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ABSTRACT: Recent advances in graphene-nanoribbon-based research have demon-
strated the controlled synthesis of chiral graphene nanoribbons (chGNRs) with atomic
precision using strategies of on-surface chemistry. However, their electronic character-
ization, including typical figures of merit like band gap or frontier band’s effective mass, has
not yet been reported. We provide a detailed characterization of (3,1)-chGNRs on
Au(111). The structure and epitaxy, as well as the electronic band structure of the ribbons,
are analyzed by means of scanning tunneling microscopy and spectroscopy, angle-resolved
photoemission, and density functional theory.

The growth and characterization of new atomically precise
graphene nanoribbon (GNR) structures is a challenging

quest. The research efforts toward that goal are continuously
increasing, driven by the promising prospects of GNR-based
technologies.1,2 As a result, a relatively large variety of armchair
graphene nanoribbons (aGNRs) has already been synthesized
on different coinage metal surfaces.3−7 Their subsequent
characterization has proved the predicted band-gap dependence
on the ribbon width to be true.8−10 Also, zigzag GNRs
(zGNRs) have been successfully synthesized from adequate
molecular precursors,11 further proving the presence of the
highly coveted edge states associated with zigzag edges.11−13

However, graphene nanoribbons with chiral edge orientations,
that is, with periodically alternating armchair and zigzag
segments, have been hardly characterized to date.14,15 The
first report on the synthesis of an atomically precise chiral GNR
(chGNR) came from a surprising result in which a precursor
designed to render aGNRs resulted in chGNRs when deposited
on a Cu(111) surface.16 This unexpected reaction path arises
from a very specific molecule−substrate interaction and was
studied in detail later on.17,18 However, although some
spectroscopic measurements were performed on such
Cu(111)-supported ribbons,19 important figures of merit like

the band-gap value or the frontier bands’ effective masses
remain unknown.
Recently we reported the design of an alternative precursor

molecule (2,2′-dibromo-9,9′-bianthracene) that resulted in the
formation of (3,1)-chGNRs independently of the substrate
used, at least on the explored Au(111), Ag(111), and Cu(111)
surfaces.20 Thus, in addition to the advantages in the growth
process that lead to longer chGNRs at reduced processing
temperatures, it places at our disposal chGNRs on a weaker
interacting surface like Au(111). On such a surface, hybrid-
ization effects with the substrate are weaker and the ribbon’s
properties are easier to probe. In this work we have made use of
this advantage, studying the structural and electronic properties
of (3,1)-chGNRs on Au(111) and Au(322) by scanning
tunneling microscopy and spectroscopy (STM and STS),
angle-resolved photoemission spectroscopy (ARPES), and
density functional theory (DFT).
The precursor molecule and the two-step reaction path

toward the final chGNR are displayed in Figure 1a.20 In a first
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step, Ullmann coupling of the surface-supported precursors sets
in at temperatures above 140 °C, leading to nonplanar
polymeric structures due to the steric hindrance exerted mainly
by hydrogen atoms placed within the anthracene units. In a
second step, cyclodehydrogenation of the polymeric structures
ends up in planar chGNRs (Figure 1d,e), formed entirely by sp2

carbon atoms, saturated with single H atoms along the edges.
As previously reported,20 the strained structure of the polymer
lowers the cyclodehydrogenation threshold temperature below
200 °C, allowing us to obtain these ribbons at temperatures
much lower than most other GNRs published to date.3,4,7,11

Characterization of the GNR structure and distribution has
been performed by STM. Low-temperature STM (LT-STM)
using CO-functionalized tips allows achieving high intra-

molecular resolution when scanning at short tip−sample
distances within the Pauli repulsion regime.21−24 As displayed
in Figure 1e, we have made use of this effect to resolve the
nanoribbon’s internal bonding structure. From larger scale
images, it becomes evident that the ribbons display six well-
defined preferential orientations (Figure 1b), each with the
ribbon’s axis deviated ∼16° from the [10-1] (and equivalent)
substrate directions. The distribution of chGNR orientations is
plotted in the inset of Figure 1b, including high-symmetry
substrate directions on the x-axis as a reference. Given the
chiral nature of the ribbons, the six orientations correspond to
three substrate-related azimuthally equivalent directions for
each of the two enantiomeric structures (marked by blue and
red in Figure 1, respectively). The associated epitaxial model

Figure 1. Synthesis, structure, and epitaxy of (3,1)-chGNRs on Au (111). (a) Schematic reaction path for the synthesis of (3,1)-chGNRs with
threshold temperatures indicated for each synthetic step. (b) Constant current STM image (45 nm × 45 nm; Vs = −0.15 V; It = 0.05 nA) of a
representative (3,1)-chGNRs sample on Au(111) after annealing to 350 °C, with the histogram on the azimuthal orientation distribution with
respect to the high-symmetry substrate directions (inset) obtained from the analysis of 245 different nanoribbons. (c) Epitaxial relation exemplified
with three-monomer-long (3,1)-chGNRs enantiomers on Au(111), where blue/orange dashed arrows depict the commensuration every two unit
cells. The translational adsorption site in the model is arbitrary because the particular adsorption position could not be unambiguously extracted
from the experimental images. (d) Constant current STM (15.4 nm × 2.5 nm; Vs = −1.1 V; It = 0.11 nA) and (e) constant height STM image (15.4
nm × 2.5 nm; Vs = 2 mV) obtained with a CO-functionalized tip. Red/blue colors are employed to specify the information associated with each
enantiomer in panels b (inlet), c, d, and e.

Figure 2. Spectroscopic characterization of frontier molecular orbitals of (3,1)-chGNRs on Au(111). (a) Representative dI/dV point spectra
obtained from (3,1)-chGNRs on Au(111) (in red) with Au(111) signal (in gray) included as background reference (open-feedback parameters: Vs =
1.0 V, It = 0.5 nA, modulation voltage Vrms = 0.1 mV). (b,c) STM constant-height conductance maps (2.0 nm × 5.2 nm; open-feedback parameters:
Vs= 0.2 V; It = 0.06 nA; Vrms= 1 mV) near the (b) valence (−300 mV) and (c) conduction (450 mV) band onsets. (d,e) DFT simulations of the
wave function for states at the onset of (d) valence and (e) conduction bands (at the Γ point) on an area equivalent to the dashed rectangle in panels
b and c, respectively. Red and blue colors represent isosurfaces of positive and negative wave function amplitudes for an isovalue of 0.015 Å−3/2.
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extracted from high-resolution images is displayed in Figure 1c,
showing commensuration at every second unit cell of the chiral
ribbons.
The electronic properties of the ribbons have been first

characterized by STS. Figure 2a displays a conductance point
spectrum on a ribbon, together with a reference spectrum on
the surrounding substrate. Because tunneling conductance is
proportional to the local density of states (LDOS) at the probe
position, one can clearly distinguish the onset of the ribbon’s
valence band (VB) and conduction band (CB). From a
statistical analysis of several tens of ribbons, we find the bands’
onsets at −0.22 ± 0.05 V and 0.45 ± 0.02 V, respectively. The
resulting band gap of 0.67 ± 0.06 eV is larger than that
obtained from DFT calculations (Figure S1; note that the
underestimation of band gaps is a well known limitation of
DFT). However, the constant-height conductance maps at the
onset energies (Figure 2b,c) show excellent agreement with the
calculated wave functions (Figure 2d,e) of the frontier states of
valence and conduction band at the gamma point (despite
being measured with a CO-functionalized tip25), providing
further confirmation on the nature of those experimentally
measured states. This is also confirmed by constant-current
conductance maps with a nonfunctionalized metallic tip (Figure
S2), where clear GNR-related density of states appears as the
energy reaches either band onset, evidencing similar patterns as
those in Figure 2. Those patterns are clearly different for VB
and CB, the latter appearing with a characteristic wavefront
structure, while the former displays a more complex sequence
of lobes (Figure 2).
Both conduction and valence bands display a dispersive

behavior as they deviate from Γ (Figure S1). A fingerprint of it
is found in conductance maps over a wider energy range of the
VB, revealing an additional energy-dependent LDOS modu-
lation along the ribbon axis (Figure 3a−f). To quantify this
effect, we measured equidistant point spectra along the edge of
a GNR (Figure 3g), displayed in Figure 3h as a function of its
position along the ribbon with a color-coded conductance
intensity (z-axis). In addition to the edge periodicity arising
from the chGNR structure, another energy-dependent

modulation appears. It coincides with that observed in the
conductance maps, in which the number of nodes increases as
the energy departs from the band onset. It relates to the
formation of standing waves from electronic states scattered at
the nanoribbon edges, thus holding the band’s dispersion
relation information. This can be distinguished best in Figure
3i, which depicts a line-by-line Fourier transform (FT) of
Figure 3h and thus the dispersion of the probed bands.
The VB is observed dispersing down with an effective mass

of −0.34 ± 0.05 m0, as obtained from a parabolic fit to the
topmost region of the band. In contrast, no dispersion
information has been obtained for the CB from the FT-STS
analysis. Indeed, the CB is much harder to detect in STS
measurements, as can already be guessed from the marked
asymmetry in the signal strength of the STS spectrum in Figure
2a for VB and CB. As explained in detail in previous works,7,26

the faster a wave function changes its sign along the ribbon axis,
the lesser it extends into the vacuum along the GNR normal.
This makes it less accessible to STM/STS measurements,
where tip−sample distances remain typically above 5 Å. Our
wave function calculations of (3,1)-chGNRs in Figure 2d,e
reveal the CB to change sign along the ribbon axis faster than
the VB, thus agreeing with its poorer detection in our spectral
measurements.
Interestingly, additional features in the FT-spectral map of

the VB are observed, not present in previous works performing
a similar analysis on aGNRs.7,26 A replica of the dispersive band
appears shifted by 3.5 nm−1 (displayed with a green dashed line
in Figure 3i), namely, centered at the Brillouin zone edge,
which is defined by the GNR periodicity arising from its chiral
edges (periodicity a = 8.97 Å = π/(3.5 nm−1)). This band
replica and the increased intensity line at the zone edge can be
traced back to the additional modulation from the GNR
chirality. The imposed periodicity stresses the Bloch wave
function character of the electronic states, whose coherent
addition resulting from scattering events has been previously
shown to lead to exactly those two types of features in FT-
STS.27 The periodicity of these features in reciprocal space can
be additionally observed in the line-by-line FT spectra plotted

Figure 3. STM constant-height conductance maps (10.3 nm × 2.0 nm; It = 0.03 nA; modulation voltage Vrms = 12 mV) (a) within the band gap at
−50 mV, (b) near the valence band onset at −150 mV, (c) at −250 mV, (d) at −350 mV, (e) at −550 mV, and (f) at −650 mV, exhibiting confined
standing waves along the ribbon. (g) Constant current STM image of the same ribbon, showing the path (red dashed line) followed by the
equidistant dI/dV spectra. (h) Color-coded conductance signal obtained from equidistant dI/dV point spectra (open-feedback parameters: Vs = 1.50
V; It = 0.8 nA; Vrms= 12 mV) on the ribbon and along the red dashed line displayed in panel g. (i) Line-by-line Fourier transform from the stacked
spectra in panel h, showing the two-parameter parabolic fit (gray dashed line) used for extracting the effective mass. The additional parabola centered
around the Brillouin zone edge is displayed with a green dashed line. Gray horizontal lines corresponding to the voltage biases of maps in panels a−f
are superimposed in panels h and i as a guide to the eye.

The Journal of Physical Chemistry Letters Letter

DOI: 10.1021/acs.jpclett.7b02767
J. Phys. Chem. Lett. 2018, 9, 25−30

27

http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.7b02767/suppl_file/jz7b02767_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.7b02767/suppl_file/jz7b02767_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.7b02767/suppl_file/jz7b02767_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.7b02767/suppl_file/jz7b02767_si_001.pdf
http://dx.doi.org/10.1021/acs.jpclett.7b02767


over a wider energy and momentum range displayed in Figure
S3.
To compare the VB dispersion properties obtained from FT-

STS with results from a more standard approach, we have
characterized the (3,1)-chGNRs also by angle-resolved photo-
emission spectroscopy (ARPES). Similar comparisons have
been performed previously on the VB dispersion of 7-aGNRs
and 9-aGNRs. In the former, the effective mass extracted from
FT-STS and ARPES differed by a factor 2,26,28 whereas in the
latter both techniques were in agreement within error bars.7

Because ARPES is an ensemble-averaging technique, having
uniaxially aligned GNRs is a requirement to measure the
dispersion along a well-defined direction. The aligned growth of
aGNRs has been successfully achieved by using a Au(788)
surface as template,28,29 which features ∼4 nm wide (111)
terraces periodically separated by steps running along the
compact [10-1] direction. However, because the chiral GNRs
studied here display a markedly preferred growth orientation at
16° off from the compact [10-1] (and equivalent) direction
(see Figure 1), the Au(788) terraces do not satisfactorily guide
an uniaxial growth of the ribbons. Instead, the growth results in
low-quality samples with short ribbons oriented partially along
the step edges but also along their epitaxially favored directions
(Figure S4). The scenario changes when using narrower
terraces. The ∼1.2 nm wide terraces of Au(322) are wide
enough to host a (3,1)-chGNR but narrow enough to largely
inhibit molecular coupling along any other orientation than
following the terraces. As a result, uniaxially aligned ribbons
could be grown on Au(322), as shown in Figure 4a,b.
The subsequent ARPES characterization is displayed in

Figure 4c (associated raw data are shown in Figure S5).
Whereas no GNR signal is observed in the first Brillouin zone
and only a weak shadow in the second, the VB is nicely
resolved in the third Brillouin zone. From a parabolic fit to the
topmost VB region we extract values of −0.50 ± 0.02 eV and
−0.36 ± 0.04 mo for the band’s onset energy and effective mass,
respectively. Compared with the results from FT-STS, the
effective mass shows agreement within error margins (−0.36 ±
0.04 m0 from ARPES vs −0.34 ± 0.05 m0 from FT-STS), but
the band onset is notably lower in energy (i.e., −0.5 ± 0.02 eV
from ARPES vs −0.22 ± 0.05 mV from STS). This, however,
can be easily explained by the different nature of the probed
samples. The large step density of Au(322) lowers its work
function with respect to that of Au(111). As extracted from
measurements of the cut-off energy of photoemitted electrons

from either surface (Figure S6), the work function changes by
0.25 eV, fitting well with the measured difference in VB onsets
(∼0.28 eV). A vacuum-level change rigidly shifting down the
adsorbate’s band structure in a simple vacuum-level pinning
scenario readily explains the offset and provides a fully coherent
scenario for the comparison of STS and ARPES data.
At this point it is interesting to compare the electronic

properties of (3,1)-chGNRs and of 7-aGNRs. Both ribbons
have comparable widths and result from precursors sharing the
same carbon backbone, although polymerizing along different
directions. However, the change in edge orientation from
armchair to a chiral (3,1) direction brings about dramatic
changes in the electronic properties. By way of example, the
band gap is reduced from 2.37 ± 0.06 eV in the former26 to
0.67 ± 0.06 eV in the latter, although without evident
signatures of the spin-polarized edge states predicted to appear
around the Fermi level in chiral ribbons.30−33 This is
presumably due to a too small GNR width and the associated
band-gap opening.30−32 According to calculations, a closing of
the band gap and the appearance of edge states are predicted to
occur either increasing the GNR width or also maintaining a
similar GNR width but with chiralities closer to the zigzag
direction (as well as for pure zGNRs).30−32 However, an
experimental confirmation of such behavior is still missing.
In the intuitive picture of GNR bands being directly related

to the dispersion properties of the parent material graphene (as
happens with aGNRs),12 the effective mass is expected to
correlate with the band gap.34 Indeed, experimental data
revealed that a band-gap drop from 2.4 to 1.4 eV going from 7-
aGNRs to 9-aGNRs brings about a substantial effective mass
reduction from 0.21 m0 (obtained from ARPES)28 or 0.41 ±
0.08 m0 (obtained from FT-STS)26 to ∼0.1 m0 (obtained from
FT-STS and ARPES alike).7 However, that scenario gets much
more complicated as GNRs with different edge orientations are
compared, whereby the GNR bands are no longer trivially
related to those of graphene.12 As a result, our DFT calculations
predict only a minor decrease in the effective mass going from
7-aGNRs (0.33 m0

35) to (3,1)-chGNRs (0.27 m0) despite the
greatly diminished band gap from 2.37 to 0.67 eV.
Experimentally the effective mass changes from 0.21 m0

(ARPES)28 or 0.41 ± 0.08 m0 (FT-STS)26 in 7-aGNRs to
∼0.35 m0 (FT-STS and ARPES) in (3,1)-chGNRs, confirming
the dramatically different behavior of GNRs with different edge
orientations.

Figure 4. (a) Large-scale constant current STM topography image (50 nm × 50 nm; Vs = −0.2 V; It = 0.02 nA) and (b) zoom in (10 nm × 10 nm)
for an easier appreciation of details of (3,1)-chGNRs on Au(322). (c) Second derivative of the photoemission intensity reflecting the valence band
dispersion (raw photoemission intensity data are displayed in the Supporting Information). Dotted lines mark the center of first, second, and third
Brillouin zones.
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In conclusion, we have provided a thorough characterization
of the structural and electronic properties of (3,1)-chGNRs on
Au(111). A strong favoritism for commensurate adsorption
directions is observed that can, however, be overcome with the
use of adequately stepped surfaces that prevent the ribbon
growth along any other direction than following the terraces.
Such samples have been used to characterize the band
dispersion by ARPES and to compare the results with those
obtained from Fourier transform scanning tunneling spectros-
copy measurements. We end up with a fully coherent picture of
the GNR’s band gap (0.67 ± 0.06 eV), effective mass (∼0.35
m0), and energy level alignment (shifting with the substrate
work function as in an ideal vacuum level pinning scenario) that
will enable a better understanding of their performance in
future electronic devices and allow a rational design of
heterostructures with complementary GNRs.

■ METHODS
For the preparation of the different samples, 2,2′-dibromo-9,9′-
bianthracene molecular precursor was sublimated at ∼425 K
from a Knudsen cell and oriented to metallic substrates for
deposition. Atomically cleaned Au(111) and Au(322) surfaces
were achieved by standard sputtering and annealing cycles.
Measurements on Au(111) were performed on a home-built,
low-temperature STM under ultrahigh vacuum (UHV) at
pressures below 10−10 mbar and a base temperature of 4.8 K.
Measurements on Au(322) were performed in a UHV system
combining a commercial Omicron VT-STM connected to a
home-built ARPES system equipped with a closed-circuit He-
compressor-cooled manipulator, a monochromatized gas
discharge lamp, and a SPECS Phoibos 150 electron analyzer.
STM and ARPES measurements could thus be performed
sequentially on the same sample without breaking the UHV
conditions. ARPES measurements were performed at a sample
temperature of 90 K using the He I line (21.2 eV). All STM
images were processed by WSxM software.36

The structural and electronic properties of free-standing
(3,1)-chGNRs were calculated using density functional theory
(DFT), as implemented in the SIESTA code.37 We considered
a supercell consisting of a (3,1)-chGNR infinite along the x axis,
with vacuum gaps of ∼15 Å in y and z directions to avoid
interactions between ribbons in adjacent cells. A Monkhorst−
Pack k-point grid with 101 × 1 × 1 k-points was used for the
Brillouin zone sampling, and the mesh cutoff for real-space
integrations was set to 300 Ry. A basis set consisting of split-
valence double-ζ plus polarization DZP orbitals was employed,
and a variable-cell relaxation of the periodic system was
performed until residual forces on all atoms were <0.01 eV/Å.
Dispersion interactions were taken into account by the nonlocal
optB88-vdW functional.38
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