 15 veces en la fluorescencia tras la unión de 

hEGF. Estos son resultados prometedores y están cerca de encontrar un excelente biosensor 

solvatocrómico.
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ABSTRACT 

 

Supramolecular chemistry has been defined as “chemistry beyond the molecule” and 

focuses on the examination of the weaker and reversible noncovalent interactions between 

molecules. The importance of supramolecular chemistry was highlighted by the 1987 Nobel 

Prize for Chemistry which was awarded to Cram, Lehn, and Pedersen in recognition of their 

work in this area. Decades after the birth of supramolecular chemistry, there are many 

techniques to measure noncovalent interactions in the bulk and under equilibrium conditions. 

As ensembles of molecules rapidly lose coherence, we cannot extrapolate bulk data to single-

molecule events under non-equilibrium conditions, more relevant to the dynamics of biological 

systems. The central topic of this thesis is the study supramolecular chemistry, in particular 

hydrogen-bonded systems, and with a focus on the single-molecule level.  

Chapters 2 and 4 focus on the very nature of the H-bond and H-bonded host-guest 

systems. H-bonds are arguably the most important of noncovalent interactions, the physical 

properties of water and the information storage in DNA depend on H-bonds, to name just two 

crucial examples. In chapter 2 we have developed a new method that exploits the high force 

resolution of optical tweezers (OT) to measure, at the single-molecule level, the mechanical 

strength of H-bonded host-guest systems out of equilibrium and under near-physiological 

conditions. To unambiguously isolate single binding events we utilize a DNA reporter. The 

Hamilton receptor-cyanuric acid host-guest system, which is holding through six hydrogen 

bonds was the host-guest system under study. The force required to dissociate the host–guest 

system is ~17 pN and increases with the pulling rate as expected for a system under non-

equilibrium conditions. Blocking one of the hydrogen bonding sites results in a significant 

decrease of the force-to-break by 1–2 pN, pointing out the ability of the method to resolve 

subtle changes in the mechanical strength of the binding due to the individual H-bonding 

components.

To this day, there is still a heated debate about the balance between the Coulombic 

and covalent contributions to H-bonds. In this line, the main objective of chapter 4 was to 

contribute experimentally to the better understanding of the nature of H-bonds. We compared 

binding constants (Ka) of four H-bonded host-guest systems, featuring strong H-bond donors 

and acceptors, benzamidine-acetic acid (Ben-AcOH, neutral-neutral), the Hamilton receptor-

cyanuric acid derivative pair (HR-cy, neutral-neutral), the 1,4,7,10,13,16-

hexaoxacyclooctadecane-ammonium derivative (18_crown_6-Am, neutral-cation) and N,N’-
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dimethyl thiourea-sodium benzoate (DMTU-BzO−, neutral-anion); in non-polar organic solvents 

and 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluoro phosphate ([emim][FAP]), a 

room temperature ionic liquid (RTIL), through UV-vis spectroscopic titrations. RTILs are pure 

salts with melting point below room temperature, in which dipole-dipole electrostatic 

interactions (proportional to r−6) should be negligible in comparison with dipole-point charge 

interactions (proportional to r−2). Our study yielded smaller Ka in [emim][FAP] (Ka(Ben-AcOH) 

= 1.99 x 103 M-1; Ka(HR-cy) = 3.16 x 106 M-1; Ka(18_crown_6-Am) = 3.16 x 103 M-1; Ka(DMTU-

BzO−) = 1.99 x 104 M-1) than in organic solvents (Ka(Ben-AcOH) = 2.51 x 103 M-1 in CH3Cl; 

Ka(HR-cy) = 6.31 x 105 M-1 in acetonitrile; Ka(18_crown_6-Am) = 3.98 x 103 M-1 in acetonitrile; 

Ka(DMTU-BzO−) = 3.98 x 104 M-1 in CH3Cl), as expected, but somewhat surprisingly, they were 

of the same order of magnitude. Moreover, we observed the fingerprint shifts in the ATR-IR 

spectra for the HR-cy and Ben-AcOH couples in RTIL; therefore, spectroscopic 

characterization of these host-guest systems supported their formation through H-bonds, 

rather than unspecific solvophobic interactions. We also compared measurements at the 

single-molecule level on one of the host-guest systems, HR-cy couple, in ortho-

dichlorobenzene (o-DCB) and [emim][FAP], using AFM-based Single-Molecule Force 

Spectroscopy. The association event was clearly detectable and showed comparable breaking 

force values in both solvents, although smaller in RTIL (230 ± 37 pN in o-DCB versus 94 ± 30 

pN in RTIL). Our results indicate that the strength of H-bonds is affected by the change in 

solvent, but is not completely suppressed in surroundings composed entirely of charged 

molecules, suggesting that the balance of Coulombic to covalent contributions H-bonds is not 

tipped towards the former in strong H-bonds. In comparison, water, a weaker H-bond donor 

and acceptor is found to bind exclusively to the anion of the RTIL, as expected for H-bonds 

dominated by electrostatic interactions. 

The study of synthetic molecular motors recently resulted in Sauvage, Stoddart and 

Feringa being awarded with the Nobel Prize in Chemistry 2016. Natural molecular motors 

rectify random Browinan motion to generate directional forces and carry out macroscopic 

tasks. Inspired by the natural examples, synthetic devices exhibiting control over rotary or 

linear motion have been developed. There are even some selected examples of synthetic 

systems able to use biased Brownian motion to perform work and collectively induce 

movement of much larger objects. However, looking at the working mechanisms of such 

systems at the single-molecule level remains a fenomenal challenge. In chapter 3, we 

manipulated individual H-bonded two-station molecular shuttles, taking advantage of the 

extreme force, space and time sensitivity of OT. We were able to study the mechano-chemical 

cycle of this molecule under near-physiological conditions. We controlled the average position 

of the macrocycle by applying a mechanical load on the system. Remarkably, by applying 
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forces, in which the macrocycle populates both stations, we observed the thermally induced 

shuttling motion of single macrocycles during minutes, recording several hundreds of shuttling 

events. These measurements have allowed us to characterize the dynamics of the shuttling 

process in terms of the free energy difference (G = 34 ± 2 kBT), coexistence force (F1/2 = 8.92 

pN), the position of the transition state (𝑥𝑠
≠= 7 ± 2 nm) and the kinetic rates in a wide range of 

forces. 

Finally in chapter 5, we looked into supramolecular chemistry from a biological point of 

view, during a research internship (3 months) in the laboratory of Barbara Imperiali at MIT. We 

focused on the study of protein-based ligands in order to develop a new solvatochromic 

biosensor. Specifically, in this chapter we focused on engineering the ultrastable Sso7d protein 

(from the hyperthermophilic archaeon Sulfolobus solfataricus) to find human Epidermal Growth 

Factor (hEGF) binders, looking for fluorescence increase upon hEGF binding. For this, we 

have carried directed evolution on the Sso7d scaffold, obtaining a selective hEGF binder which 

present dissociation constants in the 10-8 M range; then we introduced the 4-N,N-

dimethylamino-1,8-naphthalimide (4-DMN) fluorophore in 31 and 33 positions of the Sso7d 

protein, what resulted in 15-fold increases in fluorescence upon hEGF binding. These are 

promising results and close to find an excellent solvatochromic biosensor. 
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CHAPTER 1. 

INTRODUCTION 

 

1.1. What is supramolecular chemistry? 

Chemistry is the science of matter and of transformations, and life is its highest 

expression. In its method, chemistry is a science of interactions, of transformations and of 

models. Chemical synthesis has the power to produce new molecules and new materials with 

new properties. New indeed, because they did not exist before being created by the 

recomposition of atomic arrangements into novel and infinitely varied combinations and 

structures.1 

For more than 180 years, since the synthesis of urea by Wohler in 1828, molecular 

chemistry has developed a vast array of highly sophisticated and powerful methods for the 

construction of ever more complex molecular structures by the making or breaking of covalent 

bonds between atoms in a controlled and precise fashion. Molecular chemistry, thus, has 

established its power over the covalent bond. The time has come to do the same for 

noncovalent intermolecular forces.  

Although the word “supramolecular” made an early appearance in Webster’s Dictionary 

in 1903, “supramolecular chemistry” in its modern sense was introduced only in 1978 by Lehn, 

who defined it as the “chemistry of molecular assemblies and of the intermolecular bond.”2 

Classic explanations of supramolecular chemistry describe it as “chemistry beyond the 

molecule,” “the chemistry of the noncovalent bond,” and “non-molecular chemistry,” or even 

“Lego chemistry.” According to Lehn, a supermolecule is an organized complex entity that is 

created from the association of two or more chemical species held together by intermolecular 

forces (Figure I-1). Supermolecular structures are the result of not only additive but also 

cooperative interactions, including H-bond, hydrophobic interactions and coordination, and 

their properties are different (ideally better) than the sum of the properties of each individual 

component.1, 3-6 
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Figure I-1. Definition of traditional supramolecular “host-guest” chemistry according to 

J. M. Lehn.7 
 

The noncovalent supramolecular approach demands a very careful design of the 

monomeric building blocks to ensure the self-assembly into a specific, desired supramolecular 

aggregate. Generally, this can be achieved by a fine-tuning of the geometrical requirements of 

the host and guest molecules and/or by equipping the monomers with specific noncovalent 

binding sites following the molecular recognition principle. This fact was first introduced as the 

“lock and key” principle for the specific interactions between enzymes and substrates by Nobel 

laureate Hernan Emil Fischer, in 1894.8 In 1967, the molecular recognition principle was 

successfully introduced for the template directed synthesis of crown ethers by Charles John 

Pedersen.9 The following years, further development of the molecular recognition principle led 

to the establishment of host-guest chemistry by Donald James Cram.10 Lehn, Pedersen and 

Cram were awarded the 1987 Nobel Prize in Chemistry for “for their development and use of 

molecules with structure-specific interactions of high selectivity". 

 

1.2. Noncovalent interactions in Nature 

The existence of a condensed phase probably represents the most important example 

of noncovalent interactions. The vast majority of chemical processes occur in solution, and the 

condensed phase affects the structure, properties, and reactivity of a system dramatically and 

plays an even more important role in biology, since life originated in the liquid water phase. 

Besides the structure of water, noncovalent interactions play other key roles in Nature. 

An important example is the structure of proteins. The twenty natural amino acids present 

different structures with more or less acidic or basic, hydrophilic or hydrophobic functionalities, 

capable of different intermolecular interactions. The secondary, tertiary and quaternary 

structures of proteins are determined mostly by noncovalent interactions, together with 

reversible disulfide covalent bonds. A protein function is determined more directly by its three-

dimensional structure and dynamics than by its sequence of amino acids. Noncovalent 

interactions are also responsible for the structure and function of other important biological 
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macromolecules such as DNA or RNA. The double-helical structure of DNA, which is of key 

importance for the transfer of genetic information, is mainly due to noncovalent interactions, 

among nucleic acid bases. These bases are polar, aromatic heterocycles which interact both 

via H-bonds between base pairs, perpendicular to the helix, and  interactions that extend 

all along the helix axis. 

Three-dimensional biomolecular structures are strongly influenced by weak 

noncovalent interactions between side functionalities, but the central importance of these weak 

interactions is by no means limited to structural effects. Life relies on biological specificity, 

which arises from the fact that individual biomolecules communicate through noncovalent 

interactions.  

 

1.3. Noncovalent interactions: an energetic approach  

Noncovalent bonds range from coordinative bonds with a strength of several hundreds 

of kJ mol-1 to weak van der Waals interactions worth only a few kJ mol-1.11 On the basis of 

perturbation theory,12 the total stabilization energy of noncovalent complexes can be 

partitioned into various energy contributions. The electrostatic, induction, and dispersion terms 

form the dominant attractive contributions. In rare cases only one particular energy term is 

dominant. We therefore prefer not to classify supramolecular interactions according to the 

interacting chemical groups, but rather according to their energy. More often, several attractive 

terms contribute to the overall stabilization of noncovalent systems. The most relevant 

contributions to noncovalent interactions are listed below.  

 

1.3.1. Induction interactions 

The formation of intensely coloured charge-transfer complexes in nonpolar solvents 

was first theoretically inferred by Mulliken.13 The condition for the formation of a charge-transfer 

interaction in a complex requires that an electron flows from one of its components, with a low 

ionization potential, to the other, with a high electron affinity. Electron donors and acceptors 

are classified according to the type of orbital donating or accepting the electrons as follows: 

donors, n, ,  (n = nonbonding orbitals); acceptors, v, ,  (v = vacant orbitals). The 

strongest charge-transfer complexes are of n-v type, whereas the * type are the weakest.14  

 

1.3.2. Electrostatic interactions 

The presence of a charged component (electron, anion, cation, proton, or metal ion) in 

a cluster represents an important source of electrostatic stabilization for the other components. 

This is particularly true for aromatic ions wherein the charge is highly delocalized. Because 

cations usually possess high electron affinity and anions low ionization potential, the charge-
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transfer energy term can be an important attractive contribution. Attractive or repulsive 

electrostatic interactions are found when two (partial) charges interact either with opposite 

polarity (attraction) or the same polarity (repulsion). Ion–ion interactions are strongest with 

bond energies in the range of ca. 100 to 350 kJ mol-1. The distance between the charges and 

the extent of delocalization over a part of a molecule, or even the whole molecule, have an 

effect on the strength of the interaction.11 Consequently, the minimization of the distance 

between two oppositely charged ions will be a geometric factor when it comes to the structure 

of the supramolecular aggregate, even though there is no particular directionality in the ion-ion 

interaction. Interactions between ions and dipoles are somewhat weaker (ca. 50-200 kJ mol-

1). A typical example for such an ion–dipole complex is the interaction of alkali metal ions with 

crown ethers. 

Electrostatic interactions also play a dominant role in weak molecular clusters between 

components exhibiting quadrupole moment q, like arenes. The global minimum of the benzene 

dimer corresponds to a structure with the monomers located in perpendicular planes (T-shape 

structure15). This structure is favoured by attractive q-q interactions between the two benzene 

molecules. These qualitative estimates are now fully supported by highly accurate ab initio 

calculations.16 The same q-q interactions determine the structure of crystalline phenylalanine.17 

 

1.3.3 Dispersion interactions 

The London dispersion force is the weakest Van der Waals interaction (<5 kJ mol-1). It 

is a temporary attractive force that results when the electrons in two adjacent atoms occupy 

positions that make the atoms form temporary dipoles. This force is sometimes called an 

induced dipole-induced dipole attraction. London forces are the attractive forces that cause 

nonpolar substances to condense to liquids and to freeze into solids when the temperature is 

lowered sufficiently. While the structure of clusters responds to directionally specific 

electrostatic interactions, their stabilization energy reflects also the intervention of less specific 

dispersion interactions. For example, this is the case for stacked DNA base pairs. Stability of 

these pairs stems from dispersion energy while their structure is determined by dipole-dipole 

electrostatic interactions. Dispersion energy plays an important role in stabilizing clusters of 

biological macromolecules, where it may be the dominant attractive term. 

 

1.3.4. Interactions with participation of Hydrogen 

Hydrogen bonds (H-Bonds) are the main focus of this thesis, for this reason we are 

going to explain them in detail bellow. 

More than 90 years have lapsed from 1920, when the concept of ‘‘H-Bond’’ was born. 

During this long period innumerable papers and books have been written on the subject.18-21 
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The great importance of H-bond in all fields of chemistry and biochemistry is due to their key 

role in most conformational equilibria, chemical reactions, supramolecular structures, life 

processes, molecular assemblies and so on.22  

Complexes with H-bonds are stabilized by electrostatic, induction, and dispersion 

energy terms. The formation of an H-bond of the XH•••Y (X and Y electronegative atoms) type 

is accompanied by an elongation of the X-H bond, which causes a decrease (red-shift) of the 

respective X-H stretching frequency. The red-shift is easily observable and provides 

unambiguous evidence about the formation of a noncovalent complex.14  

It is important to distinguish between strong H-bonds with binding energies in the range 

of 60-120 kJ mol-1 and heteroatom-heteroatom distances between d= 2.2-2.5 Å, moderate H-

bonds (15-60 kJ mol-1, d= 2.5-3.2 Å), and weak H-bonds (15 kJ mol-1, d= 4 Å).11 Also, the range 

of possible H-bond angles is narrow in strong H-bonds (175º-180º) so that there is excellent 

spatial control here, while moderate (130º-180º) and weak (90º-150º) H-bonds are more 

flexible. The fact that H-bond is of electrostatic nature remains controversial and several 

chemical calculations about it have been performed.23-25  

The other two types of intermolecular bonds with participation of hydrogen are the 

improper (blue-shifting) H-bond and the dihydrogen bond. The C-H••• improper (blue-shifting) 

H-bond was theoretically predicted26 in carbon proton donor•••benzene complexes. The 

manifestation of this bond is completely opposite to that of a normal H-bond, i.e., instead of an 

elongation of the X-H bond and a red-shift of the X-H stretch vibrational frequency upon 

complex formation, there is a contraction of the bond length and a blue-shift of the stretch 

frequency. The existence of a C-H••• improper H-bond in the chloroform•••fluorobenzene 

complex was confirmed experimentally by double resonance infrared ion-depletion 

spectroscopy.27 The dihydrogen bond of the type M-H•••H-Y was originally found in metal 

complexes (M = metal element) and later detected in the H3BNH3 dimer.28-30 The explanation 

of this unconventional H-bond is straightforward,31 two hydrogens may interact weakly if one 

is bound to an electropositive element and the other to a very electronegative element. 

Consequently, one hydrogen has positive and the other has negative partial charge, which 

generates a multipole attraction between them. 

 

1.4. Why is it important to study supramolecular chemistry at the single 

molecule level? 

It is said that, when Feynman was bothered while looking through one of the first 

scanning tunnelling microscopes, he said he was upset to be interrupted because seeing the 

images of single atoms was a ‘‘religious experience’’. For many generations of scientists, the 

molecule was both the concrete, ultimate entity on which our understanding of the everyday 
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world was based, and an elusive intellectual construct the very existence of which could only 

be inferred circumstantially by experiments on macroscopic samples. Seeing an individual 

atom or molecule going through its motions brings immediate, emotional impact to this central 

concept of modern thought. 

The study of single molecules has become a major theme of research in modern 

science. The history of single-molecule experiments is related to that of single-molecule 

imaging and has its roots in the invention of the scanning tunnelling microscope, the first tool 

that allowed scientists to “see” individual molecules. The possibility of manipulating single 

molecular entities has always attracted the scientist. Since the experimental discovery of the 

nucleus of the atom by Rutherford, it has become a major goal in physics to search for the 

ultimate constituents of matter. A similar trend is followed in modern biology. There, the main 

goal has been to quantify the molecular mechanisms governing the operation of the constituent 

parts of living organisms and, ultimately, the chemistry of life.32 

Single-molecule experiments provide a new tool in physical chemistry that allows us to 

explore chemical processes at an unprecedented level. They offer a quantitative description 

of chemical processes reminiscent of the physicist’s approach. The principal reason for using 

novel physical methods and analyses for studying chemical processes at the single molecule 

level is the prevalence of molecular heterogeneity. One might suppose that the mean average 

property of approximately 1019 molecules (roughly the number of molecules in 1 l of water, 

equivalent to 1/(18 x 1000)th of a mole), is an adequate representation of the properties of any 

given single molecule. In some exceptional chemical systems this is true; however, in general 

this is not the case. This is because single molecules usually exist in multiple states, 

intrinsically related to their functions.33 Moreover, thermal fluctuations in the molecules that 

form a population result in broadening the distribution of a measured parameter from a bulk 

ensemble experiment, which can be difficult to interpret individually. These fluctuations are 

driven by collisions from the surrounding solvent molecules, which can drive molecules into 

different, transient intermediate states. In single molecule experiments, these states can often 

be probed individually. The idealized dynamic picture envisaged from these experiments is a 

‘movie’ at long timescales, in which molecular trajectories are smooth and well defined. At 

short timescales, this movie is very different: dynamics are fast and random (stochastic). 

Molecules dwell in a background of thermal agitation that affects their dynamic performance. 

This inherent dynamics can only be captured by real-time monitoring of individual processes. 

Fluctuations represent an integral part of molecular function, and single-molecule information 

must therefore be included in the overall description of molecular processes.  

Bulk experiments, in which a large number of identical (but unavoidably 

unsynchronized) reactions take place, hinder access to signals from intermediate states of the 

specimens because they are averaged out. In most ensemble experiments the population is 
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in steady state. If the system is briefly taken out of equilibrium, then transient molecular 

synchrony can be obtained, such as by forcing all molecules into just a single state; however, 

this by definition is a transient effect (since the molecular population rapidly loses coherence) 

so practical measurements are likely to be short-lived and technically challenging. Also, 

structural methods such as electron microscopy, vibrational spectroscopies or nuclear 

magnetic resonance (NMR) allow ‘taking snapshots’ of specific instants in the temporal flow of 

events for a certain type of molecule, but only the average state is eventually reconstructed 

from the data. 

All these considerations become even more relevant for the chemistry of life. The real 

strength of single-molecule techniques is that these subpopulations of molecular states can be 

investigated. The importance to biochemistry is that this multiple-state heterogeneity is actually 

an essential characteristic of the normal functioning of biological molecular motors; there is a 

fundamental instability in these molecules that allows them to switch between multiple states 

as part of their underlying physiological function. These biological molecular motors use 

external energy sources to drive directed motion and convert chemical energy into mechanical 

work. Therefore, the mechanical forces and displacements play a very important role in their 

mechanism of operation. Taking inspiration from these tiny and powerful biomachines, a 

relevant field of chemistry was born, which studies artificial molecular motors; in these devices, 

non-covalent transient interactions are fundamental in the development of their system 

operation. Significant advances in obtaining directional motion on the nanoscale performed by 

synthetic molecular machines have been made. To understand the operation of this molecular 

machinery, a new exciting and interdisciplinary research field called mechanochemistry arose; 

which studies the essential role that forces play in chemical and biochemical processes. The 

mechanical properties at the single-molecule level are key parameters for these systems. In 

order to measure the mechanical properties of biological molecules directly, several single-

molecule force spectroscopy (SMFS) techniques were invented in the 1990s, such as optical 

tweezers (OT), magnetic tweezers, and atomic force spectroscopy (AFM). Moreover, a number 

of important problems in supramolecular chemistry, such as the strength of the intermolecular 

interactions, or the elasticity of an isolated polymer chain, cannot be addressed by bulk 

measurements. By solving these problems during the last two decades, SMFS has become 

widely accepted as a powerful tool to study inter- and intra-molecular interactions of individual 

molecules.34-39  

It should be noted that the force measured through these SMFS techniques is 

intrinsically related to the pulling rate at which the experiment is performed. This is the focus 

of Dynamic Force Spectroscopy (DFS). DFS probes molecular bonds at different force loads 

(applied force over time), thereby allowing the approximation of the transition state and kinetic 

rate of the energy barrier of the bonds.40 Such energy barriers form the energy landscape used 
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to describe reaction pathways of protein unfolding, folding, binding and function.41 When 

isolated, bonds are ruptured under steady ramps of force, barriers diminish in time and, thus, 

rupture force depends on rate of loading (= force/time).42 In this way, the method of DFS probes 

the inner world of molecular interactions to reveal barriers that are difficult or impossible to 

detect in assays of near equilibrium dissociation. These inner barriers are the determinants of 

bond lifetime and strength under rapid detachment.

SMFS have unique advantages over ensemble approaches in studies of molecular 

machines and assemblies.43-48 Moreover, the analysis of rupture force, or force spectra of 

single molecules provides a measure of bond energies, lifetimes, and more recently, entire 

energy landscapes.49, 50 SMFS in turn spurred the development of, and benefited greatly from, 

theoretical approaches that permit the extraction of detailed equilibrium thermodynamic 

parameters from inherently non-equilibrium pulling experiments.40, 49, 51 

 

1.5. Single molecule force spectroscopy techniques (SMFS) 

Although there is an ever-expanding repertoire of single-molecule manipulation 

techniques, including OT, magnetic tweezers, AFM, micro-needle manipulation,52 

biomembrane force probe53 and flow-induced stretching,54, 55 we are going to focus on OT and 

AFM, which are the two techniques that have been used in this thesis (Table I-1).  

 

 

Table I-1. Comparison of SMFS techniques. 
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1.5.1. Atomic Force Microscopy 

The invention of the AFM in 1986 by Binnig, Quate and Gerber56 defined a new way of 

imaging structures well below the resolution limit of optical microscopy. Unlike the conventional 

high-resolution electron microscope, which must operate in vacuum, the unique characteristics 

of imaging with a position-sensitive probe attached to a microcantilever allow the AFM to be 

operated in any environment. AFM (Figure I-2) was initially developed to overcome limitations 

of the scanning tunnelling microscope in imaging nonconductive samples.57, 58 However, the 

possibility of modifying the surface and manipulating individual molecules in solution made 

AFM an ideal tool for biological applications.59-62 

In general, the AFM studies can be divided in topographical and non-topographical 

applications. In the first group, we can include the studies focused on getting an image of the 

sample surface, for its structural or dynamic characterization. The non-topographical 

applications are one of the most promising and interesting areas of this microscopy,40, 63-67 

allowing the study of inter and intramolecular forces, as well as the manipulation of the sample. 

When AFM is used for one-dimensional force measurements, the AFM cantilever is moved 

only in the vertical direction, perpendicular to the specimen plane.68, 69 The vertical motion of 

the cantilever is controlled by piezoelectric actuators affording sub-nanometer resolution. The 

displacement of the cantilever is monitored directly with either a capacitor or a linear voltage 

differential transformer. As a result, high-resolution force-versus-extension curves of single 

molecules can be recorded. 

 

 

Figure I-2. Cartoon of the atomic force microscope, which consists of a cantilever with 

a sharp tip (blue) held above a piezoelectric scanning stage (green). Deflection of the cantilever 

is measured from the displacement of a low power laser (red beam) reflected off the cantilever 

on a position-sensitive detector (PSD).  
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1.5.1.a. Technical requirements for AFM measurements 

From a one-dimensional force measurement we can extract two characteristic data: 

force and extension. The extension is the distance between the anchoring points at which the 

two ends of the molecule under study are attached, such as the surface of a coverslip and the 

cantilever tip. Force is generally calculated from the bending of a cantilever of known spring 

constant. The cantilever stiffness depends on the material properties and shape of the 

cantilever, with typical values of 10-105 pN/nm. To obtain precise force data, each cantilever 

must be properly calibrated before use.70 The extension data are obtained by measuring the 

change in displacement between the molecular force probe tip and the sample surface. The 

accuracy of this data is determined by the quality of the piezoelectric stage. Piezoelectric 

stages used in AFM provide Angstrom-level resolution (Table I-2).48  

1.5.1.b. Measurements of elasticity and force  

For stretching measurements, the ends of the molecule under study are attached 

specifically between the cantilever and the surface, which are chemically modified to form 

specific bonds with the molecule of interest. For example, antibody-antigen interactions,71, 72 

streptavidin-biotin bonds73, avidin-biotin bonds.74 hexahistidine–Ni-NTA75 and gold–thiol76 

interaction can be used. 

Single-molecule force-extension measurements are obtained by stretching 

mechanically an individual molecule along a particular coordinate. The force-extension curves 

provide valuable information on the structure, the folding and unfolding kinetics and the folding 

energy landscape. Measurement of the stretching curve is relatively straightforward. The AFM 

tip is lowered toward the surface or the sample is lifted toward the cantilever tip by piezoelectric 

actuators. After the initial contact with the surface, the cantilever is pressed into the surface on 

which the sample is deposited with a predetermined constant force. The tip is then retracted. 

Attachment of the sample (molecules under study) tethers the cantilever tip to the surface, 

causing the cantilever to bend toward the surface as the tip is retracted (Figure I-3). The value 

of this force is calculated using Hooke’s Law.48  

 

 



1.5. Single molecule force spectroscopy techniques 

 

21 
 

 
Figure I-3. A typical force-extension curve for a molecule–molecule detachment 

process with three unbinding events. When approaching the surface, the cantilever is in an 

equilibrium position and the curve is flat. As the tip approaches the surface, the cantilever is 

pushed up to the surface – being deflected upwards, which is seen as a sharp increase in the 

measured force. Once the tip starts retracting, the deflection starts to decrease and passes its 

equilibrium position. Moving away from the surface, the tip snaps in due to interaction with the 

surface and the cantilever is deflected downwards. Once the tip-sample interactions are 

terminated due to increased distance, the tip snaps out and returns to its equilibrium position.  
 

The problem of pulling an ensemble of molecules instead of a single molecule can be 

addressed in several ways (dilution, using a tip with suitable geometry or statistical analysis of 

the data), but perhaps the most direct method is the use of handles with special mechanical 

characteristics. In a method termed ‘mechanical fingerprinting’73 the protein of interest is 

serially linked with a well characterized oligomer of Titin I27 domains (see bellow). In the case 

of the I27 oligomer linkage, the characteristic sawtooth pattern in stretching curves resulting 

from the unfolding of individual Titin domains ensures that a single molecule is being 

stretched.36 Another approach for specific attachment of single molecules exploits the 

properties of extremely sharp functionalized carbon nanotubes.77 

1.5.1.c. Applications 

In the field of SMFS, AFM techniques were pioneered by the groups of Colton and 

Gaub, commencing with studies of molecular recognition events between ligand-receptor 

couples and studies on DNA,69, 74, 78 polysaccharides,79, 80 determination of mechanical 

properties of surface macromolecules on fungi and measurement of elastic response of 

biopolymers membrane in bacterial surfaces.81 In the last years this technique has been widely 

used to study the mechanical folding/unfolding individual protein molecules. The first protein 

unfolded by AFM, and probably the best-studied protein so far, is the immunoglobulin titin.69 In 

humans, the titin filament represents an adjustable molecular spring in muscle sarcomeres, 

the repeating unit of myofibrils of striated muscles. About 90% of titin is made of 

immunoglobulin domains. AFM showed that simply applying a mechanical pulling force to both 

peptide ends induced the fully reversible unfolding of an oligomeric titin construct. Recording 
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the applied force over the stretching distance revealed a characteristic sawtooth-like pattern 

of force peaks. Each force peak of this pattern reflected the unfolding of a single 

immunoglobulin molecule and the sequence of force peaks described the unfolding pathways 

of all immunoglobulin molecules within the oligomeric titin construct. This is the reason why 

titin is used as a mechanical fingerprint in single molecule measurements, as pointed out 

before. However, most other proteins unfold in complex three-dimensional trajectories.41 

Mechanically stretching proteins at different sites showed that their resistance to unfolding 

strongly depends on the pulling direction.82-84 Other AFM force measurements were used to 

characterize the properties of cellular machineries.85-88 

We have shown how AFM is an extremely useful technique for the study of biological 

systems. Now we will show some important examples in which AFM has been utilized to 

investigate supramolecular systems at the single-molecule level.89-92 The strategy of the 

experiment involves two steps. The first step is to chemically modify the AFM tip and substrate 

with host and guest molecules, respectively. The second step is to enable the formation of 

host-guest complex by bringing together the two surfaces, and rupturing the complex by 

separating them. During the latter step, the force curve is recorded, which provides extensive 

information on the system, such us the rupture force of the host-guest complex. In an ideal 

case, an individual rupture event is observed in one force curve. However, in most cases, 

multiple rupture events occur simultaneously, which makes it difficult to isolate single-molecule 

events. As mentioned before, the use of handles (like long PEG polymers, Tintin oligomer) 

attached to the molecules of interest has been recently used to overcome this problem. 

Schönherr and coworkers89 studied the unbinding force between ferrocene moieties 

immobilized on AFM tips and -cyclodextrin (-CD) receptors in highly ordered self-assembled 

monolayers on Au(111) (Figure I-4). Due to multiple rupture events taking place 

simultaneously, statistical analysis on plenty of similar force curves shown that the observed 

rupture forces were integer multiples of one fundamental force unit of 55 ± 10 pN, which was 

attributed to the rupture of an individual ferrocene-CD complex. Further investigation of 

ferrocene-CD complexes showed that this force quantum is independent of the spacer length, 

and independent of the unloading rate.93 These results indicate that the host-guest complex 

rupture forces were probed under conditions of thermodynamic equilibrium. This is different 

from the previously studied biological systems, which are dependent of the loading rate.94-96  

Other guest molecules for -CD, such as adamantane and benzene were studied by 

AFM showing similar results as ferrocene.91 The analysis of the histograms revealed periodic 

distributions of forces with loading-rate independent maxima at integer multiples of a certain 

force quantum characteristic of each guest. For instance, the observed force quanta were 39 

± 15 pN for benzene and 102 ± 15 pN for adamantane, respectively. The force values followed 

the same trend as the free binding energy ΔG measured for model guest compounds in 



1.5. Single molecule force spectroscopy techniques 

 

23 
 

solution or on -CD monolayers, as determined by microcalorimetry and surface plasmon 

resonance measurements, respectively. 

 

 

Figure I-4. Schematic representation of AFM-SMFS of ferrocene guest immobilized in 

a hydroxyl terminated self-assembled monolayer (SAM) on an AFM tip and a SAM of -

ciclodextrin adsorbate on Au (111). Figure adapted from J. Am. Chem. Soc. 2000, 122 (20), 

4963-4967. 
 

Other important noncovalent interactions are metal–ligand interactions. Some systems 

on the topic of metallo-supramolecules have been studied by AFM.97, 98 For such purpose, 

Cudera et al.97 designed unsymmetrical -functionalized poly(ethylene oxide) for mono-

termination with a terpyridine ligand and subsequently for the attachment onto AFM tips and 

microscopy slide substrates (Figure I-5). Using ruthenium (III)-ruthenium (II) chemistry metallo-

supramolcular complexes were formed. The rupture of these coordinative bonds showed a 

rupture force at 95 pN for individual complexes, which was supported by elasticity model fitting 

and Monte Carlo simulations. 
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Figure I-5. Schematic representation of AFM-SMFS. The substrate is coated with 

terpyridine ruthenium (III) mono-complexes, otherwise the tip is coated with free terpyridine 

units. The bis complexes can only be formed between the free terpyridines at the tip and the 

mono-complexes bound to the substrate. Ruthenium (III) is reduced to ruthenium (II) during 

this process (solvent DMSO). Figure adapted from Adv. Func. Mater. 2003, 13 (8), 615-620. 

 

Zou et al. studied the mechanical strength of supramolecular quadruple H-bond bis(2-

ureido-4[1H]-pyrimidinone) (UPy)2 complexes under quasi-equilibrium and non-equilibrium 

states in situ by controlling the temperature (Figure I-6).99, 100 The determination of the rupture 

forces at 301 K was carried out for loading rates between ∼5 nN/s and ∼500 nN/s, and were 

found to depend logarithmically on the loading rate, consistent with the prediction by Evans et 

al.40, 95 In contrast, for measurements carried out in situ at 330 K, no loading-rate dependence 

was observed for rates between 5 and 200 nN/s. This observation indicates that the 

corresponding experiment was carried out under quasiequilibrium conditions.  
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Figure I-6. Schematic of the AFM-SMFS experiment for the supramolecular quadruple 

H-bond bis(2-ureido-4[1H]-pyrimidinone), obtained in hexadecane. Figure adapted from J. Am. 

Chem. Soc. 2005, 127 (32), 11230-11231. 

 

More recently, the mechanical strength of another self-complementary quadruple H-

bond motif, urea-aminotriazine (UAT), was investigated by SMFS (Figure I-7).101, 102 The bond 

rupture was probed at three different, fixed piezo retraction rates in far from equilibrium 

conditions. The number of supramolecular bonds (N) between AFM tip and the surface was 

determined by independent knowledge of the linker length. The observed rupture force of urea-

aminotriazine (UAT)-based supramolecular polymer chains was found to decrease with 

increasing rupture length. The dependence of the most probable rupture force (102 ± 32 pN 

and loading rate rf = (134.7 ± 50.9) x 103 pN/s) on N was in quantitative agreement with the 

theory of uncooperative bond rupture for supramolecular linkages switched in series. 

Moreover, relevant parameters of the bond energy landscape and kinetic off-rates, were 

obtained from a single data set of rupture events at a fixed loading rate for these 

supramolecular linkages switched in series. 
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Figure I-7. Schematic of AFM-SMFS of supramolecular UAT polymers in hexadecane. 

A gold-coated surface and a gold-coated AFM probe are functionalized with PEG and PEG-

UAT moieties. The bifunctional UAT-PEG-UAT linker is added to the solution to form 

supramolecular polymers. Figure adapted from J. Phys. Chem. B 2012, 116 (1), 565-570. 

 

The first direct measurement of  Interactions between pyrene and a graphite surface 

was performed by Zhang et al.103 Modifying the AFM tip with a pyrene tailored polymer chain 

and measuring the desorption force of a single pyrene unit from a graphite surface (Figure I-

8). They observed a breaking force of 55 ± 16 pN, which was independent of the loading rate, 

implying that the measurement is carried out under quasi-equilibrium conditions. In other 

words, the adsorption force between the pyrene unit and the graphite surface is equal to the 

desorption force obtained. 

 

 

Figure I-8. Schematic of AFM-SMFS setup for measuring the  interactions between 

pyrene and graphite in aqueous medium. Figure reproduced with permission from Langmuir 

2007, 23 (15), 7911-7915. Copyright (2007) American Chemical Society. 
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More recently, similar experiments were carried out with single-walled carbon 

nanotubes (Figure I-9),104 Iliafar and coworkers used AFM to measure the force required to 

remove single-stranded DNA (ssDNA) homopolymers from single-walled carbon nanotubes 

(SWCNTs) deposited on methyl-terminated self-assembled monolayers (SAMs). They showed 

that the free energy of binding of these ssDNA sequences to the SAM-modified substrate is 

quite similar to their free energy of binding to graphite, which is in contrary to the expectation 

that the binding of ssDNA with carbon surfaces should decrease with surface curvature, the 

peeling forces in fact are greater by a factor of 2−3 on SWCNTs. These results were supported 

by replica-exchange molecular dynamics simulations. 

 

Figure I-9. Schematic representation of AFM-SMFS of single-walled carbon nanotubes 

(SWCNTs) deposited on methyl-terminated SAMs and an AFM tip modified with single-

stranded DNA (ssDNA) homopolymers. Figure reproduced with permission from J. Am. Chem. 

Soc. 2014, 136 (37), 12947-12957. Copyright (2014) American Chemical Society. 

 

1.5.1.d. Drawbacks and limitations of AFM 

The main drawbacks and limitations of AFM stem from the large size (100-200 m in 

length) and relatively high stiffness (10-105 pN nm-1) of the cantilevers, which impose a lower 

bound on the useful force range, and a reduced bandwidth, particularly in aqueous conditions. 

Therefore, the minute forces (below 10 pN) and rapid dynamics characteristics of non-covalent 

interactions under physiological conditions are difficult to access with this technique.  

Specificity is a second major concern in many AFM pulling experiments. It can be 

difficult to discriminate interactions of the AFM tip with the molecule of interest from nonspecific 

interactions or inappropriate contacts with the molecule of interest, such as binding at an 

intermediate position rather than at one of the ends.  
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1.5.2. Optical tweezers 

OT were first realized 31 years ago by Arthur Ashkin and co-workers at the Bell 

Telephone Laboratories,105 and provided scientists with a tool that is ideally suited for 

biophysical studies at the molecular level. By selecting a wavelength in the near-infrared region 

of 800-1.100 nm, where light is poorly absorbed by most living matter,106 optical tweezers can 

be used to grasp, capture and manipulate micrometre-scale dielectric objects non-invasively 

and with exquisite precision. The loads exerted by optical traps fall conveniently into the pN 

range, and are therefore perfectly suited to studying the forces between and within 

biomolecules (see Table I-1). Combined with position sensitive detectors (PSD) that can 

monitor the displacements of trapped objects accurately down to the subnanometre level,107 

optical tweezers have revolutionized the nascent field of single-molecule biophysics, making it 

now possible to study the processes of life at the level of individual molecules. However, there 

is still a considerable challenge ahead to apply this technique to study chemistry at the level 

of individual molecules. 

 

1.5.2.a. Optical trapping and manipulation 

Optical traps involve the balance of two types of optical forces: scattering forces, which 

push objects along the direction of propagation of the light, and gradient forces, which pull 

objects along the spatial gradient of light intensity.105 When gradient optical forces exceed 

those from scattering, an object is attracted to the point of highest intensity formed by focused 

light and can be stably trapped at this position in all three dimensions. In practical 

implementations of an optical trap, a near-infrared laser beam is tightly focused by a high-

numerical aperture microscope objective to create the large spatial gradient in light intensity 

necessary to form a stable trap.107 In the vicinity of this focus, the optical trap behaves as a 

linear “Hookean” spring, generating forces on an object proportional to its displacement from 

the centre of the trap. 

The magnitude of these optical forces is adequate for manipulating microscopic 

dielectric objects108-110 such as micron-sized polystyrene beads, which can be biochemically 

linked to the molecules of interest serving in this way as probes by which the movements and 

forces on the system can be measured in real time. Exerting calibrated forces on the molecule 

of interest requires having it attached between the bead on the trap and a second surface. 

Typically this second attachment point is a second bead which may be held atop of a 

micropipette by suction (Figure I-10). In this fashion, the system can be manipulated 

(stretched) by moving the optical trap relative to the micropipette. 
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1.5.2.b. Dual-beam optical tweezers  

In the last years, different type of optical tweezers has been developed to study and 

manipulate biological systems at the single molecule level.46 Following we describe a dual-

beam optical tweezers instrument used in this thesis, Figure I-10. Although the range of OT 

experimental configurations is diverse and keeps growing, the basic elements in the optical 

tweezers can be grouped into those common to an optical microscope and those related to the 

generation of the optical trap.106 The microscope elements are an objective, a fluidics chamber 

and a condenser lens. The trap elements are a laser and a photodetector that registers the 

light at the exit of the condenser.  

 

 

Figure I-10. Basic elements in a dual-beam OT instrument. Laser light (typically 

infrared) is highly focused by a microscope objective and collected by a condenser lens. A 

bead can be trapped in the focal region, which is produced inside a fluidics chamber. A 

micropipette inserted in the chamber can hold a second bead by suction. Micrometer-sized 

beads are typically used as mechanical handles to hold a biopolymer by both ends. The 

collected exiting rays are registered by a position-sensitive photodetector (PSD). The scheme 

shows a single-molecule experiment in which a DNA fiber is stretched between two beads. 
 

Basic elements in the OT instrument: 

 Laser illumination. Laser power in the focal region of several hundred milliwatts 

provides a good balance that prevents photodamage and produces forces up to a few 

hundreds of pN. In dual-beam systems, two equal counter-propagating laser beams 

are brought to the same focus. 

 Strongly-focusing objective lens. To achieve the steep focus needed to create a 

stable optical trap, the numerical aperture of the trapping microscope objective should 

be near or above 1.0. This requirement is met by both water and oil immersion 

objectives. However, and although the latter offers the highest numerical aperture, 

water immersion objectives are the most commonly used for optical trapping since they 
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do not introduce spherical aberrations that degrade the optical trap performance deep 

in solution.  

 Microfluidics chamber (Figure I-11). It is the test tube for the assays. It is usually built 

using two microscope coverslips sandwiching parafilm layers with imprinted channels. 

The design allows specimens to be flowed through a top and a bottom channel 

connected with the central channel by glass capillaries. The tip of a micropipette and 

the optical trap are located close together (within a distance of less than 5-10 m) at 

the central channel. As described above, the micropipette is used to held beads by 

suction. Buffers can be easily exchanged and flowed at a controlled rate, thus adding 

the ability to exert hydrodynamic pressure. Additional glass capillaries can be used to 

dispense different chemicals directly to the vicinity of the optical trap (not shown in 

Figure I-11). Therefore, the system allows exchanging experimental conditions rapidly 

and easily (for example, chemical concentration and pH) without affecting the 

performance of the instrument, which allows the detection in real time of processes 

triggered by such changes in conditions. 

 

Figure I-11. Fluidics chamber. Micron-sized polystyrene beads are passed sequentially 

through a system of channels. In this design, the experiment takes place in the central 

channel, which is connected to the top and the bottom channels by glass capillaries. 

The scheme also shows the disposition of a micropipette. Mounting a custom-made 

fluidics chamber for optical tweezers. After assembling the tubes and parafilm layers, 

the components are heat-sealed. 

 

 Condenser lens. It is used to collect the light scattered by the optically trapped 

biological specimen and convert it into a parallel beam. 

 Light-detection system. The interference between the light scattered by the trapped 

bead and unscattered light is measured with a quadrant photodiode or position-

sensitive photodetector (PSD). 

1.5.2.c. Mechanical properties and unfolding kinetics of nucleic acids 

Thanks to the advent of the OT technique, elastic properties and folding dynamics of 

diverse nucleic acid structures have been investigated from their characteristic force-extension 

curves.111-113 In these experiments, a single nucleic acid molecule is grabbed by two different, 
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specific sites by means of two short nucleic acid stretches, to properly functionalized dielectric 

microspheres. Typically, nucleic acid fibres are prepared containing modified nucleotides with 

biotin groups at one end and digoxigenin at the opposite, so that they can bind to stretptavidin- 

and anti-digoxigenin-coated beads, respectively (Figure I-12a). Force-extension curves are 

obtained by the stretching and subsequent relaxation of a single nucleic acid molecule by 

moving the micropipette relative to the laser trap at a constant rate (Figure I-12b). The 

extension of the nucleic acid molecule is determined from the distance between the beads with 

a video camera, whereas the force acting on it is calculated from the displacement of the laser 

beams on the PSDs.73 Herein, we present to examples, which are relevant for this thesis: A) 

the mechanical properties of double-stranded DNA (dsDNA) and B) the real-time 

folding/unfolding kinetics studies of DNA hairpins. 

A) Mechanical properties of dsDNA. In a typical force-extension curve of a single 

dsDNA molecule, three different elasticity regimes can be distinguished during its stretching 

pathway (Figure I-12):73, 114  

 Entropic elasticity regime. Below some 5 pN, the molecule, initially bent over itself in 

a random way as a result of thermal fluctuations, is stretched like a Hookean spring 

until it reaches its characteristic contour-length. 

 Enthalpic or intrinsic elasticity regime. From 5 to 60 pN, approximately, the 

molecule is stretched beyond its contour length. 

 Overstretching transition. At about 65 pN –in non-torsionally constrained molecules 

and depending on ionic strength, pH and sequence--, the molecule undergoes a 

structural transition to an almost totally unwound state with an elongation of 1.7 times 

its contour length. This sudden change happens over a very narrow force range (~2 

pN) and involves an increase in the rise per phosphate from 3.4 to 5.8 Å. The bases 

unstack and, depending on environmental conditions, the strands may either remain 

linked by partial base pairing -like a parallel ladder (S-form)-, or separate into a totally 

molten state (force-induced melting) or in a heterogeneous combination of both. When 

more than one molecule are stretched, overstretching transition occurs at higher forces 

(e.g. 120 pN if two molecules are stretched at the same time).Therefore, the force-

extension curve of the dsDNA serves as a marker for single molecule identification. 
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Figure I-12. a) Scheme of the experimental setup in OT measurements of the 

mechanical properties of dsDNA. A single dsDNA molecule is tethered by different DNA duplex 

ends between two polystyrene microspheres: an anti-digoxigenin (-Dig)-coated bead, 

optically trapped, and a streptavidin-coated bead, held by suction on top of a micropipette. B 

symbolizes D-biotin, meanwhile, Dig represents Digoxigenin. b) Characteristic force-extension 

curve of a single dsDNA molecule; displaying WLC behaviour (dashed black line). The graph 

shows an individual dsDNA molecule from pUC19 (2686 bp) in 150 mM NaCl, 10 mM Tris-Cl, 

1 mM EDTA, pH 7.5. Boxes illustrates the strand arrangement in each elasticity regime 

according to the literature.  
 

When the stress on the molecule decreases, it begins to return to its equilibrium state 

but following a slightly different pathway, inducing a certain hysteresis between the stretching 

and the relaxation traces. This absence of overlapping in the force-extension curve is a 

hallmark of the reannealing of the strands out of equilibrium. 

These pulling/relaxing profiles can be modelled using the worm-like chain (WLC) model 

that predicts the relationship between the extension of a linear dsDNA polymer and the entropic 

restoring force (dashed line Figure I-12b).  

B) In the literature we can find large number of examples of the real-time 

folding/unfolding kinetics studies of DNA hairpins, here we present the one described by 

Woodside and co-workers115 (Figure I-13). They reported a systematic study of the kinetics 

and thermodynamics of the folding transition for individual DNA hairpins of varying stem length, 

loop length, and stem GC content. Unfolding was induced mechanically in a high resolution 

optical trap; by moving one optical trap with respect to the other at fixed pulling rates. They 

measured folding transitions of 20 different hairpin sequences. For all hairpins studied, folding 

and unfolding were characterized by a single transition. From the force dependence of these 

rates, they determined the position and height of the energy barrier. By measuring unfolding 
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energies spanning one order of magnitude, transition rates covering six orders of magnitude, 

and hairpin opening distances with subnanometer precision, their results define the essential 

features of the energy landscape for folding.  

 

 

Figure I-13. Measurements of hairpin folding/unfolding. a) Illustration of the 

experimental geometry: A hairpin is attached by means of dsDNA handles to beads held in 

two traps (not to scale). b) Force-extension curve for one representative hairpin, displaying 

WLC behaviour of handles (dotted red line) followed by hairpin unfolding at ~13 pN. WLC fit to 

the contour length increase after hairpin unfolding (dotted blue line). c) DNA extension vs. time 

at constant force reveals two-state behaviour. Fit of extension histogram (black) to two 

Gaussian curves (red) gives the distance between the folded and unfolded states. Figure 

reproduced with permission from Proc. Nat. Acad. Sci. USA 2006, 103 (16), 6190-6195.  

1.5.2.d. Molecular motors dynamics 

In last years, it has become clear that all living cells contain a wide variety of molecular 

motors that convert chemical energy into to mechanical work. They perform a multitude of 

functions that are essential to life, from DNA replication, RNA transcription and protein 

synthesis to cell division, vesicle trafficking, cell locomotion, endocytosis and of course, the 

best known example, muscle contraction. There are two types of biological molecular motors: 

“rotary motors” are usually embedded in membranes and are driven by the flow of ions across 

transmembrane electrochemical gradients; the bacterial flagellar motor and the ATP-synthase 

are good examples; and “linear motors” that work in an isotropic chemical environment and 

derive energy from chemical reactions, usually the hydrolysis of the chemical ATP to 

adenosine diphosphate (ADP) and inorganic phosphate. Linear motors move along anisotropic 
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(or polarized) tracks that confer directionality to the movement; a prototypical example is the 

kinesin protein.  

In 1993 Block and coworkers116 measured the individual steps of kinesin, a molecular 

porter that walks directionally along a microtubule track. They obtain high spatial and temporal 

sensitivity combining optical tweezers with a dual-beam interferometer. They captured silica 

beads with kinesin molecules bound to their surface out of a suspension and deposited them 

onto microtubules immobilized on a coverslip. They then observed the fine structure of the 

motion as beads developed load by moving away from the centre of the trap. In the presence 

of ATP, when the kinesin motor and microtubule track interacted, the bead was pulled along 

by the kinesin and the nanometre scale displacements and pN forces produced were 

measured. The crucial observation made, and indeed a testament to the incredible sensitivity 

of their method, was that they could identify discrete 8 nm steps taken by the kinesin molecule. 

Rather than moving smoothly like an ensemble would do, the single molecule moved in a 

stochastic jerky fashion. They found that the motor paused for a random interval after taking 

each step as it waited for a fresh ATP molecule to diffuse into its catalytic site. 

1.5.2.e. Limitations and drawbacks of optical tweezers  

The versatility and precision afforded by optical tweezers are accompanied by 

important limitations and drawbacks that must be carefully considered before and during their 

use. There are some important difficulties associated with using light to generate force. As trap 

stiffness depends on the gradient of the optical field, optical perturbations that affect the 

intensity or the intensity distribution of light will degrade the performance of the optical 

tweezers. High-resolution optical trapping is therefore limited to optically homogeneous 

preparations and highly purified samples.  

Optical tweezers also lack selectivity and exclusivity. Any dielectric particle near the 

focus of the trapping laser will be trapped, and the number of particles that can be 

simultaneously trapped can be quite large. For this reason, samples in which the objects that 

will be trapped are freely diffusing must be kept at extremely low concentrations to prevent 

additional objects from being trapped once the first object is captured.  

Local heating in the vicinity of the optical trap due to the high intensity at the focus of 

the trapping laser, 109-1012 W cm-1, is another drawback but it can be quantified, both 

theoretically and experimentally,117-119 and kept limited.  

Optical damage induced in trapped specimens is less well understood. Although the 

use of trapping lasers operating in the near-infrared spectrum minimizes photo damage, singlet 

oxygen or other reactive oxygen species can be generated within this wavelength range,120 

and might be damaging to the sample. 
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Finally, the artificial nature of the single-molecule linkage strategy has to be considered. 

Whereas individual cells can be held directly in an optical trap, handling single molecules 

requires the use of molecular handles as explained before. The absence of this type of 

configuration in living conditions is considered as a handicap for in vivo applications of this 

technique.48, 121 

  



 

37 
 

OBJECTIVES

 

This thesis aims to address fundamental issues in supramolecular chemistry. We 

began with a general introduction to supramolecular chemistry and why it is important to study 

it at the single-molecule level. Following the premises introduced in the first chapter, we find 

the fundamental objectives of this thesis: 

 

1) The first objective was to develop a novel experimental set-up to unequivocally isolate 

H-bonded host-guest systems and study their mechanical strength under non-

equilibrium, near-physiological conditions and at the single molecule level. 

 

2) The second objective was to measure and manipulate the mechanics and real time 

kinetics of individual synthetic molecular shuttles under biocompatible aqueous 

conditions. In order to: 

- Investigate the mechanochemical cycle and dynamics of the system operation when 

it is driven out of equilibrium by a mechanical load. As a consequence we will extract 

conclusions about the design of molecular machines at the theoretical level, both to 

help analyse existing examples and to propose simpler, more efficient machines. 

- Obtain useful information to compare synthetic to natural molecular machines under 

identical conditions, since the majority of synthetic molecular motos reported to date 

have been investigated in organic solvents. 

 

3) Our third objective was to contribute to the debate between the balance of the 

Coulombic and covalent contributions to H-bonds. In chapter 4 we have addressed this 

question from an experimental point of view, both in the bulk and at the single-molecule 

level. 

 

4) Finally, the fourth objective of this thesis emerges as a result of a predoctoral internship 

at MIT, in the laboratory of Prof. Barbara Imperiali. We focused on the study of protein-

based ligands in order to develop a new solvatochromic biosensor.

  



 

39 
 

CHAPTER 2. 

Mechanical Measurement of H-bonded Host–Guest 

Systems Under Non-equilibrium, Near Physiological 

Conditions 

 

2.1. Introduction 

Decades after the birth of supramolecular chemistry, there are many techniques to 

measure noncovalent interactions, such as hydrogen bonding, under equilibrium conditions. 

As ensembles of molecules rapidly lose coherence, we cannot extrapolate bulk data to single-

molecule events under non-equilibrium conditions, more relevant to the dynamics of biological 

systems. For this reason our interest was focused on the development of a new method that 

exploits the high force resolution of optical tweezers to measure at the single molecule level 

the mechanical strength of a hydrogen bonded host-guest pair out of equilibrium and under 

near-physiological conditions. 

Hydrogen bonds are arguably the most prominent of noncovalent interactions,122, 

123 as the very foundations of life as we know it depend crucially on H-bonding.1 From 

a synthetic point of view, a wealth of host-guest systems, 124-126 supramolecular 

polymers,127-132 and molecular machines133-138 based on H-bonding has been described. 

139-143 Unsurprisingly, measuring and understanding H-bonds has been the subject of 

intensive research efforts, and it still busies the scientific community.  144, 145 Most 

measurements of H-bonded systems are based on the determination of association 

constants, 146, 147 and therefore provide ΔG data obtained under equilibrium conditions, 

and are the average over very many interactions, in the order of Avogadro’s number. 

As molecules in an ensemble are not synchronized, these data are not necessarily 

related to the behaviour of a single molecule under non-equilibrium conditions. 148, 149-

151 In addition, the growing interest in molecular nanotechnology has increased the need 

for knowledge regarding molecular stability and bond mechanical strength from a 

single-molecule perspective and under near-physiological aqueous conditions. These 

conditions are required for the proper operation of next generation hybrid molecular 

motors; biological mechano-enzymes modified with synthetic molecules in order to 

control their activity and motion at the molecular level.152 
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The development of methods to manipulate individual molecules in the last couple of 

decades offers the opportunity to directly observe single molecule events for the first 

time.153-155 SMFS methods have been particularly successful for the observation of 

noncovalent interactions in organic solvents.156-159  

Very recently Kawai et al. obtained direct quantitative observations of weak H-

bonds, using high-resolution AFM with a CO functionalized tip, they could resolve the 

outmost hydrogen atoms of single molecules directly via the C=O⋅⋅⋅H–C intermolecular 

interaction.160 They used a linear O⋅⋅⋅H–C system for the direct detection of this very 

weak, intermolecular interaction, which is responsible for the spatially localized contrast 

of the hydrogen atom and was used as a marker to identify the adsorption geometry of 

the three-dimensional hydrocarbon, Trinaphto [3.3.3]propellane (TNP), (Figure II-1). 

 

 

Figure II-1. a) Trinaphto [3.3.3]propellane (TNP): the top panel shows the top 

(side) view, and the bottom panel shows the side (top) view for the upright (sidelying) 

configuration. A, C and E are short one-dimensional structures observed in scanning 

tunnelling microscopy (STM) topography of TNP deposited on a clean Ag(111) surface.  

b) to g): Experimental observations of TNP on Ag(111). Series of scanning tunnelling 

microscopy (STM) topographies (b, c and d) of TNP deposited on the Ag(111) surface 

with increasing coverage and corresponding AFM images (e, f and g). As the coverage 

of TNP increases, the ratio of the upright (red arrows) and side-lying (yellow arrow) TNP 

becomes larger. Figure reproduced with permission from Sci. Adv. 2017, 3 (5).  

 
When a small amount of TNP was used, counting these shapes, it was found 

that most of them were composed of TNPs, up to a maximum of a pentamer assembly, 

inset (Figure II-1b). Through AFM studies (e, f and g) the configuration was analysed in 

detail, they observed the dimer TNPs, as indicated by a dashed box in Figure II-1b. 
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Figure II-1e shows the corresponding AFM image, in which two bright spots appear in 

each molecule, as indicated by red arrows and ovals. Assuming that the contrast relates 

to the hydrogen atoms, the TNPs are adsorbed as upright (Figure II-1a). An increase in 

the number of deposited TNPs results in larger one-dimensional chain-like structures 

(Figure II-1c). The corresponding AFM image, Figure II-1f, shows that the dots at the 

sides of the chains correspond to upright TNPs, as indicated by the red arrows and oval, 

and it is also observed many dots within the chain structure. Recalling the chemical 

structure of TNP showed in a, six dots can be assigned as the hydrogen atoms in the 

side-lying TNP, as indicated by the yellow arrows and the trigonal-shaped visual guide. 

Because the height of the side-lying TNPs is shorter than that of the upright TNPs by 

140 pm, they appear darker (more negative frequency shift) in constant height mode. 

Further TNP deposition leads to the formation of films with a 1 × 1 structure of side-

lying TNPs, terminating with upright TNPs at the edges (Figure II-1d and g).  

This example represents a direct observation of weak H-bonds. However, there 

are scarce examples in literature related with direct measurements of the strength of H-

bonds at the single-molecule level; one example that we can find was reported by 

Bassani et al.161 They studied the strength of a H-bonded host-guest system, the 

Hamilton receptor (in blue in Figure II-2a) and a barbituric derivative (in red in Figure II-

2a), that are linked through six strong H-Bonds. They performed force spectroscopy 

measurements using 1,2-dichlorobenzene as solvent at room temperature. They 

recorded force/distance curves at approach and retraction velocities of 250 nms -1 with 

contact time of 5 s. After statistical analysis the force related to the rupture of a single 

H-bonded system was found to be 169 pN. The experimental set up and an example of 

a force/distance curve obtained are depicted in Figure II-2.  

However, under aqueous conditions, H-bonds are typically disrupted by forces 

of a few pN. For instance ~10-15 pN are required to pull apart the H-bonds holding the 

double helix of DNA.162 This force range is at the detection limit of classical SPM 

methods.163 In addition, the non-specific adsorption of the sample, typically used by 

these methods and, in many cases, the lack of a proper reporter, hinders the 

unambiguous identification of single molecule events. In the biological sciences, this 

problem is circumvented by using repetitions of the unit peptide under study, and 

discarding the initial distance changes (typically the first 30 to 75 nm) and associated 

force peaks, which are systematically overestimations.64 
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Figure II-2. a) Schematic representation of AFM-SMFS. The gold-coated 

substrate is functionalized with the Hamilton receptor, in blue, otherwise the gold-coated 

tip is functionalized with the barbituric derivative, in red. The formation host-guest 

couple is ensured applying contact time of 5 s (solvent 1,2-dichlorobencene). b) 

Force/distance curves at approach and retraction velocities of 250 nms -1. Upon 

approach (red trace) no peaks were observed, while upon retraction (blue trace) it was 

observed a peak corresponding to the strength necessary to break the H-Bonds that 

hold the system together. Figure adapted with permission from Chem. Eur. J. 2013, 19 

(38), 12748-12758. 
 

At this point, we arrive at the main objective of this chapter; we are looking for a novel 

experimental set-up to unequivocally isolate H-bonded host-guest systems and study their 

mechanical strength under non-equilibrium, near-physiological conditions; as single molecule 

manipulation technique we have selected OT.46 The ability of OT to resolve forces as small as 

0.1-1 pN makes this technique ideally suited to measure the mechanical strength of 

noncovalent interactions in aqueous solutions.  
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2.2. Results and Discussion  

2.2.1. Chemical Design 

In order to unambiguously identify single host-guest interactions we use a 

hairpin-like DNA construct as a ‘single-molecule reporter’. The well-defined mechanical 

properties of DNA make this biological polymer an excellent reporter for identification 

and manipulation of single molecules.54, 162 As a model H-bonded system, we focused 

on the receptor for barbiturates developed by Hamilton164 and a cyanuric acid derivative 

as guest (HR-cy in Figure II-3), which features six strong H-bonds. We based our choice 

on several reasons: 1) the system has been thoroughly studied in bulk; 2) benchmark 

data using SMFS for a similar system in organic solvents are available;161 3) the 

synthesis of the building blocks is well-known and versatile, for instance it is possible to 

block one of the cyanuric acids’ H-bond donors by methylation (HR-cyCH3 in Figure II-

3a). 

To study the mechanical strength of the H-bonds of a single host-guest system, 

the receptor (HR) and the cyanuric acid were linked covalently to the 3’- and 5’- termini, 

respectively, of self-complementary DNA oligonucleotides (Figure II-3a and 

Experimental section). Briefly, an amino alkyl chain-controlled pore glass (LCAA-CPG) 

solid support was modified with the HR (compound II-9, Experimental section) and used 

as a ground to synthesize, in the 3’ to 5’ direction, one of the oligonucleotides 

(oligonucleotide 6, Figure II-3a and Experimental section). The 5’-terminus of the 

complementary oligonucleotide (oligonucleotides 7 and 8, Figure II-3a and 

Experimental section) was linked covalently to a cyanuric acid phosphoramidite 

(compound II-11 and II-15, Experimental section) on the last step of a solid support DNA 

chemical synthesis. The oligonucleotide sequences were designed to provide a 5’ 

protruding end after annealing (Figure II-3a), which was used to ligate the modified 

oligonucleotide couple to one end of a 410 bp dsDNA molecule (or unzipping segment). 

The other end of the unzipping segment was modified at the 5’-terminus with a single 

biotin and at the 3’-terminus with a dsDNA spacer (~1 µm) finished with multiple 

digoxigenins (Dig) (Figure II-3a and Experimental section).165  

 



Chapter 2 
 

 
 

 

Figure II-3. Schematic of experimental setup: a) Diagram illustrating the DNA 

construct (not to scale). One end of the main DNA unzipping segment (blue) was ligated 

to complementary DNA oligonucleotides bearing the receptor (HR, dark green) and the 

cyanuric acid (cy, purple). The other end of the unzipping segment was ligated through 

a short DNA linker (red) to a dsDNA (2686bp) labelled with digoxigenin (Dig,green). The 

5´ end of the linker was labelled with biotin. The insert shows the structure of the HR–

cy couple and the sequence of the complementary DNA oligonucleotides. b) A single 

DNA construct was tethered to functionalized beads via Dig-antiDig (green) and biotin-

streptavidin (red) connections: one strand of the unzipping segment was attached to a 

bead (grey sphere) held in the laser trap (dark yellow beams) and the complementary 

strand to a bead on top of a mobile micropipette (light grey cone). The dsDNA spacer 

(green) provides separation (~1 m) between the two attachment points. Pulling the 

beads in opposite directions promotes the unzipping of the DNA (x) and allows 

applying controlled, axial mechanical force (F) to the host–guest couple located at one 

end of the unzipping segment.  

 

We used a counter propagating dual-beam optical tweezers instrument166 to 

unzip mechanically individual DNA constructs tethered between an optically trapped 
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anti-Dig-coated bead and a streptavidin-coated bead immobilized on top of a 

micropipette (Figure II-3b and Experimental section). This configuration allows applying 

controlled directional mechanical force to the opposite strands of the DNA construct and 

to determine ultimately the mechanical strength of the transient, out of equilibrium, H-

bond interactions holding together the single host-guest couple located at the end of 

the unzipping segment. Therefore, the DNA construct was designed to pull the HR-cy 

couple in an axial direction along the extension of the host-guest couple (Figure II-3b). 

 

2.2.2. Bulk characterization of the host-guest system  

Before going to single molecule manipulation, we further characterized the ended 

dsDNA; where are placed our host-guest systems under study. For this, we measured melting 

temperatures (Tm), recording the dependence of the absorbance versus the temperature at 

260 nm: 

When a DNA solution is heated enough, the dsDNA unwinds, and the H-bonds that 

hold the two strands together weaken and finally break. The process of breaking a dsDNA into 

ssDNA is known as DNA melting, or DNA denaturation. The temperature at which the DNA 

strands are half denatured, meaning half dsDNA, half ssDNA, is called the melting temperature 

(Tm). The amount of strand separation, or melting, can be measured by the absorbance of the 

DNA solution at 260 nm. Nucleic acids absorb light at this wavelength because of the electronic 

structure in their bases, but when two strands of DNA come together, the close proximity of 

the bases in the two strands quenches some of this absorbance. When the two strands 

separate, this quenching disappears and the absorbance rises 30-40 %.This is called 

hyperchromicity. The hypochromic effect is the effect of stacked bases in a double helix 

absorbing less ultra-violet light. Thus, Tm depends on the oligonucleotide composition (G-C 

base pairing (bp) have 3 H-bonds, while A-T bp have only two); it is also affected by its 

environment: increasing salt concentrations helps diffuse negative repulsions between the 

phosphates in the DNA's backbone, conversely, pH can have a negative effect on DNA's 

stability which may lead to a lowering of its melting temperature. 

Very briefly, buffered aqueous solutions of oligonucleotides were prepared in 

phosphate buffered saline (PBS) with oligonucleotide concentrations of 0.2 µM. The samples 

were heated at a rate of 1 °C/ min. Melting curves were recorded at a wavelength of 260 nm 

and were obtained by calculating the inflexion points of the melting curves. Thus, we 

determined the melting point for the duplexes a-f, which are structural analogues of the final 

system (sequences and Tm are summarized in Table II-1). 

Duplexes b (ended in HR-cy couple) and c (ended in HR-cyCH3 couple) reveal an 

increment in the melting point of 3.9 and 2.6 ºC (Table II-1 and Figure II-4) with respect to 
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duplex a (without HR-cy couples). We also recorded melting temperatures of duplexes d 

(ended in HR), e (ended cy) and f (ended in cyCH3) to discard possible effect of the free HR, 

cy and cyCH3 to the melting temperatures. 

These measurements provide evidence that the HR-cy and the HR-cyCH3 are held 

together through H-Bonds. We were also able to observe that there is a significant difference 

in the melting point of the duplex c (ended in HR-cyCH3 couple) with respect to the duplex b 

(ended in HR-cy couple) of 1.3 ºC, this point reflects the existence of fewer H-Bonds between 

the HR-cyCH3 couple.  

 

Table II-1. Duplexes sequences and its melting points, Tm 
values are referenced to duplex a 
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Figure II-4. Absorbance versus Temperature curves (black traces) at 260 nm 

wavelength for duplexes a-f. The melting points were obtained by calculating the inflexion 

points of the melting curves (red traces).   

 

2.2.3. Single molecule experiments 

Under near-physiological NaCl and pH conditions (Tris-HCl 20 mM pH 7.5, 50 

mM NaCl) mechanical unzipping of a single DNA construct started at a force of ~12 

piconewtons (pN) (Figure II-5a). The characteristic force-extension curve of the 

molecule permitted the unequivocal identification of single attachments between the 

beads.162,167 The initial and final extensions of the DNA constructs corresponded to their 

expected lengths before and after unzipping, respectively.168 The unzipping segment 

contained three guanine-cytosine (GC) base pair clusters with 1 to 3 repetitions of the 

GCC sequence, separated by a ~100 nucleotide low-GC content, the three GCC 

clusters are clearly visible as distinct increments in force as we move from the initial 

GCC cluster to (GCC)2 and (GCC)3 (Figure II-5a). These sequences were used as 

fiducial markers to align independent force-extension curves (Experimental Section) 

and further identify the end of the DNA unzipping segment where the host-guest 

interactions should occur. 

Mechanical unzipping of the DNA was typically carried out with a pulling rate of 

50 nm s−1. When the HR component of the host-guest system was not included at the 
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end of the unzipping segment, disassembly was completed shortly after unzipping of 

the last (GC)3 position at an average force of 11.5 ± 0.3 pN (number of experiments, N 

= 20, Figure II-5b). However, when the HR-cy host-guest system was included, after full 

unzipping of the DNA segment the force increased to 16.7 ± 1.6 pN (N = 100, 12% of 

which showed unequivocal signs of binding), reflecting the mechanical strength of the 

H-bonds between the HR-cy couple under these experimental conditions (Figure II-5b). 

Disruption of one of the H-bonding interactions by a methyl group (HR-cyCH3) 

decreased the rupture force to 15.6 ± 0.7 pN (N = 100, 10%, Figure II-5b). We note that 

although mechanical stability is not necessarily related to thermodynamic stability,169 

our results are in agreement with the effect of these modifications on the thermal 

stability of oligonucleotide duplexes in the bulk.  

We confirmed with a 95% probability that the difference between the rupture 

forces measured for the HR-cy and HR-cyCH3 couples is statistically significant (this is 

clearly explained in the Experimental section). These results highlight the remarkable 

ability of our method to resolve subtle changes in the mechanical strength of the 

complex due to the H-bond components. However, we note that the mechanical stability 

of the HR-cy couple depends on the location of the transition state along the mechanical 

reaction coordinate used in our experiments, the height of the barrier and the loading 

rate.169-171 Therefore, the H-bonds of the host-guest system are probably not equivalent 

in terms of resistance to the applied force, and our measurements reflect an average 

for the mechanical strength of the HR-cy couple. In fact, the difference in the rupture 

force between the HR-cy and HR-cyCH3 couples (1-2 pN) suggests that the applied 

force is distributed over the whole binding site of the host-guest couple and is not 

representative of a single H-bond. 

Previously reported average rupture forces for the HR-cy system were measured 

at ~170 pN with Atomic Force Microscopy (AFM) at a pulling rate of 250 nm s−1 in an 

organic solvent.161 As discussed above, the discrepancy in experimental results may 

arise from differences in the pulling geometry, effective pulling rates, contact forces172 

and/or from an enhancement in binding strength of H-bonded complexes in organic 

solvents compared to aqueous environment.  
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Figure II-5. Rupture forces of the HR-cy couple. a) Representative experiments 

showing the force extension curves of DNA constructs harbouring at their ends the HR-cy (red, 

50 nm/ s, green 200 nm/ s) or HR-cyCH3 (blue, 50 nm/ s) couples. The mechanical unzipping 

of DNA constructs without the HR component is shown in grey. Four independent curves are 

shown in each case (see Experimental section for additional curves). The positions of the GC 

clusters are revealed as peaks in the unzipping pattern. Arrows indicate the force and position 

of the rupture events. b) Average rupture forces for DNA constructs without the HR-cy couple 

(grey), with the HR-cy couple (red, 50 nm/ s, green 200 nm/ s) and with the HR-cyCH3 couple 

(blue, 50 nm/ s). Error shows standard deviations; see the main text for populations. Data were 

taken at 100 Hz (22 ± 1 oC). 
 

Our experimental results were corroborated by DFT calculations. The potential 

energy curves (PECs) for HR-cy and HR-cyCH3 couples were calculated performing 

single point energy calculations at different distances in an axial direction, along the 

extension of the host-guest couple. Specifically, we increase the host-guest distance 

(see Experimental section for the definition of the axial direction) 50 times with a 

variation of 0.2 Å between them. The long range corrected ωB97xD density functional173 

was employed in combination with the basis-set 6-31g(d,p) and the IEF-PCM water 

solvation model. This methodology has been chosen following the literature in the 

field.23, 24, 174, 175 The PECs for HR-cy and HR-cyCH3 systems and the optimized 

structures for the completely bonded and non-interacting states in water are displayed 

in Figure II-6.  
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Figure II-6. a) Potential energy curves for HR–cy (blue) and HR–cyCH3 (red) 

employing IEF-PCM water solvation model. b) Energy-minimized molecular models 

showing the geometry of the bound (left) and unbound (right) HR–cy system. 

 

In Figure II-6a, we observe that at large distances, interactions are negligible (Eb 

= 0) but attractive interactions grow as host and guest approach each other, reaching a 

state of equilibrium where the net force (the sum of both attractive and repulsive 

components) is zero. The PECs indicate the energy of the host-guest interaction based 

on the depth of the potential well, and the force (F) is the slope of the curve, according 

to: F = −dEb/dr, where Eb is the binding energy and r the distance between host and 

guest. At equilibrium, the binding energy for the systems HR-cy and HR-cyCH3 are 

calculated to be 40.51 and 41.92 Kcal mol−1 respectively, which are expected binding 

energies for systems with six and five strong hydrogen bonds in aqueous conditions.  

At short distances from the equilibrium state (0-0.03 nm) the potential energy is 

not affected by a change in the intermolecular distance, but at larger values of r a 

change in the slope is observed. From this point to the next change in slope, where the 

cyanuric acid is completely dissociated from the HR (see Figure II-6b right), a value of 

16 pN for the force is obtained. This value is directly related with the force required to 

split the couple, and is in good agreement with our experimental data. In the case of the 

HR-cyCH3 system, the calculated force was 13 pN, a noticeably lower value than HR-

cy, following the same tendency of ours experimental results. We also calculated the 

rupture force using 1,2-dichlorobenzene as model of organic solvent (see Experimental 

Section). We observe a slight increase in the force: 17 pN for HR-cy system and 14 pN 
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for HR-cyCH3. DFT calculations corroborate that the average rupture forces measured 

in our work under aqueous conditions are in the correct order of magnitude, and support 

a relatively minor role of solvent composition in the breaking of an already formed H-

bonded host-guest couple. 

 

To sum up, we have developed a new method to measure the average mechanical 

strength of H-bonded supramolecular complexes, at the single-molecule level, under non-

equilibrium conditions. Our method expands the capabilities of previously described SPM 

methods by exploiting the force resolution of optical tweezers (0.1-100 pN), which allows 

measuring the characteristic strength of H-bonds under near-physiological conditions, and by 

including a DNA reporter that guarantees that the force measurements refer to a single binding 

event. The modularity and addressability of the DNA construct described here also opens up 

the possibility of targeting synthetic host-gest couples in controlled orientations and 

stoichiometry. In this case, we have focused on aqueous conditions, but the system is in 

principle adapTable to other sets of conditions. This renders our method a versatile and precise 

tool to address key questions in supramolecular chemistry, like the mechanical strength of H-

bonded systems, and its relationship with their thermodynamic stability. 
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General. All solvents were dried according to standard procedures. Reagents were 

used as purchased. All air-sensitive reactions were carried out under argon atmosphere. Flash 

chromatography was performed using silica gel (Merck, Kieselgel 60, 230-240 mesh, or 

Scharlau 60, 230-240 mesh). Analytical thin layer chromatographies (TLC) were performed 

using aluminium-coated Merck Kieselgel 60 F254 plates. NMR spectra were recorded on a 

BrukerAvance 400 (1H: 400 MHz; 13C: 100 MHz), spectrometer at 298 K, unless otherwise 

stated, using partially deuterated solvents as internal standards. Coupling constants (J) are 

denoted in Hz and chemical shifts (δ) in ppm. Multiplicities are denoted as follows: s = singlet, 

d = doublet, t = triplet, sx = sextuplet, m = multiplet, br = broad. Fast Atom Bombardment (FAB) 

and Matrix-assisted Laser desorption ionization (coupled to a Time-Of-Flight analyzer) 

experiments (MALDI-TOF) were recorded on a VS AutoSpec spectrometer and a Bruker 

ULTRAFLEX III spectrometer, respectively. 
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2.3.1. Synthesis of the Hamilton receptor derivative 
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N-(6-aminopyridin-2-yl)butyramide 

 

A solution of butyryl chloride (2 g, 18.8 mmol) in dry THF (10 mL) was added to a 

solution of 2,6-diaminopyridine (2.05 g, 18.8 mmol) and trimethylamine (1.9 g, 18.8 mmol) 

in dry THF (20mL) at 0 ºC under nitrogen atmosphere over a period of 2h. The solution 

was stirred overnight, at room temperature; the residue was filtered off and the solvent 

removed under reduced pressure. The product was purified by column chromatography to 

give II-1 as yellow solid, 2.23 g, 66%. 1H NMR (CDCl3): = 7.65 (s, 1H), 7.54 (br d, J = 7.8 

Hz, 1 H), 7.44 (t, J = 7.9 Hz, 1 H), 7.44 (t, J = 7.9 Hz, 1 H), 7.23 (d, J = 8 Hz, 1 H), 4.29 (br 

s, 2H), 2.31 (t, J = 7.4 Hz, 2 H), 1.73 (s, J = 7.4 Hz, 2 H), 0.98 (t, J = 7.4 Hz, 3 H) .This data 

is in accordance with Chem. Eur. J. 2007, 13, 5466.  

 

 

 

 

 

 

 

 

 

 

 



2.3 Experimental section 
 

55 
 

N1,N3-bis(6-butyramidopyridin-2-yl)-5-nitroisophthalamide 

 

A solution of 5-nitroisophthaloyl dichloride (0.9 g, 3.62 mmol) in dry THF was added 

dropwise to a solution of monosubstituted diaminopyridine II-1 (1.5 g, 7.24 mmol) and 

trimethylamine (0.7 g, 7.24 mmol) in dry THF (15 mL) at 0ºC under argon atmosphere. The 

solution was stirred at room temperature overnight, the residue filtered off and the solvent 

removed under reduced pressure. Purification by column chromatography on silica gel (DCM: 

AcOEt 10:1 to 3:1) gave II-2 as a yellow solid, 1.89 g, 98%. 1H NMR ([D6]dimethyl 

sulfoxide):= 10.94 (s, 2H), 10.12 (s, 2H), 8.92 (m, 2H), 8.91 (m, 1H), 7.86 (d, J = 4.7 Hz, 3 

H), 7.79 (m, 2H), 2.39 (t, J = 7.3 Hz, 2 H), 1.61 (sx, J = 7.4 Hz, 2 H), 0.91 (t, J = 7.4 Hz, 3 H); 

13C NMR ([D6]dimethyl sulfoxide): = 172.1 (2C), 163.5 (2C), 150.6 (2C), 149.8 (2C), 147.7 

(2C), 140.1 (2C), 135.8 (2C), 133.6, 125.7 (2C), 110.6, 110.3 (2C), 38.0 (2C), 18.4 (2C), 13.6 

(2C) ppm. This data is in accordance with J. Am. Chem. Soc., 1990, 26, 9589. 
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5-amino-N1,N3-bis(6-butyramidopyridin-2-yl)isophthalamide 

 

To a solution of II-2 (0.4 g, 0.75 mmol) in dry THF (34 mL) and MeOH (34 mL) in a 

round-botton flask under nitrogen atmosphere, 10% Pd-C (0.4 g) was added and the reaction 

mixture was heated to 70 ºC. Then hydrazine (1.1g, 20.4 mmol) was added to the reaction 

mixture, which was heated under reflux for 4h. After cooling the reaction mixture to room 

temperature, Pd-C was removed by filtering it twice through celite, and the filtrate was 

evaporated under vacuum to give II-3 as a white solid, 0.3 g, 79%. 1H NMR ([D6]dimethyl 

sulfoxide): = 10.18 (s, 2H), 7.80 (m, 6H), 7.70 (m, 1H), 7.31 (d, J = 1.4 Hz, 2 H), 5.65 (s, 2H), 

2.39 (t, J = 7.3 Hz, 2 H), 1.60 (sx, J = 7.4 Hz, 2 H), 0.91 (t, J = 7.4 Hz, 3 H); 13C NMR 

([D6]dimethyl sulfoxide): = 172.0 (2C), 165.7 (2C), 150.5 (2C), 150.2 (2C), 149.3 (2C), 140.0 

(2C), 138.1, 134.9 (2C), 116.3 (2C), 110.6 (2C), 109.8, 38.0 (2C), 18.4 (2C), 13.6 (2C) ppm. 

MS m/z: calculated for C26H29N7O4 [M+H]+ 503.6 found FAB 504.3.  
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N1,N3-bis(6-butyramidopyridin-2-yl)-5-(pent-4-ynamido)isophthalamide 

 

4-pentynoic acid (16 mg, 0.16 mmol) was dissolved in DCM (3.5 mL) and the solution 

was cooled to 0ºC. EDCI.HCl (50 mg, 0.26 mmol) and DMAP (31 mg, 0.26 mmol) were added. 

The reaction mixture was allowed to stir at room temperature for 30 minutes. A solution of II-3 

(75 mg, 0.15 mmol) in DCM (2 mL) was added to the activated acid. The reaction mixture was 

stirred for 24h, concentrated under reduced pressure and then DCM was added. The organic 

layer was washed once with 1M HCl, once with NaHCO3 (sat., aq.), then concentrated under 

reduced pressure. The crude material was purified by column chromatography (eluent: DCM: 

MeOH 25:1) to furnish product II-4 as white solid, 50mg, 57%. 1H NMR ([D6]dimethyl 

sulfoxide): = 10.40 (s, 1H), 10.36 (s, 2H), 10.08 (s, 2H), 8.36 (d, J = 1.3 Hz, 2H), 8.22 (m, 
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1H), 7.81 (m, 6 H), 2.82 (t, J = 2.6 Hz, 1 H), 2.58 (m, 2H), 2.38 (t, J = 7.3 Hz, 4 H), 1.61 (sx, J 

= 7.4 Hz, 4 H), 0.91 (t, J = 7.4 Hz, 6 H); 13C NMR ([D6]dimethyl sulfoxide): = 172.1 (2C), 

169.9, 165.1 (2C), 150.6 (2C), 150.0 (2C), 140.1 (2C), 139.6 (2C), 134.8 (2C), 121.7, 110.3 

(2C), 110.0, 83.5, 71.6, 38.0 (2C), 35.2, 18.4 (2C), 14.0, 13.6 (2C). MS m/z: calculated. for 

C31H33N7O4 [M+H]+ 583.6 found MALDI-TOF 584.3.  
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4-azido-N-((2R,3R)-1,3-dihydroxybutan-2-yl)benzamide 

 

4-Azidobenzoic acid (447 mg, 2.74 mmol) was solved in dry DMF (6.6 mL) under argon 

atmosphere; then HOBt (339 mg, 2.51 mmol) and DCC (518 mg, 2.51 mmol) were added. 

After 5 minutes stirring at room temperature  L-Threoninol (240 mg, 2.28 mmol) was added. 

The reaction was stirring overnight. The white solid was filtered off and solvent was removed 

under reduced pressure. The product was purified by column chromatography (gradient elution 

DCM: MeOH 50:1 to 20:1) to give II-5 as a yellow solid, 430 mg, 75%. 1H NMR ([D6]dimethyl 

sulfoxide): = 7.92 (d, J = 6.7 Hz, 2 H), 7.74 (br d, J = 8.4 Hz, 2 H), 7.19 (d, J = 7.3 Hz, 2H), 

4.59 (m, 2H), 3.89 (m, 2H), 3.58 (m, 1H), 3.47 (m, 1H), 1.05 (d, J = 6.3 Hz, 3 H); 13C NMR 

([D6]dimethyl sulfoxide): = 165.6, 142.1, 131.4, 129.3, 118.8, 64.9, 60.4, 56.7, 20.2 ppm. MS 

m/z: calculated. for C11H14N4O3 [M+H]+ 250.2 found FAB 251.0. 
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4-azido-N-((2R,3R)-1-(bis(4-methoxyphenyl)(phenyl)methoxy)-3-hydroxybutan-2-
yl)benzamide 

 

Compound II-5 (192 mg, 0.77 mmol) was solved in Pyridine (3.8mL) under argon 

atmosphere. Afterwards DIPEA (149 mg, 1.16 mmol), DMAP (150 mg, 1.16 mmol) and 4,4′-

Dimethoxytrityl chloride (313 mg,0.92 mmol) were added at 0ºC. The reaction was stirred 

overnight. Pyridine was removed under reduced pressure and the desired product was purified 

by flash column chromatography using neutralized SiO2 (neutralized with trimethylamine), 

using gradient elution Hexane: AcOEt 2 : 1 to 1:1 to give II-6 as a colorless solid, 350 mg, 

82%.1H NMR ([D6]dimethyl sulfoxide):= 8.02 (d, J = 8.7 Hz, 2 H), 7.96 (d, J = 8.6 Hz, 2 H), 

7.38 (br d, J = 8.8 Hz, 2 H), 7.23 (m, 8H), 6.83 (dd, J = 8.9, 3.4 Hz, 2 H), 4.55 (d, J = 6.2 Hz,  

1H), 4.10 (m, 2H), 4.01 (m, 2H), 3.72 (s, 6H),  3.21 (dd, J = 9, 5.4  Hz, 1H), 2.96 (dd, J = 9, 6.2 

Hz, 1H), 1.00 (d, J = 6.3 Hz, 3 H); 13C NMR ([D6]dimethyl sulfoxide): = 165.6, 158.0 (2C), 

145.1, 142.2, 135.9 (2C), 135.7 (2C), 131.3 (2C), 129.7 (2C), 129.3 (2C), 127.7 (2C), 127.7 

(2C), 126.5, 124.5, 118.8 (2C), 113.07 (2C), 85.1, 65.2, 63.0, 55.2, 55.0 (2C), 20.3 ppm. MS 

m/z: calculated. for C32H32N4O5 [M]+ 552.2 found FAB 552.2. 
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5-(3-(1-(4-(((2R,3R)-1-(bis(4-methoxyphenyl)(phenyl)methoxy)-3-hydroxybutan-2-
yl)carbamoyl)phenyl)-1H-1,2,3-triazol-4-yl)propanamido)-N1,N3-bis(6-

butyramidopyridin-2-yl)isophthalamide 

 

Compound II-4 (20 mg, 0.034 mmol) and II-6 (19 mg, 0.034 mmol) were dissolved in 

anhydrous DMF (1 mL); then DIPEA was added (4.4 mg, 0.034 mmol), followed by the addition 

of catalytic amount of CuI. The reaction was stirred for 3h. Once it was completed (TLC), the 

solvent was removed under reduced pressure and the product was purified by flash column 

chromatography using neutralized SiO2 (neutralized with trimethylamine), using gradient 

elution DCM/MeOH 25/1 to 15/1 to give II-7 as a colorless oil, quantitative yield. 1H NMR 

([D6]dimethyl sulfoxide): 10.35 (br d, J = 3.2 Hz, 2 H), 10.07 (br d, J = 4.3 Hz, 2 H), 8.36 (m, 

2H), 8.21 (s, 1H), 8.07 (d, J = 8.6 Hz, 2 H), 7.80 (m, 7H), 7.23 (m, 4H), 7.07 (d, J = 8.7 Hz, 2 
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H), 6.83 (br d, J = 8.7 Hz, 2 H), 6.20 (s, 1H), 4.60 (m, 2H), 3.92 (m, 2H), 3.72 (S, 6H), 3.59 (m, 

2H), 2.85 (m, 2H), 2.38 (t, J = 7.3 Hz, 1H), 1.60 (sx, J = 7.3 Hz, 1H),1.06 (d, J = 6.3 Hz, 3 H). 

0.91 (t, J = 7.3 Hz, 3 H). MS m/z: calculated for C63H65N11O10 [M-DMTr+H]+ 833.9 found MALDI-

TOF 834.4. 

 

 

 

 

 

Parafin oil 
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2.3.2. Preparation of modified solid supports  

 

 

Compound II-8. To a solution of II-7 (20 mg, 002 mmol) in DMF (0.5 mL), succinic 

anhydride (3 mg, 0.03 mmol) was then added, followed by the addition of catalytic amount of 

DMAP and DIPEA (4 mg, 0.03 mmol). The reaction mixture was stirred overnight. The solvent 

was removed under reduced pressure. The crude material was dissolved in EtOAc and the 

organic layer was washed with brine (sat. aq.). The product II-8 was used directly in the next 

reaction step without further purification.  
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Compound II-9. 250 mg of commercial solid support (LCAA-CPG-500 Å) were 

introduced in a specific column. On a round botton flask, II-8 (20 mg, 0.016 mmol) was 

dissolved in dry DMF (0.8 mL), then DCC (5 mg, 0.024 mmol) was added, followed by the 

addition of HOBt (3 mg, 0.022 mmol); the reaction mixture was introduced quickly in the column 

with the solid support (ensuring that the column was closed). The column was covered and it 

was swirling with a vortex every 30min, repeating it for 5h. Then, the excess of liquid was 

filtered off and the column was washed several times with MeOH and acetonitrile. The modify 

solid support was treated with 1mL of CAP A (600 L of Py, 500L THF, 400L Ac2O) and 

1mL of CAP B (1 mL THF, 400L 1-methylimidazol), reacted for 30 min, and filtered again and 

washed successively with 10 mL portions of MeOH and MeCN and dried in vacuo. Loading 

was determined by treating a portion (10 mg) of II-9 with 1 mL of 18% v/v HClO4 in EtOH and 

measuring the absorbance of DMTr cation at 504 nm (ɱ= 75 mL cm-1 mol-1). This was found 

to be 6.7 mol/g. 

 

2.3.3. Cyanuric acid derivate synthesis 
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1-(11-hydroxyundecyl)-1,3,5-triazinane-2,4,6-trione 

 

To a solution of cyanuric acid (1.03 g, 7.96 mmol) in DMF (16mL) was added 11-Bromo-

1-undecanol (0.5 g, 2 mmol) and 1,8-diazabicycloundec-7-ene (0.32 g, 2 mmol). The reaction 

mixture was heated under 70ºC overnight, poured into the water, and extracted with ethyl 

acetate. The organic layer was washed with water to eliminate the excess of cyanuric acid, 

dried with MgSO4 and filtered. The solvent was removed under reduced pressure and the 

crude material was purified by column chromatography using DCM : MeOH 15:1 as a eluent 

to give II-10 as a white solid, 596 mg, 25%.1H NMR ([D6]dimethyl sulfoxide):= 11.34 (br s, 

2H), 4.32 (br s, 1H), 3.62 (t, J = 7.2 Hz, 2 H), 3.37 (m, 2H), 1.51 (m, 2H), 1.40 (m, 2H), 1.25 (s, 

14); 13C NMR ([D6]dimethyl sulfoxide): = 149.9 (2C), 148.7, 60.7, 40.4, 32.5, 29.1, 28.9 (2C), 

28.9, 28.7, 27.3, 26.1, 25.5.ppm. MS m/z: calculated. for C14H25N3O4 [M+Na]+ 322.4 found 

MALDI-TOF 322.2. 
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2-cyanoethyl (11-(2,4,6-trioxo-1,3,5-triazinan-1-yl)undecyl) isopropylphosphoramidite 

 

Compound II-10 (100 mg, 0.33 mmol) was solved in dry DMF (1 mL) and the solution 

was cooled to 0ºC. Then, 5-Benzylthio-1-H-tetrazole (76 mg, 0.4 mmol) and the 

phosphorylating reagent, 2-Cyanoethoxy-bis(N,N-diisopropylamino) phosphine (100 mg, 0.33 

mmol), were added. The reaction mixture was allowed to stir at room temperature for 3h under 

argon atmosphere. When the reaction was completed (followed by TLC), the crude material 

was using directly, without further purification, in the last step of the automated solid phase 

synthesis of the corresponding oligonucleotide (oligonucleotide 4 and oligonucleotide 7), due 

to II-11 is a very unstable compound we were not able to isolate it. 

 

1-(11-((tert-butyldiphenylsilyl)oxy)undecyl)-1,3,5-triazinane-2,4,6-trione 

 

Compound II-10 (310 mg, 1.11 mmol) was solved in dry DMF (6 mL). Imidazole (300 

mg, 4.46 mmol) and tert-Butyl(chloro)diphenylsilane (337 mg, 1.23 mmol) were added. The 

reaction mixture was refluxed under argon atmosphere for 3h. The solvent was removed under 

reduced pressure and the crude material was purified by column chromatography using a 

gradient elution DCM : MeOH 100 : 1 to 50 : 1 to II-12 as a white solid, 380mg, 62%. 1H NMR 

([D6]dimethyl sulfoxide):= 11.37 (br s, 2H), 7.61 (m, 4H), 7.44 (m, 6H),  4.32 (br s, 1H), 3.62 

(m, 4H), 1.51 (m, 4H), 1.31 (m, 2H), 1.21 (br s, 12), 0.99 (s, 9H); 13C NMR ([D6]dimethyl 

sulfoxide): = 149.8 (2C), 148.6, 135.0 (4C), 133.4 (2C), 129.8 (2C),127.8 (4C), 63.4, 40.4, 

31.9, 28.9, 28.8 (2C), 28.7, 28.6, 27.3, 26.7, 26.1, 25.1, 18.8 (3C) ppm. MS m/z: calculated. 

for C30H43N3O4Si [M+H]+ 538.3 found FAB 538.3. 
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1-(11-((tert-butyldiphenylsilyl)oxy)undecyl)-3-methyl-1,3,5-triazinane-2,4,6-trione 

 

To a solution of II-12 (270 mg, 0.5 mmol) in dry DMF (3 mL) were added iodomethane 

(36 mg, 0.25 mmol) and 1,8-diazabicycloundec-7-ene (40 mg, 0.25 mmol). The reaction 

mixture was heated at 55 ºC overnight. The solvent was removed under reduced pressure and 

the crude material was purified by column chromatography using DCM : MeOH 100 : 1 as a 

eluent. To give II-13 as a colorless oil, (76%). 1H NMR ([D6]dimethyl sulfoxide): 11.61 (br s, 

1H), 7.60 (m, 4H), 7.43 (m, 6H),  3.64 (m, 4H), 3.09 (s,3H), 1.51 (m, 4H), 1.31 (m, 2H), 1.22 

(br s, 12), 0.99 (s, 9H); 13C NMR ([D6]dimethyl sulfoxide): = 150.2, 149.0, 148.7, 135.0 (4C), 

133.4 (2C), 129.8 (2C),127.8 (4C), 63.4, 41.3, 40.3, 31.9, 28.9, 28.8, 28.7, 28.6, 28.0, 26.7 

(2C), 26.1, 25.1, 18.8 (3C) ppm. MS m/z: calculated for C31H45N3O4Si [M+H]+ 552.3 found FAB 

552.5. 
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1-(11-hydroxyundecyl)-3-methyl-1,3,5-triazinane-2,4,6-trione 

 

To a solution of II-13 (120 mg, 0.22 mmol) in THF was added tetrabutylammonium 

fluoride solution 1.0 M in THF (0.28 mL). The reaction mixture was stirred for 1h at room 

temperature. Then the solvent was removed under reduced pressure and the crude material 

was purified by column chromatography (gradient elution DCM : MeOH 150 : 1 to 50 : 1) to 

give II-14 as colorless oil, 63 mg, 91%. 1H NMR ([D6]dimethyl sulfoxide):= 11.61 (br s, 2H), 

4.30 (t, J = 5.1 Hz, 2 H), 3.37 (m, 2H), 1.51 (m, 2H), 1.40 (m, 2H), 1.24 (s, 14); 13C NMR 

([D6]dimethyl sulfoxide): = 150.2, 149.0, 148.7, 60.7, 41.3, 40.2, 32.5, 29.1, 28.9, 28.9 (2C), 

28.7, 28.0, 27.2, 26.1, 25.5 ppm. MS m/z: calculated for C15H27N4O4 [M+H]+ 314.4 found FAB 

314.4. 
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2-cyanoethyl (11-(3-methyl-2,4,6-trioxo-1,3,5-triazinan-1-yl)undecyl) 

isopropylphosphoramidite 

 

Compound II-14 (103 mg, 0.33 mmol) was solved in dry DMF (1 mL) and the solution 

was cooled to 0ºC. Then 5-Benzylthio-1-H-tetrazole (76 mg, 0.4 mmol) and the phosphitylating 

reagent, 2-Cyanoethoxy-bis(N,N-diisopropylamino) phosphine (100 mg, 0.33 mmol), were 

added. The reaction mixture was allowed to stir at room temperature for 3h under argon 

atmosphere. When the reaction was completed (followed by TLC), the crude material was 

using directly, without further purification, in the last step of the automated solid phase 

synthesis of the corresponding oligonucleotides (oligonucleotide 5 and oligonucleotide 8), due 

to compound II-15 is a very unstable compound, we were not able to isolate it. 
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2.3.4. Automated Oligonucleotide synthesis and analytical data of 

oligonucleotides 

 

The syntheses of oligonucleotides were performed on a MerMade 4 synthesizer 

(BioAutomotion Corporation). For each oligonucleotide synthesis, columns filled with the 

corresponding Controlled Pore Glass (CPG) solid support. Anhydrous MeCN was used as 

solvent. For the cleavage of DMTr protecting groups, the resin was purged with 3 % 

trichloroacetic acid in anhydrous DCM. The removal of the acid was carried out by purging with 

anhydrous MeCN. The activation of the phosphoramidite functionality was effected by a 0.25 

M benzylthiotetrazole solution in anhydrous MeCN. The coupling time for standard 

phosphoramidites was 2 min and for cyanuric-acid derivatives 5 min (compound 11 and 15). 

Oxidation of P(III)-species was attained by alkaline iodine solution (20 mM I2 in THF/Py/water 

7/2/1). For the capping of residual 5'-OH-groups, a mixture of solution A (10% Ac2O, 10% 

pyridine, 80% THF) and solution B (10% 1-methylimidazole in THF) was used. After completion 

of the synthesis, the oligonucleotides were cleaved from the solid support with concomitant 

removal of the Fmoc and β-cyanoethyl protecting groups by reacting the oligonucleotide-

charged solid support with 28 % aq. NH3 at 55 °C for 20 h. The solution was filtered and the 

filtrate was concentrated in vacuo. The residue was dissolved in 750 μL water. For purification 

of this crude oligonucleotide solution, a volume containing ~40 nmol crude oligonucleotide was 

applied to gel electrophoresis (1 mm, 20% polyacrylamide). The oligonucleotide-containing 

segments of the gel were visualized by UV-light (260 nm) and separated from the rest of the 

gel. Oligonucleotides were extracted from the gel using an elutrap system (3 h, 200 V). The 

solutions were desalted using a NAP-10 column and concentrated in an evaporating 

centrifuge. 

 

2.3.5. Mass spectral data of synthesized oligonucleotides 

MALDI data was obtained at the Proteomic facility of the National Center for 

Biotechnology (CNB-CSIC). 
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Table II-2. MALDI data of synthesized oligonucleotides 

 

 

 Oligonucleotide 1 

 

 

 

 

 

 

 

 

 

 

 

3998.0 6215.2 8432.4 10649.6 12866.8 15084.0

Mass (m/z)

1051.3

0

10

20

30

40

50

60

70

80

90

100

Final - Shots 1200 - 20151104_Alvaro Somoza; Run #1; Label A10

5811.292(S875)

5679.079(S192)

5498.700(S116)
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 Oligonucleotide 2 

 

 

 

 Oligonucleotide 3 

 

 

 

 

 

 

3998.0 6215.2 8432.4 10649.6 12866.8 15084.0

Mass (m/z)

5126.4

0

10

20

30

40

50

60

70

80

90

100

Final - Shots 1200 - 20151104_Alvaro Somoza; Run #1; Label A11

5812.112(S4328)

5672.474(S1084)

5483.810(S205)

5342.320(S102)4180.753(S103)
11630.686(S49)

2999 5409 7819 10229 12639 15049

Mass (m/z)

3351.6

0

10

20

30

40

50

60

70

80

90

100

Final - Shots 1600 - 20151027_Alvaro Somoza; Run #1; Label N3

3178.699(S1765)

6696.118(S2610)

3222.889(S357)

3080.878(S258)
6561.111(S237)

3205.015(S78)
6626.293(S208)

3237.932(S24)
6383.931(S67)

3787.109(S30) 6070.853(S29)6956.290(S43)
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 Oligonucleotide 4 

 

 

 

 

 Oligonucleotide 5 

 

 

 

 

 

2999 5409 7819 10229 12639 15049

Mass (m/z)

6291.9

0

10

20

30

40

50

60

70

80

90

100

Final - Shots 1600 - 20151029_Alvaro Somoza; Run #1; Label A7

5803.534(S2299)

6164.965(S1738)

5825.714(S501)

5652.738(S515)

5671.407(S171)

5840.893(S67)

6052.501(S102)

5519.104(S79)3082.763(S174)
6116.256(S31)3059.818(S21) 5193.106(S23)4033.932(S122)

6475.849(S39) 11972.163(S62)3002.251(S25)

1999.0 3605.6 5212.2 6818.8 8425.4 10032.0

Mass (m/z)

8188.8

0

10

20

30

40

50

60

70

80

90

100

Final - Shots 1600 - 20160225_Alvaro_Somoza; Run #1; Label E9

6181.988(S6959)

6204.098(S1525)

2015.654(S905)

6031.512(S1189)

6048.522(S504)2038.881(S237)

2098.174(S340)
6069.555(S397)

2055.620(S38) 6225.072(S340)
3091.289(S444)

6090.764(S81)2144.657(S20)
3110.965(S29) 5758.169(S86)2525.841(S34) 4035.694(S60) 6477.375(S101)
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 Oligonucleotide 6 

 

 

 

 

 Oligonucleotide 7 

 

 

 

 

 

2998.0 12437.8 21877.6 31317.4 40757.2 50197.0

Mass (m/z)

7579.2

0

10

20

30

40

50

60

70

80

90

100

Final - Shots 1200 - AlvaroSomoza_20150723; Run #1; Label D13

6777.208(S2712)

6645.217(S672)

3388.210(S453)

3622.039(S320)

6491.197(S98)

6899.311(S58)
13559.777(S129)3168.628(S30)

2998.0 4204.6 5411.2 6617.8 7824.4 9031.0

Mass (m/z)

1.0E+4

0

10

20

30

40

50

60

70

80

90

100

Final - Shots 1600 - AlvaroSomoza_20150925; Run #1; Label C13

4935.534(S6001)

4957.192(S800)

3626.531(S967) 4785.125(S843)

4801.514(S370)3837.842(S669)
4973.119(S182)

3859.913(S384)
4990.910(S69)5467.555(S332)4149.348(S179)3070.661(S84) 3646.862(S40)

5600.665(S27) 6208.531(S21)
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 Oligonucleotide 8 

 

 

 

 

 Oligonucleotide 9 

 

 

 

 

 

1999.0 3605.6 5212.2 6818.8 8425.4 10032.0

Mass (m/z)

1.2E+4

0

10

20

30

40

50

60

70

80

90

100

Final - Shots 1600 - 20160225_Alvaro_Somoza; Run #1; Label E10

4945.625(S10531)

4969.198(S4468)

2015.590(S1348)

2039.228(S498)

2098.499(S626)
4794.868(S1771)

4989.918(S1061)2055.818(S94)

2119.923(S81)
4855.891(S240)2134.766(S23) 4159.486(S553)2800.430(S246) 4907.720(S72)3434.829(S72) 4204.484(S56)2596.796(S22) 5046.189(S44)

2998.0 12437.8 21877.6 31317.4 40757.2 50197.0

Mass (m/z)

2.3E+4

0

10

20

30

40

50

60

70

80

90

100

Final - Shots 1200 - AlvaroSomoza_20150723; Run #1; Label D14

4570.449(S8308)

4433.155(S1707)

4267.281(S654)

9148.610(S1043)
3797.353(S326)

8838.578(S79) 13722.438(S70)3508.195(S23)



Chapter 2 
 

84 
 

2.3.6. Melting temperatures of duplexes 

Melting curves of duplexes were measured on a Cary 5000 UV–Vis-NIR 

spectrophotometer. For these measurements, buffered aqueous solutions of oligonucleotides 

were prepared Phosphate Buffered Saline (PBS) (pH = 7, 10 mM NaH2PO4/Na2HPO4 1:1, 150 

mM NaCl) with oligonucleotide concentrations of 0.2 µM. The volume of each sample was 

1000µL. The samples were heated at a rate of 1 °C/min. For each sample, three melting curves 

were recorded at a wavelength of 260 nm. Melting temperatures were obtained by calculating 

the inflexion points of the melting curves. 

The melting point was determined for the duplexes a-f, which are structural analogues 

of the final system (sequences and Tm are summarized in Table II-1). 

2.3.7. Synthesis of the DNA construct 

The main DNA unwinding segment (410 bp) contains one, two and three repetitions of 

the GCC cluster separated by 97 bp of a low GC content sequence (Genscript Corp.) The DNA 

unwinding segment was digested with EcoRI and SalI restriction endonucleases. The SalI end 

was ligated to the previously described oligonucleotides modified with the HR-cy couple or to 

a self-annealing oligonucleotide forming a penta-loop (to test the strength of the attachments, 

see Figure II-7). The EcoRI end was ligated to the EcoRI end of a short dsDNA linker; the other 

end of the linker contains non-complementary 5’ and 3’ protruding strands. The 5’ strand is 

labelled with biotin and the 3’ contains the PstI restriction endonuclease recognition sequence. 

After purification of ligation products (Qiagen PCR Purification Kit) a 2686 dsDNA handle 

(puc19 vector, Novagen) cut with PstI and labeled with Digoxigenin at the 5’ end was ligated 

to the PstI 3’ protruding end of the linker.  

2.3.8. Optical tweezers experiments 

The DNA construct was bound to Anti-Dig covered beads (Spherotech Co.) by 

incubating 3 l of the DNA preparation with 3 l of the beads for ten minutes at room 

temperature. The sample was then diluted with 300 l of the reaction buffer (Tris-HCl 20 mM 

pH 7.5, 50 mM NaCl) and flowed into the fluidic chamber. The Anti-Dig, DNA covered beads 

were manipulated with the optical trap and single DNA constructs were obtained by attaching 

the biotin end of the DNA to the streptavidin bead (Spherotech Co.) previously hold on top of 

a mobile micropipette. The mechanical properties of the DNA construct allowed identifying 

single attachments (see experimental force-extension curves below). Data were collected in a 

dual-beam optical tweezers at 100 Hz at 22 ± 1 °C. Pulling rates were 50 and 200 nm/ s, when 

indicated. 
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2.3.9. Experimental force-extension curves 

 

Figure II-6. Independent force-extension curves (FECs) of DNA constructs covalently 

closed at the SalI end by a self-annealing oligonucleotide (see above). Rupture forces (black 

arrows) indicate the strength of the Dig-AntiDig and/or Biotin/Streptavidin connections used to 

attach the DNA between the beads (Figure II-3, in Results and Discussion section). The 

increase in extension at ~60 pN corresponds to the overstretching transition of the dsDNA 

handle (reference 16 main text). B) Alignment of independent FECs without the HR component 

at the SalI end. Disassembly (or rupture force, black arrow) occurred after unzipping of the last 

GC cluster position. For A) and B) the pulling rate was 50 nm/s. 

 

Figure II-7. Alignment of independent FECs of DNA constructs harbouring at the SalI 

end the HR-cy couple (A, pulling rate 50 nm/ s and B, pulling rate 200 nm/ s) or the HR-cyCH3 

couple (C, pulling rate 50 nm /s). For all plots arrows show the average rupture force at each 

condition: A) 16.7 ± 1.6 pN, B) 34.0 ± 9.0 pN and C) 15.6 ± 0.7 pN. 
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2.3.10. Statistical analysis 

In order to test quantitatively whether the differences between the values of the rupture 

forces reported in our work are statistically significant, we applied the statistical hypothesis test 

known as t-test. The t-test is commonly used to determine whether two independent sets of 

data are significantly different from each other (Boslaugh S and Watters PA (2008). “The t-

test” in Statistics in a nutshell. O’Reilly, 151-165).  

As the two samples have unequal sizes and unequal variances, the t statistic to test 

whether the population averages are different is known as Welch t-test and is calculated as 

𝑡 =
𝑋̅1 − 𝑋̅2

√𝑠1,𝑚
2 + 𝑠2,𝑚

2

, (1), 

where 𝑋̅1 is the mean of the sample 1, and 𝑠1,𝑚
2 = 𝑠1

2/𝑛1 is the square of the standard 

deviation of the mean, with 𝑠1 the sample standard deviation and 𝑛1 the size of the sample 1. 

Analogously, the same quantities with sub-index 2 are defined for the sample 2. For use in 

significance testing, the distribution of the test statistic is approximated as an ordinary 

Student's t-bilateral-distribution with the degrees of freedom (df) calculated as: 

df =
(𝑠1,𝑚

2 + 𝑠2,𝑚
2 )

2

𝑠1,𝑚
4 (𝑛1 − 1)⁄ + 𝑠2,𝑚

4 /(𝑛2 − 1)
− 2, (2) 

 
Once the t value and degrees of freedom are determined, a p-value can be found using 

a table of values from Student's t-bilateral distribution. The p-value is defined as the probability 

of obtaining a result equal to or more extreme than what was actually observed. For example, 

if the p-value obtained is 0.1, the probability of the two data sets to be equal (𝑋̅1 ± 𝑠1,𝑚 = 𝑋̅2 ±

𝑠2,𝑚) is 10%. In other words, it can be affirmed with a 90% probability that the two data sets 

are different (𝑋̅1 ± 𝑠1,𝑚 ≠ 𝑋̅2 ± 𝑠2,𝑚). 

As mentioned above, we run the t-test to determine if the differences between the 

rupture forces measured for the HR-cy couple at different conditions are ‘real‘ or statistically 

significant. Table S1 below shows the averages and uncertainties of the rupture forces (F rup) 

measured for each DNA construct (or HR-cy couple) and pulling rate. wt50: DNA construct with 

the HR-cy couple, pulling rate 50 nm/ s. c50: DNA construct without the HR-cy couple, pulling 

rate 50 nm/ s. CH3
50: DNA construct with the HR-cyCH3 couple, pulling rate 50 nm/ s. wt200: 

DNA construct with the HR-cy couple, pulling rate 200 nm/ s. 

The results of the test indicate that the average rupture forces measured for the HR-cy 

and HR-cyCH3 couples are statistically different with a ~95 % probability (highlighted in bold in 

Table II-3). 
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Table II-3. Statistical analysis of the differences between the rupture forces 

 

 

 

2.3.11. Computational details 

Computational calculations were carried out by Belén Nieto-Ortega. 

All theoretical calculations were carried out within the density functional theory (DFT) 

approach by using the C.01 revision of the Gaussian 09 program package.176 DFT calculations 

were performed using the long-range corrected ωB97X-D177, 178 density functional, which are 

able to incorporate the dispersion effects by means of a pair-wise London-type potential. The 

ωB97X-D density functional has emerged as a robust and powerful density functional able to 

provide accurate structures in supramolecular aggregates dominated by non-covalent 

interactions of different nature. A Polarizable Continuum Model (PCM) using the integral 

equation formalism variant (IEF-PCM) was used to represent solvent around solutes via a set 

of overlapping spheres. This level of DFT has been successfully used for the description of 

non-covalent interactions in this family of synthetic receptors.179 The double-zeta Pople's 6-

31G(d,p)180 basis set was employed throughout and the basis set superposition error (BSSE) 

was corrected according to the counterpoise (CP) scheme of Boys and Bernardi.181 

The optimized geometry of HR-cy and HR-cyCH3 at ωB97X-D/6-31G (d,p) level of 

theory are shown in Figure II-8. The structure of the system was simplified by substituting the 

alkys chain attached to the Hamilton receptor by an hydrogen atom and the alkys chain 

attached to the cyanuric acid guest by a shorter chain of –(CH2)2-CH3 moiety. As scan 

coordinate we define the distance between the carbonyl moiety of the cy and the benzene 

moiety in the HR. In the Figure II-8 the initial optimized structures of both studied system are 

depicted and also the graphical definition of the scan coordinate. 
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Figure II-8. a) Optimized structure of HR-cy and b) HR-cyCH3 systems at ωB97X-D /6-

31G (d,p) level of theory. In dotted line the scan coordinate is defined. 

 

The potential energy curves (PECs) for HR-cy and HR-cyCH3 couples were calculated 

using the SCAN tool implemented in Gaussian software, where single point energy evaluations 

were performed in each selected internal coordinates. This methodology has been chosen 

following the literature in the field23, 24, 175, 182. Specifically, our input was design to increase the 

scan coordinate (see Figure II-8) 50 times with a variation of 0.2 Å between them. The potential 

energy curves (PECs) for HR-cy and HR-cyCH3 in two different solvents: water and o-

dichlorobenzene are displayed in Figure II-9. In the same figure we show the optimized 

structures for in the initial stage (completely bonded) and non-interacting state, using a 

continuous model of water. 
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Figure II-9. A) Potential energy curves for HR-cy (blue) and HR-cyCH3 (red) using a 

continuous model of water and B) o-dichlorobenzene. Energy-minimized molecular models 

showing the geometry of the C) bound and D) unbound HR-cy. Energy-minimized molecular 

models showing the geometry of the E) bound and F) unbound HR-cyCH3. 

 

The curves were calculated by considering the interaction of the two molecular moieties 

as they are getting closer from an infinite separation. At large distances, interactions are 

negligible (Eb = 0) but attractive interactions grow as host and guest approach each other, 

reaching a state of equilibrium where the net force (the sum of both attractive and repulsive 

components) is zero. The PECs indicate the strength of the host-guest interaction based on 

the depth of the potential well, and the force (F) is the slope of the curve, according to: F = 

−dEb/dr, where Eb is the binding energy and r the distance between host and guest. At 

equilibrium, the binding energy for the systems HR-cy and HR-cyCH3 are calculated to be 

40.51 and 41.92 Kcal mol−1 respectively, which are expected binding energies for systems with 

six and five strong hydrogen bonds in aqueous conditions.  

At short distances from the equilibrium state (0-0.03 nm) the potential energy is not 

affected by a change in the intermolecular distance, but at larger values of r a change in the 

slope is observed. From this point to the next change in slope, where the cyanuric acid is 

completely dissociated from the Hamilton’s receptor (see Figure II-9D), a value of 16 pN for 
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the force is obtained. This value is directly related with the force required to split the couple, 

and is in good agreement with our experimental data, despite all simplification conducted. In 

the case of the HR-cyCH3 system, the calculated force was 13 pN, a noticeably lower value 

than HR-cy, following the same tendency of the experimental results. We also, calculated the 

rupture force in the case of an organic solvent. We observe an increase in the force, being 17 

pN for HR-cy system and 14 pN for HR-cyCH3. 
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CHAPTER 3.  

Measurement and Manipulation of the Shuttling 

Motion of an Individual Molecular Shuttle 

 

3.1. Introduction 

Molecular motors are nanoscale devices capable of converting energy into movement 

and forces, in other words, to perform work at the nanoscale.183, 184 Artificial nanomachines are 

currently the subject of intense research interest due to their many potential applications in 

diverse fields from biomedicine to nanorobotics. The best way to appreciate the technological 

potential of controlled molecular-level motion is to recognise that nanomotors and molecular-

level machines lie at the heart of every significant biological process. Virtually every biological 

task involves molecular machines.183, 185-195 Catalytic proteins with moving parts able to 

efficiently convert thermal and chemical energy to work through conformational changes and 

unidirectional displacements.184 The construction of miniature, ‘nanoscale’ machines is a goal 

of modern science and technology, inspired by Feynman’s famous lecture “There’s plenty of 

room at the bottom”.196 The field has advanced to the point that some of the pioneers in the 

synthesis of molecular machines have been recognized with the Nobel Prize in Chemistry 

2016.197-199 Despite the impressive progress in the field, man-made nanomachines lack 

efficiency, functionality and are limited to a narrow range of environments and fuels.

Over the last 25 years, researchers have devised an impressive array of switches, 

ratchets, propellers and more molecular mechanisms that can be plugged together as if they 

were nanoscale Lego pieces.152
 Recently, the field has reached a turning point; instead of 

making more motors, top researchers in the field are currently more interested in the practical 

applications of these motors,200 such as light-activated switches that can release targeted 

drugs, smart materials that can store mechanical energy (contraction) in response to light or 

can change their shape acting as an artificial muscle. In the words of Prof. Leigh, one of the 

top researchers in the field, “In 10 years time, molecular machinery will be seen as a core part 

of Chemistry and materials design”.200 Making the step from molecules to molecular systems, 

which incorporate several molecular components working in concert to perform complex and 

integrated functions at different hierarchical levels, will require an exquisite control of the 

dynamics and mechano-chemical processes (conversion of thermal/chemical energy to motion 
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and work) governing the operation of these systems at the nanoscale. However, very basic 

questions about the operation of molecular motors at the nanoscale have still to be answered. 

In this line arises the aim of this chapter: to quantify the dynamics and mechanochemisty of 

individual synthetic molecular shuttles under physiological conditions. 

Molecular shuttles are perhaps one of the simplest examples of molecular devices, and 

have long been considered candidates for the construction of molecular motors. Structurally, 

molecular shuttles are [2]rotaxanes (from the Latin rota = wheel and axis = axle), chemical 

species in which one ([2]rotaxanes) or more ([n]rotaxanes) macrocycles are threaded onto a 

dumbbell-shaped component from which de-threading is prevented by bulky “stoppers”.201 

Although macrocycle and thread are not covalently connected, rotaxanes are molecules, and 

not supramolecular complexes, since covalent bonds need to be broken to separate their 

components. The macrocycle can move between two (or more) regions of the thread, called 

stations, in response to an external stimulus (Figure III-1). Important features of rotaxanes 

derive from noncovalent interactions between components that contain complementary 

recognition sites. Such interactions, that are also responsible for the efficient template-directed 

syntheses of rotaxanes, involve electron-donor/acceptor ability, H-bonds, hydrophobic/ 

hydrophylic character,  stacking, coulombic forces and, on the side of the strong interaction 

limit, metal-ligand bonding. 

It is important to note that a molecular shuttle is not a molecular motor, as it cannot 

convert energy into mechanical work ciclycally; it is better classified as a molecular switch, it 

can be reversibly shifted between its stations, when the stations are dissimilar with each of 

them addressed by a different external stimulus. However, molecular shuttles are a very 

closely related model system to molecular motors; and they are characterized by: (i) the kind 

of energy input supplied to drive them out of equilibrium, (ii) the type of motion (linear, rotatory, 

oscillatory, ...) performed by their components, (iii) the way in which their operation can be 

monitored, (iv) the possibility to repeat the operation at will (cyclic process), (v) the time scale 

needed to complete a cycle, and (vi) the function performed. 

In many ways the field of artificial molecular machinery began with Stoddart´s first 

report of a “molecular shuttle” in 1991 (Figure III-1).202 In this rotaxane, the macroclyce (shown 

in green) moves between two preferred binding sites (the two hydroquinone units, shown in 

red) by random thermal motion (Brownian motion).  
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Figure III-1. The first molecular shuttle (Stoddart and co-workers; 1991).202 

 

When the two recognition sites in the dumbbell component are chemically different, 

then the rotaxane exist as an equilibrium of two different co-conformations, whose populations 

reflect their relative free energies as determined primarily by the relative strength of the two 

different sets of non-covalent bonding interactions in the molecule. Thus, by breaking 

symmetry of a rotaxane thread to have two different potential stations, its relative affinity for 

the ring can be switched. Based on this design, Stoddart, Kaifer, and co-workers described the 

first switchable molecular shuttle, which is arguably also the first artificial molecular Brownian 

motion machine (Figure III-2).203 In this molecule, the cationic macrocycle (in green) prefers to 

reside over the benzidine station (in blue) rather than the biphenol station (in red). However, 

using stimuli that are either protonation or electrochemical oxidation of the benzidine station, 

transforms it into a positively charged station (in purple), causing electrostatic repulsion with 

the tetracationic macrocycle, and rendering the biphenol group the preferred binding site for 

the macrocycle, thus the ring moves along the thread. This molecule is the first example of a 

large amplitude, well-defined, controlled switching of the position of a submolecular component 

along a molecular track. 



Chapter 3 
 

94 
 

 

Figure III-2. The first switchable molecular shuttle (Stoddart, Kaifer,and co-

workers;1994).203 

 

The collective dynamics of molecular shuttles have been studied with increasing 

structural sensitivity and temporal precision.204, 205 In contrast, much of the exquisite and 

detailed information about how biomolecular machines operate has been obtained from direct 

measurements made on single molecules using manipulation techniques such as OT or AFM. 

Such measurements have highlighted many details about their mechanical properties, as we 

studied in chapter 1.169, 206 However, few SMFS investigations have been successively realized 

on molecular shuttles.207, 208 The shortage of such studies comes from the difficulty of 

developing proper tools and preparing appropriate molecules that can be interfaced with SMFS 

techniques, especially when one wants to probe sub-molecular motions. Two examples of 

molecular shuttles were investigated in an irreversible rupture process (de-threading),207 and 

in reversible cycles that allow the direct measurement of the force generated and the work 

produced,208 using SMFS. In the first study, Stoddart and co-workers207 pulled the macrocycle 

over the bulky end groups of a redox-active rotaxane with an AFM tip. They compared the 

large forces required to de-thread oxidized and unoxidized molecules. The bistable [2]rotaxane 

R4+ (Figure III-3) can switch by the redox-controlled mechanical shuttling of the ring along its 

thread. The molecule was designed fixing the dumbbell on a surface trough a hydroxymethyl 
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group on one of the stoppers for attachment to SiO2 via covalent bonds and attaching the ring 

to an AFM cantilever through a thioctic acid linker. They used SMFS to study the steric and 

electrostatic interactions present in the ground and oxidized states of R4+. They confirmed that 

the force associated with the electrostatically driven movement of the cyclobis(paraquat-p-

phenylene), CB-PQT4+, ring away from tetrathiafulvalene, TTF2+, upon oxidation could be as 

high as 79pN.  

 

 

Figure III-3. Chemical structure and schematic representation of bistable [2]rotaxane 

R4+ and the oxidized partner [2]rotaxane R6+. In R4+ and R6+ an electron-poor cyclobis(paraquat-

p-phenylene) (CB-PQT4+) ring is confined to a dumbbell containing two electron-rich 

recognition sites, tetrathiafulvalene (TTF) and 1,5-dioxynaphthalene (DNP), by the presence 

of bulky 2,6-diisopropylphenyl ether stoppers at each end. One of these stoppers, the one 

closer to DNP, carries a hydroxymethyl group on its 4-position for subsequent attachment to 

silicon wafers. (a) The ring, which carries a tether terminated by a thioctic acid ester for 

attachment to a gold-coated AFM tip, displays a stronger interaction with TTF than with DNP 

and thus resides selectively on the former. (b) Chemical oxidation of TTF to TTF2+ results in a 

strong charge–charge repulsion between the CB-PQT4+ ring and TTF2+, a situation that causes 

the CB-PQT4+ ring to shuttle to DNP in the oxidized [2]rotaxane R6+. Reduction of the TTF2+ to 

its neutral state (TTF) prompts the ring to shuttle back thermally from a metastable state to its 

ground state. Figure reproduced with permission from Proc. Natl. Acad. Sci. USA 2006, 103 

(23), 8583-8588. 
 

A second more recent study realized by the group of Duwez208 on one of Leigh’s H-

bonded [2]rotaxanes was focused on detecting sub-molecular movement and on measuring 

the force generated by this molecule against a load during a single shuttling event. They 

designed a H-bonded molecular shuttle with a tether attached to the ring to track its motion 

with an AFM cantilever (Figure III-4). The thread bears both fumaramide and succinic amide-

ester stations, each of which can bind to the macrocycle through up to four intercomponent 

hydrogen bonds.209 The ring predominantly resides over the fumaramide site. A mechanical 

load was applied to the ring of the rotaxane with the AFM cantilever, while simultaneously 
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following its movement. The rings were stretched in a controlled manner by moving the tip 

away from the substrate at a fixed pulling rate. 

 

 

Figure III-4. a) Chemical structure of the rotaxane molecule, which consists of a 

benzylic amide molecular ring (in blue) mechanically locked onto an axle by bulky diphenylethyl 

ester groups situated at either end. The axle bears a fumaramide group (in green) and a 

succinic amide-ester group (in orange), either of which can act as a binding site for the ring 

through up to four intercomponent H-bonds. Next to the fumaramide binding site, a disulfide 

group (in red) was introduced to enable the grafting of the molecule onto gold substrates. A 

4600 Mn PEO tether (in blue) is attached to the ring in order to link the molecule to the AFM 

probe and track the motion of the ring along the axle. b) Schematic representation of the 

rotaxane attached to the AFM set up. c) Pulling (blue) and relaxing (red) force versus extension 

curves for a single rotaxane–PEO molecule in TCE. The relaxing trace is offset vertically for 

clarity. This figure was reproduced with permission from Springer, Nat. Nanotech. 2011, 6 (9), 

553-557. Copyright (2011). 
 

They recorded pulling-relaxing cycles (Figure III-4c). During a pulling experiment, the 

AFM cantilever is exerting force on the PEO tether, if this force is larger than the force of the 

H-bonds that bind the ring to its preferred site, the H-bonds break apart and the ring detaches 

from its station. It is then pulled along the axle, away from its most stable binding site, it was 

observed as the appearance of a “peak “(where no peaks were expected) in the force-

extension curve (blue trace in Figure III-4c), and the distance change was compatible with the 

ring movement between stations. Similarly, in the relaxing cycle (red trace in Figure III-4c) they 

observed that while relaxing the tension in the PEO tether, the force suddenly increased, with 
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the appearance of a new “peak” in the force-extension curve, this can be explained by the 

appearance of force acting on the tether at the other end. This means that the macrocycle has 

travelled back from the succinic amide-ester site to the fumaramide site and that it is able to 

generate force of 30 pN against an external load. 

Very recently, Duwez et al.210 reported on the mechanochemical properties of a donor-

aceptor oligotaxane. This molecule arises from the combination of a two mechanical interloked 

molecules, rotaxane and catenane. In this oligotaxane, the interactions between the 

mechanically interlocked component parts dictate the single-molecule assembly into a folded 

secondary structure (Figure III-5).  

 

 

Figure III-5. a) Illustration of the pulling experiment. Mechanical unfolding occurs by 

retracting the cantilever at a constant velocity. The theoretical variation of length after breaking 

one interaction between a free DNP and the contiguous ring is about 1.2 nm. b) Structure 

formula and co-conformation of the [5]rotaxane. In this co-conformation, half of the 

dioxynaphthalene (DNP) units (in red) are encircled by cyclobis(paraquat-p-phenylene) (CB-

PQT4+) rings (in blue). The oligorotaxane is terminated by bulky stoppers which prevent the 

rings from dethreading. c) Example of a force–distance curve obtained at 40 nm s−1 showing a 

characteristic reproducible sawtooth profile. Each peak is fitted with the WLC model to obtain 

contour length increment (∆Lc) values. d) Pulling–relaxing curves showing sequential folding 

and unfolding of a single interaction in an individual [5]rotaxane molecule in DMF. Hopping 

from one co-conformation to the other is observable during pulling and relaxing (Pulling at 

10 nm s−1 and relaxing at 4 nm s−1). Figure reproduced with permission from Springer. Nat. 

Nano. 2018. Copyright (2018).  
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They used SMFS-AFM to mechanically unfold oligotaxanes, made of oligomeric 

dumbbells incorporating 1,5-dioxynaphthalene units encircled by CB-PQT4+ rings (Figure III-

5b). Real-time capture of fluctuations between unfolded and folded states (Figure III-5c and d) 

reveals that the molecules exert forces of up to 50 pN against a mechanical load of up to 150 

pN, and displays transition times of less than 10 μs.  

The SMFS approximation presents the limitations derived from AFM-based techniques; 

in general, their force resolution is limited by the stiffness of the cantilever to a force range 

above ~20 pN, which is larger than the strength of the weak, non-covalent interactions 

responsible for remodelling events at the molecular level43 and larger than the forces 

characteristic of biological molecular motors.211 For instance, the movement of biological 

molecular motors that transport cargos uni-directionally (kinesins) is stalled at forces ~8 pN212 

and the hydrogen-bonding holding together the two strands of DNA break at ~10 pN.162 The 

inability of AFM to access within the range of forces relevant for molecular machinery has 

prevented the application of this technique to study the operation of these biological systems 

at the single molecule level. Instead, other techniques, like magnetic and optical tweezers, with 

force and distances resolution within the 0.1-1 pN and 1-10 nm range respectively, as we 

explained in chapter 1 of this thesis, are routinely used in to access low force ranges 

characteristic of noncovalent interactions and molecular dynamics. Moreover, in chemistry, in 

AFM pulling experiments it can be difficult to discriminate interactions of the AFM tip with the 

molecule of interest from nonspecific interactions, due to the lack of single molecule reporters 

in this field. 

We arrive at the main objective of this chapter: to measure and manipulate the 

mechanics and real time kinetics of individual [2]rotaxanes molecules with OT. These 

experiments will allow us to investigate for the firs time: 

i) The mechanochemical cycle and dynamics of the system operation when it is driven 

out of equilibrium by a mechanical load. As a consequence we will extract conclusions about 

the design of molecular machines at the theoretical level, both to help analyse existing 

examples and to propose simpler, more efficient machines.  

ii) The properties and operation of synthetic molecular shuttles under biocompatible, 

aqueous conditions. The vast majority of the synthetic devices reported to date have been 

investigated in organic solvents solutions. The information obtained will be useful to compare 

synthetic to natural molecular machines under identical conditions, which will shed light on the 

possibility of creating synthetic-natural hybrids, one of the most ambitious goals in the field. 

As mentioned before, we are going to use OT as a single molecule manipulation tool, 

because it features the force (<1pN), distance (1-10 nm) and time resolutions (10000 Hz) 
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required to measure the characteristic forces and displacements that govern noncovalent 

interactions at molecular level.46 

 

3.2. Results and Discussion 

 

3.3.1. Chemical Design  

We have designed a H-bonded Leigh-type213 molecular shuttle with a dsDNA attached 

to the ring to trace its motion by a dual-beam OT (Figure III-7). Its design and synthesis are 

detailed below, and represent an authentic tour-de-force in chemistry, including multistep 

organic chemistry, biochemistry, and controlled supramolecular chemistry. 

The chemical structure of the shuttle comprises a strong binding station, namely 

fumaramide (green in Figure III-6), which is known to be the best fit for a tetraamide 

macrocycle, because its two amide carbonyls are held by the trans double bond in the correct 

geometry to form four strong hydrogen bonds with the macrocycle. Separated by a polar 

spacer of approximately 10 nm length, which will provide solubility in water and enough 

distance for the shuttling to be unambiguously detected by OT, we will place a second station, 

succinic amide-ester (orange in Figure III-6), which shows less affinity for the macrocycle than 

the fumaramide station, due to its flexibility and the substitution of one of the amides with an 

ester, which is a significantly weaker H-bond acceptor. The fumaramide/succinic amide-ester 

occupancy ratio is larger than 95:5 in several organic solvents at room temperature.209 Two 

bulky diphenylethyl groups will serve as stoppers. One of the stopper ends is branched to 

include a biotin fragment that will be initially used to attach the construct to a polystyrene 

streptavidin-covered microbead, held in place by suction with a micropipette (see bellow in 

Figure III-7).  

The synthesis of the thread for the shuttle was carried out in 12 steps following Scheme 

III-1. Macrocyclization around the fumaramide station was performed using a purposely 

synthesized U-shape (compound III-14) and an azide-decorated isophthalic acid chloride 

derivative (compound III-13), to obtain an asymmetric macrocycle with a chemical handle for 

attachment to the OT, through a dsDNA spacer. 
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Scheme III-1. Synthetic steps involved in the synthesis of the molecular shuttle, 

compound III-15. 

 

A synthetic fragment of dsDNA will be used as a handle to control and measure the 

movement of the ring. The choice of DNA as a linker is based on several facts: 
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1) dsDNA is a very stable and stiff polymer which has been broadly used to measure 

tiny conformational changes of biomolecules. DNA handles are used as spacers that prevent 

non-specific interactions between the force probe (the bead) and the molecule under study. 

2) DNA ends can be conveniently modified with many different chemical groups.  

3) Its mechanical properties can be used to identify single attachments between the 

beads.168 As explained in chapter 1, a single, linear dsDNA molecule presents a characteristic 

elastic response that can be explained using polymer physics models like the WLC model 

(Figure I-12b, in chapter 1). When two or more DNA molecules are attached the elastic 

response (the force-extension curve) changes dramatically. 

4) The length of the DNA handle can be adjusted at will.  

5) dsDNA handle helps solubilisation of the rotaxane molecule under aqueous 

conditions. 

 

 

Figure III-6. Chemical structure of the rotaxane molecule. The thread presents a 

fumaramide group (in green) and a succinic amide-ester group (in orange), either of which can 

act as a binding site for the benzylic amide macrocycle through up to four hydrogen bonds. 

Two diphenylethyl ester groups situated at either end act as stoppers. The affinity of the ring 

for the fumaramide site is much higher than for the succinic amide-ester site, so that the 

fumaramide/succinic amide-ester occupancy ratio is higher than 95:5.209 Next to the 

fumaramide binding site, a D-biotin group (in red) was used to enable the linkage of the 

molecule onto the streptavidin-beads. Through a 1,2,3-triazole group (in blue), the macrocycle 

is covalently linked to dsDNA. Only the sequence of the dsDNA oligonucleotide is shown. To 

control the movement of the ring a ~0.9 m dsDNA labelled with Digoxigenin at one end will 

be ligated to the protruding 3’-end of the oligonucleotide (see Figure III-7). 
 

To attach the dsDNA to the rotaxane we used the following methodology: the 5´-end of 

a single-stranded DNA (ssDNA) oligonucleotide (polyT) will be covalently linked to a 

dibenzocyclooctyl (DBCO) phosphoramidite on the last step of a solid support DNA chemical 

synthesis (see Scheme 2 in Experimental Section). We used a strain-promoted copper-free 

click reaction214, 215 to attach covalently the DBCO reacting group of the oligonucleotide to the 

azide group in the macrocycle. In this way, we obtained a rotaxane modified with a ssDNA 
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oligonucleotide through a 1,2,3-triazole group (blue in Figure III-6). We then annealed the 

rotaxane-oligonucleotide with its complementary DNA strand (polyA), previously synthetized 

using DNA automated synthesis. The oligonucleotide sequences are designed to provide a 

protruding 3’-end after annealing. Finally, we ligated a ~0.9 m long dsDNA molecule (2686 

bp) containing a protuding 5’-end complementary to the 3’-end of the rotaxane-oligo construct. 

This dsDNA molecule was labelled with multiple digoxigenines (Dig) at the other end, in order 

to attach the dsDNA and couple the ring to a polystyrene -Dig-covered microbeads held in 

an optical trap (see below in Figure III-7). 

In summary, the final product of these reactions will be a rotaxane-DNA complex 

labelled with biotin at one end and Dig at the opposite end. This construct was coupled to the 

OT set up as depicted schematically in Figure III-7. 

 

 
Figure III-7. Schematic representation of the experimental set-up (not to scale). A 

single rotaxane-DNA construct is attached between an optically trapped -Dig-coated bead 

(showing in grey) and a streptavidin-coated bead (showing in blue) inmovilized on top of a 

micropipette. Mechanically force is applied along the vertical axis (moving the optical trap away 

from the pipette).  

 

 
3.2.2. Single molecule experiments  

Force-extension curves were measured by applying a mechanical load to the ring of 

the [2]rotaxane and following its movement. Individual molecules were stretched in a controlled 

manner by moving the optical trap away from the micropipette at a fixed pulling rate, giving a 

characteristic force-extension profile (Figure III-8b).  
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Figure III-8. a) Schematic representation of the experiments carried out to determine 

the force-extension curves of the molecular shuttle; the shuttle was stretched in a controlled 

manner by moving the optical trap away from the pipette at a 200 nm/s pulling rate. Initially, 

the macrocycle is placed on the thermodynamically favoured station (fumaramide, green) (I), 

application of force along the vertical axis displaces the macrocycle out of its preferred site (II); 

finally, the ring returns to the original position upon lowering the force (III). b) Force-extension 

curves of two different and representative individual molecules (pulling rate of 200 nm/s). 

During the pulling cycle (black trace) there is a peak, at 15.5 pN (for the left example) and 17 

pN (for the right example), in the characteristic force-extension curve of the dsDNA (no peaks 

expected) which corresponds to a change in the contour length of the molecule due to the 

extension gained when the ring is pulled out the fimaramide station. Likewise, a peak (at 10.9 

pN for the left example and 13.5 pN for the right one) during the relaxing cycle (blue trace) is 

indicating that the macrocycle travels back to the fumaramide station. The yellow dashed lines 

represent the theoretical force-extension curves obtained using WLC model. The fits of the 

profile before and after the rupture peak give the increase in length (Δx) of the molecule (Δx = 

15 and 11.5 nm for left and right examples respectively) which is in full agreement with the 

theoretical length of the fully extended oligoethyleneglycol spacer between the two stations 

(~10 nm). 
 

Figure III-8a shows a schematic representation of the events taking place when pulling 

on the rotaxane molecule that explain the observed force-extension profile. Figure III-8b shows 

the pulling-relaxing cycles of two individual rotaxanes. During the pulling experiments (black 

traces in Figure III-8b), once the force exerted on the macrocycle exceeds the strength of the 

H-bonds between the ring and the fumaramide station, these H-bonds break apart, giving a 
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peak in the force-extension curve of the dsDNA. As described in chapter 1, the elastic 

properties of the dsDNA can be modelled with the WLC model for polymer elasticity (dotted 

lines in Figure III-8b) and no peaks of force-extension changes are expected bellow 60 pN of 

tension. Therefore, this peak corresponds to a change in the contour length of the molecule 

due to the extension gained when the ring is pulled out of its thermodynamically more stable 

binding site, and goes to the succinic amide-ester station. This peak appears at 15.5 and 17 

pN for the two examples depicted in Figure III-8b, under near physiological conditions (20mM 

Tris-HCl pH 7.5, 150 mM NaCl, 22 ºC). In the relaxing cycle (blue trace in Figure III-8b) we 

observed that the force suddenly increased, this means that the macrocycle travelled back to 

the fumaramide station. This result for a single shuttling event can be interpreted as the 

macrocycle exerting a force against the bead load.208 

The fittings of the pulling/relaxing profiles using WLC model, before and after the 

“rupture peak”, give the increase in length (Δx) of the molecule after rupture of the H-bonds; 

the Δx value obtained for the molecules showed in Figure III-8b was 15 and 11.5 nm, which is 

in full agreement with the theoretical length of the fully extended oligoethyleneglycol spacer 

between the two stations (~10 nm). 

Next we decided to perform multiple pulling-relaxing cycles on individual molecules, 

which are necessary to obtain G of the system. Unexpectedly, we found mechanical fatigue, 

after few pulling/relaxing cycles the ring was stuck in one of the stations. These experiments 

rendered poor statistics (Figure III-9b), which may provide a poor estimation of G. In Figure 

III-9 are depicted the distributions of pulling (black) and relaxing (blue) forces of the rotaxane-

DNA construct, in which we observed the macrocycle stop doing shuttling events right after 10 

cycles. 

 

 

Figure III-9. a) Force-extension curves for ten pulling (black traces)/relaxing (blue 

traces) cycles of a representative rotaxane molecule using a fixed pulling rate of 200 nm/s. 

The yellow dashed traces represent the theoretical force-extension curves obtained using 

WLC model. b) Distributions of the pulling/relaxing forces.  
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The characteristics of our OT set-up allow us to directly observe the fluctuations 

(“hopping” events) of the individual macrocycles between the two stations for the very first time. 

Access to the hooping events will permit a detail characterization of the full set of kinetic 

parameters describing the force shuttling kinetics and the free energy difference between the 

two stations. In hopping experiments the kinetics of ring movement between stations can be 

monitored in real time by keeping constant Force between the beads.  

Typical records of extension change under fixed load (Figure III-10 right panels) show 

two-state hopping behavior. The macrocycle transits between the two stations due to thermal 

fluctuations. These transitions have been measured as individual shuttling events between the 

values of extensions corresponding to the fumaramide and succinic amide-ester stations. 

Again, the extension of the hopping events is in concordance with the distance between the 

two stations, ~10 nm. We were delighted to observe that when the macrocycle explores the 

succinamide-ester station in one of its thermally induced shuttling trips, it resides over it for a 

measurable amount of time, in the range of several tenths of a second. 

 

 

Figure III-10. Representative examples of “hopping” experiments showing mechanical 

fatigue for two individual rotaxanes a) and b). On the right, pulling (in black) and relaxing (in 

red) cycles. When we applied a constant force between the rupture and rebinding forces, 15 

pN and 14 pN for examples a) and b) respectively, we are able to observe the macrocycle of 

the rotaxanes “hopping” from the fumaramide station to the succinic amide-ester station in real 

time. We have monitored this shuttling events through changes in extension with respect the 

time (graphs in right), which is shows as a blue trace in the force-extension graphs. In both 

cases the difference in extension obtained in the shuttling events are in accordance with the 

theoretical length of the fully extended oligoethyleneglycol spacer between the two stations 

(around 10 nm). Note that after a few seconds shuttling events stop and the ring is stuck at 

one station. In the example showed in b, the ring gradually spends more time in the succinic 

amide-ester station, until finally it was stuck at this station. 
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However, we observed again that our initial design shows fatigue after a few cycles, 

the macrocycle stopped hopping typically after around 10-20 seconds of measurements, as it 

is shown in the hopping experimets depicted in Figure III-10. A plausible explanation for these 

results could be related with the fact that the rotaxane was directly attached to the polystyrene 

microsphere surface, and the movement of the macrocycle along the track could be inhibited 

by physisorption onto the bead. 

In an attempt to fine-tune the setup and prevent fatigue, we decided to separate the 

rotaxane from the polystyrene microsphere surface. For this porpouse, we used a dsDNA 

handle (830 bp, ~0.3 m) labelled with a streptavidin (via biotin-streptavidin conections) in one 

end and with a Dig in the other end, that serves as a spacer between the rotaxane and the 

polystyrene bead. The final set up is schematically depicted in Figure III-11. 

 

 

Figure III-11. Schematic representation of the new layout of the rotaxane attachment 

into the OT set up (not to scale). In the new set-up a dsDNA spacer (~300 nm), attached to 

the bead on the micropipette, separates the rotaxane molecule from the surface of the 

polystyrene microbead. 
 

Individual rotaxane-DNA constructs were stretched in a controlled manner by moving 

the optical trap away from the micropipette at a fixed pulling rate. The force-extension profiles 

obtained were in perfect agreement with those obtained with the previous set up, the change 

in the contour length of the molecule (“the peak”) correspond to the extension gained when the 

ring moves from one station to the other. With this new experimental set-up, multiple (>90) 
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stretching-relaxing cycles were performed on a single molecule (Figure III-12b), indicating that 

separation from the bead helps to decrease the mechanical fatigue observed before. In Figure 

III-12b are depicted the distributions obtained for 90 pulling/relaxing cycles on a representative 

molecule.  

 

Figure III-12. a) Force-extension curves for 90 consecutive pulling (black 

traces)/relaxing (blue traces) cycles of a single rotaxane molecule (pulling rate: 200 nm/ s). 

The dashed lines represent the theoretical force-extension curves obtained using WLC model. 

b) Distributions of the pulling/relaxing forces.  

 

From the intersection of the rupture forces distributions of the pulling and relaxing 

cycles, it can extracted the coexistence force value (F1/2) that represents the force under which 

the macrocycle has an equal probability of being in the fumaramide or succinic amide-ester 

station. This value was found to be 9.56 pN.  

Fluctuation theorems relate the equilibrium free-energy change, G, to non-equilibrium 

measurements of the work done on a single molecule. The Crook´s fluctuation theorem relates 

G to the probability distributions of the non-equilibrium work measured during the forward and 

reverse changes that occur when a system is driven away from thermal equilibrium by the 

action of an external perturbation.216 Using CFT, we estimate the free energy driving the 

macrocycle to bind to the fumaramide station, this value was found to be 38 ± 3 kBT. 

Next, we performed the hopping experiments described before. We were glad to 

observe that, by separating the rotaxane out of the polystyrene surface, we were able to follow 

the rotaxane movement along minutes in the experiments at constant force, recording 

hundreds of individual shuttling events; examples of these experiments are depicted in Figure 

III-13. 
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Figure III-13. Experiments carried out at constant force for three individual rotaxanes 

a to c: a) 8.2 pN; b) 9 pN and c) 10 pN. On the right, are shown the “hopping events” as 

changes in extension with respect the time. On the left is depicted an expansion of the selected 

area boxed in blue. The difference in extension gained in the shuttling events is again in 

concordance with the theoretical length of the fully extended spacer between the two stations 

(~10 nm). By increasing the force from 8.2 pN in a to 10 pN in c, the macroclyce gradually 

spends more time in the weak station and less time in the strong one, until finally prefers the 

succinamide-ester station. On the far right are depicted three schemes of the rotaxane 

molecule showing the variation of the binding site preference of the macrocycle. 
 

We have seen that the presence of two stations implies that the energy landscape of 

the rotaxane is dominated by two potential wells separated by a single barrier. The application 

of force tilts the energy landscape, changing the free-energy difference between the weak and 

strong stations. The transitions observed at a constant force can be broken into "waiting times" 

in which the macrocycle undergoes Brownian motion near one station, and a barrier interaction 

time in which the ring travels from one station to the other. At a glance, we notice that this 
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transition time is much shorter than the waiting times on either station. This fact is in agreement 

with natural motors,217 and theoretical models.218  

By increasing the force from 8.2 pN (Figure III-13a) to 10 pN (Figure III-13c) we are 

able to observe the macroclyce gradually spending more time in the weak succinic amide-ester 

station and less time in the strong fumaramide station, until finally prefering the weak one 

(Figure III-13c). In other words, not only can we observe the shuttling events due to thermal 

fluctuations, but we can also control the average position of the macrocycle, that is, the waiting 

times spent on each of the stations, favoring one or the other. We were also able to apply a 

constant force very close to the coexisten force, the force under which the macrocycle has an 

equal probability of being in the fumaramide or succinic amide-ester station (9 pN, Figure III-

13b). 

Another related example, depicted in Figure III-14, allowed us to visualize how the 

macrocycle of a single molecular shuttle changes its prefferences by changing the force 

applied; under 8.3 pN of force the macrocycle resides predominately over the fumaramide 

station, making scarce hopping to the weak statio. However, by increasing the force to 8.8 pN 

we were able to see how the macrocycle trend changed exhibiting almost equal prefference 

for both stations.  

 

 

Figure III-14. Extension versus time graphs at a constant force: first we applied a 

constant force of 8.3 pN (black trace); under which, the macrocycle preffers to stay at the 

thermodinamic most stable station. By increasing the force to 8.8 pN (blue trace) we were able 

to observe how this trend change, exhibiting almost equal average lifetimes.  

 

These measurements represent the very first time that a macrocycle “hopping” between 

stations in an individual molecular shutle has been observed. Our experimental results fulfill 

the dream of Stoddart and Astumian in their recent review218 where they wished for a “yet 

undeveloped high resolution microscopic method” that would allow for the observation of 8 to 

10 transitions of an individual molecular machine”. 
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3.2.3. Force-dependent kinetic rates 

Throught these experiments, in which we apply a constant force, we mechanically 

induce the ring movement between one station to the other, in other words, force shifts 

equilibrium from one station to the other. By monitoring the change in contour length of the 

molecule we are able to feature the G and kinetic rates of the molecule. Ideally, the molecular 

rates exponentially depend on the applied force according to the Bell-Evans (BE) model. The 

BE model was the result of Evans' adaptation of the work introduced by Bell in 1978 219 and 

adapted for dynamic force spectroscopy,40, 42 and had been recently applied to study the 

kinetics of nucleotide hairpins.220 This model posited the relationship between force and 

lifetimes at the single molecular level according to Eqs. 1 and 2:  

𝑘𝑓 (𝐹) =  𝑘0 exp (−
𝐵 − 𝐹 𝑥𝑠

≠

𝑘𝐵𝑇
) =  𝑘𝑚 exp (

𝐹 𝑥𝑠
≠

𝑘𝐵𝑇
) (1)  

𝑘𝑠(𝐹) = 𝑘0 exp (−
B − Δ𝐺f→s   − 𝐹 𝑥𝑓

≠

𝑘𝐵𝑇
) = 𝑘𝑚 exp (

Δ𝐺f→s  − 𝐹 𝑥𝑓
≠

𝑘𝐵𝑇
) (2)  

where kB is the Boltzman constant; B is the height of the kinetic barrier; km = k0 

exp(−B/kBT), where km is the unfolding kinetic rate at zero force kf (0) = km; 𝑥𝑓
≠ and 𝑥𝑠

≠ are the 

relative distances between fumaramide station, f, and succinic-amide ester station, s, with 

respect to the transition state (𝑥≠) at the coexistence force (F1/2); 𝑥𝑓
≠ =  𝑥𝑓 − 𝑥≠, 𝑥𝑠

≠ = 𝑥≠ − 𝑥𝑠. 

Their sum should be equal to the molecular extension 𝑥𝑓→𝑠 = 𝑥𝑠
≠ +  𝑥𝑓

≠ = 𝑥𝑠 − 𝑥𝑓 ; and ∆Gf→s = 

F1/2 𝑥𝑓→𝑠 is related to the free-energy difference between stations f and s. Note that kf(F1/2) = 

ks(F1/2). 

 

We have studied if our molecular shuttle behaves according to the BE model, if a log-

normal representation of the unfolding or folding kinetic rates versus force, follow such model. 

For this, from the hopping experiments, we first extracted the average lifetime (Experimental 

section) of the macrocycle staying at the fumaramide station f 
and at the succinic amide-ester 

station s at every force studied, results are depicted in Table III-1. 
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Table III-1. Average lifetimes in seconds.  

 

 

From the average lifetimes, we can calculate the kinetic rates for the succinic amide-

ester station→fumaramide station transition, ks(F), and viceversa kf(F), since ks = 1/f and kf = 

1/s, at each force (Experimental section). 

The experimentally measured ks (F) and kf(F) were fitted to Eqs. (1) and (2) along the 

range of forces available experimentally. Results of such linear fits (in a ln k versus F 

representation) are shown in Figure III-15 (solid blue and brown lines). Our molecular shuttle 

fits reasonably well to the BE model, conforming to a Boltzman distribution . From the fits, we 

can determine the main parameters that characterize the free energy landscape of the 

molecular shuttle, acording to the BE theory: the unfolding kinetic rate at cero force (km), the 

free energy difference (∆Gf→s), the coordinate of the transition state respecting to the strong 

station (𝑥𝑓
≠) and the weak stantion (𝑥𝑠

≠) and the coexistence force (F1/2). The numerical results 

are summarized in Table III-2.  

 

Figure III-15. Representation of lnks and lnkw versus force, blue and red dots 

respectively, showing bar errors. Linear fits to the BE model are shown as blue and brown 

solid lines. 
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Table III-2. Kinetic parameters obtained experimentally 

 

 

The difference in free energy between the macrocycle binding to the fumaramide and 

succinic amide-ester stations, calculeted was 34 ± 2 kBT (20 ± 1 kcal/ mol; 83 ± 5 kJ/ mol), this 

result is higher than the 9.3 kBT determined previously by AFM208; however, it should be noticed 

that we were working under aqueous phase conditions, not comparable with DMF solvent used 

in the AFM studies; moreover the chemical structure of both molecular shuttles is different in 

many points.  

In conclusion, at the molecular level where thermal fluctuations govern, the dynamics 

of individual rotaxanes displays fast and stochastic behavior, when subjected to mechanical 

force. We observe this ‘noisy’ or stochastic behavior experimentally, from single-molecule 

data, which is an integral part of the mechanism of shuttling and contains important information 

on the submolecular motion itself. Direct access to the statistical nature of these fluctuations 

requires appropriate statistical treatment of the data (using the fluctuation theorems previously 

cited), which is being carried out in collaboration with the laboratory of Prof. Felix Ritort, experts 

in the field of the non-equilibrium thermodynamics of small systems. 

Through this work we have been able to observe experimentally an individual molecular 

shutle hopping from one station to the other hundreds of times, along minutes. Such 

observations have not been possible with other single-molecule techniques, such as AFM, and 

offer the opportunity to compare the theoretical models with experimental data for the very first 

time. In particular, we have characterized succesfully the mechano-chemical cycle of the 

operation of a molecular shuttle, by determining the coexistence force, the coupling constants, 

the velocities and the the coordinate of the transition state. For this we have applied the BE 

models, so that we probe the relationship between force and residing lifetime of the macrocycle 

over each station. In this way, we have helped understand how thermal Brownian fluctuations 

of the macrocycle are converted to submolecular motion. Moreover, we have adapted the 

molecular shuttle to operate under biocompatible conditions. Our approximation allows 

comparing the operation system at molecular level of synthetic and biological systems under 

the same experimental conditions. This is important because strength and dynamics of weak 

non-covalent interactions are strongly modulated by the surrounding environment. In addition, 

opens up the posibility to study more complex synthetic-devices at single molecular level under 

aqueos conditions. 
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3.3. Experimental Section  

 

Contents: 

3.3.1. Rotaxane Synthesis 

3.3.2. Oligonucleotide synthesis 

3.3.3. Cupper-free click reaction 

3.3.4. Mass spectral data of synthetized oligonucleotides 

3.3.5. Synthesis of DNA construct 

3.3.6. Optical Tweezers experiments 

3.3.7. Kinetic rates in the Bell-Evans model 

 

 

3.3.1. Rotaxane Synthesis  

 

General. All solvents were dried according to standard procedures. Reagents were 

used as purchased. All air-sensitive reactions were carried out under argon atmosphere. Flash 

chromatography was performed using silica gel (Merck, Kieselgel 60, 230-240 mesh, or 

Scharlau 60, 230-240 mesh). Analytical thin layer chromatographies (TLC) were performed 

using aluminium-coated Merck Kieselgel 60 F254 plates. NMR spectra were recorded on a 

BrukerAvance 400 (1H: 400 MHz; 13C: 100 MHz), spectrometer at 298 K, unless otherwise 

stated, using partially deuterated solvents as internal standards. Coupling constants (J) are 

denoted in Hz and chemical shifts () in ppm. Multiplicities are denoted as follows: s = singlet, 

d = doublet, t = triplet, m = multiplet, br = broad. Fast Atom Bombardment (FAB) and Matrix-

assisted Laser desorption ionization (coupled to a Time-Of-Flight analyzer) experiments 

(MALDI-TOF) were recorded on a VS AutoSpec spectrometer and a Bruker ULTRAFLEX III 

spectrometer, respectively. 
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Scheme of the rotaxane Synthesis 
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2,2-diphenylethyl 6-([((9H-fluoren-9-yl)methoxy)carbonyl]amino)-2-[(tert-butoxy-
carbonyl)amino}]hexanoate 

 

Boc-D-Lys(Fmoc)-OH (900 mg, 1.92 mmol) was dissolved in DCM (19 mL) and the 

solution was cooled to 0ºC, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride 

(EDCI) (732 mg, 3.84 mmol), 4-dimetylaminopyridine (DMAP) (catalytic amount) were added 

at 0ºC. The reaction mixture was allowed to stir at room temperature for 30 min, and then a 

solution of 2,2-diphenylethanol (457 mg, 2.3 mmol) in DCM (7.7 mL) was added to the 

activated acid. The reaction mixture was stirred overnight, concentrated under reduced 

pressure and then diluted with DCM. The organic layer was washed with 1M HCl, with NaHCO3 

(sat. aq.), then further washed with brine (sat. aq.), dried over Na2SO4 and concentrated under 

reduced pressure. The crude material was purified by column chromatography (eluent: 

hexane: AcOEt 3:1) to furnish the desired product as a colorless oil, 1.12g (quantitative yield).  

1H NMR (CDCl3): = 7.77 (d, J = 7.5 Hz, 2H, Fmoc-H), 7.60 (d, J = 7.4 Hz, 2H, Fmoc-H), 7.40 

(t, J = 8 Hz, 2H, Fmoc-H), 7.30 (m, 6 H, Ar-H), 7.22 (m, 6 H, Ar-H, Fmoc-H), 4.97 (m, 1 H, 

Hfmoc), 4.80 (m, 1 H, Hp or Hp´), 4.68 (m, 1 H, NH), 4.58 (m, 1 H, Hp or Hp´), 4.41 (m, 3 H, Hq, 

CH2-Fmoc), 4.22 (m, 2 H, Ho, NH), 3.05 (m, 2 H, Hl), 1.50 (m, 2H, Hm), 1.42 (s, 9 H, Boc-H), 

1.07 (m, 4H, Hn, Hñ); 13C NMR (CDCl3): = 172.5, 156.4, 155.3, 144.0 (2C), 141.3 (2C), 140.8, 

140.6, 128.6 (2C), 128.6 (2C), 128.2 (2C), 128.1 (2C), 127.7 (2C), 127.0 (2C), 126.9 (2C), 

125.0 (2C), 120.0 (2C), 79.9, 67.3, 66.4, 53.1, 49.8, 47.3, 40.6, 32.2, 29.7, 28.3, 22.1 (3C) 

ppm. MS m/z: calculated for C40H44N2O6 [M+Na]+ 671.4 found MALDI-TOF 671.3. 
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2,2-diphenylethyl 6-([((9H-fluoren-9-yl)methoxy)carbonyl]amino)-2-aminohexanoate 

 

90mg (0.14 mmol) of compound III-1 was dissolved in 1% pyridine and 1% DBU in DMF 

(2.8 mL). The reaction mixture was stirred for three hours at room temperature until the reaction 

was completed (TLC). The solvent was removed under reduced pressure to give compound 

III-2 as yellowish oil (quantitative yield) and the crude material was used directly in the next 

step reaction.  

Biotinyl-N-hydroxy-succinimide, N-Hydroxysuccinimidobiotin, N-Succinimidyl D-

biotinate, NHS-Biotin 
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To a solution of D-biotin (75 mg, 0.31 mmol) and N-hydroxysuccinimide (39 mg, 0.34 

mmol) in DMF, was added EDCI (71 mg, 0.37 mmol). After being stirred for 24h at room 

temperature, the reaction solution was concentrated to obtain a white solid. The white solid 

was washed by methanol several times to furnish compound III-3 in a 90% yield (96mg, 

0.28mmol). 1H NMR ([D6]dimethyl sulfoxide): = 6.41 (s, 1H, Ha), 6.35 (s, 1H, Hb), 4.30 (m, 

1H, Hc), 4.15 (m, 1H, Hd), 3.10 (m, 1H, Hf), 2.83 (dd, J = 5.1, 12.5 Hz, 1H, He or He´), 2.81 (s, 

4H, succinimida-H), 2.67 (t, J = 7.36 Hz, 2H, Hj), 2.58 (d, J = 12.4 Hz, 1H, He´ or He), 1.55 (m, 

6H, Hh, Hi, Hj); 13C NMR ([D6]dimethyl sulfoxide): = 173.3 (3C), 168.9, 162.7, 61.0, 59.2, 

55.2, 30.0, 27.8, 27.6, 25.4 (2C), 24.3 ppm. These data is in concordance with J. Med. Chem. 

52, 2009, 7003-7013. 
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2,2-diphenylethyl 2-[(tert-butoxycarbonyl)amino)-6-(biotinylamino] hexanoate 

 

Compounds III-2 (46 mg, 0.110 mmol) and III-3 (25 mg, 0.073 mmol) were dissolved in 

DMF, and then Et3N (20 L, 0.144 mmol) was added. The reaction mixture was stirred 

overnight; then was concentrated in vacuum; the resulting residue was diluted in DCM and 

washed by water. The crude material was then purified by flash chromatography (using a 

gradient elution, from CH3Cl to CH3Cl/MeOH 9:1) to furnish III-4 as a colorless oil, 45 mg, 96 

%. 1H NMR (CDCl3): = 7.23 (m, 4 H, Ar-H), 7.14 (m, 6 H, Ar-H), 6.47 (br s, 1 H, Ha), 6.28 (br 

s, 1 H, Hb), 5.04 (br s, 1 H, NH), 4.71 (m, 1 H, , Hp or Hp´), 4.52 (dd, J = 7.3, 11.0 Hz, 1 H, Hp´ 

or Hp), 4.45 (dd, J = 4.8, 7.1 Hz, 1 H, Hc), 4.32 (t, J = 7.7 Hz, 1 H, Hq), 4.25 (dd, J = 4.5, 7.2 

Hz, 1 H, Hd), 4.09 (br s, 1 H, Ho), 3.07 (m, 3 H, Hf, Hl), 2.83 (dd, J = 4.7, 12.9 Hz, 1 H, He or 

He´), 2.69 (d, J = 12.8 Hz, 1 H, He´ or He´), 2.17 (t, J = 6.8 Hz, 2 H, Hj), 1.61 (m, 4 H, Hg, Hi), 

1.34 (s, 9 H, Boc-H), 1.11 (m, 8 H, Hh, Hn, Hm, Hñ); 13C NMR (CDCl3): = 173.4, 172.6, 163.9, 

155.5, 140.8, 140.6, 128.6 (2C), 128.6 (2C), 128.2 (2C), 128.1 (2C), 126.9 (2C), 79.9, 67.3, 
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61.9, 60.3, 55.6, 53.2, 49.8, 40.4, 39.1, 35.8, 32.2, 28.8, 28.3 (3C), 28.1, 28.0, 25.7, 22.4 ppm. 

MS m/z: calculated for C35H48N4O6S [M+Na]+ 675.3 found MALDI-TOF 675.4. 
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1-(2,2-diphenylethoxy)-1-oxo-6-(biotinylamido)hexan-2-aminium 2,2,2-trifluoroacetate 

 

A solution of compound III-4 (58 mg, 0.09 mmol) in DCM (1.5 mL) was added TFA (0.1 

mL) at 0ºC. The reaction was stirred at room temperature for 3h until it was completed (followed 

by TLC). The reaction mixture was concentrated under reduced, then DCM was added and 

the organic layer was washed with NaHCO3, further washed with brine, dried over Na2SO4 and 

concentrated under reduced pressure to give compound 5 as a yellowish oil, quantitative yield. 

The crude material was used directly in the next step reaction.   

4-[(1-(2,2-diphenylethoxy)-6-(biotinylamino)-1-oxohexan-2-yl)amino]-4-oxobut-2-enoic 

acid 

 

A solution of compound III-5 (49 mg, 0.09 mmol) and Et3N (12 L, 0.093 mmol) in 

anhydrous THF (1 mL), was cooled to 0ºC, then maleic anhydride (9 mg, 0.093 mmol) 

dissolved in THF (0.4 mL) was added dropwise under nitrogen atmosphere. The solution was 

allowed to warm up to room temperature and stirred overnight. The solvent was then removed 

under reduced pressure and the crude material was purified by flash chromatography (using a 

gradient elution, starting DCM/ MeOH 9:1 and then DCM/ MeOH/ NH3 4 : 1: 0.01), to furnish a 

yellow oil (59 mg 90 % yield). 1H NMR ([D6]dimethyl sulfoxide): = 11.09 (br s, 1H, OH), 7.91 

(m, 1H, NH), 7.30 (m, 8 H, , Ar-H), 7.21 (m, 2 H, , Ar-H), 6.45 (br s, 1 H, Ha), 6.35 (br s, 1 H, 

Hb), 6.19 (d, J = 13.0 Hz, 1H, Hs), 5.84 (d, J = 12.8 Hz, 1H, Hr), 4.73 (dd, J = 7.9, 10.8 Hz, 1 H, 

Hp or Hp´), 4.53 (dd, J = 7.2, 10.9 Hz, 1 H, Hp´ or Hp), 4.36 (t, J = 7.6 Hz, 1H, Hq), 4.29 (m, 1 H, 

Hc), 4.10 (m, 2 H, Hd, Ho), 3.08 (m, 1 H, Hf), 2.92 (m, 2 H, Hl), 2.81 (dd, J = 4.7, 12.9 Hz, 1 H, 

He or He´), 2.56 (d, J = 12.8 Hz, 1 H, He´ or He), 2.07 (t, J = 6.8 Hz, 2 H, Hj), 1.44 (m, 12 H, Hg, 

Hi, Hh, Hn, Hm, Hñ); 13C NMR ([D6]dimethyl sulfoxide): = 172.0, 171.7, 167.2, 165.3, 162.7, 

141.3, 141.2, 136.2, 128.5 (2C), 128.5 (2C), 128.2, 128.0 (4C), 126.7 (2C), 66.3, 61.1, 59.2, 

55.4, 52.3, 49.3, 39.9, 37.7, 35.2, 30.2, 28.6, 28.2, 28.0, 25.4, 22.2 ppm. MS m/z: calculated 

for C34H42N4O7S [M+H]+ 650.8 found FAB 651.3. 
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2,2-Diphenylethyl succinic acid mono ester 

 

To a stirred solution of 2,2,-diphenylethanol (1 g, 5.26 mmol) in DCM (53mL) was added 

one drop of Et3N and a solution of succinic anhydride (584 mg, 5.83 mmol) in 15 mL DCM, 

added slowly over 30 min. The reaction mixture was stirred overnight. Once the reaction was 

completed (follow by TLC), the solvent was removed under reduced pressure and the crude 

material was purified by column chromatography, eluent: Hexane : AcOEt 2:1, to afford 1.2 g 

of compound 7 as a white solid (76%). 1H NMR (CDCl3): = 7.28 (m, 4H, , Ar-H), 7.21 (m, 6H, 

Ar-H), 4.65 (d, J = 7.6 Hz, 2H, Hx), 4.36 (t, J = 7.6 Hz, 1H, Hy), 2.55 (m, 4 H, Hv, Hw) ppm. 

These data is in concordance with Angew. Chem. Int. Ed. 42, 2296-2300 (2003). 
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tert-Butyl (2-(2-(2-aminoethyl) hexacosaethylenoxy)ethyl carbamate 

 

The reaction was carried out under anhydrous conditions. To 490mg (0.4 mmol) O,O´-

bis (2-aminoethyl) hexacosaethylene glycol (EG26) in DCM at 0ºC was added di-tert-butyl 

dicarbonate (44mg, 0.2 mmol). The solution was stirred overnight, then the solvent was 

removed in vacuo and the crude material purified via column chromatography using a gradient 

elution, starting with CHCl3/ MeOH 10:1 to 4:1 and finally 1:1, to give a yellowish oil, 165 mg, 

61%. 1H NMR (CDCl3): = 7.91 (br s 3H, 3NH), 3.92 (m, 2H), 3.63 (m, 106H, EG26-H), 3.52 

(t, J = 5.1, 2H), 3.29 (t, J = 5.2, 2H), 3.17 (m, 2H), 1.43 (s, 9H, Boc-H); 13C NMR (CDCl3): = 

154.9, 79.0, 70.5 (51C), 70.3, 70.0, 69.8, 40.4, 29.7, 40.4 (3C) ppm. MS m/z: calculated for 

C61H124N2O29 [M+Na]+ 1371.8 found MALDI-TOF 1371.8. 
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2,2-diphenylethyl 2,2-dimethyl-4,18-dioxo-3,8,11,14-tetraoxa- 

5,17-diazahenicosan-21-oate 

 

40 mg (0.13 mmol) of compound III-7 was dissolved in DCM (2 mL) and the solution 

was cooled down to 0ºC. Then EDCII (38 mg, 0.2 mmol) and DMAP (24 mg, 0.2 mmol) were 

added at 0ºC and the reaction mixture was allowed to stir at room temperature for 30min. A 

solution of compound III-8 (165mg, 0.12mmol), in DCM (1.5 mL) was added to the activated 

acid. The reaction mixture was stirred for 24h, concentrated under reduced pressure and then 

diluted with DCM and washed with 1M HCl, with NaHCO3 (sat. aq.). The organic layer was 

further washed with brine (sat.), dried over Na2SO4 and concentrated under reduced pressure. 

The crude material was purified by column chromatography using CHCl3/ MeOH 15:1 as 

eluent, to give compound 9 as a colorless oil, 180mg, 92%. 1H NMR (CDCl3): = 7.28 (m, 4H, 

Ar-H), 7.21 (m, 6H, Ar-H), 6.23 (br s, 1H, NH), 5.03 (br s, 1H, NH), 4.62 (d, J = 7.6 Hz, 2H, Hx), 

4.35 (t, J = 7.6 Hz, 1H, Hy), 3.81 (m, 1H), 3.63 (m, 103H, EG26-H), 3.53 (m, 4H), 3.40 (m, 2H), 

3.30 (m, 2H), 2.57 (t, 2H, J = 7.2 Hz, Hw), 2.37 (t, 2H, J = 7.0 Hz, Hv),1.43 (s, 9H, Boc-H); 13C 

NMR (CDCl3): = 172.7, 171.5, 156.0, 141.1 (2C), 128.5 (4C), 128.2 (4C), 126.8 (2C), 79.2, 

70.6 (51C), 70.2, 70.2, 69.7, 66.8, 49.8, 40.5, 39.4, 30.6, 29.7, 28.4 (3C) ppm. MS m/z: 

calculated for C79H140N2O32 [M+Na]+ 1651.9 found MALDI 1651.9. 
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Compound III-10. Was synthetized following the same procedure described for 

compound III-5. 

 

(Z/E 55/45)-Thread 

 

Compound III-6 (85 mg, 0.13 mmol) was dissolved in DCM (3 mL) and the solution was 

cooled to 0ºC, EDCI (23 mg, 0.19 mmol), DMAP (37 mg, 0.19 mmol) were added at 0ºC. The 

reaction mixture was allowed to stir at room temperature for 30 min, and then a solution of 

compound III-10 (180 mg, 0.12 mmol) in DCM (7.7 mL) was added to the activated acid. The 

reaction mixture was stirred overnight, concentrated under reduced pressure and then diluted 

with DCM. The organic layer was washed with 1M HCl, with NaHCO3 (sat. aq.), then further 

washed with brine (sat. aq.), dried over Na2SO4 and concentrated under reduced pressure. 

The crude material was purified by column chromatography (gradient elution: DCM: MeOH 30 

: 1 to 9:1) to furnish the desired product as a colorless oil, 166mg, 0.077 mmol (64%).1H NMR 

([D6]dimethyl sulfoxide) : = 8.65 (d, J = 7.2 Hz, 1H, NH), 8.50 (t, J = 5.6 Hz, 1H, NH), 7.86 (t, 

J = 5,5 Hz, 1H, NH), 7.70 (t, J = 5,5 Hz, 1H, NH), 7.27 (m, 16 H, Ar-H), 7.21 (m, 4 H, Ar-H), 

6.87 (d, J = 15.5 Hz, 0.4 H, Hr or Hs of E-isomer), 6.82 (d, J = 15.5 Hz, 0.4 H, Hr or Hs of E-

isomer), 6.40 (br s, 1 H, Ha), 6.34 (br s, 0.5 H, Hb), 6.21 (d, J = 13.1 Hz, 0.5 H, Hr or Hs of Z-
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isomer), 6.08 (d, J = 13.1 Hz, 1H, Hr or Hs of Z-isomer), 4.72 (dd, J = 8.1, 10.9 Hz, 1 H, Hp or 

Hp´), 4.55 (m, 3H, Hp´ or Hp, Hx), 4.33 (m, 3H, Hc, Hy, Hq), 4.12 (m, 2H, Hd, Ho), 3.68 (m, 1H, 

EG26-H), 3.50 (m, 107H, EG26-H), 3.37 (t, J = 6.0 Hz, 2H, EG26-H), 3.17 (dd, J = 5.8, 11.5 

Hz, 2H, EG26-H), 3.08 (m, 1H, Hf), 2.91 (m, 2 H, Hl), 2.81 (dd, J = 4.7, 12.9 Hz, 1 H, He or He´), 

2.54 (d, J = 12.8 Hz, 1 H, He´ or He), 2.37 (t, J = 6.9 Hz, 2 H, Hw), 2.27 (t, J = 6.6 Hz, 2 H, Hv), 

2.04 (t, J = 6.8 Hz, 2 H, Hj), 1.44 (m, 12 H, Hg, Hi, Hh, Hn, Hm, Hñ) (400 MHz, DMSO) ppm. MS 

m/z: calculated for C108H172N6O36S [M+Na]+ 2185.1 found MALDI 2185.1. 
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(E)-Thread 

 

A solution of compound 11 (115 mg, 0.052mmol) and piperidine (4 g, 0.006 mmol) in 

DCM (3 mL) was stirred for 48 h. Then DCM was added and the organic layer was washed 

twice with 1M HCl. The organic layer was concentrated under reduced pressure to furnish 

compound 12 as yellowish oil (112 mg, 97%). 1H NMR ([D6]dimethyl sulfoxide): = 8.65 (d, J 

= 7.2 Hz, 1H, NH), 8.50 (t, J = 5.6 Hz, 1H, NH), 7.86 (t, J = 5,5 Hz, 1H, NH), 7.70 (t, J = 5,5 

Hz, 1H, NH), 7.27 (m, 16 H, Ar-H), 7.21 (m, 4 H, Ar-H), 6.87 (d, J = 15.5 Hz, 1H, Hr or Hs), 6.82 

(d, J = 15.5 Hz, 1H, Hr or Hs), 6.40 (br s, 1 H, Ha), 6.34 (br s, 1 H, Hb), 4.72 (dd, J = 8.1, 10.9 

Hz, 1 H, Hp or Hp´), 4.55 (m, 3H, Hp´ or Hp, Hx), 4.33 (m, 3H, Hc, Hy, Hq), 4.12 (m, 2H, Hd, Ho), 

3.68 (m, 1H, EG26-H), 3.50 (m, 107H, EG26-H), 3.37 (t, J = 6.0 Hz, 2H, EG26-H), 3.17 (dd, J 

= 5.8, 11.5 Hz, 2H, EG26-H), 3.08 (m, 1H, Hf), 2.91 (m, 2 H, Hl), 2.81 (dd, J = 4.7, 12.9 Hz, 1 

H, He or He´), 2.54 (d, J = 12.8 Hz, 1 H, He´ or He), 2.37 (t, J = 6.9 Hz, 2 H, Hw), 2.27 (t, J = 6.6 

Hz, 2 H, Hv), 2.04 (t, J = 6.8 Hz, 2 H, Hj), 1.44 (m, 12 H, Hg, Hi, Hh, Hn, Hm, Hñ); 13C NMR 

([D6]dimethyl sulfoxide): = 173.4, 172.7, 171.9, 171.2, 165.4, 164.6, 163.6, 141.1 (2C), 

140.8, 140.8, 140.6, 140.5, 133.4, 132.4, 129.7, 128.6 (2C), 128.6 (2C), 128.5 (4C), 128.3, 

128.2 (4C), 128.1 (2C), 126.9 (2C), 126.7(2C), 70.5 (50C), 70.5, 70.2, 69.8, 69.6, 67.3, 66.7, 
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55.5, 52.3, 49.7, 49.7, 40.4, 39.6, 39.3, 38.3, 35.7, 30.9, 30.7, 29.6, 29.4, 28.7, 28.0, 25.5, 

22.6, 21.9 ppm. MS m/z: calculated for C108H172N6O36S [M+Na]+ 2184.0 found FAB 2184.1. 
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5-azidoisophthaloyl dichloride 

 

Step i) 5-aminoisophalic acid (2.5 g, 27.6 mmol) was placed in a flash with water (39 

mL), 3mL of 12M HCl was added dropwise. The mixture was cooled in a ice bath at 0ºC. 

NaNO2 was dissolved in water and added dropwise to the misture, wich was stirred for 30 min. 

Then, NaN3 dissolved in water was added dropwise to the misture. A yellow solid was formed 

and gas evolution was observed, making it difficult to keep stirring. The mixture was stirred 

until gas evolution was no longer detected. The product was then filtered, washed with distilled 

water and dried under vacuum (3.4g, 60%). 1H NMR ([D6]dimethyl sulfoxide): = 13.49 (br s, 

2H, OH), 8.22 (t, J = 1.4 Hz, 1H, Ar-H, HA), 7.73 (d, J = 1.4 Hz, 1H, Ar-H, HB) ppm. This data 

is in concordance with Macromol. Chem. Phys. 2003, 214, 2223. 

Step ii) To a stirred suspension of 5-azido-isophthalic acid (100 mg, 0.48 mmol) in DCM 

(2mL) was added two drops of anhydrous DMF and oxalyl chloride (0.15 mL, 1.95 mmol).The 

reaction mixture was stirred until the product was totally solubilized. The solvent was removed 

under reduced pressure and the sample was kept 3h under vacuum to remove oxalyl chloride. 

The crude product was then used directly in the next step.  
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Scheme for the synthesis of compound III-14 
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N2,N6-bis(4-(aminomethyl)benzyl)pyridine-2,6-dicarboxamide 

 

Step i). To a solution of p-xylylenediamine (515 mg, 3.78 mmol) in chloroform (60 mL) 

cooled in an ice bath, a solution of di-tert-butyl carbonate (413 mg, 1.89 mmol) in CHCl3 (45 

mL) was added dropwise over a period of 4h. The misture was sitirred overnight under Ar. A 

white solid was filtered from the solution and washed with cold CHCl3. The CH was removed 

under reduce pressure. To the remaining oil, DCM and water was added. The layers were 

separated and the aqueous layer was extracted with DCM (x3). The extracts were combined 

and dried over Na2SO4. The crude material was purified using a gradient elution (DCM/ MeOH 

15:1 to 6:1) to give compound 14 as yellowish solid (400 mg, 90%) 1H NMR (CDCl3): = 7.26 

(m, 4H, Ar-H), 4.28 (m, 2H), 3.84 (s, 2H) ppm. 

Step ii) 2,6-Pyridinedicarboxylic acid (234 mg, 1.4 mmol) was suspended in anhydrous 

DCM, the mixture was cooled to 0ºC with an ice bath, then oxalyl chloride was added 

dropwhise followed by the addition of 2drops of DMF. The reaction mixture was stirred until 

the product was totally solubilized. The solvent was removed and the crude solid was dried 

under high vacuum for 2h. The acid chloride (221mg, 1.1 mmol) dissolved in CH3Cl, was added 

dropwise to a solution of compound 14 and Et3N in CH3Cl. The reaction mixture was stirred 

overnight. The solvent was removed under reduced pressure. To the remaining oil, DCM and 

water was added. The layers were separated and the aqueous layer was extracted with DCM 

(x3). The extracts were combined and dried over Na2SO4. The crude material was purified 

using a gradient elution (DCM : MeOH 15:1 to 6:1) to give compound 14 as yellowish solid 

(400 mg, 90%) 1H NMR (CDCl3): = 8.90 (br s, 2H, NH, HI), 8.27 (d, J = 7.8 Hz, 2H, Ar-H, HJ), 

7.95 (t, J = 7.8 Hz, 1H, Ar-H, HK), 7.03 (m, 4H, HF), 6.97 (m, 4H, HE), 5.28 (br s, 2H, NH, HC), 

4.31 (br d, J = 5.5 Hz, 4H, HG), 4.09 (br d, J = 5.9 Hz, 4H, HD), 1.40 (s, 18H, Boc-H); 13C NMR 

(CDCl3): = 163.8, 156.2, 148.8, 138.7, 138.1, 137.2, 127.7, 127.2, 125.0, 79.5, 44.1, 43.0, 

28.4 ppm. This data is in concordance with Nat. Nanotech., 6(9), 2011, 553-557. 

Step iii) Compound was dissolved in DCM, the solution was cooled to 0ºC and TFA 

was added dropwise until the reaction was completed (TLC). Solvent was removed under 

vaccum. The crude material was dissolved in DCM / MeOH 1/1 v/v ratio and was stirred with 

Amberlyst A-21 resin for 1h. The solvent was removed under reduced pressure to yield a 

hygroscopic powder (quantitative yield). 1H NMR ([D6]dimethyl sulfoxide): = 9.92 (br t, J = 

6.4 Hz, 2H, NH, HI), 8.22 (m, 3H, Ar-H, HJ, HK), 7.37 (m, 4H, HF), 7.33 (m, 4H, HE), 4.31 (br d, 

J = 6.4 Hz, 4H, HG), 4.09 (br s, 4H, HD).  
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[2]Rotaxane 

 

Thread III-12 (16 mg, 7.3 x 10-3 mmol), was dissolved in 1.5 mL CHCl3 (stabilized with 

amylenes), Et3N (30 L, 0.22 mmol) was added and the reaction mixture were stirred 

vigorously while solutions of the diamine, compound III-14, (36 mg, 0.09 mmol) in CHCl3 (0.7 

mL) and the acid chloride, compound III-13 prepared in step i) (21 mg, 0.09 mmol) (1.07 g, 

4.83 mmol) in CHCl3 (0.7 mL) were simultaneously added over a period of 3 h using motor-

driven syringe pumps. After 24h the resulting suspension was filtered and the solvent removed 

under reduced pressure. The crude material was purified by column chromatography (gradient 

elution: DCM : MeOH  25:1 to 18:1) to furnish rotaxane III-15 as a colourless oil (7 mg, 35%); 

1H NMR ([D6]dimethyl sulfoxide): = 9.83 (m, 1H, NH), 9.56 (m, 2H, NH), 9.18 M (m, 1H, NH), 

8.72 (d, J = 7.1 Hz, 1H, NHt or NHz), 8.52 (t, J = 5.7 Hz, 1H, NHt or NHz), 8.31 (m, 1H, Ar-H), 

8.22 (m, 2H, Ar-H), 8.11 (m, 1H, NH), 7.82 (m, 1H, NH), 7.70 (m, 1H, NH), 7.63 (m, 2H, Ar-H), 

7.28 (m, 16 H, Ar-H), 7.21 (m, 8H, Ar-H), 7.13 (m, 4 H, Ar-H), 6.51 (m, 2H, Hr, Hs), 6.41 (br s, 

1 H, Ha), 6.35 (br s, 1 H, Hb), 4.72 (dd, J = 8.1, 10.9 Hz, 1 H, Hp or Hp´), 4.56 (m, 7H, Hp´ or Hp, 

Hx, Hx´ and HD or HG), 4.37 (m, 7H, Hc, Hy, Hq and HD or HG), 4.11 (m, 2H, Hd, Ho), 3.50 (m, 14H, 

EG26-H), 3.40 (m, 90H, EG26-H), 3.17 (m, 2H, EG26-H), 3.08 (m, 1H, Hf), 2.91 (m, 2 H, Hl), 

2.81 (m, 1 H, He or He´), 2.54 (d, J = 12.8 Hz, 1 H, He´ or He), 2.32 (m, 2 H, Hw), 2.21 (t, J = 6.6 

Hz, 2 H, Hv), 2.03 (t, J = 6.8 Hz, 2 H, Hj), 1.44 (m, 12 H, Hg, Hi, Hh, Hn, Hm, Hñ) MS m/z: 

calculated for C108H172N6O36S [M+Na]+ 2759.4 found MALDI 2759.2. 
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Comparison of the 1H NMR spectra of thread, compound III-12, and [2]rotaxane 

compound III-15 (depicted in Figures III-16 and III-17) in [D6]dimethyl sulfoxide (400 MHz, 

298K) indicates that the macrocycle predominantly resides over the fumaramide station. The 

Hr and Hs protons of the fumaramide group are strongly shielded in the rotaxane compared to 

the thread evidenced by a shift in their peak positions by 0.34 ppm, whereas the chemical 

shifts of the Hv and Hw protons of the succinic amide-ester group are only slightly shifted by 

0.05 ppm.  

 

Figure III-16. Comparation of compound III-12, (E)-thread, (top spectrum) and 

compound III-15, rotaxane molecule, (bottom spectrum) Showing in green the protons 

corresponding to the fumaramide double bond, which are shifted in 0.34 ppm in the rotaxane 

molecule; in orange we can find the protons of the succinic-amide ester group, which are 

shifted only by 0.05 ppm in the rotaxane molecule. Finally we can find the protons 

corresponding to the macrocycle highlighted in blue. 
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Figure III-17. Comparation of compound III-12, (E)-thread, (blue spectrum) and 

compound III-15, rotaxane (black spectrum) Showing in yellow circles the protons shifted in 

the rotaxane molecule. 

 

3.3.2. Oligonucleotide synthesis  

The syntheses of oligonucleotides were performed on a MerMade 4 synthesizer 

(BioAutomotion Corporation). For each oligonucleotide synthesis, columns filled with the 

corresponding Controlled Pore Glass (CPG) solid support. Anhydrous MeCN was used as 

solvent. For the cleavage of DMTr protecting groups, the resin was purged with 3 % 

trichloroacetic acid in anhydrous DCM. The removal of the acid was carried out by purging with 

anhydrous MeCN. The activation of the phosphoramidite functionality was effected by a 0.25 

M benzylthiotetrazole solution in anhydrous MeCN. The coupling time for standard 

phosphoramidites was 2 min and for cyclooctine derivative 5 min. Oxidation of P(III)-species 

was attained by alkaline iodine solution (20 mM I2 in THF/Py/water 7/2/1). For the capping of 

residual 5'-OH-groups, a mixture of solution A (10% Ac2O, 10% pyridine, 80% THF) and 

solution B (10% 1-methylimidazole in THF) was used. After completion of the synthesis, the 

oligonucleotides were cleaved from the solid support with concomitant removal of the Fmoc 

and β-cyanoethyl protecting groups by reacting the oligonucleotide-charged solid support with 

28 % aq. NH3 at 55 °C for 20 h. The solution was filtered and the filtrate was concentrated in 

vacuo. The residue was dissolved in 750 μL water. For purification of this crude oligonucleotide 

solution, a volume containing ~40 nmol crude oligonucleotide was applied to gel 
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electrophoresis (1 mm, 20% polyacrylamide). The oligonucleotide-containing segments of the 

gel were visualized by UV-light (260 nm) and separated from the rest of the gel. 

Oligonucleotides were extracted from the gel using an elutrap system (3 h, 200 V). The 

solutions were desalted using a NAP-10 column and concentrated in an evaporating 

centrifuge. 

 

 

 

3.3.3. Cupper-free click reaction and annealing of oligonucleotides  

i) To a stirred solution of oligonucleotide 1 (50 µM) in H2O/DMF (0.3 mL, 4/1) was added 

rotaxane 15 (60 µM) in H2O/DMF (0.3 mL, 4/1). The mixture was allowed to stir overnight at 

room temperature. Followed and purified by gel electrophoresis (0.2 mm, 20% 

polyacrylamide). The oligonucleotide-containing segments of the gel were visualized by UV-

light (260 nm) and separated from the rest of the gel. Oligonucleotide were extracted from the 

gel using an elutrap system (3 h, 200 V). The solutions were desalted using a NAP-10 column 

and concentrated in an evaporating centrifuge, To give the oligonucleotide 3. 

ii) 20 μl of each DNA oligonucleotide solution (10 μM) were mixed, and 40 μl of 2 x 

Annealing Buffer*1was added, arriving at a final volume of 80 μL, and a final DNA duplex 

concentration of 2.5 μM. The mixture was Incubated at 90-95°C for 5 min and gradually/slowly 

cool down to room temperature (over a period of 12h).  

                                                
*Annealing buffer: 2 x Annealing buffer concentration: 20 mM Tris-Cl, 100 mM NaCl, 2 mM 

EDTA. 
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3.3.4. Mass spectral data of synthesized oligonucleotides 

MALDI data was obtained at the Proteomic facility of the National Center for 

Biotechnology (CNB-CSIC).   

 

Table III-3. MALDI data of synthesized oligonucleotides 
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 Oligonucleotide 1 

 
 
 

 Oligonucleotide 2 
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Final - Shots 2000 - 20161021_Alvaro_Somoza; Run #1; Label C20

6310.7847(R612,S552)

1020.4990(R457,S21)

1039.3867(R314,S45) 6332.4736(R656,S146)

1252.9014(R334,S24) 6123.3149(R616,S145)

1596.2609(R498,S25)

6353.5439(R527,S39)
3156.8242(R591,S58)

5971.1924(R1257,S22)3975.4307(R640,S38)
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4719.6694(R588,S2939)
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4741.6338(R641,S505)

1595.3610(R398,S497)

4406.3345(R560,S337)1023.8222(R267,S197)

1433.9943(R316,S144) 4762.3389(R776,S30)
1899.8286(R441,S35) 4093.9331(R412,S37)
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 Oligonucleotide 3 

 

 

 

3.3.5. Synthesis of DNA construct 

A 2686 dsDNA handle (puc19 vector, Novagen) was cut with BamHI and SacI 

restriction endonucleases and labeled with Digoxigenin at the BamHI end, and the SacI end 

was ligated to the previously described oligonucleotide modified with the rotaxane molecule 

(oligonucleotide 3). 

3.3.6. Optical tweezers experiments 

Experiments (I). The dsDNA-rotaxane construct was bound to -Dig covered beads 

(Spherotech Co.) by incubating 3 l of the dsDNA-rotaxane construct with 3 l of the beads for 

15 min at room temperature. The sample was then diluted with 300 l of the reaction buffer 

(Tris-HCl 20 mM pH 7.5, 150 mM NaCl) and flowed into the fluidic chamber. The -Dig, DNA 

covered beads were manipulated with the optical trap and single DNA constructs were 

obtained by attaching the biotin end of the rotaxane to the streptavidin bead (Spherotech Co.) 

previously hold on top of a mobile micropipette. The mechanical properties of the DNA 

construct allowed identifying single attachments (see experimental force-extension curves 

below). Data were collected in a dual-beam optical tweezers at 100 Hz at 22 ± 1 °C.  
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Experiments (II): using the dsDNA (830bp) handle 

i) The dsDNA-rotaxane construct was bound to -Dig covered beads (Spherotech Co.) 

by incubating 3 l of the dsDNA-rotaxane construct with 3 l of the beads for 15 min at room 

temperature, then it was diluted with 300 l of the reaction buffer (Tris-HCl 20 mM pH 7.5, 150 

mM NaCl) and flowed into the flow chamber. These -Dig (I), DNA covered beads were 

manipulated with the optical trap  

ii) The dsDNA-handle was bound to -Dig covered beads, by incubating 3 l of the 

dsDNA-handle with 3 l of streptavidin (1/10 porportion) and 3 l of the beads for 15 min at 

room temperature, then the sample was diluted; these -Dig beads were flowed flowed into 

the fluidic chamber and manipulated with the micropipette.  

A single DNA-rotaxane constructs were obtained by attaching the biotin end of the 

rotaxane to the streptavidin located on the extreme of the dsDNA-handle. 

 

3.3.7. Kinetic rates in the Bell-Evans model 

The distances between stations (f = fumaramide, s = succinic amide-ester) were 

experimentally measured at every force and are depicted in Table III-4: 

 

Table III-4. Experimental distance xf-s at every force. 

 

In order to calculate average lifetimes of the macrocycle staying in the two stations 

(fumaramide = Station 1 and succinic amide-ester = Station 2), we used a line y = y (Station 

1) + treshold = y (Station 2) – treshold, assuming that all the points above this line belong to 

the Station 2 and all the points below the line belong to the Station 1. Once the current point 

is found on the other side of the line, a transition occurs. 

 

Once we have extracted the average lifetimes, we can calculate the kinetic rates for 

the succinic amide-ester station→fumaramide station transition, ks(F), and viceversa kf(F), 

since ks = 1/f and kf = 1/s, at each force (sumarized in Table III-5). 
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Table III-5. logaritmic scales of the kinetic rates  
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CHAPTER 4. 

Hydrogen Bonds Are Not Shielded In Room 

Temperature Ionic Liquid 

 

4.1. Introduction 

H-bonds are perhaps the most important of noncovalent interactions. The physical 

properties of water and the information storage in DNA depend on H-bonds, to name just two 

crucial examples. To this day, however, the balance between the Coulombic and covalent 

contributions to H-bonds is still the subject of a heated debate. 

Current approximations to covalent bonding have proven remarkably accurate based 

on their good match with state-of-the-art molecule imaging techniques.221-228 Meanwhile, our 

understanding of noncovalent interactions is much more limited.229 Supramolecular chemists 

still argue about the nature, or even the existence,230 of particular interactions. Specifically, the 

nature of H-bond is still rather controversial. H-bonds have traditionally been understood as a 

largely electrostatic interaction,20 but the question of a relevant covalent contribution to H-

bonds keeps resurfacing.231-233 Motivated by this debate, in 2011 the IUPAC moved away from 

a definition of H-bond that included the very explicit “best considered as an electrostatic 

interaction” to the much more neutral “is an attractive interaction between a hydrogen atom 

from a molecule or a molecular fragment X-H in which X is more electronegative than H, and 

an atom or a group of atoms in the same or a different molecule, in which there is evidence of 

bond formation”.234

More recently, Weinhold and Klein presented the ultimate argument in favor of 

covalent-dominated H-bonds: anti-electrostatic H-bonds between two molecular species with 

identical charge.235 They characterized theoretically, using natural bond orbital (NBO) 

method,236 a variety of H-bonded anion–anion and cation–cation complexes that demonstrated 

how the short-range donor-acceptor covalency forces overcome the powerful long-range 

electrostatic opposition to be expected between ions of like charge. 

However, their conclusions were immediately refuted by Frenking and Caramori,23 who 

used the energy decomposition analysis (EDA)237 method to exalt the electrostatic character 

of the H-bond. Shortly after, it was re-claimed by Weinhold and Klein, who stood by their initial 

conclusions and argued strongly in favor of a significant covalent contribution to H-bonds.25  
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From the experimental point of view, Flood and co-workers have very recently provided 

irrefutable evidence for the existence of stabilizing anion–anion H-bonds in solution, within 

macrocyclic cavities.238 The H-bonded bisulfate dimer, [HSO4•••HSO4]2-, is stable in solution, 

encapsulated as a supramolecular complex inside cyanostar macrocycles (Figure IV-1). 

 

Figure IV-1. a) Crystal structure showing different views the dimer of bisulfate anions 

that is inside a pair of cyanostars end-capped with two tetrabutylammonium (NBu4
+) cations 

producing an overall 2:2:2 complex CS2(HSO4)2(NBu4)2. b) View of the encapsulated bisulfate 

dimer showing the self-complementary, anti-electrostatic hydrogen bonding (yellow = S, red = 

O). Thermal ellipsoids are drawn at 50% probability. Figure reprinted with permission from 

WILEY, Angew. Chem. Int. Ed. 2016, 55 (45), 14057-14062. Copyright (2016).  

 

In other experimental study, Moriarty and co-workers used non-contact atomic force 

microscopy to image H-bonding networks with sub-molecular resolution, and concluded that 

the short-range energy force and potential energy landscapes of intermolecular H-bonds were 

“surprisingly similar” to intramolecular C-C bonds (Figure IV-2).239 
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Figure IV-2. a) Ball-and-stick model of naphthalene tetracarboxylic diimider (NTCDI) 

with a partial charge density isosurface superimposed (Colour coding: grey, carbon; white, 

hydrogen; red, oxygen; blue, nitrogen); b) Constant height DFM image of a hydrogen-bonded 

NTCDI island on the Ag. Figure reprinted with permission from Springer, Nat. Comm. 2014, 

5, 3931. 

 

With all these precedents in mind, we set out to contribute to the question of the nature 

of the hydrogen bonds. Through this chapter we are going to focus this question from an 

experimental point of view.  

 
 
 

4.2. Results and Discussion 

 

4.2.1. Experimental approach 

We are going to compare binding constants (Ka) obtained from titrations on four H-

bonded host-guest systems in organic solvents and in room temperature ionic liquid (RTIL), 

pure salts that are liquid under ambient conditions. As liquids composed entirely of ions, RTILs 

seem the ideal playground to test the contribution of Coulombic interactions to H-bonding.  

First, let´s briefly overview the purely electrostatic part of supramolecular interactions. 

In Table IV-1 are summarized the energy values of the types of electrostatic interactions that 

will coexist in our experimental design.   
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Table IV-1. Showing the interaction energy between an ion pairing, an ion-dipole and 

a dipole-dipole couples. Where, a dipole is represented by a vector directed from the positive 

charge to the negative one. ε0 is the dielectric constant; µ is the dipole moment, which 

magnitude is q·𝑟; and θ is the angle between the direction of the molecule axis and the direction 

between the molecules.  
 

In principle, in RTILs the dipole-dipole electrostatic contribution to H-bonds 

(proportional to r−6) should be negligible in comparison with dipole-point charge interactions 

(proportional to r−2). This purely electrostatic picture has been proven true for weak H-bonds 

in water, which exists in non self-associated form in RTILs, H-bonded to the anions of the RTIL, 

forming anion-H-O-H-anion associates.240 

Herein, we are going to investigate the predominant component in strong H-bonds by 

comparing association data for several host-guest pairs in organic solvents and RTIL. We 

hypothesize that if the electrostatic contribution is the most important one, the presence of net 

charges around should strongly affect the stability of the H-bonded complexes in RTILs. 

However, if the covalent contribution is significant, this destabilization should be much smaller. 

4.2.2. Bulk studies 

We have studied the binding constants of four H-bonded host-guest systems with 

different charge on the main H-bonding motifs (neutral-neutral, anion-neutral and cation-

neutral, Table IV-2) in bulk, using UV-vis spectroscopy. The host-guest systems chosen have 

been thoroughly studied previously, are synthetically accessible, and span a large range of Ka. 

In particular, we have chosen benzamidine-acetic acid (Ben-AcOH in Table IV-2, neutral-

neutral), the Hamilton receptor-cyanuric acid derivative pair (HR-cy in Table IV-2, neutral-
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neutral), the 1,4,7,10,13,16-hexaoxacyclooctadecane-ammonium derivative (18_crown_6-Am 

in Table IV-2, neutral-cation) and N,N’-dimethyl thiourea-sodium benzoate (DMTU-BzO− in 

Table IV-2, neutral-anion). In order to investigate the Ka of the host-guest systems using UV-

vis titrations, we tagged them with a visible dye if required (see Experimental Section). Very 

briefly, we analyse the UV-vis spectrum of a solution of the host with increasing concentration 

of the guest. To discard dilution effects, we work at constant concentration of the host. The 

spectral data were fitted using Reactlab™ Equilibria global fitting software (see the 

Experimental Section). As expected, all data fitted satisfactorily to 1:1 binding models. 

The RTIL selected is 1-ethyl-3-methylimidazolium tris(pentafluoroethyl) trifluoro 

phosphate ([emim][FAP]), which is represented in Figure IV-3. Organic solvents were selected 

to ensure complete solubility of all species in the host-guest binding equilibrium. 

 

Figure IV-3. RTIL, 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluoro 

phosphate ([emim][FAP]).  
 

Through these titrations we observed that the four H-bonded host-guest systems 

associate effectively in [emim][FAP], presenting association constants comparable to those 

measured in organic solvents, as shown in Table IV-2. 

 

 

Table IV-2. Structure of the H-bonded host-guest systems and summary of log Ka values (the 

error values corresponds to three runs). 

 
Examples of the UV-vis titration results for each host-guest pair are depicted in Figure 

IV-5. It is remarkable that the spectroscopic changes are quantitatively different, but follow 

similar trends in the organic solvents and [emim][FAP]. 
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For the first couple, Ben-AcOH (Figure IV-5a) the evolution of the spectra in acetonitrile 

and RTIL during the titration follow similar trends, and are clearly indicative of association. This 

is one of the most straightforward cases, from the point of view of spectroscopy, as the AcOH 

guest is completely transparent in the UV-vis region under study. In the titrations performed in 

acetonitrile, we observe a depletion of the Ben absorption maximum centered at 254 nm, which 

is accompanied by a blue-shift to 250 nm. These changes are concomitant with the 

appearance of a new absorption band at around 272 nm, with a clear isosbestic point at 269 

nm. In the case of titrations performed usign RTIL as solvent, we observe that the absorption 

band at 271 nm, indicative of Ben H-bonds is already present in the absence of AcOH guest, 

clearly indicating that the Ben is initially H-bonded, to itself forming a dimer and/or to the RTIL. 

Upon addition of AcOH, we see the intensity of this band increases siginficantly and is red-

shifted to 274 nm, while the UV maximum at 251 nm is red-shifted to 254 nm. These changes 

occur without the formation of a clear isosbestic point, in accordance with a picture where Ben 

coexists as free (or dimerized) species and H-bonded both to the RTIL and to the AcOH guest. 

However, it is clear from the evolution of the spectra during the titration that the AcOH guest is 

the strongest binder, and displaces the equilibrium towards Ben-AcOH host-guest complexes. 

This is also reflected on the good fit to a 1:1 binding model. 

For the analysis of the UV-vis spectra of the second and third pairs, that are, HR-cy 

and 18_Crown_6-Am, cy and Am were tagged with a UV-vis dye, [Ru(bpy)3]2+, which confers 

the following spectroscopic properties: [Ru(bpy)3]2+[PF6
-]2 absorbs UV light and visible light. In 

acetonitrile the molecule strongly absorbs at 452 ± 3 nm corresponding to the metal to ligand 

charge transfer (MLCT) transition (extinction coefficient of 14,600 M−1cm−1), 285 nm 

corresponding to ligand centered (LC) π*← π transition and a weak transition around 325 nm 

(d-d transition).241, 242 In Figure IV-4 are depicted this transitions. 

 
Figure IV-4. a) [Ru(bpy)3]2+[PF6

-]2 UV-Vis spectrum in acetonitrile. b) Transition of 

[Ru(bpy)3]2+[PF6
-]2. Thus, in the UV-vis spectra of this couples, the absorption changes 

observed are reflected in the strong band located at 285 nm.  

https://en.wikipedia.org/wiki/UV_light
https://en.wikipedia.org/wiki/Molar_absorptivity
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For the titration of the HR-cy couple (Figure IV-5b) we carried out additions of HR to a 

solution of cy. In the case of the titrations carried out in acetonitrile, we observed an increase 

in absorption in the UV region, noticeable as both an increase in the absorptivity of the 

maximum at 288 nm and the appearance of a new absorption shoulder at around 320 nm. By 

comparison with the arithmetic sum of the pure host and guest species, we can safely attribute 

these changes to HR-cy binding. In the case of the titration performed in the RTIL, we observed 

similar trends, with the distinction that the absorption shoulder centered at 320 nm was 

considerable higher.    

The changes in the absorption spectra during the titration of the 18_Crown_6-Am 

couple (Figure IV-5c) are qualitatively similar but quantitatively much smaller. In this case, the 

titration was carried out adding aliquots of 18_crown_6 over Am (the concentration of Am was 

kept constant in order to avoid dilution effects). Since 18_crown_6 is transparent in the UV-vis 

region under study (250-600 nm) spectroscopic changes observed upon the addition of 

18_crown_6 correspond to the formation of new species. Both in the titrations carried out in 

acetonitrile and in those carried out in RTIL, the increase of the absorption band centred in 

285 nm was observed, accompanied by a slight increase of the absorption shoulder centered 

at 320 nm. 

Finally, the titration of the DMTU-BzO- couple, depicted in Figure IV-5d, also shows 

clear spectroscopic changes indicative of strong association, both in chloroform and in RTIL. 

In the case of titrations carried out in chloroform, addition of DMTU to the BzO- solution causes 

the UV-vis spectrum to change dramatically. The UV absorption maximum, initially located at 

250 nm, is red-shifted and increases in absorption, which occurs together with a significant 

decrease in the width of the absorption band, approximating the spectrum of BzOH, and 

supporting the formation of a DMTU-BzO- H-bonded couple beyond reasonable doubt. Similar 

trends were observed in the titrations carried out in RTIL, in this case, the absorption band 

centered at 273 nm is already more pronounced even at [DMTU] = 0 and then grows even 

more upon addition of DMTU. 

In all cases, binding constants in [emim][FAP] were smaller but within the same order 

of magnitude of Ka in organic solvents. Remarkably, this observation holds true both for the 

whole range of Ka under study, from the very strong HR-cy to the weaker Ben-AcOH. These 

results indicate that this type of strong, short H-bonds, is not significantly affected by 

surroundings composed entirely of cations and anions, suggesting that the balance of 

Coulombic to covalent interactions in H-bonds is not tipped towards the former. 
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Figure IV-5. UV/Vis titration of a) Ben-AcOH couple in Chloroform (left) and 

[emim][FAP] (right). UV/vis spectra of Benzamidine (6.5 × 10-4 M) on addition of AcOH (0→3 

equiv.), maintaining the concentration of Ben constant, at 298 K. Changes in absorbance 

reflect changes in the amount of Ben and Ben-AcOH present during the titration experiment 

and differences in their UV/vis absorption spectra. b) HR-cy couple in acetonitrile (left) and 

[emim][FAP] (right). UV/vis spectra of cy (4 × 10-6 M) on addition of HR (0→2 equiv.), 

maintaining the concentration of cy constant, at 298 K. Changes in absorbance reflect changes 

in the amount of cy and HR-cy present during the titration experiment and differences in their 

UV/vis absorption spectra. c) 18crown6-Am couple in acetonitrile (left) and [emim][FAP] (right). 

UV/vis spectra of Am (2.6 × 10-4 M) on addition of 18-crown-6 (0→2 equiv.), at 298 K. Changes 

in absorbance reflect changes in the amount of Am and 18crown6-Am present during the 

titration experiment and differences in their UV/vis absorption spectra. d) DMTU-BzO- couple 

in chloroform (left) and [emim][FAP] (right). UV/vis spectra of BzO- (1 × 10-3 M) on addition of 

DMTU (0→2 equiv.), at 298 K. Changes in absorbance reflect changes in the amount of BzO- 

and DMTU-BzO- present during the titration experiment and differences in their UV/vis 

absorption spectra. 
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It is important to compare these results with the case of weaker H-bond donors and 

acceptors, such as water mentioned previously, in which a purely electrostatic picture seems 

to be coherent with the experimental observations. The ATR spectrum of the RTIL in the 

presence of water vapour is depicted in Figure IV-6. 

 

 

Figure IV-6. ATR-IR spectra of RTIL in the (O-H) region showing the bands of water 

dissolved in RTIL at 3696 and 3618 cm-1. 
 

It is important to stress that here we investigated the molecular state of water based on 

the positions of the IR bands of water rather than by comparing their concentrations based on 

the intensities of these bands. The IR bands corresponding to the antisymmetric (3) and 

symmetric (1) stretching modes of water usually lie in the region 3000-3800 cm-1, the position 

and the intensity of these bands are very sensitive to the water environment and to the state 

of water association via H-bonds. The 3 and 1 bands in water vapour absorb at 3756 and 

3657 cm-1 respectively;243, 244 these bands shift to lower wavenumber when water interacts with 

the environment. (e.g. water dissolved in a solvent). The difference in the maximum positions 

of these bands is ca. 100 cm-1 in the case of water bound in symmetric complexes, with both 

protons of water participating in H-bonds. In the IR spectrum of liquid water the 3 and 1 bands 

appear to merge, producing a broad band with a maximum at ca. 3300 cm-1.  

Two distinct bands corresponding to the 3 and 1 modes of water dissolved in 

[emim][FAP] are seen at 3696 and 3618 cm-1. The position of these two bands of water 

dissolved in [emim][FAP] indicates that the water molecules are not associated into clusters or 

pools of water, and can be assigned as “free” water molecules interacting via H-bonds with the 

[FAP]- anion. This assignment is consistent with the literature data on the spectroscopic 

manifestation of the formation of symmetrical complexes of water molecules with weak bases. 

 

Spectroscopic characterization of the host-guest systems supported their formation 

through H-bonds, rather than unspecific solvophobic interactions. In particular, we observed 
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the fingerprint shifts in the IR spectra for the HR-cy and Ben-AcOH couples. In Figure IV-7, it 

is clearly observable that the fingerprint of these couples is not the sum of independent 

species.  

 

 
Figure IV-7. ATR-IR spectra in [emim][FAP] of a) HR (blue), cy (green) and the 1:1 

molar mixture of both compounds, HR-cy (red) at 7.0 10-3 M. And, b) Ben (blue), AcOH (green) 

and the 1:1 molar mixture of both compounds Ben-AcOH (red) at 0.1 M. The spectrum of the 

solvent ([emim][FAP]) has been subtracted in all cases. In both cases we observed the 

formation of the H-bond couples.  

 

IR spectroscopy, is arguably one of the most powerful methods to give information 

about the molecular state of H-bond in solution state. Figure IV-7a resents ATR-IR spectra of 

HR, cy and the 1:1 molar mixture of both compounds, HR-cy at 7.0 10-3 M using [emim][FAP] 

as solvent. In all the recorded spectra the solvent (RTIL) has been subtracted. HR presents an 

ATR-IR spectra with the most intense bands in the region of 1700-1400 cm-1, in contrast, the 

bands around 3500-3000 cm-1 have low intensity, as it is expected, due to the absence of NH2 

and OH groups. Nevertheless, we observe a broad band center around 3310 cm-1, which is 

assigned to the N-H stretching, (N-H), of secondary amines. Also we observe a sharp band 

at 2960 cm-1 associated to (C-H) of the tert-butyl group. We do not appreciate the pyridine 

(C-H) stretching, due to the intense vibration of the RTIL in that region. The most interesting 

band is the (C=O) carbonyl stretching normal mode at 1679 cm-1. The wavenumber of this 

band indicates a weak C=O double bond character. In the case of the cyanuric acid, we 

observe a broad band centred a 1714 cm-1 with a lower intensity band at higher wavenumber 

at 1766    cm-1. These bands can be assigned to the different C=O moieties in the molecular 

structure. Due to the poor intensity of the 3500-3000 cm-1 region, we focus our attention on the 

carbonyl bands. Interestingly, in the IR spectrum of the 1:1 mixture we observe a broad band 

with several shoulders, the IR spectrum of the mixture is not the arithmetic sum of the parent 

IR spectra. We can associate the shoulder a 1696 cm-1 with a carbonyl from the cy that is 

downshifted upon formation of the dimer. On the other hand, the more intense peak, can be 
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associated with a carbonyl from the HR whose double bond character has been reinforced 

after the dimer formation. The less intense band a 1729 cm-1, can be associated to a carbonyl 

of the cy that is not interacting with the HR (see chemical structure of the HR-cy complex). All 

this changes are in really good agreement with the formation of the expected HR-cy dimer 

through H-bonds. 

As a second example for the IR analysis we analyze the Ben-AcOH couple. The 

spectrum of ATR-IR spectra of Ben, AcOH and the 1:1 molar mixture of both compounds, Ben-

AcOH at 0.1 M using [emim][FAP] as solvent is depicted in Figure IV-7 b). In all the recorded 

spectra the solvent (RTIL) has been subtracted. The IR spectrum of pure acetic acid is the 

typical spectrum of the homodimer of acetic acid. A broad spectral feature around 3045 cm -1 

is observed, assigned to H-Bond OH stretching of a carboxyl acid. Between 2550 and 2800 

cm-1, we observe 3 bands assigned as a combination of low energy modes of a cyclic dimer 

ring with the C-OH bending overtone.245-247 We do not observe a narrow band centered at 3540 

cm-1 that is associated with AcOH monomers. In the fingerprint region, the spectrum is 

dominated by an intense band centered at 1717 cm-1, assigned to C=O stretching of the 

carboxylic acid. For the benzamidine, in the region of 3500-3000 cm-1 the bands are weaker 

and sharper than those of the O-H stretches. Nevertheless, we can still observe the 

asymmetric and the symmetric N-H stretch at 3518 and 3422 cm-1 for the primary amines 

(RNH2). The broad band around 3060 cm-1 is associated to the C-H stretch of the aromatic 

moiety. In the fingerprint, we observe a strong band associated to C=N stretching at 1640 cm-

1 and at 1572 cm-1 a medium intensity band assigned to NH2 scissoring.  

Similarly to the previous example, a new scenario appears when we recorded the 

spectra in a 1:1 equimolar mixture of both compounds. The spectrum is not the sum of the 

parent spectra. The bands associated with a cyclic dimer of AcOH and the N-H stretching of 

primary amine group of Ben are no longer visible. We observe a broad vibrational spectrum 

between 3400 and 2700 cm-1 as it is expected for a doubly H-bonded dimer, with a peak 

centered at around 3010 cm-1. This broad band is red-shifted with respect the band of the 

AcOH homodimer, indicating stronger H-bonds. Both C=X stretching (where X = N or O) suffer 

a red-shift in frequencies, from 1717 to 1609 cm-1 for the C=O and from 1640 to 1578 cm-1 for 

the C=N, as a second clear indication of the formation of strong H-bonds between both 

compounds. The broad medium-intensity band observed at 1694 cm-1 can be assigned to C=O 

stretching, and belongs to different conformations of the H-bonded heterodimer. 

 

4.2.3. Single molecule experiments 

All these data clearly support the formation of the H-bonded host-guest pairs in 

[emim][FAP]. To gather information of the binding event at the single-molecule level, we turned 
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to SMFS. In particular, we focused on the HR-cy pair, as benchmark data on SMFS in 1,2-

dichlorobencene (o-DCB) are available from Bassani et al.161 For chemical reasons, we 

substituted the cy guest with a the barbituric (barb) derivative depicted in Figure IV-8, which 

has the same H-bonding capabilities. We decorated a gold-coated AFM tip with the barb 

guest248 (in green in Figure IV-8), and a gold surface with the HR host (in orange in Figure IV-

8), using thiol-Au chemistry (See more details in Experimental section). Force-distance 

measurements were recorded at velocities of 250 nm/s with contact time of 5s. After reaching 

the maximal force, the two surfaces remained in contact for a time interval of 5 s, after which 

the direction of the piezo movement was reversed, and the AFM probe was retracted from the 

surface. Force-distance curves were collected from several different positions on the substrate, 

and around 50 force-distance curves were measured at each position. These conditions were 

tested both in o-DCB and in [emim][FAP].    

 

 

Figure IV-8. Schematic representation of AFM-SMFS of HR-barbituric derivative. 

Barbituric guest, barb (in green) is immobilized in a gold-coated AFM tip, otherwise the gold-

coated surface is functionalized with the HR (in orange).  

 

We first carried out measurements in o-DCB (which are depicted in Figure IV-9), to 

compare our results with those of Bassani et al.161 From the statistical analysis of 120 curves 

of three different regions we obtained a binding strength of 434 ± 31 pN for the HR-barb host-

guest system, with upper and lower bounds at 164 and 839 pN, respectively (see Figure IV-

9a). By subtracting the blank (Figure IV-9b), carried out using a gold-coated tip and a gold-
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coated surface without any modification (201 ± 20 pN n = 120, 3 regions), we obtain 230 ± 37 

pN, which corresponds to the force necessary to break apart the H-bonds between the HR-

barb couple; this value is in good agreement with the ~180 pN previously reported by Bassani 

et al.  

 

 

Figure IV-9. a) On the top representative force/distance curves obtained in o-DCB, 

characterizing the HR-barb interaction. The force profiles represent the interaction forces upon 

approach (green dash trace) and retraction (twenty aligned black traces, the purple trace 

represents the lowest breaking force and the red trace corresponds to the highest breaking 

force) as a function of the separation distance between the surface and the tip. Approaching 

the sample surface with the AFM probe, no interaction forces were detected, when the 

retraction take place we can observe a binding event, getting a dissociation force of 431 ± 31 

pN (n = 102). On the botton, force histogram fitting to a Gaussian distribution, obtained for 120 

curves in three different regions. b) On the top representative force/distance curves obtained 

in o-DCB, for non-functionalized Au-coated tip and Au-coated surface. The force profiles 

represent the interaction forces upon approach (green dash trace) and retraction (twenty 

aligned black traces, the purple trace represents the lowest breaking force and the red trace 

corresponds to the highest breaking force) as a function of the separation distance between 

the surface and the tip. Approaching the sample surface with the AFM probe, no interaction 

forces were detected, when the retraction take place we can observe a binding event, getting 

a dissociation force of 201 ± 20 pN (n = 120). On the botton, force histogram fitting to a 

Gaussian distribution, obtained for 200 curves in three different regions.  
 

The retraction curves of the HR-barb system in [emim][FAP] also clearly supported HR-

barb binding events (Figure IV-10a), in agreement with the bulk data. The force of the binding 

event was calculated to be 845 ± 17 pN for 206 binding events in ten different regions, with 
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upper and lower bounds at 1400 and 500 pN, respectively. These results are explained in light 

of the control experiments, where no HR-cy binding can take place (Figure IV-10b). In 

[emim][FAP], for the non-functionalized tip and non-functionalized gold surface, we obtained a 

peak in the retraction curve that amounts to 751 ± 25 pN, for 200 curves measured in ten 

different regions (Figure IV-10b). These results show that there is a strong non-specific van 

der Waals interaction between the tip and the first few layers of RTIL in close contact with the 

gold surface, in line with literature precedents.249 By subtracting this value, we obtain a 

breaking force of 94 ± 30 pN, smaller than the value obtained in o-DBC, but within the same 

order of magnitude. 

 

Figure IV-10. a) On the top, representative force/distance curves obtained in 

[emim][FAP], which characterizes the interaction that occurs between HR-barb couple. The 

force profiles represent the interaction forces upon approach (green dash trace) and retraction 

(twenty aligned black traces, showing a purple trace which represents the lowest breaking 

force and a red trace which corresponds to the highest breaking force) as a function of the 

separation distance between the surface and the tip. Approaching the sample surface with the 

AFM probe, no interaction forces were detected, when the retraction take place we can 

observe a binding event, getting a dissociation force of 845 ± 17 pN. On the bottom, force 

histogram fitting to a Gaussian distribution, obtained for 206 curves in ten different regions. b) 

On the top representative force/distance curves obtained in [emim][FAP], for non-

functionalized Au-coated tip and Au-coated surface. The force profiles represent the interaction 

forces upon approach (green dash trace) and retraction (twenty aligned black traces, the 

purple trace represents the lowest breaking force and the red trace corresponds to the highest 

breaking force) as a function of the separation distance between the surface and the tip. 

Approaching the sample surface with the AFM probe, no interaction forces were detected, 

when the retraction take place we can observe a dissociation force of 751 ± 25 pN (n = 200). 
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On the botton, force histogram fitting to a Gaussian distribution, obtained for 50 curves in three 

different regions. 
In summary, our data show that strong H-bonds are not completely shielded in 

[emim][FAP], where electrostatic interactions are expected to play a very minor role. This is 

opposed to the findings for weaker H-bonds, such as those in water, which are substituted by 

O-H-anion interactions in RTILs.240 Therefore, our experiments point to a significant covalent 

contribution to strong H-bonds, which are only weakened, but not completely substituted by 

the RTIL point charges, and away from a purely electrostatic view of H-bonding. In order to 

obtain a more complete vision of the problem, and to generalize or disprove our preliminary 

conclusions, we are now studying the binding constants of the same host-guest systems in a 

collection of RTILs, in which we systematically vary the size of the cation and anion. 
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General 

200 nm Gold-coated glass slides (1 cm × 1 cm) were purchased from Ssens bv. 

All solvents were dried according to standard procedures. Reagents were used as 

purchased. All air-sensitive reactions were carried out under argon atmosphere. Flash 

chromatography was performed using silica gel (Merck, Kieselgel 60, 230-240 mesh, or 

Scharlau 60, 230-240 mesh). Analytical thin layer chromatographies (TLC) were performed 

using aluminium-coated Merck Kieselgel 60 F254 plates. NMR spectra were recorded on a 

BrukerAvance 400 (1H: 400 MHz; 13C: 100 MHz), spectrometer at 298 K, unless otherwise 

stated, using partially deuterated solvents as internal standards. Coupling constants (J) are 

denoted in Hz and chemical shifts () in ppm. Multiplicities are denoted as follows: s = singlet, 

d = doublet, t = triplet, m = multiplet, br = broad. Fast Atom Bombardment (FAB) and Matrix-

assisted Laser desorption ionization (coupled to a Time-Of-Flight analyzer) experiments 

(MALDI-TOF) were recorded on a VS AutoSpec spectrometer and a Bruker ULTRAFLEX III 

spectrometer, respectively. 

 

 

4.3.1. Synthesis of the HR-cy couple 

 

4.3.1.a. Cy synthesis 
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5-bromopentanoyl chloride 

 

5-Bromovaleric acid (200 mg 1.1 mmol) was suspended in anhydrous DCM (4.4 mL), 

2 drops of DMF were added and oxalyl chloride (0.12 mL, 1.4 mmol) was added dropwise over 

a period of 15 min. The reaction was stirred for two hours, then the solvent was removed under 

reduced pressure and the crude material was directly used in the next step reaction without 

further purification. 

N-([2,2'-bipyridin]-4-yl)-5-bromopentanamide 

 

A solution of compound IV-1 (219 mg, 1.1 mmol) in dry THF (4.5 mL) was added 

dropwise to a solution of [2,2'-bipyridin]-4-amine (179 mg, 1.05 mmol) and TEA (0.17 mL, 1.26 

mmol) in dry THF (4.5 mL) at 0ºC under Ar atmosphere. The solution was stirred at r.t. 

overnight. Then a white residue was filtered off and the solvent removed under reduced 

pressure. Purification by column chromatography on silica gel (DCM/MeOH 15/1) give 

compound IV-2 as yellow oil, 250 mg, 68% yield. 1H NMR (CDCl3): = 8.64 (d, 1H, J = 4.6 Hz, 

Hk), 8.55 (d, 1H, J = 5.7 Hz, Hf), 8.49 (s, 1H, NH), 8.40 (d, 1H, J = 2.0 Hz, Hg), 8.33 (d, 1H, J = 

8.0 Hz, Hh), 8.01 (dd, 1H, J = 2.0, 5.7 Hz, He), 7.83 (dt, 1H, J = 1.7, 7.7 Hz, Hi), 7.34 (ddd, 1H, 

J = 0.8, 4.8,7.4 Hz, Hj), 3.44 (t, 2H, J = 6.2 Hz, CH2-Ha), 2.52 (t, 2H, J = 7.2 Hz, CH2-Hd); 1.91 

(m, 4H, CH2-Hb, CH2-Hc); 13C NMR (CDCl3):  = 172.2, 154.9, 153.4, 149.3, 148.3, 148.1, 137.4, 

124.6, 121.4, 113.9, 110.8, 44.5, 36.7, 33.1, 23.6 ppm.  
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N-([2,2'-bipyridin]-4-yl)-5-(2,4,6-trioxo-1,3,5-triazinan-1-yl)pentanamide 

 

To a solution of cyanuric acid (309 mg, 2.39 mmol) in DMF (5mL) was added compound 

IV-2 (200 mg, 0.60 mmol) and 1,8-diazabicycloundec-7-ene (95 mg, 2.39 mmol). The reaction 

mixture was heated under 70 ºC overnight, poured into the water, and extracted with ethyl 

acetate. The organic layer was washed with water to eliminate the excess of cyanuric acid, 

dried with MgSO4 and filtered. The solvent was removed under reduced pressure and the 

crude material was purified by column chromatography using DCM : MeOH 15:1 as a eluent 

to give IV-2 as a white solid, 596 mg, 25%.1H NMR ([D6]dimethyl sulfoxide): = 11.35 (br s, 

2H, NH-cy), 10,41 (s, 1H, NH-amide), 8.68 (d, 1H, J = 4.0 Hz, Hk), 8.61 (d, 1H, J = 2.0 Hz, Hg), 

8.51 (s, 1H, J = 5.5 Hz, Hf), 8.37 (d, 1H, J = 8.0 Hz, Hh), 7.93 (dt, 1H, J = 1.8, 7.7 Hz, Hi), 7.67 

(dd, 1H, J = 2.1, 4.0 Hz, He), 7.44 (dd, 1H, J = 1, 4.8 Hz, Hj), 3.66 (t, 2H, J = 6.6 Hz, CH2-Ha), 

2.40 (t, 2H, J = 6.8 Hz, CH2-Hd); 1.59 (m, 4H, CH2-Hb, CH2-Hc); 13C NMR ([D6]dimethyl 

sulfoxide):  = 172.3, 156.1, 155.2, 150.1 (2C), 149.2, 148.6, 146.8, 137.2, 124.2, 120.4, 113.2, 

109.8, 40.2, 36.1, 26.9, 21.9 ppm. MS m/z: calculated for C18H18N6O4 [M+H]+ 383.1 found FAB 

383.2.  
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(Bipyridine)2-(bipyridine-N-([2,2'-bipyridin]-4-yl)-5-(2,4,6-trioxo-1,3,5-triazinan-1-yl) 

pentanamide) ruthenium hexafluorophosphate 

 

[Ru(bpy)2Cl2] (54 mg, 0.11 mmol) was reacted with silver nitrate (37 mg, 0.22 mmol) in 

CH3OH (5.4 mL) for 3 hours at room temperature under an Ar atmosphere. The suspension 

was filtered in order to remove the silver salt, and the filtrate was added to compound IV-3 (47 

mg, 0.12 mmol). The solution was heated at reflux in the dark overnight under an Ar 

atmosphere. The reaction mixture was allowed to reach room temperature and the solvent was 

evaporated. The remaining solid was re-dissolved in a minimum amount of CH3OH, and the 

desired compound was precipitated by dropwise addition of a saturated aqueous solution of 

ammonium hexafluorophosphate. The precipitate was filtered, washed with water then Et2O 

and dried under vacuum to yield 100 mg (85%) of the desired hexafluorophosphate ruthenium 

complex (compound IV-4) as a orange solid. 1H NMR (CD3CN):  = 8.95 (br s, 1H), 8.83 (br s, 

1H), 8.81 (d, 2H, J =2.0 Hz, Ar-H), 8.47 (d, 4H, J = 8.2 Hz, Ar-H), 8.36 (d, 1H, J = 6.7 Hz, Ar-

H), 8.03 (m, 4H, Ar-H), 7.79 (d, 1H, J = 5.6 Hz, Ar-H), 7.71 (m, 3H, Ar-H), 7.41 (m, 6H, Ar-H), 

3.74 (t, 2H, J = 5.3 Hz, CH2), 2.45 (t, 2H, J = 6.8 Hz, CH2), 1.65 (m, 4H, 2CH2). 13C NMR 

(CD3CN):  = 174.1, 158.3, 158.2 (2C), 158.1 (2C), 158.0, 152.8, 152.8, 152.7, 152.7 (2C), 

152.6, 152.6, 150.6 (2C), 148.8, 148.5, 138.8, 138.6 (3C), 128.6, 128.5, 128.5 (3C), 125.2, 

125.2 (2C), 125.1, 118.3, 117.4, 114.7, 41.7, 37.3, 27.9, 22.7 ppm. MS m/z: calculated. for 

C38H34F6N10O4PRu [M+PF6]+ 941.1 found MALDI-TOF 941.2; calculated for C38H34N10O4Ru 

[M]+ 795.2 found MALDI-TOF 795.2. 
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4.3.1.b. HR synthesis  

 

 

The 5-amino-N,N‘-bis[6-(3,3-dimethylbutyrylamino) pyridin-2-yl] isophthalamide, 

compound IV-8, was synthesized as described by Dirksen et al.250 The experimental 

procedures followed are explained bellow. 

 

N-(6-Aminopyridin-2-yl)-3,3-dimethylbutyramide 

 

A solution of 3,3-dimethyl-butyryl chloride (3 g, 22.3 mmol) in dry THF (12 mL) was 

added to a solution of 2,6-diaminopyridine (2.43 g, 22.3 mmol) and triethylamine (3.1 mL, 22.3 
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mmol) in dry THF (25 mL) at 0ºC under an argon atmosphere over a period of 2 h. The solution 

was stirred for 60h at room temperature, the residue filtered off, and the solvent removed under 

reduced pressure. Purification by column chromatography on silica gel (DCM/ethyl acetate 4/1 

as eluent) gave a colorless solid (2.9 g, 63%); 1H NMR (CDCl3): = 7.77 ppm (br s, 1H, CONH), 

7.55 (d, 1H, J = 7.9 Hz, Hpy), 7.42 (t, 1H, J = 8.0 Hz; Hpy), 6.22 (d, 1H, J = 7.9 Hz, Hpy), 4.34 

(br s, 2H; NH2), 2.17 (s, 2H; (CH2C(CH3)3), 1.05 (s, 9H; (C(CH3)3) ppm.  

 

 

 

 

5-Nitroisophthaloyl dichloride 

 

A solution of 5-nitroisophthalic acid (3.0 g, 14.0 mmol) in thionyl chloride (5 mL) and 

N,N’-dimethylformamide (five drops) was refluxed for 6 h under dry conditions with subsequent 

vacuum distillation of the thionyl chloride excess. The residue was dried under high vacuum 

and yielded a white solid (2.6 g, 98%): 1H NMR ([D6]dimethyl sulfoxide): = 8.77 (d, J = 1.52 

Hz ,2H; Ar-H), 8.74 (t, J = 1.52 Hz, 1H; Ar-H) ppm. 
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N,N’-Bis[6-(3,3-dimethylbutyrylamino)pyridin-2-yl]-5-nitro-isophthalamide 

 

A solution of diacid dichloride IV-6 (0.9 g, 3.62 mmol) in dry THF (15 mL) was added 

dropwise to a solution of monosubstituted diaminopyridine IV-5 (1.5 g, 7.24 mmol) and 

triethylamine (1 mL, 7.24 mmol) in dry THF (15 mL) at 0ºC under an argon atmosphere. The 

solution was stirred at r.t. for 12 h, the was residue filtered off, and the solvent removed under 

reduced pressure. Purification by column chromatography on silica gel (DCM/ethyl acetate 

10/1-3/1 as eluent) gave a yellowish solid (2.1 g, 98%): 1H NMR (CDCl3): = 8.91 (br d, J = 

1.3 Hz, 2H; CONH), 8.80 (br t, J = 1.3 Hz, 1H; Ar-H), 8.46 (br s, 2H; Ar-H), 8.02 (t, J = 8.0 Hz, 

4H; Hpy), 7.79 (t, J = 8.0 Hz, 2H; Hpy), 7.66 (br s, 2H; CONH), 2.28 (s, 4H; COCH2), 1.13 (s, 

18H; C(CH3)3) ppm.  
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5-Amino-N,N’-bis[6-(3,3-dimethylbutyrylamino)pyridin-2-yl]isophthalamide 

 

To a solution of compound IV-7 (0.4 g, 0.68 mmol) in dry THF (34 mL) and MeOH (34 

mL) under argon atmosphere, 10% Pd-C (400 mg) was added and the reaction mixture was 

heated to 70 ºC. Then hydrazine (1.1 mL, 20.4 mmol) was added to the reaction mixture, whih 

was heated under reflux for 4h. Once the reaction was completed (TLC). The catalyst was 

filtered off over celite and the solvent removed under reduced pressure to give a yellowish 

solid (0.3 g, 79%): 1H NMR (CDCl3):  = 8.47 ppm (s, 2H; CONH), 8.10 (s, 2H; CONH), 7.93 

(br t, 4H; Hpy), 7.66 (m, 3H; 2H-py, Ar-H), 4.08 (br s, 2H, NH2), 2.26 (s, 4H; 2CH2), 1.11 (s, 

18H; C(CH3)3) ppm. 
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5-benzamido-N,N´-bis(6-(3,3-dimethylbutyrylamino)pyridin-2-yl)isophthalamide 

 

A solution of benzoyl chloride (21 mg, 0.15 mmol) in dry THF (1 mL) was added 

dropwise to a solution of compound IV-8 (50 mg, 0.09 mmol) and triethylamine (16 L, 0.12 

mmol) in dry THF (2 mL) at 0ºC under an argon atmosphere. The solution was stirred at r.t. for 

12 h, the residue filtered off, and the solvent removed under reduced pressure. Purification by 

column chromatography on silica gel (DCM/MeOH 15/1 as eluent) gave a yellowish oil (40 mg, 

68%): 1H NMR (CDCl3): = 9.24 (br s, 1H), 8.97 (br s, 2H), 8.48 (br s, 2H), 8.40 (br s, 2H), 

7.99 (m, 3H), 7.90 (d, 2H, J = 8.0 Hz), 7.76 (d, 2H, J = 7.8 Hz), 7.53 (m, 3H), 7.41 (t, 2H, J = 

7.5 Hz), 2.42 (s, 4H), 1.23 (s, 18H); 13C NMR (CDCl3): = 171.7 (2C), 170.1, 167.0, 163.9, 

150.1 (2C), 148.8 (2C), 140.6 (2C), 139.2, 135.0, 133.6, 132.6 (2C), 130.1, 128.8 (2C), 128.3, 

127.5 (2C), 122.2, 122.0, 110.6 (2C), 109.4 (2C), 50.9 (2C), 31.5 (2C), 29.8 (6C) ppm.  
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4.3.2. Synthesis of Ammonium derivative (Am) 

 

 

 

tert-butyl (3-([2,2'-bipyridin]-4-ylamino)-3-oxopropyl)carbamate 

 

3-((tert-butoxycarbonyl) amino)propanoic acid (133 mg, 0.70 mmol) was dissolved in 

CHCl3 (6 mL) and the solution was cooled to 0ºC. EDCI.HCl (168 mg, 0.88 mmol) and DMAP 

(122 mg, 0.99 mmol) were added. The reaction mixture was allowed to stir at room temperature 

for 30 minutes. A solution of [2,2'-bipyridin]-4-amine (100 mg, 0.58 mmol) in CHCl3 (4 mL) was 

added to the activated acid. The reaction mixture was stirred overnight, concentrated under 

reduced pressure and the crude material was purified by column chromatography (eluent: 

DCM/ MeOH 50/1-40/1) to furnish product IV-10 as colorless oil, 150 mg, 75%. 1H NMR 

(CDCl3):  = 8.70 (s, 1H, NH), 8.63 (d, 1H, J = 4.8 Hz, Hi), 8.53 (d, 1H, J = 5.5 Hz, Hd), 8.40 (br 

s, 1H, He), 8.33 (d, 1H, J = 8.0 Hz, Hf), 7.78 (dt, 1H, J = 1.8, 7.7 Hz, Hg), 7.73 (m, 1H, Hc), 7.28 

(ddd, 1H, J = 0.8, 4.8, 7.5 Hz, Hh), 5.33 (br s, 1H, NH), 3.48 (q, 2H, J = 6.2 Hz, CH2-Ha), 2.64 

(t, 2H, J = 7.0 Hz, CH2-Hb); 1.42 (s, 9H, 3CH3-Boc); 13C NMR :  = 170.7, 157.1, 156.4, 155.7, 

150.2, 149.1, 146.0, 136.9, 123.9, 121.1, 113.7, 110.9, 79.8, 37.8, 36.3, 28.4 ppm. 

 

 



4.3. Experimental section  

 

179 
 

 

 

 

 

 

 

 

 



Chapter 4  

 

180 
 

3-([2,2'-bipyridin]-4-ylamino)-3-oxopropan-1-aminium 2,2,2-trifluoroacetate 

 

A solution of compound IV-10 (60 mg, 0.18 mmol) in DCM (1.5 mL) was added TFA 

(0.1 mL) at 0ºC. The reaction was stirred at room temperature for 3h until it was completed 

(TLC). The reaction mixture was concentrated under reduced, then DCM was added and the 

organic layer was washed twice with brine, dried over Na2SO4, concentrated under reduced 

pressure and dried under high vacuum to give compound IV-11 as a yellowish oil, quantitative 

yield. The crude material was used directly in the next step reaction. 

 

(Bipyridine)2-(bipyridine-N-([2,2'-bipyridin]-4-yl)-5-(2,4,6-trioxo-1,3,5-triazinan-1-yl) 

pentanamide) ruthenium hexafluorophosphate: Am 

 

 [Ru(bpy)2Cl2] (54 mg, 0.11 mmol) was reacted with silver nitrate (37 mg, 0.22 mmol) 

in CH3OH (5.4 mL) for 3 hours at room temperature under an argon atmosphere. The 

suspension was filtered in order to remove the silver salt, and the filtrate was added to 

compound IV-11 (44 mg, 0.12 mmol). The solution was stirred at room temperature in the dark 

overnight under an argon atmosphere. The solvent was evaporated. The remaining solid was 

re-dissolved in a minimum amount of CH3OH, and the desired compound was precipitated by 

dropwise addition of a saturated aqueous solution of ammonium hexafluorophosphate. The 

precipitate was filtered, washed with water then Et2O and dried under vacuum to yield 97 mg 

(0.09 mmol, 84%) of the desired hexafluorophosphate ruthenium complex (compound IV-12) 

as a brown solid. 1H NMR (CD3CN):  = 9.25 (br s, 1H, NH), 8.64 (br s, 1H), 8.49 (d, 4H, J = 

8.2 Hz, Ar-H), 8.35 (d, 1H, J = 7.8 Hz, Ar-H), 8.04 (m, 4H, Ar-H), 7.80 (d, 1H, J = 5.6 Hz, Ar-

H), 7.72 (m, 4H, Ar-H), 7.53 (s, 2H),7.38 (m, 5H, Ar-H), 6.37 (br s, 3H, NH3), 3.27 (t, 2H, J = 

6.2 Hz, CH2), 2.83 (t, 2H, J = 6.2 Hz, CH2). 13C NMR (CD3CN):  = 172.0, 158.5, 158.0, 157.8, 

153.0, 152.8, 152.7, 152.7, 149.3, 147.5, 145.8, 145.6, 145.2, 144.7, 138.9, 138.7 (2C), 131.1, 
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131.0, 130.7, 130.4, 128.7, 128.5 (2C), 127.4, 126.9, 125.2 (2C), 125.1, 117.6, 114.3, 37.1, 

33.3 ppm. MS m/z: calculated for C33H31F6N8OPRu [M+PF6]+ 801.7 found ESI+ 801.1. 
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4.3.3. Synthesis HR-barb couple for AFM studies 

 

4.3.1.a. HR synthesis 
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5-Iodo-N,N’-Bis[6-(3,3-dimethylbutyrylamino)pyridine-2-yl]isophthalamide 

 

i) 5-iodoisophthalic acid (400mg 1.4 mmol) was suspended in anhydrous DCM (4.4 

mL), 2 drops of DMF were added and oxalyl chloride (0.3 mL, 3.6 mmol) was added dropwise 

over a period of 15 min. The reaction was stirred for two hours, then the solvent was removed 

under reduced pressure and the crude material was directly used in the next step reaction 

without further purification. 

ii) To the mixture of N-(6-aminopyridin-2-yl)-3,3-dimethylbutyramide IV-5 (500 mg, 2.6 

mmol) and triethylamine (0.4 mL, 2.6 mmol) in THF (8 mL) at 0°C, 5-iodo-isophthaloyldichloride 

18 (428 mg, 1.3 mmol) in THF (8 mL) was added over 1h. The mixture was stirred at 0°C for 

3h and at room temperature for overnight. The mixture was filtered, the solid residue was 

washed with THF. After removal of the solvent under vacuum, the crude material was purified 

by column chromatography using dichloromethane and ethyl acetate (3/1) as eluent, to give 

compound VI-13 as a white powder (740 mg, 85%). 1H NMR (CDCl3):  = 8.62 (br. s., 1H; NH), 

7.95 (m. 6H), 7.71 (t. J = 8.1 Hz. 3H), 2.26 (s. 4H; CH2C(CH3)3), 1.10 (s. 18H; CH2C(CH3)3). 

This data is in concordance with Organometallics 2014, 33 (3), 665-676.251 
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N,N’-Bis[6-(3,3-dimethylbutyrylamino)pyridine-2-yl]-trimethylsilyl-ethynyl-

isophtalamide 

 

Compound IV-13 (200 mg, 0.30 mmol) was dissolved in anhydrous THF (5 mL) and 

distilled NEt3 (2.2 mL). Then PdCl2(PPh3)2 (2.1 mg, 0.0032 mmol), CuI (cat. amount) and PPh3 

(0.4 mg, 0.001 mmol) were added. After stirring the reaction mixture for 15 min to dissolve the 

catalysts, trimethylsilylacetylene (36 mg, 0.36 mmol) was added slowly and dropwise to the 

suspension. The reaction mixture was then stirred at room temperature for overnight. The 

solvent was removed under reduced pressure, and the crude material was purified by column 

chromatography using DCM/EtOAc 8/1-7/1 mixture as a eluent, to furnish compound IV-14 as 

a yellow solid 179 mg, 93%. 1H NMR (CDCl3):  = 8.41 (br s, 2H, NH), 8.37 (br s, 1H, NH), 
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8.13 (s, 2H), 7.99 (t, J = 4.9 Hz, 4H), 7.74 (t, J = 8.0 Hz, 2H), 2.27 (s, 4H, CH2C(CH3)3), 1.11 

(s, 18H, CH2C(CH3)3), -0.28 (s, 9H, Si(CH3)3). 13C NMR (CDCl3):  = 170.4 (2C), 163.5 (2C), 

149.7 (2C), 149.0 (2C), 140.9 (2C), 134.9, 133.7, 125.5, 125.2, 110.2 (2C), 109.7 (2C), 102.3, 

98.0, 51.7 (2C), 31.4 (2C), 29.8 (6C), -0.3 (3C) ppm. This data is in concordance with 

Organometallics 2014, 33 (3), 665-676.  
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5-Ethynyl-N,N’-Bis[6-(3,3-dimethylbutyrylamino)pyridine-2-yl] isophtalamide 

 

Tetrabutylammonium fluoride solution (TBAF) (74 L, 0.26 mmol) in THF was added 

dropwise to a solution of compound IV-14 (140 mg, 0.23 mmol) in dry THF (3mL) at room 

temperature. After stirring for 3h (TLC), solvent was evaporated and the residue purified by 

column chromatography, using DCM/ AcOEt 4/ 1 as eluent, to furnish compound IV-15, 143 

mg (97%) as a brown powder. 1H NMR (CDCl3):  = 8.48 (br s, 2H, NH), 8.44 (br s, 1H, NH), 

8.07 (s, 1H), 8.00 (s, 2H), 7.98 (d, J = 8.1 Hz, 2H), 7.91 (d, J = 8.0 Hz, 2H), 7.68 (2H J = 8.1 

Hz, 2H), 3.19 (s, 1H, ≡CH), 2.26 (s, 4H, CH2C(CH3)3), 1.13 (s, 18H, CH2C(CH3)3). 13C NMR 

(CDCl3):  = 170.7 (2C), 163.6 (2C), 149.8 (2C), 148.9 (2C), 140.9 (2C), 134.9 (2C), 134.1 
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(2C), 125.9, 124.0, 110.4 (2C), 109.7 (2C), 81.2, 80.3, 51.4 (2C), 31.4 (2C), 29.8 (6C). This 

data is in concordance with Organometallics 2014, 33 (3), 665-676. 
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4.3.3.b  Barbituric derivative synthesis 

 

Barbituric derivative (compound IV-6) was synthetized following the procedure describe 

by Huang, C.-H. et al. 252 

 

 

 

4-((6-bromohexyl)oxy)benzaldehyde 

 

1,6-Dibromohexane (9 g, 36.8 mmol) and K2CO3 (6.8 g, 49.2 mmol) were added to a 

solution of 4-hydroxybenzaldehyde (3 g, 24.6 mmol) in CH3CN (17 mL). The mixture was 

refluxed overnight, the white precipitate was filtered off and the filtrated was extracted with 

CH3Cl, washed with brine and dried over Na2SO4. The crude material was purified by column 

chromatography, using DCM/MeOH 200/1-60/1 as eluent; to furnish 5.6 g (80%) as white solid. 
1H NMR (CDCl3):  = 9.87 (s, 1H, CHO), 7.81 (d, J = 8.6 Hz, 2H, Ar-H), 6.97 (d, J = 8.7 Hz, 2H, 

Ar-H), 4.04 (t, J = 6.4 Hz, 2H, OCH2), 3.42 (t, J = 6.7 Hz, 2H, BrCH2), 1.89 (m, 2H, CH2), 1.83 

(m, 2H, CH2), 1.51 (m, 4H, CH2). 13C NMR (CDCl3):  = 190.8, 164.1, 132.0 (2C), 129.8, 114.7 

(2C), 68.1, 33.7, 32.6, 28.9, 27.8, 25.2 ppm. 
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6-(4-formylphenoxy)hexyl thioacetate 

 

4-(6-Bromohexyloxy)-benzaldehyde (3.44 g, 12.1 mmol) and potassium thioacetate 

(1.38 g, 12.1 mmol) in acetone (65 mL) were stirred at room temperature overnight. The 

resulting white precipitate was filtered off and the filtrate was concentrated under reduced 

pressure to give a white solid (3.08 g, 91%). 1H NMR (CDCl3):  = 9.88 (s, 1H, CHO), 7.82 (d, 

2H, J = 8.7 Hz, Ar-H), 6.98 (d, 2H, J = 8.7 Hz, Ar-H), 4.04 (t, 2H, J = 6.3 Hz, OCH2), 2.88 (t, 

2H, J = 7.1 Hz, SCH2), 2.32 (s, 3H, CH3), 1.82 (m, 2H), 1.59 (m, 2H), 1.48 (m, 4H).  
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6-{4-[(1,3-Dimethyl-tetrahydro-2,4,6-trioxo-5(2H)-pyrimidinyliene)methyl] phenoxy} 

hexyl thioacetate 

 

Compound IV-17 (1.6 g, 5.71 mmol), and barbituric acid (0.73 g, 5.71 mmol) in EtOH/ 

H2O 5/2 (35 mL) were stirred under reflux for 10 min and then at room temperature overnight. 

The resulting yellow suspension was filtered, washed with EtOH and dried under reduced 

pressure to give a yellow solid (1.58 g, 71%). 1H NMR ([D6]dimethyl sulfoxide):  = 11.28 (s, 

1H, NH-barb), 11.15 (s, 1H, NH-barb), 8.35 (d, 2H, J = 9.1 Hz, Ar-H), 7.04 (d, 2H, J = 9.0 Hz, 

Ar-H), 4.09 (t, 2H, J = 6.5 Hz, OCH2), 2.84 (t, 2H, J = 7.2 Hz, SCH2), 2.31 (s, 3H, CH3), 1.73 

(m, 2H), 1.53 (m, 2H), 1.40 (m, 4H); 13C NMR ([D6]dimethyl sulfoxide):  = 195.3, 163.9, 162.9, 

162.2, 154.9, 150.2, 142.2, 137.5 (2C), 125.0, 115.4, 114.3 (2C), 67.9, 30.6, 29.0, 28.4, 27.8, 

24.9 ppm. 
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4.3.3.c. Synthesis of 11-azidoundecane-1-thiol 

 

11-azidoundecane-1-thiol (compound IV-22) was synthetized following the procedure 

described by Liu, X. et al. 253 

 

 

 

11-azidoundecan-1-ol 

 

Sodium azide (1.43 g, 22.0 mmol) was added to a solution of 11-bromoundecan-1-ol 

(5 g, 19.9 mmol) in 75 mL DMF. The reaction mixture was stirred under reflux and argon 

atmosphere overnight. The reaction mixture was allowed to cool to room temperature, followed 
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by the addition of 75 mL H2O. The resulting mixture was extracted with diethyl ether. Then the 

organic phase was combined, dried with MgSO4, and concentrated under reduced pressure to 

give compound as a colorless oil (4.25 g, 98%). 1H NMR (CDCl3):  3.64 (t, 2H, J = 6.5 Hz, 

OCH2), 3.25 (t, 2H, J = 6.8 Hz , N3CH2), 1.56 (m, 4H, CH2), 1.31 (m, 14H, CH2). 

 

 

 

5-azidoundecyl methanesulfonate 

 

 

To a solution of compound IV-19 (1.5 g, 6.87 mmol) and NEt3 (1.9 mL, 13.70 mmol) in 

THF (52 mL) was added methanesulfonyl chloride (1.5 mL, 19.30 mmol) dropwise in an ice 

bath. The reaction was stirred at 0 ºC for 30 min and at room temperature for another 90 min 

under argon. Then 52 mL of ice-cold water was added. The aqueous phase was extracted 

twice with diethyl ether. The combined organic phases were then combined and washed with 

1M HCl, H2O, NaHCO3 and H2O. After drying over MgSO4, the solvent was removed under 

reduced pressure to yield a colorless oil (2 g, quantitative). 1H NMR (CDCl3):  4.22 (t, 2H, J 

= 6.6 Hz, CH2), 3.26 (t, 2H, J = 6.8 Hz, CH2), 3.00 (s, 3H, CH3), 1.75 (m, 2H, CH2), 1.60 (m, 

2H, CH2 ), 1.36 (m, 14H, CH2). 
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11-azidoundecyl thioacetate 

 

Compound IV-20 (1.7 g, 5.83 mmol) and potassium thioacetate (1.33 g, 11.7 mmol)  

was dissolved in methanol (50 mL). The reaction mixture was degassed and refluxed under 

argon for 3h. After colling to room temperature, excess methanol was removed under reduced 

pressure and ice water was added. The mixture was extracted with diethyl ether (×3) and 

washed with H2O (x3). Then the organic phase was combined, dried with MgSO4 and 

concentrated to yield a pale yellow oil (1.61 g, 95%). 1H NMR (CDCl3):  = 3.24 (t, 2H, J = 6.88 

Hz, CH2), 2.86 (t, 2H, J = 6.88 Hz , CH2), 2.31 (s, 3H, CH3), 1.60 (m, 4H, CH2), 1.33 (m, 14H, 

CH2); 
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11-azidoundecane-1-thiol 

 

To 300 mg of compound IV-21, 20mL of methanol was added. The solution was 

degassed thoroughly and backfilled with N2. 1 mL conc HCl was added, and the entire mixture 

was refluxed for 5h. The reaction mixture was quenched with water and extracted twice with 

diethyl ether. The organic phase was washed twice with water (x2) and dried over MgSO4 . 

Rotary evaporation yielded a yellow oil. 80% Yield. 1H NMR (CDCl3):  = 3.25 (t, 2H, J = 7.00 

Hz, CH2), 2.68 (t, 0.6 H, J = 7.25 Hz, CH2 in disulfide), 2.52 (q, 2H, J = 11.0 Hz, CH2), 1.61 (m, 

4H, CH2), 1.24 (m, 14H, CH2). 
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4.3.4. AFM Tip and surface functionalization 

To perform force spectroscopy experiments, the cantilevers were modified with the 

barbituric acid derivative (compound IV-22) and the gold surfaces were functionalized with the 

Hamilton Receptor (compound IV-15). 

4.3.4.a Barb functionalization of AFM gold-coated Si cantilevers 

AFM gold-coated Si cantilevers were modified by dipping them overnight in a solution 

of compound IV-18 (1 mM total concentration in anhydrous THF) at room temperature. 15% 

Et3N was used to in situ deprotect the thioacetate groups. After overnight immobilization, the 

cantilevers were rinsed with THF. To estimate the binding of barbituric acid derivative to the 

gold-coated AFM tips, gold-coated glass slides acting as test samples were placed into the 

same immobilization solution followed by THF rinsing under the same conditions.  

4.3.4.b HR functionalization of gold-coated surface 

SAM-coated gold surfaces were prepared in two steps: 

Step i) Functionalization with 11-azidoundecane-1-thiol (compound IV-22): By dipping 

a preliminary cleaned gold surface in a solution of N3C11H23SH/C11H23SH (0.1 molar ratio) in 

absolute ethanol at room temperature. The incubation was done overnight and the total thiol 

concentration was 1 mM. After overnight SAM formation, the gold surfaces were rinsed with 

ethanol, dried under nitrogen. 
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Step ii) Click reaction: azide functionalized gold surfaces were immersed at room 

temperature in a water/ DMSO (1:2) solution containing 0.5 mM alkyne-Hamilton Receptor 

(compound IV-15), 0.5 mM CuSO4, 0.5 mM TBTA (tris[(1-benzyl-1H-1,2,3-triazol-4-

yl)methyl]amine, which is a commonly used ligand for stabilizing the Cu(I) catalyst, and 2.8 

mM sodium ascorbate (needed for the Cu(I) catalyst generation) for 4 h. Exposure to light was 

kept to a minimum. After reaction, the monolayers were rinsed with water and DMSO to ensure 

all physisorbed molecules to be washed off. 

 

4.3.5. SAM characterization 

4.3.5.a Contact angle measurements.  

The contact angle of water was measured using a drop shape analysis system 

DSA100S (Krüss). Contact angle measurements were performed directly on the gold surfaces 

with a 2 μL drop of ultrapure water. The contact angle value (θ) was calculated from the 

average of five measurements, with drops being positioned on different places on the surface. 

 

4.3.5.b ATR experiments  

ATR spectra were recorded on a Bruker’s ALPHA-P FTIR spectrometer at a resolution 

of 4 cm-1, by coadding 254 scans. ATR experiments were performed using a single-reflection. 

 

Figure IV-11. ATR-IR spectra of HR-SAM. 

 

4.3.6. AFM measurements.  

 

AFM measurements were acquired with a Nanoscope Multimode IIIa, (Veeco 

Instruments, Santa Barbara, CA) using gold-coated Si cantilevers Cont-GB (Budget Sensors) 
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having nominal force constant of 0.2 N/m and resonant frequency of 13 kHz. Force 

spectroscopy measurements were performed in 1,2-dichlorobenzene and in room temperature 

ionic liquid as indicated at room temperature. 

Force-distance measurements were recorded at velocities of 250 nm/s with contact 

time of 5s. After reaching the maximal force, the two surfaces remained in contact for a time 

interval of 5 s, after which the direction of the piezo movement was reversed, and the AFM 

probe was retracted from the surface. Force distance curves were collected from several 

different positions on the substrate, and about 60 force curves were measured at each position. 

The spring constants of all AFM cantilevers were defined using the Sader method.254 Values 

in the range from 344 to 385 pN/nm were obtained. The same cantilever was used for each 

set of data, where the interactions between bare or modified AFM tip and bare or functionalized 

substrates were studied. 

 

4.3.7. Description of UV/vis titration experiments 

 

UV/vis experiments were performed on a Varian Cary® 50 UV/vis spectrometer. 

Absolute concentrations for each component of a titration experiment were determined by 

standard calibration curves, and appropriate aliquots added relative to the determined 

concentrations. All titration were performed with a background concentration of host in the 

guest solution so as to maintain a constant concentration of host species. Aliquot injections 

were carried out with MICROMAN™ E positive displacement pipettes into a quartz cuvette 

(cuvette path length was dependent on concentrations used: 1.0 mm or 10.0 mm) with a Teflon 

stopper.  

Each spectrum was acquired at a resolution of 1.0 nm and an integration time of 0.1 s. 

Spectral analyses were performed using the ReactLabTM Equilibria spectral analyses 

suite (JplusConsulting, www.jplusconsulting.com). Repetitions of the binding experiments for 

each complex gave association constants within 10% of the values shown, (the error in data 

fitting for each experiment was <5%). 

 

4.3.8. Description of ATR-IR experiments 

 

ATR-IR measurements were carried out on a Bruker’s ALPHA-P FTIR spectrometer for 

the HR-cy and the Ben-AcOH couples. For the first couple, HR-cy, 1.4 x 10-3 M solutions in 

RTIL of HR and cy were prepared separately, then 1:1 molar mixture of both compounds, HR-

cy at 7.0 10-3 M was  
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For the second couple, Ben-AcOH, 0.2 M solutions in RTIL of Ben and AcOH were 

prepared separately, then 1:1 molar mixture of both compounds, HR-cy at 0.1 M was 

measured. 

In all the recorded spectra the solvent (RTIL) has been subtracted. Measurements of a 

small droplet placed on top of the diamond crystal was carried out by coading 254 scans. 
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CHAPTER 5.  

Ingeniering Of Sso7d Protein Looking For A New 

Solvatochromic Biosensor  

 

The work described in this chapter was carried out in Barbara Imperiali´s laboratory at 

the Massachusetts Institute of Technology (MIT) in Boston, as part of a short internship, in 

collaboration with Dr. Cristina Zamora. 

 

5.1. Introduction 

In the introduction of this thesis we explained what supramolecular chemistry is, 

emphasizing that intermolecular interactions are responsible for many responses in biology. 

This internship was a great opportunity to study supramolecular chemistry from a biological 

point of view. 

Keeping this purpose in mind we focused on the evolution of protein-protein interactions 

ligands in order to develop a new solvatochromic biosensor. Specifically the aim of this work 

consists of engineering the ultrastable protein Sso7d (from the hyperthermophilic archaeon 

Sulfolobus solfataricus) to find human Epidermal Growth Factor (hEGF) binders, looking for 

fluorescence increase upon hEGF binding.  

Before going into the project itself, I will briefly overview some of the concepts and 

techniques that will be required for its correct development. 

In a solvatochromic fluorophore the effect of solvent polarity on the emission properties 

are generalized in the Jablonski diagram, which depicts the energies of the different electronic 

states of the system (Figure V-1). At the beginning, the fluorophore (large oval, green) resides 

in the electronic ground state (S0) surrounded by a sphere of solvent molecules (small ovals, 

white). The electric dipole moment of the fluorophore is indicated by the black arrow. Upon 

absorbing a photon of the appropriate energy (hA), the system is rapidly promoted to an 

excited singlet state (S1). During this event, the system adopts a new electronic configuration 

with a dipole moment that differs significantly from that of the ground state. In this case, the 

dipole has increased in magnitude. On the picosecond time-scale, the molecules of the solvent 

sphere reorient dipoles to accommodate the now larger dipole of the fluorophore, which result 

in a more ordered arrangement (upper left corner). This step, termed solvent relaxation, 



Chapter 5  

 

202 
 

ultimately lowers the energy of the excited singlet state while simultaneously destabilizing the 

ground state thereby narrowing the energetic gap between the two states. When the system 

finally returns to the ground state through a fluorescence event, the emitted photon is of  a 

much longer wavelength (i.e. lower energy, hF) than that which was originally absorbed during 

excitation. The degree of solvent relaxation increases with increasing solvent polarity. In some 

instances, the fluorophore returns spontaneously to the ground electronic state through a 

thermal (non-radiative) decay process (knr) that competes with fluorescence. A common 

feature among many solvatochromic fluorophores is their tendency to exhibit a marked 

increase in non-radioactive decay as the energy gap that separates the S0* and S1* states is 

reduced. This effect is apparent particularly in polar protic solvents such as water, and results 

in a decrease in the fluorescence quantum yield. The mechanisms for such processes are 

varied and can include a range of events such as internal charge transfer, tautomerization, 

isomerization, and intersystem crossing to an excited triplet state. When non-radioactive decay 

competes strongly with fluorescence in polar solvents, the fluorophore can exhibit sensitive 

switch-like emission properties upon perturbations of the ordering of the solvent sphere.255 

 

Figure V-1. Origin of solvatocromic effect in fluorescence. Figure reproduced with 

permission from Trends in biotechnology 2010, 28 (2), 73.  

 

Thereby, solvatochromic fluorophores represent a fascinating class of organic dyes 

particularly useful for the study of complex biological systems.256-261 They demonstrate 

emission properties (e.g. fluorescence lifetimes, emission wavelengths, and quantum yields) 

that are highly sensitive to the immediate environment; thus, thanks to their sensitivity to local 

microenvironments, low cost, and ease of handling,262 these compounds present recent 

applications in the field of proteomics and the study of protein folding and protein-protein 

interactions.255, 263-272 For example, if a solvatochromic fluorophore is appended to the surface 

of a protein at a site that is involved in a transient interaction or that undergoes a conformational 
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change, then the probe will report binding or allosteric changes if these events are coupled to 

modifications in the local solvent sphere. Here, we focus on the incorporation of these tools 

into small proteins for the development of sensors of protein-protein interactions. 

In this class of biosensors, changes in the environment of the fluorophore upon analyte 

binding (such as solvent shielding) transduce the binding signal into a fluorescence read-out. 

This concept was introduced for the first time in 1964 by Burr and Koshland.273 

Currently, fluorescence-based biosensors can be designed in three steps. First, a 

binder is engineered against the intended target using established display technologies274-277 

and multiple scaffolds,278-280 ideally with tailored binding kinetics and affinity.281 The second 

step consists on carefully choosing the labelling site, taking into account that the residue must 

be: 1) exposed to solvent, 2) non-perturbing to the analyte/scaffold interaction, and 3) close to 

the binding epitope. Finally, a fluorophore is conjugated to a specific site on the binding protein 

using established chemical282 or enzymatic283 techniques.  

The insertion of solvatochromic fluorophores in proteins is topologically restricted to 

sites that preserve its function and activity while permitting the dye to make the necessary 

contacts that will result in measurable fluorescence changes. This consideration necessitates 

the use of methods that offer precise control over dye placement within the peptide or protein 

structure of interest with minimal perturbation. For proteins, the most common methods can 

broadly be divided into three categories: (i) direct covalent modification; (ii) incorporation of 

fluorescent amino acids via semi-synthesis (expressed protein ligation); and (iii) incorporation 

of fluorescent amino acids via suppression of the amber (TAG) stop codon. In this work, we 

take advantage of the covalent modification, which is clearly explained in the results and 

discussion section. 

Cysteine and lysine reactive agents offer a convenient and direct method for labelling 

proteins and have been used extensively to conjugate a myriad of auxiliary groups into 

biomolecules. Most common among these are the thiol-selective electrophiles, such as 

maleimides and -halocarbonyl compounds, along with the amine-selective acylating agents 

such as the O-succinimidyl esters. In general, cysteine residues are ideal since this amino acid 

occurs relatively infrequently in proteins and possesses excellent nucleophilic properties under 

most physiological conditions. Proteins with unique cysteines can be readily prepared using 

standard molecular biology techniques. 

Another important point that has to be considered in solvatochromic biosensors, is the 

undesirable fluorophore pre-activation, which should be attenuated in a rigid protein scaffold. 

A rigid conformation (characteristic of the 𝛽-strands) should reduce the likelihood of 

fluorophore interactions with the scaffold itself, thereby reducing unwanted background 

fluorescence (Figure V-2). 
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Figure V-2. Mechanistic drawing of the three types of reagentless biosensors. The top 

one describes a sensors that suffers from pre-activation and the fluorophore undergoes 

shielding upon binding, yielding a small F/F0 ratio. The middle one describes a sensor that may 

have some pre-activation but that alleviates this drawback by having a strong fluorescence 

enhancement due to a fluorophore binding pocket. The bottom scenario describes a sensor 

that possesses both ideal properties: little self-interaction and specific binding pocket 

interaction on the analyte. Extracted from J. Mol. Biol. 2016, 428 (20), 4228-4241.284 
 

Hyperthermophilic proteins are excellent candidates for use as protein scaffolds to 

engineer molecular recognition. We have selected the ultrastable Sso7d protein from the 

hyperthermophilic archaeon Sulfolobus solfataricus as a versatile scaffold to generate highly 

stable binding proteins. The Sso7d protein is a small (∼7 kDa, 63 amino acids) DNA-binding 

protein containing an SH3-like fold consisting of an incomplete β-barrel with five β-strands and 

a C-terminal α-helix.285, 286 Sso7d is highly stable with a melting temperature of nearly 100 °C 

and lacks cysteine.287 

Yeast surface display (YSD) has been recently used for engineering proteins based on 

the Sso7d scaffold.288, 289 The yeast display technique was first published by the laboratory of 

Professor Wittrup. In this methodology, a protein of interest is displayed on the surface of yeast 

and the protein is away from the cell surface, minimizing potential interactions with other 

molecules on the yeast cell wall. Briefly, different rounds of positive (against the target binder) 

and negative (against non-desired binders) magnetic bead selections were used to select for 

weak binders and to get rid of magnetic bead and non-specific binders. Yeast cells isolated 

after the magnetic bead-based processes were further screened using FACS (Fluorescence-

activated cell sorting) to isolate clones that exhibit higher binding affinity towards the target. 

Final step is the single clone analysis and characterization (Figure V-3). The whole process is 

known as directed evolution.290 
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Figure V-3. Schematic representation for selection of protein binders from a naïve 

yeast display library using magnetic bead screening followed by flow cytometry sorting. 

Extracted from Angelini A. et al. (2015) Protein Engineering and Selection Using Yeast Surface 

Display. In: Liu B. (eds) Yeast Surface Display. Methods in Molecular Biology, vol 1319. 

Humana Press, New York, NY 291 

 

Flow cytometry is a technology that simultaneously measures and then analyzes 

multiple physical characteristics of single particles, usually cells, as they flow in a fluid stream 

through a beam of light. Any suspended particle or cell from 0.2 to 150 micrometers in size is 

suitable for analysis. The properties measured include a particle’s relative size, relative 

granularity or internal complexity, and relative fluorescence intensity. These characteristics are 

determined using an optical-to-electronic coupling system that records how the cell or particle 

scatters incident laser light and emits fluorescence.  

A flow cytometer is made up of three main systems: fluidics (which transports particles 

in a stream to the laser beam for interrogation), optics (which consists of lasers to illuminate 

the particles in the sample stream and optical filters to direct the resulting light signals to the 

appropriate detectors), and electronics (which converts the detected light signals into 

electronic signals that can be processed by the computer. For some instruments equipped with 

a sorting feature, the electronics system is also capable of initiating sorting decisions to charge 

and deflect particles). When particles pass through the laser intercept, they scatter laser light 

(Figure V-4a). Factors that affect light scattering are the cell's membrane, nucleus, and any 

granular material inside the cell. Cell shape and surface topography also contribute to the total 
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light scatter. Forward-scattered light (FSC) is proportional to cell-surface area or size and 

provides a suitable method of detecting particles greater than a given size, independent of 

their fluorescence. Side-scattered light (SSC) is proportional to cell granularity or internal 

complexity. It is collected at approximately 90 degrees to the laser beam by a collection lens 

and then redirected by a beam splitter to the appropriate detector. Correlated measurements 

of FSC and SSC can allow for differentiation of cell types in a heterogeneous cell population 

(Figure V-4b). 

 

 

Figure V-4. Light scattering in flow cytometry. a) Light-scattering properties of a cell. b) 

Cell subpopulations based on FSC vs SSC. 
 

When particles are labelled with fluorophores, the amount of fluorescent signal 

detected is proportional to the number of fluorophore molecules on the particle. When a 

fluorescent dye is conjugated to a monoclonal antibody, it can be used to identify a particular 

cell type based on the individual antigenic surface markers of the cell. In a mixed population 

of cells, different fluorophores can be used to distinguish separate subpopulations. The 

staining pattern of each subpopulation, combined with FSC and SSC data, can be used to 

identify which cells are present in a sample and to count their relative percentages. The cells 

can also be sorted if desired. 

Recently, de Picciotto et al. used an Sso7d-based murine serum albumin (MSA) binder 

obtained by YSD, and labelled it at seven sites with nitrobenzoxadiaxole-fluorophore. They 

demonstrated reduced background activation with the Sso7d scaffold, finding 50-fold 

increases in fluorescence upon addition of MSA.284  

The solvatochromic fluorophore 4-N,N-dimethylamino-1,8-naphthalimide (4-DMN), 

developed in Prof. Imperiali’s lab, possesses extremely sensitive emission properties due 

largely to the low intrinsic fluorescence that it exhibits in polar protic solvents such as water.292 

This greatly reduces the background signal thereby creating the effect of on-off or switch-like 

changes in the observed emission intensity with the potential to exceed ratios of 1000-fold. 

Furthermore, as it was previously reported, it has been determined that this fluorophore 

possesses significantly greater chemical stability than the other dimethylaminophthalimide 
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dyes investigated. They showed that the dimethylaminophthalimide series exhibits very little 

fluorescence in aqueous environments, which is very interesting as even a modest shift in the 

emission wavelength will typically be accompanied by a significant change in fluorescence 

intensity. 

In another work, also performed in Prof. Imperiali’s lab, the performance of 4-DMN 

cysteine modifying agents with different linker lengths was evaluated. These agents showed 

very promising results when compared with other five well-established commercially available 

solvatochromic fluorophores, making them a highly sensitive toolset for the detection of 

biomolecular interactions.293 

Due to the excellent properties of the 4-DMN fluorophore we selected it to label the 

Sso7d scaffold.  

Finally, the selected target was the human epidermal growth factor (hEGF), a small 

protein (∼6 kDa, 53 amino acids) that binds to the extracellular domain of its receptor (EGFR) 

and activates the cytoplasmic catalytic function by promoting receptor dimerization and self -

phosphorylation on tyrosine residues. Dysregulation of EGF levels has been linked to several 

diseases including, but not limited to, ovarian cancer and diabetes.  

Briefly, in this chapter we focus our efforts on the development of new fluorescence-

based sensors. We have used directed evolution to find a Sso7d scaffold that selectively binds 

hEGF with high affinity. We have then introduced the 4-DMN fluorophore in an adequate 

position of the Sso7d protein, looking for a fluorescence read-out upon hEGF binding.

 

5.2. Results and Discussion 

First of all we looked for Sso7d-based hEGF binders using yeast surface display and 

for this, we worked in collaboration with Prof. Wittrup’s group.  

We used two Sso7d libraries (library 11 and library 18) previously designed in the 

Wittrup lab. The libraries were generated by the randomized mutation of nine Sso7d residues 

with 11 (library 11) and 18 (library 18) different amino acids, representing the most common 

residues found in protein-protein interactions and antibody CDR3 loops. Exclusion of cysteine 

and proline ensures minimal protein aggregation and Sso7d conformational stability, 

respectively. Each library is composed of ~109 Sso7d mutants available for panning via yeast 

surface display.  
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Figure V-5. a) Ribbon diagram showing surface with 9 variable residues. b). Space-

filling model of Sso7d module in same pose c) Table showing the Sso7d scaffold sequence. 

Depicted in red, magenta and blue are the 9 variable positions in strand 1, 2 and 3 respectively. 
 

We worked with the Saccharomyces Cerevisiae Aga2 protein system,294 in which 

Sso7d mutants are genetically encoded as C-terminal fusions to the Aga2p protein (Figure V-

6a), linked to the Aga1p surface protein through two disulfide bonds. The gene encoding the 

Aga1 protein is stably integrated into the yeast chromosome, while the gene encoding the 

protein scaffold-Aga2 fusion is cloned into a circular yeast display plasmid vector (pCT-CON, 

Figure V-6b). Galactose-inducible expression of Aga1 and Aga2 results in yeast surface 

display of Sso7d mutants for selection.   

 

 

Figure V-6. Schematic representation of yeast surface platform showing. a) The Sso7d 

scaffold displayed on the surface of yeast. b) Vector map of pCT-CON. The “insert” label 

indicates the position where the Sso7d gene is inserted. 
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In our case, the Sso7d scaffolds are flanked by two detection tags: hemagglutinin (HA) 

epitope tag at the N-terminus, which is used as an expression marker to monitor plasmid 

incorporation; and c-Myc epitope at the C-terminus, which is used to monitor full length 

expression of the gene on the yeast surface (Figure V-6a). Using a two-color labeling scheme, 

with one fluorophore for the expression (anti-HA or c-myc tag) and another for target binder 

(anti-biotin), protein scaffolds can be engineered for higher affinity and stability binders. HA 

and c-MYC epitope tags will be used to normalize Sso7d expression levels and ensure full-

length expression via flow cytometry. 

 

5.2.1. Selection by magnetic bead sorting  

Sso7d selection begins with biotinylated hEGF immobilized on streptavidin magnetic 

beads (Biotin Binder Dynabeads) incubated with Sso7d yeast libraries. The multivalency of the 

Dynabeads (~5x106 biotin-binding sites per bead) and the yeast (~105 Sso7d per cell) allows 

for the isolation of weak affinity Sso7d-based binders through avidity interaction. 

Sso7d mutants that “capture” bait hEGF via binding interactions are magnetically sorted 

from non-binders, following exhaustive washes. Sorted yeast clones are grown, Sso7d 

expression induced once more, and this panning process repeated extensively to enrich 

hEGF-binding Sso7ds. 

After naïve library growth and also after every magnetic sort, we verified full length 

protein expression by flow cytometry, using primary antibodies against HA and cMyc tags. We 

used the same secondary antibody for both anti-HA and anti-c-myc detection, so that samples 

were labeled separately.  

In the flow cytometry plots showed in Figure V-7 each dot corresponds to a single yeast 

cell. The y axis indicates fluorescence intensity of Strepavidin-Alexa Fluor 647, which was used 

to label the biotinylated hEGF in FACS sorting, while the x axis accounts for fluorescence 

intensity of Alexa Fluor 488, which we used to label the HA and c-myc tags. Therefore, higher 

values along the x axis indicated higher display of these tags on the cell surface. Dots that 

appeared in the Q3 quadrant corresponded to unlabelled cells. Those cells that stained 

positive in anti-c-myc plots are the ones displaying full length Sso7d protein (dots observed in 

the Q4 quadrant). In truncations or frame-shift mutants, the c-myc tag detection would be lost 

and, in the case of plasmid loss, the HA tag would not be detected. As it can be noticed in 

Figure V-7, after naïve library growth, around 40% of the yeast cells expressed full length 

protein. 
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Figure V-7. Flow cytrometry plots after naïve library growth: a) and b) Correspond to 

Library 11, performed against N-terminal HA epitope tags and C-terminal c-myc tags 

respectively; c) and d) Correspond to Library 18, performed against N-terminal HA epitope 

tags and C-terminal cMyc tags, respectively. Thanks to this experiment we know that the 42.3 

% and 40.8% cells of libraries 11 and 18 respectively have expressed correctly the full length 

protein. 

 

After a positive magnetic round followed by a negative round and finally a positive 

magnetic round, we performed 4 FACS sorts. From the last FACS sorting, we selected six 

mutants and studied them using flow cytometry, in order to find a promising binder. It is 

important to stress that we studied the behavior of the Sso7d protein on a yeast living cell, in 

this preliminar study we did not isolated the protein for its study. Thus, we used three different 

concentrations (5, 50 and 500 nM) of biotinylated hEGF, looking for saturation. In Figure V-8a 

we can observe that the clone B showed the highest fluorescence values at 500 nM of 

biotinylated hEGF, so that, we studied it in a wider range of concentrations: 50, 200, 500, 1000 

and 2000 nM, exhibiting saturation at 500 nM (Figure V-8b). 
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Figure V-8. a) Fluorescence observed of Alexa Fluor 647 for six different clones (A, B, 

D, F, H and I) at three different concentrations of hEGF (5, 50 and 500 nM). b) Fluoresce 

observe of Alexa Fluor 647 for clone B. Because of it reached the saturation at 500 nM of 

biotinylated hEGF, we expected high association constant and we decided to isolate this 

protein in order to study the association constant by interferometry. 
 

Having identified this promising clone we isolated the plasmid from yeast and sent it for 

DNA sequencing. The amino acid sequence of the binding Sso7d obtained was: 

ATVRFTYRGEERQVGISKIKSVRRYGQYIAFSYDGGGAGGYGWMSGEDAPKELLQ

MLEKRGS 

(Red residues are the nine residues previously randomized)  

 

Dr. Cristina Zamora and Sonya Entova found the optimal conditions to clone this Sso7d 

sequence into PE-H6 vector. We needed this vector in order to amplify the DNA in E. coli and 

later induce the expression of the Sso7d protein with a His6 tag and free of the Aga1-fusion.  

 

5.2.2. Protein expression and purification, followed by Sso7d vs hEGF titration 

studies by interferometry 

At this point we were ready to express this Sso7d mutant in E. coli to perform 

interferometry assays in order to determine the affinity of this hEGF binder. Sso7d mutant was 

expressed in E. coli from glycerol stocks and purified using Ni-NTA resin. Protein purity was 

assessed by SDS-PAGE as shown in Figure V-9. 
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Figure V-9. 16% tricine gels stained with Coomassie for the purification of Sso7d-

based mutant. M: marker (See-blue Plus2 prestained), P: pellet, L: lysate, FT: flow-through W: 

washes, E: elution. 
 

Once we had the protein isolated we could measure binding curves and kinetic 

parameters for soluble Sso7d binding to immobilized analyte (hEGF). Bio-Layer Interferometry 

(BLI) is an optical analytical technique that measures interference patterns between waves of 

light. White light is directed down the fiber-optic biosensor towards two interfaces separated 

by a thin layer at the tip of the fiber: a biocompatible layer on the surface of the tip, and an 

internal reference layer (Figure V-10). Light reflects from each of the two layers, and the 

reflected beams interfere constructively or destructively at different wavelengths in the 

spectrum. This interference pattern is detected at a CCD array detector.  

 

 

Figure V-10: A Dip and Read biosensor, illustrating the two optical interfaces at the 

biosensor tip: the internal reference layer (optical layer) and the surface biocompatible matrix 

on which ligand molecules are immobilized. 

 

When the tip of a biosensor is dipped into a sample in a 96-well microplate, target 

molecules bind to the 2-dimensional coated surface. This binding forms a molecular layer that 

increases in thickness as more target molecules bind to the surface. As the thickness at the 

tip increases, the effective distance between the two reflective layers increases, creating a shift 

in the interference pattern of the reflected light (Figure V-11). The spectral pattern of the 

reflected light therefore changes as a function of the optical thickness of the molecular layer, 

i.e. the number of molecules bound to the biosensor surface. This spectral shift is monitored 
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at the detector, and reported on a sensorgram as a change in wavelength (nm shift). Monitoring 

the interference pattern in real time provides kinetic data on molecular interactions. 

 

 

Figure V-11. BLI is an optical analytical technique that analyzes the interference 

pattern of white light reflected from two surfaces. Changes in the number of molecules bound 

to the biosensor causes a shift in the interference pattern that is measured in real time. 

 

In our studies we used streptavidin-coated biosensor and the biotinylated hEGF was 

inmobilized. Based on previous experiments performed in Barbara Imperiali´s lab, measuring 

binding constant between hEGF and other Sso7d clones, we carried out the titration 

experiments.  

First, we optimized important parameters, such as the concentration of the analyte 

(hEGF), and the ligand (Sso7d), association and dissociation times; and we found the best 

first-order fitting using: 

- hEGF concentration of 125 nM in immobilization solution. 

- Sso7d concentrations from 6.25 to 150 nM. 

- Association times of 60 s.  

- Dissociation times of 400 s. 

In Figure V-12 we can observe the results obtained for the titration optimized 

experiment, the fitting curves resulted in a KD = (1.90 ± 0.04) × 10−8 M. 
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Figure V-12. Association and dissociation curves in blue, showing the fitting in red. The 

interaction studied corresponds to a 1:1 binding model, where it is assumed that the interaction 

between ligand and analyte follows pseudo-first-order kinetics. Thus, KD observed is 19 nM, 

R2 : 0.981, 2 : 0.787.  

 

The interferometry experiments allowed us to conclude that we had successfully found 

a hEGF binder with high affinity, presenting the equilibrium dissociation constant (KD) in the 

range of 10-8 M. The next step was to introduce the fluorescent dye.  

 

5.2.3. Expression and purification of cysteine mutants 

The objective was to place cysteine at places carefully determined on Sso7d by S. de 

Picciotto. These are the positions 31, 33 and 34, labelled in different colors in Figure V-13: 

 

 

Figure V-13. Ribbon diagram of Sso7d showing the three residues selected for the 

quick-change, R31C, Y33C and G34C. 
 

We carried out directed mutagenesis to change the selected residues, which are R31, 

Y33 and G34, to cysteine. Sso7d-based mutants R31C, Y33C and G34C were expressed in 

E. coli and purified using Ni-NTA resin. Protein purity was assessed by SDS-PAGE as shown 

in Figure V-14. 
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Figure V-14. 16% tricine gels for the IMAC purification of Sso7d-based mutants: a) 

R31C, b) Y33C, c) G34C. M: marker (See-blue Plus2 prestained), FT: flow-through, E: elution, 

R : reference. 

 

We obtained good yields for mutants R31C and Y33C, however, this was not the case 

for G34C, so we decided to continue with the two first mutants. 

 

5.2.4. Labeling of Sso7d cysteine mutants with 4-DMN derivatives  

Next step was the labelling of the two Sso7d-based cysteine mutants with the following 

derivative of 4-DMN (Figure V-15): 

 

Figure V-15. 4-N,N-dimethylamino-1,8-naphthalimide (4-DMN) dye. 

 

Protein labelling was carried out on samples containing 100 µM Sso7d cysteine mutant, 

using Tris(2-carboxyethyl)phosphine hydrochloride (TCEP) for thiol reduction. After overnight 

tumbling at room temperature, the reactions were purified first by buffer exchange using 0.5 

mL Centrifugal Filters (3K), adding 300 L 50 mM HEPES 5 mM NaCl buffer 4 times. Using 

these filters we removed a considerable amount of dye and also we got our reactions in the 

right buffer in order to perform a purification based on ionic exchange. Pure fractions were 

detected by tricine (16%) gels, Figure V-16. 
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Figure V-16. 16% Tricine gels showing the results for Sso7d mutants R31C and Y33C 

labelled with 4-DMN. 
 

5.2.5. Fluorescence assays with 4-DMN labelled Sso7d-based cysteine mutants 

Spectroscopic assays were performed by measuring the fluorescence intensity 

increase achieved by the labelled Sso7d mutants upon hEGF binding. We used the same 

concentrations previously reported by Dr. Seymour De Picciotto284 (300 nM of labelled Sso7d 

protein and 10 µM of hEGF). Fluorescence intensity increase was expressed as intensity fold 

and it was calculated by dividing F/F0 where F is the maximum fluorescence intensity upon 

hEGF binding and F0 is the fluorescence intensity of the free labelled protein measured at the 

wavelength corresponding to F. 

 

 

Figure V-17. Graphs for the fluorescence assays performed with 300 nM labeled 

protein (in green) and 300 nM labeled protein upon addition of 10 µM hEGF (in blue). with: a) 

R31C 1 b) Y33C. 

 

The studied mutants labelled with 4-DMN derivative represent a good proof-of-concept 

and seemed to have the typical properties of specific binding sensors (low fluorescence 

background and high fluorescence intensity increase upon binding with its partner). However, 

these Sso7d mutants do not present the 50-fold increases in florescence previously reported 

by De Picotto et all.284 To continue this project, it would be a good point to explore if the 34 
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position of the Sso7d scaffold presents better florescence response. Once this step is 

completed, it would be necessary to measure the binding constant by interferometry, expecting 

to maintain values ten times the nM range, as obtained previously. 

In conclusion, through directed evolution using YSD, we were able to engineer the 

Sso7d scaffold and find a specific hEGF binder, which presents binding constant ten times the 

range of nanomolar. The labelling in two studied positions with the 4-DMN fluorophore showed 

15-fold increases in fluorescence. These are promising results and close to find an excellent 

solvatochromic biosensor. 
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5.3.1. Yeast surface display  

5.3.1.a. Reagents set up  

 SD-CAA media (pH 4.5)  

This media was prepared by dissolving 20 g dextrose, 6.7 g yeast nitrogen base (Difco), 

5 g casamino acids (Bacto), 14.7 g sodium citrate and 4.29 g citric acid monohydrate deionized 

water to a volume of 1 L. This media was then sterilized by filtration. PenStrep 1:100 

(Invitrogen) was added to prevent bacterial contamination.  

 SG-CAA media (pH 4.5)  

This media was prepared by dissolving 20 g glucose, 6.7 g yeast nitrogen base (Difco), 

5 g casamino acids (Bacto), 14.7 g sodium citrate and 4.29 g citric acid monohydrate deionized 

water to a volume of 1 L. This media was then sterilized by filtration. PenStrep 1:100 

(Invitrogen) was added to prevent bacterial contamination  

 PBSA  

This buffer was prepared by dissolving 8 g NaCl, 0.2 g KCl, 1.44 g Na2HPO4, 0.24 g 

KH2PO4 and 1 g bovine serum albumin in 1 L of deionized water. pH was adjusted to 7.4 and 

solution was sterilized by filtration. This solution can be stored for up to 6 months at 4  ºC.  

 SD-CAA plates  

SD-CAA plates were prepared by dissolving 5.4 g Na2HPO4, 8.56 g NaH2PO4·H2O, 

182 g sorbitol and 15 g agar in deionized water to a volume of 900 mL and autoclave (Solution 

A).  

Another solution was prepared by dissolving 20 g dextrose, 6.7 g yeast nitrogen base 

(Difco), 5 g casamino acids (Bacto) in deionized water to a volume of 100 mL and sterilize by 

filtration (Solution B). Then Solution A was cooled with stirring until below 50 ºC. Both solutions 

were mixed and plates were poured.   

5.3.1.b. Naïve library growth  

Frozen aliquots of Sso7d libraries glycerol stocks (provided by the Wittrup’s lab) with 

10 x diversity (3x1010 cells) were thawed at room temperature and inoculated into 1 L of SD-

CAA media. Cells were grown overnight at 30 ºC with shaking (250 rpm). Yeast cells typically 

grow overnight to an OD600 = 6-8. Cells were passaged into fresh SD-CAA media by pelleting 

at least 10 x diversity (3x1010 cells) and resuspending them into fresh SD-CAA media. An 

absorbance of 1 at 600 nm is about 1 x 107 cells/mL. Fresh cells were grown overnight at 30 

ºC with shaking (250 rpm). Yeasts were passaged again into fresh SD-CAA media as 

described and grown at 30ºC with shaking (250 rpm) until OD600 = 2-5. Then at least 10 x 

diversity cells were pelleted and resuspended in 1L of SG-CAA media with 2 g/L dextrose. 

Protein expression was induced by incubating overnight at 20 ºC with shaking (250 rpm).  
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5.3.1.c. Magnetic beads selection  

First, 4x107 Dynabeads Biotin Binder (Invitrogen), for each library, were added to a 2 

mL microcentrifuge tube containing 1 mL of ice-cold PBSA. Beads were incubated for 5 min at 

4 ºC with tumbling. Then microcentrifuge tubes containing magnetic beads were placed on the 

DynaMag-2 magnet (Invitrogen) for 3 min and supernatant was removed being careful not to 

touch the beads. Magnetic beads were washed with 1 mL of ice-cold PBSA, incubated for 5 

min at 4 ºC with tumbling and finally they were placed in the magnet for 3 min to remove the 

supernatant. Three washes were performed. After supernatant removal 330 pmols of 

biotinylated-hEGF were combined with the beads in a final volume of 1 mL PBSA. Then beads 

were incubated at 4 ºC with tumbling for 2h. After incubation the microcentrifuge tubes 

containing hEGF-coated-beads were placed on the magnet for 3 min and supernatant was 

removed. hEGF-coated-beads were washed again as previously done. Coated-beads were 

finally resuspended with 550 µL of ice-cold PBSA. In the meantime, 3x1010 cells were pelleted 

at 3750 rpm for 10 min at 4 ºC (at least 10-fold oversampling should be pelleted to reduce the 

possibility of losing individual clones).  

Supernatant was removed and cells were resuspended in 30 mL ice-cold PBSA. Yeast 

were pelleted again at 3750 rpm for 5 min at 4 ºC. Yeast cells were resuspended to a final 

volume of 10 mL in PBSA and splited in 2 mL microcentrifuge tubes (1 mL/tube). 5 µL of 

resuspended cells for each library were combined with 495 µL of ice-cold PBSA and kept at 

4ºC for full length protein expression analysis. 50 µL of hEGF-coated magnetic beads were 

added to each microcentrifuge tube containing yeast cells. Yeast-bead complex was incubated 

for 2h at 4ºC with tumbling. After 2h incubation samples were placed on the magnet for 3 min 

and supernatant containing non-binders was removed. Magnetic beads containing target 

binders were washed with PBSA as previously done. Yeast-bead complex was resuspended 

in SD-CAA media (1 mL/tube) and inoculated into 60 mL SD-CAA media. 1 µL of this culture 

was diluted with SD-CAA media to a final volume of 200 µL, and 50 µL were plated on SD-

CAA plates and incubate at 30 ºC. Finally cells were grown at 30 ºC with shaking (250 rpm) 

for 48h.  

 Magnetic beads removal 

After overnight growing, yeast cell cultures were pelleted at 3750 rpm for 1 min at 4 ºC 

(at least 10 fold library viability should be pelleted). Yeast cells were resuspended in SD-CAA 

media to a final concentration of 1x109 cells/mL and splited in 2 mL microcentrifuge tubes (1 

mL/tube). Samples were placed on the magnet for 3 min and then supernatant was transferred 

to a new microcentrifuge tube. This process was repeated twice. Finally supernatant was 

inoculated into 70 mL SD-CAA media and cells were grown overnight at 30ºC with shaking 

(250 rpm). Cells were passaged and induced as previously done.  
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5.3.1.d. Full-length protein expression confirmation   

Samples kept at 4ºC were used to confirm full length protein expression. Antibodies 

were purchased from Invitrogen. Labeling was done as follows:  

 

 

Pelleted yeast cells were combined with primary antibody (chicken anti-HA IgY or 

chicken anti-c-myc IgY) and ice-cold PBSA was added to a final volume of 100 µL. Samples 

were incubated for 1.5 h at 4 ºC with tumbling. Cells were pelleted by centrifugation at 14000 

rpm at 4 ºC for 30 s. Primary antibody stained cells were washed twice with 1 mL of ice-cold 

PBSA and then pelleted by centrifugation at 14000 rpm at 4 ºC for 30s. Yeast cells were then 

combined with the secondary antibody (Alexa Fluor 488-goat anti-chicken IgG) in a final 

volume of 100 µL ice-cold PBSA. Cells were incubated for 30 min at 4 ºC with tumbling. Then 

samples were washed three times with PBSA and finally pelleted by centrifugation at 14000 

rpm at 4 ºC for 30s. Cell pellets were kept on ice until analysis. After labeling we ended up with 

four samples (two per each library) to be analyzed. Cell pellets were resuspended in 1 mL of 

ice-cold PBSA and labeled samples were analyzed by a BD Accuri™ C6 Plus instrument (fom 

BD Bioscience). Data was analyzed with FlowJo software (See figure 6 in the results and 

discussion section)   

Magnetic beads selection were repeated twice more, one negative magnetic sort to get 

rid off magnetic-bead binders and a final positive magnetic selection.  

 

5.3.1.e. Colony forming units counting 

After cells were grown in SD-CAA plates, colony forming units (CFUs) were counted by 

visual inspection. The CFUs/mL were calculated using the following equiation:  

𝐶𝐹𝑈𝑠

𝑚𝐿
=  

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑙𝑜𝑛𝑖𝑒𝑠

(𝑑𝑖𝑙𝑖𝑡𝑢𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟)(𝑣𝑜𝑙𝑢𝑚𝑒 𝑝𝑙𝑎𝑡𝑒𝑑 𝑖𝑛 𝑚𝐿)
 

 

5.3.1.f. Flow cytometry assays  

For flow cytometry sorting, cells were doubly labeled with the anti-c-myc tag and with 

the biotinylated target. For this purpose, two different strategies were used.   
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 Sample 1 (no-preloaded)  

Pelleted yeast cells were combined with the primary antibody (chicken anti-c-myc IgY) 

and the biotinyalted hEGF and ice-cold PBSA was added to a final volume of 200 µL. Samples 

were incubated for 1.5 h at 4 ºC with tumbling. Cells were pelleted by centrifugation at 14000 

rpm at 4 ºC for 30 s. Primary antibody stained cells were washed twice with 1 mL of ice-cold 

PBSA and then pelleted by centrifugation at 14000 rpm at 4 ºC for 30 s. Stained cells were 

then combined with the secondary antibodies (Alexa Fluor 488-goat anti-chicken IgG and 

Streptavidin-Alexa Fluor 647) in a final volume of 200 µL ice-cold PBSA. Cells were incubated 

for 30 min at 4 ºC with tumbling. Then samples were washed three times and pelleted by 

centrifugation at 14000 rpm at 4 ºC for 30 s. Cell pellets were kept on ice until analysis. After 

labeling we ended up with two samples (one per each library) to be analyzed.   

 Sample 2 (preloaded)  

For the hEGF-preloaded strategy we first incubated Streptavidin-Alexa Fluor 647 with 

biotinylated-hEGF on ice for 30 min, shielded from light, at a streptavidin/hEGF molar ratio of 

1 : 4 in as a small volume as possible. This sample was then mixed with yeast cells and PBSA 

was added to a final volume of 200 µL. Labeling with chicken anti-c-myc IgY were performed 

as previously done and samples were incubated overnight. The secondary labeling was done 

adding Alexa Fluor 488 goat anti-chicken IgG as previously done. After labeling we ended up 

with two samples (one per each library) to be analyzed.   

 Sorting  

Cell pellets were resuspended in 1 mL of ice-cold PBSA immediately before analysis. 

Samples were analyzed using the FACSAria™ cell sorter instrument. Yeast cells that were 

double positive for the HA and target were collected into 5 mL glass tubes and kept on ice. 

After sorting, collected yeast cells were inoculated into 2 mL of SD-CAA media and grown 

overnight at 30 ºC with shaking. Some yeast cells need more than 48h to completely grow 

(OD600= 6-8). Cells were passaged and induced as previously done.  
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Data was analyzed using the FlowJo software. Briefly living cells were analyzed by 

plotting the scattering light (SSC) vs the forward scattering light (FSC) and gating those that 

presented the correct morphology. Final analysis was done by plotting the binding event (Alexa 

Fluor-647 emission accounting for hEGF binders) vs the protein displaying event (Alexa Fluor-

488 emission accounting for c-myc tag display). Results for the four FACS rounds performed 

in the Library 18 are shown in Figure V-18. 

 

 

Figure V-18. Flow cytrometry plots of FACS sorting from 1st (A) to 4th (D) rounds for the 

library 18. Performed for Alexa Fluor-647 emission accounting for hEGF binders, depicted in 

the x axis; versus Alexa Fluor-488 emission accounting for c-myc tag display, y axis. 

 

Yeast cells that show positive staining for both Alexa Fluor 647 and 488 indicate full 

length protein expression and hEGF binding. 

FACS sorts it is recommended to select 1-3% of displaying cells that show detectable 

binding, we sorted between ~3% of displaying cells showing hEGF-binding (boxed area in 

Figura V-18A; and triangular area in Figure V-18B-D). Finally in the fourth FACS sorting (Figure 

V-18D) we were able to enrich for improved hEGF binders, we could clearly see three different 

diagonals that may contain diverse hEGF binders so we selected the binders placed on the 

diagonal above 
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5.3.2. Identification of individual clones  

After four subsequent FACS sorting rounds, we selected six candidates and studied by 

flow cytometer analysis them under increasing concentrations of hEGF. 

Sample preparation was done as follows: 

 

Pelleted yeast cells were combined with the primary antibody (chicken anti-c-myc IgY) 

and the biotinyalted hEGF and ice-cold PBSA (incubation with primary antibody and hEGF can 

last from 1.5h up to overnight). Samples were incubated for 1.5 h at 4 ºC with tumbling. Cells 

were pelleted by centrifugation at 14000 rpm at 4 ºC for 30 s. Primary antibody stained cells 

were washed twice with 1 mL of ice-cold PBSA and then pelleted by centrifugation at 14000 

rpm at 4 ºC for 30 s. Stained cells were then combined with the secondary antibodies (Alexa 

Fluor 488-goat anti-chicken IgG and Streptavidin-Alexa Fluor 647) in a final volume of 200 µL 

ice-cold PBSA. Cells were incubated for 30 min at 4 ºC with tumbling. Then samples were 

washed three times and pelleted by centrifugation at 14000 rpm at 4 ºC for 30 s. Cell pellets 

were kept on ice until analysis. After labeling we ended up with four samples (per concentration 

of biotinylated hEGF) to be analyzed. 

Once analyzed, we obtained the following fluorescence vs hEGF concentration values: 

 

Figure V-18. Flourescence observed of Alexa Fluor 647 for six different clones (A, B, 

D, F, H and I) at three different concentrations of hEGF (5, 50 and 500 nM). The clone B 

present the highest fluorescence value at 500 nM.   
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Due to clone B exhibited the highest flourescence values at 500 nM hEGF we studied 

this clone in a wide range of concentrations (50, 200, 500, 1000 and 2000 nM), using the same 

procedure described before.  

This clone, was sent to sequencing. For this, 1 x 108 yeast cells were pelleted and 

plasmid DNA was extracted using Zymoprep Yeast Plasmid Miniprep II. To facilitate DNA 

sequencing, the plasmids extracted from yeasts were amplified in E. coli XL1-Blue 

supercompetent295 cells and isolated using Wizard® Plus SV Minipreps DNA Purification Kit.  

 

5.3.3. Expression and purification of Sso7d proteins 

Cristina Zamora and Sonya Entova found the optimal conditions to clone this insert 

sequence into PE-H6 vector.  

DNA extracted fom DH5 cells was used to transform BL21-RIL cells, which were 

grown on kanamycin/chloramphenicol (KAN/CAM) plates. Single colonies from each plate 

were picked and grown overnight at 37 ºC in 8 mL LB containing KAN, 30 µg/mL and CAM, 30 

µg/mL. Part of the culture was used to generate Glycerol stocks (1mL) and the rest to inoculate 

1L culture containing TB-media with KAN/CAM (30 µg/mL) and then grown in a 37 ºC shaker 

at 225 rpm. When OD600 reached 0.8, protein expression was induced by adding 1mL 1M 

isopropyl β-D-1-thiogalactopyranoside (IPTG). Cultures were grown overnight at 16 ºC with 

shaking at 225 rpm. Cells were then harvested by centrifugation (5000 g, 4ºC) for 30 min. The 

cell pellet was re-suspended in 35mL buffer containing 50 mM HEPES, 15 mM NaCl, pH 7.2, 

transferred to a 50 mL conical tubes and re-pelleted at 5000 g for 30 min at 4 ºC. The resulting 

cell pellets were stored at -80ºC until purification. 

 Lysis and immobilized metal ion affinity chromatography (IMAC) purification  

Lysis was done by resuspending the cell pellets in 30mL of 50 mM Tris base, 100 mM 

NaCl, 1% Triton-X-100, 3% (v/v) glycerol, pH 7.2, and sonicating (3 cycles of 45 s) at 50% 

amplitude. Finally cells were centrifuged at 41KG for 45 min at 4 ºC and the supernatant was 

incubated with Ni-NTA resin (Qiagen) previously equilibrated with 50 1 x PBS, 10mM 

imidazole, pH 7.4 buffer. Protein was washed with 50 mM Tris, 100 mM NaCl, 20 mM 

imidazole. buffer with increasing amounts of imidazole to 40 mM. Protein was finally eluted 

with the same buffer containing 300 mM imidazole. Pure protein were dialysed in 1 x PBS. 

Protein purity was assessed by Tris-Tricine electrophoresis (See Figure 7). 

 Tris-Tricine electrophoresis (tricine gels)  

Tris-tricine electrophoresis was carried out using BioRad system (Mini-protean cell) 

16.5 % Tris gel and 100 mM Tris, 100 mM Tricine, 0.1% SDS as running buffer. Sample buffer 

was 200 mM Tris-HCl, pH 6.8, 2% (w/v) SDS, 40% glycerol, 0.04% Coomassie Brilliant Blue 

G-250 (ThermoFisher), 2% (v/v) mercaptoethanol (added freshly). Protein molecular weights 
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were approximated by comparison to a protein marker (See Blue Plus 2 pre-stained protein 

standard from ThermoFisher). Gels were visualized by Coomassie staining (Imperial Protein 

Stain from ThermoFisher).  

 

5.3.4. Protein labelling with 4-DMN 

Protein labeling was done with samples containing 100 µM Sso7d cysteine mutants in 

50 mM Na2HPO4, 300 mM NaCl, 0.5 M urea, pH 8.0 buffer, adding 10 mM of TCEP (100 equiv) 

for thiol reduction and 10 equiv of 4-DMN based cysteine modifying agent. Labeling reactions 

were performed overnight at room temperature with gentle tumbling and protected from light. 

After overnight tumbling at room temperature, the reactions were purified first by buffer 

exchange using 0.5 mL Centrifugal Filters (3K), adding 300 L 50 mM HEPES 5 mM NaCl 

buffer 4 times. Using this filters we removed a considerable amount of dye and also we got our 

reactions in the right buffer in order to perform a purification based on ionic exchange. Using 

a flow rate 0.5 mL/min. The starting buffer was 50 mM HEPES 5 mM NaCl, once the dye was 

out of the column 0concentration of NaCl was increased to 1M. Pure fractions were detected 

by Tricine gels and combined together (See Figure V-16). 

 

5.3.5. Fluorescence spectroscopy assays  

Fluorescence spectroscopy assays, in this work, were performed using a FluoroMax-2 

fluorometer with an integration time of 0.1 s, excitation and emission slits set at 5 and 10 nm 

respectively. Stock solutions of 4-DMN labeled Sso7d mutants were prepared at 600 nM in 1 

x PBS at pH 7.4. A stock solution of hEGF at 20 µM was also prepared in the same buffer. 

Using these protein stocks, the labeled Sso7d mutant was diluted to 300 nM and exposed to 

10 µM solution of hEGF. The samples were excited at 420 nm and emission collected from 

450 - 650 nm. The difference in emission is reported as the fold increase upon hEGF binding. 

All spectra were corrected for background fluorescence by subtracting a blank scan of the 

buffer system (See Figure V-17). 

 

5.3.6. Sso7d vs hEGF titration studies on Octet 

Interferometry studies were carried out using the Octet RED96 System.  

All procedure was performed at 4 ºC, using 96-well plate (final volume 200 L). 

The Buffer used was: 50 mM HEPES, 150 mM NaCl, 1% PBSA, 0.05% Tween-20, pH 

7.4. 
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CONCLUSIONS 

 

Throughout this thesis we have addressed some fundamental issues in supramolecular 

chemistry. For this purpose, we have made use of two single molecule manipulation 

techniques, which are OT and AFM, as well as bulk studies. According to the results obtained 

it can be concluded:  

 

1) We have successfully developed a new method to measure the average mechanical 

strength of H-bonded supramolecular complexes, at the single-molecule level, under non-

equilibrium conditions. Our method expands the capabilities of previously described SMFS 

methods by exploiting the force resolution of OT (0.1-100 pN), which allows measuring the 

characteristic strength of H-bonds under near-physiological conditions, and by including a DNA 

reporter that guarantees that the force measurements refer to a single binding event. The 

modularity and addressability of the DNA construct described here also opens up the possibility 

of targeting synthetic host-gest couples in controlled orientations and stoichiometry. In this 

case, we have focused on aqueous conditions, but the system is in principle adaptable to other 

sets of conditions. This renders our method a versatile and precise tool to address key 

questions in supramolecular chemistry, like the mechanical strength of hydrogen bonded 

systems, and its relationship with their thermodynamic stability.

2) We have synthetized a hydrogen-bonded Leigh-type molecular shuttle that 

comprises a strong binding station, namely fumaramide, separated by a polar spacer of 

approximately 10 nm length, we placed a second station, succinic amide-ester, which shows 

less affinity for the macrocycle than the fumaramide station. Two bulky diphenylethyl groups 

will serve as stoppers. One of the stopper ends is branched to include a biotin fragment that 

was used to link the molecule to the OT set-up. The other link point to the OT was placed 

thought click reaction between an azide located in the macrocycle and an alkyne modified 

oligonucleotide; finally this oligonucleotide was ligated to a dsDNA spacer. Individual rotaxane-

dsDNA constructs was mechanically manipulated in a controlled manner by a dual-beam OT 

instrument; thus, for the very first time, we have followed the shuttling motion of single 

[2]rotaxanes during minutes. We observed the stochastic behaviour of individual molecular 

shuttles, what allowed as to have access to the statistical nature of these flutuations and to 

characterize the mechano-chemical cycle of its system operation, in terms of the free energy 

difference, the coexistence force, the position of the transition state and the kinetic rates. 
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Moreover, we have addapted the molecular shuttle to be studied under biocompatible, 

aqueous conditions, which will shed light on the possibility of creating synthetic-natural hybrids, 

one of the most ambitious goals in the field. 

3) We experimentally observed the formation of H-bonds in four different H-bonded 

systems, which feature strong H-bond donors and acceptors, benzamidine-acetic acid (Ben-

AcOH, neutral-neutral), the Hamilton receptor-cyanuric acid derivative pair (HR-cy, neutral-

neutral), the 1,4,7,10,13,16-hexaoxacyclooctadecane-ammonium derivative (18_crown_6-

Am, neutral-cation) and N,N’-dimethyl thiourea-sodium benzoate (DMTU-BzO−, neutral-anion), 

in [emim][FAP], a RTIL, where electrostatic interactions are expected to play a very minor role, 

since dipole-dipole electrostatic contribution in H-bonds is proportional to r−6, while dipole-point 

charge interactions are proportional to r−2. UV-vis spectroscopy titrations of H-Bonded 

complexes showed that the binding constants are weakened in [emim][FAP] (Ka(Ben-AcOH) = 

1.99 x 103 M-1; Ka(HR-cy) = 3.16 x 106 M-1; Ka(18_crown_6-Am) = 3.16 x 103 M-1; Ka(DMTU-

BzO−) = 1.99 x 104 M-1), with respect to organic solvents (Ka(Ben-AcOH) = 2.51 x 103 M-1 in 

CH3Cl; Ka(HR-cy) = 6.31 x 105 M-1 in acetonitrile; Ka(18_crown_6-Am) = 3.98 x 103 M-1 in 

acetonitrile; Ka(DMTU-BzO−) = 3.98 x 104 M-1 in CH3Cl), but still in the same order of 

magnitude. This trend was also confirmed through IR spectroscopy in two host-guest systems 

and through single molecule force measurements performed by AFM in one system. These 

observations are opposed to the findings for weaker H-bonds, such as those in water, which 

are substituted by O-H-anion interactions in RTILs. Therefore, our experiments point to a 

significant covalent contribution to strong H-bonds, which is not affected by the RTIL charges, 

and away from a purely electrostatic view of H-bonding. In order to obtain a more complete 

vision of the problem, and generalize or disprove our preliminary conclusions, we are now 

studying binding constants of the same host-guest systems in a collection of RTILs, in which 

we systematically vary the size of the cation and anion. 

4) Through directed evolution using yeast surface display (YSD), we were able to 

engineer the Sso7d scaffold and find a specific hEGF binder, which presents dissociation 

constants in the 10-8 M range. The labelling of the Sso7d protein in two studied positions with 

the 4-DMN fluorophore showed 15-fold increases in fluorescence; it represented a good proof-

of-concept and seemed to have the typical properties of specific binding sensors (low 

fluorescence background and high fluorescence intensity increase upon binding with its 

partner). However, these Sso7d mutants do not present the 50-fold increases in florescence 

previously reported by De Picotto et al. To continue this project, it would be a good point to 

explore if the 34 position of the Sso7d scaffold presents better florescence response. In short, 
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the results obtained until now are promising and close to find an excellent solvatochromic 

biosensor. 
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CONCLUSIONES 

 

A lo largo de esta tesis se han abordado algunos temas fundamentales en química 

supramolecular. Para ello se ha hecho uso de dos técnicas de manipulación de moléculas 

individuales (pinzas ópticas y AFM) así como de estudios en bulk. De acuerdo con los 

resultados obtenidos, se puede concluir:

 

1) Hemos desarrollado con éxito un nuevo método para medir la resistencia mecánica 

promedio de complejos supramoleculares unidos a través de enlaces de hidrógeno, a nivel de 

una sola molécula y en condiciones de no equilibrio. Nuestro método expande las capacidades 

de los métodos SMFS descritos anteriormente, explotando la resolución de fuerza de las 

pinzas ópticas (0.1-100 pN), que permite medir la fuerza característica de los enlaces de 

hidrógeno en condiciones cuasi-fisiológicas, e incluyendo un espaciador de ADN que 

garantiza que las medidas de fuerza se refieren a un único evento de enlace. La modularidad 

y direccionabilidad de la construcción de ADN descrita aquí también abre la posibilidad de 

estudiar a parejas sintéticas huésped-receptor en orientaciones y estequiometria controladas. 

En este caso, nos hemos centrado en las condiciones acuosas, pero el sistema es, en 

principio, adaptable a otros conjuntos de condiciones. Esto hace que nuestro método sea una 

herramienta versátil y precisa para abordar cuestiones clave en química supramolecular, 

como la resistencia mecánica de los sistemas de enlace de hidrógeno y su relación con su 

estabilidad termodinámica. 

 

2) Hemos sintetizado un [2]rotaxano unido a través de enlaces hidrógeno de tipo Leigh, 

que comprende una estación por la que presenta una afinidad alta, concretamente 

fumaramida; separado por un espaciador polar de aproximadamente 10 nm de longitud, se 

encuentra una segunda estación, un éster de succinimida, que presenta menos afinidad por 

la macrociclo que la estación de fumaramida. Dos grupos voluminosos difeniletilo actúan como 

“stoppers” impidiendo que el macrociclo se escape. El extremo de un stopper se decoró con 

una biotina que se usó para unir la molécula a la configuración de las pinzas ópticas. El otro 

punto de enlace a las pinzas ópticas fue introducido a través de una reacción de click entre 

una azida localizada en el macrociclo y un oligonucleótido modificado con un alquino; 

finalmente este oligonucleótido se ligó a una espaciador de dsDNA para facilitar su 

manipulación en las pinzas ópticas. Construcciones individuales de rotaxano-dsADN se 

manipularon mecánicamente de una manera controlada mediante un instrumento pinzas 
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ópticas de doble haz. De este modo, y por primera vez, fuimos capaces de seguir el 

movimiento de shuttling de moléculas individuales de [2]rotaxanos durante minutos. 

Observamos el comportamiento estocástico de estas moléculas, lo que permitió tener acceso 

a la naturaleza estadística de estas fluctuaciones y caracterizar el ciclo mecanoquímico de su 

sistema de operación, en términos de la diferencia de energía libre de Gibbs, la fuerza de 

coexistencia, en la que el macrociclo presenta la misma posibilidad de encontrarse en ambas 

estaciones, la posición del estado de transición y las velocidades cinéticas. Además, hemos 

adaptado la este dispositivo molecular orgánico para poder estudiarlo en condiciones acuosas 

biocompatibles, lo que abre las puertas al estudio de híbridos sintéticos naturales más 

complejos, uno de los objetivos más ambiciosos en el campo. 

3) Hemos observado experimentalmente la formación de enlaces hidrógeno en cuatro 

sistemas diferentes que se unen a través de enlaces de hidrógeno, los cuales presentan 

dadores y aceptores de enlaces de hidrógeno fuertes: benzamidina-acético acétioco (Ben-

AcOH, neutro-neutro), el receptor de Hamilton-derivado de ácido cianúrico ( HR-cy, neutro-

neutro), 1,4,7,10,13,16-hexaoxaciclooctadecano- derivado de amonio (18_crown_6-Am, 

neutro-catión) y N,N'-dimetiltiourea-benzoato sódico (DMTU-BzO-, neutro-anión), en [emim] 

[FAP], un líquido iónico a temperatura ambiente (RTIL), donde se espera que las interacciones 

electrostáticas juegasen un papel secundario, ya que la contribución electrostática dipolo-

dipolo en enlaces de hidrógeno es proporcional a r -6, mientras que las interacciones de dipolo-

carga son proporcionales a r -2. Las valoraciones de espectroscopía UV-vis de los complejos 

unidos a través de enlace de hidrógeno mostraron que las constantes de asociación se 

debilitan en [emim][FAP] (Ka(Ben-AcOH) = 1.99 x 103 M-1; Ka(HR-cy) = 3.16 x 106 M-1; 

Ka(18_crown_6-Am) = 3.16 x 103 M-1; Ka(DMTU-BzO−) = 1.99 x 104 M-1), con respecto a los 

disolventes orgánicos (Ka(Ben-AcOH) = 2.51 x 103 M-1 en CH3Cl; Ka(HR-cy) = 6.31 x 105 M-1 

en acetonitrilo; Ka(18_crown_6-Am) = 3.98 x 103 M-1 en acetonitrilo; Ka(DMTU-BzO−) = 3.98 x 

104 M-1 en CH3Cl), pero se encuentran en el mismo orden de magnitud. Esta tendencia 

también se confirmó mediante espectroscopía IR en dos sistemas huésped-receptor y 

mediante mediciones de fuerza de molécula individual realizadas por AFM en una pareja. 

Estas observaciones se oponen a los hallazgos de enlaces hidrógeno más débiles, como los 

que se dan en el agua, que están sustituidos por interacciones O-H-anión en RTIL. Por lo 

tanto, nuestros experimentos apuntan a una contribución covalente significativa a los fuertes 

enlaces de hidrógeno, que no se ve afectada por las cargas del RTIL, y se encuentra lejos de 

una visión meramente electrostática de los enlaces hidrógeno. Para obtener una visión más 

completa del problema y generalizar o refutar nuestras conclusiones preliminares, ahora 

estamos estudiando las constantes de asociación de los mismos sistemas huésped-receptor 
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en una colección de RTILs, en la cual sistemáticamente variamos el tamaño del catión y del 

anión. 

4) A través de evolución dirigida utilizando yeast surface display (YSD), pudimos llevar 

a cabo la ingeniería de la proteína ultraestable Sso7d (de la archaeon hyperthermophilic 

Sulfolobus solfataricus) y encontrar un binder específico de hEGF, que presenta constantes 

de disociación en el rango de 10-8 M. El marcaje de la proteína Sso7d en dos posiciones 

estudiadas con el fluoróforo 4-DMN mostró incrementos en la fluorescencia de 15 veces, tras 

la unión de hEGF; lo que representa una buena prueba de concepto ya que presenta 

propiedades típicas de sensores de unión específicos (bajo background en fluorescencia y un 

gran aumento en la intensidad de fluorescencia al unirse con su huésped). Sin embargo, estos 

mutantes de Sso7d no presentan los aumentos de 50 veces en la florescencia previamente 

descritos por De Picotto et al. Para continuar con este proyecto, sería un buen punto explorar 

si la posición 34 del scaffold de Sso7d presenta una mejor respuesta de fluorescencia. En 

resumen, los resultados obtenidos hasta ahora son prometedores y están cerca de encontrar 

un excelente biosensor solvatocrómico. 
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