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ABSTRACT 

BACKGROUD: In the current study, two-step persulfate and Fenton oxidation has been 

investigated for the mineralization of naphthenic acids at 80 
o
C and initial pH ≈ 8. This

pH evolves during the persulfate oxidation step towards the optimum for Fenton 

oxidation (≈ 3). The effects of persulfate and H2O2 doses, iron concentration, duration of 

the persulfate oxidation step and operating temperature have been assessed. 

RESULTS: The combined treatment allowed up to ≈ 80% mineralization of 

cyclohexanoic acid using fairly low relative amounts of reagents (20 and 30% of the 

stoichiometric for persulfate and H2O2, respectively). For mineralization of 

cyclohexanoic acid, 115 and 87 kJ mol
-1

 were obtained as representative values of the

apparent activation energy for the persulfate and Fenton oxidation steps, respectively. 

The system was also successfully tested with other naphthenic acids, including 

cyclohexanebutyric acid, 2-naphthoic acid and 1,2,3,4-tetrahydro-2-naphthoic acid. 

Treatment of the naphthenic acids tested by this system gave rise to easily biodegradable  
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effluents consisting mainly of short-chain organic acids. The biodegradability was 

confirmed by the BOD5/COD ratio and respirometric tests. 

CONCLUSION: The results show the potential application of this approach as a 

promising cost-effective solution for the treatment of naphthenic acids-bearing aqueous 

wastes. This approach has significant advantage compared to the single thermally-

activated persulfate or Fenton oxidation, since it allows a high mineralization at reduced 

reagent cost upon replacing part of the persulfate by less expensive H2O2.  

Key words: Naphthenic acids; Persulfate; Fenton; Oxidation; Mineralization; 

Biodegradability. 

INTRODUCTION 

The negative environmental impacts of naphthenic acids (NAs) raise increasing 

attention
1-4

. NAs have been reported as persistent pollutants present in marine oil spills
5

and oil sands processes-affected wastewaters (OSPWs) with high toxicity toward a wide 

variety of organisms, including microorganisms, plants and animals
6-8

. NAs are

carboxylic acids including in their structure aromatic and naphthenic rings together with 

aliphatic chains in lower proportion. They can be represented by a common chemical 

formula of CnH2n+ZO2
9
, but also include some diacids, keto- and heteroatomic groups

10
.

In addition, positional and stereo isomerism of alicyclic NAs result in numerous cis-

/trans isomers, and the branching of acyclic NAs can even further increase their 

complexity
11

. Surrogate model NAs, such as cyclohexanoic acid (CHA), are used to

investigate their environmental-related features
12, 13

.
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Different techniques addressed to the removal of NAs from aqueous wastes have 

been investigated
14

. Those include adsorption
15

, biodegradation
16

 and advanced 

oxidation processes (AOPs)
9, 17, 18

. Adsorption, being a non-destructive operation, gives 

rise to secondary wastes while conventional biological treatments are limited by the 

toxicity and recalcitrant character of NAs
2
. AOPs have proved their ability for the 

mineralization of a wide diversity of target organics. H2O2 and persulfate (PS) are 

known precursors of hydroxyl (HO
•
) and sulfate (SO4

•−
) radicals, under the action of 

different catalytic agents, like activated carbon
19

, metals
20, 21

 and their oxides
22

, or by 

some energy source, including thermal
23

, light (UV
24, 25

/solar
26

/LED
27

) and electricity
28

. 

NAs have been degraded by ozonation
29

, thermally-activated PS
12

, zero valent iron 

(ZVI)-activated PS
9
, UV/PS, UV/H2O2, chelate-Fenton

30
, UV(solar)/TiO2

18, 31
 and 

UV/Chlorine
32

. HO
•
 radicals preferentially attack the α position of the aliphatic chains 

and the para-position of the naphthenic ring of CHA
17

, while SO4
•−

 radicals are believed 

to firstly cause the decarboxylation of CHA
9, 33

. 

Our previous work demonstrated that thermally-activated PS oxidation can 

efficiently cause the mineralization of NAs with dissolved oxygen participating as 

oxidizing species
12

. The reaction between NAs and sulfate radicals generated from 

thermal activation of PS give rise to the corresponding organic radicals which can react 

with oxygen yielding reactive O2
•−

/HO2
•12, 34-36

. However, the drawbacks of PS-based 

approach, including the introduction of sulfur species and most particularly the high 

reagent cost, hinders its potential application. 

Fenton oxidation is one of the main AOP systems and has been recognized as a 

cost-effective solution for a number of industrial wastewaters compared to the PS-based 

ones
37, 38

. It uses H2O2 as starting reagent and Fe
2+

 as catalyst, which promotes the 

generation of strongly oxidizing hydroxyl radicals. The Fenton process can also be 

This article is protected by copyright. All rights reserved.



intensified by increasing the temperature (i.e. high temperature Fenton, HTF)
39, 40

. 

However, Fenton oxidation has been rarely attempted for NAs breakdown, due partially 

to the basic pH of the OSPWs containing NAs
9, 18

 and also to the complexation of Fe 

ions by NAs which hinders their activity
41

. In fact, several efforts have been made to 

adapt the Fenton-based technology to a wider range of pH
42

. Recently, Zhang et al.
13, 30, 

43
 used chelate-Fenton systems to treat CHA at basic pH. However, the scavenging effect 

of the chelate agents toward HO
•
 radicals represents a main drawback regarding H2O2 

consumption and on the other hand it has to be considered the possible increase of 

toxicity derived from them and/or their degradation byproducts. 

The as-generated OSPWs containing NAs are commonly characterized by a 

moderately basic pH (≈ 8) and a temperature well above the ambient (≈ 80 
o
C), as used 

in the oil sand extraction process
2, 44

. The reactions involved in PS oxidation yield 

important amounts of protons
9, 19

, thus giving rise to strong decrease of pH. Therefore, a 

treatment based on thermally-activated PS oxidation followed by Fenton to deal with 

NAs from OSPWs could achieve several objectives. The first step allows NAs 

breakdown with significant mineralization
12

, thus avoiding Fe-NA complexation. The 

effluent from this step would also reduce the Fe-NA complexation in the following 

Fenton step. On the other hand, during PS oxidation, the pH decreases down to the 

optimum range for the Fenton process. A convenient combination of those two AOPs 

could provide a high mineralization of NAs giving rise to a final effluent of low toxicity 

and easily biodegradable at much lower cost by replacing part of the PS by cheaper 

H2O2. Moreover, the need of acidifying agents for the Fenton process is avoided.  

The aim of this study is to assess the efficiency of this approach for the abatement 

of model NAs, namely cyclohexanoic acid (CHA), cyclohexanebutyric acid (CHBA), 2-

naphthoic acid (2-NA) and 1,2,3,4-tetrahydro-2-naphthoic acid (1234-T-2-NA), which 
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include naphthenic ring and aromatic structures
12

. CHA was used as model compound to 

study the effect of the operating variables as well as the kinetics of mineralization. The 

biodegradation of the effluents from the treatment of the NAs tested was also studied. 

 

MATERIALS AND METHODS 

Experimental procedures 

The two-step PS and Fenton oxidation experiments were carried out in batch, in 

100 mL stoppered glass flasks placed in a constant-temperature water bath with a 

shacking frequency equivalent to 200 rpm. In each run, 50 mL of aqueous solution of 

the NAs tested (CHA, CHBA, 2-NA and 1234-T-2-NA, purity over 98%, purchased 

from Sigma-Aldrich) were preheated for over 15 min at different temperatures (60−97 

o
C ± 1) after adjusting the pH to 8 by adding proper amount of NaOH solution (in 

distilled water) with concentration of 1 M. The pH value of the solution was not 

artificially controlled upon the reactions. Then, sodium persulfate (1−20% of the 

stoichiometric amount) was added to start the PS oxidation stage. After a given reaction 

time (0.5−2 h), H2O2 (10−80% of the stoichiometric) and Fe
2+

 (0.5−20 mg L
-1

, using 

FeSO4•7H2O) were added simultaneously for reaction during another 4 h. The effluents 

were collected, put into fridge below 4 
o
C and analyzed immediately. The results shown 

are the average of duplicates with the corresponding error bars presented. The 

degradation of the starting NAs during the preheating stage was checked and was always 

negligible. The stoichiometric doses mentioned in the current work always refer to the 

starting amount of the corresponding NAs and are calculated according to previous 

work
12

. In the case of CHA at 50 mg L
-1

, the stoichiometric amounts are 1673.4 and 239 

mg L
-1

 for sodium persulfate and hydrogen peroxide, respectively. The experiments 
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were carried out without aeration since the amount of oxygen in the upper part of the 

reactor (where air is enclosed) is in excess respect to the needed according to the 

reactions for PS-oxidation in presence of O2 (see supporting information). 

Analytical methods 

The concentrations of CHA and CHBA were measured by Gas Chromatography 

with Flame Ionization Detector (GC-FID) in a GC 3900 Varian provided with a 30 m 

length × 0.25 mm i.d. capillary column (CP-Wax 52 CB, Varian) using nitrogen as 

carrier gas. For CHA, the initial oven temperature was set at 70 
o
C and then increased up 

to 240 
o
C at a rate of 30 

o
C min

-1
. For CHBA, the only difference was lowering the 

heating rate to 20 
o
C min

-1
. The concentration of cyclohexanone as an intermediate of PS 

oxidation of CHA was also determined by GC-FID following the method for CHA 

analysis. 2-NA and 1234-T-2-NA were determined by high-performance liquid 

chromatography (HPLC; Varian Pro-Start 240) with a UV detector and Microsorb C18 5 

μm column (250 × 4.6 mm) as stationary phase. Acetonitrile and 4 mM H2SO4 (1/1) 

were used as mobile phase at an injection rate of 1 mL min
-1

 with the oven temperature 

set at 60 
o
C. 

Total organic carbon (TOC) was measured by a TOC analyzer (Shimadzu, mod. 

TOC VSCH) and PS concentration by a spectrophotometric method based on a 

modification of the iodometric titration analysis
45

. The concentration of hydrogen 

peroxide was analyzed by colorimetric titration using the TiOSO4 method
46

. Iron was 

determined by the o-phenantroline method
47

. 

Short-chain carboxyl acids by ionic chromatography with chemical suppression 

(Metrohm 790 IC) using a conductivity detector. A Metrosep A supp 5−250 column (25 

cm length, 4 mm i.d.) was used as stationary phase and an aqueous solution of 3.2 mM 

Na2CO3 and 1 mM of NaHCO3 at pumping rate of 0.7 mL min
-1

 as mobile phase. 
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Chemical oxygen demand (COD) was determined by oxidation with potassium 

dichromate following the Standard Method (ISO 6060) using UV-vis spectrometer 

(Shimadzu, mod. UV-1603). BOD5 measurements were conducted in a Velps Scientifica 

apparatus using the standard procedure available from previous work
48

. 400 mL samples 

of the initial or treated NAs were mixed with activated sludge at 75 mg VSS L
−1

 and pH 

= 7.2 in the presence of phosphate buffer. CaCl2, KCl and MgSO4 were added as 

micronutrients and 1.25 mg L
−1

 N-allylthiourea was used as nitrification inhibitor. The 

biodegradability index was calculated as the BOD5/COD ratio
19

. The data of BOD5 and 

COD were averages of triplicates with error bars. 

A well-developed respirometric test was carried out for the assessment of the 

biodegradability before and after treatment. A LSS respirometer was used with 

intermittent aeration during 72 h
49, 50

. Two limited values of oxygen concentration were 

set lower than water-solubility at the given conditions. Each specific oxygen uptake rate 

(SOUR) data was recorded once the amount of dissolved oxygen dropped to the bottom 

limit due to the microbial respiration. In the meantime, the aeration was started, and then 

stopped until the oxygen concentration reached the upper limit. A biomass concentration 

of 350 mg VSS L
-1

 was used according to the preliminary tests. The reactors were placed 

in a thermostatic water bath at 25 
o
C with magnetic stirring at 500 rpm. 

 

RESULTS AND DISCUSSION 

CHA mineralization by conventional Fenton oxidation was firstly checked at initial 

pH = 3 and 80 
o
C with 40% and 100% of the stoichiometric amount of H2O2 and 5 mg 

L
-1

 Fe
2+

. The results are shown in Fig. 1 together with those obtained upon PS only 

(20% of the stoichiometric amount) and PS/H2O2 simultaneous oxidation (20% and 40% 
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of the stoichiometric for PS and H2O2 respectively) at the same temperature and initial 

pH = 8. 

Fairly poor mineralization (≈ 18%) was achieved by only Fenton oxidation even 

using H2O2 at 239 mg L
-1

 (i.e. 100% of the stoichiometric). Slow decomposition of H2O2 

was observed (≈ 25%, after 6 h of reaction) associated to a continuous reduction of the 

measured Fe concentration down to less than 1 mg L
-1

 whereas the pH was still at the 

optimum value for the Fenton process (≈ 3). These poor results be due to the 

complexation of Fe by CHA
41

. On the other hand, PS oxidation yielded 40% 

mineralization at 20% of the stoichiometric amount. Simultaneous PS/Fenton oxidation 

(initial pH value is also at 8) with PS and H2O2 at 20% and 40% of the stoichiometric, 

respectively, led to only slightly higher mineralization than the sole PS at the same dose 

(20%), in spite that certain synergistic effect has been reported by other authors in 

PS/H2O2 oxidation
51, 52

. 

Two-step PS and Fenton oxidation 

Based on the important pH reduction caused by PS oxidation, a combination of PS 

and subsequent Fenton oxidation was investigated. The amount of PS as well as the 

reaction time in the PS oxidation step will affect to the pH and composition of the 

resulting effluent which enters the following Fenton oxidation step. Different 

experiments were performed using 1, 5, 10 and 20% of the stoichiometric PS with CHA 

at 50 mg L
-1

 and 2 h reaction time, followed by Fenton oxidation with 95.6 mg L
-1

 of 

H2O2 (40% of the stoichiometric) and 5 mg L
-1

 Fe
2+

.  

The results are shown in Fig. 2(a), where it can be seen the important effect of 

increasing the PS dose within the range tested. Below 10% of the stoichiometric, the 

subsequent Fenton step had no significant effect. Beyond that PS dose, further Fenton 
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oxidation became increasingly efficient while effective H2O2 decomposition was 

observed and the measured Fe concentration remained stable in the vicinity of 5 mg L
-1

. 

This can be explained by the pre-degradation extent of CHA so that iron naphthenate 

complexes are not formed, but also by the fact that the pH of the effluent from the PS 

step approached to the optimum for Fenton oxidation (≈ 3) as the PS dose was increased. 

In fact, PS oxidation alone at higher dose of around 35% of the stoichiometric allows 

achieving 80% mineralization of CHA
12

. Now, the combination with a subsequent 

Fenton treatment provides a way of reducing the PS needs by 43% by using much 

cheaper H2O2 (the Fenton reagent) while still maintaining the mineralization percentage 

close to the above value. The remaining TOC in the current system corresponds to short-

chain organic acids of very low significance in terms of toxicity. It is true that the 

reduction of the PS amount is accompanied by a complementary addition of H2O2 to 

accomplish further Fenton oxidation, so the amount of H2O2 must be conveniently 

adjusted to minimize total reagent consumption. 

Fig. 2(b) shows the results obtained with different H2O2 doses in the Fenton step 

expressed as percent of the theoretical stoichiometric amount relative to initial CHA. 

The PS amount in the previous step was always 20% of the stoichiometric. As can be 

seen, the extent of mineralization in the Fenton step increased significantly with the 

H2O2 dose up to around 30% of the stoichiometric and then the remaining TOC 

(corresponding mostly to short-chain organic acids) seems refractory to Fenton 

oxidation. Increasing the Fe
2+

 dose above 5 mg L
-1

 neither showed any significant effect 

on the Fenton step. 

The duration of the PS step was also varied since it can affect to the extent of CHA 

breakdown and consequently to the evolution of TOC upon further Fenton oxidation. 

Fig. 2(c) shows the results obtained at different duration of the PS step. As can be seen, 
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the overall TOC removal of the combined system decreased significantly when PS 

oxidation lasted less than 1.5-2 h. 

Finally, the effect of initial pH was studied within the range of 3 to 12, using 20% 

of the stoichiometric amount of PS in the first step and 40% of the stoichiometric H2O2 

with 5 mg L
-1

 Fe
2+

 in the subsequent Fenton. Previous studies indicated that pH value of 

solution can impact on the efficiency of PS oxidation of organic pollutants, since it is 

associated with the formation of HO• radicals from the reaction of SO4•− and OH−53-55. 

Higher pH value is supposed to allow a positive impact to some extent
55

, but some 

adverse effect has also been observed when the pH value reaches above 9
53

. In the 

current study, the pH was not artificially controlled so that it decreased automatically 

due to the release of protons from the reaction between PS and NAs
12

.  As can be 

observed in Fig. 2(d), the initial pH had no significant effect on CHA mineralization, 

given the fact that the pH evolved always to around 3 in the PS oxidation step. 

Therefore, this two-step PS and Fenton system does not need any artificial correction of 

the initial pH of the wastewater to be treated. 

Summarizing, the combined PS and Fenton system shows significant advantage 

compared to the only thermally-activated PS and to Fenton oxidation. It mineralizes 

close to 80% of CHA (50 mg L
-1

) working at 80 
o
C (thermally-activated PS) with PS and 

H2O2 at 20 and 30% of the stoichiometric amount, respectively. That represents ≈ 335 

mg L
-1

 of sodium PS and 75 mg L
-1

 of H2O2 (plus 5 mg L
-1

 Fe
2+

) in terms of reagents 

consumption. Fenton alone is far from achieving that objective even at high H2O2 doses 

(100% of the stoichiometric) whereas PS oxidation by itself would require around 35% 

of the stoichiometric amount, i.e. ≈ 586 mg L
-1

 of sodium PS. Therefore, about 251 mg 

L
-1

 sodium PS are substituted by ≈ 75 mg L
-1

 of H2O2 in the combined treatment. At 

average industrial prices of around 1100 $ t
-1

 for the former, 250 $ t
-1

 for H2O2 (35% 
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solution) and 46 $ t
-1

 for FeSO4·7H2O, the combined treatment system means a 

significantly lower cost in terms of reagent consumption (≈ 35% overall reduction). 

Also, it has the additional advantage of significantly lower sulfate and sodium 

concentration in the final effluent. As additional consideration, it must be taken into 

account that the working temperature (80 
o
C for thermal PS activation) is around that of 

OSPWs
43

, which further emphasizes the potential application of this combined system to 

those effluents. 

Kinetic analysis 

The previous studies on the kinetics of NAs degradation based mainly on the 

evolution of concentration of the starting compound but regardless of possible 

intermediates at the risk of an increase in toxicity, which should be importantly 

considered. In that respect, the TOC (mineralization)-based kinetics allows learning on 

the complete depletion of organic compounds upon the reaction. Simple pseudo-first-

order equation has been used in our previous research to simulate the evolution of NAs 

mineralization. The current study further improves the kinetic model by considering 

both the time-course of mineralization and the oxidizing reagents including persulfate 

and H2O2 in both the two steps. The rates of PS and H2O2 decomposition in each 

corresponding step, respectively, can be expressed by first-order kinetics: 

−
dCPS

dt
= kPSCPS                                               (E1) 

−
dCH2O2

dt
= kH2O2

CH2O2
                                  (E2) 

where CPS and CH2O2
 represent the concentrations of PS and H2O2, respectively and 

kPS and kH2O2
 the corresponding rate constants. 

This article is protected by copyright. All rights reserved.



Oxygen can be considered in excess with respect to the reactants at the working 

conditions, so that its effect can be assumed as invariable during the PS stage. For TOC 

removal, the following equation is proposed: 

−
dCTOC

dt
= k1CTOCCPS + k2CTOC

2 CH2O2
                        (E3) 

where CTOC  is the concentrations of TOC, and k1  and k2  are the apparent rate 

constants of mineralization in the PS and Fenton oxidation steps, respectively. As 

aforementioned, mineralization of NAs with PS has been well described by a first-order 

rate equation
12

 whereas second-order dependence has been used in the literature for 

phenol mineralization upon Fenton oxidation
38

. Scientist 3.0 software was used to fit the 

experimental data to equation (E3) by conducting Least Squares Fit with iteration
56

.  

The results are shown in Fig. 3, where fairly good fitting can be corroborated. The 

values of the corresponding apparent rate constants are listed in Table 1 together with the 

correlation coefficients. A difference of two orders of magnitude among the rate 

constants at 60 and 97 
o
C can be observed, suggesting that the system is quite 

temperature-dependent. The Arrhenius plots are depicted in Fig. 4. A value of 115 kJ 

mol
-1

 (r
2
 = 0.998) was obtained for the apparent activation energy of the PS oxidation 

step and 87 kJ mol
-1

 for the Fenton one (in this case, the value of the rate constant at 60 

o
C was not considered since desirable pH for Fenton was not achieved working at that 

temperature). 

Table 1 Values of the apparent rate constants of CHA mineralization upon PS and Fenton oxidation 

at different working temperatures. PS and H2O2 at 20 and 40% of the stoichiometric, respectively; 

Fe
2+

 at 5 mg L
-1

. 

T PS stage Fenton stage 

(
o
C) k1 × 10

5
 r

2
 kPS × 10

2
 r

2
 k2 × 10

5
 r

2
 kH2O2

 × 10
2
 r

2
 

L mg
-1

 min
-1

 min
-1

  L
2
 mg

-2
 min

-1
 min

-1
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97 13.9±3.22 0.992 7.98±0.43 0.995 10.4±2.47 0.978 20.4±2.46 0.999 

90 7.19±1.57 0.998 4.56±0.10 0.999 6.33±2.54 0.972 12.6±2.91 0.999 

80 2.46±1.25 0.998 1.56±0.12 0.993 2.74±0.54 0.988 4.18±0.61 0.975 

70 0.669±0.32 1.000 0.798±0.04 0.998 1.14±0.61 0.998 2.46±0.35 0.967 

60 0.239±0.15 1.000 0.521±0.02 0.999 0.065±0.04 1.000 1.41±0.22 0.965 

 

 

Degradation of other NAs 

The other individual NAs, namely CHBA, 2-NA and 1234-T-2-NA, as well as a 

mixture of them (including CHA), were tested. As indicated before, these NAs include 

saturated-ring as well as aromatic structures. The amounts of PS and H2O2 used for the 

treatment of the NAs mixture were calculated according to the proportion of each NA. 

As can be seen from Fig. 5, the mineralization efficiency was significantly improved 

after the addition of Fenton reagent in all cases. The corresponding rate constants are 

collected in Table 2. Regarding the NAs mixture, it is remarkable that the extent of 

mineralization was close to the observed for the most reactive ones, suggesting some 

kind of synergistic effect which requires further research given its importance to cope 

with the complexity of real OSPWs. Further efforts must be addressed to evaluate 

the efficiency of the combined method proposed toward real oil sands affected-

wastewaters containing NAs. 

 

Table 2 Values of the apparent rate constants for the PS and Fenton oxidation of individual NAs and 

mixture of them. PS and H2O2 at 20 and 40% of the stoichiometric, respectively. Fe
2+

 = 5 mg L
-1

; T = 

80 
o
C. 

NAs 

PS stage Fenton stage 

k1 × 10
5
 r

2
 kPS × 10

2
 r

2
 k2 × 10

5
 r

2
 kH2O2

 × 10
2
 r

2
 

L mg
-1

 min
-1

 min
-1

  L
2
 mg

-2
 min

-1
 min

-1
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Evolution of the NAs and oxidation byproducts upon two-step PS and Fenton 

oxidation 

Fig. 6 provides the time-course of NAs upon oxidation by thermally-activated PS 

with 20% of the stoichiometric amount. As can be observed, that PS dose was enough to 

achieve complete conversion of the four model NAs tested. However, the results show 

that the aromatic ring-bearing NAs, namely 2-NA and 1234-T-2-NA, are more resistant 

to oxidation than the saturated ring-bearing ones (CHA and CHBA). Several oxidation 

by-products were identified, mainly short-chain organic acids from ring-opening. In all 

cases, fumaric acid appears as the primary product from the ring-opening and evolves to 

formic, acetic and oxalic, the two latest being refractory to Fenton oxidation under the 

operating conditions of the experiments.  

Fig. 7 shows the carbon balance throughout the two-step treatment. As can be 

observed, a large proportion of unidentified organic matter (measured as TOC) was 

found in the earlier oxidation stages (PS step) in all cases, decreasing gradually as 

oxidation proceeds upon the Fenton step. Apparently, the nature of those species is 

related to the starting NA, which also affects to the final breakdown. In the case of the 

two saturated ring-bearing NAs tested, those byproducts appear quite easily oxidizable 

by Fenton, achieving final mineralization percentages up to 80 and 91% for CHA and 

CHBA after the 6 h, where the final identified carbon reached 85 and 97%, respectively. 

On the opposite, in the case of the aromatic ring-bearing NAs, those byproducts are 

more refractory, giving rise to significantly lower mineralization (48 and 51% for 2-NA 

CHBA 2.91±0.23 0.998 1.84±0.16 0.991 5.51±1.54 0.976 4.22±0.58 0.992 

2-NA 0.482±0.12 1.000 1.13±0.14 0.986 7.79±0.38 1.000 5.29±0.64 0.986 

1234-T-2-NA 0.699±0.25 1.000 1.02±0.17 0.987 6.31±0.32 0.999 5.12±0.59 0.987 

Mixed 1.50±0.22 0.999 1.58±0.19 0.985 5.95±1.58 0.987 4.98±0.71 0.980 
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and 1234-T-2-NA, respectively). Thus, only 51 and 63% of carbon could be identified 

after oxidation. Therefore, it is important to assess the biodegradability of the remaining 

matter in order to learn on its potential behavior in a further biological treatment. 

Biodegradability 

Fig. 8 shows the evolution of the BOD5 and COD values as well as the BOD5/COD 

ratio upon the oxidative treatments of the NAs. The amount of PS used was 20% of the 

stoichiometric and the reaction conditions in the two-step PS/Fenton oxidation were 

similar to those of the experiments of Fig. 7. Looking at the BOD5/COD ratio, the 

starting NAs yielded quite different values, being particularly low in the case of the 

aromatic ring-bearing ones (2-NA and 1234-T-2-NA). PS oxidation at 20% of the 

stoichiometric significantly improved the biodegradability, which was further improved 

upon the later Fenton treatment. 

The respirometric profiles serve to learn on the behavior of the oxidation effluents 

upon further biological treatment
49, 50

. Since fairly low TOC remains after the two-step 

oxidation approach using the aforementioned doses (PS at 20% of the stoichiometric 

amount, H2O2 at 40 % of the stoichiometric and Fe
2+

 at 5.0 mg L
-1

), now only 20% of 

the stoichiometric amount of H2O2 was used in the Fenton stage. The results of the 

respirometric tests with the starting NAs (100 mg L
-1

) and the effluents from PS 

oxidation alone and PS+Fenton are depicted in Fig. 9 (for the saturated-ring bearing 

ones) and Fig. 10 (for the aromatic ones). 

Relatively slow sludge respiration of the raw CHA was observed throughout the 

respirometric test, especially within the earlier stages (inserted graph in Fig. 9) with less 

than 15% of TOC removed after 72 h. This confirms its bio-recalcitrant character, in 

agreement with the literature
2
 and consistently with the previous value of the 
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BOD5/COD ratio. Regarding the effluent from thermally-activated PS oxidation of 

CHA, the respirometric test showed obvious activity at the beginning with a sharp 

decline of SOUR within the first 2 hours (corresponding insert graph in Fig. 9), 

indicating a fast consumption of some readily biodegradable intermediates. The 

microbial activity was then maintained at slow SOUR and it increased again after around 

25 h. Further dramatic decrease occurred at ≈ 65 h, suggesting the recalcitrant character 

of the degradation byproducts at that point of the respirometric test. Regarding the 

effluents from the two-step oxidation of NAs, much higher microbial activity can be 

seen within the initial period of the respirometric tests, but then fairly low values of 

SOUR were measured given the strong reduction of TOC. 

With regard to CHBA, some higher respirometric intensity was registered within 

the starting period with the effluents from both the thermally-activated PS and the two-

step PS and Fenton treatments. However, with the former, no more data could be 

recorded after a sharp increase of SOUR at around 10 h, suggesting some toxic 

incidence on the microorganisms since about 60% of the initial TOC was still remaining 

so that a lack of available carbon source cannot be postulated. 

In the case of the aromatic-ring-bearing NAs (2-NA and 1234-T-2-NA), the 

effluents from the two-step oxidation always showed the best biodegradability within the 

starting hours, compared with the thermally-activated PS-treated and the original NAs 

(Fig. 10). The two-step oxidation effluents from those species show almost complete 

decline of SOUR, most probably due to the almost complete degradation of the TOC 

remaining after the oxidative treatment. 

In summary, the BOD5/COD values and respirometric profiles provide available 

information on the biodegradability of the oxidation effluent of NAs tested. Further 
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efforts are expected to be made on conducting a real biotreatment of the oxidation 

effluent of NAs to check the actual biodegradability of this kind of wastewaters. 

CONCLUSIONS 

Two-step PS and Fenton oxidation provides a promising cost-effective approach for 

the degradation of NAs. About 80% TOC reduction was achieved from CHA (50 mg L
-1

) 

with 20 and 30% of the stoichiometric amount of PS and H2O2, respectively. This 

system is much more effective than Fenton oxidation alone and allows reducing the 

reagent cost with respect to single PS-oxidation while introducing less sulfate in the 

final effluent. Other individual NAs and their mixture were also tested and high 

mineralization efficiencies were achieved as well. The remaining TOC corresponded 

mainly to short-chain organic acids. A simple and practical kinetic model has been 

proposed, which describes fairly well the time-course of TOC. Values of the rate 

constants are provided. For CHA mineralization, 115 and 87 kJ mol
-1

 were obtained as 

representative values of the apparent activation energy for the PS and Fenton oxidation 

steps, respectively. The effluents from this treatment showed to be easily biodegradable 

according to the values of the BOD5/COD ratio and to the observed in the respirometric 

tests. 
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Figure Caption 

Fig. 1 CHA mineralization by various oxidation approaches (Fe
2+

 at 5 mg L
-1

 in Fenton; 

T = 80 
o
C). 

Fig. 2 Effect of (a) PS amount, (b) H2O2 amount, (c) PS step durations and (d) pH value on the two-

step PS and Fenton oxidation of CHA (50 mg L-1) at 80 
o
C. In a typical run, PS and H2O2 are 20% 

and 40% of the stoichiometric amount, respectively; the duration of PS is 120 min and Fe
2+

 in the 

Fenton step is 5 mg L-1. 

Fig. 3 Experimental (points) and predicted (lines) TOC values vs reaction time at different 

temperatures. [PS] = 20% of the stoichiometric; [H2O2] = 40 % of the stoichiometric; [Fe
2+

] = 5.0 

mg L
-1

; pH0 = 8. 

Fig. 4 Arrhenius plots for the PS and Fenton mineralization of CHA. The experimental conditions as 

Fig. 3. 

Fig. 5 Mineralization of different NAs and their mixture. [PS] = 20% of the stoichiometric; [H2O2] 

= 40 % of the stoichiometric; [Fe
2+

] = 5.0 mg L
-1

; pH0 = 8; T = 80 
o
C. 

Fig. 6 Time-course of the NAs and short-chain acids concentrations upon the two-step PS(2 h) 

and Fenton oxidation. [NAs]0 = 100 mg L
-1

; [PS] = 20% of the stoichiometric; [H2O2] = 40 % of 

the stoichiometric; [Fe
2+

] = 5.0 mg L
-1

; pH0 = 8; T = 80 
o
C. 

Fig. 7 Carbon balance during the two-step PS(2 h) and Fenton oxidation. [PS] = 20% of 

the stoichiometric; [H2O2] = 40 % of the stoichiometric; [Fe
2+

] = 5.0 mg L
-1

; pH0 = 8; T 

= 80 
o
C. 

Fig. 8 BOD5 and COD values after reactions at different conditions (bars) and the 

corresponding BOD5/COD values (line+symbols).  

Fig. 9 Time-course of SOUR (solid symbols) and TOC (open symbols) upon 

respirometric tests with the starting CHA and CHBA and the effluents from the 

oxidation treatments. Initial NAs (circles), NAs after thermally-activated PS oxidation 

(stars) and two-step PS(2 h) and Fenton(2 h) oxidation (triangles). The inset figures 
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show the profiles within the earlier stages. 

Fig. 10 Time-course of SOUR (solid symbols) and TOC (open symbols) upon 

respirometric tests with the starting 2-NA and 1234-T-2-NA and the effluents from the 

oxidation treatments. Symbols as in Fig. 9. 
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Fig. 7 Carbon balance during the two-step PS(2 h) and Fenton oxidation. [PS] = 20% of the 
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Fig. 8 BOD5 and COD values after reactions at different conditions (bars) and the corresponding 

BOD5/COD values (line+symbols).  

  

This article is protected by copyright. All rights reserved.



 

 

Fig. 9 Time-course of SOUR (solid symbols) and TOC (open symbols) upon respirometric tests with 

the starting CHA and CHBA and the effluents from the oxidation treatments. Initial NAs (circles), 

NAs after thermally-activated PS oxidation (stars) and two-step PS(2 h) and Fenton(2 h) oxidation 

(triangles). The inset figures show the profiles within the earlier stages. 
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Fig. 10 Time-course of SOUR (solid symbols) and TOC (open symbols) upon respirometric tests 

with the starting 2-NA and 1234-T-2-NA and the effluents from the oxidation treatments. Symbols as 

in Fig. 9. 
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