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Abstract

Lagrangian descriptors (LDs) are a recent tool that has been used in multiple applications as a method
to uncover the phase space of time-dependent dynamical systems. The main goal of this work is to provide
rigorous results about this technique in the discrete and continuous time setting.

First we extend the definition of LD to apply it in two dimensional, area-preserving, autonomous and
nonautonomous discrete time dynamical systems. We then proceeded to prove rigorous results by consider-
ing four different model problems: a hyperbolic saddle point for a linear, area-preserving autonomous map,
a hyperbolic saddle point for a nonlinear, area-preserving autonomous map, a hyperbolic saddle point for a
linear, area-preserving nonautonomous map, and a hyperbolic saddle point for a nonlinear, area-preserving
nonautonomous map. The choice of a specific norm allows us to provide a rigorous setting for the notion of
”singular sets” that correspond to invariant manifolds of hyperbolic points. From the computational point
of view, we also analyze the performance of LDs to reveal chaotic invariant sets.

We then extend these results to the continuous setting by also considering analogous particular cases: a
hyperbolic saddle point for linear autonomous systems, a hyperbolic saddle point for nonlinear autonomous
systems, a hyperbolic saddle point for linear nonautonomous systems and a hyperbolic saddle point for non-
linear nonautonomous systems. Additionally, we discuss further rigorous results which show the ability of LDs
to highlight other invariant sets, such as n-tori. These results are an extension of the ergodic partition theory
which we illustrate by applying LDs to some examples, such as the planar field of the harmonic oscillator
and the 3D ABC flow. We also provide a discussion on the requirement of the objectivity (frame-invariance)
property for tools designed to reveal phase space structures.

Finally, we address the challenge of rigorously proving the presence of chaotic invariant sets in aperiodically
time-dependent systems. In the context of discrete dynamical systems, we prove the existence of a chaotic
saddle for a well-known piecewise-linear map of the plane, named the Lozi map. This is studied in its
orientation and area-preserving version. We apply the first and second Conley-Moser conditions to obtain
the proof of the existence of a chaotic saddle in the autonomous setting. Then we generalize the Lozi map to
its nonautonomous version and prove that the first and the third Conley-Moser conditions are satisfied, thus
implying the existence of a chaotic saddle. Lastly, equipped with a discrete LD, we numerically demonstrate
how the structure of this nonautonomous chaotic saddle varies as parameters are varied.
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Resumen

Los descriptores Lagrangianos (LDs) son una técnica desarrollada recientemente capaz de dibujar una
estructura geométrica que caracteriza el espacio de fases de un sistema dinámico. El principal objetivo de
esta tesis es proporcionar un marco teórico para los LDs en el caso discreto y continuo.

Generalizaremos la definición de descriptor Lagrangiano para aplicarlo en el caso de mapas en dos di-
mensiones, discretos que preservan el área, tanto en su versión autónoma como no autónoma. Consideramos
cuatro modelos básicos: el punto hiperbólico silla para el caso de un mapa autónomo y lineal, el punto
hiperbólico silla para el caso de un mapa autónomo no lineal, el punto hiperbólico silla para el caso de un
map no autónomo lineal y el punto hiperbólico silla para el caso de un mapa no autónomo no lineal. La
elección de una p-norma espećıfica nos permite proporcionar un marco teórico para la noción de ”conjunto
singular” que se corresponde con variedades invariantes de puntos hiperbólicos. Además, analizamos desde
el punto de vista computacional el funcionamiento de los LDs para revelar los conjuntos caóticos invariantes.

Nuestro trabajo continúa con la extensión de estos resultados al caso continuo por medio del estudio de
cuatro casos particulares: el punto hiperbólico silla para el caso de sistema mapa autónomo y lineal, el punto
hiperbólico silla para el caso de un sistema autónomo no lineal, el punto hiperbólico silla para el caso de un
sistema no autónomo lineal y el punto hiperbólico silla para el caso de un sistema no autónomo no lineal.
Además, discutimos otros resultados rigurosos que demuestran la capacidad de los LDs para resaltar otros
conjuntos invariantes, como los n-toros. Estos resultados son una extensión de la teoŕıa de partición ergódica
y, los ilustramos mediante la aplicación de los LDs a algunos ejemplos, como el oscilador armónico plano y
el flujo ABC tres dimensional. También proporcionamos una discusión sobre el requisito de la propiedad de
objetividad (frame-invariance) para herramientas diseñadas a la hora de revelar estructuras geométricas del
espacio de fases.

Finalmente, demostramos la existencia de un conjunto caótico invariante para un mapa conocido como el
mapa de Lozi en la versión que preserva el área y su orientación. Aplicamos la primera y segunda condición
de Conley-Moser para obtener la demostración de la existencia de un conjunto caótico invariante de tipo silla.
Posteriormente, generalizamos el mapa de Lozi a su versión no autónoma y demostramos que, aplicando la
primera y la tercera condición de Conley-Moser, obtenemos la existencia del conjunto caótico invariante de
tipo silla. Finalmente, ilustraremos numéricamente cómo vaŕıa la estructura de este conjunto caótico de tipo
silla no autónomo a medida que variamos los parámetros.
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en el instituto y en la universidad respectivamente. Trini, ya desde el instituto me pońıas a prueba con los
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CHAPTER 1

Introduction

This Ph.D Thesis is written as a compendium of three articles and its structure is as follows: This in-
troductory chapter briefly reviews the state of the art of some selected topics on nonautonomous dynamical
systems that are the focus of study in this thesis. These topics are chosen for their significance in applications.
Chapter 2 describes the objectives of this study. More specifically, the emphasis is on providing formal results
which are relevant in the context of aperiodically time-dependent dynamical systems.

At the end of the 19th century, Poincaré (1890) opened up new ways of studying solutions by exploring
geometrical and topological properties of the phase space of dynamical systems. A dynamical system may
be understood as a system which evolves in time and is deterministic, i.e., given an initial condition, one can
find the evolution in any future time by solving the ordinary differential equation:

dx

dt
= v(x, t), x ∈ Rn, t ∈ R, (1.1)

The dynamical system expressed in Eq. 1.1 is nonautonomous when the vector field v(x, t) depends
explicitly on time t. The study of nonautonomous dynamics is a topic of high interest, and a motivation
for such work is the understanding of fluid transport in time-dependent flows. Let us explain further how
nonautonomous dynamical systems describe transport phenomena. A fluid parcel, neglecting molecular dif-
fusion, evolves according to trajectories that are solutions to the system (1.1). In this equation, the vector
field v(x, t) represents the fluid velocity field. If the flow is incompressible and particle motions are restricted
to a plane, the velocity field is obtained from a streamfunction ψ(x, y, t) (Batchelor, 1967) and satisfies that
v = (vx, vy) = (∂yψ,−∂xψ). In this case, equations of motions (1.1) are rewritten as:





ẋ =
∂ψ

∂y
(x, y, t)

ẏ = −∂ψ
∂x

(x, y, t)

(1.2)

In regard to dynamical systems theory, formally equations (1.2) have the structure of Hamilton’s canonical
equations, where ψ(x, y, t) is the Hamiltonian function. These equations are applicable in many oceanic and
atmospheric contexts (Ottino, 1989a,b; Wiggins, 1992; Branicki and Wiggins, 2010; Wiggins, 2005) where
motion is quite frequently two-dimensional. Typically in these settings, the velocity fields (or the streamfunc-
tion) are time-dependent and aperiodic. Furthermore, these velocity fields are frequently given as data sets in
a finite time interval. For instance, they are obtained as the solution of a set of partial differential equations
that describe the dynamical evolution of the velocity field, or by observation through remote sensing of some
region of the ocean.

As addressed in Wiggins and Mancho (2014), in the early eighties, this ”Hamiltonian dynamical systems”
point of view generated a great deal of interest; in particular, after the work by Aref (1984) focusing on
time-dependent periodic flows. Adopting Aref’s point of view, one may ”see” that phase space structures
such as elliptic periodic orbits and hyperbolic periodic orbits with their stable and unstable manifolds as well
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CHAPTER 1. INTRODUCTION

Dynamical System Theory Physical observation
Stable and unstable manifolds Barriers for fluid transport
Elliptic regions and KAM Tori Trapping fluid regions
Chaos and Smale horseshoes Rapid stirring and lobe dynamics

Table 1.1: Dynamical Systems concepts and implication in fluid transport (Mancho et al., 2006).

as KAM tori, have an immediate interpretation in terms of ”structures” in the flow that influences transport
and mixing. For instance, intersecting stable and unstable manifolds gave rise to ”partial” barriers to trans-
port and ”lobe dynamics” (Rom-Kedar et al., 1990), which means that transversely intersecting stable and
unstable manifolds of hyperbolic periodic orbits could be linked to chaotic fluid particle trajectories through
the construction of Smale horseshoes (Smale, 1967), while KAM tori were linked to regions trapping fluid
particles, thereby preventing them from ”mixing” with surrounding fluid. This connection between dynamical
system theory and physical observation is summarized in Table 1.1 (Mancho et al., 2006). Reviews of the
dynamical system approach to Lagrangian transport and mixing for time periodic incompressible flows can
be found in Aref (2002); Ottino (1989a,b); Wiggins and Ottino (2004); Sturman et al. (2006).

The task of finding these geometrical structures characterizing transport processes in the context of
geophysical flows is a difficult challenge due to their aperiodic character, which in the literature has been
addressed in several ways. Miller et al. (1997) applied numerical methods to obtain invariant manifolds of
hyperbolic fixed points, as did Coulliette and Wiggins (2001) in geophysical relevant flows. Malhotra and
Wiggins (1998) computed stable and unstable manifolds in aperiodic flows applied to Rossby wave flow, while
examples of direct computation of manifolds can be found in Mancho et al. (2004, 2006) as well as Mendoza
and Mancho (2012), all of which has provided valuable insights into oceanic problems (Mancho et al., 2008;
Mendoza et al., 2010).

Finite size Lyapunov exponents (FSLE) (Aurell et al., 1997) and finite time Lyapunov exponents (FTLE)
(Nese, 1989) have been successfully applied in oceanic and atmospheric contexts (d’Ovidio et al., 2004; Shad-
den et al., 2009; Tew Kai et al., 2009; Beron-Vera et al., 2010; de la Cámara et al., 2010). Rigorous results
on the ability of FTLE to highlight Lagrangian Coherent Structures (LCSs) are discussed in Shadden et al.
(2005); Lekien et al. (2007) and their objectivity property is discussed by Hadjighasem et al. (2017). Other
approaches in this field consist of geodesic and variational theories of LCSs (Haller and Beron-Vera, 2012;
Farazmand and Haller, 2012), trajectory complexity measures (Rypina et al., 2011), mesohyperbolicity mea-
sures and ergodic partitions (Mezic and Wiggins, 1999; Levnajić and Mezić, 2010) and transfer operator
methods Froyland et al. (2012); Froyland and Padberg-Gehle (2014).

A recent tool that reveals phase space structures of general time-dependent dynamical systems are La-
grangian descriptors (LDs). Lagrangian descriptors were first introduced in the literature by Madrid and
Mancho (2009) in the form of a function, denoted by M , that was used to provide a definition for distin-
guished trajectories, which also included trajectories with an elliptic type of stability. Distinguished trajec-
tories were highlighted by special minima of the function M referred to as limit coordinates. In the past
few years, the applicability of the concept of Lagrangian descriptor has been extended and has become a
method for detecting invariant manifolds of hyperbolic trajectories (Mendoza and Mancho, 2010). Invariant
manifolds were highlighted by ”singular features” of both the function M and some of its generalizations
(Mendoza and Mancho, 2012; Mancho et al., 2013). Since these early papers, numerous applications of La-
grangian descriptors have been given, e.g. in de la Cámara et al. (2012), where they were used in the context
of atmospheric sciences to reveal the Lagrangian structures defining transport routes across the Antarctic
polar vortex. This work was extended in de la Cámara et al. (2013), where LDs were applied to analyze
the Lagrangian structures associated with a Rossby wave breaking in the stratosphere. Figure 1.1 a) shows
the manifold geometry of the Antarctic Polar vortex as revealed by LDs (de la Cámara et al., 2012). These
studies have been continued by Curbelo et al. (2017a) with the study of the three-dimensional Lagrangian
geometry of the Antarctic Polar Vortex. Other uses of the M function in atmospheric studies are those by
Smith and Mc Donald (2014) and Manney and Lawrence (2016). In the field of magnetohydrodynamics,
Lagrangian descriptors have also been shown to be useful for studying the influence of coherent structures
on the saturation of a nonlinear dynamo in Rempel et al. (2013). There are also several applications in

4



CHAPTER 1. INTRODUCTION

(a) (b)

Figure 1.1: Application of LDs in different contexts: (a) The manifold geometry of the Antartic Polar vortex
as it is shown in de la Cámara et al. (2013) (courtesy of A. de la Cámara) and (b) Transition-state geometry
of a chemical reaction as depicted in Junginger et al. (2016) (courtesy of A. Junginger).

oceanography. In Mendoza et al. (2014), LDs were used to analyze transport in a region of the Gulf of Mex-
ico regarding the Deepwater Horizon oil spill. Garcia-Garrido et al. (2015) applied this tool to analyze the
strategy followed by the Australian Maritime Authorities when searching for debris from the missing MH370
flight, and recently Garcia-Garrido et al. (2016) studied the role played by LDs in the management of the
Oleg Naydenov oil spill that took place offshore to the south of Gran Canaria. All these works are related
to various aspects of fluid dynamics. However, Lagrangian descriptors can be applied to the general study
of the phase space structure of dynamical systems in different contexts. This has recently been illustrated
in several applications of the tool to fundamental problems in chemical reaction dynamics. In particular,
it has been applied to a study of chemical reactions under external time-dependent driving in Craven and
Hernandez (2015); Junginger et al. (2016); Craven and Hernandez (2017). Figure 1.1 b) illustrates the kind of
visualizations provided by LDs in this context. Other studies of phase space structure and reaction dynamics
for a class of ”barrierless reactions” are found in Junginger and Hernandez (2016), and for the isomerization
dynamics of ketene in Craven and Hernandez (2016).

The ability of LDs to reveal invariant manifolds has been established in the references above from a
phenomenological and numerical point of view; however, a rigorous framework is missing in these works.
Our first goal in this thesis is to provide a mathematical framework for this tool. To this end, the initial
result described in the first paper presented in Chapter 3 starts by extending the definition of LDs to discrete
dynamical systems for which obtaining exact results is more tractable. In particular, discrete dynamical
systems (maps) are given by

xn+1 = f(xn) (1.3)

where f is a continuous function. Eq. (1.4) is an autonomous system, i.e., this system does not depend
explicitly on the time variable which in the map notation is n. If the system (1.4) is modified as follows

xn+1 = f(xn, n) = fn(xn) (1.4)

then the system becomes nonautonomous. In this system, fn is a sequence of functions.

The second result discussed in the second paper in Chapter 3 extends these formal results obtained for
discrete dynamical systems to the context of continuous-time dynamical systems. In this article we also trace
back links of LDs with the ergodic partition theory (Mezic and Wiggins, 1999) and its ability to detect not
only invariant manifolds of hyperbolic trajectories but also KAM tori.
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Figure 1.2: The forwards and backwards Smale horseshoe map acting on the unit square D.

Most of the applications cited above are described for dynamical systems that depend on time in an
aperiodic manner. Understood from the dynamical systems point of view, fluid transport for aperiodically
time-dependent flows posses challenges such as rigorously proving the presence of chaotic invariant sets in this
context. Results in this regard are reported in the third article presented in Chapter 3. Discrete dynamical
systems, i.e. maps, provide a framework in which the presence of ”chaotic invariant sets” (a notion that is
precisely defined later) can be rigorously stated. The prototypical map possessing a chaotic invariant set is
the Smale horseshoe, a map based on stretching and folding, which are the essential ingredients associated
with chaos. The construction of the horseshoe map (Smale, 1967), and also the contributions by Alekseev
(1968a,b, 1969) when applying Smale’s ideas, provided new techniques to prove chaos in different contexts
such as problems from celestial mechanics. We now provide a brief description of the Smale horseshoe map.
The Smale horseshoe map is a map such that f : D → R2 where D = [0, 1]× [0, 1]. This map f converts the
unit square D into a folded rectangle that intersects with same square giving two vertical strips (a vertical
strip V is a piece of area surrounded by two vertical curves and two horizontal lines). In the same way, f−1

acting on the square produces another folded rectangle that intersects the square in two horizontal strips (a
horizontal strip H is a piece of area surrounded by two horizontal curves and two vertical lines). This effect
is visualized in Figure 1.2. By means of considering the forward and backward iteration of this map we may
define the set:

Λ =

+∞⋂

n=−∞
fn(D) (1.5)

which is a Cantor set having the following properties:

Λ is invariant under the action of a map f , that is, f(Λ) = Λ.

The dynamics of the map restricted to Λ is topologically conjugate to the shift map acting on the space
of bi-finite sequences of 0’s and 1’s. This property enables us to prove the sensitive dependence on
initial conditions restricted to this invariant set, and is thus called chaotic (see Wiggins (2003) Chapter
23).

An illustration of the iteration procedure defining the Cantor set is given in Figure 1.3.

Figure 1.3: Illustration of the procedure defining the Cantor set for two forward and backward iterations.

Conley-Moser conditions are sufficient conditions for a map f to posses a chaotic invariant set Λ (Moser,
1973; Wiggins, 1999, 2003; Balibrea-Iniesta et al., 2015). A detailed description of the autonomous version

6



CHAPTER 1. INTRODUCTION

(a) (b)

Figure 1.4: First and second Conley-Moser conditions: a) f maps horizontal strips to vertical strips and b)
f converts vertical strips to thinner vertical strips.

of the three Conley Moser conditions is found in Wiggins (2003), and nonautonomous versions of the first
and second conditions are given in Wiggins (1999). Conley–Moser conditions have been used by Devaney
and Nitecki (1979) to show the existence of a chaotic invariant set for the Hénon map and by Holmes (1982),
Chastaing et al. (2015) to show the existence of a chaotic invariant set for the bouncing ball map and Koon
et al. (2000) to show the existence of a chaotic invariant set in the restricted three-body problem. Earlier
work on chaos in nonautonomous systems can be found in Stoffer (1988a,b) and Lerman and Silnikov (1992).
First and second conditions, which are illustrated in Figure 1.4, imply the existence of a chaotic invariant set
Λ under the action of the map f . Moreover, if the first and the third condition are satisfied then the second
condition is satisfied, and therefore the existence of a chaotic saddle is assured. The last result presented
in Chapter 3 of this thesis proves, by means of these conditions, the presence of a chaotic saddle in the
autonomous and nonautonomous versions of the Lozi map.

Finally, Chapter 4 provides a discussion on the results in Chapter 3, and Chapter 5 presents the conclusions
and perspectives.
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CHAPTER 2

Objectives

The major goal of this thesis is to provide formal results about selected topics in aperiodically time-
dependent dynamical systems. First, we have addressed the issue of providing a theoretical background for
Lagrangian descriptors, a novel tool that has recently been used for the geometrical description of the so-
lutions of time-dependent dynamical systems in multiple applications. Secondly, in the context of the Lozi
Map, we rigorously prove the presence of a chaotic invariant set for the autonomous and nonautonomous
version as well as exploring discrete Lagrangian descriptors (DLD) performance in this context.

The specific objectives in this thesis are as follows:

1. To provide a formal framework for Lagrangian descriptors in the discrete and continuous
cases.

As stated above, LDs are used as an alternative technique to uncover the phase space of a dynamical
system. Considering a general time-dependent vector field on Rn

dx

dt
= v(x, t), x ∈ Rn, t ∈ R (2.1)

where v(x, t) is Cr (r ≥ 1) in space and continuous in time are required for existence of unique
solutions and textcolorredits/their linearization for a sufficient time interval [t∗ − τ, t∗ + τ ] (Arnold,
1973; Coddington and Levinson, 1955). The first Lagrangian descriptor M was defined in Mendoza
and Mancho (2010) as the Euclidean arc length of the curve defined by the trajectory of (2.1) passing
through a point x∗ at time t = t∗:

M(x∗, t∗) =

∫ t∗+τ

t∗−τ

√√√√
n∑

i=1

(
dxi(t)

dt

)2

dt =

∫ t∗+τ

t∗−τ
||v(x(t), t)||dt , (2.2)

where x(t) = (x1 (t), x2 (t), ..., xn(t)). Later in Mancho et al. (2013) different positive integrands instead
of the modulus of the velocity were used, such as the modulus of the velocity raised to different powers,
the modulus of the acceleration, the modulus of the derivative of the acceleration, etc. Mancho et al.
(2013) discuss whether the integration of positive quantities supports the heuristic argument that a
Lagrangian descriptor computed in this way will change abruptly at the boundaries of regions comprising
trajectories with qualitatively different evolutions, since this is exactly what the stable and unstable
manifolds separate. For a small integration period τ , the structure of M is smooth, but for long
integration periods τ sharp features appear aligned with the invariant manifolds of the hyperbolic
trajectories in the system described by Eq. (2.1). Our goal is to provide a formal framework to this
phenomenology for which numerical evidence has been described. In order to proceed in an accessible

9
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manner, we start by setting the problem in the context of discrete dynamical systems (section 3.1).
In this setting, let {xn, yn}n=Nn=−N , N ∈ N denote an orbit generated by a two dimensional map. We
introduce a new definition for a DLD which preserves the property of accumulating positive quantities
along trajectories, but with a structure that facilitates explicit calculations for formal proofs. Let us
consider:

MDp =

N−1∑

i=−N
|xi+1 − xi|p + |yi+1 − yi|p, p ≤ 1. (2.3)

Here we use different ‘p-norms’. Additionally, we proceed with a similar strategy for providing formal
results in the continuous case (Section 3.2). We define the continuous Lagrangian descriptor (CLD)

Mp(x0, t
∗, τ) =

∫ t∗+τ

t∗−τ

n∑

i=1

|ẋi(t;x0)|p dt. (2.4)

The condition p ≤ 1 in (2.3) and (2.4) is essential in order to obtain nondifferentiability through points
belonging to invariant manifolds, as shown in Section 3.1 and in Section 3.2.

Moreover, Section 3.2 discusses the objectivity (frame-invariance) property in the context of LDs and
the ability of LDs to provide the correct description of phase space structures in different frames, as
well as a general consideration of the objectivity property requirement. Finally, a link of LDs with the
ergodic partition theory is provided.

2. Rigorous proof and conditions for the existence of invariant chaotic sets in the autonomous
and nonaoutonomous Lozi Map. Usage of Lagrangian descriptors to visualize the chaotic
saddle of the Lozi map.

Sufficient conditions for the existence of a chaotic saddle for autonomous (Moser, 1973) and nonau-
tonomous systems (Balibrea-Iniesta et al., 2015) are proved in Section 3.3. The strategy to reach this
goal is based on the verification of the Conley-Moser conditions, which have been previously adapted
to the nonautonomous case. We verify these conditions to the autonomous and nonautonomous Lozi
map and we show that for some parameters we can prove the existence of this chaotic behavior.

Finally, we apply discrete Lagrangian descriptors to the Lozi map, thereby obtaining the chaotic saddle
for some parameters.

10



CHAPTER 3

Results

The result of this thesis are the publication of three articles that have been published in different journals.

The first article, ”Lagrangian descriptors for two dimensional, area preserving, autonomous and nonau-
tonomous maps”, is written jointly with F. Balibrea and my two advisors A. M. Mancho and S. Wiggins. It
is published in Communications in Nonlinear Science and Numerical Simulation 27 (1-3) (2015) 40–51. This
article provides a theoretical framework for Lagrangian descriptors in the context of discrete time dynamical
systems for specific settings. We focus our results in four main cases: a hyperbolic saddle point for linear
autonomous map, a hyperbolic saddle point for a nonlinear autonomous map, a hyperbolic saddle point for
a linear nonautonomous map and a hyperbolic saddle point for a nonlinear nonautonomous map. All the
considered maps are area preserving. Finally we illustrate the ability of this tool to capture the ”chaotic
saddle” of the Hénon map.

The second article, ”A theoretical framework for Lagrangian descriptors”, is written jointly with F.
Balibrea-Iniesta, V. J. Garćıa-Garrido, and my two advisors A. M. Mancho and S. Wiggins. It is published in
International Journal of Bifurcation and Chaos 27, 1730001 (2017). We provide a theoretical framework for
Lagrangian descriptors in the context of continuous time dynamical systems. Specifically we provide formal
results in four different cases: a hyperbolic saddle point for linear autonomous systems, a hyperbolic saddle
point for nonlinear autonomous systems, a hyperbolic saddle point for linear nonautonomous systems and
a hyperbolic saddle point for nonlinear nonautonomous systems. Furthermore we discuss rigorous results
that show the ability of this tool for revealing invariant sets such as n-tori. These results are just a simple
extension of the ergodic partition theory (Mezic and Wiggins, 1999) and are illustrated in two examples:
the harmonic oscillator and the 3D ABC flow. Finally, a discussion on the requirement of the objectivity
(frame-invariance) property for tools designed to reveal phase space structures is presented.

The third one, ”The Chaotic Saddle in the Lozi Map, Autonomous and Nonautonomous Versions” is
written jointly with F. Balibrea-Iniesta and my two advisors A. M. Mancho and S. Wiggins. It is published
in International Journal of Bifurcation and Chaos 25 (2015) 1550184-1-18. We study the orientation and
area preserving version of the Lozi map. We apply the Conley-Moser conditions to its autonomous and
nonautonomous version to proof the existence of a chaotic saddle. Finally, we show the structure of this
nonautonomous chaotic saddle as parameters are varied.
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3.1. Lagrangian Descriptors for Two Dimensional, Area Preserv-
ing, Autonomous and Nonautonomous Maps

Coauthors: Francisco Balibrea, Stephen Wiggins, Ana M. Mancho

Abstract: In this paper we generalize the method of Lagrangian descriptors to two dimensional, area pre-
serving, autonomous and nonautonomous discrete time dynamical systems. We consider four generic model
problems – a hyperbolic saddle point for a linear, area-preserving autonomous map, a hyperbolic saddle
point for a nonlinear, area-preserving autonomous map, a hyperbolic saddle point for linear, area-preserving
nonautonomous map, and a hyperbolic saddle point for nonlinear, area-preserving nonautonomous map. The
discrete time setting allows us to evaluate the expression for the Lagrangian descriptors explicitly for a cer-
tain class of norms. This enables us to provide a rigorous setting for the notion that the “singular sets” of
the Lagrangian descriptors correspond to the stable and unstable manifolds of hyperbolic invariant sets, as
well as to understand how this depends upon the particular norms that are used. Finally we analyze, from
the computational point of view, the performance of this tool for general nonlinear maps, by computing the
“chaotic saddle” for autonomous and nonautonomous versions of the Hénon map.

Reference: C. Lopesino, F. Balibrea, S. Wiggins, A. M. Mancho. Lagrangian Descriptors for Two Di-
mensional, Area Preserving, Autonomous and Nonautonomous Maps. Commun Nonlinear Sci Numer Simulat
27 (1-3) (2015) 40–51.
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a b s t r a c t

In this paper we generalize the method of Lagrangian descriptors to two dimensional, area
preserving, autonomous and nonautonomous discrete time dynamical systems. We con-
sider four generic model problems – a hyperbolic saddle point for a linear, area-preserving
autonomous map, a hyperbolic saddle point for a nonlinear, area-preserving autonomous
map, a hyperbolic saddle point for linear, area-preserving nonautonomous map, and a
hyperbolic saddle point for nonlinear, area-preserving nonautonomous map. The discrete
time setting allows us to evaluate the expression for the Lagrangian descriptors explicitly
for a certain class of norms. This enables us to provide a rigorous setting for the notion that
the ‘‘singular sets’’ of the Lagrangian descriptors correspond to the stable and unstable
manifolds of hyperbolic invariant sets, as well as to understand how this depends upon
the particular norms that are used. Finally we analyze, from the computational point of
view, the performance of this tool for general nonlinear maps, by computing the ‘‘chaotic
saddle’’ for autonomous and nonautonomous versions of the Hénon map.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Lagrangian descriptors (also referred to in the literature as the ‘‘M function’’) were first introduced as a tool for finding
hyperbolic trajectories in [16]. In this paper the notion of distinguished trajectory was introduced as a generalization of
the well-known idea of distinguished hyperbolic trajectory. The numerical computation of distinguished trajectories was dis-
cussed in some detail, and applications to known benchmark examples, as well as to geophysical fluid flows defined as data
sets were also given. Later [18] showed that it could be used to reveal Lagrangian invariant structures in realistic fluid flows.
In particular, a geophysical data set in the region of the Kuroshio current was analyzed and it was shown that Lagrangian
descriptors could be used to reveal the Lagrangian skeleton of the flow, i.e. hyperbolic and elliptic regions, as well as the
invariant manifolds that delineate these regions. A deeper study of the Lagrangian transport issue associated with the
Kuroshio using Lagrangian descriptors is given in [19]. Advantages of the method over finite time Lyapunov exponents
(FTLE) and finite size Lyapunov exponents (FSLE) were also discussed.

Since then Lagrangian descriptors have been further developed and their ability to reveal phase space structures in
dynamical systems more generally has been confirmed. In particular, Lagrangian descriptors are used in [4] to reveal the
Lagrangian structures that define transport routes across the Antarctic polar vortex. Further studies of transport issues
related to the Antarctic polar vortex using Lagrangian descriptors are given in [5] where vortex Rossby wave breaking is

http://dx.doi.org/10.1016/j.cnsns.2015.02.022
1007-5704/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
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related to Lagrangian structures. In [25] Lagrangian descriptors are used to study the influence of coherent structures on the
saturation of a nonlinear dynamo. In [21] Lagrangian descriptors are used to analyze the influence of Lagrangian structure on
the transport of buoys in the Gulf stream and in a region of the Gulf of Mexico relevant to the Deepwater Horizon oil spill. In
[17] a detailed analysis of the behavior of Lagrangian descriptors is provided in terms of benchmark problems, new
Lagrangian descriptors are introduced, extension of Lagrangian descriptors to 3D flows is given (using the time dependent
Hills spherical vortex as a benchmark problem), and a detailed analysis and discussion of the computational performance
(with a comparison with FTLE) is presented.

Lagrangian descriptors are based on the integration, for a finite time, along trajectories of an intrinsic bounded, positive
geometrical and/or physical property of the trajectory itself, such as the norm of the velocity, acceleration, or curvature.
Hyperbolic structures are revealed as singular features of the contours of the Lagrangian descriptors, but the sharpness of
these singular features depends on the particular norm chosen. These issues were explored in [17], and further examined
in this paper.

All of the work thus far on Lagrangian descriptors has been in the continuous time setting. In this article we generalize the
method of Lagrangian descriptors to the discrete time setting of two dimensional area preserving maps, both autonomous
and nonautonomous, and provide theoretical support for their performance.

This paper is organized as follows. In Section 2 we defined discrete Lagrangian descriptors. We then consider four exam-
ples. In Section 2.1 we consider a linear autonomous area preserving map have a hyperbolic saddle point at the origin, in 2.2
we consider a nonlinear autonomous area preserving map have a hyperbolic saddle point at the origin, in 2.3 we consider a
linear nonautonomous area preserving map have a hyperbolic saddle trajectory at the origin, and in 2.4 we consider a non-
linear nonautonomous area preserving map have a hyperbolic trajectory at the origin. For each example we show that the
Lagrangian descriptors reveal the stable and unstable manifolds by being singular on the manifolds. The notion of ‘‘being
singular’’ is made precise in Theorem 1. In Section 3 we explore further the method beyond the analytical examples. We
use discrete Lagrangian descriptors to computationally reveal the chaotic saddle of the Hénon map, and in Section 4 we con-
sider a nonautonomous version of the Hénon map. In Section 5 we summarize the conclusions and suggest future directions
for this work.

2. Lagrangian descriptors for maps

Let

fxn; yng
n¼N
n¼�N; N 2 N; ð1Þ

denote an orbit of length 2N þ 1 generated by a two dimensional map. At this point it does not matter whether or not the
map is autonomous or nonautonomous. The method of Lagrangian descriptors applies to orbits in general, regardless of the
type of dynamics that generate the orbit.

The first Lagrangian descriptor (also known as the ‘‘M function’’) for continuous time systems was based on computing
the arclength of trajectories for a finite time [16]. Extending this idea to maps is straightforward, and the corresponding dis-
crete Lagrangian descriptor (DLD) is given by:

MD2 ¼
XN�1

i¼�N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxiþ1 � xiÞ2 þ ðyiþ1 � yiÞ

2
q

: ð2Þ

In analogy with the work on continuous time Lagrangian descriptors in [17], we consider different norms for the discretized
arclength as follows:

MDp ¼
XN�1

i¼�N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxiþ1 � xijp þ jyiþ1 � yij

pp
q

; p > 1; ð3Þ

and

MDp ¼
XN�1

i¼�N

jxiþ1 � xijp þ jyiþ1 � yij
p
; p 6 1: ð4Þ

Considering the space of orbits as a sequence space, (3) and (4) are the ‘p norms of an orbit.
Henceforth, we will consider only the case p 6 1 since the proofs are more simple in this case. Now we will explore these

definitions in the context of some easily understood, but generic, examples.

2.1. Example 1: a hyperbolic saddle point for linear, area-preserving autonomous maps

2.1.1. Linear saddle point
Consider the following linear, area-preserving autonomous map:

C. Lopesino et al. / Commun Nonlinear Sci Numer Simulat 27 (2015) 40–51 41
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xnþ1 ¼ kxn;

ynþ1 ¼ 1
k yn;

(
ð5Þ

where we will take k > 1. Note that this map is area-preserving, but area-preservation was not used in the definition of the
DLD’s above.

Now we will compute (4) for this example. Towards this end, we introduce the notation

MDp ¼ MDþp þMD�p

where

MDþp ¼
XN�1

i¼0

jxiþ1 � xijp þ jyiþ1 � yij
p
;

and

MD�p ¼
X�N

i¼�1

jxiþ1 � xijp þ jyiþ1 � yij
p
:

We begin by computing MDþp . The computation of MD�p is completely analogous, and therefore we will not provide the
details. We have:

MDþp ¼
XN�1

i¼0

jxiþ1 � xijp þ jyiþ1 � yij
p ¼ jx1 � x0jp þ jy1 � y0j

p þ � � � þ jxN � xN�1jp þ jyN � yN�1j
p

¼ jkx0 � x0jp þ j1=ky0 � y0j
p þ � � � þ jkNx0 � kN�1x0jp þ j1=kNy0 � 1=kN�1y0j

p

¼ jx0jpjk� 1jp 1þ kp þ � � � þ kðN�1Þp
� �

þ jy0j
pj1=k� 1jp 1þ 1=kp þ � � � þ 1=kðN�1Þp

� �

¼ jx0jpjk� 1jp kNp � 1
kp � 1

 !
þ jy0j

pj1=k� 1jp 1=kNp � 1
1=kp � 1

 !

where in the last step we have used that the sums are geometric with rates kp and 1=kp, respectively. By completely analo-
gous calculations we obtain MD�p as:

MD�p ¼ jx0jpj1=k� 1jp 1=kNp � 1
1=kp � 1

 !
þ jy0j

pjk� 1jp kNp � 1
kp � 1

 !
:

Putting the two terms together, we obtain:

MDp ¼ MDþp þMD�p ¼ jx0jp þ jy0j
p� �
jk� 1jp kNp � 1

kp � 1

 !
þ j1=k� 1jp 1=kNp � 1

1=kp � 1

 ! !
¼ ðjx0jp þ jy0j

pÞf ðk; p;NÞ; ð6Þ

where k; p and N are fixed.
Extensive numerical simulations in a variety of examples (cf. [16,18,20,4,19,17,21]) have shown that ‘‘singular features’’

of Lagrangian descriptors correspond to stable and unstable manifolds of hyperbolic trajectories. We can make this state-
ment rigorous and precise in the context of this example.

Theorem 1. Consider a vertical line perpendicular to the unstable manifold of the origin. In particular, consider an arbitrary point
x ¼ �x and a line parallel to the y axis passing through this point. Then the derivative of MDp; p < 1, along this line becomes
unbounded on the unstable manifold of the origin.

Similarly, consider a horizontal line perpendicular to the stable manifold of the origin. In particular, consider an arbitrary
point y ¼ �y and a line parallel to the x axis passing through this point. Then the derivative of MDp; p < 1, along this line
becomes unbounded on the stable manifold of the origin.

Proof. This is a simple calculation using (6) and the fact that p < 1. This is illustrated in Fig. 1. h

2.1.2. Linear rotated saddle point
In the example studied in the previous section the DLD is singular along the stable and unstable manifolds for any itera-

tion n. However, the results discussed in [18,17] for the continuous time case show that the manifolds are observed for s
‘‘sufficiently large’’, which is related to a large number of iterations in the discrete time case. We explore further these con-
nections by studying the case of the rotated saddle point. In order to establish a direct link to the continuous time case, we
consider the limits of small and large numbers of iterations, and k � 1.
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We have the following discrete dynamical system:

Fðx; yÞ ¼ A

x

y

0
B@

1
CA ð7Þ

where

A ¼

1
k þ k 1

k � k

1
k � k 1

k þ k

0
B@

1
CA ¼ 1

2k

1þ k2 1� k2

1� k2 1þ k2

0
B@

1
CA ð8Þ

in our case with k > 1. It is easy to see that the stable and the unstable manifolds are given by the vectors ð1;1Þ and ð1;�1Þ
respectively. We want to compute Ai � Ai�i in order to get the expressions of the DLD:

MDp ¼
XN�1

i¼�N

jxiþ1 � xijp þ jyiþ1 � yij
p ð9Þ

and to find where the ‘singularities’ are produced and why.
We know that A can be diagonalized so there exist D and T such that

D ¼ T�1 � A � T ð10Þ

where D is a diagonal matrix. Therefore we got the next expression

Di ¼ T�1 � Ai � T; for every i:

which is equivalent to

Ai ¼ T � Di � T�1; for every i: ð11Þ

It is clear that the matrix T is

T ¼
1 1
�1 1

� �
ð12Þ

and therefore

T�1 ¼ 1
2

1 �1
1 1

� �

We can check Eq. (10),

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
5

10

15

20

25

30

Fig. 1. The left-hand panel shows contours of MDp for p ¼ 0:5;N ¼ 20 and k ¼ 1:1, with a grid point spacing of 0:005. The horizontal black line is at y ¼ 0:25.
The right-hand panel shows the graph of MDp along this horizontal black line, which illustrates the singular nature of the derivative of MDp on the stable
manifold across the line x ¼ 0.
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D ¼ 1
4k

1 �1

1 1

0
B@

1
CA 1þ k2 1� k2

1� k2 1þ k2

0
B@

1
CA

1 1

�1 1

0
B@

1
CA ¼

k 0

0 1
k

0
B@

1
CA ð13Þ

So we can guess now how is Ai using Eq. (11),

Ai ¼ 1
2

1 1

�1 1

0
B@

1
CA

ki 0

0 1
ki

0
B@

1
CA

1 �1

1 1

0
B@

1
CA ¼ 1

ki

1þ k2i 1� k2i

1� k2i 1þ k2i

0
B@

1
CA ð14Þ

Therefore

Ai � Ai�1 ¼ 1
ki

k2i � k2i�1 � kþ 1 �k2i þ k2i�1 � kþ 1

�k2i þ k2i�1 � kþ 1 k2i � k2i�1 � kþ 1

0
B@

1
CA ð15Þ

Now we are going to study the analytical expression of the stable and unstable manifold. For that purpose we will develop
only MDþp expression (MD�p is analogous). So we have to keep in mind the expression for MDþp that is

MDþp ¼
XN�1

i¼0

jxiþ1 � xijp þ jyiþ1 � yij
p ð16Þ

therefore using Eq. (15) for N P 1

MDþp ¼
XN�1

i¼0

1
kðiþ1Þp ðk

2ðiþ1Þ � k2ðiþ1Þ�1 � kþ 1Þx0 þ ð�k2ðiþ1Þ þ k2ðiþ1Þ�1 � kþ 1Þy0

			 			p

þ 1
kðiþ1Þp ð�k2ðiþ1Þ þ k2ðiþ1Þ�1 � kþ 1Þx0 þ ðk2ðiþ1Þ � k2ðiþ1Þ�1 � kþ 1Þy0

			 			p ð17Þ

Each term on this sum has singularities along two different lines. In particular, for each i and k, we have the two singular lines

y0 ¼
k2ðiþ1Þ � k2ðiþ1Þ�1 � kþ 1
k2ðiþ1Þ � k2ðiþ1Þ�1 þ k� 1

x0 ¼ mðk; iÞx0 ð18Þ

and

y0 ¼
1

mðk;nÞ x0 ð19Þ

where mðk; iÞ and 1
mðk;iÞ are, respectively, the slopes of the singular lines. If we fix k ¼ k0 and we increase the number of itera-

tions, we can see the evolution of the singular features to the limit shown in Fig. 2

lim
i!1

mðk0; iÞ ¼ 1 ð20Þ

This convergence is reached rapidly and, for example, for k ¼ 1:1 it is noticeable from i ¼ 20 onwards. Thus at large i most of
the terms in the summation (17) contribute with the same slope, i.e., (20), Therefore the contributions of terms in the sum-
mation (17) with small i are small and make little impact in the global sum (17). If i is small, the number of terms contribut-
ing to the DLD is small, and each term is a C0 function with discontinuities along different lines. Since all terms contribute the
same to the total pattern, no particular feature is highlighted (see Fig. 2(b) and (c)).

The limit k � 1 is closely related to the Lagrangian Descriptors defined for the continuous time case. This can be seen by
considering the limit and noting that k quantifies the separation of points as they are iterated and relating this to the
arclength integral for the linear saddle point discussed in [17].

For any i ¼ n0 fixed, it is possible to find a k in the limit close to 1 that makes the slope m close to the limit value:

lim
k!1

mðk;n0Þ ¼ 0 ð21Þ

In this case, Eqs. (18) and (19) tend to y ¼ 0 and x ¼ 0, respectively. The approach to this limit can be observed in the
sequence of images shown Fig. 2 and the DLD derivative along the line y ¼ 0:25 shown in Fig. 3.

2.2. Example 2: a hyperbolic saddle point for nonlinear, area-preserving autonomous maps

We will analyze this case using a theorem of [23]. Moser’s theorem applies to analytic, area preserving maps in a neigh-
borhood of a hyperbolic fixed point. We will discuss how the assumptions of analyticity and area preservation can be
removed later on, but for now we proceed with these assumptions.

44 C. Lopesino et al. / Commun Nonlinear Sci Numer Simulat 27 (2015) 40–51
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We consider an analytic, area-preserving map in a neighborhood of x ¼ y ¼ 0 of the form:

xnþ1 ¼ f ðxn; ynÞ ¼ kxn þ � � �
ynþ1 ¼ gðxn; ynÞ ¼ k�1yn þ � � �



ð22Þ

where k > 1 and ‘‘� � �’’ represent nonlinear terms that obey the area-preserving constraint. Moser’s Theorem states that there
exists a real analytic, area preserving change of variables of the following form:

x ¼ xðn;gÞ;
y ¼ yðn;gÞ;

ð23Þ

with inverse

n ¼ nðx; yÞ;
g ¼ gðx; yÞ;

ð24Þ

such that in these new coordinates (22) has the following normal form:

nnþ1 ¼ UðnngnÞnn

gnþ1 ¼ U�1ðnngnÞgn

(
ð25Þ

Fig. 2. DLD for different values of k and iterations i.
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where UðngÞ is a power series in the product ng of the form U0 þ U2ngþ � � �, with U0 ¼ k, which converges in a neighborhood
of the hyperbolic point. Note that it follows from the form of (25) that Uð�Þ is constant on orbits of (25), i.e.
Uðniþ1giþ1Þ ¼ UðnigiÞ ¼ U; 8i.

The form of (25) implies that the same computation described in Section 2.1 applies. Therefore for MDþp we have:

MDþp ¼
XN�1

i¼0

jniþ1 � nijp þ jgiþ1 � gij
p ¼

XN�1

i¼0

jnijpjUðnigiÞ � 1jp þ jgij
pjU�1ðnigiÞ � 1jp ¼

XN�1

i¼0

jnijpjU � 1jp þ jgij
pjU�1 � 1jp

¼ jn0jpjU � 1jp 1þ jUjp þ � � � þ jUjðN�1Þp
� �

þ jg0j
pjU�1 � 1jp 1þ jU�1jp þ � � � þ jU�1jðN�1Þp

� �

¼ jn0jpjU � 1jp UNp � 1
Up � 1

					
					þ jg0j

pjU�1 � 1jp 1=UNp � 1
1=Up � 1

					
					:

MD�p is computed analogously, and therefore MDp ¼ MDþp þMD�p is given by:

MDp ¼ ðjn0jp þ jg0j
pÞ jU � 1jp UNp � 1

Up � 1

					
					þ jU�1 � 1jp 1=UNp � 1

1=Up � 1

					
					

 !
;

Fig. 3. Derivative of the DLD along the line y ¼ 0:25 for different values of k and iterations i.
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In this expression U is constant along trajectories, i.e., Uðn0g0Þ ¼ UðnigiÞ ¼ U; 8i. But in general, different initial conditions
ðn0;g0Þ do not belong to the same trajectory, thus U depends on ðn0;g0Þ. More succinctly we express this as:

MDp ¼ ðjn0jp þ jg0j
pÞf ðUðn0;g0Þ;p;NÞ ð26Þ

This expression has the same form as (6), except for the dependence of the function f on Uðn0;g0Þ. We note that U is analytical
and thus it is a smooth function. Therefore Theorem 1 still applies because the first derivative is infinite due to the first factor
in expression (26). We can conclude that the derivative of MDp transverse to the stable manifold is singular on the manifold
and the derivative of MDp transverse to the unstable manifold is singular on the manifold. However, this is a statement that is
true in the n� g normal form coordinates. In practice we will compute the Lagrangian descriptor in the original x—y coordi-
nates and therefore we would like to conclude that the ‘‘singular sets’’ of the Lagrangian descriptor in the x—y coordinates
correspond to the stable and unstable manifolds of the hyperbolic fixed point. We will now show that this is the case. We
will carry out the argument for the stable manifold. The argument for the unstable manifold is completely analogous.

First, using (23), in the x—y coordinates the stable manifold of the origin is given by the curve ðxð0;gÞ; yð0;gÞÞ. Here g is
viewed as a parameter for this parametric representation of the stable manifold in the original x—y coordinates. A vector

perpendicular to this curve at any point on the curve is given by � dy
dg ð0;gÞ; dx

dg ð0;gÞ
� �

. Now we compute the rate of change

of MDp ¼ MDpðx; yÞ in this direction and consider its behavior on the stable manifold of the origin.This is given by the direc-
tional derivative of MDpðx; yÞ in this direction evaluated on the stable manifold:

@MDp

@x
ðxð0;gÞ; yð0;gÞÞ; @MDp

@y
ðxð0;gÞ; yð0;gÞÞ

� �
� � dy

dg
ð0;gÞ; dx

dg
ð0;gÞ

� �
; ð27Þ

where the derivatives are evaluated on ðxð0;gÞ; yð0;gÞÞ, but we will omit this explicitly for the sake of a less cumbersome
notation. Next we will use the chain rule to express partial derivatives with respect to x and y in terms of n and g as follows:

@MDp

@x
¼ @MDp

@n
@n
@x
þ @MDp

@g
@g
@x
;

@MDp

@y
¼ @MDp

@n
@n
@y
þ @MDp

@g
@g
@y

: ð28Þ

Substituting (28) into (27) gives:

� @MDp

@n
@n
@x
þ @MDp

@g
@g
@x

� �
dy
dg
þ @MDp

@n
@n
@y
þ @MDp

@g
@g
@y

� �
dx
dg

: ð29Þ

Now it follows from the argument given in Theorem 1 that @MDp

@n is not differentiable on the stable manifold (n ¼ 0 for
p < 1). Hence (26) is not differentiable in a direction transverse to the stable manifold at a point on the stable manifold
in the x� y coordinates.

2.3. Example 3: a hyperbolic saddle point for linear, area-preserving nonautonomous maps

In this section we will consider the nonautonomous analog of example 1 in Section 2.1. Namely, we will consider a linear,
area preserving nonautonomous map having a hyperbolic trajectory at the origin. The map that we consider has the follow-
ing form:

xnþ1 ¼ knxn

ynþ1 ¼ 1
kn

yn

(

where kn > 1; 8n. Note that x ¼ y ¼ 0 is a hyperbolic trajectory with stable manifold given by x ¼ 0 and unstable manifold
given by y ¼ 0 for all n.

We will only compute MDþp since the computation of MD�p is analogous. Hence, for MDþp we have:

MDþp ¼
XN�1

i¼0

jxiþ1 � xijp þ jyiþ1 � yij
p ¼

XN�1

i¼0

jxijpjki � 1jp þ jyij
pj1=ki � 1jp

¼ jx0jp jk0 � 1jp þ jk0jpjk1 � 1jp þ � � � þ jk0 � � � kN�2jpjkN�1 � 1jp
� �

þ jy0j
p j1=k0 � 1jp þ j1=k0jpj1=k1 � 1jp þ � � � þ j1=k0 � � �1=kN�2jpj1=kN�1 � 1jp
� �

¼ jx0jp jk0 � 1jp þ
XN�1

i¼1

Yi�1

j¼0

jkjjp
 !

jki � 1jp
 !

þ jy0j
p j1=k0 � 1jp þ

XN�1

i¼1

Yi�1

j¼0

j1=kjjp
 !

j1=ki � 1jp
 !

C. Lopesino et al. / Commun Nonlinear Sci Numer Simulat 27 (2015) 40–51 47

CHAPTER 3. RESULTS

21



A similar calculation gives:

MD�p ¼ jx0jp j1� 1=k�1jp þ
X�N

i¼�2

Yiþ1

j¼�1

j1=kjjp
 !

j1� 1=kijp
 !

þ jy0j
p j1� k�1jp þ

X�N

i¼�2

Yiþ1

j¼�1

jkjjp
 !

j1� kijp
 !

:

Combining these two expressions gives:

MDp ¼ jx0jpf ðK;p;NÞ þ jy0j
pgðK�; p;NÞ ð30Þ

where

K ¼ ðk0; k1; . . . ; kN�1;1=k�1;1=k�2; . . . ;1=k�NÞ

and

K� ¼ ð1=k0;1=k1; . . . ;1=kN�1; k�1; k�2; . . . ; k�NÞ:

Now (30) has the same functional form as (6). So for p < 1 the same argument as given in Theorem 1 holds. Therefore,
along a line transverse to the stable manifold (i.e. x ¼ 0) MDp is not differentiable at the point on this line that intersects
the stable manifold. The analogous statement holds for the unstable manifold.

2.4. Example 4: a hyperbolic saddle point for a nonlinear, area preserving nonautonomous map

We now consider a two dimensional nonlinear area-preserving nonautonomous map having the following form:

xnþ1 ¼ knxn þ f nðxn; ynÞ;

ynþ1 ¼ k�1
n yn þ gnðxn; ynÞ; ðxn; ynÞ 2 R2; 8n; ð31Þ

where kn > 1; 8n with f nð0; 0Þ ¼ gnð0;0Þ ¼ 0; 8n. We assume that f nð�; �Þ and gnð�; �Þ are real valued nonlinear functions (i.e. of
order quadratic or higher), they are at least C1, and they satisfy the constraints that the nonlinear map defined by (31) is area
preserving.

Since the origin is a hyperbolic trajectory it follows that it has (one dimensional) stable and unstable manifolds [14,3,15].
We will apply the method of discrete Lagrangian descriptors to (31) and show that the stable and unstable manifolds of the
origin correspond to the ‘‘singular features’’ of MDp (p < 1), in the sense described in Theorem 1. Our method of proof will be
similar in spirit to how we showed the result for nonlinear autonomous maps by using Moser’s theorem. Unfortunately,
there is no analog of Moser’s theorem for nonlinear, nonautonomous area preserving two dimensional maps.
Nevertheless, we will still use a ‘‘change of variables’’, or ‘‘conjugation’’ result that is a nonautonomous map version of
the Hartman–Grobman theorem due to [2].

The classical Hartman–Grobman [11,10,12,7,8] theorem applies to autonomous maps in a neighborhood of a hyperbolic
fixed point. The result states that there exists a homeomorphism, defined in a neighborhood of the fixed point, which con-
jugates the map to its linear part. Stated another way, the homeomorphism provides a new set of coordinates where the map
is given by its linear part in the new coordinates. There are two issues that we must immediately face in order for this
approach to work as it did for the linear and nonlinear autonomous maps. One is the generalization of the Hartman–
Grobman theorem to the setting on nonautonomous maps (this is dealt with in [2]) and the other is the smoothness of
the conjugation (‘‘change of coordinates’’) since a derivative is required in the application of the chain rule (see (28)).

In general, the conjugacy provided by the Hartman–Grobman theorem is not differentiable (see [22] for examples).
However, there has been much work in determining conditions under which the conjugacy is at least C1, see, e.g., [28,9].
Moreover, Hartman has proven [10] that in two dimensions, a C2 diffeomorphism having a hyperbolic saddle can be lin-
earized with a C1 conjugacy (see also [26]). We also point out that differentiability is a property defined pointwise, and
the nondifferentiability of the conjugacy typically fails to hold at the fixed point (see the examples in [22]) and we are
not interested in differentiability at the fixed point, but at points along the stable and unstable manifolds of the fixed point.
The conjugacy is differentiable at these points, as is described in the lecture notes of Rauch entitled ‘‘Conjugacy’’ available at
http://www.math.lsa.umich.edu/�rauch/courses.html. This result also follows from the rectification theorem for ordinary
differential equations [1] which says that, away from points where the vector field vanishes, the vector field is conjugate
to ‘‘rectilinear flow’’, and this conjugacy is as smooth as the vector field. Note that this result is valid for both autonomous
and nonautonomous vector fields.

So setting aside the smoothness issues, we will give a brief discussion of the set-up of [2] for the nonautonomous
Hartman–Grobman theorem. They consider that the phase space is given by a Banach space, denoted X (for us X is R2).
The dynamics is described by a sequence of maps on X:

FnðvÞ ¼ Anv þ f nðvÞ; v 2 X; n 2 Z: ð32Þ

Precise assumptions on An and f nðvÞ are given in [2]. In particular An is a hyperbolic operator, which for us is:
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An ¼
kn 0
0 k�1

n

� �
ð33Þ

and where f nðvÞ is ‘‘small’’, in some sense, e.g. f nð0Þ ¼ 0 with f nðvÞ satisfying a Lipschitz condition. Our f nðvÞ will be at least
C1 and satisfy the condition for the map (31) to be area preserving.

For each n 2 Z construct a homeomorphism, hnð�Þ that conjugates (32) to its linear part, i.e.,

An � hn ¼ hnþ1 � Fn; ð34Þ

or, expressing this in a diagram for the full dynamics (following [2]) we have:

Fn�1 Fn Fnþ1

�! X �! X �! X �! X �!
# hn�1 # hn # hnþ1 # hnþ2

An�1 An Anþ1

�! X �! X �! X �! X �!

ð35Þ

In Section 2.3 we proved that the discrete Lagrangian descriptor for the linear, area preserving nonautonomous map is
singular along the stable and unstable manifolds of the hyperbolic trajectory at the origin, i.e. x ¼ 0 and y ¼ 0, respectively.
Note that the discrete Lagrangian descriptor is only a function of the initial condition, ðx0; y0Þ. Hence we can use the change of
coordinates h0ð�Þ and the argument given in Section 2.2 to conclude that the discrete Lagrangian descriptor for the nonlinear
nonautonomous area preserving map (31) is singular along the stable and unstable manifolds.

3. Application to the chaotic saddle of the Hénon map

We now illustrate the method of discrete Lagrangian descriptors for autonomous, area preserving nonlinear maps by
applying it to the Hénon map [13]:

Hðx; yÞ ¼ ðAþ By� x2; xÞ: ð36Þ

The map is area preserving for jBj ¼ 1 and is orientation-preserving if B < 0. Moreover, it follows from work in [6] that for
values of A larger than

A2 ¼ ð5þ 2
ffiffiffi
5
p
Þð1þ jBjÞ2=4; ð37Þ

the Hénon map has a hyperbolic invariant Cantor set which is topologically conjugate to a Bernoulli shift on two symbols, i.e.
it has a chaotic saddle. We will use the method of discrete Lagrangian descriptors to visualize this chaotic saddle.

We consider B ¼ �1, which after substituting this value into (37), gives A2 ¼ 5þ 2
ffiffiffi
5
p
� 9:47, and therefore we choose

A ¼ 9:5, which satisfies the chaos condition. With these choices of parameters we have Hðx; yÞ ¼ ð9:5� y� x2; xÞ. Applying
the method of discrete Lagrangian descriptors to this map gives the structures shown in Fig. 4, where the chaotic saddle
is the set that appears as dark blue. This method, in contrast to other techniques for computing chaotic saddles (see for
instance [24]), has the advantage that it simultaneously provides insight into the manifold structure associated with the
chaotic saddle.

4. Application to the chaotic saddle of a nonautonomous Hénon map

We now illustrate the method of discrete Lagrangian descriptors for nonautonomous, area preserving maps by applying it
to a nonautonomous version of the Hénon map. In particular, in (36) we take;

Fig. 4. Computation of the chaotic saddle of the Hénon map for A ¼ 9:5; B ¼ �1, after N ¼ 5 iterations and p ¼ 0:05.
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B ¼ �1; A ¼ 9:5þ � cosðnÞ: ð38Þ

For � ‘‘small’’, this is a nonautonomous perturbation of the situation considered in Section 3, so that we would expect to have
a structure similar to that shown in Fig. 4, but slightly varying with n, i.e. a nonautonomous chaotic saddle (see [27]).

The discrete Lagrangian descriptor method provides us with a numerical tool to explore this question. Fig. 5 illustrates the
phase space structure at different times for the nonautonomous Hénon map. Clearly the output is similar to that shown in
Fig. 4, but varying with respect to n.

5. Summary and conclusions

In this paper we have generalized the notion of Lagrangian descriptors, originally developed for continuous time dynami-
cal systems, to autonomous and nonautonomous maps. We have restricted our discussion to two dimensional, area preserv-
ing maps, but with additional work it should be possible to remove these restrictions.

In the discrete time setting explicit expressions for the Lagrangian descriptors were derived, and for the ‘p norm, p < 1,
we proved a theorem that gave rigorous meaning to the statement that ‘‘singular sets’’ of the Lagrangian descriptors corre-
spond to the stable and unstable manifolds of hyperbolic invariant sets.
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time dependence, however we rigorously prove that this method reveals the stable and unstable manifolds
of hyperbolic points in four particular 2D cases: a hyperbolic saddle point for linear autonomous systems, a
hyperbolic saddle point for nonlinear autonomous systems, a hyperbolic saddle point for linear nonautonomous
systems and a hyperbolic saddle point for nonlinear nonautonomous systems. We also discuss further rigorous
results which show the ability of LDs to highlight additional invariants sets, such as n-tori. These results
are just a simple extension of the ergodic partition theory which we illustrate by applying this methodology
to well-known examples, such as the planar field of the harmonic oscillator and the 3D ABC flow. Finally,
we provide a thorough discussion on the requirement of the objectivity (frame-invariance) property for tools
designed to reveal phase space structures and their implications for Lagrangian descriptors.
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This paper provides a theoretical background for Lagrangian Descriptors (LDs). The goal of
achieving rigorous proofs that justify the ability of LDs to detect invariant manifolds is simplified
by introducing an alternative definition for LDs. The definition is stated for n-dimensional
systems with general time dependence, however we rigorously prove that this method reveals
the stable and unstable manifolds of hyperbolic points in four particular 2D cases: a hyperbolic
saddle point for linear autonomous systems, a hyperbolic saddle point for nonlinear autonomous
systems, a hyperbolic saddle point for linear nonautonomous systems and a hyperbolic saddle
point for nonlinear nonautonomous systems. We also discuss further rigorous results which show
the ability of LDs to highlight additional invariants sets, such as n-tori. These results are just a
simple extension of the ergodic partition theory which we illustrate by applying this methodology
to well-known examples, such as the planar field of the harmonic oscillator and the 3D ABC
flow. Finally, we provide a thorough discussion on the requirement of the objectivity (frame-
invariance) property for tools designed to reveal phase space structures and their implications
for Lagrangian descriptors.

Keywords : Lagrangian descriptors; hyperbolic trajectories; stable and unstable manifolds; n-tori;
invariant sets.

1. Introduction

Lagrangian descriptors were first introduced in the
literature by Madrid and Mancho [2009] in the form
of a function, denotedM , that was used to provide a
definition for distinguished trajectories. The math-
ematical construction of distinguished trajectories
generalized the notion of distinguished hyperbolic
trajectory, first discussed in [Ide et al., 2002], by
including also trajectories with an elliptic type
of stability. Distinguished trajectories were high-
lighted by special minima of the functionM referred
to as limit coordinates.

In the past few years the applicability of
the concept of Lagrangian Descriptor has been

extended and has become a method for detecting
invariant manifolds of hyperbolic trajectories [Men-
doza & Mancho, 2010]. Invariant manifolds were
highlighted by “singular features” of both the func-
tion M and some of its generalizations (see [Men-
doza & Mancho, 2012; Mancho et al., 2013]).
Since these early papers, numerous applications
of Lagrangian descriptors have been given, e.g. in
[de la Cámara et al., 2012], where they were used
in the context of atmospheric sciences to reveal the
Lagrangian structures that define transport routes
across the Antarctic polar vortex. This work was
extended in [de la Cámara et al., 2013], where LDs
were applied to analyze the Lagrangian structures
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associated with Rossby wave breaking. In the field
of magnetohydrodynamics, Lagrangian descriptors
have also been shown to be useful for studying the
influence of coherent structures on the saturation
of a nonlinear dynamo in [Rempel et al., 2013].
There are also several applications in oceanogra-
phy. In [Mendoza et al., 2014], LDs were used to
analyze transport in a region of the Gulf of Mex-
ico relevant to the Deepwater Horizon oil spill.
Garćıa-Garrido et al. [2015] have applied this tool
to analyze the search strategy for debris from the
missing MH370 flight followed by the Australian
Maritime Authorities, and recently Garćıa-Garrido
et al. [2016] have studied the role played by LDs in
the management of the Oleg Naydenov oil spill that
took place in the south of Gran Canaria. All these
works are related to various aspects of fluid dynam-
ics. However, Lagrangian descriptors can be applied
to the general study of the phase space structure of
dynamical systems in different contexts. This has
recently been illustrated in several applications of
the tool to fundamental problems in chemical reac-
tion dynamics. In particular, it has been applied
to a study of chemical reactions under external
time-dependent driving in [Craven & Hernandez,
2015], a study of phase space structure and reac-
tion dynamics for a class of “barrierless reactions”
in [Junginger & Hernandez, 2016], and to a study of
the isomerization dynamics of ketene in [Craven &
Hernandez, 2016].

The ability of LDs to reveal invariant mani-
folds has been established in the references above
from a phenomenological and numerical point of
view, however a rigorous framework is missing in
these works. Recently Lopesino et al. [2015] have
provided rigorous proofs in the framework of dis-
crete maps, where it is precisely defined what is
meant by the phrase “singular features”. One of
the goals of this article is to extend those results
to continuous time dynamical systems. In order to
simplify the demonstrations, this paper provides a
new way of constructing Lagrangian descriptors in
the same spirit as in [Lopesino et al., 2015]. The idea
is based on considering the p-norm of each velocity
component, instead of the p-norm of the modulus
of the velocity. This idea follows the heuristic argu-
ment discussed by [Mancho et al., 2013] of integrat-
ing positive quantities along particle trajectories,
and the positive quantity is such that it results in
tractable proofs. The choice allows us to mathemat-
ically prove that the stable and unstable manifolds

of hyperbolic trajectories in the selected examples
are detected as singular features of the Lagrangian
descriptor. As in [Lopesino et al., 2015], we are able
to make the notion of “singular feature” mathemat-
ically precise.

This paper discusses further rigorous results
found in the literature on the ergodic partition the-
ory. These are based on the evaluation of averages
along trajectories for obtaining invariant sets (cf.
[Mezić & Wiggins, 1999; Susuki & Mezić, 2009]).
We show that LDs are directly related to these find-
ings and thus they also capture coherent structures
described as n-tori. To illustrate the full potential of
this technique, we apply it to the well-known ABC
flow. Finally, we discuss the issue of objectivity and
how phase space geometry behaves under coordi-
nate transformations. In this context we show, with
some examples from the literature, how outputs
of LDs in different frames consistently reproduce
phase portraits.

This paper is organized as follows. In
Sec. 2, a theoretical mathematical background for
Lagrangian descriptors is developed, which is based
on providing an alternative definition of LDs, and
we discuss a variety of Hamiltonian examples that
are variations of the linear saddle. Section 3 presents
some results on non-Hamiltonian systems. In Sec. 4,
we illustrate the link between Lagrangian descrip-
tors and the ergodic partition theory in the linear
elliptic case. Section 5 is devoted to the application
of LDs to a well-known 3D example, the ABC flow,
providing evidence of the effectiveness of LDs in the
detection of both invariant manifolds and invariant
tori in 3D flows by means of, respectively, singular
features and contours of converged averages. Sec-
tion 6 offers a detailed discussion of the objectivity
(frame-invariance) property in the context of LDs
and the ability of LDs to provide the correct descrip-
tion of phase space structures in different frames,
as well as a general consideration of the objectiv-
ity property requirement for tools in relation to
their capability for revealing Lagrangian structures
in phase space. Finally, in Sec. 7 we present the
conclusions.

2. Rigorous Results for Lagrangian
Descriptors

In this section, we provide some rigorous results
allowing us to establish a theoretical framework for
Lagrangian descriptors. In order to achieve this goal
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we propose an alternative definition of LDs for n-
dimensional vector fields with arbitrary time depen-
dence, following the ideas developed in [Lopesino
et al., 2015] for the discrete time setting. We con-
sider the general time-dependent vector field,

dx

dt
= v(x, t), x ∈ Rn, t ∈ R (1)

where v(x, t) ∈ Cr (r ≥ 1) in x and continuous in
time. The definition of LDs depends on the initial
condition x0 = x(t0), on the time interval [t0 − τ,
t0 + τ ], and takes the form,

Mp(x0, t0, τ) =

∫ t0+τ

t0−τ

n∑

i=1

|ẋi(t;x0)|pdt (2)

where p ∈ (0, 1] and τ ∈ R+ are freely chosen
parameters, and the overdot symbol represents the
derivative with respect to time.

2.1. The autonomous saddle point

The first example that we analyze is the Hamilto-
nian linear saddle point. The velocity field is given
by:

{
ẋ = λx

ẏ = −λy
, λ > 0. (3)

For an initial condition (x0, y0), the unique solution
of this system is:

{
x(t, x0) = x0e

λt

y(t, y0) = y0e
−λt

, λ > 0. (4)

For this example, the origin (0, 0) is a hyperbolic
fixed point with stable and unstable manifolds:

W s(0, 0) = {(x, y) ∈ R2 |x = 0, y �= 0}, (5)

W u(0, 0) = {(x, y) ∈ R2 | y = 0, x �= 0}. (6)

For simplicity we assume, without loss of general-
ity, that t0 = 0 (this is possible for autonomous
systems) and we apply (2) to (3) to obtain:

Mp((x0, y0), t0, τ)

=

∫ τ

−τ
|λx0eλt|p + |−λy0e

−λt|pdt

= (|x0|p + |y0|p)
λp−1(eλpτ − e−λpτ )

p

= 2(|x0|p + |y0|p)
λp−1 sinh(λpτ)

p
. (7)

This expression allows us to conclude the following
theorem, which is proven exactly in the same way
as Theorem 1 in [Lopesino et al., 2015].

Theorem 1. Consider a vertical line perpendicu-
lar to the unstable manifold of the origin. Then the
derivative of Mp, p ≤ 1, along this line does not
exist on the unstable manifold of the origin.

Similarly, consider a horizontal line perpendic-
ular to the stable manifold of the origin. Then the
derivative of Mp, p ≤ 1 along this line does not exist
on the stable manifold of the origin.

This theorem is graphically illustrated in Fig. 1.
Note that this result holds for any finite value of τ ,
i.e. Mp((x0, y0), t0, τ) < ∞ possesses, for any finite
τ , singularities along the stable and unstable mani-
folds. The definition of this singularity is made pre-
cise as follows:

Definition 2.1. Given τ and p, an orientable sur-
face φ with normal vector n is said to be a singular
feature of Mp(·, t0, τ), if for every x0 ∈ φ the normal

derivative
∂Mp

∂n (x0, t0, τ) does not exist.

A recent article by Ruiz-Herrera [2016] deals
with a similar setting and argues about the impos-
sibility of defining this derivative in the limit τ → ∞
due to the unbounded character of Mp in this limit.
These arguments do not apply to our case as this
limit of τ is not considered in our construction.

Remark 2.1. We emphasize that the term | · |p +
| · |p, p ≤ 1, at the end of expression (7), whose
arguments (denoted by “·”) vanish on the stable and
unstable manifolds, is the essential “structural fea-
ture” of Mp that gives rise to the “singular nature”
(i.e. unboundedness or discontinuity in the deriva-
tive) of the LD along the stable and unstable man-
ifolds of the hyperbolic trajectory. This feature will
appear explicitly inMp for the benchmark examples
to follow.

2.2. The rotated saddle point

In the previous example, Lagrangian descriptors
were shown to be singular along the stable and
unstable manifolds of the hyperbolic fixed point at
the origin for any finite value of τ . However for
the examples given in [Mendoza & Mancho, 2010]
and [Mancho et al., 2013], it was shown that a suf-
ficiently large τ was required in order to obtain
“sharp” images/figures on/over the manifolds. In
the next example we illustrate this particular role
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(a) (b)

Fig. 1. (a) Shows contours of Mp=0.5 for system (3) with τ = 15 and λ = 1. The contours of Mp are computed on a grid with
spacing 0.005 and the integration time step of the vector field is chosen to be 0.1. The horizontal black line is at y = 0.5 and
(b) shows the graph of Mp along this line, which illustrates the singular nature of the derivative of Mp on the stable manifold
{x = 0}.

of τ by considering the same example of the previ-
ous section, but rotated 45◦. The autonomous sys-
tem corresponding to the 45◦ rotated saddle has the
form: {

ẋ = y

ẏ = x.
(8)

The solution of this system yields,
{
x(t) = x0 cosh t+ y0 sinh t

y(t) = x0 sinh t+ y0 cosh t,
(9)

or equivalently,
{
x(t) = aet + be−t

y(t) = aet − be−t,
(10)

where

a =
x0 + y0

2
, b =

x0 − y0
2

. (11)

Note that a = 0 corresponds to the stable manifold
and b = 0 corresponds to the unstable manifold.

The function Mp for this example takes the
form:

Mp((x0, y0), t0, τ) =

∫ τ

−τ
|aet − be−t|p

+ |aet + be−t|pdt. (12)

In this example, it is not possible to compute ana-
lytically the integrals which defineMp. However, we
are able to compute approximations of Mp that are
sufficiently accurate to enable the understanding of
the relationship between singularities of Mp and the

stable and unstable manifolds for both small and
large τ limits.

First we study the behavior of Mp in order to
show where the singularities of the derivative of Mp

appear for small τ = τ0. The Taylor expansions of
sinh t and cosh t are:

sinh t = t+
t3

3!
+

t5

5!
+ · · · ,

cosh t = 1 +
t2

2!
+

t4

4!
+ · · · .

(13)

Using (9) and the Taylor expansion of Mp((x0, y0),
t0, τ0) at τ0 = 0,

Mp((x0, y0), t0, τ0)

= Mp((x0, y0), t0, 0) +
∂Mp((x0, y0), t0, 0)

∂τ0
τ0

+O(τ20)

= 0 + (|x0 sinh τ0 + y0 cosh τ0|p

+ |x0 cosh τ0 + y0 sinh τ0|p)τ0=0τ0

+(|x0 sinh(−τ0) + y0 cosh(−τ0)|p

+ |x0 cosh(−τ0) + y0 sinh(−τ0)|p)τ0=0τ0

+O(τ20)

∼ 2(|y0|p + |x0|p)τ0 (14)

where in the last step we have used that sinh τ0 =
−sinh(−τ0) = 0, and that cosh τ0 = cosh(−τ0) = 1.
Therefore the singularities of the derivative of Mp
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appear on the lines x = 0 and y = 0 for small τ ,
which are not the stable and unstable manifolds of
the origin.

Now we consider the case of large values of τ ,
and fixed τ0. In order to analyze this case we divide
the integral into three parts,

Mp((x0, y0), t0, τ)

= Mp((x0, y0), t0, τ0) +

∫ τ

τ0

|ẋ(t)|p + |ẏ(t)|pdt

+

∫ −τ0

−τ
|ẋ(t)|p + |ẏ(t)|pdt. (15)

Since τ0 is fixed and τ is large enough, we can
expand the last part of (15) to yield,

∫ τ

τ0

|ẋ(t)|p + |ẏ(t)|pdt

=

∫ τ

τ0

|aet − be−t|p + |aet + be−t|pdt

= 2

∫ τ

τ0

|aet|p +O

( |b|
|a|1−p

e2t−p

)
dt. (16)

Analogously, for the range of negative values we
obtain,
∫ −τ0

−τ
|ẋ(t)|p + |ẏ(t)|pdt

=

∫ −τ0

−τ
|aet − be−t|p + |aet + be−t|pdt

= 2

∫ −τ0

−τ
|be−t|p +O

( |a|
|b|1−p

e−2t+p

)
dt. (17)

Using the fact that τ � τ0 > 0, it is clear that
the leading order terms of (16) and (17) after the
integration are given by

2
|a|p
p

eτp and 2
|b|p
p

eτp (18)

respectively. Consequently,

M((x0, y0), t0, τ)

= M((x0, y0), t0, τ0)

+

∫ τ

τ0

|aet − be−t|p + |aet + be−t|pdt

+

∫ −τ0

−τ
|aet − be−t|p + |aet + be−t|pdt (19)

= 2(|x0|p + |y0|p)τ0 +
21−peτp

p

· (|x0 + y0|p + |x0 − y0|p) +B. (20)

In (20), B depends on τ0 and lower order terms in
τ . The singularities previously discussed, observed
for small enough τ along the horizontal and verti-
cal axes, are still present in the first term, although
the weight of this term makes it negligible when
compared to the second term. For large τ , (20)
depicts the singular features of Mp over/at the lines
{y = −x} (the stable manifold) and {y = x} (the
unstable manifold). The evolution of the contours
of Mp and its singularities can be seen in Figs. 2
and 3, respectively, as we increase the integration
time parameter τ . It is clear from these figures that
the longer we integrate the system (increasing τ) the
closer we get to patterns that enhance the diagonal
structure. For very small τ , the major contribution
of Mp comes from the first term in (20), while for
intermediate τ values the contribution of B is the
dominant one, although we do not know its explicit
expression. Finally, for very large τ , the dominant
term in (20) is the second one. We remark that
Figs. 2 and 3 show that the very large τ required
for the singular features of Mp to be visibly aligned
along the stable and unstable manifolds, is achieved
already at τ = 5, i.e. a finite τ value at which of
course Mp < ∞. The recent article by Ruiz-Herrera
[2016] argues, for a similar setting, that the pres-
ence of terms such as the first one in Eq. (20) does
not allow that Mp highlights invariant manifolds by
means of singular features. Our discussion here how-
ever confirms the ability ofMp to highlight invariant
manifolds aligned in different directions by means of
singular features defined as in 2.1.

2.3. The autonomous nonlinear
saddle point

In this section, we treat the autonomous nonlin-
ear saddle point by using a theorem by [Moser,
1956]. Moser’s theorem applies to analytic two-
dimensional symplectic maps having a hyperbolic
fixed point or, similarly, to two-dimensional time-
periodic Hamiltonian vector fields having a hyper-
bolic periodic orbit (which can be reduced to the
former case considering a Poincaré map). In this
case, we are considering the flow of an autonomous
Hamiltonian system, which is a one-parameter
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(a) Mp for τ = 0.005 (b) Mp for τ = 1

(c) Mp for τ = 2.5 (d) Mp for τ = 5

Fig. 2. Mp function for p = 0.5 and using different values of τ . For this example, the integration time step and grid spacing
are 0.005. The black line is defined at y = 0.5 and is used in Fig. 3.

family of symplectic maps, and therefore Moser’s
theorem applies.

We consider a two-dimensional autonomous
analytic Hamiltonian vector field of the form,

{
ẋ = Hy(x, y),

ẏ = −Hx(x, y),
(21)

having a hyperbolic fixed point at the origin.
Moser’s theorem proves the existence of an area-
preserving change of variables,

{
x = x(ξ, η)

y = y(ξ, η)
(22)

with inverse,
{
ξ = ξ(x, y)

η = η(x, y)
(23)

by which the system (21) is transformed into the
following normal form,

{
ξ̇ = Fη

η̇ = −Fξ

(24)

where F = F (ξη) = a0ξη + a1(ξη)
2 + · · · depends

only on the product ξη and a0 ≡ λ ∈ R, λ �= 0
(onwards it will be taken that λ > 0). It is
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straightforward to verify that d
dt(ξη) = 0, or equiv-

alently, ξ0η0 = ξη. Moreover, if we define dF
dz (z) =

F ′(z), with z ≡ ξη then (24) takes the form,

{
ξ̇ = F ′ξ

η̇ = −F ′η
(25)

where F ′ = F ′(ξ0η0) is constant on trajectories.
This last system is easily integrated and its solu-
tions are given by the expressions,

{
ξ = ξ0e

F ′t

η = η0e
−F ′t.

(26)

Applying the descriptor Mp to this system (and
setting t0 = 0 since it is autonomous) we obtain,

Mp((ξ0, η0), t0, τ)

=

∫ τ

−τ
|ξ0eF

′tF ′|p + |η0e−F ′tF ′|pdt

= 2(|ξ0|p + |η0|p)
|F ′|p
pF ′ sinh(pF ′τ). (27)

As we can see above, the derivative of Mp has
singularities through the stable {ξ = 0} and unsta-
ble {η = 0} manifolds in the ξ–η coordinates,
i.e. the directional derivatives of Mp across ξ = 0
and η = 0 do not exist on the manifolds.

In order to complete this example, there are two
technical points that we must address. From (27) we
observe that there might be possible singularities in
the case when F ′ vanishes. However, recall that F ′

is,

dF

dz
= λ+ 2a1z + 3a2z

2 · · · , (28)

where z ≡ ξη. For a sufficiently small neighborhood
of the origin (no larger than the domain of validity
of the normal form) the term λ is the dominant
term in the series, and therefore F ′ is not zero.

We have shown that Mp is singular on the sta-
ble and unstable manifolds in the ξ–η coordinates.
However, the system (21) was originally expressed
in the x–y coordinates. Now we show that Mp is sin-
gular on the stable and unstable manifolds in these
coordinates. We will carry out the proof for the sta-
ble manifold. The proof for the unstable manifold
is completely analogous.

For this purpose we use expression (22) and
that the stable manifold is given by ξ = 0 to obtain

the following parametrization for the stable mani-
fold in the x–y coordinates,

η ∈ R 
→ (x(0, η), y(0, η)) ∈ R2, (29)

where (∂x∂η (0, η),
∂y
∂η (0, η)) is the tangent vector of

this curve at every point (x(0, η), y(0, η)). Addition-
ally, since the Jacobian of the transformation (22)
is nonzero,

J(ξ, η) =
∂x

∂ξ

∂y

∂η
(ξ, η)− ∂y

∂ξ

∂x

∂η
(ξ, η) �= 0

for all (ξ, η) ∈ R2, (30)

the pair of vectors

{(
∂x

∂ξ
(0, η),

∂y

∂ξ
(0, η)

)
,

(
∂x

∂η
(0, η),

∂y

∂η
(0, η)

)}

η∈R
(31)

cannot be parallel, and thus they form a basis of R2

at every point (x(0, η), y(0, η)) of the stable mani-
fold. Since the change of variables (22) is analytic,
one can construct a family of unit normal vectors
{n(η)}η∈R to the stable manifold (29) which can be
expressed as follows,

n(η) = a(η)




∂x

∂ξ
(0, η)

∂y

∂ξ
(0, η)




+ b(η)




∂x

∂η
(0, η)

∂y

∂η
(0, η)




(32)

where a, b ∈ C0(R) are two scalar functions. Here
a(η) �= 0, ∀ η ∈ R, since, by definition, every nor-
mal vector is perpendicular to the tangent vector
at every single point of a C1-curve, and thus must
have a nonzero component along a vector which is
not parallel to the tangent direction. On the other
hand, the Jacobian of the transformation only con-
firms that the vectors (31) are not parallel, but not
that they are perpendicular. For this reason b(η)
can take values different from zero.

Now the directional derivative of Mp in the
direction n(η) is given by,

(
∂Mp

∂x
(x(0, η), y(0, η)),

∂Mp

∂y
(x(0, η), y(0, η))

)
·n(η)

= a(η)

[
∂Mp

∂x
(x(0, η), y(0, η))

∂x

∂ξ
(0, η)
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+
∂Mp

∂y
(x(0, η), y(0, η))

∂y

∂ξ
(0, η)

]

+ b(η)

[
∂Mp

∂x
(x(0, η), y(0, η))

∂x

∂η
(0, η)

+
∂Mp

∂y
(x(0, η), y(0, η))

∂y

∂η
(0, η)

]

= a(η)
∂Mp

∂ξ
(0, η) + b(η)

∂Mp

∂η
(0, η), ∀ η ∈ R.

(33)

Since a(η) cannot be equal to zero, this derivative
is unbounded in the direction of the normal vector
n(η) for p ∈ (0, 1) or has a discontinuity for p = 1.
In both cases, we are speaking in terms of the non-
differentiability of function Mp, therefore displaying
a singular feature over the manifolds expressed in
the x–y coordinates. Indeed its directional deriva-
tive is bounded and continuous only when evaluated
with respect to the tangent vector direction.

2.4. The nonautonomous linear
saddle point

In this section, we consider the nonautonomous lin-
ear saddle point. Given a function f ∈ C1(t0 − τ,
t0 + τ), and f(t) > 0 for every t ∈ [t0 − τ, t0 + τ ],
we define the following vector field,

{
ẋ = f(t)x,

ẏ = −f(t)y.
(34)

For any initial condition (x(t0), y(t0)) = (x0, y0),
the solution of (34) is given by,

{
x(t, x0) = x0e

F (t)

y(t, y0) = y0e
−F (t)

(35)

where F (t) =
∫ t
0 f(s)ds. This system has a station-

ary hyperbolic trajectory at the origin, with stable
manifold given byW s(0, 0) = {(x, y) : x = 0, y �= 0}
and unstable manifold given by W u(0, 0) = {(x, y) :
x �= 0, y = 0}. The Lagrangian descriptor defined
in (2) for this system takes the form,

Mp((x0, y0), t0, τ)

=

∫ t0+τ

t0−τ
|x0eF (t)f(t)|p + |−y0e

−F (t)f(t)|pdt

= |x0|pA(t) + |y0|pB(t) (36)

where

A(t) =

∫ t0+τ

t0−τ
|eF (t)f(t)|pdt,

B(t) =

∫ t0+τ

t0−τ
|e−F (t)f(t)|pdt

(37)

are functions that do not depend on x0 and y0.
Consequently, (36) has the same functional form
as (7) and we can apply the same argument as
given in Theorem 1 to obtain nondifferentiability of
Mp along any line transverse to the stable manifold
W s(0, 0) for p ≤ 1. Similarly we obtain nondiffer-
entiability of Mp along any line transverse to the
unstable manifold W u(0, 0).

2.5. The nonautonomous nonlinear
saddle point

We now consider a nonautonomous nonlinear sys-
tem having a hyperbolic saddle trajectory at the
origin. Let f ∈ C1(t0 − τ, t0 + τ), and f(t) > 0 for
every t ∈ [t0 − τ, t0 + τ ]. Our system has the form,

{
ẋ = f(t)x+ g1(t, x, y)

ẏ = −f(t)y + g2(t, x, y),
(38)

where g1, g2 : R × R2 → R with g1(t, 0, 0) = g2(t,
0, 0) = 0, ∀ t. We suppose that g1, g2 are real valued
nonlinear functions and their order is quadratic or
higher in (x, y), with g1, g2 ∈ C1 satisfying the con-
ditions that make (38) Hamiltonian. It is straight-
forward to verify that (x, y) = (0, 0) is a hyperbolic
trajectory. For hyperbolic trajectories in nonau-
tonomous vector fields, their corresponding stable
and unstable manifolds are, respectively, tangent
to the stable and unstable subspaces of the linear
approximation at the hyperbolic trajectory [Cod-
dington & Levinson, 1955; Irwin, 1973; de Blasi &
Schinas, 1973; Katok & Hasselblatt, 1995; Fenichel,
1991]. We will show that the Lagrangian descriptor
detects the manifolds in this example in the same
manner as for the earlier examples in this paper.

The strategy for demonstrating this fact is
exactly the same as the one used to show that the
structure of the Lagrangian descriptor for the linear
autonomous saddle (discussed in Sec. 2.1) coincides
with the structure for the autonomous nonlinear
saddle point (discussed in Sec. 2.3). A differen-
tiable, invertible change of coordinates was made
(given by [Moser, 1956]), in such a way that effec-
tively transformed the autonomous nonlinear saddle
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point into the form of the autonomous linear saddle
point. Then it was obvious that the results for the
autonomous linear saddle point, in the transformed
coordinates, carried over the autonomous nonlin-
ear saddle point directly. A final argument showing
that the singularities of the Lagrangian descriptor
for the nonlinear autonomous saddle point in the
transformed coordinates were also present in the
original coordinates completed the argument.

A similar strategy is carried out in the nonau-
tonomous case, but it is not as straightforward
as in the autonomous case. There has been a
recent extension of Moser’s theorem to the nonau-
tonomous case [Fortunati & Wiggins, 2016], but the
requirements on the time dependence are too strin-
gent for all the applications that we will consider,
and therefore we will not utilize this result in our
arguments for this example. Another approach is
to utilize a result like the Hartman–Grobman theo-
rem [Hartman, 1960a, 1960b, 1963; Grobman, 1959,
1962] for nonautonomous systems. Recently this
result has been generalized to nonautonomous sys-
tems in [Barreira & Valls, 2006]. However, an issue
with these “linearization theorems” is that the lin-
earization transformations are not differentiable on
the hyperbolic trajectory. This situation has been
discussed in detail in [Lopesino et al., 2015] where
it is argued that, for our purpose, this situation is
essentially of a technical nature and does not pre-
vent our use of such results to reach the desired
conclusion.

3. Non-Hamiltonian Systems

In this section, we consider some issues related
to the interpretation of the output of Lagrangian
descriptors when they are applied to non-
Hamiltonian systems.

As an example, we consider the following non-
Hamiltonian system:

{
ẋ = λx

ẏ = −µy
, µ, λ > 0 and µ �= λ (39)

for which the exact solution takes the expression,

{
x(t) = x0e

λt

y(t) = y0e
−µt.

(40)

In this case the origin is a hyperbolic fixed point
with stable and unstable manifolds as in the

example described in Sec. 2.1,

W s(0, 0) = {(x, y) ∈ R2 |x = 0, y �= 0},

W u(0, 0) = {(x, y) ∈ R2 | y = 0, x �= 0}.
(41)

For the dynamical system (39) at t0 = 0,
Mp((x0, y0), t0, τ) is explicitly computed as:

Mp((x0, y0), t0, τ)

=

∫ τ

−τ
|λx0eλt|p + |−µy0e

−µt|pdt

= λp−1|x0|p
(eλpτ − e−λpτ )

p

+µp−1|y0|p
(eµpτ − e−µpτ )

p
. (42)

From the form of the LD it is easy to see that
nondifferentiability of the directional derivatives on
the stable and unstable manifolds follows from the
same argument given in Theorem 1. The singulari-
ties in expression (42) satisfy Definition 2.1, which
in turn is stated in the spirit of the phenomenology
described in [Mendoza & Mancho, 2010; Mancho
et al., 2013]. Therefore it is useful to point out here
that the term “singularities” does not refer to any
property of the contour lines of Mp, as incorrectly
asserted in [Ruiz-Herrera, 2015a]. Based on this
misinterpretation, Ruiz-Herrera [2015b] has claimed
that (39) is a “counter-example” to the method of
Lagrangian descriptors. This is an incorrect state-
ment as demonstrated by (42).

This implies that care should be taken when
trying to visualize the singular features of (42) as
in Definition 2.1 from contour plots of Mp itself.
Observe that given a fixed p and a sufficiently large
τ , the terms in expression (42) can take values which
can differ by orders of magnitude. Figure 4(a) illus-
trates this point by showing the contours ofMp with
p = 0.5 and τ = 15, for the values λ = 2 and
µ = 1. In this case the first term in (42) is much
greater than the second, and thus the effect of the
latter goes unnoticed in the figure. Still, the pres-
ence of the singularities can also be highlighted by
plotting the partial derivatives of Mp, as illustrated
in Fig. 5. Using the quotient of the two terms in
expression (42), where each term in the quotient
evaluates Mp on each manifold, we obtain an idea
of their different contribution.

Mp((x0, 0), 0, τ)

Mp((0, y0), 0, τ)
=

(
λ

µ

)p−1 |x0|p
|y0|p

e2pτλ − 1

e2pτµ − 1
epτ(µ−λ).
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(a) (b)

Fig. 4. Contour plots of Lagrangian descriptors computed for system (39) with λ = 2 and µ = 1: (a) Mp for p = 0.5 and
τ = 15 and (b) Mp for p = 1/τ and τ = 15.

(a) (b)

Fig. 5. Lagrangian descriptors applied to the system (39) with λ = 2 and µ = 1: (a) Contours of
∂Mp

∂x0
using p = 0.5 and

τ = 15 and (b) contours of
∂Mp

∂y0
using p = 0.5 and τ = 15.
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(a) (b)

Fig. 6. Panel (a) shows contours of Mp for p = 0.5 and panel (b) shows contours of M function. Both are obtained for system
(45) for τ = 15.

In particular, for large τ we have

Mp((x0, 0), 0, τ)

Mp((0, y0), 0, τ)
=

(
λ

µ

)p−1 |x0|p
|y0|p

epτ(λ−µ). (43)

Observe that a good visualization of both manifolds
in the same plot can be obtained from the con-
tours if the exponential in (43) is kept of order O(1)
[see Fig. 4(b)]. This is achieved for pτ(λ − µ) ≈ 1,
that is,

p =
1

τ(λ− µ)
. (44)

We consider next another non-Hamiltonian
system,

{
ẋ = −x,

ẏ = −y.
(45)

This system has a global attractor at the ori-
gin. Furthermore, we can analytically compute
Lagrangian descriptors for this example. In the case
of the Mp function, we have

Mp((x0, y0), 0, τ) =

∫ τ

−τ
|x0e−t|p + |y0e−t|pdt

= (|x0|p + |y0|p)
e−pτ + epτ

p
(46)

where the singularities are located on the axes x = 0
and y = 0, as is observed in Fig. 6(a). Certainly
these lines correspond to stable manifolds of the

fixed point, however any line passing through the
origin is a stable manifold of it, because in fact
the whole plane is a stable manifold. In this case
one could ask to what extent it is useful highlight-
ing just two lines of the whole plane.

In addition, this observed feature at represent-
ing the Mp function for the global attractor is
no longer reproduced when computing original M
function as in [Madrid and Mancho, 2009]. We then
obtain

M((x0, y0), 0, τ) =

∫ τ

−τ

√
x20e

−2t + y20e
−2tdt

= 2
√

x20 + y20 sinh(τ). (47)

In this case M does not highlight any singular fea-
ture, except for the fixed point at the origin, and
therefore the entire stable manifold is not associated
with singular feature, as can be seen in Fig. 6(b).

4. Lagrangian Descriptors and the
Ergodic Partition Theory

This section illustrates, by using a very simple
example, the link between Lagrangian descriptors
and previous rigorous results on the ergodic par-
tition theory [Mezić & Wiggins, 1999; Susuki &
Mezić, 2009].
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We consider the dynamical system:
{
ẋ = y,

ẏ = −x,
(48)

where the origin is an elliptic fixed point. This sys-
tem can be expressed in action-angle variables (ρ, θ)
as follows,




ρ̇ =
∂H

∂θ
= 0

θ̇ = −∂H

∂ρ
= −1

, ρ ∈ [0,∞), θ ∈ [0, 2π)

(49)

where x = ρ cos θ and y = ρ sin θ. The Hamiltonian
expressed in action-angle variables is H(ρ, θ) = ρ.
From these expressions it is clear that (ρ = ρ0,
θ(t) = −t + θ0) are solutions to the system (49)
which correspond to invariant 1-tori. In summary,
the phase plane of system (56) is foliated by
invariant sets consisting of concentric circles. The
autonomous system (56) does not have hyperbolic
fixed points nor their invariant manifolds, thus the
ideas based on “singular features” of Mp explained
in the preceding sections are not directly applicable
here. However it is interesting to realize that the
described results of LDs are complementary to other
previous results in the literature, which we explain
next, that rigorously justify the ability of LDs to
highlight Lagrangian coherent structures character-
ized by invariant n-tori.

The definition of Mp given in (2) is the sum of
n quantities representing the integration along tra-
jectories of the functions |ẋi|p, where i ∈ {1, . . . , n}.
These quantities, up to a factor 1/(2τ), are the time
averages along trajectories of the given functions.
Analogously, the original definition of LDs given by
[Mendoza & Mancho, 2010; Mancho et al., 2013]
based on the Euclidean arc length is obtained by
integrating the modulus of the velocity along tra-
jectories, i.e.

M(x0, t0, τ) =

∫ t0+τ

t0−τ
‖v(x(t;x0), t)‖dt. (50)

Again, M is the average along trajectories of the
function ‖v‖ up to a factor 1/(2τ). The role of
averages of functions along trajectories for obtain-
ing invariant sets is discussed in works by [Mezić &
Wiggins, 1999; Susuki & Mezić, 2009]. There, the
Birkhoff ergodic theorem is used. This theorem

states that in the limit τ → ∞, averages of func-
tions along trajectories of dynamical systems which
preserve smooth measures and are defined on com-
pact sets do exist. Level sets of these limit func-
tions are invariant sets. However, we note that the
Birkhoff ergodic theorem has not been generalized
to the case of aperiodically time-dependent vector
fields.

We examine these ideas in the case of Mp for
the example (56). First, we remark that Hamilto-
nian dynamical systems preserve smooth measures
as they are volume preserving. We show next that
the limit of the time average can be analytically cal-
culated for this system using p = 1. Considering the
solutions of (56), Mp=1 is

Mp=1(x0, 0, τ)

= ρ0

∫ τ

−τ
|sin(−t+ θ0)|+ |cos(−t+ θ0)|dt

= ρ0

∫ θ0

−τ+θ0

|sin(s)|+ |cos(s)|ds

+ ρ0

∫ τ+θ0

θ0

|sin(s)|+ |cos(s)|ds. (51)

Now we can write τ = Nπ + q with q ∈ [0, π) and
calculate one of the integrals of (51) as,

∫ θ0+τ

θ0

|sin s|ds

=

∫ θ0+Nπ+q

θ0

|sin s|ds

=

∫ θ0+Nπ

θ0

|sin s|ds+
∫ θ0+Nπ+q

θ0+Nπ
|sin s|ds

= N

∫ θ0+π

θ0

|sin s|ds+
∫ θ0+q

θ0

|sin s|ds

= 2N +

∫ θ0+q

θ0

|sin s|ds.

Analogously for the other terms we obtain,
∫ θ0+τ

θ0

|cos s|ds = 2N +

∫ θ0+q

θ0

|cos s|ds,

∫ θ0

−τ+θ0

|sin s|ds = 2N +

∫ θ0

θ0−q
|sin s|ds,

∫ θ0

−τ+θ0

|cos s|ds = 2N +

∫ θ0

θ0−q
|cos s|ds.
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(a) (b)

Fig. 7. Phase space of (56) calculated with: (a) M for τ = 10 and (b) M1 for τ = 10.

Consequently the time average of Mp=1 is the limit

lim
τ→∞

1

2τ
M1(x0, 0, τ)

= lim
N→∞

8Nρ0
2(Nπ + q)

+
ρ0

2(Nπ + q)

×
∫ θ0+q

θ0−q
|cos s|+ |sin s|ds

=
4ρ0
π

=
4

π

√
x20 + y20. (52)

In order to prove that the time average of Mp also
converges for 0 < p < 1, we can use that

0 ≤ 1

2τ
Mp(x0, 0, τ)

=
1

2τ
ρp0

∫ τ

−τ
|sin(−t+ θ0)|p + |cos(−t+ θ0)|pdt

≤ 1

2τ
ρp0

∫ τ

−τ
(1 + 1)dt = 2ρp0, ∀ p ∈ (0, 1].

Since 1
2τMp(x0, 0, τ) is an increasing function of

τ and it is bounded by a constant value, then
1
2τMp(x0, 0, τ) also converges when τ → ∞.

Results for M are also easily obtained, given
that arc length is M = 2τρ. In order to obtain the
limit of the time average here, it is not necessary
to go up to very large τ , since the time average is
a constant function in τ (i.e. 1

2τM = ρ), and thus
the convergence is obtained for any finite τ . We note

that contour lines of bothMp andM are the same as
their averages. The important point for those level
sets to be invariant sets is that they have to be taken
once the convergence of the average is reached. In
the case of Mp a sufficiently large τ is required and
in the case of M any τ is valid. In both cases the
invariant sets are just the concentric circles given
by the 1-tori (see Fig. 7). Further averages of func-
tions to complete an ergodic partition as described
by [Mezić & Wiggins, 1999; Susuki & Mezić, 2009],
are not required for this particular example, as the
circles are already minimal invariant sets.

As a final remark we note that despite the sim-
ilarity between Figs. 7(a) and 6(b), the interpre-
tation of LDs is completely different in each case.
The link between contour lines of M and invari-
ant sets requires a measure preserving dynamical
system defined on a compact set, and this is clearly
not the case for system (45) represented in Fig. 6(b).

5. Lagrangian Descriptors and 3D
Flows

Visualizing flow structures in three dimensions is of
much interest, but achieving success requires over-
coming numerous difficulties. Probably the funda-
mental issue is that it is difficult to “organize” the
data from an ensemble of trajectories in such a
way as to “reveal” geometrical structures. In this
context, LDs were applied to study the transport

1730001-14

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

7.
27

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
Y

 O
F 

C
A

L
IF

O
R

N
IA

 @
 S

A
N

 D
IE

G
O

 o
n 

02
/1

4/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.

CHAPTER 3. RESULTS

41



February 3, 2017 9:5 WSPC/S0218-1274 1730001

A Theoretical Framework for Lagrangian Descriptors

(a) A = B = C = 1 (b) A = 1, B =
q

2
3 , C =

√
3
3

(c) A = B = C = 1 (d) A = 1, B =
q

2
3 , C =

√
3
3

Fig. 8. (a) and (b) Contours of M for the ABC flow with τ = 30; (c) and (d) contours of M1 for the ABC flow with τ = 30.

in the three-dimensional unsteady Hill’s spherical
vortex in [Mancho et al., 2013]. The method of
Lagrangian descriptors was successful in this study
in that it revealed both invariant manifolds of
hyperbolic trajectories and invariant sets related to
n-tori solutions.

A brief review on the background and issues
associated with the dynamical systems approach to
transport in three dimensions was given in [Wig-
gins, 2010]. A collection of representative references
of the dynamical systems approach to Lagrangian
transport in three dimensions, that should not be
interpreted as an exhaustive review of this topic,

are: [MacKay, 1994; Mezić & Wiggins, 1994; Foun-
tain et al., 1998; Sotiropoulos et al., 2001; Xu &
Homsy, 2007; Mullowney et al., 2005; Green et al.,
2007; Branicki & Wiggins, 2009; Pouransari et al.,
2010; Levnajić & Mezić, 2010; Lester et al., 2012;
Smith et al., 2012, 2014; McIlhany et al., 2015;
Smith et al., 2016].

We illustrate the ability of LDs to visu-
alize three-dimensional flows by analyzing the
well known Arnold–Beltrami–Childress (ABC) flow
[Arnold, 1965; Arnold & Korkina, 1983; Dombre
et al., 1986]. This flow models prototypes of fast
dynamos in magnetohydrodynamics (cf. [Arnold &
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(a) A = B = C = 1 (b) A = 1, B =
q

2
3 , C =

√
3
3

(c) A = B = C = 1 (d) A = 1, B =
q

2
3 , C =

√
3
3

Fig. 9. Contours of LDs with τ = 30: (a) Zoom of M on the plane {y = 0}, (b) zoom of M on the plane {z = 0}, (c) zoom
of M1 on the plane {y = 0} and (d) zoom of M1 on the plane {z = 0}.

Korkina, 1983; Galloway, 2012]) and it is also a
steady solution of Euler’s equations for inviscid fluid
flows (see [Childress, 1966]).

The equations for fluid particle trajectories of
the ABC flow are given by,





ẋ = A sin z + C cos y,

ẏ = B sinx+A cos z,

ż = C sin y +B cos x,

x, y, z ∈ [0, 2π], (53)

where A, B, and C are parameters to be chosen
shortly. The ABC flow is one of the first flows for

which the existence of chaotic particle paths was
demonstrated (cf. [Arnold, 1965]). Subsequently,
there have been numerous studies of the flow
structure of the ABC flow from the dynamical sys-
tems point of view, e.g. [Dombre et al., 1986; Haller,
2001; Sulman et al., 2013]. Here we show that
both the very intricate manifold structures and the
coherent structures of the ABC flow can be visual-
ized with Lagrangian descriptors. In order to illus-
trate this we choose two sets of parameter values,

A = B = C = 1, A = 1, B =

√
2

3
, C =

√
3

3
.
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(a) (b)

Fig. 10. (a) M function on an elliptic region located on the plane {x = 0} for τ = 75 (value for which convergence inside
the elliptic region is ensured) and (b) M1 function on an elliptic region located on the plane {x = 0} for τ = 100 (value for
which convergence inside the elliptic region is ensured). In both panels the blue line represents the line of initial conditions
considered for the time average analysis, the magenta cross is an initial condition inside the elliptic region and the green cross
an initial condition located in a chaotic region. Also, we display in red color the contours corresponding to the magenta initial
condition after the time average has converged.

Figure 8 shows the results obtained with M and M1

for these parameter values. The figure shows both
coherent structures and the complicated tangle of
repeatedly intersecting stable and unstable mani-
folds of hyperbolic trajectories along heteroclinic
orbits. This chaotic tangle provides the “geomet-
ric template” for the chaotic mixing mechanism of
particles, which is visible from Fig. 9.

In addition, we demonstrate next with this
example the link of LDs to invariant sets. The
results discussed in the previous section are applica-
ble here as the ABC flow is incompressible and con-
sequently preserves an invariant measure. In order
to analyze the detection of KAM tori by means of
LDs for the ABC flow we will focus on the system

with parameters A = 1, B =
√
2/
√
3, C =

√
3/3. In

(a)

Fig. 11. (a) Time average evolution of M in the range τ ∈ (0, 75] for the line of initial conditions (54) and (b) time average
evolution of the pink and green initial conditions depicted in Fig. 10.
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(b)

Fig. 11. (Continued)

(a)

(b)

Fig. 12. (a) Time average evolution of M1 in the range τ ∈ (0, 100] for the line of initial conditions (54) and (b) time average
evolution of the pink and green initial conditions depicted in Fig. 10.
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particular, we consider a line of initial conditions,

x0 = (0, 3.2, z0), z0 ∈ [3.6, 5.9] (54)

which crosses an elliptic region of phase space as
shown in Fig. 10 in blue. For these initial conditions
we study the convergence of the time averages of M
and Mp so the invariant sets present in the elliptic
regions of the phase portrait for the ABC flow can
be recovered from the contours of LDs contained
in these regions. Figures 11 and 12 show the evolu-
tion of the time averages of M/(2τ) and M1/(2τ)
respectively. Observe also that their convergence
at two particular initial conditions, one inside the
elliptic region (marked with a magenta cross) and

one inside the chaotic tangle regime (green cross),
have been highlighted (see Figs. 10–12). These fig-
ures emphasize how at initial conditions inside ellip-
tic regions, the time averages M/(2τ) and M1/(2τ)
reach convergence for sufficiently large τ , meanwhile
for initial conditions located in hyperbolic regions,
M/(2τ) and M1/(2τ) do not seem to converge for
that time period (see Figs. 11–13). Thus contour
lines of M and Mp at the τ values where conver-
gence is met are in 1-1 correspondence to invari-
ant set. Thus contrary to what is stated in [Faraz-
mand & Haller, 2016], LDs distinguish coherent
structures which are invariant and this is backed
by specific mathematical results. Similar results to

(a)

(b)

Fig. 13. (a) Time average evolution of M in the range τ ∈ (0, 10 000] for a subset of the line (54) in the chaotic region and
(b) time average evolution of green initial condition in the range τ ∈ (0, 10 000].
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Fig. 14. Trajectory of an initial condition inside the elliptic
region which displays the associated invariant set.

the ones discussed here are found in [Budisić &
Mezić, 2012]. We remark that the decomposition
achieved by the LD is not minimal in the domain
x, y, z ∈ [0, 2π]. As an example, this is observed
from the red level sets displayed in the top and
bottom right corners in Fig. 10(b), which would
correspond to invariant sets disconnected from the
one inside the elliptic region. Figure 14 shows the
integration of a trajectory starting from the ini-
tial condition (0, 3.2, 4.1), marked with a magenta
cross on one of the contour lines obtained from the
time-average convergence (see Fig. 10), confirming
the invariant and minimal character of the level set
restricted to the elliptic region.

6. Objectivity and Phase Space
Structure

The utility of LDs for revealing phase space struc-
ture has been questioned in the literature [Haller,
2015] as a result of them not having the property
of objectivity. Briefly, a scalar valued and time-
dependent, function is said to be objective if it
is invariant under Galilean coordinate transforma-
tions. In other words, the pointwise values of a func-
tion are the same at points that are transformed
under a Galilean transformation, for each value of
the time variable, see, e.g. [Truesdell & Noll, 2004;
Haller et al., 2016]. Other accepted definitions for
objectivity are given in the literature in terms of
consistency between frames [Mendoza & Mancho,

2012; Peacock et al., 2015] but in this section we
base our discussion on the objectivity definition
given above as it is the one considered when debat-
ing LDs performance. Certainly in physics many
scalar valued functions describing physical quan-
tities, such as energy, or the magnitude of angu-
lar momentum, should be invariant under Galilean
transformations. But this is not a property that
is desirable for any tool designed to reveal phase
space structure since phase space structure may
not be invariant under Galilean coordinate trans-
formations. We demonstrate this in the following
example.

We consider the simplest possible dynamical
system on the plane, the zero vector field:

ẋ = 0, where x ∈ R2. (55)

This represents a system at rest. We apply a
Galilean transformation to this vector field, i.e. a
rotation x = R(t)Tx, where R(t)T denotes the
transpose of the orthogonal matrix with angular
speed ω = 1:

R(t) =

(
cos t −sin t

sin t cos t

)
.

In this rotating frame, (55) takes the form:
{
ẋ = y

ẏ = −x.
(56)

The phase portrait of (55) consists entirely of fixed
points. The phase portrait of (56), which represents
a particular case of an harmonic oscillator, consists
of a one-parameter family of invariant circles (see
[Arnold, 1973, pp. 44–45]). Clearly the phase space
structure of these two dynamical systems is differ-
ent, and as the LDs can be analytically computed
for both dynamical systems, this fact is verified
explicitly.

The arclength based LD, denoted by M , mea-
sures the arclength of a trajectory through an ini-
tial condition in both forward and backward time,
for a specified time. For (55) this is identically zero
since every point is a fixed point, and therefore the
arclength of every trajectory is zero, regardless of
the time for which it is computed. As for (56), we
recall results in Sec. 4 where it was shown that
M = (2τ)ρ for this example. The contours of M
are the same as the contours of the Hamiltonian
H = ρ, and therefore the contours of M are in 1-1
correspondence with the trajectories of (56). There-
fore, M recovers the correct phase space structure
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for both (55) and (56). Evidently, if M were objec-
tive, i.e. the same for each of these vector fields,
it would not recover the phase space structure for
each vector field.

It is instructive to consider what Lyapunov
exponents, both finite and infinite time, would
reveal for these examples. For (55) both the finite
and infinite time Lyapunov exponents for any tra-
jectory are zero. For (49) the infinite time Lya-
punov exponents of every trajectory are zero and
the value of the finite time Lyapunov exponents
depend on the time interval over which they are
computed. Therefore, we can make the following
conclusions.

• While the infinite time Lyapunov exponents are
objective, in the sense that they give the same
values for (55) and (49), they fail to reveal the
phase space structure for (49).

• Finite time Lyapunov exponents are not objec-
tive. Their values, and hence the phase space
structure that they reveal, depend on the time
interval over which they are computed. A discus-
sion of this can be found in [Branicki & Wiggins,
2010; Mancho et al., 2013].

We discuss next another example taken from
[Haller, 2005, 2015; Wang, 2015] to show that LDs

recover the correct phase space structure even when
it is not evident in the instantaneous streamline
phase portrait. We consider the following time-
dependent dynamical system,

ẋ =

(
sin 2ωt ω + cos 2ωt

−ω + cos 2ωt −sin 2ωt

)
x. (57)

Figure 15(a) shows the instantaneous velocity fields
and streamlines at t = 0 for this example with
ω = 2. They show a circulating pattern suggest-
ing the presence of an eddy. However, the following
coordinate transformation,

x = R(t)Tx, R(t) =

(
cosωt −sinωt

sinωt cosωt

)

where R(t)T is the transpose of R(t), converts sys-
tem (57) into a stationary saddle,

{
ẋ = y

ẏ = x.
(58)

Hence (57), despite the structure revealed by
the instantaneous streamline curves, is actually a
rotating saddle point, i.e. a saddle point at the ori-
gin with rotating stable and unstable manifolds.
Precisely this structure is revealed by the LD Mp, as
it is illustrated in Fig. 16, which shows contours of

(a) (b)

Fig. 15. (a) Streamlines and velocity field for system (57) at t = 0 and (b) streamlines and velocity field for system (58)
at t = 0.
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(a) (b)

Fig. 16. Contours of Mp=0.5 obtained for system (57) with τ = 10 at successive times (a) t = 0 and (b) t = π/8.

Mp=0.5 at successive times t = 0, π/8. The contours
clearly reveal the rotating saddle point structure.

In this example, Mp is clearly not objective
since the pointwise values of Mp vary from (57)
to (58). Nevertheless, it is clear that if Mp sat-
isfied this criterion of objectivity, it would be the
same for both systems and thus it would not distin-
guish between the phase space structure for each of
these very different systems, providing an inconsis-
tent description in both frames. Of course, the val-
ues ofMp at specific points of space certainly change
with the reference frame, but the points at which
Mp is singular, which are the features containing
the Lagrangian information, are transformed with
a smooth change of coordinates in the same manner
in which the manifolds themselves are transformed.
This was also illustrated for the rotating Duffing
equation in [Mendoza & Mancho, 2012].

Moreover, with respect to the question of
the requirement of objectivity in the context of
techniques for revealing Lagrangian structure, it
is instructive to note the following. Recently, in
the context of fluid mechanics, a technique called
Lagrangian-averaged vorticity deviation (LAVD)
[Haller et al., 2016] has been developed. This tech-
nique, by construction, has the property of being
invariant under Galilean transformations. Conse-
quently, it does not distinguish between the phase
portraits of (55) and (56), as we now show.

The Lagrangian-averaged vorticity deviation is
defined as follows,

LAVDt0+τ
t0 (x0) =

∫ t0+τ

t0

|w(x(x0, t0, t), t) − w(t)|dt

(59)

where the vorticity w = ∇ × v, is evaluated along
the trajectory x(x0, t0, t). In this expression w is
the instantaneous spatial mean of the vorticity
over U(t):

w(t) =

∫

U(t)
w(x, t)dV

vol(U(t))

where U(t) is a domain invariant under the fluid
flow and vol() denotes the volume. Let us evaluate
LAVD for system (56). The vorticity is constant
everywhere w = −2, in particular, also along the
trajectories. On the other hand, let us consider the
domain U(t) = {(x, y) |

√
x2 + y2 ≤ ρ1} which is

invariant under the flow of system (56). In this case,
it is easily found that:

w(t) =

−2

∫

U(t)
dV

πρ21
= −2

thus LAVD is constantly zero on the whole domain
for (56). This is also clearly the case for (55) and
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thus LAVD contour lines do not distinguish between
these systems.

Finally, a reflection on the property of objec-
tivity, understood as a property of functions which
preserve pointwise values under a Galilean trans-
formation, and when it may be required, is useful.
From the point of view of distinguishing Lagrangian
structures in velocity fields related by a Galilean
coordinate transformation, our examples show that
objectivity is not a desirable property for a
method to detect phase space structures in different
frames.

7. Conclusions

This paper provides a theoretical framework for
Lagrangian descriptors. In particular, the issues
surrounding the ability of LDs to detect invari-
ant stable and unstable manifolds of hyperbolic
points are stated and clarified. This is accom-
plished by precisely defining the notion of “singu-
lar feature” and rigorously proving the presence
of these features aligned with invariant manifolds
in four particular cases: a hyperbolic saddle point
for linear autonomous systems, a hyperbolic saddle
point for nonlinear autonomous systems, a hyper-
bolic saddle point for linear nonautonomous sys-
tems and a hyperbolic saddle point for nonlinear
nonautonomous systems. In order to achieve this
goal we have proposed a new way of constructing
Lagrangian descriptors that keeps proofs simple.

We have also discussed well known rigorous
results of the ergodic partition theory which are
related to LDs. As a result we show the ability
of LDs to highlight additional invariant sets, such
as n-tori, by means of contour plots of converged
averages.

We have presented the application of LDs to
the 3D ABC flow, in which it is shown how LDs
locate simultaneously invariant manifolds, that are
distinguishable as singular features, and invariant
tori, visible from contour lines. The ability of LDs to
highlight both manifolds and coherent eddy-like or
jet-like structures had been noted in the literature
[de la Cámara et al., 2012; Wiggins &Mancho, 2014;
Garćıa-Garrido et al., 2015], although in this paper
it is linked to previously known rigorous results. We
note however that these works dealt with aperiodic
flows and there is no generalization of the Birkhoff
ergodic theorem to the case of aperiodically time-
dependent vector fields, which is required for the
ergodic partition theory.

Finally, we have provided a discussion of the
topic of objectivity in the context of Lagrangian
descriptors. Specifically, we have analyzed their
ability to provide the correct description of phase
space structures under Galilean transformation, as
well as showing that the requirement of the objec-
tivity property in general for tools in order to reveal
phase space structures is not a desirable property.
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3.3. The Chaotic Saddle in the Lozi Map, Autonomous and Nonau-
tonomous Versions
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Abstract: In this paper, we prove the existence of a chaotic saddle for a piecewise-linear map of the
plane, referred to as the Lozi map. We study the Lozi map in its orientation and area preserving version.
First, we consider the autonomous version of the Lozi map to which we apply the Conley–Moser conditions
to obtain the proof of a chaotic saddle. Then we generalize the Lozi map on a nonautonomous version and
we prove that the first and the third Conley–Moser conditions are satisfied, which imply the existence of a
chaotic saddle. Finally, we numerically demonstrate how the structure of this nonautonomous chaotic saddle
varies as parameters are varied.
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In this paper, we prove the existence of a chaotic saddle for a piecewise-linear map of the plane,
referred to as the Lozi map. We study the Lozi map in its orientation and area preserving
version. First, we consider the autonomous version of the Lozi map to which we apply the
Conley–Moser conditions to obtain the proof of a chaotic saddle. Then we generalize the Lozi
map on a nonautonomous version and we prove that the first and the third Conley–Moser
conditions are satisfied, which imply the existence of a chaotic saddle. Finally, we numerically
demonstrate how the structure of this nonautonomous chaotic saddle varies as parameters are
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1. Introduction

In this paper, we prove that the Lozi map [Lozi,
1978], as well as a nonautonomous generalization
of the Lozi map, possesses a chaotic saddle, i.e.
a hyperbolic invariant set on which the dynamics
is topologically conjugate to a Bernoulli shift. Our
construction uses the Conley–Moser conditions for
autonomous maps as developed in [Moser, 1973]
(see also [Wiggins, 2003]) and the nonautonomous
Conley–Moser conditions as developed in [Wiggins,
1999] and [Balibrea-Iniesta et al., 2015]. For earlier

work in a similar spirit as the Conley–Moser condi-
tions see [Alekseev, 1968a, 1968b, 1969].

Previously, the autonomous Conley–Moser con-
ditions have been used by [Devaney & Nitecki, 1979]
to show the existence of a chaotic invariant set for
the Hénon map and by [Holmes, 1982] and [Chas-
taing et al., 2015] to show the existence of a chaotic
invariant set for the bouncing ball map.

While the development of the “dynamical sys-
tems approach to nonautonomous dynamics” is
currently a topic of much interest in the pure
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mathematics community, it is not a topic that is
widely known in the applied dynamical systems
community (especially the fundamental work that
was done in the 1960’s). An applied motivation for
such work is an understanding from the dynamical
systems point of view of fluid transport for aperi-
odically time dependent flows. Wiggins and Mancho
[2014] completed a survey of the history of nonau-
tonomous dynamics as well as its application to
fluid transport. Earlier work on chaos in nonau-
tonomous systems is described in [Lerman & Sil-
nikov, 1992; Stoffer, 1988a, 1988b].

This paper is outlined as follows. In Sec. 2, we
introduce the setup of the problem. The definitions
and theorems given in this section make clear what
we mean by the phrase chaotic invariant set for
both autonomous and nonautonomous maps. In
Secs. 3 and 4, we construct chaotic invariant sets
(i.e. chaotic saddles) for both the autonomous and
nonautonomous versions of the Lozi map, respec-
tively. In Sec. 5, we show how these sets are
detected using the Discrete Lagrangian Descriptor
(see [Lopesino et al., 2015]) for different parameter
values, both in the autonomous and in the nonau-
tonomous case. Finally, in Sec. 6 we summarize our
results.

2. Setup and Geometry
of the Problem

In this section, we recall the set-up for the
autonomous Conley–Moser conditions that were
introduced by [Moser, 1973] and the nonau-
tonomous Conley–Moser conditions introduced in
[Wiggins, 1999]. We follow the structure in [Wig-
gins, 2003] for our exposition, but with an inverse
notation (that is, f ≡ L−1 in the autonomous case
and fn ≡ L−1

n in the nonautonomous case, where
we use the notation L in the autonomous case and
L−1
n in the nonautonomous case to denote the gen-

eral form for the maps under consideration, rather
than f and fn, respectively, from the original ref-
erences, since L is traditionally used to refer to the
Lozi map).

2.1. The autonomous
Conley–Moser conditions

We begin with the following two definitions.

Definition 2.1. A µv-vertical curve is the graph of
a function x = v(y) for which

−R ≤ v(y) ≤ R,

|v(y1)− v(y2)| ≤ µv|y1 − y2|
for −R ≤ y1, y2 ≤ R.

Similarly, a µh-horizontal curve is the graph of a
function y = h(x) for which

−R ≤ h(x) ≤ R,

|h(x1)− h(x2)| ≤ µh|x1 − x2|
for −R ≤ x1, x2 ≤ R.

Definition 2.2. Given two nonintersecting µv-
vertical curves v1(y) < v2(y), y ∈ [−R,R], we define
a µv-vertical strip as

V = {(x, y) ∈ R2 |x ∈ [v1(y), v2(y)]; y ∈ [−R,R]}.
Similarly, given two nonintersecting µh-horizontal
curves h1(x) < h2(x), x ∈ [−R,R], we define a µh-
horizontal strip as

H = {(x, y) ∈ R2 | y ∈ [h1(x), h2(x)];x ∈ [−R,R]}.
The width of horizontal and vertical strips is defined
as

d(H) = max
x∈[−R,R]

|h2(x)− h1(x)|,

d(V ) = max
y∈[−R,R]

|v2(y)− v1(y)|.

Keeping these definitions in mind, we begin with
the Conley–Moser conditions for the autonomous
case. We consider a map

L : D → R2,

where D is a square in R2, i.e.

D = {(x, y) ∈ R2 | −R ≤ x ≤ R,−R ≤ y ≤ R}.
Let

I = {1, 2, . . . , N}, (N ≥ 2),

be an index set, and let

Hi, i ∈ I

be a set of disjoint µh-horizontal strips and let

Vi, i ∈ I

be a set of disjoint µv-vertical strips. Suppose that
L satisfies the following two conditions.

Assumption 1. 0 ≤ µv, µh < 1 and L maps Vi

homeomorphically onto Hi, (L(Vi) = Hi) for i ∈ I.
Moreover, the horizontal boundaries of Vi map to
the horizontal boundaries of Hi and the vertical
boundaries of Vi map to the vertical boundaries
of Hi.
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Assumption 2. Suppose H is a µh-horizontal strip
contained in

⋃
i∈I Hi. Then

L(H) ∪Hi ≡ H̃i

is a µh-horizontal strip for every i ∈ I. Moreover,

d(H̃i) ≤ νhd(H) for some 0 < νh < 1.

Similarly, suppose V is a µv-vertical strip contained
in
⋃

i∈I Vi. Then

L−1(V ) ∩ Vi ≡ Ṽi

is a µv-vertical strip for every i ∈ I. Moreover,

d(Ṽi) ≤ νvd(V ) for some 0 < νv < 1.

Then we have the following theorem.

Theorem 1. Suppose L satisfies Assumptions 1
and 2. Then L has an invariant Cantor set, Λ, on
which it is topologically conjugate to a full shift on
N symbols, i.e. the following diagram commutes

Λ
L−−−−→ Λ

φ

�
�φ

ΣN σ−−−−→ ΣN

(1)

where φ is a homeomorphism mapping Λ onto ΣN

and σ denotes the shift map acting on a space of
bi-infinite sequence of N symbols, denoted by ΣN .

More details on the map σ and the space ΣN

can be found in [Wiggins, 2003], as well as in com-
ments following (10).

2.2. The nonautonomous
Conley–Moser conditions

Next, we describe the setting for the nonautono-
mous Conley–Moser conditions. These conditions
were generalized by [Wiggins, 1999] but we are using
the notation used in [Balibrea-Iniesta et al., 2015],
where a more detailed discussion of the definitions
is given.

Definition 2.3. Let D ⊂ R2 denote a closed and
bounded set. We define its projections as

Dx = {x ∈ R for which there exists a

y ∈ R with (x, y) ∈ D}
Dy = {y ∈ R for which there exists a

x ∈ R with (x, y) ∈ D}.

Dx and Dy represent the projections of D onto
the x-axis and the y-axis, respectively. Let Ix be
a closed interval contained in Dx and let Iy be a
closed interval contained in Dy.

Definition 2.4. Let 0 ≤ µh < ∞. A µh-horizontal
curve, H, is defined to be the graph of a func-
tion h : Ix → R where h satisfies the following two
conditions:

(1) The set H = {(x, h(x)) ∈ R × R such that x ∈
Ix} is contained in D.

(2) For every x1, x2 ∈ Ix, we have

|h(x1)− h(x2)| ≤ µh|x1 − x2|. (2)

Similarly, let 0 ≤ µv < ∞. A µv-vertical curve, V ,
is defined to be the graph of a function v : Iy → R
where v satisfies the following two conditions:

(1) The set V = {(v(y), y) ∈ R × R such that y ∈
Iy} is contained in D.

(2) For every y1, y2 ∈ Iy, we have

|v(y1)− v(y2)| ≤ µv|y1 − y2|. (3)

Now we can define two-dimensional strips by using
these horizontal and vertical curves.

Definition 2.5. Given two nonintersecting µv-
vertical curves v1(y) < v2(y), y ∈ Iy, we define a
µv vertical strip as

V = {(x, y) ∈ R2 such that

x ∈ [v1(y), v2(y)]; y ∈ Iy}.
Similarly, given two nonintersecting µh-horizontal
curves h1(x) < h2(x), x ∈ Ix, we define a µh hori-
zontal strip as

H = {(x, y) ∈ R2 such that

y ∈ [h1(x), h2(x)];x ∈ Ix}.
The width of horizontal and vertical strips is defined
as

d(H) = max
x∈Ix

|h2(x)− h1(x)|,

d(V ) = max
y∈Iy

|v2(y)− v1(y)|.

Additionally, we define horizontal and vertical
boundaries of the strips.

Definition 2.6. The vertical boundary1 of a µh-
horizontal strip H is denoted ∂vH and is defined

1The symbol ∂ is the usual notation from topology denoting the boundary of a set. In this paper, we further refine this notion
by referring to horizontal boundaries, ∂h, and vertical boundaries, ∂v.
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as

∂vH = {(x, y) ∈ H such that x ∈ ∂Ix}.
The horizontal boundary of a µh-horizontal strip H
is denoted ∂hH and is defined as

∂hH ≡ ∂H − ∂vH.

We can similarly find the boundaries of µv-vertical
strips.

Now we need to define another kind of strip
which will appear for the nonautonomous Conley–
Moser conditions.

Definition 2.7. We say that H is a µh-horizontal
strip contained in a µv-vertical strip V if the two
µh-horizontal curves defining the vertical boundary
of H are contained in V , with the remaining bound-
ary components of H contained in ∂vV .

The two µh-horizontal curves defining the hor-
izontal boundary of H are referred to as the hori-
zontal boundary of H, and the remaining boundary
components are referred to as the vertical bound-
ary of H. This is described in detail in the next
definition.

Definition 2.8. Let H̃ be a µh-horizontal strip
contained in a µv-vertical strip, V . We define the
boundaries of H̃ as

∂vH̃ = {(x, y) ∈ ∂H̃ such that (x, y) ∈ ∂vH}

= ∂H̃ ∩ ∂vH

and

∂hH̃ = ∂H̃ − ∂vH̃.

The boundaries of Ṽ µv-vertical strip contained in
Hµh-horizontal strip are defined analogously.

We will be interested in the behavior of µv-
vertical strips under maps. We want to focus on the
case when the image of a µv-vertical strip intersects
its preimage.

Definition 2.9. Let V and Ṽ be µv-vertical strips.
Ṽ is said to intersect V fully if Ṽ ⊂ V and ∂hṼ ⊂
∂hV .

Now we can state the main theorem for the
nonautonomous case. Let {Ln,Dn}+∞

n=−∞ be a
sequence of maps with

Ln : Dn → Dn+1, ∀n ∈ Z and

L−1
n : Dn+1 → Dn

(4)

in case the corresponding inverse function exists.

We require that on each domain Dn there exists
a finite collection of vertical strips V n

i ⊂ Dn (∀n ∈
Z and ∀ i ∈ I = {1, 2, . . . , N}) which map into a
finite collection of horizontal strips located in Dn+1:

Hn+1
i ⊂ Dn+1 with Ln(V

n
i ) = Hn+1

i ,

∀n ∈ Z, i ∈ I. (5)

We also need to define

Hn+1
ij ≡ Hn+1

i ∩ V n+1
j

V n
ji ≡ L−1

n (V n+1
j ) ∩ V n

i .
(6)

Following this idea we introduce the definition
of transition matrix associated to a sequence of
maps {Ln,Dn}+∞

n=−∞,

A ≡ {An}+∞
n=−∞ is a sequence of matrices

of dimension N ×N such that

An
ij =

{
1 if Ln(V

n
i ) ∩ V n+1

j �= ∅
0 otherwise

or equivalently

An
ij =

{
1 if Hn+1

i ∩ V n+1
j = Hn+1

ij �= ∅
0 otherwise

∀ i, j ∈ I

(7)

which will be needed for applying the Conley–
Moser conditions to a given sequence of maps
{Ln,Dn}+∞

n=−∞ and then proving the existence of
a chaotic invariant set.

Assumption 1. For all i, j ∈ I such that An
ij = 1,

Hn+1
ij is a µh-horizontal strip contained in V n+1

j
with 0 ≤ µvµh < 1. Moreover, Ln maps V n

ji homeo-

morphically ontoHn+1
ij with L−1

n (∂hH
n+1
ij ) ⊂ ∂hV

n
i .

Remark 2.1. The fact that every nonempty Hn+1
ij ⊂

Dn+1 is a µh-horizontal strip contained in V n+1
j

shows that the two µh-horizontal curves which form
the boundary (∂hLn(V

n
i ) = ∂hH

n+1
i ) cut the hori-

zontal boundary of V n+1
i in exactly four points.

Furthermore, since Ln is one-to-one on Dn
V ≡⋃N

i=1 V
n
i then we can define an inverse function L−1

n

on Ln(D
n
V ) =

⋃N
i=1 Ln(V

n
i ) ≡

⋃N
i=1H

n+1
i .

And since Ln maps V n
ji homeomorphically onto

Hn+1
ij with L−1

n (∂hH
n+1
ij ) ⊂ ∂hV

n
i then L−1

n maps

Hn+1
ij homeomorphically onto V n

ji (∀ i, j ∈ I) with

Ln(L
−1
n (∂hH

n+1
ij )) = ∂hH

n+1
ij ⊂ Ln(∂hV

n
i ). (8)
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Assumption 2. Let V n+1 be a µv-vertical strip
which intersects V n+1

j fully. Then L−1
n (V n+1) ∩

V n
i ≡ Ṽ n

i is a µv-vertical strip intersecting V n
i fully

for all i ∈ I such that An
ij = 1. Moreover,

d(Ṽ n
i ) ≤ νvd(V

n+1) for some 0 < νv < 1. (9)

Similarly, let Hn be a µh-horizontal strip contained
in V n

i such that also Hn ⊂ Hn
ji for some i, j ∈ I

with An−1
ji = 1. Then Ln(H

n) ∩ V n+1
k ≡ H̃n+1

k is a

µh-horizontal strip contained in V n+1
k for all k ∈ I

such that An
ik = 1. Moreover,

d(H̃n+1
k ) ≤ νhd(H

n) for some 0 < νh < 1. (10)

We also need to adapt some definitions from
symbolic dynamics. Let

s = (· · · sn−k · · · sn−2sn−1 · snsn+1 · · · sn+k · · ·)
(11)

denote a bi-infinite sequence with sl ∈ I (∀ l ∈ Z)
where adjacent elements of the sequence satisfy the
rule An

snsn+1
= 1, ∀n ∈ Z.

We denote the set of all such symbol sequences
by ΣN

{An}. If σ denotes the shift map

σ(s) = σ(· · · sn−2sn−1 · snsn+1 · · ·)

= (· · · sn−2sn−1sn · sn+1 · · ·) (12)

on ΣN
{An}, we define the “extended shift map” σ̃ on

Σ̃ ≡ ΣN
{An} × Z by

σ̃(s, n) = (σ(s), n + 1).

It is also defined as (13)

f(x, y;n) = (Ln(x, y), n + 1).

We now can state the main theorem.

Theorem 2. Suppose {Ln,Dn}+∞
n=−∞ satisfies A1

and A2. There exists a sequence of sets Λn ⊂ Dn,
with Ln(Λn) = Λn+1, such that the following dia-
gram commutes

Λn × Z f−−−−→ Λn+1 × Z
φ

�
�φ

ΣN
{An} × Z σ̃−−−−→ ΣN

{An} × Z

(14)

where φ(x, y;n) ≡ (φn(x, y), n) with φn(x, y) is a
homeomorphism mapping Λn onto ΣN

{An}.

Remark 2.2. We are referring to {Λn} as an infinite
sequence of chaotic invariant sets. Defining

Λ ≡
⋃

n∈Z
Λn,

then Λ contains an uncountable infinity of orbits
where each orbit is unstable (of saddle type), and
the dynamics on the invariant set exhibits sensitive
dependence on initial conditions.

As we will see, it can be difficult to verify
Assumption 2 in specific examples. For that rea-
son we will define the third condition known as the
“cone condition”. Before stating this condition, we
define the following

Vn =
⋃

i,j∈I
V n

ij ≡
⋃

i,j∈I
V n

i ∩ L−1
n (V n+1

j ), (15)

Hn+1 =
⋃

i,j∈I
Hn+1

ji

≡
⋃

i,j∈I
V n+1

j ∩ Ln(V
n
i ), Ln(Vn) = Hn+1

(16)

Ss
K = {(ξz, ηz) ∈ R2 | |ηz | ≤ µv|ξz|, z ∈ K}

(17)

Su
K = {(ξz, ηz) ∈ R2 | |ξz | ≤ µh|ηz|, z ∈ K},

(18)

with K being either Vn or Hn+1.
Now we can state Assumption 3.

Assumption 3. The cone condition. Df n(S
u
Vn) ⊂

Su
Hn+1 , Df −1

n (Ss
Hn+1) ⊂ Ss

Vn .

Moreover, if (ξLn(zn0 )
, ηLn(zn0 )

) ≡ DLn(z
n
0 ) · (ξzn0 ,

ηzn0 ) ∈ Su
Hn+1 then

|ηLn(zn0 )
| ≥

(
1

µ

)
|ηzn0 |. (19)

If (ξL−1
n (zn+1

0 ), ηL−1
n (zn+1

0 )) ≡ DL−1
n (zn+1

0 ) · (ξzn+1
0

,

ηzn+1
0

) ∈ Ss
Vn then

|ξL−1
n (zn+1

0 )| ≥
(
1

µ

)
|ξzn+1

0
| for µ > 0. (20)

We have the following theorem.

Theorem 3. If nonautonomous A1 and A3 are sat-
isfied for 0 < µ < 1− µhµv then A2 is satisfied and
so Theorem 2 holds.
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Proof. The proof can be found in [Balibrea-Iniesta
et al., 2015]. �

3. The Autonomous Lozi Map

In this section, we show that Assumptions 1
and 2 of the Conley–Moser conditions hold for the
autonomous Lozi map. Typically, it has been diffi-
cult to show that Assumption 2 holds for specific
maps. However, the relatively simple form of the
Lozi map allows us to demonstrate Assumption 2
explicitly.

The (autonomous) Lozi map is defined as
L(x, y) = (1 + y − a|x|, bx), where a, b ∈ R:

L(x, y) = (1 + y − a|x|,−x). (21)

This map is invertible with inverse

L−1(x, y) = (−y, x+ a|y| − 1). (22)

For our purposes we will consider the situation
where the Lozi map is orientation and area pre-
serving, which occurs when b = −1. Henceforth, b
will be fixed at this value and we will view a as a
parameter.

The setup for the autonomous problem is as
follows. We consider the map

L : S → R2,

where the square S = {(x, y) ∈ R2 : |x| ≤ R, |y| ≤
R} and the boundaries of the square are

L1 = {(x, y) ∈ R2 | y = R},
L2 = {(x, y) ∈ R2 | y = −R},
L3 = {(x, y) ∈ R2 |x = R},
L4 = {(x, y) ∈ R2 |x = −R}.

Furthermore, we need to define the subsets of the
boundaries of the square S as follows:

L+
1 = {(x, y) ∈ R2 |x ≥ 0, y = R},

L−
1 = {(x, y) ∈ R2 |x < 0, y = R},

L+
2 = {(x, y) ∈ R2 |x ≥ 0, y = −R},

L−
2 = {(x, y) ∈ R2 |x < 0, y = −R},

L+
3 = {(x, y) ∈ R2 |x = R, y ≥ 0},

L−
3 = {(x, y) ∈ R2 |x = R, y < 0},

Fig. 1. Geometrical setting: Boundaries and subsets of the
boundaries of the square S.

L+
4 = {(x, y) ∈ R2 |x = −R, y ≥ 0},

L−
4 = {(x, y) ∈ R2 |x = −R, y < 0},

as shown in Fig. 1.
At this moment, we can state the main result

of this section; the existence of the chaotic saddle
for the Lozi autonomous map.

Theorem 4. For a > 4, Assumptions 1 and 2 hold
for the autonomous Lozi map, and therefore, it pos-
sesses a chaotic saddle inside the square S.

The proof of this theorem is carried out in the
following subsections.

3.1. Verification of Assumption 1
of the autonomous
Conley–Moser conditions

In this section, we will show how the map L acts
on the square S. In order to do that, we want to
see how the boundaries of the square S are trans-
formed. This action can be seen in Fig. 2.

First, we begin with the map L acting on the
upper boundary, L1,

2

L(L1) = L(x,R) = (1 +R− a|x|,−x)

2For notational convenience henceforth we will denote the image of a point (x, y) under L by (X,Y ).
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r

p q

L(L−
1
)

L(L+
1
)L(L+

2
)

L(L−
2
)

L(L
3
)

L(L
4
)

Fig. 2. L mapping S.

{
X = 1 +R− a|x|
Y = −x

|y| = 1 +R− x

a

⇒





y =
1 +R

a
− x

a
, x < 0 (L−

1 )

y =
x

a
− 1 +R

a
, x ≥ 0 (L+

1 ).

(23)

We do the same but for the lower boundary, L2,

L(L2) = L(x,−R) = (1−R− a|x|,−x)
{
X = 1−R− a|x|
Y = −x

|y| = 1−R− x

a

⇒





y =
1−R

a
− x

a
, x < 0 (L−

2 )

y =
x

a
− 1−R

a
, x ≥ 0 (L+

2 ).

(24)

Now we see the map L acting on the right side, L3,

L(L3) = L(R, y) = (1 + y − aR,−R)

{
X = 1 + y − aR

Y = −R

(25)

and the left side, L4,

L(L4) = L(−R, y) = (1 + y − aR,R)

{
X = 1 + y − aR

Y = R.

(26)

From these computations we can set that the hor-
izontal boundaries L1 and L2 are mapped by L to
affine lines with slopes |m| = 1/a passing through
the points q = (1 +R, 0) and p = (1−R, 0) respec-
tively that must be outside the domain S as we
will see later. Moreover, vertical lines are mapped
to horizontal lines. From Fig. 2, we can observe
how the strips are formed. In this case, the set
L(S) ∩ S is the union of the two horizontal strips
H1 and H2.

On the other hand, we want to show L−1 acting
on S, as is shown in Fig. 3. As we did before, we
start with L−1 acting on the upper side L1.

L−1(L1) = L−1(x,R) = (−R,x+ aR− 1)

{
X = −R

Y = x+ aR− 1

(27)

L−1(L
1
) L−1(L

2
)

L−1(L+
3
) L−1(L−

3
)

L−1(L−
4
)L−1(L+

4
)

p̃

q̃

Fig. 3. L−1 mapping S.
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and L−1 acting on the lower side, L2,

L−1(L2) = L−1(x,−R) = (R,x+ aR− 1)

{
X = R

Y = x+ aR− 1.

(28)

Now we focus on L−1 acting on the right side, L3,

L−1(L3) = L−1(R, y) = (−y,R+ a|y| − 1)
{
X = −y

Y = R+ a|y| − 1

y = R+ a|x| − 1

⇒
{
y = R+ ax− 1, y < 0 (L−

3 )

y = R− ax− 1, y ≥ 0 (L+
3 )

(29)

and L−1 acting on the left side, L4,

L−1(L4) = L−1(−R, y) = (−y,−R+ a|y| − 1)
{
X = −y

Y = −R+ a|y| − 1

y = a|x| − (1 +R)

⇒
{
y = ax− (1 +R), y < 0 (L−

4 )

y = −ax− (1 +R), y ≥ 0 (L+
4 ).

(30)

From this we can observe that the vertical bound-
aries L3 and L4 are mapped by L−1 to affine lines
with slopes |m| = a passing through the points
p̃ = (0, R − 1) and q̃ = (0,−(1 + R)) respectively,
which are outside the square, and horizontal lines
are mapped to vertical lines. As we show in Fig. 3,
the union of the vertical strips V1 and V2 is the set
L−1(S) ∩ S.

Now that we know how the square S is mapped
under L and L−1 we have to set some conditions on
the size of S, that is the value R. We have to keep
in mind two conditions.

The first one is that we need the two horizon-
tal strips and the two vertical strips to cross each
other. (We illustrate this idea in Fig. 2.) For that
reason, we need the point p to have first coordinate
greater than R and the point p̃ to have second coor-
dinate lower than −R. Because of the symmetry of
the problem, we reflect only on the condition for p

 H
1

 H
2

 V
2 V

1

Fig. 4. Vertical and horizontal strips. H1 ∪H2 := L(S) ∩ S
and V1 ∪ V2 := L−1(S) ∩ S.

in the next inequality

1−R ≥ R ⇔ 1

2
≥ R. (31)

On the other hand, the second issue is that we
need the area of intersection between the strips,
represented for instance in Fig. 4, to be inside
the domain S. This is achieved when the point
r = L(L−

1 ) ∩ {y = R} has first coordinate lower
than −R, as we can see in Fig. 2.

r = L(L−
1 ) ∩ {y = R}

= (1 +R− a|x|,−x)|−x=R

= (1 +R− aR,R). (32)

So this last assumption is translated into

1 +R− aR < −R (33)

and this holds when

R ≥ 1

a− 2
. (34)

Combining these two conditions we have,

1

a− 2
≤ R ≤ 1

2
. (35)

This last inequality only makes sense when
a ≥ 4.
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Once we have set these conditions, we can take

R(a) =
1

2

(
1

a− 2
+

1

2

)

=
a

4(a− 2)
, for every a ≥ 4, (36)

which is the midpoint of the interval
[

1

a− 2
,

1

2

]
.

Now we start proving the first assumption, A1, for
the autonomous Conley–Moser conditions. For this
purpose, we need to define the vertical (V1 and V2)
and the horizontal (H1 and H2) strips. To obtain
the horizontal strips we will map forward by L the
square S and make the intersection with the same
square. To get the vertical strips we will map back-
ward by L−1 the square S and intersect it with S,
that is

H1 ∪H2 := L(S) ∩ S

V1 ∪ V2 := L−1(S) ∩ S
(37)

where H1 is the upper half part of L(S)∩S and H2

is the lower half part of L(S)∩S, V1 is the left half
part of L−1(S) ∩ S and V2 is the right half part of
L−1(S) ∩ S. We will use the following notation

H1 := (L(S) ∩ S)+, where y > 0,

H2 := (L(S) ∩ S)−, where y < 0,

V1 := (L−1(S) ∩ S)−, where x < 0,

V2 := (L−1(S) ∩ S)+, where x > 0.

(38)

These strips can be seen in Fig. 4.
It is easy to see from expressions in (38) that L

maps Vi homeomorphically onto Hi, (L(Vi) = Hi)
for i = 1, 2. Furthermore, the horizontal bound-
aries of Vi map to the horizontal boundaries of Hi

and the vertical boundaries of Vi map to the verti-
cal boundaries of Hi. Moreover, Vi are µv-vertical
strips because its vertical boundaries are µv-vertical
curves where |µv| = 1/a. And Hi are µh-horizontal
strips because its horizontal boundaries are µh-
horizontal curves where |µh| = 1/a.

Remark 3.1. We have to take care around |µv| =
1/a. The slope of the vertical lines is a but seen as
horizontal curves. We must see this slope rate as
if the vertical lines were µv-vertical curves and so
|µv| = 1/a.

We have to keep in mind that the product of
the slopes of the strips has to be less than 1 as it
is required in the Conley–Moser conditions. In our
case |µh| = |µv| = 1/a. Therefore

|µh · µv| =
∣∣∣∣
1

a
· 1
a

∣∣∣∣ =
1

a2
(39)

and the condition of the slopes of A1 is satisfied.

3.2. Verification of Assumption 2
of the autonomous
Conley–Moser conditions

The second assumption describes how the map L
bends and makes thinner strips on each iteration.
Moreover, we obtain this rate which in our assump-
tion is called νv. Lets take V — a µv-vertical strip
contained, for instance, in V2 (V ⊂ V2). As we
can see in Fig. 5, we name the vertices of V2 as
v1 = (v1x , R), v2 = (v2x , R), v3 = (v3x ,−R) and
v4 = (v4x ,−R) and the vertices which delimit V
are q1 = (q1x , R), q2 = (q2x , R), q3 = (q3x ,−R) and
q4 = (q4x ,−R). We assume that

v1x < q1x < q2x < v2x

v3x < q3x < q4x < v4x
(40)

and

d(V ) = |q2x − q1x | = |q4x − q3x |.

L(Ṽ2)

V

v1 v2

v3 v4

q1 q2

q3 q4

q̃1
q̃2

q̃4

H2

V2

q̃3

Fig. 5. V ⊂ V2 strip and L(Ṽ2) ≡ V ∩H2.
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The vertical boundaries of V are the straight lines
with slope rate a (because V is µv-vertical strip)
and which pass through the points q1 and q2 respec-
tively:

yq1 = ax+R− aq1x

yq2 = ax+R− aq2x
(41)

We need to determine Ṽ2 ≡ L−1(V ) ∩ V2. Since we
do not know how L−1 acts on V , first we obtain
L(Ṽ2) ≡ V ∩L(V2) = V ∩H2 and after that, we will
recover Ṽ2 by iterating L(Ṽ2) backward. V cuts H2

at four points: q̃1, q̃2, q̃3 and q̃4 and we can describe
them as follows:

q̃1 : yq1 ∩
{
y =

x− (1−R)

a

}

⇒





y =
x− (1−R)

a

y = ax+R− aq1x .

(42)

Solving these two equations gives the coordinates of
q̃1:

q̃1x =
a2q1x − aR− 1 +R

a2 − 1

q̃1y =
aq1x + aR− a−R

a2 − 1
.

(43)

We continue the same procedure for the rest of the
points

q̃2 : yq2 ∩
{
y =

x− (1−R)

a

}

⇒





y =
x− (1−R)

a

y = ax+R− aq2x

(44)

and the coordinates for q̃2 are

q̃2x =
a2q2x − aR− 1 +R

a2 − 1

q̃2y =
aq2x + aR− a−R

a2 − 1
.

(45)

In the case of q̃3 we solve

q̃3 : yq1 ∩
{
y =

x− (1 +R)

a

}

⇒




y =

x− (1 +R)

a

y = ax+R− aq1x

(46)

with coordinates

q̃3x =
a2q1x − aR− 1−R

a2 − 1

q̃3y =
aq1x − aR− a−R

a2 − 1
.

(47)

Finally, to obtain q̃4 we solve the system

q̃4 : yq2 ∩
{
y =

x− (1 +R)

a

}

⇒





y =
x− (1 +R)

a

y = ax+R− aq2x

(48)

therefore its coordinates are

q̃4x =
a2q2x − aR− 1−R

a2 − 1

q̃4y =
aq2x − aR− a−R

a2 − 1
.

(49)

At this moment, we have given a precise
description of L(Ṽ2); it is a strip delimited by the
four vertices from above and the straight lines yq1,

yq2, y = x−(1−R)
a and y = x−(1+R)

a . In order to

recover Ṽ2 we should map it backward by L−1. By
continuity, and since L is orientation preserving, the
points which are leading to y = R are L−1(q̃4) and
L−1(q̃3) and the points that are mapped to y = −R
are L−1(q̃2) and L−1(q̃1), and therefore

d(Ṽ2) = |L−1(q̃4x)− L−1(q̃3x)|

= |L−1(q̃2x)− L−1(q̃1x)|. (50)

For instance, we compute L−1(q̃4x) and
L−1(q̃3x)

L−1(q̃4x) = L−1

(
a2q̃2x − aR− 1−R

a2 − 1
,
aq̃2x − aR− a−R

a2 − 1

)

=

(
aR+ a+R− aq̃2x

a2 − 1
,
a2q̃2x − aR− 1−R

a2 − 1
+

a|aq̃2x − aR− a−R|
a2 − 1

− 1

)
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(∗)
=

(
aR+ a+R− aq̃2x

a2 − 1
,
a2q2x − aR− 1−R− a2q2x + a2R+ a2 + aR− a2 + 1

a2 − 1

)

=

(
aR+ a+R− aq̃2x

a2 − 1
, R

)
. (51)

In (∗) we have used the fact that aq̃2x−aR−a−R <
0 as q̃2x < R and a > 0. The computations for
L−1(q̃2) are analogous, so

L−1(q̃3x) =

(
a+ aR+R− aq1x

a2 − 1
, R

)
. (52)

Using (50), we can compute d(Ṽ2)

d(Ṽ2) =
|a+ aR+R− aq1x − a− aR−R+ aq2x |

a2 − 1

=
a

a2 − 1
· |q2x − q1x | = νv · d(V ). (53)

Therefore, we only need the rate νv to be less than

1 and that holds when a > 1+
√
5

2 :

a

a2 − 1
< 1 ⇔ a2 − a− 1 > 0 ⇔ a >

1 +
√
5

2
= Φ.

(54)

The last issue of Assumption 2 that remains to
be proved is that Ṽi is a µv-vertical strip. In order
to prove this we realize that L(Ṽi) = V ∩ L(Vi) =
V ∩Hi is a µh-horizontal strip since its boundaries
are µh-horizontal curves. As we know by Assump-
tion 1, by F−1 horizontal boundaries of horizon-
tal strips map to horizontal boundaries of vertical
strips and vertical boundaries of vertical strips map
to vertical boundaries of horizontal strips and it
is clear that this vertical boundaries of Ṽi are µv-
horizontal curves. Therefore, the second assumption
is already proven and hence, using Theorem 4, the
existence of the chaotic saddle inside S is proven.

4. Nonautonomous Lozi Map

In this section, we prove that Assumptions 1 and 3
of the nonautonomous Conley–Moser conditions
hold for the nonautonomous Lozi map. We begin
by developing the set-up for the problem. We define
the maps Ln and the domains Sn as follows:

Ln(x, y) = (1 + y − a(n)|x|,−x) (55)

and

L−1
n (x, y) = (−y, x+ a(n)|y| − 1) (56)

where a(n)= a+ ε(1 + cos(n)), a> 4. The domains
can be set as Sn = [−R(n), R(n)] × [−R(n), R(n)]

where

R(n) =
a(n)

4(a(n)− 2)
. (57)

Although the domain may change with each itera-
tion, in this example we can consider a fixed domain
in order to simplify the proof of Theorem 5. There-
fore we define the domain as:

S = sup
n∈Z

([−R(n), R(n)]× [−R(n), R(n)])

= [−R,R]× [−R,R] (58)

where

R = sup
n∈Z

a(n)

4(a(n) − 2)
. (59)

To find this value we examine the monotonicity of
the function

f(a(n)) =
a(n)

4(a(n) − 2)
(60)

for a(n) �= 2. This function always decreases since
its derivate is negative when a(n) �= 2. Therefore,
the supreme of this value is determined from the
following relations:

inf
n∈Z

a(n) = a+ ε(1− 1) = a (61)

and

R = sup
n∈Z

R(n) =
inf
n∈Z

a(n)

4
(
inf
n∈Z

a(n)− 2
) =

a

4(a− 2)
.

(62)

As we did in the autonomous case, we must check
conditions similar to inequalities (31) and (33)
in order to obtain strips of four vertices totally
included in the maximal domain S.

By the symmetry of the problem, as it is shown
in Fig. 4, the first condition, (31), is satisfied since
the point p does not depend on the iteration n. So
this condition holds when

R <
1

2
. (63)

The second condition is analogous to (33), and it
also holds. We want the point r to cut the horizontal
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line y = R out from the domain S and it must have
first coordinate lower than −R.

r = Ln(L
−
1 ) ∩ {y = R}

= (1 +R− a(n)|x|,−x)|−x=R

= (1 +R− a(n)R,R) (64)

therefore, we must determine if the following
inequality holds

1 +R− a(n)R < −R ⇔ 1 < (a(n)− 2)R

for all n ∈ Z (65)

and it does hold since

(a(n)− 2)R > (a− 2)
a

4(a − 2)
=

a

4
> 1 (66)

when a > 4 for all n ∈ Z.
Henceforth, we set S = Sn for all n ∈ Z and we

can state the main nonautonomous theorem.

Theorem 5. For a(n) = a + ε(1 + cos(n)) where
a > 4 and ε small, Assumptions 1 and 3 of the
nonautonomous Conley–Moser conditions hold for
the nonautonomous Lozi map Ln, and therefore it
possesses a chaotic saddle, Λn, inside the square
S. In other words, {Λn, Ln}+∞

n=−∞ is an infinite
sequence of chaotic invariant sets where

Λ ≡
⋃

n∈Z
Λn,

contains an uncountable infinity of orbits, each of
them unstable (of saddle type), and the dynamics
on the invariant set exhibits sensitive dependence
on initial conditions.

From now on, we see how these two assump-
tions are held. First of all, we construct the hori-
zontal and vertical strips as in the autonomous case.
Then, we check the third assumption, the cone con-
dition, to quantify the folding and stretching of the
strips.

4.1. Verification of Assumption 1
for the nonautonomous
Conley–Moser conditions

We have defined the bi-infinite sequence of maps
and domains

{Ln, S}+∞
n=−∞, Ln : S → R2 (67)

satisfying

Ln(S) ∩ S �= ∅, ∀n ∈ Z.

Now we define the main geometrical structures of
this problem, the horizontal and the vertical strips.
In this context we will proceed as in the autonomous
case adding the iteration variable

Hn+1
1 ∪Hn+1

2 := Ln(S) ∩ S

V n
1 ∪ V n

2 := L−1
n (S) ∩ S

(68)

where Hn+1
1 is the upper half part of Ln(S) ∩ S

and Hn+1
2 is the lower half part of Ln(S)∩S, V n

1 is
the left half part of L−1

n (S) ∩ S and V n
2 is the right

half part of L−1
n (S) ∩ S. We will use the following

notation

Hn+1
1 := (Ln(S) ∩ S)+, where y > 0,

Hn+1
2 := (Ln(S) ∩ S)−, where y < 0,

V n
1 := (L−1

n (S) ∩ S)−, where x < 0,

V n
2 := (L−1

n (S) ∩ S)+, where x > 0.

(69)

We are giving only the vertices of Hn+1
1 and

V n
1 . The vertices of Hn+1

2 and V n
2 are symmetric

with respect to y = 0 and x = 0 respectively. We
show Hn+1

i and V n
i in Fig. 6.

h11 : {x = −R} ∩
{
y =

1 +R− x

a(n)

}

⇒





h11x = −R

h11y =
1 + 2R

a(n)

(70)

h12 : {x = R} ∩
{
y =

1 +R− x

a(n)

}

⇒





h12x = R

h12y =
1

a(n)

(71)

h13 : {x = R} ∩
{
y =

1−R− x

a(n)

}

⇒





h13x = R

h13y =
1− 2R

a(n)

(72)

h14 : {x = −R} ∩
{
y =

1−R− x

a(n)

}

⇒





h14x = −R

h14y =
1

a(n)

(73)
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v11 v12

v13v14

V n
1 V n

2

Hn
2

Hn
1

h11

h12

h13

h14

V n+1
1 V n+1

2

Hn+1
2

Hn+1
1

(a) n0 = n (b) n0 = n+ 1

Fig. 6. Vertical and horizontal strips. Ln(V
n
i ) = Hn+1

i , i = 1, 2.

and the computations for the vertices of V n
1 are

similar

v11 : {y = R} ∩ {y = −R− a(n)x− 1}

⇒





v11x =
−2R − 1

a(n)

v11y = R

(74)

v12 : {y = R} ∩ {y = R− a(n)x− 1}

⇒





v12x =
−1

a(n)

v12y = R

(75)

v13 : {y = −R} ∩ {y = R− a(n)x− 1}

⇒





v13x =
2R − 1

a(n)

v13y = −R

(76)

v14 : {y = −R} ∩ {y = −R− a(n)x− 1}

⇒





v14x =
−1

a(n)

v14y = −R.

(77)

As it is defined above, V n
i and Hn+1

i

are µn
v -vertical strips and µn+1

h -horizontal strips

respectively with µn
v = 1/a(n) and µn+1

h = 1/a(n+
1). Taking into account Remark 4.1 and due to rea-
sons explained afterwards, by convenience, we can
choose

µv = µh =
a−

√
a2 − 4

2
>

1

a(n)
, (78)

for all n ∈ Z and a > 4.

Remark 4.1. Note that if V is a µv-vertical strip and
µv ≤ µ∗

v, therefore V is a µ∗
v-vertical strip:

|x1 − x2| ≤ µv|y1 − y2| ≤ µ∗
v|y1 − y2|.

The same argument could be used for horizontal
strips.

Ln is a homeomorphism on the whole plane and
so also on S. Therefore

Ln(V
n
i ) = Hn+1

i , i = 1, 2. (79)

We should also define

Ln(V
n
i ) ∩ V n+1

j ≡ Hn+1
ij

V n
i ∩ L−1

n (V n+1
j ) ≡ L−1

n (Hn+1
ij ) ≡ V n

ji.
(80)
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Let {An}+∞
n=−∞ denote a sequence of 2 × 2

matrices such that

An
ij =





0 if Ln(V
n
i ) ∩ V n+1

j

= Hn+1
i ∩ V n+1

j = ∅

1 if Ln(V
n
i ) ∩ V n+1

j

= Hn+1
i ∩ V n+1

j �= ∅.

(81)

In our case, we can ensure that

An =

(
1 1

1 1

)
. (82)

We know that Hn+1
i are horizontal strips

formed by two µh-horizontal curves that rest on
the lines x = R and x = −R and V n+1

j are ver-
tical strips formed by two µv-vertical curves that
lead from y = R to y = −R. So applying the
Fixed Point Theorem, these straight lines get cut
in four vertices that together with the two hori-
zontal and the two vertical lines form Hn+1

ij . These

sets are µh-horizontal strips because their bound-
aries are contained in V n+1

j due to their construc-

tion (Hn+1
i ∩ V n+1

j ).
Furthermore, due to the fact that Ln is home-

omorphism and the construction of the strips, Ln

maps V n
ji onto Hn+1

ij . It is clear from (80) that

L−1
n (Hn+1

ij ) = V n
ji = L−1

n (V n+1
j ) ∩ V n

i

⇒ L−1
n (Hn+1

ij ) ⊂ V n
i (83)

so

L−1
n (∂hH

n+1
ij ) ⊂ ∂hV

n
i . (84)

Finally we need to prove µvµh < 1. We know that

µv = µh = a−
√
a2−4
2 and

µv · µh =

(
a−

√
a2 − 4

2

)2

< 1 (85)

so Assumption 1 is proven.

4.2. The Cone condition.
Assumption A3 of the
nonautonomous Conley–Moser
conditions

As we stated earlier, the second assumption of
the Conley–Moser conditions can be replaced by
another condition named the Cone condition. Given

any point z0 = (x0, y0) ∈ Hn+1 and any (ξz0, ηz0) ∈
Ss
Hn+1 (which by definition, |ξz0| ≤ µv|ηz0 |), we have

that

DL−1
n (z0) · (ξz0 , ηz0) =

(
0 −1

1 a(n)sign(y)

)(
ξz0

ηz0

)

=

(
−ηz0

ξz0 + a(n)sign(y)ηz0

)

(86)

and (86) belongs to Ss
Vn if and only if the inequality

|−ηz0 | = |ηz0 | ≤ µv|ξz0 + a(n)sign(y)ηz0 | (87)

holds and this is true since

µv|ξz0 + a(n)sign(y)ηz0 |

≥ µv(a(n)|ηz0 | − |ξz0 |)

≥ µv(a(n)|ηz0 | − µv|ηz0 |)

= µv(a(n)− µv)|ηz0 |
(∗)
≥ |ηz0 |. (88)

Last part of the inequality, (∗), hold when µv(a(n)−
µv) ≥ 1 and that is satisfied when

µv ∈
[
a(n)−

√
a(n)2 − 4

2
,
a(n) +

√
a(n)2 − 4

2

]

= In. (89)

We need to prove that µv ∈ In for every n ∈ Z, or,
equivalently

µv ∈
⋂

n∈Z
In =

[
sup
n∈Z

a(n)−
√

a(n)2 − 4

2
,

inf
n∈Z

a(n) +
√

a(n)2 − 4

2

]

=

[
a−

√
a2 − 4

2
,
a+

√
a2 − 4

2

]
.

(90)

Finally, we can set a general value for µh and µv

that hold for the last inequalities

µh = µv =
a−

√
a2 − 4

2
(91)

and we can observe that

µh · µv =

(
a−

√
a2 − 4

2

)2

< 1. (92)
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Since z0 ∈ Hn+1 is an arbitrary point, the inclusion
DL−1

n (Ss
Hn+1) ⊂ Ss

Vn is proven.
To finish the proof of Assumption 3, we only

need to prove the inequality

|ηf−1
n (z0)

| ≥ 1

µ
|ηz0 | (93)

for 0 < µ < 1 − µhµv and z0 ∈ Hn+1, (ξz0, ηz0) ∈
Ss
Hn+1 because

|ξfn(z0)| ≥
1

µ
|ξz0|, z0 ∈ Vn, (ξz0 , ηz0) ∈ Su

Vn

(94)

is proved by using a similar argument.

|ηf−1
n (z0)

| ≥ |ξz0 + a(n)sign(y)ηz0 |

≥ a(n)|ηz0 | − |ξz0| ≥ a(n)|ηz0 | − µv|ηz0 |

= (a(n)− µv)|ηz0 | ≥
1

µ
|ηz0 | (95)

so it follows that

µ ≥ 1

a(n)− µv
. (96)

Taking into account this last inequality and the con-
dition 0 < µ < 1−µhµv, we have the following chain

of inequalities

1

a(n)− µv
≤ µ ≤ 1− µhµv (97)

and this last inequality is satisfied provided that
a > 4 so the proof of Assumption 3 is complete.

The proof of the second inclusion DLn(S
u
Vn) ⊂

Su
Hn+1 is similar.

5. The Visualization of the Chaotic
Saddle

In this section the chaotic saddle for the
autonomous and for the nonautonomous cases are
displayed by using the discrete Lagrange descrip-
tors (DLD). This tool explained in [Lopesino et al.,
2015] consists of evaluating the p-norm of an orbit
generated by a two-dimensional map, in our case
the Lozi map. For instance, let

{xn, yn}n=N
n=−N , N ∈ N, (98)

denote an orbit of a point. The DLD is defined as
follows:

MDp =
N−1∑

i=−N

|xi+1 − xi|p + |yi+1 − yi|p, p ≤ 1.

(99)

(a) (b)

Fig. 7. Chaotic saddle for different values of a. These panels show contours of MDp for p = 0.25 and N = 20, with a grid
point spacing of 0.005. Chaotic S with (a) a = 3, (b) a = 3.5, (c) a = 4 and (d) a = 4.5.
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(c) (d)

Fig. 7. (Continued)

(a) (b)

Fig. 8. Chaotic saddle for different starting time iteration. These panels show contours of MDp for p = 0.25, A =
4.5 + ε(1 + cos(n)) and N = 100, with a grid point spacing of 0.001. Chaotic S with (a) n0 = −3, (b) n0 = −1, (c) n0 = 1
and (d) n0 = 3.
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(c) (d)

Fig. 8. (Continued)

We are interested in showing the phase space where
the chaotic saddle exists, therefore our study region
is the square S. We prepare a set of initial conditions
by fixing a spatial grid and then expression (99)
is applied to the initial conditions belonging to
this grid.

The Chaotic Saddle for the Autonomous
Case. Figure 7 shows the chaotic saddle of the Lozi
map for different values of a. It is confirmed that
only when a ≥ 4, the set is wholly contained in the
square S.

The Chaotic Saddle for the Nonautonomous
Case. Figure 8 shows by means of the DLD tool,
how the chaotic saddle evolves with the iterations
when the autonomous system is perturbed.

6. Summary and Conclusions

In this paper we have considered the Lozi map, both
in its autonomous and nonautonomous versions,
and provided necessary conditions for the map to
possess a chaotic invariant set. This is accomplished
by using autonomous and nonautonomous versions
of the Conley–Moser conditions, in particular, we
used the sharpened conditions for nonautonomous
maps given in [Balibrea-Iniesta et al., 2015] to show
that the nonautonomous chaotic invariant set is

hyperbolic. In the course of the proof, we provide
a precise characterization of what is meant by the
phrase “hyperbolic chaotic invariant set” for nonau-
tonomous dynamical systems. At the end of this
paper we have used the DLD to visualize the chaotic
saddle for different parameters.
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CHAPTER 4

Discussion

This work provides a theoretical framework for LDs from a clear and precise definition of the singularity
notion from which theorems are obtained. In this Chapter we provide further remarks on the definition of
singular features and their applicability. We focus our analysis on discrete Lagrangian descriptors for maps.
In particular we extend the discussion on some technical details by presenting several examples. We also
mention several contexts in which our specific contribution on discrete Lagrangian descriptors has been used
and discuss about its advantages.

The characterization of manifolds in maps as singular features of the discrete Lagrangian descriptor is
performed by stating that the discrete Lagrangian descriptor, MDp has not a defined derivative at points
that lie on the manifold. This is because the directional derivative of the Lagrangian descriptor in a direction
transversal to the manifold is either unbounded when p < 1 or simply discontinuous for the case p = 1.
We further discuss the presence of singularities in MDp. We consider the rotated linear saddle discussed in
Chapter 3:

F (x, y) = A




x

y


 (4.1)

where

A =




1
λ + λ 1

λ − λ

1
λ − λ 1

λ + λ


 =

1

2λ




1 + λ2 1− λ2

1− λ2 1 + λ2


 (4.2)

Here λ > 1. It is easy to see that the stable and the unstable manifolds are given by the vectors (1, 1) and
(1,−1) respectively. Let us consider that MDp = MD+

p +MD−p . The exact expression for MD+
p (expression

MD−p is analogous) applied to trajectories in map (4.1) is:

MD+
p =

N−1∑
i=0

1

λ(i+1)p
|(λ2(i+1) − λ2(i+1)−1 − λ+ 1)x0 + (−λ2(i+1)

+ λ
2(i+1)−1 − λ+ 1)y0|p

+ 1

λ(i+1)p
|(−λ2(i+1) + λ2(i+1)−1 − λ+ 1)x0 + λ2(i+1) − λ2(i+1)−1 − λ+ 1)y0|p

(4.3)

This is an example in which each term on this sum has singularities along two different lines. In particu-
lar, for each i and λ, we have
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y0 =
λ2(i+1) − λ2(i+1)−1 − λ+ 1

λ2(i+1) − λ2(i+1)−1 + λ− 1
x0 = m(λ, i)x0 (4.4)

and

y0 = − 1

m(λ, i)
x0 (4.5)

where m(λ, i) and − 1

m(λ, i)
1 are, respectively, the slopes of the singular lines. The presence of these terms

having singularities along lines which do not correspond to manifolds, is not an obstacle for visualizing man-
ifolds using MDp as it is possible to show that at large N , m ' 1 and thus the largest contributions in the
summation correspond to terms aligned with the manifolds.

Additionally, we consider the following two dimensional area-preserving map denoted by f ,

(f) :





xn+1 = 2xn

yn+1 = 1
2yn + g(xn)

(4.6)

with g : R→ [0,∞) a smooth function satisfying g(x) = 0 for all x /∈ [0, 1] and g(x) > 0 if x ∈ (0, 1).

The inverse map of f is as follows,

(f−1) :





xn = 1
2xn+1

yn = 2yn − 2g( 1
2xn+1)

(4.7)

The simple form of the map allows the orbits to be analytically computed through an arbitrary point
(x0, y0):

xn = 2nx0 for any n ∈ Z, (4.8)

yn =
1

2n
y0 +

n−1∑

i=0

1

2n−1−i
g(2ix0) for any n ≥ 1, (4.9)

y−n = 2ny0 −
n∑

i=1

2n+1−ig

(
1

2i
x0

)
for any n ≥ 1. (4.10)

It is easy to show that the origin (0, 0) is a global saddle point, since the function g is zero over the interval
(−∞, 0] ∪ [1,∞). Moreover, its corresponding stable and unstable manifolds can be computed explicitly and
have the following form:

W s(0, 0) = {(x, y) ∈ R2 : x = 0}, (4.11)

1There is a missprint in the article Lagrangian descriptors for two dimensional, area-preserving, autonomous and nonau-
tonomous maps in Section 3.1 where the slope of the invariant manifold is computed.
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Wu(0, 0) = {(x, y) ∈ R2 : y = ȳ(x) =

∞∑

i=1

1

2i−1
g

(
1

2i
x

)
}. (4.12)

The curve {y = ȳ(x)} coincides with the line {y = 0} for x ≤ 0. Its shape changes for x > 0 since
g > 0 over the interval (0, 1). The left hand panel in Figure 4.1 a) shows the unstable manifold for positive
x for the particular choice g(x) = sin2(πx). Since we have analytical expressions for the stable and unstable
manifolds of the saddle point at the origin, it is straightforward to verify the manner in which MDp reveals
the stable and unstable manifolds. Figure 4.1 b) shows the contours of the Lagrangian descriptor for N = 50
and p = 0.25, confirming that MDp accurately reveals the stable and unstable manifolds of the saddle point
at the origin.

Figure 4.2 plots contours of the two components of the gradient of MDp for the map 4.6. Clearly, the
stable and unstable manifolds correspond to singular features of MDp as defined in our work. We next
provide an analytical discussion on the performance of MDp for this example. We consider its expression:

MDp =

N∑

i=−N−1
|xi+1 − xi|p + |yi+1 − yi|p, (with p ≤ 1) (4.13)

applied to the sequences {(xn, yn)}+∞n=−∞ generated by f (and until N = 50 iterations). The terms composing
the sum (4.13) with respect to the initial condition points (x0, y0),

|xn+1 − xn| = |2xn − xn| = |xn| = 2n|x0| for every n = (−N − 1), · · · , N, (4.14)

|yn+1 − yn| =
∣∣∣∣
1

2
yn + g(xn)− yn

∣∣∣∣ =

∣∣∣∣g(xn)− 1

2
yn

∣∣∣∣ =

∣∣∣∣∣g(2nx0)− 1

2n+1
y0 −

n−1∑

i=0

1

2n−i
g(2ix0)

∣∣∣∣∣ for every n = 0, · · · , N, (4.15)

|y−n+1 − y−n| =
∣∣∣∣y−n+1 − 2y−n+1 + 2g

(
1

2
x−n+1

)∣∣∣∣ =

∣∣∣∣2g
(

1

2
x−n+1

)
− y−n+1

∣∣∣∣ =

(a) (b)

Figure 4.1: a) The graph of the unstable manifold, y = ȳ(x) =
∑∞
i=1

1
2i−1 g

(
1
2ix
)

over the interval [0, 3], where

we have taken g(x) = sin2(πx); b) contours of the Lagrangian descriptor MDp evaluated for the map f with
g(x) = sin2(πx) for N = 50 iterations and p = 0.25.
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∣∣∣∣∣2g
(

1

2n
x0

)
− 2n−1y0 +

n−1∑

i=1

2n−ig

(
1

2i
x0

)∣∣∣∣∣ for every n = 1, · · · , (N + 1). (4.16)

From these last three equations, one sees that the highest order singularities (of order 2N ) correspond to
the increments |xN+1−xN | and |y−N−1−y−N |, that is, to equations 4.14 and 4.16 with n = N and n = N+1
respectively, which give rise to the singular features located at the curves,

C1(N) ≡ {x0 = 0} , C2(N) ≡ {y0 =
1

2N−2
g

(
1

2N
x0

)
+

N−1∑

i=1

1

2i−1
g

(
1

2i
x0

)
}. (4.17)

The first curve C1(N) coincides with the stable manifold W s(f, (0, 0)) for every N > 0 and the second
one C2(N) converges to Wu(f, (0, 0)) ≡ {y0 = ȳ(x0)} for an increasing number of iterations N .

The discussion of these two examples clarifies that our statement on Lagrangian descriptors is not that
singular features of the Lagrangian descriptors are manifolds. Rather, the assertion is that manifolds coincide
with singular features.

Finally, we remark that both examples show that singularities are aligned with manifolds for a sufficiently
large number of iterations N , and thus the unbounded character of MDp in the limit N → infinity, which
would make it impossible to consider a derivative in this limit, does not affect the described construction,
since singularities are defined for any finite N and it is not necessary to take the limit N → infinity.

Discrete Lagrangian descriptors are proving to be one of the simplest methods for implementing and dis-
playing with great detail the geometrical features associated to trajectory solutions of maps. Another method
used with this purpose is the PIM procedure, which has been employed to obtain the chaotic saddle of a map,
although it is designed to detect only points belonging to a chaotic saddle and does not detect its invariant
manifolds (Nusse and Yorke, 1989). The method is computationally expensive in terms of time and memory.
Other well-known numerical methods to compute periodic points are those that use fixed point theorems,

Figure 4.2: The two panels show the the modulus of the gradient components ∂/∂x and ∂/∂y (left and right,
respectively) of the Lagrangian descriptor MDp=1 applied to the map f (with g(x) = sin2(πx) over the
interval (0, 1)) and evaluated for N = 50 iterations.
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such as Newton’s method. All these methods follow an iterative procedure and require the calculation of
the derivative. The iteration stops when a desired accuracy of the solution is reached by tuning a threshold
parameter.

In order to compare the output of MDp and those obtained by fixed point theorems we recall results
reported in Maličký (2012) by considering the following example:





xn+1 = xn(4− xn − yn)

yn+1 = xnyn

(4.18)

The dynamics of this example has been studied in great detail in Maličký (2012) and Balibrea (2016) inside the
triangle ∆ of vertices (0, 0), (4, 0) and (0, 4). The map associated with Eq. (4.18) is F (x, y) = (x(4−x−y), xy)
and ∆ is invariant under the action of F , i.e., F (∆) = ∆. Figure 4.3 shows different outputs of the dynamics of
system 4.18 inside ∆ obtained with the different methods. Outputs are similar for both techniques, although
simplicity and computing time are much lower for the MDp. Figure 4.3 a) was computed in C + + language
and Mathematica, obtaining similar results in both cases. According to Maličký (2017), the computational
time was 2-3 days, while Figure 4.3 b), which shows the result of MDp, it is just a few seconds.

(a) (b)

Figure 4.3: Outputs of the dynamics of system 4.18 using (a) fixed point methods (periodic saddle points of
period less than 36) and (b) DLD inside the triangule ∆ for p = 0.1 and N = 30 iterations in a grid size of
4000×4000.
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Conclusions and perspectives

Finally, we briefly summarize the contributions of this work and highlight open questions related to our
results that could guide future research.

One of the main goals of this work is to provide a theoretical framework for Lagrangian descriptors in ape-
riodically time-dependent dynamical systems. To this end, we first extend the definition of LDs to the discrete
context in a manner that simplifies calculations. A definition for singular features from which theorems are
obtained for four particular examples is stated more precisely. Normal Form theory and Hartman-Grobman
theorem are applied to the C1 version for two dimensional Hamiltonian systems. Using similar ideas, the
new definition of discrete Lagrangian descriptors is adapted to continuous time dynamical systems. As in
the discrete setting, we provide rigorous proofs for four particular examples built from a hyperbolic point.
Our proofs are based on settings for which we have a priori knowledge of the manifold of a hyperbolic point,
and we prove the presence of defined singularities aligned with these curves in the framework of our par-
ticular LD. A more general result that we have not obtained, but which could guide future efforts, would
be to prove that geometrical structures related to hyperbolic trajectories with no material flux are aligned
with singular features of the LD. Additionally, other results could lead to further definitions for the kind of
singular features observed in contexts different to those studied, or which would yield proofs of their presence
on the particular LD, function M , used in many applications (de la Cámara et al., 2012, 2013; Curbelo et al.,
2017a; Smith and Mc Donald, 2014; Rempel et al., 2013; Garcia-Garrido et al., 2015, 2016; Craven and Her-
nandez, 2015, 2016). The visualizations provided by the discrete LDs, versus others that have been used in
Maličký (2012), support the idea that the representational power of this tool could support further theoreti-
cal findings for maps, as well as suggesting the presence of objects on which formal proofs could be performed.

Furthermore, in the continuous time setting, we discuss results that show the ability of LDs to reveal
invariant sets such as n-tori which are just an extension of the ergodic partition theory. We illustrate this
in two examples: the planar harmonic oscillator and the three dimensional ABC flow. These results on the
ability of LDs to reveal tori-like invariant sets have already started to be applied in the atmospheric context
as tools that allow the identification of the vortex core and vortex boundaries in the stratospheric polar
vortex (Curbelo et al., 2017b). The power of this tool in the exploration of high dimensional systems is yet
to be exploited. For instance, open questions in the context of astrodynamics like the 3 body problem (or its
restricted version), for which these type of visualization tools could provide novel insights. A first step in this
direction would be to address well-known problems in this topic and explore them from this perspective. In
geophysical contexts, 3D studies with LDs are being carried out in the stratosphere (Curbelo et al., 2017a,b)
that reveal the presence of Normally Hyperbolic Invariant Manifolds.

Our final result addresses the challenge of rigorously proving the presence of chaotic invariant sets in
aperiodically time-dependent systems. To this end, we have studied the autonomous and nonautonomous
Lozi map in its orientation and area-preserving version. We have applied first and second Conley-Moser
conditions to prove the existence of a chaotic saddle in the autonomous version of the Map. Proof that the
first and third Conley-Moser conditions are satisfied for the nonautonomous aperiodic version under certain
parameters would enable us to address the aforementioned challenge. Discrete LDs allow a visualization of
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the chaotic behavior of the Lozi map as parameters are varied.
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Conclusiones y trabajo futuro

Para concluir, resumimos brevemente las contribuciones de este trabajo y destacamos las preguntas abier-
tas relacionadas con nuestros resultados que podŕıan orientar futuras investigaciones.

Uno de los principales objetivos de este trabajo ha sido el de proporcionar un marco teórico para los
descriptores Lagrangianos en sistemas dinámicos dependientes del tiempo. Para ello, primero hemos am-
pliado la definición de los LDs al contexto discreto de manera que se simplifiquen los cálculos. Se hace
precisa una definición para caracterizar los rasgos singulares a partir de la cual se obtienen teoremas en
cuatro ejemplos particulares. La teoŕıa de la forma normal y el teorema de Hartman-Grobman se aplican
en su versión C1 para sistemas hamiltonianos bidimensionales. Usando ideas similares, la nueva definición
de descriptores Lagrangianos discretos se adapta a sistemas dinámicos continuos. Al igual que en el caso
discreto, proporcionamos demostraciones rigurosas para cuatro ejemplos particulares construidos a partir de
un punto hiperbólico. Nuestras demostraciones se basan en situaciones para las que tenemos un conocimiento
a priori de la variedad de un punto hiperbólico, y además demostramos la presencia de singularidades, en el
sentido definido, alineadas con estas curvas en el marco de nuestro descriptor lagrangiano. Un resultado más
general que no hemos obtenido pero que podŕıa guiar los esfuerzos futuros seŕıa demostrar que estructuras
geométricas a través de las cuales no hay flujo material están alineadas con propiedades singulares del LD.
Además, otros resultados podŕıan abordar definiciones adicionales para las propiedades singulares observadas
en diferentes contextos a los estudiados o que permitiŕıan demostrar su presencia en la función M , en su
verión original distinta a la propuesta en este trabajo, y que ha sido utilizada en muchas aplicaciones (de la
Cámara et al., 2012, 2013; Curbelo et al., 2017a; Smith and Mc Donald, 2014; Rempel et al., 2013; Garcia-
Garrido et al., 2015, 2016; Craven and Hernandez, 2015, 2016). Las visualizaciones proporcionadas por los
LD discretos, en comparación con otros métodos que se han utilizado en Maličký (2012), respaldan la idea de
que la habilidad de representación de esta herramienta podŕıa derivar en hallazgos teóricos adicionales para
mapas y sugerir la presencia de objetos sobre los que se podŕıan realizar demostraciones formales.

Además, en el caso continuo, hemos discutido los resultados que muestran la capacidad de los LD para
revelar conjuntos invariantes como los n-toros. Estos resultados son solo una extensión directa de la teoŕıa
de partición ergódica. Hemos ilustrado esto con dos ejemplos: el oscilador armónico plano y el flujo ABC
tridimensional. Estos resultados acerca de la capacidad de los LD para revelar conjuntos invariantes tipo toro
ya han comenzado a aplicarse en el contexto atmosférico como herramientas que permiten la identificación del
núcleo y los bordes del vórtice polar estratosférico (Curbelo et al., 2017b). La habilidad de esta herramienta
en la exploración de sistemas n-dimensionales aún no se ha explorado exhaustivamente. Por ejemplo, to-
dav́ıa quedan preguntas abiertas en el contexto de la astrodinámica, como el problema de 3 cuerpos (o en su
versión restringida), para los cuales este tipo de herramientas de visualización podŕıan proporcionar nuevos
conocimientos. Un primer paso en esta dirección seŕıa abordar problemas ampliamente conocidos y explo-
rarlos desde esta perspectiva. Actualmente, en contextos geof́ısicos, se han realizado estudios 3D con LD en
la estratosfera (Curbelo et al., 2017a,b) y han revelado la presencia de variedades invariantes normalmente
hiperbólicas.

Nuestro último resultado ha abordado el reto de probar rigurosamente la presencia de conjuntos invariantes
caóticos en sistemas dependientes del tiempo de forma no periódica. Para ello, hemos estudiado el mapa Lozi
autónomo y no autónomo en la versión en la que se preserva su orientación y su área. Hemos aplicado la
primera y segunda condición de Conley-Moser para demostrar la existencia de un conjunto caótico en la
versión autónoma de dicho mapa. El hecho de haber demostrado que la primera y la tercera condición de
Conley-Moser se cumplen para la versión aperiódica no autónoma bajo ciertos parámetros nos permite abordar
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el desaf́ıo antes mencionado. Los LD discretos permiten una visualización del comportamiento caótico del
mapa Lozi a medida que los parámetros son variados.
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Levnajić, Z. and Mezić, I. (2010). Ergodic theory and visualization. i. mesochronic plots for visualization of
ergodic partition and invariant sets. Chaos, 20(3).

Madrid, J. A. J. and Mancho, A. M. (2009). Distinguished trajectories in time dependent vector fields. Chaos,
19, 013111.

84



BIBLIOGRAPHY

Malhotra, N. and Wiggins, S. (1998). Geometric structures, lobe dynamics, and Lagrangian transport in flows
with aperiodic timedependence, with applications to Rossby wave flow. J. Nonlinear Science, 8, 401–456.
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