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Resumen, conclusiones y trabajo futuro

Resumen

Android representa uno de los sistemas operativos que más sufre la creación de apli-
caciones maliciosas. Cada día, miles de nuevas muestras de malware tratan de sortear
las medidas de seguridad desplegadas por las diversas tiendas de aplicaciones para la
plataforma Android, con el objetivo principal de infectar nuevos dispositivos. Para
atacar este problema, es necesario investigar y desarrollar mecanismos capaces de fil-
trar automáticamente grandes conjuntos de muestras sospechosas, detectando aque-
llas que contienen una carga maliciosa.

Esta tesis estudia y aborda la aplicación de técnicas de aprendizaje automático para
el desarrollo de métodos de detección de malware para Android desde diferentes
perspectivas. Además, también se aborda la clasificación de malware en familias.
Por otro lado, se ha realizado un profundo análisis de la familia de malware Jisut
que ha permitido revelar algunas de las prácticas empleadas más importantes por sus
desarrolladores y que deben ser consideradas al afrontar esta tarea.

En primer lugar, se utilizan técnicas de aprendizaje automático para construir méto-
dos de detección de malware para Android destinados a determinar con gran precisión
si una aplicación es malware o benignware. Con este objetivo, el comportamiento de
cada aplicación es descrito mediante grupos de características estáticas y dinámicas,
las cuales son modeladas mediante una representación basada en cadenas de Markov.
Después se aplican conjuntos de clasificadores, mostrando que las características es-
táticas permiten obtener mejores resultados que las dinámicas. También se describe
un enfoque de fusión de ambos tipos de características que obtiene mejores resultados
en comparación con el uso de un único grupo de características.

En segundo lugar, se afronta el problema de la clasificación de aplicaciones mali-
ciosas en familias de malware. Este problema compone una tarea esencial que trata
de minimizar los daños causados por el malware al mismo tiempo que busca iden-
tificar de forma apropiada los diferentes grupos de malware existentes. Para este
proceso se han empleado arquitecturas de aprendizaje profundo, algoritmos clásicos
de aprendizaje automático y diferentes técnicas para manejar datos desequilibrados.
Los resultados muestran que estas técnicas permiten desarrollar métodos precisos de
clasificación por familias. La resistencia de estos métodos frente a ataques de adver-
sarios también ha sido analizada. Para ello, se ha implementado un ataque dirigido
hacia un clasificador propuesto en la literatura, demostrando que es posible forzar a
un clasificador a asignar muestras de forma incorrecta a nuevas familias aleatorias de
malware, o incluso modificar una muestra para hacerla pasar por una nueva familia
de malware concreta.

Finalmente, se presenta una herramienta de código abierto y que ha sido denomi-
nada AndroPyTool. Esta integra diversas herramientas de análisis de malware con
el objetivo principal de ofrecer a la comunidad científica una herramienta integrada
para la extracción de un amplio conjunto de características estáticas y dinámicas de
aplicaciones Android. Mediante el uso de esta herramienta ha sido posible construir y
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ofrecer públicamente un amplio conjunto de datos llamado OmniDroid, que contiene
características estáticas y dinámicas extraídas de aplicaciones benignas y maliciosas.



IX

Conclusiones y Trabajos Futuros
En este capítulo, se exponen las diferentes conclusiones obtenidas en el trascurso de
la investigación realizada relativa a la presente Tesis Doctoral. Al mismo tiempo, se
responde a las diferentes Preguntas de Investigación planteadas. El objetivo principal
es ofrecer una serie de detalles y comentarios que puedan ser útiles a futuros investi-
gadores interesados en los problemas de detección y clasificación de malware diseñado
para el sistema operativo Android. Finalmente, también se identifican distintas líneas
de trabajo futuro para extender este trabajo.

Conclusiones

A lo largo de los diferentes capítulos de esta Tesis, los problemas relativos a la de-
tección y clasificación de malware en Android han sido estudiados desde diferentes
perspectivas, todas ellas dentro del marco del uso de técnicas de aprendizaje au-
tomático.

En el Capítulo 2, se ha presentado una familia concreta demalware denominada Jisut.
Se trata de un ransomware, un programa que persigue un beneficio económico medi-
ante el bloqueo del terminal o la encriptación de los datos que contiene. El estudio de
las diferentes variantes de esta familia ha permitido observar importantes patrones
de comportamiento. Por ejemplo, se ha podido ver cómo diferentes variantes son
creadas a lo largo del tiempo, aplicando cambios a muestras de variantes anteriores.
Este importante detalle recalca que la detección temprana de las primeras aplica-
ciones que dan lugar a una nueva familia puede ayudar a detectar nuevas muestras
de la misma en el futuro.

El análisis también ha permitido detectar el empleo de técnicas que tratan de dificul-
tar el análisis en las muestras más modernas. Por ejemplo, algunas variantes ocultan
la carga maliciosa en archivos que son desencriptados en tiempo de ejecución, un
hecho que disminuye de forma considerable la efectividad de las técnicas de análisis
estático, no siempre capaces de detectar este tipo de contenido.

Después del análisis de la familia Jisut, se proponen diferentes mecanismos para detec-
tar y clasificar malware en el Capítulo 3. Comenzando con el problema de detección
de malware, se han probado diferentes combinaciones de características y algoritmos
de clasificación. Las características estáticas han resultado ser un poderoso instru-
mento para representar el comportamiento de la aplicación. Esta representación se
ha utilizado para entrenar distintos conjuntos de clasificadores o ensemble classifiers
que han arrojado altos valores de precisión.

Una vez estudiado el uso de características estáticas, también se han analizado aque-
llas extraídas dinámicamente. En este caso, se ha seguido una representación basada
en cadenas de Markov para transformar los resultados obtenidos con DroidBox en in-
formación estructura que permita entrenar un algoritmo de aprendizaje automático.
Primero se genera una secuencia de eventos por cada aplicación. Después, una matriz
de probabilidades de transición entre estados (constituidos por los eventos originales)
es construida en consonancia con las transiciones observadas en la secuencia.

La importancia de cada evento o estado también se tiene en cuenta mediante el cálculo
de su frecuencia sobre la secuencia completa. Finalmente, la matriz de probabilidades
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de transición se transforma en un vector al que se concatena la frecuencia de cada
estado para crear un vector de características por aplicación. Esta representación
también ha sido probada usando distintos conjuntos de clasificadores, mostrando
valores de precisión inferiores en comparación con los obtenidos con características
estáticas.

El mismo capítulo también describe un novedoso enfoque de fusión de característi-
cas estáticas y dinámicas que tiene como objetivo principal mejorar los resultados
obtenidos por estos dos grupos de características individualmente. Mediante el uso
de un clasificador por votación, se combina el estimador que mostró mejores valores
en la clasificación con características estáticas con el que mostró el mejor dato con
características dinámicas. Los resultados de este nuevo enfoque de fusión muestran
una leve mejora respecto a los conseguidos previamente.

Por otro lado, la clasificación de malware en Android por familias también ha sido
tratada. Para ello, se ha utilizado un conjunto de aplicaciones de distintas familias de
malware, de las que se han extraído características dinámicas. Para su representación,
se ha seguido el mismo modelo previamente utilizado basado en cadenas de Markov.
Los resultados, obtenidos tras distintos experimentos en los que se utilizan técnicas
de aprendizaje profundo, algoritmos clásicos de aprendizaje automático y también
métodos destinados a tratar el problema de datos desequilibrados, demuestran que
todas estas técnicas permiten crear herramientas precisas de clasificación de malware
por familias.

El Capítulo 4 se ha centrado por su parte en analizar el uso de técnicas de apren-
dizaje automático desde una perspectiva de protección frente a ataques que tratan
de obstruir su correcto funcionamiento. Para ello, se ha diseñado e implementado un
ataque contra un clasificador propuesto en la literatura, denominado RevealDroid,
demostrando que efectivamente los métodos basados en aprendizaje automático son
vulnerables. El ataque consiste principalmente en modificar el vector de característi-
cas de una muestra concreta con cambios incrementales que no afectan a su semántica.
También se analiza una contramedida basada en el uso de conjuntos de clasificadores,
los cuales permiten distribuir la toma de decisión sobre la categoría de la muestra
entre diferentes estimadores y, por tanto, son capaces de contrarrestar un ataque
contra un clasificador concreto.

Finalmente, en el capítulo 5 se ha descrito el framework AndroPyTool, que ha sido
desarrollado durante el transcurso de este trabajo. Esta herramienta permite obtener
automáticamente un gran número de características estáticas y dinámicas extraídas
de aplicaciones Android. AndroPyTool puede ser utilizado para generar datasets de
vectores que representan características estáticas y dinámicas de muestras benignas
y malignas. En este trabajo, la herramienta ha permitido construir un dataset de-
nominado OmniDroid, que contiene un conjunto equilibrado de muestras de ambas
clases representadas por un amplio número de características ya extraídas.

Respuesta a las preguntas de investigación

Este apartado se da respuesta a las distintas preguntas de investigación planteadas:

• RQ1: ¿Cuáles son las prácticas más importantes usadas en el malware diseñado
para Android y que deben ser consideradas al diseñar herramientas de detección?
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El estudio realizado sobre un gran número de muestras de la familia Jisut de ran-
somware para Android [MHCC18], y que ha sido descrito en la Sección 2.3, ha
permitido conocer diversos detalles relevantes sobre su implementación. Tam-
bién se han analizado los patrones estructurales compartidos entre las distintas
muestras. Toda esta información permite entender mejor esta familia y también
conocer los mecanismos más comunes empleados por el malware que afecta a
esta plataforma.
Mediante un análisis de las similitudes que existen entre las diversas muestras, se
ha podido demostrar cómo esta familia de ransomware ha originado diferentes
variantes que implementan pequeños cambios. A un mayor nivel de abstrac-
ción, se puede observar una evolución temporal en la que ciertas variantes son
tomadas como punto de partida para desarrollar nuevos grupos de aplicaciones
maliciosas, haciendo uso de cambios incrementales. Esto es un hecho intere-
sante, ya que implica que es posible encontrar fuertes relaciones entre muestras
de la misma familia aun perteneciendo a diferentes variantes. Al mismo tiempo,
esta tendencia resalta la importancia de la clasificación de malware por familias,
una tarea esencial para detectar nuevas variantes, pero también nuevas familias
desconocidas hasta el momento. Este conocimiento puede ser más tarde uti-
lizado para construir herramientas de detección que cubran un mayor número
de muestras.
El análisis realizado también ha remarcado la importancia de la presencia de
operaciones criptográficas en familias de ransomware. Por ejemplo, algunas de
las muestras de esta familia encriptan todos los archivos del usuario, forzándolo
a pagar el rescate. Esta operación origina un inusual incremento en el número de
llamadas realizadas a la API relacionadas con funciones criptográficas. En este
sentido, un control sobre las llamadas a la API realizadas debe formar parte
de los mecanismos de detección de malware, ya que pueden relevar patrones
específicos de muestras de ransomware.
Otra práctica interesante es el uso de nuevas técnicas de ocultamiento obser-
vadas en las variantes más nuevas. Estas técnicas se basan en esconder la carga
maliciosa en archivos o librerías separadas, en algunos casos encriptadas, con el
objetivo de dificultar su análisis. Debido a esto, un enfoque dinámico resulta
más conveniente para afrontar este problema. El uso de un entorno restringido
de pruebas donde la aplicación sospechosa es ejecutada, y todas las interacciones
realizadas por la misma monitorizadas, permite capturar detalles de bajo nivel
que no podrían ser extraídos en caso de utilizar un análisis estático.

• RQ2: ¿Es posible encontrar grandes conjuntos de características ya extraídas
de aplicaciones Android benignas y malignas?
Si bien existe una gran cantidad de literatura centrada en el problema de la
detección de malware en Android, al mismo tiempo existe una falta de conjun-
tos de datos conteniendo características ya extraídas de muestras. Estos datos
resultan imprescindibles para entrenar y comparar los algoritmos de aprendizaje
automático utilizados en la construcción de herramientas de detección y clasifi-
cación. En la mayoría de los casos, los autores utilizan conjuntos de ejecutables
de los cuales ellos mismos extraen el conjunto deseado de características. Este



XII

proceso se hace más complicado cuando son múltiples las características a ex-
traer y son varias las herramientas necesarias. Los conjuntos de datos existentes
que ofrecen información del comportamiento son limitados. Como se ha discu-
tido en la Sección 3.1, ofrecen un número reducido de características, extraídas
únicamente de muestras maliciosas [RF16, RFB17].
Con el objetivo de facilitar el proceso de desarrollo y prueba de métodos de
detección y clasificación de malware, se decidió construir un nuevo dataset que
cubriera un gran número de características extraídas estáticamente y dinámica-
mente. Para ello, se desarrolló el framework AndroPyTool, que integra difer-
entes herramientas de análisis de malware. Esta herramienta permite extraer de
forma eficiente y automática las características más utilizadas en la literatura,
evitando tener que utilizar distintas herramientas específicas. AndroPyTool se
encuentra disponible como un proyecto de código abierto [MCC18].
Finalmente, con el fin de construir un dataset mediante la herramienta AndroPy-
Tool, se recolectó un gran número de muestras benignas y maliciosas desde el
repositorio Koodous1 y desde AndroZoo2. Todas ellas fueron analizadas con
AndroPyTool, lo que permitió generar el dataset OmniDroid, el cual incluye
información preestática, estática y dinámica de 11.000 aplicaciones benignas y
11.000 aplicaciones maliciosas. Estos datos se encuentran disponibles pública-
mente y pueden ser descargados desde AIDA Datasets Repository3. Con este
dataset se pretende ofrecer a la comunidad un conjunto de datos de referencia
para construir o probar herramientas de detección de malware.

• RQ3: ¿Se pueden utilizar métodos de aprendizaje automático con características
estáticas para detectar malware en Android de forma precisa?
La Sección 3.1 del presente documento describe nuevos métodos para detec-
tar y clasificar malware en Android. Estos se basan en una representación
de características estáticas con las que se han entrenado varios conjuntos de
clasificadores principalmente integrados por árboles de decisión. Los resultados
muestran que esta combinación permite crear herramientas de detección y clasi-
ficación precisas. Debido al uso de características numéricas y binarias, este tipo
de clasificador resulta el más adecuado para esta tarea.
De forma más específica, un listado de llamadas al sistema, permisos declarados,
opcodes, intent-filters, servicios o comandos del sistema han sido utilizados en los
experimentos. De estos se pueden extraer diferentes conclusiones. Por ejemplo,
el uso de diferentes combinaciones de características estáticas ha demostrado
que las llamadas a la API son la mejor forma de representar el comportamiento
de cada aplicación, ayudando a distinguir de forma precisa entre malware y
benignware. Incluso cuando se combinan con otras características como flujos
de información, los resultados no mejoran los del uso de llamadas al sistema de
forma individual.
En general, las técnicas de análisis estático han resultado ser eficientes y rig-
urosas para entrenar clasificadores basados en técnicas de aprendizaje automático.
En comparación con información dinámica, este enfoque no requiere de la ejecu-

1https://koodous.com
2https://androzoo.uni.lu
3https://aida.ii.uam.es/datasets/
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ción de cada muestra durante un período de tiempo concreto, sino simplemente
descomprimir la muestra y extraer datos de sus diferentes archivos y recursos.
Esto permite detectar muestras maliciosas con cerca del 90% de precisión me-
diante un clasificador de tipo Random Forest.

• RQ4: ¿Es posible aplicar modelos de aprendizaje automático sobre trazas dinámi-
cas para detectar malware en Android de forma precisa?
En este trabajo se ha comprobado que las características estáticas permiten
generar una rápida y eficiente descripción del comportamiento de cada apli-
cación. Sin embargo, estas pueden fallar al intentar detectar secciones de código
malicioso. Por ejemplo, las técnicas de ofuscación modernas que encapsulan la
carga maliciosa en archivos ocultos pueden provocar que una descripción estática
resulte ineficaz. De este modo, puede resultar necesario ejecutar la muestra para
que esta acceda a los archivos que contienen el malware y este sea ejecutado,
pudiendo así capturar la carga dinámica de las secciones de código malicioso.
En base a esto, el uso de características dinámicas ha sido estudiado en la Sec-
ción 3.2.
Al contrario de lo que se podía esperar, los experimentos realizados con méto-
dos basados en conjuntos de clasificadores muestran una reducción en el número
de muestras correctamente asignadas a su categoría en comparación a los que
se basan en características estáticas. Son varias las posibles causas de este re-
sultado. Por un lado, el conjunto de eventos que es controlado por DroidBox
puede ser insuficiente para detectar pequeños patrones de comportamiento. Por
otro lado, un enfoque dinámico podría no cubrir por completo las operaciones
realizadas por la muestra maliciosa (por ejemplo, si la carga maliciosa es ac-
tivada únicamente cuando el usuario accede a una sección en particular de la
aplicación).
Por esta razón, el funcionamiento original de MonkeyRunner (el servicio que
controla la ejecución de la aplicación en el emulador) fue modificado con el ob-
jetivo de enviar un mayor número de interacciones a la pantalla y los botones.
Los resultados apuntan también a la necesidad de combinan características es-
táticas y dinámicas, lo que puede ser crucial para determinar con precisión la
naturaleza de la muestra. Por ello, es necesario estudiar si una combinación de
ambos tipos de características permite construir mejores clasificadores.

• RQ5: ¿Es posible combinar características estáticas y dinámicas para construir
mecanismos de detección de malware más efectivos?
En la Sección 3.3 se ha propuesto un modelo para la fusión de características
estáticas y dinámicas. En este modelo se combinan, mediante un clasificador por
votación, los algoritmos que mejores resultados dieron al clasificar cada tipo de
características de forma individual. De este modo, ambos tipos de características
aportan a la decisión final. Para medir el grado de contribución de cada uno de
ellos a esta decisión, se utilizan dos pesos calculados mediante una búsqueda en
grid. Los pesos resultantes fueron de 0,7 para el clasificador que recibe como
entrada las características estáticas y de 0,3 para el que recibe las dinámicas.
Como se puede ver en estos dos valores, la información estática toma especial
relevancia en la clasificación final.



XIV

El enfoque de fusión propuesto mejora muy levemente los resultados obtenidos
por los dos grupos de características de forma individual, desde una exactitud
del 89,3% al 89,7%. Aunque la diferencia es pequeña, esta refleja que las carac-
terísticas dinámicas pueden ayudar en algunos casos a una mejor detección de
patrones maliciosos. Además, la combinación de ambos tipos de fuentes de infor-
mación también es importante en términos de robustez frente a ataques. Como
se vio en el Capítulo 4, los clasificadores por conjuntos en combinación con un
amplio número de características permiten reducir el éxito de estos ataques, ya
que el espacio exploratorio se vuelve más grande y complejo.
El uso de mejores herramientas de análisis dinámico también puede ayudar
a mejorar los resultados en los enfoques de fusión de características estáticas
y dinámicas. En este sentido, resulta necesario estudiar nuevos mecanismos
de análisis dinámico, utilizando emuladores más avanzados e indetectables que
permitan capturar un mayor rango de interacciones de la muestra con el sistema
operativo. Esto ayudará a mejorar el rendimiento de los actuales métodos de
clasificación por familias y de detección.

• RQ6: ¿Es posible atacar clasificadores basados en aprendizaje automático para
producir errores de clasificación?
El ataque implementado y probado descrito en el Capítulo 4 ha demostrado que
los clasificadores de malware para Android basados en aprendizaje automático
pueden forzados para producir errores en la clasificación. Mediante el uso de
una búsqueda heurística guiada por un algoritmo genético, el vector original de
características de una muestra puede ser modificado añadiendo cambios incre-
mentales. Esto puede llevar a asignar la muestra a una nueva familia aleatoria
o a una previamente prefijada. Los cambios se pueden introducir en la muestra
usando predicados opacos que nunca son ejecutados, evitando así modificar la
semántica de la aplicación.
El ataque realizado evidencia que los métodos basados en aprendizaje automático
son vulnerables. Específicamente, los clasificadores que confían en un número
reducido de características para entregar una etiqueta pueden ser más fácilmente
atacados. Para contrarrestar este problema, se ha planteado e implementado una
contramedida, basada en reemplazar el clasificador original por un conjunto de
clasificadores. Cada uno de ellos uno se encarga de clasificar la muestra en base
a un grupo de características independientes. Esto conlleva una complicación
en la implementación de estos ataques, ya que la clasificación ahora depende de
la decisión de varios estimadores.
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Trabajo futuro

Aunque todo el trabajo realizado ha tratado de analizar de forma exhaustiva el prob-
lema de la detección y clasificación de malware en Android desde diferentes perspec-
tivas, también se han observado puntos donde se podría continuar desarrollando esta
investigación:

• El análisis de la familia Jisut ha manifestado la existencia de patrones de com-
portamiento que deben ser tomados en consideración. Se necesitan estudios
similares de otras familias para mostrar detalles de implementación que pueden
ayudar a diseñar y construir mejores herramientas de detección y clasificación.
Además, estos análisis pueden ser útiles para mejorar métodos de clasificación
existentes, ayudando a descubrir nuevas variantes de familias ya conocidas o
agrupando diferentes muestras bajo la misma familia. A un nivel inferior, este
tipo de estudios permite analizar los métodos de encriptación y desencriptación
y los métodos utilizados para bloquear los dispositivos, entre otras particulari-
dades.

• En general, aunque los resultados obtenidos han mostrado altas tasas de pre-
cisión y exactitud, es necesario estudiar el uso de nuevas características, técnicas
de representación y preprocesado, y también de nuevos métodos de aprendizaje.
Particularmente, se deben estudiar características más avanzadas, que cubran
a un mayor número de archivos con el objetivo de obtener información de li-
brerías compiladas y de la presencia de funciones para la carga dinámica de
código. También se deben estudiar nuevas combinaciones de características con
el objetivo de mejorar los resultados obtenidos, donde las llamadas al sistema
han aportado los mejores resultados.

• Los experimentos en los que se ha evaluado el uso de características dinámicas
evidencian también que se debe investigar más este tipo de información. Si
bien estas características pueden ayudar indudablemente a mejorar los métodos
existentes, se requieren emuladores que no puedan ser detectados por la muestra
analizada. También hace falta investigación en relación a la estimulación de la
muestra mediante interacciones más realistas, monitorizando un amplio conjunto
de eventos y analizando nuevos procedimientos para combinar esta información
con estática.

• Los clasificadores de malware son un potente instrumento para asignar aplica-
ciones a su correspondiente familia, manteniendo así un mejor registro de las
diferentes familias existentes, mejorando la detección de malware desconocido
o que se basan en ataques de día cero y detectando nuevas variantes de famil-
ias ya conocidas. Este triaje es una tarea esencial para lidiar con el riesgo que
supone el malware, especialmente para mitigar los posibles daños causados si lo-
gra infectar el dispositivo. Al conocer la familia a la que pertenece un programa
malicioso, será mucho más fácil aplicar los pasos más convenientes para evitar
su propagación y para mitigar sus efectos. Por lo tanto, es necesario ampliar la
investigación con el objetivo de mejorar los métodos actuales de clasificación.

• El ataque diseñado, implementado y probado, descrito en el Capítulo 4, ha
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permitido demostrar que los métodos de clasificación basados en técnicas de
aprendizaje automático pueden ser eludidos. Esto conlleva una serie de riesgos
que deben ser tenidos en cuenta. Una ampliación de esta investigación podría
centrarse en estudiar la fortaleza de estas herramientas y en proponer nuevas
contramedidas para prevenir este tipo de ataques.

• Finalmente, la herramienta AndroPyTool y el dataset OmniDroid presentados
en el Capítulo 5 también pueden ser mejorados. La primera puede ser exten-
dida integrando nuevas herramientas de análisis y de ingeniería inversa, con el
objetivo de permitir la extracción de un mayor número de características. Esto
puede ayudar a desarrollar mecanismos de clasificación y detección más avan-
zados y también a construir nuevos datasets más completos. En este sentido,
OmniDroid puede mejorarse de distintas formas: incrementando el número de
muestras, mejorando la descripción de las familias de malware contenidas para
poder ser utilizado en tareas de clasificación, o incluyendo un mayor número de
características.



Abstract

Android has been intently picked as the main target by many malware creators for
designing new malicious applications. Every day, thousands of new malware samples
try to circumvent the security measures implemented by Android applications stores,
aiming to infect new devices. In order to tackle this problem, it is required to re-
search and develop mechanisms able to classify large amounts of suspicious samples
automatically, detecting those that contain a malicious payload.

This thesis studies and addresses the application of machine learning techniques for
the construction of Android malware detection mechanisms taking into account dif-
ferent perspectives. Furthermore, the classification of Android malware into families
is also addressed. A preliminary in-depth study of the Jisut family of Android mal-
ware has allowed to reveal some of the most important practices employed and which
must be considered when facing these two tasks.

In the first place, machine learning techniques are applied as the core element to
build Android malware detection methods aimed at deciding accurately whether an
application is malware or benignware. For that purpose, the behaviour of each appli-
cation is described through groups of static and dynamic features, which are modelled
using a Markov chains based representation. Then, ensemble classifiers are applied,
showing how static features provide better results in comparison to dynamically ex-
tracted features. A fusion approach of both categories of features is also proposed,
showing improved performance in comparison to models relying on a particular set
of features.

In the second place, the classification of Android malicious applications into malware
families is also tackled in this dissertation, an essential task which seeks to min-
imise the damages caused and to properly identify groups of malware. Deep learning
architectures, classic machine learning algorithms, and different techniques for deal-
ing with imbalanced data are tested in this case. The results evidence that these
techniques allow to develop accurate family classification methods. The resilience of
these methods against adversarial attacks is also analysed. A targeted attack against
a state-of-the-art classifier is proposed, showing that it is possible to force the classi-
fier to allocate samples to a fictitious, random, and new malware family or even to a
previously selected destination family.

Finally, an open source framework called AndroPyTool is presented. It integrates
different state-of-the-art malware analysis tools with the main goal of providing the
research community with an integrated tool for the extraction of a wide set of static
and dynamic features. Using this tool, the OmniDroid dataset is built and publicly
released, containing both static and dynamic features extracted from benign and
malicious Android applications.
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Chapter 1

Introduction

“If knowledge can create problems,
it is not through ignorance
that we can solve them.”

- Isaac Asimov, Asimov’s New Guide To Science

This chapter heads this dissertation to present the motivation behind this work, providing the
necessary context to understand the underlying problem and the reasons which compel research
to provide knowledge and solutions. The first two sections of this chapter aim at this purpose:
Section 1.1 outlines the motivation of this work, whereas Section 1.2 traces the problem presented.
Then, Section 1.3 proposes six Research Questions that this work tries to answer. Section 1.4
presents the structure of this thesis and finally Section 1.5 and Section 1.6 summarise the main
contributions and publications associated to this research.

1.1 Context and Motivation

Cyber attacks are currently one of the most critical and important issues which modern society is
facing. These attacks are an “attempt to destroy, expose, alter, disable, steal or gain unauthorized
access to or make unauthorized use of anything that has value to the organization” according to
ISO/IEC 27000:2009 [iso12]. The efforts dedicated to tackle these attacks have entailed enormous
costs, reaching $86.4 billions in 2017 [gar17]. While the shapes in which these cyber attacks are
presented and perpetrated are varied, there is also a large number of mechanisms and techniques
deployed to deal with them.

This work focuses on a particular kind of attacks, those performed through executable files
containing a malicious payload, also known as malware, software whose purpose is to cause
damages in computers, trying to disrupt their normal operation [cam18]. These attacks have
a long trajectory, from the emergence of the first viruses in the 70’s. Since then, they have
evolved to different shapes, implementing complex mechanisms; trying to circumvent antivirus
and to reach the victim; or making use of advanced obfuscation techniques designed to avoid
their detection.

The major problem that current malware involves is wide and complex. Malware has proved
to be a powerful tool to perform large scale attacks, targeting to a large number of users and

3
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pointing to critical infrastructures. A recent example of this kind of attacks is the WannaCry
ransomware [Ehr17], which affected thousands of not properly updated computers encrypting
data and demanding a ransom. Taking this as an example, there are two major tasks when
facing this kind of attacks: to build malware detectors able to filter and classify suspicious
samples which integrate malicious pieces of code and, in second place, to mitigate the damages
caused when they have succeeded in circumventing the detection mechanism. This thesis focuses
on the former problem, as an offline task in which suspicious samples are analysed in order to
make a decision on the malicious or harmless nature.

Furthermore, malware is not only present in personal computers, but in almost every smart
device present in our lives. Therefore, problems associated with the existence of malware gain
importance when taking into consideration the massive amount of devices around us and their key
role in our daily live. Our private and sensitive data become compromised. The most important
exponent of these devices are smartphones, in which we store photos, messages and many other
personal information along with bank, medical and other applications. The protection of these
devices against malware constitutes a major task.

Regarding these devices, Android is both the mobile operating system representing the high-
est market share worldwide1, close to the 80%, and the most targeted platform to create mal-
ware [Cor17], receiving 99% of all mobile malware. The possibility of installing applications from
non official and different market stores, or the huge amount of new applications found every day
are some of the causes of this enormous interest in Android. Nevertheless, here too lies one of
the most critical barriers against the propagation of malware and to avoid the infection of users’
devices: the implementation of filters which successfully discard those applications that contain
malicious pieces of code before being published in the stores.

Thus, Android malware has adopted different shapes, such as scareware or ransomware, and
has originated different families of malware. Grouping malicious applications into sets which
share common behavioural patterns and intentions is an essential task to analyse and understand
Android malware. Families such as BaseBridge, Plankton, Jisut or FakeRun have resulted in
thousands of different applications, presenting both slight and significant differences, which have
successfully infected devices all over the world. Android malware is a serious, huge and hard-to-
solve problem.

Efforts dedicated to counteract malware focus on the design and implementation of filters
which can decide accurately if a suspicious sample can be considered as benign or as malicious.
Through the extraction of a series of behavioural markers, it is possible to evaluate the range
of actions that the application can take and to adopt a decision. The importance of this task
is beyond question, however, the large amount of new applications found every day make it
mandatory the employment of tools able to deal with large amounts of samples automatically.
Thus, it is necessary to conduct research towards the study of mechanisms which can automatise
this task, avoiding malware samples to reach the users.

In this scenario, machine learning techniques emerge as a powerful solution to tackle this
problem. They can be leveraged as an instrument to deploy malware detectors which can manage
huge numbers of applications and which can provide a categorization of malicious or benignware
based on a previous training process from already labelled samples.

1http://gs.statcounter.com/os-market-share/mobile/worldwide
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1.2 Problem statement

This work aims to tackle the Android malware detection problem from different perspectives
through the application of machine learning techniques. Thus, this research is intended to study
the feasibility of these techniques when applied to solve the highlighted problem, providing the
necessary instruments to undertake this combination and designing novel mechanisms geared
towards detecting and classifying malware accurately.

More specifically, this research focuses on machine learning classifiers, those supervised mod-
els which after a training process from labelled examples are used to predict the class of new
unlabelled examples in the future [HPK11]. These models are employed in this work to solve
two different tasks. On the one hand, machine learning classifiers can be used as malware de-
tection models able to characterise suspicious samples into two different categories: malware or
benignware. On the other hand, they have also been used as family classification models, those
aimed at determining the malware family of samples already labelled as malicious samples. Sub-
sequently, the terms benign samples, benignware and goodware will be used interchangeably to
refer to harmless applications, while malware and malicious samples will be used when referring
to applications with malicious intentions.

While both tasks are faced through the use of machine learning classifiers, the term detec-
tion is commonly used in the literature to refer to a two-class categorisation (where malware
and benignware are the possible classes), the term family classification refers to a multi-label
classification process. Both tasks are equally important in the fight against malware. While the
detection of malware represents the first and major barrier to defeat malware, the triage process
according to which the family of suspicious samples is decided remains as a major task, since it
permits to mitigate the damages and to limit the propagation of malware properly.

Whether for detection or malware family classification, building these tools with machine
learning models entails a series of steps, from the collection of a representative set of samples
to the validation and testing of the trained models. Thus, a procedure similar to a classic data
mining process involving the following steps can be identified [Sax18]:

1. Samples collection: A representative collection of both benignware and malware is re-
quired. In case of family classification, samples from different malware families have to be
gathered.

2. Feature extraction: Through malware analysis and reverse engineering tools, a series of
features able to describe the behaviour of each application and to make differences between
malicious and benign traces are extracted.

3. Training: The selected machine learning algorithms are trained with varied samples rep-
resented as vectors containing the features extracted.

4. Testing: The last step involves testing the models trained to evaluate their validity.

In the first place, the collection of samples plays a key role in developing machine learning
aided Android malware detectors. A good selection allows to avoid bias and to properly train
and evaluate the models designed. Regarding the feature extraction step, it involves a series
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of techniques which allow to extract varied features [SH12]. Here it is possible to follow two main
approaches, related to the use of static and dynamic analysis procedures.

Features obtained using static analysis are those that can be extracted from the different
resources contained in the executable file. In contrast, dynamic analysis makes reference to a
process in which the application is executed in a sandbox and features are extracted in runtime.
In the training step, a plethora of algorithms can be used, such as decision trees, bayesian
networks or deep learning models. The election mainly depends on the type of malware analysis
approach followed, the selection of features and of their representation. Finally, the testing step
allows to check the performance of the model using fresh samples.

All this process conforms a complex task where many and varied specific techniques have to
be used at each stage. In order to study the use of machine learning techniques to solve the
two raised tasks, malware detection and family identification, this research has been structured
around the following objectives, all of them aimed at extending current research:

1. To study the most important android malware behavioural patterns which must be taken
into consideration when designing Android malware detection tools.

2. To develop the necessary tools for the automated extraction of hybrid features.

3. To generate a comprehensive dataset of features extracted from labelled samples to train
machine learning aided tools.

4. To study, develop and evaluate machine learning models for Android malware detection.

5. To study, develop and evaluate machine learning models for Android malware family clas-
sification.

6. To assess the protection of machine learning models against adversarial attacks.

First of all, it is necessary to study the most important behavioural patterns exhibited by
malware and which need to be taken into account when designing malware detection and clas-
sification tools. By analysing samples of Android malware families, rich information can be
identified regarding the most important malicious practices implemented. This is primarily im-
portant when determining the most appropriate set of features and malware analysis approach
to perform this task. Besides, this process requires automated tools able to extract the set of
features based on the malware analysis methods selected.

Once defined the space of characteristics where the behaviour of each application is repre-
sented, feature vectors are extracted from large sets of samples in order to train the machine
learning models selected. In this case, representative batches of both goodware and malware are
required for designing malware detection tools. When focusing on family classification, labelled
malware from different families will be needed.

A plethora of existent machine learning models can be used to face the problem at hand.
However, given its importance, the most appropriate methods in terms of performance must be
pursued trying to minimise as much as possible the number of instances incorrectly classified.
While current research has already faced this problem, this work tries to take a step further on
this issue and to provide knowledge for building stronger models.
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Finally, the security of the detection mechanism itself has also been considered. Recent
research [XQE16, CKOF09, GPM+16], and specially in the case of Android [MXM+16], evi-
dences that machine learning aided detection and classification models can be defeated by using
adversarial learning techniques that are able to lead the classifier to deliver misclassifications.
In this work, the security of these mechanisms is studied by implementing an attack against a
state-of-the-art malware classifier.

1.3 Research questions

The previous problem statement presented represents a series of issues that this dissertation aims
to tackle, with the ultimate goal of helping to develop accurate and secure malware detection
and classification mechanisms. It composes a series of goals and questions which need to be
answered. For that purpose, the different objectives of this research have been articulated in the
form of six Research Questions to be addressed and answered:

• RQ1: Which are the most important malicious practices among Android malware samples
to be considered when designing detection tools?

• RQ2: Is it possible to find large labelled dataset of features extracted from Android
malware and benign samples?

• RQ3: Can machine Learning classification methods be combined with static features to
detect Android malware accurately?

• RQ4: Is it possible to apply machine Learning over dynamic traces to detect Android
malware accurately?

• RQ5: Is it possible to combine static and dynamic features in order to build more effective
detection mechanisms?

• RQ6: Is it feasible to attack machine learning classifiers to produce family misclassifica-
tions?

1.4 Structure of the thesis

This thesis is presented as a compendium of publications and structured into Part I and Part
II. The former exposes the general lines of this research, describing the necessary context, synthe-
sising the main results obtained, and presenting a series of conclusions. The second part contains
four papers published in international journals which define the core of this dissertation, and on
which Part I is based. The first part is composed by the following chapters:

• Chapter 1: Introduction. This is the present chapter. It includes the motivation and the
definition of the problem addressed in this research. Then, a series of Research Questions
are proposed, followed by the structure of this thesis and finally listing the publications
which shape this dissertation.
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• Chapter 2: Android malware detection and classification from a machine learn-
ing perspective. In this second chapter, the context and details required before facing
the Android malware detection problem from the use of machine learning techniques are
presented. The Android platform is also described taking into account the architecture and
its security properties. Then, malware designed for Android is presented, with a special
focus on a specific family of Android ransomware [MHCC18]. Then, current malware anal-
ysis mechanisms are discussed and finally the use of machine learning for Android malware
detection and classification is analysed from a state-of-the-art research perspective.

• Chapter 3: Applying machine learning techniques for Android malware de-
tection and classification. The Android malware detection and classification problems
are studied in this chapter, extending existing research with novel mechanisms to perform
accurately these two tasks [MRFC18, MLCC18]. Different section are devoted to analyse
the use of different types of features and machine learning models.

• Chapter 4: Adversarial machine learning in the Android malware domain. The
previous use of machine learning is evaluated when facing adversarial attacks trying to
disrupt the correct detection or classification operation [CMM+18]. An attack is proposed
and succesfully implemented. The final section of this chapter raises a countermeasure
which can succesfully deal with this kind of attacks.

• Chapter 5: AndroPyTool and OmniDroid. This chapter focuses on describing in
detail two contributions: a tool for the automated extraction of hybrid characteristics from
Android applications, and a large and comprehensive dataset publicly available for training
and testing machine learning detection algorithms such as the ones previously presented in
Chapter 3.

• Chapter 6: Conclusions and future work. The final chapter aims to present a series
of useful conclusions based on all the results and findings obtained in the course of this
research. In the second place, different possible lines of future work are suggested.

1.5 Publications of the compendium and Contributions

This section presents the list of articles on which this thesis as a compendium of publications is
based. For each of them, quality indices and contributions of the PhD candidate are described:

(IJ-1) Martín, Alejandro; Julio Hernández-Castro & David Camacho: “An in-depth study of
the Jisut family of Android ransomware.” IEEE Access, Vol. 6, pp. 57205-57218, 2018,
DOI: 10.1109/ACCESS.2018.2873583
Impact factor = 3.557 (JCR, 2017) [Q1, 24/148, Computer Science, Information Systems].

– Overall contributions: This work performs a detailed study of a particular family
of Android ransomware, as described in Chapter 2. This allows to obtain a general pic-
ture of the most important patterns implemented by Android malware and it is useful
in the design of machine learning methods for Android malware detection presented
in Chapter 3.

– Contributions of the PhD candidate:
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∗ First author of the article.
∗ Contributions made in the conception of the presented idea.
∗ Analysis and application of reverse engineering techniques over a large number of

varied samples of the Jisut family.
∗ Analysis of the common implementation and behavioural patterns among sam-

ples.
∗ Co-author of the interpretation and discussion of results provided.
∗ Co-author of the manuscript, figures and tables presented.

(IJ-2) Martín, Alejandro; Raúl Lara-Cabrera & David Camacho: “Android malware detection
through hybrid features fusion and ensemble classifiers: the AndroPyTool framework and
the OmniDroid dataset.” Information Fusion, Ed. By Elsevier. Accepted. DOI: 10.1016/
j.inffus.2018.12.006
Impact factor = 6.639 (JCR, 2017) [Q1, 4/103 Computer Science, Theory & Methods].

– Overall contributions: This article presents a tool for the analysis of Android
applications and a large dataset which are described in Chapter 5. It also studies the
use of machine learning models, specifically ensemble classifiers, for building Android
malware detection mechanisms, as presented in Chapter 3.

– Contributions of the PhD candidate:

∗ First author of the article.
∗ Contributions made in the conception of the presented idea.
∗ Contributions made in the design of the tool and dataset presented.
∗ Implementation of the tool presented.
∗ Generation of the dataset proposed.
∗ Design and execution of the experiments.
∗ Co-author of the interpretation and discussion of results provided.
∗ Co-author of the manuscript, figures and tables presented.

(IJ-3) Martín, Alejandro; Víctor Rodríguez-Fernández & David Camacho: “CANDYMAN:
Classifying Android malware families by modelling dynamic traces with Markov chains.”
Engineering Applications of Artificial Intelligence, Volume 74, 2018, Pages 121-133, DOI:
10.1016/j.engappai.2018.06.006
Impact factor = 2.819 (JCR, 2017) [Q1, 32/132, Computer Science, Artificial Intelligence].

– Overall contributions: This article proposes novel mechanisms for the classification
of Android malware into families using dynamically extracted features, which are
described in Chapter 3. Different machine learning techniques are used in combination
with a representation of features based on Markov Chains.

– Contributions of the PhD candidate:

∗ First author of the article.
∗ Contributions made in the conception of the presented idea.
∗ Contributions made in the design of the classification mechanism presented.
∗ Implementation of the experiments using machine learning techniques.
∗ Contributions made in the design and execution of the experiments.
∗ Co-author of the interpretation and discussion of results provided.
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∗ Co-author of the manuscript, figures and tables presented.

(IJ-4) Calleja, Alejandro; Alejandro Martín, Héctor D. Menéndez, Juan Tapiador & David
Clark: “Picking on the family: Disrupting android malware triage by forcing misclassifica-
tion.” Expert Systems with Applications, 95 (2018): 113-126, DOI: 10.1016/j.eswa.2017.
11.032
Impact factor = 3.768 (JCR, 2017) [Q1, 20/132, Computer Science, Artificial Intelligence].

– Overall contributions: The aim of this work is to analyse the protection of machine
learning aided Android malware detection tools against adversarial attacks, which try
to force a classifier to produce misclassification. This attack, which is described in
Chapter 4, also presents a countermeasure to tackle these attacks.

– Contributions of the PhD candidate:

∗ Second author of the article.
∗ Contributions made in the conception of the presented ideas.
∗ Contributions made in the design and implementation of the genetic algorithm

exposed.
∗ Implementation of the countermeasure.
∗ Co-author of the interpretation and discussion of results provided.
∗ Co-author of the manuscript, figures and tables presented.

1.6 Other publications and Contributions

This section presents other related publications and conference articles which have also been
published in the course of this dissertation and that present methods and results related to this
work:

1.6.1 International Journals

(IJ-5) Martín, Alejandro; Héctor D. Menéndez & David Camacho: “MOCDroid: multi-objective
evolutionary classifier for Android malware detection.” Soft Computing, 21.24 (2017): 7405-
7415, DOI: 10.1007/s00500-016-2283-y
Impact factor = 2.367 (JCR, 2017) [Q2, 45/132, Computer Science, Artificial Intelligence].

– Overall contributions: The contribution of this work are related to Chapter 3,
describing a novel method for the detection of Android malware in this case through
the use of a multi-objective evolutionary classifier.

(IJ-6) Martín, Alejandro; Raúl Lara-Cabrera; Félix Fuertes-Hurtado; Valery Naranjo & David
Camacho: “EvoDeep: A new evolutionary approach for automatic Deep Neural Networks
parametrisation.” Journal of Parallel and Distributed Computing, 117 (2018): 180-191,
DOI: 10.1016/j.jpdc.2017.09.006
Impact factor = 1.815 (JCR, 2017) [Q2, 33/103, Computer Science, Theory & Methods].

– Overall contributions: This articles propose a new method to deal with the parametri-
sation problem of Deep Neural Networks and it is related to the contents described



1.6. Other publications and Contributions 11

in Chapter 3, specifically to Section 3.4.1, where Deep Learning models are used for
Android malware family classification.

1.6.2 Conferences

(IC-1) Martín, Alejandro; Raúl Lara-Cabrera & David Camacho: “A new tool for static and
dynamic Android malware analysis.” In the 13th International FLINS conference on Data
Science and Knowledge Engineering for Sensing Decision Support, pp. 509-516 (2018).
DOI: 10.1142/9789813273238_0066.
Rank B (2018), CORE ERA, Artificial Intelligence and Image Processing.

– Overall contributions: This conference article presented an overview of the frame-
work AndroPyTool, and it is related to Section 5.1, where this tool is presented.

(IC-2) Martín, Alejandro; Félix Fuentes-Hurtado, Valery Naranjo & David Camacho: “Evolv-
ing deep neural networks architectures for Android malware classification.” 2017 IEEE
Congress on Evolutionary Computation (CEC), San Sebastián, Spain, 2017, pp. 1659-
1666. DOI: 10.1109/CEC.2017.7969501.
Rank B (2017), CORE ERA, Artificial Intelligence and Image Processing.

– Overall contributions: This article is focused on the use of deep learning architec-
tures for Android malware classification and is related to Section 3.4.1.

(IC-3) Martín, Alejandro; Héctor D. Menéndez & David Camacho: “Genetic boosting classifi-
cation for malware detection.” 2016 IEEE Congress on Evolutionary Computation (CEC),
Vancouver, BC, 2016, pp. 1030-1037. DOI: 10.1109/CEC.2016.7743902.
Rank B (2017), CORE ERA, Artificial Intelligence and Image Processing.

– Overall contributions: This work presents a mechanism for building Windows
malware detection mechanisms based on a set of independent classifiers trained for
different regions in the space of samples and guided by a genetic algorithm. It is
related to Chapter 3.

(IC-4) Martín, Alejandro; Alejandro Calleja, Héctor D. Menéndez, Juan Tapiador & David
Camacho: “ADROIT: Android malware detection using meta-information.” 2016 IEEE
Symposium Series on Computational Intelligence (SSCI), Athens, Greece, 2016, pp. 1-8.
DOI: 10.1109/SSCI.2016.7849904.
Rank C (2017), CORE ERA, Artificial Intelligence and Image Processing.

– Overall contributions: This work focuses on metainformation to train machine
learning classifiers for Android malware detection. It is related to Chapter 3.

(IC-5) Martín, Alejandro; Héctor D. Menéndez & David Camacho: “String-based Malware
Detection for Android Environments.” 10th International Symposium on Intelligent Dis-
tributed Computing (IDC 2016), París, France, Studies in Computational Intelligence, vol
678. Springer, Cham, DOI: https://doi.org/10.1007/978-3-319-48829-5_10

– Overall contributions: A new approach for detecting malware based on a represen-
tation of strings is proposed in this article and related to the contents of Chapter 3.
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(IC-6) Martín, Alejandro; Héctor D. Menéndez & David Camacho: “Studying the Influence
of Static API Calls for Hiding Malware.” 17th Conference of the Spanish Association
for Artificial Intelligence, CAEPIA 2016, Salamanca, Spain. Lecture Notes in Computer
Science, vol 9868. Springer, Cham. DOI: 10.1007/978-3-319-44636-3_34.

– Overall contributions: The study performed in this article is related to the features
employed in Chapter 3 for Android malware detection and classification.



Chapter 2

Android malware detection and
classification from a machine

learning perspective

“People think of education
as something they can finish.”

- Isaac Asimov

The detection of malware executables conforms an essential task in many scenarios. From
preventing users to get infected with different kinds of malware, trying to steal private infor-
mation, or to stop network intrusions in large corporations. The malicious payload included
in these malicious executables can be defined as “any code added, changed, or removed from a
software system in order to intentionally cause harm or subvert the intended function of the sys-
tem.” [MM00, p. 33]. This problem, typically tackled using manual procedures, has adopted new
dimensions which involve the use of new instruments able to automatise this process with large
amounts of suspicious samples. Among these, machine learning techniques represent a promising
solution.

Machine learning has positioned itself as a powerful mechanism to solve diverse, large and
complex problems of different nature. This concept is classified as a subfield of Artificial Intel-
ligence and it is a fundamental component of many Data Mining processes, those related to the
extraction of knowledge from large amounts of data [HPK11]. In particular, to define the term
“machine learning”, Kevin P. Murphy’s definition, in his book Machine Learning: A Probabilistic
Perspective, is one of the most comprehensive and precise: “a set of methods that can automati-
cally detect patterns in data, and then use the uncovered patterns to predict future data, or to
perform other kinds of decision making under uncertainty” [Rob14].

This work is focused on the application of this set of techniques to detect malware designed for
the Android operating system. The present chapter focuses on providing the necessary context to
face this problem. First, the Android platform is introduced, presenting details of the different
layers composing its architecture. Then, malware targeting this platform is studied, paying
special attention to a particular family of malware called Jisut. Then, two possible approaches
to analyse and extract descriptive features from Android applications are presented. Finally,
literature studying and proposing mechanisms to build malware detectors and family classifiers
based on machine learning models is reviewed.

13
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2.1 An introduction to the Android operating system

Android is one of the most important mobile operating systems or platforms at present, included
in a large number of users’ smartphones, tablets or smart TVs, among others. The first version
was released in November 2007 [RLMM09]. Since then, it has experienced an incredible growth,
and it has become the most used and extended mobile operating system. In September 2018,
Android represented the 76,61% of market share worldwide, whereas its first competitor, iOS,
represented the 20,66%. This operating system is characterised by its open source architecture,
its cross-platform approach and its Linux kernel.

The wide range of possibilities that this operating system offers to manufacturers, who can
use it for their own built devices, the possibility of running applications developed in different
platforms, or the possibility of developing new software for free, are some of the reasons explain-
ing the high market share of Android. The next subsections will present the different layers
composing the Android architecture, and some of the most important technical details regarding
its security components.

2.1.1 Architecture of the Android operating system

The Android architecture1 is structured in a series of layers (see Fig. 2.1) offering different compo-
nents and functionalities at different levels of abstraction, from hardware to system applications.
The bottom layer is composed by the Linux Kernel. This is the core system of Android, on top
of which all the components and layers are deployed. It also manages some of the most impor-
tant security related policies. The next layer, in ascending order, is theHardware Abstraction
Layer (HAL), in charge of allowing access to the hardware from components in upper layers.
It contains independent modules for each hardware component.

Two layers are placed above. The first one, the Native C/C++ Libraries, used by devel-
opers who build their applications in any of these programming languages or also employed by
the Java API. The second one is the Android Runtime (ART), which has replaced Dalvik.
This environment allows to run multiple virtual machines where applications developed in Java
execute in isolation.

On top of the two previously described parallel layers, it is possible to find the Java API
framework. Through this API, it is possible to access all functionalities offered by the Android
Operating system. The main objective of this layer is to facilitate the process of developing new
applications or reusing code in a rich environment designed to help the developer. Finally, the
top layer contains a set of system applications. They provide basic functionalities to the user,
such as internet browser, phone, email or calendar, but they can be replaced by other applications
installed by the user.

In Android, applications are distributed in files with extension .apk, which stands for Android
PacKage (APK). These compressed files in zip format contain the necessary code, data, and
resources required to execute the application. Section 2.4 describes the structure of an APK.

1https://developer.android.com/guide/platform/
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Figure 2.1: Diagram showing the different layers that compose the Android operating system
architecture, from the module which access to hardware functions to the system applications level1.

2.1.2 Android security properties

The Android platform merges a variety of security policies and instruments in order to ensure the
reliability and integrity of the system. The different security mechanisms implemented allow to
restrict the access of new applications to functionalities and resources provided by the device2.
One of the most basic security policies in Android is based on the sandboxing approach to
execute applications. In this sense, each program runs in an isolated environment, composed by
an individual virtual machine. At the Linux level, each sandbox is associated with an unique
user ID, in order to guarantee the complete encapsulation.

Another important security mechanism is implemented through the Android Manifest. This
file, which is included in all Android applications, contains not only different metadata, such as
package name or a definition of activities, but also a declaration of the functionalities required

2https://source.android.com/security/overview/app-security
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to be executed. For instance, a list of permissions is mandatory in order to define which system
components the application requires (i.e. access to the camera or to location information).

Those system calls requiring the declaration of the according permissions fall under the scope
of the so-called sensitive APIs. The user must grant access to all demanded permissions when
installing the application. However, from Android 6.0, permissions are asked in runtime when
needed. This new policy aims to ensure that the user explicitly grants permission to access specific
functionalities, instead of approving a large set of permissions without actually considering if the
applications should require them.

There are other components which are specially protected. In the case of the SIM card, only
the operating system is able to manage the information contained. Access to device metadata,
including system logs or the phone number, is also particularly protected, requiring the user
to explicitly approve the action. Another important component aiming to enhance the security
component in Android lies in the Interprocess Communication mechanism, which allows to safely
share data among applications.

Finally, there are two particularities of the Android ecosystem to highlight. They present
important security barriers in the form of policies to control the access to very sensitive operations
and which, if granted, represent a very serious risk. On the one hand, to gain root privileges
entails a number of problems. A malware using these concessions is able to take full control of
the device. On the other hand, the Device Administrator API enables applications to perform a
wide set of high level operations, such as removing all user’s data or locking the device.

2.2 Malware designed for Android

Android has been attacked by malware since its appeareance in 2008. Shortly after this date,
the first malware specifically designed for this platform, particularly a Trojan [DHQ+14], was
found. From then, attackers have repeatedly pointed this platform as the main target for their
attacks, mainly due to different facts such as its large market share. According to G DATA ana-
lysts [Lue18], 3,002,482 new malware samples for Android were discovered in 2017. Throughout
all these years, different families of malware have been discovered with different intentions and
implementations.

This section introduces some of the most important and spread families of Android malware,
aiming to provide a general overview of the intentions, implementation details and risks that
they present. These families shape different types of malware, such as Trojans, scareware3 or
ransomware, and perform certain malicious actions such as dialling premium phone numbers or
stealing personal information.

Below is presented a brief description of some of the most important Android malware fami-
lies [DHQ+14]:

• FakePlayer: acts as a fake movie player which actually sends SMS messages to premium
numbers.

3A malware which tries to scare the victim.
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• Geimini: is a repacking of a benign application whose main purpose is to steal user’s
private data and which is able to receive instructions through the network. This family is
also able to display a web page, to send SMS messages or dialling premium phone numbers.

• DroidDream: represents one of the most spread malware families in Android and one
of the first which reached the Google Play Store. The main objective of this Trojan is to
control the device at the Linux level.

• Jisut: a ransomware which lock user’s devices and in some cases encrypts user’s data. The
application also shows a message informing that a ransom must be paid in order to unlock
the device or to decrypt user’s data.

• BaseBridge: performs similar actions to the ones shown by Geimini, sending premium
SMS messages. The malicious payload is stored in a hidden file installed when root access
is achieved.

• DroidKungFu: this Trojan shows a more complex implementation. It is able to delete
user’s files, steal information or avoid its detection.

• Plankton: it is also presented as a repacking of other applications. It receives orders from
a remote server and also a jar file which contains malicious code.

• GingerMaster: it repackages some applications of the Chinese market and collects and
sends system information to a server. It is also known as GinMaster [Yu13].

• FakeRun: is an example of malware which instead of stealing private data, tries to obtain
money by the use of advertising. In fact, it acts as a disguised ad blocking application.

From a general point of view, Android malware families are varied and perform diverse
actions. They steal private information, lock user’s devices or demand money (ransomware). In
order to provide implementation details at a lower level, a further analysis was performed in
this dissertation. For that purpose, a specific malware family called Jisut was used, where the
different variants created over time are clearly visible.

2.3 An inspection of the Jisut family of Android malware

With the goal of shedding light on how Android malware is developed, to observe some of the most
important artefacts employed by attackers or to know how the malicious payload is triggered,
a thorough analysis of a specific malware family was done in this work [MHCC18]. This novel
study traces in detail different implementations of a particular ransomware with the objective of
drawing conclusions that could help to design better detection tools.

One of the main goals of this study is to analyse behavioural patterns in evolutionary terms,
that is to say, to inspect the changes instrumentalised by malware samples over time in order to
become more complex. Literature so far has focused on building detection methods [MMC17] or
classification tools with a particular emphasis on obfuscation techniques [STDA+17]. However,
research focused on studying a particular family of Android malware is limited to an analysis
of the GinMaster family [Yu13]. In this work, a ransomware called Jisut was chosen for this
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purpose. This malware has been mainly distributed in the Chinese market, where it started
spreading in 2014. Jisut shapes a ransomware which demands a ransom in order to decrypt
user’s data or to unlock the device, after having deployed the malicious payload. By analysing
samples of this family, it is possible to discern subsets that include certain modifications while
sharing common structural patterns.
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Figure 2.2: Evolution over time in the number of submissions of new Jisut ransomware samples.

In order to collect samples of the Jisut ransomware, the VirusTotal Intelligence portal4 was
used. A large number of queries was required with the goal of retrieving varied samples, searching
for the term Jisut in the antivirus results. Due to the known existing problem when naming
malware samples [MBSZ11], under which antivirus employ different labels to name the same
family of malware, manual searches were necessary to obtain a large set of samples of this family.

Figure 2.2 shows the evolution of the most important variants of Jisut according to the number
of samples submitted to VirusTotal per month. As of October 2017, the total number of samples
labelled as Jisut is 4,693. In all these submissions it can be observed a seasonal component, with
different frequency peaks. Furthermore, it is also remarkable that the Nero.lockphone variant,
which was found for the first time at the beginning of 2015, shows a very similar trend to the
one shown by the original family, tk.jianmo.study over time. This leads to affirm that different
attackers could be working cooperatively.
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(a) (b) (c) (d) (e)

Figure 2.3: Screenshots of the five variants analysed of the Jisut ransomware. Each picture has
been captured once the malicious application started, informing the user of the actions to unlock
the device. a) Variant tk.jianmo.study (2014). b) Variant lichongqing_shuang (2014). c) Variant
Nero.lockphone (2015). d) Variant qqmagic (2016). e) Variant Hongyan - Huanmie (2017).

2.3.1 Description of the most relevant Jisut variants

Through the following subsections, the most important variants found of the Jisut family are
analysed. Fig. 2.3 shows a screenshot of each of these variants. Furthermore, a web page was
created (https://aida.ii.uam.es/jisutnoransom/) providing more information, mainly related
to the deactivation mechanisms employed by this malware.

The Jianmo variant

Jianmo can be considered the first broadly spread variant of the Jisut family of Android ran-
somware. It is represented by the package name tk.jianmo.study. When this piece of malware
is executed, it displays a screen informing the user that his/her device has been infected by a
Trojan (see Fig. 2.3a). A second text states that a message has to be sent through the QQ
messaging service in the next 24 hours in order to receive instructions to get the unlock code.
The malware acts as a lock-screen malware, configuring this screen to be permanently shown
and overriding any closing action. The remaining time is shown on the screen. The malware
circumvents the system clock by writing the remaining time to a file, avoiding the user to save
time by turning the clock back. However, in many samples of this variant, the threat is not
implemented, so user’s files are never removed.

It can also be seen that the application includes functionality to detect if it has been closed
or if the device was rebooted. When these events are detected, the malware restarts and the lock
screen emerges again. In other piece of code, it can be noticed that the malware implements a
keylogger module, in charge of detecting a series of key sequences. These two events highlight
the importance of the receivers declared by the suspicious applications, since they reveal events
monitored by the application.

Different samples of this family have been analysed in order to reveal general implementation
4https://www.virustotal.com/intelligence/
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patterns. For instance, it is possible to identify almost similar samples but which include different
package names. This could be aimed at avoiding detection by signature. Furthermore, there are
also samples featuring different unlock key sequences or that allow to introduce an alphanumeric
deactivation code.

The lichongqing.shuang variant

The first samples of this second slightly different variant of the original Jisut family were found
in 2014. In this case, it is presented in the form of scareware. When this malware is launched, it
shows a screen (see Fig. 2.3b) with a picture attempting to scare the victim. At the same time, a
sound of a person screaming is played at maximum volume. Aiming to avoid the user to decrease
the volume, the malicious application continuously invokes the necessary system call to revert
this action in a loop. In this case, a control of the system calls invoked by the malware can help
to detect this kind of actions. The scareware also monitors when the user taps a specific section
of the screen, moment in which a text box appear. If the user introduces a specific numerical
code in this field, this lock screen malware is deactivated.

The nero.lockphone variant

This new variant conforms again a very similar implementation if compared to the first variant.
It started spreading in 2014 but was notoriously more important in 2015. Although the visual
aspect (see Fig. 2.3c) differs from the one exhibited by the Jianmo variant, behaviour, code, or
class names are almost the same. The main view of this malware directly shows a text box to
introduce the unlock code.

The qqmagic variant

The qqmagic variant of Jisut represents a significant change in the overall family evolution. By
embedding a more complex deactivation mechanism, the attacker/s try to build a more hazardous
malware. This new variant (a screenshot is provided in Fig. 2.3d) does not longer save the unlock
code in plain text. Instead, it shares different messages with the attacker in order to generate
the final unlock code.

There are also two important details which it is important to remark in this variant. On the
one hand, this variant implements the necessary code to remove user’s files if the ransom has not
been paid, so samples of this family can be considered as quite dangerous. On the other hand,
there can be found traces revealing the use of Ijiami5, a tool which allows to apply different
obfuscation techniques.

Furthermore, the malware includes a string defining a command to be executed at the Linux
level. As it can be seen in Figure 2.4, a sample6 of this family remounts the /system/app/
partition to grant read and write permissions. Then, a file is copied from the /sdcard/ partition
to the system applications path. Finally, read and write permissions are given to this file and

5http://www.ijiami.cn
6Identified by SHA-256:506f668438477b7476674957d14407d207de1f576e5c9de2852490b43a6a013b
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1 void rootShell(){
2 execCommand(new String[] {
3 "mount -o rw,remount /system", "mount -o rw,remount /system/app",
4 "cp /sdcard/zihao.l /system/app/", "chmod 777 /system/app/zihao.l",
5 "mv /system/app/zihao.l /system/app/zihao.apk",
6 "chmod 644 /system/app/zihao.apk", "reboot" }, true);
7 }
8

Figure 2.4: Installation of a new hidden application in the qqmagic variant. The system applications
folder is remounted with read and write permissions. Then, the malicious application is copied into
this folder and the device is rebooted.

the reboot command is invoked. Through this process, an external application, which could be
downloaded in runtime, is integrated as a new system application. However, root permissions
are required to perform these operations.

The above process, which entails loading new code in runtime, conforms a major issue, since
it highlights the weaknesses of static analysis techniques. Although this process reveals the
existence of the necessary calls to import load libraries, this single fact cannot be attributed to
a malicious behaviour, as benign applications also employ this technique.

The Hongyan and Huanmie variant

This recent variant shows a similar aspect to the SLocker family, also well known by different
antivirus engines. When the main activity of this malware is launched, a screen informs the user
that the device configuration is being checked. Meanwhile, a background process is encrypting
all user’s files. After a while, or if the application is closed and restarted, a new message claims
that all user’s files have been encrypted and a large number is displayed at the bottom (see Fig.
2.3e).

To recover all files, the user must contact the author of the malware through the QQ platform.
Then, the user will be asked to provide the number shown in the screen and to pay a ransom of
20 yuans. In order to check if user’s files are actually encrypted, a set of decoy files were saved
with different extensions. Once the malware is installed and launched, all files are encrypted and
a new extension added: .文件已被幻灭劫持.

Another interesting detail found is related to the large number shown in the screen. This
value is calculated after applying a SHA-256 over the MD5 hash function of the IMEI number
(the identifier of the device). The unlock code is generated following the same basic procedure
again: the SHA-256 over the MD5 of the number shown in the screen. In summary, this code is
calculated as:

Deactivation code calculation in the Hongyan-Huanmie variant

UNLOCK_CODE = SHA-256(MD5(SHA-256(MD5(IMEI))))
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Furthermore, this family of malware presents a favourable scenario to study how a malware
evolves, integrates new modifications and gives place to new variants. After analysing a significant
number of samples of the Hongyan variant, these modifications start to take shape and to build
a series of ramifications which allow to extract several considerations. Fig. 2.5 represents the
relations found among these samples and the changes implemented. To identify each sample,
the first 8 hex characters of the SHA-256 hash are shown. Below is indicated the date of first
submission to the VirusTotal portal.
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Figure 2.5: Diagram showing different samples of the Hongyan and Huanmie variants and the
changes implemented.

The Hongyan variant, represented in the upper box of the figure implements small changes to
build new APKs. The root of this family can be located in the sample identified by 5212B6A8.
From this one, new samples are created integrating a series of modifications. For instance,
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descendants of this malware adopt different simple changes, such as a different address related
to the instant messaging service used, or to include a new resource. At the left, from the sample
with signature 6FB37389, other variations are created, implementing a different encryption key
or a change in a class declaration. Variants at the right include a modification in the packages
structure, creating a new one called logcatbroadcaster. From this one, new samples include again
small changes, such as new encryption keys or different signatures.

It is remarkable the process through which a new variant is created. From the above men-
tioned sample 5212B6A8, a new one, represented by CDE39A13, transforms the decryption key
function to include a more sophisticated one. This anticipates a series of samples involving
a number of notorious changes and shaping a new variant, starting from 1C8A5048. In this
new malware, a separated package contains the code related to the previous Hongyan variant,
in combination with a new package named com.a.a.android.admin.huanmie. This represents a
clear step towards hampering the analysis of the sample, by deploying new changes. At the same
time, it is a clear example of the evolution of malware, when old samples are used as a template
to create new variants more sophisticated.

The com.bll.apkin variant

This is the most recent variant analysed, reported in 2017 [F-S]. The most striking characteristic
of this variant lies in that the malware talks to the victim in order to demand the ransom.
Thus, the malware uses a spoken message which follows the same procedure seen in previous
variants: to inform the user that the QQ service must be used to contact the attacker. It
requires administration privileges. This sample contains a hidden APK which is extracted in
runtime. Finally, it has been found that the Jiagu 3607 is used as obfuscation software. As it
can been seen, this malware has not stopped growing and evolving to more complex shapes.

2.3.2 Conclusions extracted from the analysis

The Jisut family poses an interesting scenario where different important behavioural patterns can
be identified and where important conclusions arise. In the first place, this family implements
a series of incremental changes directly aimed at making the different key components more
complex. For instance, hampering the extraction of the unlock code, using obfuscation techniques
or hiding the malicious payload behind encrypted files, whether downloaded or already existing
in the APK package, which are decrypted and loaded in runtime. Furthermore, the use of
cryptographic operations represents a potential characteristic to which special attention has to
be paid. They imply a key indicator in ransomware, since they are the essential mechanism to
realize the threat and thus to force the user to pay the ransom.

Besides, the coding style and different artefacts implemented suggest that the developers of
this malware have limited experience. Nevertheless, some of the techniques employed have a
strong importance when dealing with Android malware. From a malware analysis perspective,
the use of obfuscation and dynamic code loading techniques constitutes a very important step
towards counteracting static based malware detection.

7http://jiagu.360.cn
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2.4 Malware analysis

The term malware analysis refers to a series of techniques and processes aiming to describe the
set of actions that a suspicious executable file can take. This allows to obtain the necessary
information to detect the malicious payload and to contain the damages [SH12]. There are
two approaches in which malware analysis techniques can be organised: static and dynamic
analysis, but it is also possible a combination of both, named hybrid analysis. Each of these
techniques present different procedures in order to extract relevant pieces of information able to
describe the behaviour of the sample. Fig. 2.6 summarises the features which can be extracted
depending on the static or dynamic approach followed.

Static Analysis Dynamic Analysis
using DroidBox

API Calls

Opcodes

Services

Activities

Receivers

Strings

System 
commands

Information 
leaks

Network 
connections

Dynamic code 
loading

API calls 
invoked

Permissions 
invoked

Permissions 
circumvented

Phone calls & 
SMSs sent

Cryptographic 
operations

File read/write 
operations

Low-level 
instructions

Figure 2.6: Diagram showing the different features that can be extracted following a static and a
dynamic analysis approach. In case of those dynamically extracted, the DroidBox tool is considered.

2.4.1 Static analysis

Techniques under the scope of static analysis refer to the extraction of descriptive information
from the executable file and which do not entail to execute the suspicious sample. This allows to
build efficient and effective models to detect malware. However, obfuscation techniques pose an
important obstacle against the effectiveness of this approach. Static analysis includes the use of
reverse engineering techniques in order to access the set of instructions that define the application
operation. Furthermore, and focused on the Android platform, a large variety of characteristics
can be revealed using this kind of analysis. Information gathered from the Android Manifest or
from the resources are included into this category.

Fig. 2.7 presents an overview of the different files and folders obtained after unzipping an
APK. However, since some of these files contain encrypted information, it is required to use
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Figure 2.7: Structure of files and folders after uncompressing an APK.

specific tools such as AndroGuard [DG13] or Apktool [Win12] to extract the human readable
version of each file. The files contained in the different folders provide varied information which
can be used to categorise the behaviour of the sample. For instance, /META-INF/ includes certifi-
cates, developer information or information to run the jar file. /assets/, resources.arsc and
/res/ are related to different mechanisms to import resources. The /lib/ folder stores compiled
libraries. Finally, two files provide the most relevant features when facing a malware analysis
task and which are shown in Fig. 2.6. classes.dex defines the code of the application in the
form of Dalvik bytecode. From here, a list of API calls, system commands or receivers defined
can be retrieved. The second important file is the AndroidManifest.xml, which declares a list of
permissions, the package name or a relation of intent filters.

2.4.2 Dynamic analysis

A dynamic analysis entails a process in which the sample is executed in a controlled environment
and a monitoring service is in charge of capturing each event or action which takes place during
the execution. While this kind of analysis can provide deep information never revealed by a
static analysis process (mainly due to the use of dynamic code loading techniques), it is much
more expensive and also less efficient. However, there is one more drawback, since existing
literature evidences how it is possible to detect when a piece of code is running in a virtual
environment [PVA+14].

DroidBox [Lan15, MCC17] was selected to conduct the dynamic analysis process. This open
source tool implemented in Python leverages the official Android emulator to monitor a wide set
of events while the suspicious sample is executed. It uses a modified version of the Linux kernel
and of the system image in order to monitor every API call invoked and also to detect data leaks.
In order to extract these events from outside of the emulator, all events captured are sent to
the Android system log and read using the Logcat tool. In a final step, DroidBox organises all
the information retrieved in different categories, where each event is associated to a timestamp
indicating the moment in which it was captured. The analysis contains the following categories
of events (as shown at the right part of Fig. 2.6):

• Accessed files: Every file accessed is included in this category. For each event, the path
to the file and the timestamp are defined.
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• Closed connections: Related to the sockets that are closed during the application exe-
cution.

• Cryptographic API usage: A relation of the cryptographic operations performed, in-
cluding the specific algorithm, key and the operation performed.

• Data leaks: Flows of private information which reach an output connection, such as
network or SMS calls.

• DEX classes loaded: A list of new packages dynamically loaded during the execution.
This is a source of information which reflects important malicious patterns. Each event of
this type includes a field reporting the path to the new file being loaded.

• Enforced permissions: The set of permissions declared and enforced by the application.

• Files operations: Read and write operations, including the path, performed over any file
during the execution.

• Hashes: The MD5, SHA-1 and SHA-256 of the application.

• Opened network connections: In this case, the destination host and port and also the
corresponding file descriptor are associated.

• Phone calls: A list of phone calls that could not be even noticed by the user.

• Data received from network: A list of data received from a particular socket, including
the source, the port and the specific data transmitted.

• Receivers: Information related to the different Broadcast receivers declared.

• Network data sent: Information of outgoing connections sending data.

• Sent SMS: A relation of messages sent in the form of SMS.

• Services started: Services started by the application.

2.4.3 Hybrid analysis

Finally, it is also possible an approach in which both static and dynamic analysis techniques are
combined (all the features represented in Fig. 2.6). The advantages that each type of analysis
offers can be used to build stronger detection models in comparison to models selecting a single
perspective [YLWX14]. A hybrid analysis poses the most effective approach to follow, however,
the computational cost can be considered as high. In many cases, a two steps analysis processes
is the most appropriate solution. Thus, a first layer involving static features determines the
nature of the sample, but, in those cases in which a categorisation is not reached with a certain
degree of precision, a dynamic analysis is performed [MGF+15].
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2.5 Machine learning in the Android malware domain

Varied literature has focused on the use of machine learning techniques to implement malware
detection and classification mechanisms. This work focuses on the use of supervised models,
particularly those under the field of classification. In this line, diverse features, models and
algorithms are applied to tackle these two problems. The process in which these models are
trained and tested follows different steps. First, it is required to extract a series of features able
to describe the behaviour of a specific labelled (as benign or malicious) sample. These features,
which are gathered using any of the approaches presented in the previous section, are modelled
using different alternatives, such as vectors of binary and counter variables or as graphs.

The next sections present some of the most important research lines in the literature from
two different points of view: the malware detection problem, in which a classification task aims
to discern between malicious and benign samples and the malware family classification problem,
where the family of malicious samples is decided.

2.5.1 Machine learning for Android malware detection

Most of the existing literature focuses on the detection of malicious executables. Moreover,
this problem can be faced from two perspectives, related to the static and dynamic analysis
approaches. The easy extraction of static features and also the wide description that they provide
of the application operation and intentions, are some of the reasons of the important amount of
research focused on this line. Information related to the package, code or metadata can be used
as input data to train these models. The following paragraphs describe how different features
are combined with varied machine learning techniques to develop malware detection tools.

API calls compose one of the most important instruments to provide detailed information
of the operations that a suspicious sample could invoke. A significant portion of the existing
literature exploits system calls to nurture machine learning classifiers. DroidMat [WMW+12]
is a model where API calls are used based on the component to which they are related in the
execution. Information related to Intent actions, permissions or Inter-Component Communica-
tions (ICC) is also considered. Clustering algorithms allow to improve the modelling of malware
behaviours while naive Bayes and k-NN lead the learning process.

DroidMiner [YXG+14] or DroidAPIMiner [ADY13] are other examples of literature proposing
API calls as the main descriptive characteristic to train malware detectors. The first one generates
Component Behaviour Graphs (CBG) to represent the existing links connecting API resources
and permissions with the actions performed. Then, Support Vector Machines (SVMs), naive
Bayes, Decision Tree and Random Forest algorithms are trained. Other existing literature also
focuses on API calls graphs [GYAR13]. In DroidAPIMiner, special attention is paid to dangerous
calls while the ID5, C4.5, k-NN and SVM algorithms are trained.

In DroidSIFT [ZDYZ14], dependency graphs of API calls and similarity metrics to detect
zero-day malware enable to train a naive Bayes classifier. In combination with permissions and
other system events [ZYZ+18], system calls feed a rotation forest model. The authors prove
that this decision tree based clasiffier delivers better results in comparison to SVMs. A different
approach called MOCDroid builds a malware detector with an evolutionary approach [MMC17].
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Other more complex approach involves the combination of API calls with permissions to train a
Multifeature Collaborative Decision Fusion (MCFG) [SAN15] approach where SVMs, Decision
Trees, naive Bayes, IBk and JRip form the set of classifiers.

The Android Manifest yields a series of key details to understand the range of action that
the application could take. With a definition of permissions required, one can draw a general
picture of the operation of the suspicious sample and to extract general patterns able to make
a distinction between malware and goodware. In general, permissions related features are com-
bined with other characteristics. Support Vector Machines (SVM), Decision tree and Bagging
are trained with a dataset of API calls and permissions [PZ13]. With other features such as
Intent actions, network data or hardware components, Support Vector Machines are trained in
Drebin [ASH+14]. A similar combination of features is employed by DroidSieve [STDA+17], with
special attention to obfuscation techniques and using Extra Trees.

Intents also pose a profitable information source to model the behaviour of Android applica-
tions in terms of operations defined and invoked in runtime (i.e. to start a background service).
This is one of the features which Andro-dympsys [JKW+16] uses in order to perform malware
detection with similarity measures and naive Bayes models. An study analyses the effectiveness
of Intents for detecting Android malware with Bayesian Networks [FAS+17], showing that they
provide a better description mechanisms than permissions.

Existing research also adopts more generic features, such as those related to metainfor-
mation extracted from the APK. ADROIT [MCM+16] applies Natural Language Processing
techniques to the description of the application and a set of machine learning classifiers, such
as Random Forest, Bagging or naive Bayes are trained with this information and also details
from the Android Manifest. Manilyzer also concentrates on metainformation extracted from the
Android Manifest to train k-NN, C4.5, SVM and naive Bayes [FSW14].

Opcodes conforms another approach to perform a deep description to feed a malware de-
tector. In this line, this research studies and evaluates the detection of malware using op-
codes [CDLM+15]. A set of classifiers, including Decision Tree, Simple Logistic, naive Bayes,
PART and RIDOR learn in parallel with a set of features which include system commands [YSM14].
This feature is also valid to train Bayesian models [YSMM13]. Inter-Component Communica-
tions (ICC) is other feature which also focuses literature on this topic, for example, training
Support Vector Machines [XLD16].

Other recent feature extraction technique is based on taint analysis, which allows to discover
information leaks able to describe some important malicious patterns. In Android, the Flow-
Droid [ARF+14] tool allows to perform this kind of analysis by modelling the entire lifecycle of
an application. Information flows are used in DeepFlow to train deep learning models [ZJY+17].

More recent approaches build complex architectures of classifiers and features. DroidFu-
sion [YS18] trains a set of classifiers at a low level, including Random Tree, REPTree, J48 and
Voted Perceptron but also ensemble classifiers, such as Random Forest, AdaBoost or Random
Subspace. Then, four different ranking algorithms allow to decide the combination strategy of
these base classifiers, which receive data related to permissions, Intents, API calls, Linux com-
mands and of the presence of files containing new code such as those with extension .jar or
.so. An ensemble of 11 different classifiers was also used aiming to accurately detect Android
malware [WLW+18]. In this case, SVM, k-NN, CART, naive Bayes or Random Forest allow to
learn from data describing the use of Intents, restricted and suspicious API calls, permissions or
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hardware related features.

While previous presented literature leverages static features to build machine learning based
Android malware detectors, dynamically extracted information also offers a powerful instrument
to build strong classifiers. For instance, Andromaly [SKE+12] collects metrics of the runtime
behaviour and feeds Bayesian Networks or a Logistic Regression classifier.

2.5.2 Machine learning for Android malware classification

The classification of malware into families, also known as malware triage, it is also present in
varied research due to its importance when mitigating the effects of malware. In general, there
can be found family classification methods which follow similar approaches to the ones shown
in literature focused on detection of malware. For instance, Dendroid [STTPLB14] implements
a text mining process over code structures represented as Control Flow Graphs (CFG) to build
a feature space in which a 1-NN classifier learns to discern between malware families. Droid-
Scribe [DSTK+16] opts for Support Vector Machines with dynamically extracted API calls.
DroidSieve [STDA+17], focused on malware detection, also aims to identify the malware family.

2.5.3 State-of-the-art machine learning algorithms for Android malware detection and
classification

This section summarises the most used machine learning classification algorithms in the literature
related to Android malware detection and family classification.

Decision trees

Decision trees are one of the former machine learning methods for regression and classification.
They provide a useful mechanism based on a set of splitting rules [JWHT13]. These models make
a prediction based on the most common class in the region of the example. Typically, decision
trees are generated through consecutive binary splitting while an error function is minimised. One
of the strenghts of these models lies in that they allow an easy interpretation and visualisation.
In contrast, they have several drawbacks, such as classification problems when presenting data
with small changes. An example of decision tree algorithm is ID3 [Qui86], which makes divisions
trying to maximise the information gain.

Support Vector Machines

This is a powerful algorithm used for both classification and regression problems. It is based on
representing each example in a n-dimensional space, where a hyperplane is created pursuing the
best separation between classes [CV95]. For building this hyperplane, a portion of the training
data called support vectors is employed. These models have been widely used in the literature
for building malware detection tools.
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Naive Bayes

The naive Bayes classifier is a probabilistic model which fall under the scope of bayesian learn-
ing [Mit97]. It is based on the Bayes theorem and pursues to calculate the hypothesis with
higher probability of a space defined by training data. These models are characterised by their
simplicity but also by their proven ability to deal with varied problems.

K-nearest neighbours

The K-nearest neighbours is a non-parametric classifier, meaning that this model grows in parallel
to the size of the training data [Rob14]. Basically, it uses a distance metric to provide a prediction
based on the majority class among the K nearest point to the example. While these models have
proved to be powerful in varied problems, they are not indicated for high-dimensional spaces.

Deep learning architectures

Deep learning models are an evolution of the neural networks models proposed several decades
ago [GBCB16]. They are complex models composed of multiple layers with different functions.
This is the case of Convolutional Neural Networks (CNNs), which have shown excellent results
in image classification and recognition problems. Deep learning models are currently receiving
great attention due their ability to cope with problems of varied nature and complexity.

Ensemble classifiers

Ensemble classifiers are based on a weighted combinations of different models [VM02]. A plethora
of algorithms have been proposed following this idea [OM99], such as Bagging or Boosting, which
apply resampling processes over training data in order to build better classification mechanisms.
They can be combined with different individual estimators, although typically decision trees are
used. A particular classifier widely used by malware detection tools is Random Forest, which
trains a set of decision trees on different subsets of the data [Rob14].



Chapter 3

Applying machine learning
techniques for Android malware

detection and classification

“Never let your sense of morals
prevent you from doing what is right.”

- Isaac Asimov, Foundation

The ability of machine learning to deal with complex and varied problems is beyond question.
In particular, machine learning classifiers are powerful methods that, based on a training process
where knowledge is acquired from a set of labelled examples, are able to make predictions on
instances given in the future [HPK11]. Furthermore, they can be constantly trained with more
examples, thus continuously improving their understanding of the problem.

A plethora of algorithms under the scope of machine learning has already been applied to the
detection of malicious executables [Mal05]. The basic idea of this combination lies in analysing
the source code of a suspicious sample looking for known patterns, revealing the true intentions
of the sample. In case of malicious code, aiming to compromise the target computer system,
to destroy or remove user’s information, to steal private information or even to use the affected
device to distribute illegal content.

Malware in the Android domain poses an important challenge since its origin. Attackers have
firmly targeted this platform in order to lock user’s phones, to steal data, to demand money or
to hamper the normal use of the device attacked. The huge number of samples containing a
malicious payload implies the use of techniques able to manage large amounts of data in order
to avoid these applications to reach the user through market stores. Machine learning provides
powerful mechanisms to help in this task, which would be impossible to face using manual
procedures.

This section deals with the Android malware detection problem from a machine learning
aided detection perspective. More in particular, the paradigm followed throughout all this work
revolves around an offline process where the goal is to design and implement instruments that,
receiving the executable file of a suspicious sample as input, will take a decision categorising the
sample as malware (it has evil intentions) or benignware/goodware (its operation does not incurs
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in any damage to the user or his/her device). This model has also been extended to consider the
classification of malicious samples into their corresponding malware family.

The ultimate aim of this chapter is to study and evaluate the use of machine learning tech-
niques to detect and classify Android malware. In the different sections of this chapter, the
application of these techniques is tested, comparing the different perspectives which can be fol-
lowed, and providing different remarks which can help to better understand how these models
can be successfully applied.

On the following sections, the problem stated is faced from different points of view related
to the different malware analysis techniques available, that is to say, by representing instances
with static, dynamic and hybrid features. In each of these sections, a representation based on
the according type of features is first proposed and described. Then, the use of a particular set of
machine learning models is evaluated. The final section focuses on tackling the Android malware
classification process.

3.1 Android malware detection through static features

Static features focus large part of the state-of-the-art literature related to Android malware
detection. The easy and quick extraction of this kind of features make them suitable to be
used to build malware detection tools. In this section, a wide set of machine learning models
are leveraged to perform a study on the appropriateness of statically extracted features for the
profile of Android malware and goodware.

Independently of the procedure followed to extract static features, they must be processed
in order to build vector based behavioural profiles to feed machine learning classifiers. This
procedure tries to describe the specific behaviour of each sample in terms of absence or existence of
a set of characteristics previously determined. The underlying hypothesis under this assumption
is that the existence of a particular subset of characteristics will reveal a behaviour depiction
which can be unequivocally attributed to malicious or to harmless intentions. Among those
features which can be retrieved performing static extraction, numerical and binary variables can
be identified. While the former represent measurable indicators (i.e. the number of times an
API call is invoked), the latter denotes the existence of a certain feature (i.e. the declaration of
a permission). Thus, a dual counter and binary based representation was followed.

Once extracted the desired set of characteristics, such as permissions requested, API calls
invoked or information flows, all this information is processed to build a representative feature
vector for each application. This process is shown in Fig. 3.1. On the one hand, M measurable
characteristics CM = {c1, c2, . . . , cM} are assigned a value counting the number of occurrences of
that feature within the application. On the other hand, K binary features DK = {d1, d2, . . . , dK}
point the use or the existence of a particular attribute. The bundling of both features compose
the static description of the application behaviour.

With the previous representation in mind, it is required to vectorise the resulting features
extracted from descriptive datasets of samples in order to train and test new classification models.
And this is one of the most crucial points when testing supervised machine learning based tools,
to gather a large collection of representative examples, in this case composed of both malware
and benignware samples, in order to fairly train and evaluate these tools.
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Figure 3.1: Extraction and representation of static information into representative feature vectors.

Currently, there are different datasets which can be used for this purpose, although they
present some limitations. For instance, some datasets provide sets of executable files such as
the AndroZoo project [ABKT16] or the Android Malware dataset [WLR+17]. Alternatively,
some public datasets offer logs of information extracted from samples such as the DroidCat
dataset [RF16, RFB17]. Nevertheless, these datasets are not suitable for the above mentioned
task, either because they provide raw samples instead of vectors of already extracted features or
because the number of instances is insufficient and the selection of features is unsatisfactory.

Based on the reasons underlined in the previous paragraph, it was decided to build a new
hybrid, labelled, comprehensive and representative dataset of malware and benignware sam-
ples. With this premise, a new automated feature extraction tool named AndroPyTool was
implemented, aiming to make it easier the process of extracting varied static and dynamic char-
acteristics from large collections of Android applications. In second place, this tool allowed to
generate the OmniDroid dataset. A description of both contributions is provided in Chapter 5.

While AndroPyTool is able to extract static and dynamic features, this section focuses on the
former ones. By using Android malware analysis tools such as AndroGuard or by analysing the
source code of each sample, AndroPyTool extracts a representative set of characteristics based on
state-of-the-art Android malware detection approaches. These features include API calls, main
activity name, opcodes, package name, permissions, intent receivers, intents services, intent activ-
ities, strings found, system commands or information flows extracted with FlowDroid [GHP+15].
Samples gathered from AndroZoo [ABKT16] and Koodous1 were scanned by AndroPyTool to
conform a dataset of features containing instances from 11,000 benign applications and 11,000
malicious applications2.

1https://koodous.com/
2Considering as goodware those applications with zero positive detections among all antivirus integrated in

VirusTotal.
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3.1.1 Malware detection using ensemble classifiers and static features

The main aim of this section is to assess the use of static features when involved in the character-
isation of Android malware and goodware samples used to train detection tools. Thus, through
the use of several machine learning classifiers, it is studied if this combination is feasible and, if
so, to assess its performance when applied to build a machine learning aided Android malware
detection tools.

In general, the use of statically extracted characteristics allows to build a meticulous portrayal
of the actions that the application can take and that are expected to be invoked once executed.
The process previously shown in Fig 3.1 was followed with all the samples retrieved in order to
generate a new representation of the OmniDroid dataset. This new descriptive rendering, where
each vector outlines the behaviour of a particular sample (i.e. each position depicts the existence
or the number of occurrences that a particular feature is involved in the application operation)
serves as entry point to the training process of the different machine learning classification al-
gorithms tested. The file containing all these vectors and used in the experiments is publicly
available3.

With the corresponding batch of feature vectors extracted from benign and malicious appli-
cations, a set of ensemble classifiers was used. The reasons under the selection of this particular
kind of machine learning algorithms lies in their proven performance when integrating diverse
classification and learning methods, taking advantage from their joint advantages and overcoming
the possible individual drawbacks [MMC16a, YS18]. Furthermore, the use of ensemble classifiers
composed of decision tree based estimators brings the best approach to follow. Given the space
of features, characterised by independent features without a spatial relation, some of them binary
and the rest formed by variables defined within the Z+ space, a linear approach through decision
rules appears to be the most recommendable approach.

The selected ensemble classifiers were run with the Scikit-learn library for Python [PVG+11].
They include AdaBoost [HRZZ09], an implementation of Bagging (with Random Forest esti-
mators) which combines different works [Bre99, Bre96], ExtraTrees [GEW06], Gradient Boost-
ing [Fri01], Random Forest [Bre01] (with 100 internal estimators), and a Voting classifier com-
bining Random Forest, K-NN [Alt92] and a simple decision tree classifier, each one with the
same weight.

All these ensemble classifiers were tested with the previously mentioned dataset through a
10-folds cross validation. For a better evaluation of the capacity of these algorithms to extract
and generalise conclusions, several experiments were conducted in order to judge the individual
and joint performance of the different features involved. The results are shown in Table 3.1.

In contrast to what it could be expected, the use of an individual group of features allows
to obtain the best results among all the combinations of features tested. In particular, API
calls compose the most appropriate representation to build a machine learning classification
tool, exhibiting a 89,3% accuracy and precision with a Random Forest classifier. In general,
this algorithm obtains the best results overall, independently of the combination of features.
It is remarkable the fact that a combination of API calls with other also competitive features,
such as opcodes or receivers, which have proved to be powerful at building detection mecha-
nisms [MMC16b], does not lead to better values.

3https://aida.ii.uam.es/datasets/
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Features set Metric AdaBoost Bagging ExtraTrees Gradient Boosting Random Forest Voting

Activities Acc 0.506 ± 0.002 0.506 ± 0.002 0.506 ± 0.002 0.506 ± 0.002 0.506 ± 0.002 0.506 ± 0.002
Prec 0.602 ± 0.036 0.602 ± 0.036 0.602 ± 0.036 0.602 ± 0.036 0.602 ± 0.036 0.602 ± 0.036

API calls Acc 0.859 ± 0.008 0.891 ± 0.007 0.89 ± 0.006 0.871 ± 0.009 0.893 ± 0.006 0.886 ± 0.006
Prec 0.859 ± 0.008 0.892 ± 0.007 0.89 ± 0.006 0.871 ± 0.009 0.893 ± 0.006 0.887 ± 0.006

API Packages Acc 0.5 ± 0 0.5 ± 0 0.5 ± 0 0.5 ± 0 0.5 ± 0 0.5 ± 0
Prec 0.25 ± 0 0.25 ± 0 0.25 ± 0 0.25 ± 0 0.25 ± 0 0.25 ± 0

FlowDroid Acc 0.677 ± 0.009 0.706 ± 0.008 0.708 ± 0.008 0.681 ± 0.01 0.708 ± 0.008 0.704 ± 0.009
Prec 0.72 ± 0.013 0.744 ± 0.009 0.748 ± 0.009 0.723 ± 0.013 0.746 ± 0.009 0.744 ± 0.01

FlowDroid, API calls Acc 0.86 ± 0.01 0.891 ± 0.007 0.889 ± 0.006 0.872 ± 0.007 0.892 ± 0.007 0.886 ± 0.006
Prec 0.86 ± 0.01 0.892 ± 0.007 0.89 ± 0.006 0.872 ± 0.007 0.892 ± 0.007 0.886 ± 0.006

FlowDroid, API Packages Acc 0.677 ± 0.009 0.708 ± 0.008 0.709 ± 0.008 0.681 ± 0.01 0.707 ± 0.01 0.704 ± 0.008
Prec 0.72 ± 0.013 0.745 ± 0.009 0.749 ± 0.009 0.722 ± 0.013 0.745 ± 0.011 0.745 ± 0.01

Opcodes Acc 0.833 ± 0.011 0.873 ± 0.01 0.869 ± 0.007 0.846 ± 0.009 0.874 ± 0.012 0.868 ± 0.009
Prec 0.833 ± 0.011 0.873 ± 0.009 0.869 ± 0.007 0.846 ± 0.009 0.874 ± 0.011 0.868 ± 0.009

Permissions Acc 0.781 ± 0.01 0.824 ± 0.006 0.824 ± 0.006 0.792 ± 0.008 0.825 ± 0.007 0.821 ± 0.008
Prec 0.781 ± 0.01 0.826 ± 0.006 0.826 ± 0.006 0.792 ± 0.008 0.827 ± 0.006 0.823 ± 0.008

Receivers Acc 0.824 ± 0.005 0.876 ± 0.01 0.877 ± 0.009 0.84 ± 0.005 0.877 ± 0.01 0.875 ± 0.009
Prec 0.825 ± 0.006 0.876 ± 0.01 0.877 ± 0.009 0.84 ± 0.005 0.877 ± 0.01 0.875 ± 0.009

Receivers, API calls Acc 0.858 ± 0.01 0.889 ± 0.006 0.89 ± 0.008 0.875 ± 0.007 0.892 ± 0.008 0.885 ± 0.007
Prec 0.858 ± 0.01 0.889 ± 0.006 0.891 ± 0.008 0.875 ± 0.007 0.892 ± 0.008 0.885 ± 0.007

Receivers, API calls,
Opcodes, Permissions

Acc 0.862 ± 0.009 0.89 ± 0.008 0.891 ± 0.008 0.88 ± 0.008 0.891 ± 0.007 0.884 ± 0.008
Prec 0.862 ± 0.009 0.89 ± 0.008 0.891 ± 0.008 0.88 ± 0.008 0.892 ± 0.007 0.884 ± 0.008

Receivers, API calls, Opcodes,
Permissions, FlowDroid

Acc 0.865 ± 0.008 0.889 ± 0.007 0.892 ± 0.009 0.879 ± 0.008 0.891 ± 0.008 0.883 ± 0.007
Prec 0.865 ± 0.008 0.89 ± 0.007 0.893 ± 0.009 0.88 ± 0.008 0.892 ± 0.008 0.883 ± 0.007

Receivers, Services,
Activities

Acc 0.825 ± 0.005 0.875 ± 0.008 0.877 ± 0.007 0.843 ± 0.008 0.876 ± 0.008 0.876 ± 0.008
Prec 0.826 ± 0.005 0.875 ± 0.008 0.878 ± 0.007 0.843 ± 0.008 0.876 ± 0.008 0.876 ± 0.008

Receivers, Services,
Activities, API calls

Acc 0.858 ± 0.01 0.889 ± 0.007 0.888 ± 0.006 0.874 ± 0.008 0.889 ± 0.007 0.884 ± 0.007
Prec 0.858 ± 0.01 0.889 ± 0.007 0.889 ± 0.006 0.874 ± 0.008 0.89 ± 0.007 0.884 ± 0.007

Services Acc 0.515 ± 0.003 0.516 ± 0.002 0.516 ± 0.002 0.515 ± 0.003 0.516 ± 0.002 0.516 ± 0.003
Prec 0.749 ± 0.013 0.741 ± 0.015 0.743 ± 0.015 0.75 ± 0.012 0.741 ± 0.015 0.742 ± 0.015

System commands Acc 0.761 ± 0.009 0.827 ± 0.007 0.827 ± 0.007 0.776 ± 0.007 0.826 ± 0.006 0.82 ± 0.008
Prec 0.763 ± 0.009 0.828 ± 0.007 0.828 ± 0.007 0.777 ± 0.007 0.827 ± 0.006 0.821 ± 0.008

Table 3.1: Results from the different ensembles classifiers used, where different combinations of
static features are tested.

This apparently contradictory situation reflects a lack of ability to generalise patterns. Thus,
it is possible to relate the use of complementary information with an overfitting effect. This is
supported by the fact that the accuracy actually improves when evaluating the training set, from
a 99,27% with only API calls to a 99,76% with the most comprehensive set of features, including
Receivers, API calls, opcodes, Permissions and information flows. However, the difference found
in terms of accuracy in the test set for API calls (89,3% ± 0,6) against the use of the complete
set of features (89,1% ± 0,8) is too small to extract more specific conclusions.

Other conclusions can be made after the analysis of these results. In the case of API packages,
services or activities, it can be seen how these features do not allow to discern the nature of the
sample, since they provide very high level information unable to describe specific behaviours.
Information flows, which provide relevant information related to malicious patterns, slightly
improve the results of the previous mentioned characteristics, but are far from the best values
obtained. For the rest of components, the results remain very similar. Regarding the differences
among ensemble classifiers, all of them perform very close. The only method where it can be
observed how accuracy and precision slightly decrease is the AdaBoost algorithm.

Finally, some conclusions can be made on the basis of the results obtained. In general,
static features allow to reach an appealing almost 90% accuracy and precision. What it is more
remarkable is that the description of a single component of the Android platform describing the
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use of API calls enables to build the most representative feature space, that is to say, the space
where instances of malware and goodware can be better differentiated.

3.2 Android malware detection through dynamic features

Static analysis techniques face an important barrier when the suspicious sample makes use of
obfuscation techniques [MMC16c]. For instance, dynamic code loading can make statically ex-
tracted features useless, as shown in the analysis of the Jisut family in Chapter 2. In contrast, a
dynamic analysis based approach allows to obtain extensive information about the real actions
performed while the target sample is executed in a controlled environment. In this scenario,
while the sample is executed, a monitoring agent is in charge of capturing each event or action
undertaken by the application in runtime. The main strength of this kind of analysis lies in
that it unveils patterns which are only disclosed when the sample is executed and when certain
capabilities are given. For instance, the malicious payload could only be triggered when the
applications can access to Internet. This can be made through the use of reflection or dynamic
code loading techniques. However, it is also necessary to comment that existing literature points
that the execution inside a virtual machine can be detected [PVA+14]. If so, the application
could hide the malicious payload if it is not running in a real device.

In order to test how machine learning technique deal with the Android malware detection
problem through dynamic features, the DroidBox tool [Lan15, Lan11] was selected to run the
dynamic analysis. For that purpose, the training set was composed by the same set of samples
previously used in previous experiments and present in the OmniDroid dataset. This dynamic
analysis tool has also been integrated into the AndroPyTool framework. A further description
of this tool is presented in Chapter 3.

In summary, DroidBox monitors a wide set of events, including cryptographic operations,
network activity, operations over files or the use of SMS services. When the analysis ends
(after a predefined time interval), a report is delivered describing all these actions, linked to a
timestamp and organised by the category of each event. All this information, however, requires a
special preprocessing task, in order to represent data in a format able to describe the application
behaviour but also appropriate to feed a machine learning classifier.

The next subsection describes the representation model used to transform the report gener-
ated by DroidBox for each sample analysed. Then, the same set of ensemble classifiers involved
in the study when using static features is again tested in combination with dynamically extracted
features.

3.2.1 Markov chains based representation

In this section, a Markov chain based modelling of the dynamic traces retrieved with DroidBox is
presented [MRFC18], in order to later train different machine learning classification algorithms.
The different existent Markov models have been successfully used in a plethora of problems, due
to their wide range of possibilities. In general terms, they allow to model and predict sequences
of symbols or time series, among others [Fin14], and follow the Markov property, where future
states in a sequence only depend on the current states, and not on past events. To model the
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Dynamic traces delivered by DroidBox, a simple model has been selected, the Discrete-Time
Markov Chains. It is a stochastic process, where there is a set of states S = {S1, S2, . . . , SN},
and a set of transition probabilities aij(t) between them. Then, it is possible to build a state
transition probability matrix where all these transitions are represented. In this matrix, it is
possible to find positions with aij(t) = 0, meaning that this particular transition never occurred
during the dynamic analysis.

{
“A” : 
{

“1.45” : {...},
“3.33” : {...},
“5.42” : {...}

},
“B” : 
{

“2.88” : {“type” : “read”},
“6.03” : {“type” : “write”},
“7.11” : {“type” : “read”}

}
}
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Figure 3.2: Diagram showing the transformation process from the raw information delivered by
DroidBox to a state transition probability matrix for each sample.

The process to build this matrix when the DroidBox tool ends its execution is shown in
Fig. 3.2. In this moment, a JSON file is returned, containing all the events recorded and
organised by different sections (file operations, network transmissions, data leaks or services
started). Then, it is possible to build a vector where all these events are represented in a single
sorted timeline: each event constitutes a state and two sequential states define a transition.
Finally, a matrix including all these events as rows and columns and filled with the corresponding
transition probabilities is obtained.

The different transition probabilities between states drawn by this matrix is used to repre-
sent the behaviour of a particular sample. Following this procedure, with a large set of matrices
representing the different behaviour dynamics of a large figure of malicious and benign applica-
tions, general behavioural patterns can be extracted in order to build detection and classification
mechanisms. When these are machine learning based tools, they need to be trained with labelled
vectors of features. These vectors are generated according to the scheme displayed in Fig. 3.3:
each matrix is flattened to obtain a representative vector for each APK of size M ×M . Besides,
a second vector is concatenated to the former, aiming to include other useful information to
better describe the behaviour of the sample. In particular, this section is employed to define the
frequency of each possible state, with the goal of providing overall information of the importance
of the different types of events invoked thorough the execution. Then, the vector size isM2 +M .

Since it is expected that a significant number of transitions will have close to zero probability
of existence for most of the samples, a threshold criteria was established. Transitions with less
than ε non-zero instances performing that transition are removed (a parameter experimentally
fixed). Finally, the corresponding label is added at the end of the feature vector of each app,
and it can be used to train the desired classification or detection algorithm.
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Figure 3.3: Diagram showing the transformation process from each transition probability matrix
to a set of vectors describing transition probabilities and state frequencies.

Features set Metric AdaBoost Bagging ExtraTrees Gradient Boosting Random Forest Voting
Transitions Acc 0.731 ± 0.01 0.776 ± 0.01 0.775 ± 0.012 0.741 ± 0.007 0.775 ± 0.009 0.763 ± 0.009
Transitions Prec 0.731 ± 0.01 0.777 ± 0.01 0.776 ± 0.012 0.741 ± 0.007 0.775 ± 0.009 0.764 ± 0.009
Frequencies Acc 0.739 ± 0.009 0.78 ± 0.012 0.774 ± 0.01 0.743 ± 0.009 0.778 ± 0.011 0.768 ± 0.008
Frequencies Prec 0.74 ± 0.009 0.78 ± 0.012 0.774 ± 0.01 0.743 ± 0.008 0.778 ± 0.011 0.769 ± 0.008
Combination Acc 0.742 ± 0.009 0.786 ± 0.007 0.779 ± 0.007 0.751 ± 0.006 0.785 ± 0.006 0.771 ± 0.011
Combination Prec 0.743 ± 0.009 0.786 ± 0.008 0.78 ± 0.007 0.751 ± 0.006 0.785 ± 0.006 0.772 ± 0.011

Table 3.2: Results of the different ensembles classifiers used with different combinations of dynamic
features.

3.2.2 Malware detection using ensemble classifiers and dynamic features

The previously presented Markov chains based representation allows to transform the raw se-
quences of dynamic events extracted in runtime into descriptive information, which characterise
the malicious or harmless behaviours of a given set of samples. In this line, while the analysis
obtained with DroidBox comprise large sequences of events, many of them showing useless de-
tails (i.e. the access to files in specific temporal paths), the transformation process conducted
translates these data into organised and descriptive information. The goal of this new repre-
sentation is to arise behavioural patterns which can help to distinguish between malicious and
benign samples.

The dynamic analysis logs provided in the OmniDroid dataset for 11,000 benign and 11,000
malicious samples were transformed in order to obtain information in the form of transition
probabilities and state frequencies. For these experiments, the ε parameter, which defines the
minimum number of samples performing a transition to keep that transition, was configured to
remove all transitions in which all instances define zero transition probability aij(t) = 0 with the
goal of reducing the search space. In case of events including a path as parameter, a maximum
of two levels of depth was allowed.
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The experiments were performed using the same pool of ensemble classifiers involved in
the experiments with static features. In this scenario, the use of transition probabilities, state
frequencies and a combination of them were tested. Results are shown in Table 3.2 in terms
of accuracy and precision after a 10-fold cross validation process. When comparing the use of
transition probabilities against state frequencies, it can be seen that the second ones arise a
small improvement, from 77,6% ± 1 to 78% ± 1.2 using a Bagging classifier. A more significant
improvement can be observed when combining both features, reaching 78.6% ± 0.7 in accuracy.
Either in the case of individual features or in the combination of both, Random Forest achieves
almost similar results.

In comparison with the results achieved in the experiments with static features, which were
run in the same conditions (same ensemble classifiers and same dataset), it is remarkable that
dynamically extracted features do not allow to reach the same levels of precision and accuracy.
From 89,3% using static features to 78,6% accuracy with dynamic features. This considerable
difference, of by more than 10%, leads to consider that static features are a more powerful
mechanism. Different conclusions can be made at this point. The unexpected worse behaviour of
dynamic analysis can be attributed to the analysis tool employed, which could not allow to obtain
sufficiently detailed information. Conversely, the use of a Markov chains based representation
could result in loosing important details able to make a difference. More in general, although the
use of dynamic information allows to model real behavioural data, its scope could be reduced in
comparison to static information.

3.3 Android malware detection through hybrid features

On the basis of the two detection models proposed in previous sections, one through the use
of static features and the second one using a representation of the dynamic behaviours, in this
section it is proposed a new approach as a fusion of both. Aiming to build a more in-depth
description of the specific behaviour of each sample and to generate stronger detection models,
the approach proposed takes advantage from the combination of static and dynamic features.

The new model combines the ensemble classification model which showed the best perfor-
mance for each type of features. Then, each one is trained and focuses on the according set of
features, either static or dynamic. Based on the results previously provided, a Random Forest
classifier is in charge of categorising the suspicious sample taking as input the static description
of its behaviour. On the other hand, a Bagging classifier returns a category based on the set of
dynamic features.

The fusion of both ensemble based methods is made through a voting classifier, as shown in
the diagram provided in Fig. 3.4. Each classifier contributes to the final categorisation with a
predefined weight. In order to select the best combination of WRF and WBG, a grid search was
used. The results are provided in Table 3.3 for the different combinations of static and dynamic
features after a 10-fold cross validation.

The results evidence again that a combination of information related to transition probabili-
ties and state frequencies allows to reach the best values in terms of both accuracy and precision.
Regarding the best pair of weights for each classifier joining the voting scheme, the best con-
figuration proved to be WRF = 0.7 and WBG = 0.3. The inclusion of dynamic information
resulted in a slight improvement, reaching 89,7% accuracy and precision.
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Figure 3.4: Scheme of the fusion approach proposed to combine both static and dynamic features
through a voting classifier.

WRandomForest WBagging Metric Transitions Frequencies Combination

0.1 0.9 Acc 0.812 ± 0.01 0.81 ± 0.01 0.815 ± 0.011
Prec 0.813 ± 0.01 0.81 ± 0.01 0.816 ± 0.011

0.2 0.8 Acc 0.834 ± 0.01 0.83 ± 0.007 0.837 ± 0.009
Prec 0.835 ± 0.01 0.83 ± 0.007 0.838 ± 0.009

0.3 0.7 Acc 0.86 ± 0.008 0.854 ± 0.008 0.861 ± 0.007
Prec 0.86 ± 0.008 0.855 ± 0.008 0.862 ± 0.007

0.4 0.6 Acc 0.879 ± 0.006 0.873 ± 0.007 0.88 ± 0.007
Prec 0.879 ± 0.006 0.873 ± 0.007 0.88 ± 0.007

0.5 0.5 Acc 0.891 ± 0.007 0.887 ± 0.008 0.892 ± 0.007
Prec 0.891 ± 0.006 0.887 ± 0.007 0.892 ± 0.007

0.6 0.4 Acc 0.896 ± 0.01 0.895 ± 0.008 0.894 ± 0.01
Prec 0.896 ± 0.01 0.896 ± 0.008 0.894 ± 0.01

0.7 0.3 Acc 0.895 ± 0.008 0.896 ± 0.008 0.897 ± 0.008
Prec 0.895 ± 0.008 0.896 ± 0.008 0.897 ± 0.007

0.8 0.2 Acc 0.895 ± 0.008 0.896 ± 0.008 0.895 ± 0.007
Prec 0.895 ± 0.008 0.896 ± 0.008 0.896 ± 0.007

0.9 0.1 Acc 0.893 ± 0.008 0.893 ± 0.008 0.894 ± 0.006
Prec 0.893 ± 0.008 0.894 ± 0.008 0.894 ± 0.006

Table 3.3: Results of the different ensembles classifiers used with different combinations of static
and dynamic features.

3.4 Android malware classification

Early detection conforms an essential step in order to prevent the target system to be attacked
or breached. In the Android environment, to detect Android malware becomes a very important
process in order to avoid the final user to get infected. However, this is a complex and very
expensive task. The huge amount of new malware instances found every day makes impossible
to detect every threat and, in some cases, they manage to surpass malware detection mechanisms.
At this stage, and in order to mitigate the possible damages caused, it is important to identify
the kind of threat, evaluating the scope and possible countermeasures to take. The malware
triage process focuses on this task [CRTE13], and it is related to the concept of malware family
classification. By allocating pieces of malware into families, it is possible to extract common
patterns among set of similar samples, thus deploying countermeasures which can be useful
when dealing with varied attacks.

Android malware families provide an organised view of the different threats, intentions and
damages they can cause but also information related to their origin and evolution. Thus, machine



3.4. Android malware classification 41

Family No. samples Family No. samples Family No. samples Family No. samples

Adrd 79 FakeDoc 132 Glodream 68 MobileTx 68
BaseBridge 311 FakeInstaller 904 Hamob 26 Opfake 597

Boxer 25 FakeRun 60 Iconosys 135 Plankton 478
DroidDream 77 Gappusin 46 Imlog 42 SMSreg 38
DroidKungFu 658 Geinimi 80 Jifake 28 SendPay 58

ExploitLinuxLotoor 67 GinMaster 334 Kmin 95 Yzhc 36

Table 3.4: Number of samples by malware family extracted from the Drebin dataset after the two
filtering criteria applied to perform the experiments.

learning can help to build family classifiers able to allocate malware samples into their respective
malware family. Once deployed, it can help not only to mitigate the effects of a malware, but
also to prevent, understand or detect new variants and shapes of threats.

In this section it is studied the use of machine learning classification algorithms when facing
the Android malware classification problem. With the goal of studying the performance of
these algorithms, the Drebin dataset [ASH+14] was selected to perform the experiments. It is
a collection of 5,560 malicious applications from 179 different malware families gathered from
August 2010 to October 2012. Two criteria were fixed in order to obtain the finally used dataset.
On the one hand, only those families containing more than 20 samples are kept, in order to ensure
that each family is properly represented in the training and test partitions. On the other hand,
invalid applications are removed by using the Androguard tool [DG13]. After applying these two
filters, a total of 4,442 samples of 24 different malware families were obtained. A description of
the final aspect of the data in terms of number of instances per family is shown in Table 3.4.

The number of samples by family evidences a significant imbalance between families, a fact
which must be taken into account when facing a machine learning task, since it can provoke an
important bias. Some of the most well-known families are included in the dataset. For instance,
BaseBridge is a Trojan trying to send premium-rate SMS messages to certain numbers. It
pursues root privileges in order to deploy a hidden file named SMSApp.apk [DHQ+14].

3.4.1 Malware classification using deep learning models

Deep learning models were also tested in this work applied to the Android malware families
classification scenario [MRFC18]. Following the Markov chain based representation introduced
in Section 3.2.1, categorised samples of varied Android malware families allow to train and test
different deep learning architectures. For this purpose, the Drebin dataset [ASH+14] already
depicted is used.

In order to extract the dynamic traces of this set of malware samples, the DroidBox tool [Lan15]
was launched for each sample to perform a 300 seconds dynamic analysis4. Once retrieved the
analysis for each sample, each one is processed in order to unify similar events. For instance, a
write operation includes a path to the file to be modified. Given that this parameter can take
a large number of non significant values, the path is removed and coincident states are consoli-
dated. Besides, the hyperparameter ε is set to 10, meaning that each individual transition must
be present in at least ε samples.

4In most of the samples, this time was adequate to capture most of the actions that this kind of analysis can
monitor
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Deep Learning model Range of parameters

Fully connected + Dropout No. Neurons = {50, 100, 300, 500}
No. Layers = {2,3,4,6}

CNN
No. Filters = {10, 30, 50}
Filter length = {5, 10, 15}
Pooling size = {2, 5, 10}

RNN No. units = {2, 5, 10, 20}

LSTM No. units = {2, 6, 10}

Table 3.5: Relation of the different range of values used for each parameter in the experiments
involving deep learning techniques for Android malware classification.

All the resulting dynamic traces were used to train different deep learning architectures.
The Keras framework [C+15] was used in combination with Tensorflow [AAB+15] as backend
library. Deep Neural Networks (DNNs) in combination with Dropout layers (aimed at reducing
overfitting), Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs) and
Long Short-Term Memory Neural Networks (LSTM) were used. These models were tested using
a bounded range of values as shown in Table. 3.5. The election the hyperparameters of deep
learning architectures was addressed in this dissertation through a heuristic search guided by an
evolutionary algorithm [MLCFH+17, MFHNC17]. Other parameters were fixed experimentally:
the optimiser was fixed to Adam and sigmoid was selected as activation function.

In order to test the different architectures, 70% of the data was used for training (10% of this
slice allows to monitor the learning curve) and the remaining 30% for testing purposes.

The results obtained are shown in Table. 3.6 presenting five different experiments involving
different combinations of features, including the use of transition probabilities and state frequen-
cies when they are used independently, or when a combination of both is used. Furthermore,
state frequencies have also been grouped by superstates, which include all the events related to
a specific category according to DroidBox. In first place, it can be seen that grouping events by
superstates leads to non representative information, reaching low accuracy rates.

When comparing transition probabilities and state frequencies, the former allow to achieve
better results as expected. The best overall results involve the combination of both features,
thus meaning that the inclusion of information related to the importance of each state allows to
complement transitions based information. In terms of the different architectures tested, RNN
and LSTM networks are not able to produce a proper family space discrimination, since they do
not contain a spatial or temporal structure (the Markov chains based representation in matrices
results in independent variables). The best results were obtained with a classic fully connected
architecture, where 77,8% accuracy is reached.

3.4.2 Malware classification using classic machine learning methods

The problem faced in the previous section has also been studied from the use of classic machine
learning methods. In this line, several classifiers widely included in literature related to malware
detection have been tested: Random Forest (including 100 internal estimators), Decision Trees,
Bagging classifier composed of Random Forest estimators, k-Nearest Neighbours and Support
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Experiment Metric Deep learning architecture

CNN Fully connected
+ Dropout LSTM RNN

Experiment 1:
Transition probabilities

Accuracy 0.76 0.773 0.204 0.204
F1 0.755 0.767 0.069 0.069

Precision 0.757 0.769 0.041 0.041
Recall 0.76 0.773 0.204 0.204

Experiment 2:
State frequencies

Accuracy 0.752 0.698 0.204 0.204
F1 0.739 0.672 0.069 0.069

Precision 0.744 0.699 0.041 0.041
Recall 0.752 0.698 0.204 0.204

Experiment 3:
State frequencies grouped

Accuracy 0.445 0.512 0.204 0.204
F1 0.39 0.471 0.069 0.069

Precision 0.403 0.502 0.041 0.041
Recall 0.445 0.512 0.204 0.204

Experiment 4:
Transition probabilities & state frequencies

Accuracy 0.768 0.778 0.204 0.204
F1 0.764 0.768 0.069 0.069

Precision 0.766 0.768 0.041 0.041
Recall 0.768 0.778 0.204 0.204

Experiment 5:
Transition probabilities & state frequencies grouped

Accuracy 0.762 0.771 0.204 0.204
F1 0.758 0.757 0.069 0.069

Precision 0.761 0.755 0.041 0.041
Recall 0.762 0.771 0.204 0.204

Table 3.6: Results obtained in the classification of Android malware families with deep learning
architectures using different combinations of dynamic features.

Vector Machines (with linear, radial based and sigmoid kernel functions). All the experiments
for this approach were run using the Scikit-learn library for Python and the average from 10
different executions was obtained.

The results, following the same scheme of previous experiments are shown in Table 3.7.
Although the numbers show similar trends when the different experiments are compared, in
general lines the new series of algorithms allow to reach better results. A superstates based
grouping proves to produce worse values. In contrast to the deep architectures previously tested
and when applied to individual features (Experiments 1 and 2), the use of state frequencies
allow to build a space where families are better differentiated. In terms of models, SVMs are
only competitive with a linear kernel. Finally, the best results are obtained with a combination
of state frequencies and state transition probabilities, improving previous results and reaching
81,8% accuracy.

The observable differences between deep learning models and classic models such as ensemble
classifiers of decision trees lead to conclude that the second ones draw a better separation among
families in the feature space, thus allowing to build more powerful methods. However, a further
study of the possibilities to develop a classification tool in this scenario can be screened by paying
special attention to the high imbalance between the representative instances of each family. For
this reason, the next subsection focuses on exploring the effects of the application of different
imbalanced learning algorithms.
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Experiment Metric ML algorithm

Bagging Decision tree k-NN Random Forest SVM linear SVM RBF SVM sigmoid

Experiment 1:
Transition probabilities

Accuracy 0.799 0.679 0.739 0.801 0.748 0.512 0.426
F1 0.779 0.678 0.728 0.784 0.728 0.462 0.359
Precision 0.787 0.681 0.729 0.792 0.738 0.529 0.516
Recall 0.799 0.679 0.739 0.801 0.748 0.512 0.426

Experiment 2:
State frequencies

Accuracy 0.805 0.741 0.708 0.813 0.454 0.288 0.257
F1 0.793 0.739 0.697 0.803 0.414 0.194 0.148
Precision 0.797 0.74 0.697 0.804 0.614 0.412 0.178
Recall 0.805 0.741 0.708 0.813 0.454 0.288 0.257

Experiment 3:
State frequencies grouped

Accuracy 0.666 0.626 0.563 0.667 0.269 0.23 0.221
F1 0.654 0.62 0.541 0.659 0.156 0.114 0.098
Precision 0.655 0.622 0.557 0.658 0.146 0.162 0.137
Recall 0.666 0.626 0.563 0.667 0.269 0.23 0.221

Experiment 4:
Transition probabilities
& state frequencies

Accuracy 0.811 0.723 0.719 0.818 0.752 0.489 0.333
F1 0.792 0.721 0.709 0.802 0.734 0.439 0.255
Precision 0.801 0.723 0.712 0.807 0.745 0.53 0.431
Recall 0.811 0.723 0.719 0.818 0.752 0.489 0.333

Experiment 5:
Transition probabilities
& state frequencies grouped

Accuracy 0.808 0.713 0.742 0.815 0.748 0.509 0.422
F1 0.789 0.71 0.729 0.799 0.728 0.458 0.355
Precision 0.797 0.71 0.734 0.806 0.736 0.529 0.509
Recall 0.808 0.713 0.742 0.815 0.748 0.509 0.422

Table 3.7: Results obtained in the classification of Android malware families with machine learning
classifiers using different combinations of dynamic features are used.

Imbalanced Learning Algorithm Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5
ADASYN 0.808 0.803 0.654 0.816 0.806
AllKNN 0.76 0.757 0.6 0.774 0.768

Cluster Centroids 0.77 0.703 0.593 0.788 0.781
Condensed Nearest Neighbour 0.611 0.617 0.453 0.643 0.609
Edited Nearest Neighbours 0.71 0.691 0.544 0.723 0.714
Instance Hardness Threshold 0.74 0.75 0.637 0.761 0.741

Near Miss 0.45 0.454 0.334 0.404 0.459
One Sided Selection 0.711 0.717 0.593 0.742 0.698

Random Over Sampler 0.799 0.796 0.655 0.806 0.804
Random Under Sampler 0.704 0.718 0.553 0.724 0.725

Repeated Edited Nearest Neighbours 0.708 0.683 0.516 0.722 0.715
SMOTE 0.807 0.805 0.658 0.815 0.813

SMOTE borderline 1 0.804 0.797 0.648 0.808 0.809
SMOTE borderline 2 0.797 0.799 0.647 0.815 0.806

SMOTE svm 0.801 0.8 0.654 0.813 0.812
SMOTE ENN 0.808 0.792 0.654 0.816 0.812
SMOTE Tomek 0.809 0.805 0.66 0.818 0.813
Tomek Links 0.784 0.796 0.656 0.796 0.803

Table 3.8: Results obtained in the classification of Android malware families with machine learn-
ing classifiers in combination with imbalanced learning algorithms using different combinations of
dynamic features are used. Values are shown in terms of precision.

3.4.3 Malware classification using learning algorithms for imbalanced data

The absence of balanced datasets in many domains evidences the need for applying specialised
methods able to mitigate this effect. Imbalanced learning algorithms encompass a powerful
instrument when tackling this kind of problems. Geared towards the same Android malware
family classification scenario previously examined, a set of state-of-the-art techniques able to
handle imbalanced data have been tested. These techniques include undersampling based strate-
gies, where samples belonging to overwhelmed labels are randomly discarded. On the other
hand, oversampling techniques duplicate samples of under-represented families in order to reach
an equilibrium. A total of 18 different techniques were tested in combination with the best classic
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classifier previously found, which as shown in Table 3.7, is the Random Forest classifier.

Table 3.8 shows the results in terms of precision after applying a wide set of imbalance learning
algorithms. The best methods are those based on SMOTE [CBHK02] in its different variations.
In particular, the combination SMOTE + Tomek with a Random Forest classifier arises the best
result (81,8% precision), slightly improving the performance of a single Random Forest without
applying a resampling technique. This result is obtained in Experiment 4, the same previously
proven to provide the best features combination: state frequencies and transition probabilities.
Regarding the resampling procedure SMOTE + Tomek, it performs an over-sampling process to
create more representative samples of under-represented families.
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Chapter 4

Adversarial machine learning in
the Android malware domain

“To succeed, planning alone is insufficient.
One must improvise as well.”

- Isaac Asimov, Foundation

Machine learning classification algorithms have been deployed in varied domains, including
those related to cybersecurity issues, performing efficiently diverse tasks. Notwithstanding, these
methods are vulnerable to attacks where their effectiveness can be compromised. When used to
build Android malware detection tools, as shown in the previous chapter, an attack could lead
the classifier to produce flawed outputs. This chapter presents an adversarial learning model
which seeks to test the resilience of classification algorithms in the Android malware domain
against targeted incursions.

The attack postulated is focused on the triage process of Android malicious applications in
which machine learning classifiers are used. While malware detectors play a fundamental role
in order to prevent the attack to be enforced, to classify a malicious software into the according
malware family poses also a major task. In this respect, a correct labelling can help to pay
attention to those families that present the greatest risk [CRTE13]. Besides, the model proposed
is easily extended to malware detection approaches. The different experiments prove that the
attack can successfully disrupt the classification process, causing samples to be assigned to a
wrong family. Consequently, a countermeasure is formulated to deal with this kind of attacks.

4.1 Attack definition

In general terms, the attack proposed, called IagoDroid [CMM+18], tries to insert a series of
modifications into a malicious sample whose categorisation by the target classifier is known.
These changes are aimed at producing a classification output different from the original one. The
goal is to reach a family which presents some advantages, such as one to which less attention is
paid.

The scenario where the attack is implemented is as follows. The attacker can access the
machine learning based classifier and knows the set of features employed by the classifier, however,
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he/she has not details regarding its implementation (the classification algorithm), since it is not
a feasible assumption. This classifier takes as input the feature vector of a particular sample and
issues a probability of belonging to a specific family. In this model, the attacker is able to extract
the same selection of features that the classifier employs, and to submit vectors without any
restriction to obtain the corresponding labels and probabilities. Following the same procedure,
the attacker is free to modify these vectors and upload them in order to obtain the classification
result.

According to a state-of-the-art taxonomy defining different kind of attacks against machine
learning [BNS+06], the attack designed is exploratory, due to its focus on provoking misclassifi-
cations and not in the training process itself; it is a targeted attack, since the attack can target
specific families and it is not an attack seeking to compromise the classifier availability.

Because the classification procedure only receives the feature vector associated with the sam-
ple to be classified, once extracted this vector it is possible to easily apply different modifications,
which means decreasing or increasing the different vector positions. Thus, the attacker can man-
ually modify these values with the goal of generating a new vector able to deceive the classifier
and provoking a misclassification. However, in order to keep the semantic intact, these changes
are limited to incremental operations, since decreasing one position would lead to remove a
functionality (i.e. an API call).

Furthermore, this process is not supposed to be trivial: there is a large number of features and
combinations of them which can be manipulated. For this reason, a heuristic search process was
chosen to find new vectors able to reflect a family change. A similar combination has already been
implemented for evading PDF malware classifiers [XQE16]. In case of the adversarial learning
in the Android domain, researchers disrupt Deep Neural Networks models [GPM+16]. Meng et
al. [MXM+16] also use genetic algorithms to auditing anti-malware tools.

In short, the attack decomposes in three steps:

1. Extraction of the feature vector of a given APK whose family is to be camouflaged.

2. To conduct a heuristic search process to generate new feature vectors which keep the
semantic intact but that cause a different labelling.

3. Decompressing and disassembling the APK to address the changes pointed by the selected
individual and repacking again the sample.

4.2 Attack implementation: IagoDroid

IagoDroid represents an attack whose main component is a heuristic search process guided by
a genetic algorithm. In this process, individuals shape candidate feature vectors which evolve
with the objective of producing a fictitious family change. The genetic search can be geared
towards two different directions: to induce a random family change, different from the original
one, or targeting a specific family. In both cases, the genetic operators are restricted in order
to introduce incremental modifications which do not imply semantic variations. When finally
deploying these changes into the sample, they will be introduced into unreachable sections of
code (i.e. a new API call), covered by opaque predicates.
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4.2.1 Attack formalisation

Assuming a dataset of n malicious samples belonging to different malware families, each one is
represented by its feature vector. Then, the corresponding set of n feature vectors is defined by:

X = {x1, x2, ..., xn}, (4.1)

Given a set of k different features, each sample xi will be represented by:

xi = {x1i , x2i , x3i , . . . , xki } (4.2)

Then, it is possible to represent the target classifier as the function C(xi), which receives as
input a feature vector and deliver the label yj with the highest probability, noted by p(yj):

C(xi) = (p(yj), yj) (4.3)

The attack to be performed against the target classifier consists on a search process which,
starting from a feature vector xi, pursues a vector x′i whose classification differs from the original
family yj :

IagoDroid(xi, yj) = x′i, C(x′i) = y′j , y
′
j 6= yj , xi + ∆ = x′i (4.4)

The new modified vector emerges from the combination of the original vector xi and a vector
of change ∆, so that xi + ∆ = x′i.

4.2.2 Target classifier

In order to test the proposed attack, a search was made for state-of-the-art Android malware
classification methods. Table 4.1 shows the different proposals found, indicating the use of some
of the most important descriptive features, if they are tested for malware family classification
and if the code is available. Only the source code of three classifiers is publicly available and of
these, RevealDroid1 includes the wider set of features: API calls, intent actions and information
flows.

The learning module of RevealDroid is composed by a machine learning classification algo-
rithm. The authors of this tool test two different methods: a C4.5 classifier [Qui14] and the
1-Nearest Neighbour algorithm [Rob14]. Regarding the training process, feature vectors repre-
senting the three kind of characteristics shown above are used.

1https://bitbucket.org/joshuaga/revealdroid
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Classifier Code structures Permissions Api Calls Intent-actions Flow analysis Tested for family
classification

Freely available
to download

RevealDroid [GHP+15] 7 7 3 3 3 3 3

DroidSIFT [ZDYZ14] 7 3 3 3 3 7 7

Dendroid [STTPLB14] 3 7 7 7 7 3 3

Drebin [ASH+14] 7 3 3 3 7 3 7

DroidMiner [YXG+14] 7 7 3 3 7 3 7

DroidAPIMiner [ADY13] 7 7 3 7 7 7 7

VILO [LWMS13] 3 7 7 7 7 3 7

DroidLegacy [DNL14] 7 7 3 7 7 3 3

MAST [CRTE13] 3 3 7 3 7 7 7

Table 4.1: State-of-the-art android malware classifiers based on machine learning algorithms com-
parison.

4.2.3 Genetic search

The search process for new vectors able to deceive the classifier is guided by a genetic algorithm.
Individuals taking part of this evolutionary process reflect a modified feature vector of the sample
to be camouflaged. The variations applied to each gene or feature are limited to incremental
values which cannot exceed a certain maximum threshold MT . Such a restriction allows to
ensure that the semantic remains intact.

Four different operators participate in the genetic algorithm. An elitist selection operator
picks the n best individuals, which will be sent to the next generation. A standard tournament
operator works as the reproduction function. An uniform crossover operator and amutation
operator which randomly modifies certain positions in the individual are also used.

The evaluation of the individuals is performed through a fitness function aiming to produce
the family change, that is to say, to move the vector away from the original classification. Based
on a feature vector and its original real label, the fitness function seeks to decrease the probability
of classifying the sample to the original family. The fitness function can be formulated as:

f(xi, yj) =

{
1− p(yj) if(p(yj), yj) = C(xi)

1 otherwise
(4.5)

Note that if the classification output already differs from the real label (it is a misclassified
example), there is no need to modify the vector, as described by the second case in the previous
equation.

As a direct extension of the fitness function shown in Equation 4.5, it is possible to target
specific families. Then, the function seeks to maximise the probability of allocation of the vector
to a specific provided target family. This second function is as follows:

f ′(xi, yk) =

{
p(yk) ifC(xi) 6= (p(yk), yk)

1 otherwise
(4.6)

When the target family corresponds to the classification result (a misclassified example which
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actually belongs to a different origin family), the function gives the maximum rating to the
individual.

4.2.4 Implementation of the attack

The first step in order to conduct this attack is to extract the range of features used by the target
classifier, which are known by the attacker. To this purpose, different tools can be considered.
In the current scenario, the well known AndroGuard [DG13] tool is employed to extract API
calls and intent actions, while FlowDroid is run in order to retrieve a listing of the information
flows found in the different samples.

Once the features are extracted from the malware samples whose family is to be camouflaged,
and the corresponding feature vectors built, it is possible to perform the evolutionary process.
When a valid individual is obtained, it will indicate the new feature vector that the original one
has to migrate to. For that purpose, a set of functionalities have to be added.

In order to integrate these modifications, it is necesary to decompress the APK and to
disassemble the Dalvik Executable (DEX) files. The smali and backsmali [Gru18] tools allow
to assembly and to disassembly DEX code, a process which allows to translate the bytecode
to human readable smali code. Here, it is possible to modify the instructions and to introduce
the different modifications within opaque predicates. When these changes involve the addition
of new information flows, it is possible to use sections of code related to the different callbacks
managed by the Android operating system.

4.3 Experimentation

A series of experiments were performed to test the feasibility of the attack. The Drebin dataset [ASH+14],
already described in the previous chapter, was used. Due to the large fluctuation in the number
of representative examples per family (some of them represented by a single sample), a minimum
threshold was fixed. This parameter was set to 10, so families with a lower number of instances
are not considered. By using this parameter, the number of families decreased to 54 from the
original 179 groups.

From this set of samples, API calls and intents were extracted with Androguard. In the case
of information flows, FlowDroid was run setting its parameters to maximise effectiveness and
depth of the analysis. However, due to the large amount of time and resources needed by this
tool to perform, it was not possible to analyse the whole dataset. Thus, the final dataset used
in the experiments is composed of 1,919 samples from 29 different malware families.

In order to replicate RevealDroid, the RWeka package for R was used to train a C4.5 classifier.
On this point, the dataset was splitted into two parts: 2/3 to train and validate the algorithm
through a 10-fold cross validation and the remaining 1/3 was used to test purposes. After 50
executions, an average of 88% accuracy was reached in the test set. A summary of the different
parameters involved in the genetic search is shown in Table 4.2.
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Parameter Value Parameter Value

Mutation probability 0.1 Elitism 3
Crossover probability 0.8 Max transformations per allele 1
Population size 50 Transformation probability per allele 0.6 - 1
Max generations 20

Table 4.2: Parametrisation of the genetic algorithm for the different experiments performed.

4.3.1 Evading the correct family labelling

In order to test the ability of the genetic search to discover new vectors disguising the original
family, experiments for 10 samples belonging to each family were performed. In total, the
heuristic search was conducted for 290 different samples, seeking to obtain new feature vectors
classified as a different family. The fitness function used in this scenario is the one proposed in
Equation 4.5.

Family First Sol. Avg. Conv. Avg. Mod. Feature

Plankton 1 3.3 1.0 ACTION_INPUT_METHOD_CHANGED (0.7)
GinMaster 1 3.7 1.0 SMS_MMS (0.6)
Kmin 1 4.3 1.0 ACTION_USER_PRESENT (0.6)
Glodream 1 4.7 0.8 ACTION_INPUT_METHOD_CHANGED (0.4)
BaseBridge Inf Inf - -
Nyleaker 1 3.6 1.0 NETWORK__LOG (0.4)
Gappusin 1 3.4 0.9 ACTION_INPUT_METHOD_CHANGED (0.3)
Geinimi 1 3.9 1.0 NETWORK_INFORMATION (0.5)
Imlog 1 4.7 1.2 ACTION_INPUT_METHOD_CHANGED (0.7)
DroidKungFu 1 7.2 0.7 IPC__NETWORK (0.2)
Iconosys 1 3.5 1.1 NETWORK__LOG (0.3)
Adrd 1 3.6 0.8 ACTION_INPUT_METHOD_CHANGED (0.5)
DroidDream 1 4.1 0.8 ACTION_INPUT_METHOD_CHANGED (0.4)
Dougalek 1 3.5 1.0 ACTION_INPUT_METHOD_CHANGED (0.4)
MobileTx 1 3.2 1.0 FILE (0.5)
FakeInstaller 1 3.5 1.0 ACTION_INPUT_METHOD_CHANGED (0.5)
ExploitLinuxLotoor 1 2.1 0.8 ACTION_INPUT_METHOD_CHANGED (0.4)
Steek 1 3.9 1.0 ACTION_USER_PRESENT (0.4)
Opfake 1 4.8 0.9 ACTION_INPUT_METHOD_CHANGED (0.5)
Nandrobox 1 3.2 1.0 ACTION_INPUT_METHOD_CHANGED (0.4)
Xsider 1 3.1 1.0 ACTION_INPUT_METHOD_CHANGED (0.6)
Yzhc 1 4.5 0.8 ACTION_USER_PRESENT (0.4)
Fatakr 1 3.2 1.0 ACTION_USER_PRESENT (0.7)
FakeRun 1 4.4 1.0 ACTION_INPUT_METHOD_CHANGED (0.4)
Mobilespy 1 3.1 0.9 ACTION_MAIN (0.4)
Hamob 1 3.4 1.0 ACTION_INPUT_METHOD_CHANGED (0.3)
Jifake 1 2.6 0.8 android.net (0.3)
Fakengry 1 2.6 0.6 UNIQUE_IDENTIFIER_DB_INFORMATION (0.2)
SMSreg 1 1.6 0.9 ACTION_INPUT_METHOD_CHANGED (0.3)

Table 4.3: Results of the genetic search performed towards a family change. For each family
it is shown the number of generations required to find the first solution, the average number of
generations needed to converge, the average number of modifications applied to each position and
the most changed feature for that family.

Results are shown in Table 4.3. As it can be seen, only one generation is required to find at
least one valid solution. On average, the genetic algorithm requires 4 generations to converge
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(which means between 50 and 350 queries to the classifier). These two values are particularly
important because they denote that to find a valid individual able to evade the correct classifica-
tion is relatively an easy task. BaseBridge represents a special case. No individuals were found
able to produce a misclassification in samples of this family. For the rest of the families, Droid-
KungFu presents the most complex case, where the highest number of generations was needed to
achieve convergence. In contrast, SMSreg is the family for which the genetic search requires the
lowest number of iterations. This table also includes the minimum number of changes required
to cause the misclassification, which is closed to 1. Lower values are due to those samples that
are already incorrectly classified, so no change is needed to evade the correct classification.

Regarding the most important feature decisive to provoke the misclassification (shown in the
last column of the table), ACTION_INPUT_METHOD_CHANGE plays a fundamental role.
In general, any sample implementing this action will be automatically classified as BaseBridge.
This is also the reason for which BaseBridge cannot be evaded: the presence of this permission
unavoidably conducts the sample to be classified to this family. In particular, this feature refers
to an intent defined by the application for receiving a broadcast reporting that the input method
has been changed2.
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Figure 4.1: Matrix showing the transition probabilities from each family of origin to the different
fictitious family destinations.

2More information can be obtained at: https://developer.android.com/reference/android/content/Intent.
html#ACTION_INPUT_METHOD_CHANGED
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The most common transitions of each family, that is to say, the labels to which the resulting
new vector is classified to, were also studied (see Fig. 4.1). The most likely label destination is
again BaseBridge. An important number of mutated vectors are allocated to this family by the
classifier. At the same time, it can also be noted a common pattern among families, showing
that transitions are not symmetric. This means that when a family is able to reach a fake family
through the modifications indicated by the genetic search, the opposite route will be hard to
achieve. This make sense when taking into account the limitation imposed in the modifications
introduced, which can only be incremental. Then, when a family is represented by a vector
entailing higher values in relevant features in comparison with a secondary family, the transition
between both will be more likely in one single direction. However, there are exceptions, such as
the pair composed by Plankton and DroidKungFu. There also 9 families which are never reached
during this genetic search (i.e. GinMaster or Nyleaker, among others).

Moreover, as revealed in the experiments, Plankton and Nyleaker families share almost the
same set of intent actions. The difference lies in that Plankton features two more actions.
Further, Kmin and GinMaster have a very similar behaviour to DroidKungFu, since just one
single modification in these families allows to classify their vectors to this destination family.
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Figure 4.2: Matrix showing the transition probabilities from each family of origin to the different
targeted families.
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4.3.2 Targeting specific families

The ability of the heuristic search proposed to target specific families was also tested. While in
the previous scenario individuals minimise the probability of being classified to the origin family,
in this second one the fitness function pursues individuals approaching a target family previously
specified (the function is defined by Equation 4.6).

The same process used in the previous subsection is followed for testing the ability to target
specific families. But in this case, for every sample of a particular family, each possible destination
is tested. The ability to reach the different families is shown in Fig. 4.2. An individual tile in
the plot defines the number of samples for which the genetic algorithm found a valid solution
(i.e. a new feature vector shaping the new target family) divided by the number of samples of
that family. It can clearly be seen how the samples of all families can be disguised as BaseBridge
samples. The most remarkable fact found is that there are families which are much more easier
to reach than others. For instance, while DroidKungFu or DroidDream can be fetched from
multiple origin families, others such as Hamob cannot be accessed from any family.

In general terms, the two experiments shown above demonstrate that it is actually feasible to
introduce disturbances in feature vectors in order to disguise the real family of a malware sample.
This leads to conclude that machine learning based classification methods in the Android malware
domain are liable to be attacked.

4.4 Countermeasure

The purpose of this section is to provide a countermeasure able to detect disrupted feature
vectors trying to produce an intentional misclassification. This section demonstrates that the
use of a more robust classifier can help to improve the performance when facing modified samples.
Fig. 4.3 shows the design of this countermeasure.
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Figure 4.3: Countermeasure designed to deal with the IagoDroid attack.

The new classifier designed to implement this countermeasure is named RevealDroid*, and
acts as an ensemble of n classifiers. Each engine composing the ensemble is tied to a specific
set of features. Unlike certain ensemble classifiers such as Random Forests [Bre01], features are
not share among estimators, indeed, each one is focused on a specific subset. The final label
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is decided by means of a voting scheme. Ensemble classifiers have proved to be more robust in
comparison to single classifiers against adversarial attacks [CKOF09].

By randomly allocating these features to the different estimators, the attacker will face a
major barrier, since he/she will not be able to relate features and classifiers. Furthermore, each
individual estimator contributes to the final labelling, so an effective attack would require to
disrupt a significant portion of them. In particular, each different estimators keeps the same
parameters and the global set of features remains identical.

In order to test the performance of RevealDroid* in comparison to RevealDroid, the same
evaluation was made. It resulted in 88% accuracy, a quite similar value. However, the main
benefit is the ability to detect potential misclassifications. As shown in Fig. 4.3, both classifiers
operate in parallel. Each one provides a label and the related probability of that label. In the
comparison of both results lies the strength of the countermeasure: RevealDroid* will alert of a
potential misclassification when both classifiers differ.

4.4.1 Reversing the attack

Once detected a sample trying to evade the classifier, it will be placed in quarantine. However,
it is also convenient to follow a backtracking process in order to identify potential origin families.
For this purpose, data represented in Fig. 4.2 can be used to analyse the most likely transitions
which have the fake label delivered by RevealDroid as destination.

A particular example can be drawn from those individuals classified to the Kmin family.
As shown in Fig. 4.4, samples incorrectly classified to the Kmin family have 6 potential origin
families.
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Figure 4.4: Potential families and probabilities of origin for samples camouflaged as Kmin.



Chapter 5

AndroPyTool and OmniDroid

“No sensible decision can be made any longer
without taking into account not only the world as it is,

but the world as it will be.”

- Isaac Asimov, Asimov on Science Fiction

The different malware detection algorithms postulated in the course of this work have required
broad sets of features extracted from Android malware and benign samples in order to be trained,
validated and ultimately tested. In this regard, there is a lack of publicly available data sources.
Although it is possible to find collections of APKs, a limited number of datasets provide already
extracted feature vectors. This forces researchers and developers to search for tools focus on
particular sets of characteristics, and to execute each of them individually until the desired set
of features is obtained.

To assist in this process, AndroPyTool [MCC18] was designed, implemented and publicly
released aiming at automating the mining process of a varied set of static and dynamic fea-
tures. The use of this tool allows to efficiently obtain diverse behavioural information that would
otherwise require to invest significant time.

In second place, and focused on the already stressed gap of a dataset of feature vectors,
the OmniDroid dataset1 was built. Working from large batches of Android applications, the An-
droPyTool was run for each of them, bundling all the results into a dataset containing behavioural
descriptive features from 22,000 benign and malicious applications. The major objective of this
dataset is to help researchers when training and testing detection tools. These two contributions
are presented in this chapter.

5.1 AndroPyTool: an automated framework for static and dynamic feature
extraction from Android applications

The extraction of representative behavioural characteristics from Android applications conforms
an essential task when designing detection tools able to distinguish between malicious and benign
applications. In this process, a large number of existing tools allow to extract specific types of

1Available at AIDA Datasets Repository: https://aida.ii.uam.es/datasets/
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Figure 5.1: Scheme of the different features and the extraction tools used in AndroPyTool.

features at different levels. For instance, it is possible to employ tools focused on extracting
static features from the Android Manifest, while others mine information flows.

The individual use of each of these tools offers an extensive description of the behavioural
characteristics, however, following this process with large sets of samples becomes a tedious task.
With the primary objective of facilitating and accelerating this process, an automated framework
named AndroPyTool [MRC18, MLCC18] was designed and implemented. It integrates the most
important exponents of Android malware analysis tools in order to provide fine-grained analysis
of suspicious samples, including diverse static and dynamic features.
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AndroPyTool [MCC18] is an open source Python tool and library which, through a series of
steps, retrieves varied information from a given sample by leveraging different existing libraries
and tools. A general scheme of AndroPyTool is displayed in Fig. 5.1. The information gathered
throughout this process can be categorised into three different categories: pre-static, static and
dynamic features. The former category is detached from static features for a better organisation.
The next subsections describe this seven-step process, detailing the features extracted, how they
are processed and presenting the final outputs.

5.1.1 Tool operation
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APKs filtering

Valid Invalid

Outputs
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Step 2
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reports
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Dataset partitioning
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Step 7
Features extraction and 

processing

Goodware Malware FlowDroid raw 
report

Step 5
FlowDroid processing

Sinks-sources 
connections

Dynamic reportsPre-static

Static Dynamic

Figure 5.2: Diagram showing the seven-step process followed by AndroPyTool to extract a wide
set of static and dynamic features.

AndroPyTool is designed as a modular framework written in Python where a number of
scripts are sequentially executed. This enables the smooth integration of new malware analysis
tools in the future, or to improve each of them separately. The operation of AndroPyTool follows
a seven steps process (see Fig. 5.2) as described below:

• Step 1: Invalid applications filtering. This step works as a filtering process which
allows to discard invalid applications, those that are not properly constructed, and which
therefore may not be executed to obtain dynamic traces. For this purpose, the AndroGuard
library for Python [DG13] is used. It includes a function which determines if a given sample
is valid by parsing the Android Manifest. If this file can be successfully retrieved, then the
sample is considered as valid. When this first step ends, applications are placed into two
different folders, /valid/ and /invalid/ according to the result obtained with AndroGuard.

• Step 2: VirusTotal analysis. VirusTotal [Vir] is a free online service that allows to scan
files, executables or URLs among other formats, with more than 70 antivirus engines. For
each of them, and in case of testing positive, a label defines the type or family of malware
found. The main goal of this analysis is to provide the ground truth data necessary to
categorise each sample between malicious or benign. In order to execute this step, a valid
VirusTotal API key must be provided as argument.

• Step 3: Dataset partitioning. At this stage, samples are categorised into two different
categories based on the report downloaded from VirusTotal and a threshold parameter ε
defined by the user, aimed at counterbalancing the number of false positives. Thus, those
samples that are labelled as malware by at least ε antivirus engines are allocated to the
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malware set. On the contrary, samples with a lower number of positives are considered as
benignware.

• Step 4: FlowDroid execution. Information flows pose a profitable data source. Tracing
information, from the method where it is originated to the function where it is received,
brings useful details regarding the operation of the code. This taint analysis based process
allows to retrieve source-sink connections based on a predefined list of calls, representing
information leaks that could reveal malicious patterns. The FlowDroid tool [ARF+14] was
selected for this purpose, a static taint analysis tool for discovering information flows in
Android applications. This step is, together with the dynamic analysis step, the most
computationally expensive task. It requires significant time and resources to perform a
thorough analysis.

• Step 5: FlowDroid results processing. After executing FlowDroid, raw logs con-
taining full details of the taint analysis process are obtained. In this step, these logs are
parsed to retrieve a relation of source-sink connections. The reason of dividing the anal-
ysis with FlowDroid in two steps (execution and results processing) lies in that different
representations or categorisations can be made once the tool execution has finished.

• Step 6: DroidBox execution. DroidBox is a tool designed for the dynamic analysis
of Android applications [Lan15, Lan11]. It executes a target sample in an emulator while
all the actions performed are monitored and captured. This allows to gather a large set
of valuable information describing the different interactions of the sample with the device
functionalities. Cryptographic operations, file read and write operations, or information
leaks via network are some of the events inspected. A modified version [MCC17] of the
DroidBox original repository was used in order to include the execution of the Strace tool
at the Linux level, to run the emulator in a non-GUI environment and to increase the
number of automatically induced interactions in the sample under analysis.

• Step 7: Feature extraction. The final step is in charge of processing all the information
gathered in the above steps and of extracting a large sets of pre-static and static features.
The different files composing the application are inspected with the help of AndroGuard
in order to retrieve static features and parsing the smali files (obtained from decompiling
the original Dalvik Executable DEX files) to obtain, opcodes, strings or system commands
included throughout the code. This step generates the final outputs of AndroPyTool: a
feature file for each apk detailing all the features extracted2 in JSON format and a reduced
version in CSV format. AndroPyTool also allows to directly export all the information
gathered from a set of samples to a Mongo database. This step also allows to generate
a file containing feature vectors which can be used to train or evaluate machine learning
algorithms.

5.1.2 Features extracted by AndroPyTool

Table 5.1 offers a summary of the pre-static, static and dynamic features that AndroPyTool
extracts. The different subsections provide a description of each individual feature according to
the corresponding category.

2Strace logs are not included in this individual feature file due to the large size of these reports.
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Feature Description

Pre-static

Filename Filename of the APK
VT positives Number of antivirus which test positive for malware
VT engines Number of antivirus used in the analysis
AVClass Agreed malware label from several detection engines according to [SRKC16]
MD5 MD5 checksum of the APK
SHA1 SHA-1 checksum of the APK
SHA256 SHA-256 checksum of the APK

Static

API Calls Count of system calls performed by an APK
Main Activity Name of the Main Activity
Opcodes Count of opcodes performed by an APK
Package name Name of the package
Permissions Which permissions uses the APK
Intent receivers Set of an APK’s receivers
Intent services Services used by an application
Intent activities Activities declared by an APK
Strings Set of defined strings (with use count) within an APK
System commands Set of system commands ran by the app
FlowDroid Path to the results obtained by FlowDroid [ARF+14]

Dynamic DroidBox Analysis performed with the DroidBox dynamic analysis tool
Strace A list of all the actions performed at the Linux level

Table 5.1: Summary of the pre-static, static and dynamic features that are extracted by AndroPy-
Tool

5.1.2.1 Pre-static features

Pre-static features feed general information of the sample, with the primary objective of identify-
ing and categorising each sample. The main difference with static features lies in that pre-static
characteristics do not imply decompiling or to access the code. In this segment of features, the
next fields are included for each application:

• File name: the original name of the file.

• VT positives: the number of antivirus engines included in the report obtained from
VirusTotal which consider the sample as malicious. This allows to label the sample as
malware or benignware according to a threshold ε.

• VT engines: the total number of antivirus engines included in report downloaded from
VirusTotal. This value allows to obtain a rate of antivirus which test positive for malware
in combination with the previous described field.

• AVClass: if the sample is determined to be malware, an agreed family categorisation is
calculated with the AVClass tool [SRKC16].

• MD5: the MD5 checksum of the sample.

• SHA1: the SHA-1 checksum of the sample.

• SHA256: the SHA-256 checksum of the sample.
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5.1.2.2 Static features

This second fraction of features include information gathered from the Android Manifest and
from the code. Static features arrange an useful representation of applications, since they reveal
a large set of details regarding the spectrum of actions that the application can take. In this
section, the FlowDroid static taint analysis tool is also employed to discover information flows.
The relation of features extracted is the following:

• API calls: a full record of all the API calls invoked throughout the code. They constitute
one of the most important static features, since they provide meticulous information of the
actions taken. However, reflection or dynamic code loading techniques are able to surpass
this kind of analysis, avoiding to show how the malicious payload is triggered.

• Main activity: the name of the main activity as shown in the Android Manifest, which
can help to track the application and to find similar samples.

• Opcodes: instructions extracted from the bytecode that provide behavioural information
at a low level. A study on the effectiveness of this feature for malware detection has already
been made [CDLM+15].

• Package name: the name of the main package, and that works as the unique application
ID.

• Permissions: they conform a security mechanism of the Android platform to protect the
access to sensitive components (i.e. the microphone). They force the user to explicitly
grant the access to that component. A list of the permissions requested by the sample
allows to draw general behavioural patterns.

• Intent receivers: a list of the different receivers declared in the Android Manifest. They
allow to know which intents the application is designed to receive.

• Intent services: a list of long processes defined by the application to be run in background.

• Intent activities: a list of the activities defined by the sample.

• Strings: this feature is used to include all strings found within the smali code. Some mal-
ware pieces conceal the malicious payload as string variables, thus hampering its detection.

• System commands: found within the strings have also been represented as a different
feature. They could disclose functionality not represented by the API calls feature (i.e. to
unzip a file with the zip command).

• FlowDroid: a matrix representing the number of information flows found between each
pair of source and sink.

5.1.2.3 Dynamic features

Dynamically extracted features group characteristics that have been captured in runtime, and
that show the actual behaviour of the sample. This allows to record events that could not be
detected through static analysis, such as actions resulting from code dynamically loaded.
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• DroidBox: all the events captured with DroidBox during the dynamic analysis are also
processed by AndroPyTool. All these events are categorised into different categories. A
further description of this tool can be found in Section 2.4.2.

• Strace: a log registering all the events captured at the Linux level is also retrieved by the
modified version of DroidBox employed [MCC17].

5.1.3 Implementation and use of AndroPyTool

When designing and implementing AndroPyTool, there has been an attempt to facilitate its use
as much as possible. It can be used as a command line Python tool which offers a large number of
execution options, in order to run specific steps (i.e. to perform only dynamic analysis). Besides,
it can also be used as a Docker container, which allows to directly run AndroPyTool without
installing individual libraries. A further explanation of both methods is provided below.

• Docker: This is the fastest and more practical option to run AndroPyTool. It does
not require to install dependencies, to download the different required repositories or to
configure the Android emulator for the dynamic analysis stage. It is only needed to have
Docker installed and to download the Docker image from Docker Hub. Then, the container
can be launched by providing a path to a folder containing the APKs to be analysed.
Furthermore, the use of Docker allows to run multiple parallel instances of AndroPyTool.
Below are shown the two command lines needed to download the AndroPyTool image and
to start the container performing all the analysis steps.

1 docker pull alexmyg/andropytool
2 docker run --volume=</PATH/TO/FOLDER/WITH/APKS/>:/apks alexmyg/andropytool -s /

apks/ -all

• Source code: AndroPyTool can also be executed from its source code. To do that,
a series of system libraries, the Android SDK, different Android packages, repositories
and Python libraries must be installed. This option also allows to invoke the different
functionalities of AndroPyTool from other projects or libraries or to directly launch each
script individually. Detailed information describing the installation can be found in the
GitHub repository [MCC18].

5.2 The OmniDroid dataset

The existence of datasets containing Android malware or benignware is mostly limited to packs
of APKs. Datasets such as the Android Malware Genome Project [ZJ12], Drebin [ASH+14],
the Androzoo project [ABKT16] or the Android Malware Dataset [WLR+17] offer raw samples
which can be used to later extract the desired set of features. Other datasets such as Droid-
Cat [RF16, RFB17] or AndroMalShare [And13] provide reduced groups of features extracted
from applications. In order to fill this gap, the OmniDroid dataset was built.

OmniDroid arises from the application of AndroPyTool to a large set of benign and malicious
samples. It has been built with a view to providing a benchmark dataset useful for training and
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testing Android malware detection tools based on machine learning mechanisms. It includes
a plethora of static and dynamic features which empowers the application of feature selection
techniques, feature representations, classification methods or pattern recognition algorithms.
OmniDroid has been released under a Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International License [cca13] and it can be downloaded from the AIDA Datasets Repository3.

The samples composing the OmniDroid dataset were downloaded from two different sources.
On the one hand, a collection of 100,000 samples was provided by the Koodous Team4 for
research purposes, containing both benign and malicious samples. On the other hand, malware
samples were also gathered from the AndroZoo5, increasing variety in the malware samples. The
AndroPyTool itself was used to filter and to analyse the samples. At the same time, applications
with a repeated package name and those that could not be executed in the Android emulator
employed by the dynamic analysis tool DroidBox were removed. With the goal of generating
a balanced dataset of malware and goodware, all samples were submitted to the VirusTotal
portal in order to obtain a ground truth revealing the nature of each sample. Finally, if only one
antivirus engine which consider the sample as malware (ε = 1) is required to decide the nature of
the sample, the dataset is composed by 11,000 benign and an equal number of malicious samples.
A deeper description of this dataset can be obtained from the related contribution [MLCC18].

Malware Benignware

Permission % samples Permission % samples

INTERNET 96.21% INTERNET 94.82%
ACCESS_NETWORK_STATE 85.45% ACCESS_NETWORK_STATE 72.95%
WRITE_EXTERNAL_STORAGE 81.31% WRITE_EXTERNAL_STORAGE 61.49%
READ_PHONE_STATE 80.21% WAKE_LOCK 41.60%
ACCESS_WIFI_STATE 60.40% ACCESS_WIFI_STATE 39.14%
WAKE_LOCK 49.05% READ_PHONE_STATE 37.13%
ACCESS_COARSE_LOCATION 41.99% VIBRATE 33.33%
GET_TASKS 39.12% ACCESS_FINE_LOCATION 27.70%
ACCESS_FINE_LOCATION 37.00% ACCESS_COARSE_LOCATION 27.45%
VIBRATE 36.87% GET_ACCOUNTS 26.82%

Table 5.2: Most frequent permissions declared in the Android Manifest for each application in the
malware and benignware sets of the OmniDroid dataset.

By analysing the features extracted for benign and malicious samples, different conclusions
can be made. For instance, there is a notorious greater use of SMS and telephony services among
malware samples, a fact which is revealed by the declaration of a larger number of permissions
(see Fig. 5.2) or API packages related to these functionalities. The READ_PHONE_STATE permission,
which allows to obtain personal information such as the phone number or a list of ongoing calls,
is much more used among malware samples. The same occurs with RECEIVE_BOOT_COMPLETED, a
permission employed to launch the malicious payload when the device has been rebooted. Other
static features, such as opcodes or API packages, do not allow to extract big differences when
comparing both sets.

The differences in the use of information flows were also studied (see Fig. 5.3 and 5.4). Links
related to the NO_CATEGORY and NOT_EXISTING categories are ommited, since they represent non-
private data flows. An important number of flows can be found connecting SMS_MMS and IPC

3https://aida.ii.uam.es/datasets/
4https://koodous.com/
5https://androzoo.uni.lu/
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in the malware set. However, the category SMS_MMS show a lower number of interactions in the
benignware dataset.

Finally, Fig. 5.5 shows the cumulative sum of the number of operations after a 300 seconds
execution in the emulator. Malware features a greater use of cryptographic operations. This
finding can be attributed to two possible reasons: due to the deployment of the malicious payload,
in many cases encrypted to avoid its detection by antivirus engines, or due to its use by recent
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Figure 5.5: Cumulative sum of the number of operations, when Droidbox tool is used, for all
samples over both (benignware and malware) datasets.

ransomware samples, which encrypt all user’s data. In the rest of categories of events, both types
of samples exhibit a similar behaviour.



Chapter 6

Conclusions and future work

“There are limits beyond
which your folly will not carry you.

I am glad of that. In fact, I am relieved.”

- Isaac Asimov, Robot Dreams

In this final chapter, a series of conclusions reached after all the research conducted in the
course of this dissertation are presented. Then, the different Research Questions raised in Chap-
ter 1 are answered, with the goal of providing useful details and comments for future researchers
working in the Android malware detection and classification scenarios. Further, the final section
suggests several potential future lines of work.

6.1 Conclusions

Throughout the different chapters of this dissertation, the detection and classification problem
of Android malware has been addressed from different perspectives, all of them related to the
use of machine learning algorithms.

In Chapter 2, the Jisut family of Android ransomware was presented. The study of the
different variants of this family has allowed to observe important behavioural patterns. It was
noticed how different variants are created over time, by embedding new changes in old samples
of the family. This is an important finding to take into account, since the early detection of the
former applications of a new family can help to detect new samples and variants in the future.
The analysis has also made it possible to detect some practices which need to be considered in
order to develop more accurate malware detection and classification tools. For instance, the most
modern samples of Jisut hide the malicious payload in files which are decrypted in runtime. This
has special relevance when using static analysis techniques, which could not detect this content.
It has also been explored a series of patterns which highlight the importance of monitoring certain
events. The declaration of certain permissions or a particular intensive use of system calls could
be related to traces malware.

After the analysis of the Jisut family, different mechanisms are proposed in Chapter 3 for
detecting and classifying Android malware. Starting with the detection problem, different com-
binations of features and classification algorithms have been tested. Among these, static features
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have proved to be a powerful instrument to represent the behaviour of each sample, and they
have been used to train different ensemble classifiers that have reached high accuracy values.

Dynamically extracted features were also tested. In this case, a Markov Chains based repre-
sentation is adopted to transform the logs obtained with DroidBox. First, a sequence of events
is captured for each application. Then, a matrix of transition probabilities between states (the
events of the original sequence) is built according to the different transitions observed. Fur-
thermore, the importance of each event or state is also considered by calculating its frequency
among all the states. The matrix of transition probabilities is vectorised and the state frequencies
are added to create the feature vector which represents each application. Ensemble classifiers
were also used in this scenario, showing lower accuracy values in comparison to the experiments
involving static features. The same chapter describes a novel fusion approach of static and dy-
namic features aimed at improving the results achieved by each group of features independently.
Through a voting scheme, the two classification algorithms which provided the best results for
each group of features are combined, softly improving previous results.

The classification of Android malware into families is also discussed in this dissertation. For
the experiments, a dataset containing Android malware families and a set of dynamic features
(following the previous Markov Chains based representation) were used. The results, obtained
using deep learning architectures, classic machine learning algorithms, and also techniques for
dealing with imbalanced data show that it is possible to use these techniques for creating accurate
Android malware family classification tools.

Chapter 4 analysed the issue at hand by testing its resilience against adversarial attacks.
A state-of-the-art classifier, named RevealDroid, enabled to demonstrate that machine learn-
ing aided classification tools can be defeated by modifying the feature vector of a sample with
incremental changes. A countermeasure is also analysed in this section, showing that ensem-
ble classifiers which distribute the categorisation of the sample to different estimators allow to
counteract the attack raised.

Finally, Chapter 5 has shown an overview of the AndroPyTool framework developed in the
course of this work. This tool allows to automatically obtain a large set of both static and
dynamic features from Android applications. Furthermore, by running AndroPyTool over a
large set of samples of benign and malicious samples, it was possible to generate a dataset of
feature vectors. The goal is to provide the community with a balanced dataset composed of a
wide set of already extracted features.

6.1.1 Response to Research Questions

This sections answers each of the Research Questions raised in Chapter 1:

RQ1: Which are the most important malicious practices among Android malware samples to be
considered when designing detection tools?

The study performed on a large number of samples belonging to the Jisut family of Android
ransomware [MHCC18] described in Section 2.3 has allowed to extract a series of important
details. All this information, mainly related to their implementation or to structural pat-
terns shared among samples, allows to understand not only this family, but also to analyse
the most common mechanisms employed by malware targeting the Android platform.
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By tracing similarities between samples, it has been demonstrated how the Jisut ran-
somware has originated different variants which implement small variations. At a more
general level, a temporal evolution can be observed, where variants are taken as the start-
ing point to develop new samples, through the use of incremental modifications. This is
an interesting finding, since it means that there can be found strong similarities between
samples of the same family, even if they belong to different variants. At the same time,
this trend highlights the importance of the classification of malware into families, an essen-
tial task to detect new variants of the same family and also new unknown families. This
knowledge can be later leveraged to build detection tools with a wider coverage of malware
families.

The analysis also arises the importance of cryptographic operations in families of ran-
somware. For instance, some of the samples of this family encrypt user’s files in order
to force him/her to pay the ransom. This action causes an unusual number of API calls
invocations related to cryptographic operations. In this sense, a control of the API calls
invoked must be deemed in detection mechanisms, since it expresses patterns reflecting
behaviours specific to ransomware samples.

Another interesting practice is the use of novel concealment techniques which was observed
in the newest variants of Jisut. By hiding the malicious payload into separated files or
libraries, in some cases encrypted, the malware tries to hinder static malware analysis
techniques. Thus, a dynamic analysis based approach appears to be more convenient to
deal with this issue. The use of a sandboxing environment, where the suspicious application
is executed and all the interactions are monitored, allows to capture fine-grained details
that would not be feasible to extract if a static analysis procedure is chosen.

• RQ2: Is it possible to find large labelled dataset of features extracted from Android malware
and benign samples?

While there is a plethora of literature focused on the Android malware detection problem,
there is also a lack of datasets containing already extracted features from samples, needed
to train machine learning aided detection and classification tools. In most of the cases,
authors employ sets of executables from which the desired set of features is obtained.
This process becomes more complicated when using multiple features and several specific
extraction tools are needed. Current datasets which offer behavioural information instead
of just providing the original executable of each application are limited. As it was discussed
in Section 3.1, some of them offer a reduced number of logs [RF16, RFB17] while others
include a small number of features from only malware samples [And13, SRKC16].

In order to make it easier the process of developing and testing new malware detection and
classification mechanisms, it was decided to build a new dataset, covering a large number of
both statically and dynamically extracted features. For this purpose, a framework named
AndroPyTool which integrates different state-of-the-art malware analysis tools was built.
This tool allows to efficiently and automatically extract the most used static and dynamic
features in just one step, instead of using multiple specific software. AndroPyTool has been
released as an open source repository [MCC18].

Then, a large number of benign and malicious samples were gathered from Koodous1 and
AndroZoo2 and analysed with AndroPyTool. This allowed to generate the OmniDroid

1https://koodous.com
2https://androzoo.uni.lu
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dataset, which contains pre-static information, static and dynamic features from 11,000
benignware samples and 11,000 malware samples. This dataset is publicly available and it
can be downloaded from the AIDA Datasets Repository3. The goal is to provide researchers
with a benchmark dataset that they can use to build or test new detection mechanisms.

• RQ3: Can Machine Learning classification methods be combined with static features to
detect Android malware accurately?

Section 3.1 describes new different methods for Android malware detection and classifica-
tion. Through a representation based on static features, it has been proved that ensemble
classifiers mainly composed by decision trees can be used for building accurate malware de-
tection and classification tools. Binary and numerical features make this kind of algorithms
appropriate to solve this task.

Particularly, features such as API calls, permissions declared, opcodes, intent filters, ser-
vices or system commands have been used in the experiments. From them, different con-
clusions can be made. For instance, the use of different combinations of static features for
malware detection has evidenced that API calls provide the best behavioural description to
distinguish between malware and benignware accurately. Even when combined with other
important data sources such information flows, the individual results achieved with system
calls are not improved.

In general, static analysis has evidenced to be an efficient and also accurate procedure to
feed machine learning classifiers, reaching high accuracy and precision values. In compari-
son to dynamically extracted data, this approach does not require to execute the sample in
a resource intensive and time consuming sandboxing environment. Instead, each APK is
decompressed and different data are extracted from the different files and resources. This
enables to detect malicious samples with close to 90 percent accuracy through a Random
Forest classifier.

• RQ4: Is it possible to apply Machine Learning over dynamic traces to detect Android
malware accurately?

While static features provide a fast and efficient behavioural description of the sample, they
can also fail at showing the most important malicious patterns under certain circumstances.
For instance, modern obfuscation techniques, which encapsulate the malicious payload
of the sample into hidden files, can make a static description useless. It is only when
the suspicious sample is executed that the full functionality can be captured, including
the dynamic loading of the hidden pieces of malicious code. On that basis, dynamically
extracted features were studied in Section 3.2.

Unexpectedly, the experiments, performed with ensemble classifiers, show a reduction in the
number of samples succesfully allocated to their correct category in comparison to static
features based detection methods. There are several potential causes of this outcome.
On the one hand, the set of events monitored by DroidBox can be insufficient to detect
fine-grained patterns only associated with one particular category. On the other hand, a
dynamic approach could not cover the whole operation of the suspicious application (i.e.
the malicious payload is only triggered when the user access to a particular section of the
sample).

For that reason, the original operation of the MonkeyRunner tool was modified in order to
send a larger number of actions to the screen and buttons of the application when executed.

3https://aida.ii.uam.es/datasets/
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The results also point to the need for a combination of static and dynamic features. The
former enables to cover a wider number of the actions that the application could invoke.
Dynamic features allow, conversely, to report specific characteristics, which can be crucial
to determine the nature of the sample. Thus, it is mandatory to study if a combination of
both static and dynamic features can lead to build stronger classifiers.

• RQ5: Is it possible to combine static and dynamic features in order to build more effective
detection mechanisms?

In Section 3.3, a model for the fusion of static and dynamic features was presented. The
classification algorithms which showed the best performance in classifying static and dy-
namic features are combined through a voting scheme, where each group of features con-
tributes to the final decision. The importance of each group of features in the decision is
given by two weights calculated through a grid search: 0,7 for the classifier receiving static
features as input and 0,3 for the classifier which receives dynamic information. It can be
said that static information is specially important in the final categorisation.

The fusion approach hardly improves the results obtained by the two groups of features
individually, from 89,3% to 89,7% accuracy. Although the difference is small, it reflects
that dynamic features could help, in a very reduced number of cases, to better detect
malicious patterns. Besides, the combination of both features sources is also important to
build classifiers more robust against adversarial attacks. As shown in Chapter 4, ensemble
classifiers, and also a wide number of features, hamper the success of these attacks, since
the exploratory space becomes bigger and more complex.

The use of better dynamic analysis tools can also help to improve the results in fusion
approaches of static and dynamic features. In this sense, it is necessary to study new
dynamic analysis mechanisms, employing more advanced emulators, undetectable by the
sample under analysis, and which are able to capture a wider range of interactions of the
sample with the operating system. This will enable to enhance the performance of current
malware detectors and family classifiers.

• RQ6: Is it feasible to attack machine learning classifiers to produce family misclassifica-
tions?

The attack implemented and tested described in Chapter 4 has demonstrated that machine
learning aided Android malware classifiers can be circumvented, thus producing family
misclassifications. Through the use of a heuristic search guided by a genetic algorithm,
the original feature vector of a sample can be modified by adding incremental features.
This can lead to allocate the sample to a different random family or to target a specific
previously selected family. The changes can be introduced in the sample by using opaque
predicates never executed, thus avoiding to modify the semantic of the sample.

This attack proves that machine learning based methods are vulnerable. In particular,
classifiers that rely on a reduced number of features to deliver a label can be more eas-
ily defeated. To deal with this situation, a countermeasure is raised and implemented,
where the original classifier is replaced by a set of classifiers which receive independent
groups of features. This allows to complicate the implementation of these attacks, since
the classification this time depend on the decision of several estimators.
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6.2 Future Work

While all the work performed has tried to properly deal with the Android malware detection and
classification problem from different points of view, there have been also observed certain points
where this research can be extended:

• The analysis of the Jisut family has shown that it is possible to find interesting behavioural
patterns. Studies on other important families of Android malware are required in order
to bring to light implementation details which can help to design and build stronger de-
tection tools. Furthermore, they can also be useful to improve classification methods, by
discovering new variants of known families or by grouping under the same family differ-
ent samples. At a lower level, this kind of studies allows to analyse the encryption and
decryption mechanisms and the methods used to lock user’s devices, among others.

• In general, although the results obtained have shown high accuracy and precision rates,
it is still required to analyse new features, representation, data processing techniques and
learning algorithms, since there is space for improvement. More in particular, other features
need to be explored, covering a larger number of files, obtaining information from compiled
libraries and also studying the presence of dynamic code loading functions. It is also
necessary to study combinations of characteristics in order to improve the results obtained
with API calls.

• The experiments using dynamically extracted features evidence that further research needs
to be done in this regard. While these features can definitely help to improve detection and
classification tools, more advanced stealthy emulators are required. It is necessary to study
how the sample under analysis can be stimulated through more realistic interactions, to
monitor a wide series of events and to analyse new procedures to combine this information
with statically extracted features.

• Malware classifiers are a powerful tool to allocate samples to their corresponding family,
thus keeping better track of the different existing families, enhancing the detection of zero
day malware and detecting new variants of current known families. The triage process is
an essential task to deal with malware, specially with the possible damages caused if the
device is succesfully infected. By knowing its malware family, it is much more easy to
apply the most convenient steps to avoid its propagation and to mitigate its effects. More
research can be done in this regard, improving current malware classifiers.

• The attack designed, implemented and tested which was described in Chapter 4 was used
to demonstrate that machine learning aided classification tools can be circumvented. This
entails a series of considerations which must be taken into account. Future research should
be focused on testing the resilience of these tools and proposing new countermeasures to
deal with potential attacks.

• Finally, there is also space for improvement in AndroPyTool and the OmniDroid dataset.
The former can be extended by integrating new malware analysis and reverse engineering
tools, with the goal of extracting a wider set of features. This can help to develop better
detection and classification mechanisms and also to build new datasets. In this sense, the
OmniDroid dataset can be improved in different directions: incrementing the number of
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samples, providing a better description of the different malware families included so the
dataset can be used for family classification, or defining a richer selection of features.
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ABSTRACT Android malware is increasing in spread and complexity. Advanced obfuscation, emulation
detection, delayed payload activation or dynamic code loading are some of the techniques employed by the
current malware to hinder the use of reverse engineering techniques and anti-malware tools. This growing
complexity is particularly noticeable in the evolution of different strands of the same malware family. Over
the years, these families mature to become more effective by incorporating new and enhanced techniques.
In this paper, we focus on a particular Android ransomware family named Jisut, and perform a thorough
technical analysis. We also provide a detailed overall perspective, which will hopefully help to create new
tools and techniques to tackle more effectively the threat posed by ransomware.

INDEX TERMS Ransomware, Jisut, android, malware, malware families.

I. INTRODUCTION
When current mobile operating systems made their first
appearance, late in the first decade of the current century,
there was already an extensive know-how on designing and
fighting against malware aimed at personal computers. The
emergence of malware targeting these new mobile platforms
was a foretold event. The importance reached by smartphones
in our daily lives have made them a particularly attractive
target, and this is specially true of the Android platform.
Whether due to its more open structure or to its notoriously
higher market share, most of malware developer’s efforts
focus on Android. Some of the advantages offered by the
Android platform unfortunately make it also an excellent
target for developing and distributing malware, not only
by experienced developers and cybercriminals, but also by
beginners.

The increasingly key role that smartphones play in our
daily lives turn them into a perfect bridge for extorting
victims. Unsurprisingly, ransomware has emerged as a very
profitable business, allowing to blackmail a victim by lock-
ing access to the device, frequently in combination with
encrypting data files or throwing false accusations of ille-
gal activity, with the ultimate goal of demanding a hefty
ransom.

Although there is an abundance of literature studying
Android malware, most of these works focus on a small
number of research paths: they either center around design-
ing detection tools [1], evaluating the effects of obfuscation
tools [2], on malware classification, or on detecting samples
containing a malicious payload [3]. Curiously, the work we
encompass in this paper, that is, a thorough research focusing
on a fine-grained analysis of the features and evolution of a
single malware family, seems to constitute a new approach.

We think that an in-depth study of the most important
Android malware families can help to understand their evo-
lution, both from a low level perspective (to evaluate imple-
mentation details) and from a high level (to assess common
patterns between variants of the same family). While this has
been a pointless exercise in the past, mostly due to the extreme
simplicity of the known malware families, the current com-
plexity and the consistent evolution and improvement they
are now experiencing warrants, in our opinion, the need for a
more detailed screening.

In this paper we aim to provide a deep insight on a spe-
cific Android malware family called Jisut, which has been
mainly distributed on Chinese markets (although there can be
found variants translated to other languages) and has taken
many different shapes, leading to numerous Jisut variants.

VOLUME 6, 2018
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The common denominator of these is that they ask for a
ransom after having locked the device with a permanent
screen, or after encrypting user’s files, and that they share
clear structural patterns. However, as it will be shown later,
there are also versionswhich only pursue to lock the operation
of the system, while offering no recovering option.

Throughout the different sections of this paper, the Jisut
family and its most important variations are carefully exam-
ined. It will be shown how these variants have emerged, and
how they had evolved to lead to new variants. At the same
time, the locking and encrypting mechanisms are inspected
and also exploited, providing the necessary details for recov-
ery when getting infected by this ransomware.

The contributions of this research can be summarized as
follows:
• To describe the Jisut family of Android ransomware
and its most important variants, outlining their purposes,
providing the most significant implementation details
and studying their encryption and/or screen-locking
mechanisms.

• To perform a temporal analysis of the evolution of the
different variants found in the wild, studying how mod-
ifications and improvements are successively included.

• To explore the weaknesses of this ransomware, in order
to provide the necessary details to recover both the
device and user data.

The rest of the paper is organised as follows: Section II
describes the background and related work, Section III
presents the Jisut family and some information regarding the
evolution of its most important variants, Section IV describes
the technical details of this family, Section V includes a series
of remarks based on the analysis performed and Section VI
provides some conclusions and recommendations.

II. BACKGROUND AND RELATED WORK
A. ANDROID RANSOMWARE EVOLUTION
In its almost ten years of existence, Android has been con-
stantly pointed as the main target of malware authors. Despite
all the new security policies and other novel countermea-
sures implemented, Android remains attractive as a plat-
form to design and develop new malware. Although when
Android first appeared in 2008 an extensive experience in
building malware for personal computers already existed,
the limitations of the platform made it difficult to translate
it to Android. But this appears to be changing, particularly
since 2016. As Malwarebytes Labs state in their 2017 State
of Malware Report [4], Android is evolving to accommo-
date more complex software and, hence, more powerful
malware.

A clear evidence of this growing complexity is Android
ransomware, which is now our main focal point [5] in this
work. Starting from a brief definition, ‘‘a ransomware is a
kind of malware which demands a payment in exchange for a
stolen functionality’’ [6], it is possible to categorise samples
of this type of malware into two different classes, depending
on the procedure adopted to coerce the victim [7]: lockers

(also called screen-lockers) or cryptoransomware. Added to
this, we also have a related category, scareware.

Regarding lockers, they try to stop most of the device func-
tionality by making use of persistent screens which cannot
be closed, or by locking the device with a password. In the
case of cryptoransomware, the malware encrypts user’s files,
so it is necessary to pay the ransom to recover them. Depend-
ing on the encryption methods used, we can identify [8]:
private-key ransomware, public-key ransomware or hybrid
ransomware, where a random secret key is generated in the
device and encrypted using public-key cryptography. Finally,
in scareware [9] the coercion procedure involves threatening
or frightening the victim. For instance, making public some
personal information or falsely accusing the victim of holding
illegal content (i.e. child pornography).

Regarding ransomware specifically designed for Android,
the first implementation able to encrypt files was called Sim-
plocker, reported in 2014 [10]. It showed a screen accusing
the victim of having child pornography while the user files
were encrypted in the background. A ransom was asked for
unlocking the victim’s data, which was encrypted using a
fixed key that can be found in the ransomware code. Later,
an evolution of this malware was described in 2015 [11], able
of communicating with its authors. In this new variant, Sim-
plocker is more complex and, for example, employs unique
keys.

Other family of malware usually cited in security reports
is Lockerpin [12]. While old versions of this family tried to
lock the victim’s device by constantly prompting a screen,
recent samples make use of the native Android locking sys-
tem. This procedure, for which the user has to grant Device
Administrator privileges, is really effective and cannot be
easily removed or bypassed. The Jisut family, also described
in the 2017 Trends in Android Ransomware by ESET [12],
has been widely spread in the Chinese market. With similar
aims and methods to the previous mentioned families, Jisut
locks the device by showing a permanent screen where the
user is encouraged to pay a ransom. Currently, many other
ransomware families are active: Slocker, Koler or LockDroid
are some of the most dangerous families that have emerged
over the last years [13].

B. ANDROID MALWARE FAMILIES ANALYSIS IN
THE LITERATURE
So far, research related to Android malware has usually
studied it from a general perspective, taking sets of samples
of varied families as a whole, without explicit attention to
the specifics that each kind of malware family presents.
To the best of our knowledge, only one previous research
has made a deep analysis of a malware family. In that study,
the GinMaster [14] family is described quite technically,
analysing the different generations that have appeared over
time, and mentioning the improvements which have been
sequentially added.

Other literature focused on this topic adopts a more
general perspective. Thus, an interesting research by
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Zhou and Jiang [15] offers overall details of a big set of
Android malware families, providing a few technical details
and some general patterns. Andrubis [16], [17] draws a wide
analysis of a huge dataset of Android malware samples,
with the aim of providing a dataset of features, but no
technical details of the families are provided. Monika and
Lindskog [13] perform a study showing general trends among
Android families, describing their appearance over the years.
However, the approach taken is very general, and particular-
ities and technical details are not provided.

Other literature is focused on developing analysis and
detection tools. For instance, multiple research studies broad
feature sets to discern the nature of applications. The use of
third-party calls [1], string-based features [18] or API-calls,
permissions and network addresses [19] are some of the fea-
tures extracted from sets of malware and benign software to
build detection tools. To these features, other tools have also
incorporatedmore determinant features such as taint analysis,
used by Revealdroid [20], or dynamically extracted infor-
mation, as it is the case of Droid-Sec [21]. DroidSieve [2]
is also focused on presenting a tool for malware detection
and classification. This tool constitutes an interesting step
forward against obfuscated malware, giving special attention
to obfuscation-invariant features and directly extracting infor-
mation from the DEX files.

Specifically focused on Android ransomware,
Andronio et al. [22] concentrate on extracting features able
to detect malware thanks to the use of encryption pro-
cesses, threatening texts or locking services. A similar
approach opts for including into the model threatening pic-
tures or logos [23]. The use of API packages has also been
studied [24] to discern between apps of different nature with-
out specific previous knowledge. Instead of using code-level
features, the effects of ransomware have been measured by
monitoring hardware metrics, such as processor or memory
usage [25]. The particular weaknesses of the Android plat-
form when dealing with ransomware has also been studied
by Yang et al. [26]. However, neither these nor previous
literature analyse malware families independently.

The need to focus on the specifics of each family has also
been highlighted in the literature [27]. Wei et al. state that
when gathering a dataset of malware samples, detailed and
reliable informationmust be provided. This means, according
to the authors, that each type of malware must be profiled
independently and that manual analysis become mandatory.

III. THE JISUT RANSOMWARE
The Jisut family started spreading in 2014. There are no
available reports on the number of users infected, but it is
probably a significant figure, for the reasons shown below.
We can, however, approximate the number of different sam-
ples detected by antivirus engines during these years. For
instance, based on the database of the VirusTotal Intelli-
gence portal,1 4,693 different samples have been detected

1http://virustotal.com/intelligence/

by at least one antivirus from 2014 as belonging to the Jisut
family.2

Nevertheless, even classifying these samples as variants of
the Jisut family is a non-trivial issue. Some of these are also
categorised as Slocker, or as belonging to other families by
different antivirus. This problem has been already highlighted
in several research works, which showed that the procedure
for naming malware families [28] is inconsistent. This is
clearly visible when uploading a sample to the VirusTotal ser-
vice, as the categorisation performed by the different antivirus
can vary significantly.

Even when two engines agree on the type classification of
a piece of malware, they can call it as belonging to different
families. Added to this is the fact that there are some engines
which attribute no explanatory names (i.e. just a number
sequence) to malicious samples. Different researchers have
concentrated on addressing this problem, and have built tools
to offer an agreed tag [29].

However, sometimes it is possible to observe how dif-
ferent malware families along different variants are distin-
guishable due to the use of common structural patterns.
Although Jisut has unmistakable patterns, retrieving sam-
ples of different variants becomes an arduous task. In this
research, in order to gather a varied and representative set
of Jisut samples, a manually intensive work to search for
individual samples was necessary. Throughout the paper,
we will mainly refer to these variants with their main package
name.

With regard to the structure and general characteristics
of the Jisut family, it is important to stress the simplicity
observed in its coding style. This fact suggests authorship
by people with a lack of experience, possibly young. These
beginners probably started by reading the easy-to-find doc-
umentation available in many Chinese webs and blogs con-
taining instructions on how to develop a simple lock-screen
ransomware.

Among the variants found, the same base structure can
be identified. On top of this structure, we find from
variants implementing very small changes to versions
where the attacker opts for adopting a totally different
cryptoransomware-based model instead of the screen locking
scheme. Five screenshots of some of the most important
variants of this family are shown in Fig. 1.

A. THE EVOLUTION OF JISUT
We first have analysed the evolution of this family in terms
of number of distinct samples found, month by month,
by the VirusTotal portal and reported as Jisut by at least one
antivirus3 (see Fig. 2). This family has had two moments of
wide popularity:When it appeared in June 2014, new samples
were continuously found for almost a year. At the beginning
of 2016 it was reactivated, and it reached its global maximum

2We have applied a threshold of twominimum different sources uploading
a sample, in order to avoid minor variations which have not spread widely.

3We have applied a threshold of twominimum different sources uploading
a sample in order to avoid minor variations.
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FIGURE 1. Screenshots of the main variants of the Jisut ransomware, sorted by year. (a) Variant tk.jianmo.study (2014). (b) Variant lichongqing
_shuang (2014). (c) Variant nero.lockphone (2015). (d) Variant qqmagic (2016). (e) Variant Hongyian - Huanmie (2017).

FIGURE 2. Evolution of the number of samples categorised as Jisut submitted to VirusTotal, per month.

in September 2017. In this month, around 1,500 new samples
of different variants were found.

From these, different broad sample sets, which share
almost an identical code but which include minor changes
(i.e. a different package name or a different message on
the screen), can be identified. We call these sets variants.
The differences found between variants may include different
encryption mechanisms, different forms of scaring a vic-
tim, etc. Fig. 3 shows the most important variants (which
are described in depth below) of the Jisut malware. In this
figure, interesting behavioural patterns among variants can
be identified. The most significant characteristic lies in how
the number of uploads has peaks of different size depending
on the variant. For instance, the tk.jianmo.study generation,
which can be considered as the original one, had a peak
relevance during the second half of 2014 and the beginning
of 2015. Then a long hibernation is easy to spot. After that,

at the beginning of 2017, the most important peak is reached
detecting 70 new samples in January.

It should be also noted how the Nero.lockphone variant
appeared when the original family was decreasing in pop-
ularity, at the beginning of 2015. From that moment, both
variants have followed a very close pattern. With two recent
peaks in January and September 2017, both variants seem to
behave in a very similar fashion. This fact could reflect an
organised campaign, where the same people work simultane-
ously with different variants, but it could also be the result of
a ripple effect. One way or another, there is also a seasonal
component. The four highest peaks in the plot, August 2015,
January 2015, January 2017 and September 2017, correspond
to a period immediately after holidays. This makes sense,
particularly among young people, who have significant more
exposure time during holidays. Holiday gifts in the form of
new smartphones can also play a role.
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FIGURE 3. Evolution of the different Jisut variants, in terms of number of samples submitted to VirusTotal, per month.

In contrast with the two previous variants, the plot sug-
gests other variants follow different trends. In the case of
com.lichongqing.shuang or tos.tx, their repetitive pattern over
time has a reduced number of new samples detected. This dif-
ference among variants can be ascribed to different criminal
groups working independently.

IV. TECHNICAL IMPLEMENTATION DETAILS OF JISUT
This section deepens the analysis of these variants, revealing
technical implementation aspects, such as the the necessary
actions to undermine the integrity of the infected system and
the procedures used to encrypt user’s files. At the same time,
the evolution of each family is analysed separately.

A. THE JIANMO VARIANT
In June 2016, the first samples categorised as Jisut
were detected.4 These samples, whose main package is
tk.jianmo.study, implement a lock-screen malware.

1) APPLICATION ANALYSIS
Once installed and launched,5 this ransomware shows a
screen (see Fig. 1a) which reports that the device has been
infected by a Trojan virus, and that the user must contact
the author via the QQ messaging service within 24 hours.
Otherwise, user’s data will be definitely removed. At the
bottom, a timer registers the remaining time. We have

4The first sample on 6th June 2016. Can be identified by SHA-256:789f8
bfedf8f04ee8fe9c01cc0bda76604a89bf6fc641cd75dc9221a1a2a7ac3

5For this analysis, we have use the sample identified by SHA-256:4aaf
1687316ffa6de108e12768b8434a9f12b07ea6953450cbf8a2a6b633fdc1

checked the operation of this counter, proving that turning
the system clock back makes no difference (so the user
cannot extend the time). By taking a look into the code,
we can see that a file located in the path /data/data/tk.
jianmo.study/shared_prefs/TimeSave.xml is
continuously updated to store the remaining time. In a few
samples of this variant that we have studied, when the timer
expires, the user’s files are not removed (this functionality is
in fact not implemented). However, as it will be shown, there
are numerous variants which actually materialise this threat.

Thismalware is composed by just one packagewith several
classes:

The first class, BootBroadcastReceiver.class,
implements the necessary code to restart the app if it is
closed, by means of a BroadcastReceiver which launches
MainActivity.class if a Broadcast is received. This
last class manages the timer of the app, as explained, and
overrides the onKeyDown() method in order to control
which buttons are pressed:

The previous code works together with the following
method:
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Listing. 1. Detection of keystrokes in the Jianmo variant.

Listing. 2. Keystroke detection in the Jianmo variant.

The goal of these code bits is to detect when a particular
sequence of keys are pressed. This is used to hide the deacti-
vation mechanism, which is prompted when the user presses
a certain sequences of keys. Said sequence is provided by
the criminal when the ransom has been paid. The method
used consists on evaluating when a particular key has been
pressed. As it can be seen in Listing 1, several conditional
statements compare the key pressed. Then, the keyTouch()
method is called with the keyTouchInt value and a constant.
When these two values are equal and the last key was pressed
less than 2 seconds ago, the value of keyTouchInt is incre-
mented by 1 in line 6, Listing 2. If these two conditions
are not met, the value of the variable is reset to 0 (line 7,
Listing 2). If the value of keyTouchInt reaches the value of 6
(line 14, Listing 1), a dialog is prompted which asks the
user to introduce a code while threatening the victim it will
delete all its data if not. The sequence of keys, in terms of

KEYCODES is: 4-4-25-24-4-3, that correspond to the keys:

KEYCODE_BACK - KEYCODE_BACK - KEY-
CODE_VOLUME_DOWN - KEYCODE_VOLUME_
UP - KEYCODE_BACK - KEYCODE_HOME

The last key is the HOME key, which although the Android
system does not allow to directly detect when pressed (the
onKeyDown() method is not called) is commonly used in
lockware like this by overriding the method onAttached-
ToWindow() and changing the type of the window, as it can
be seen below (see Listing 6). However, this trick is no longer
functional in the newest Android versions.

Listing. 3. Override of onAttachedToWindow method in the Jianmo
variant.

2) VARIATIONS OF THIS VARIANT
Throughout 2014, this variant was spread featuring only
minor changes. In most of them, modifications are limited to
different messages or package names. However, it is valuable
for this work to glimpse through how attackers employ simple
alterations to build new pieces of malware, since they allow
us to gather further insights on the key trends of the evolution
of ransomware.

For instance, one common pattern found among samples
that are almost clones is the use of different package names,
mostly by adding suffixes to the original name. This might
be an attempt to upload new samples to markets such as
Google Play and/or to produce, through new signatures, false
negatives by one or more antivirus. For instance, among the
samples of this variant found in 2014, from 35 to 41 of the
antivirus included in the VirusTotal service test for positive,
depending on the sample. Worse still, an average of 35%
of the antivirus engines incorrectly return a negative clas-
sification. Examples of these new package names, derived
from the original tk.jianmo.study are tk.jianmo.
studyds21 or tk.jianmo.studypj7m76mo.

Alternatively, differences also exists at the code level.
In another sample,6 we can observe an slightly different
specification of the onKeyDownmethod. But in this particular
case we are facing a useless piece of code, since it does not
lead to unlock the secret screen.

Other variation of this method found in a different sample7

is used to define a different sequence of key presses to unlock
the secret screen. This time, the user must press twice the

6Identified by SHA-256: 9e99dd63b41dffb12af7a82bad4efc80bf095
edcd6fe3dc718630dc76335b28a

7Identified by SHA-256: d2a5aed7c26caf55721460f252d6119c0ab6ffe
fbda875c42fccb1e5c71de873
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back key followed by a different key. Then, it is possible to
introduce the deactivation key, which is a string formed by
10 spaces.

B. THE LICHONGQING SHUANG VARIANT
One of the branches originated in 2014 evolved into a curious
type of scareware (see Fig. 1b). Analysing a sample of this
year,8 we found it plays a loud scream sound and shows and
frightening picture. The creator tries to scare and to coerce
the victim into paying the ransom. This lock-screen malware
also employs a hidden menu, which is activated through a
long press in the upper section of the screen. Again, the key
is assigned in the code, in plain text, to a variable. This
makes it easy to extract. In this particular sample, the key is:
‘‘2235600939’’.

The malware makes use of the MediaPlayer resource to
play the scream sound:

Listing. 4. Mediaplayer invocation in the Lichonqing Shuan variant,
preventing volume decrease.

The code, shown in Listing 4, starts by setting the volume
to its maximum level (line 2). Then it invokes themediaplayer
to play the sound on an infinite loop, while continuous actions
to increase the volume are sent in order to counter any
attempts by the to decrease it. In line 18, it also employs the
vibration function,

C. THE NERO.LOCKPHONE VARIANT
Samples of this variant (see Fig.1c) were detected for the first
time in 2014, but it was in 2015 when it was widely spread.

8Identified by SHA-256: 8043461bc97509bdf3300376898040d5dba4b5
f5804e942c1d0b4fb4119b69f9

Although the graphical interface of this variant9 is indeed
substantially different from the samples previously men-
tioned, the behaviour and intentions are identical. Proof of
this can be found just by taking a look at the code, where
it can be seen that the operation is also basically the same.
It encourages the user to contact the criminals through the
QQ chat app (where it is presumed he will ask for a ransom).
At the code level, the package structure contains the same
classes with identical names. The only major difference lies
in the deactivation procedure. On this occasion, the text box
to introduce the deactivation code is shown from the outset
on the screen.

The unlock code is also saved as plain text within the code:

Listing. 5. Unlock procedure in the Nero.Lockphone variant.

The ransomware checks (Listing 5) the time the button
on the left of the smartphone is pressed (line 2). When the
user performs a long press the app shows a counter, prob-
ably to confuse the user. When the button is only briefly
pressed, the code inserted by the user is compared against
the string ‘‘ QQ1767332988!". If both values are the
identical, the application terminates (line 7).

D. THE QQMAGIC VARIANT
The messages shown by the previous analysed versions dis-
play various kinds of threats to incite the victim to pay a
ransom. However, the malicious payload is limited to screen
locking, with unlocking possible after using a key provided in
plain in the code. Even when this key is encrypted, the orig-
inal one can be easily obtained since we can observe how
it has been encrypted with a symmetric key. However, this
qqmagic variant implements some interesting improvements
which make the process of obtaining the unlocking code
through reverse engineering much more complicated.

For instance, in a sample of this variant,10 the attacker
makes use of SMS services in order to receive a password,
randomly generated and encrypted. Thus, each time this ran-
somware is installed by a different victim, a new and different
password is generated, which is shared with the attacker
through a SMS. This allows to generate victim dependent
numbers, which the attacker use to generate victim dependent
deactivation codes. In Listing 6 it is possible to see how

9Identified by SHA-256: 4bed20bdb3586dfea0b7a09e28a0126ebc0566
9551d53c4c9ac69aaee5ca8f69

10Identified by SHA-256: b914c0dd57ffcb1c96cf37d61a3ae052a5372
f01c5fac3ea0535bbdb0da862dd
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two variables, which are used to calculate the unlocking
password, are initialised (lines 1 and 2), how a DES object is
initialised with a string (line 3) and also how the SmsManager
service is used (line 6):

Listing. 6. Password unlocking, QQmagic variant.

After analysing these objects, the malware checks if there
is a network connection. If it is possible to use network
services (lines 2-9), the app transmits the randomly gener-
ated code, which will be used by the attacker to generate a
deactivation code. If it is not possible to use SMS services
(lines 12-18), the app employs a DES algorithm to decrypt a
text provided in plain to be used as the encryption password,
so the functionality of the app is guaranteed.

Listing. 7. Deactivation code computation with no network connection in
the QQmagic variant.

One of the common code snippets shared with other
variants of Jisut is the class where the DES algorithm is
implemented, which is identical among these variants. This
algorithm is also used to decrypt the content received by SMS
from the attacker:

As it can be seen in lines 9 and 10, a decryption object is
invoked to transform two strings which are provided in plain
text.

In addition, the qqmagic variant11 goes one step further
and implements the necessary code to actually carry out the

11Identified by SHA-256: 506f668438477b7476674957d14407d207
de1f576e5c9de2852490b43a6a013b

Listing. 8. SMS decryption in the QQmagic variant.

removal of all user files, if the ransom is not paid after
a period of time. Nevertheless, the important enhancement
found in this sample is the use of an advanced obfuscation
software. The author employs Ijiami,12 a tool for hard obfus-
cation based on collecting the code into compiled libraries of
native code, where applying reverse engineering becomes a
particularly tedious and time-consuming task. Unzipping the
original apk file of this sample delivers the following tree:

The files highlighted in blue contain these compiled
libraries which are loaded at runtime to build a new apk.
In line 3, ijm-x86.so is loaded:

As shown in Listing 10, different folders are remounted
with read and write permissions. Then the new apk is placed
in the system apps folder (line 8) after giving the necessary
access and execution permissions with the following proce-
dure:

The use of this technique poses an additional challenge to
the use of reverse engineering techniques. Although there are
advanced techniques available to deal with obfuscated code,
the use of this scheme by the ransomware is really effective

12http://www.ijiami.cn/
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Listing. 9. Runtime libraries compilation, QQmagic variant.

Listing. 10. Allocation of access and execution permissions, QQmagic
variant.

to make classical and specially static analysis tools almost
pointless. For instance, if we observe static API calls by
disassembling the app, we will not encounter any malicious
behaviour since this is actually contained in separated com-
piled files. The only suspicious element here lies in invoking
the call needed to load the external library. Nevertheless, this
is a process which cannot be solely attributed to malicious
code as many benign applications employ it to defend from
piracy or due to other legitimate security reasons.

E. THE HONGYAN AND HUANMIE VARIANTS
These variants also resemble the SLocker family in some
aspects (and in fact a few antivirus wrongly classify them
as SLocker). They provide interesting implementation differ-
ences and show clearly the process whereby new subvariants
are created. As in the case of the other variants analysed in this
document, the procedure followed by this malware is quite
simple: once the application has been installed and launched,
it displays a screen with a Chinese message which falsely
informs that the device configuration is being checked.

We have found two main versions of this variant, which we
have called theHongyan and theHuanmie versions (color and
disillusionment in English) in reference to the package name.
One of the most remarkable details of these variants is that
we can explicitly observe the process by which a variant gets
transformed into a new one. This process will be described at
the end of this subsection.

The Hongyan version has been chosen for a deep
analysis.13

1) APPLICATION ANALYSIS
After a few minutes, or if the app is closed and launched
again, it shows the screen displayed in Fig. 1e, that reports
that the user data has been encrypted and that it is necessary
to contact whoever caused it by using the QQ messaging
service. It also mentions the amount needed to unlock the
files, which is 20 yuans (this small value was probably chosen
to maximise the number of paying victims). The presentation
screen also shows a large number, which is expected to be
provided to the attacker when contacting him to obtain the
deactivation key, for which a text field is provided below.

This version really encrypts data. We left a few decoy files
with different extensions in the /sdcard/ partition. When
the app was launched, all files were immediately encrypted
and the extension was added to them
(it varies between different samples of this variant). The
ransomware does not make any distinction between file types,
it encrypts any file whatever its format is.

Taking a look at the package folder tree helps identi-
fying the different parts of this malware. The subpackage
Xbox contains the encryption tools, with methods that call
the algorithms implemented in the javax.crypto native
library and some new methods that allow to convert between
strings and bytes. The com.android.admin.hongyan
includes the main code section of the app, including the main
file MainActivity.class which is in charge of calling
the necessary classes to launch the malicious payload.

Among the rest of files, des.class invokes the DES
algorithm used to decrypt the text which will define the

13The sample chosen for this analysis is identified by SHA-256: 5212b
6a8dd17ccfc60f671c82f45f4885e0abcc354da3d007746599f10340774
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encryption key. lock.class contains the necessary code to
calculate the key provided to the user in the screen, and checks
whether the deactivation key introduced is correct. newone.
class performs the user data encryption process, and also
makes use of the code defined in LogCatBroadcaster.class to
automatically reactivate the encryption process if it stopped.

implements the SHA-1 andMD5 hash functions. Finally
it.sauronsoftware.base64 implements some auxil-
iary functions to deal with data operations.

2) ENCRYPTION PROCESS
The encryption method employed in this malware is fairly
straightforward. Using the javax.crypto built-in library
of the Android API (see Listing 11), the app executes the AES
algorithm over any user file.

Listing. 11. AES encryption in the Hongyan variant.

Since no parameters are provided in the algorithm call,
the cipher configuration is provider specific. In Oracle
Java JDK 7, the configuration used is AES + ECB +
PKCS5Padding. According to the taxonomy described by
Ahmadian et al. [8], this variant belongs to the private-key
cryptosystem ransomware (PrCR).

The author tries to hide the encryption/decryption key in
the code through a worthless obfuscation mechanism, con-
sisting on several concatenated decryptions of a large text
using a secondary decryption object whose key is coded in
plain:

Listing. 12. Encryption of decryption key, Hongyan variant.

As it can be observed in the first line, a des object is
initialised using two Chinese characters. This object repre-
sents a DES encryption algorithm (newly implemented using
javax.crypto) where the two characters are the encryp-
tion/decryption key. In the second line, this object is used to
decrypt a 16 characters text, whose result is used to reini-
tialise the des object. However, this step is redundant and
strangely useless, since the result obtained by the decryption
of the 16 characters text is equivalent to the two previous
Chinese characters, so it leads to the same argument and the
decryption object remains identical.

In the third line, the encryption/decryption key is
obtained applying the above mentioned des object to
several nested decryptions of a large text provided in
plain. This let us know the decryption key by just exter-
nally executing this piece of code. The resulting key is:
‘‘GiEhjghmZIO7RTWyycQ9PQ==’’. Although this key is
different from the one that is expected to be introduced by
the user to trigger the deactivation process, it allows a full
recovery of every file, even when after the malware has been
removed.

3) DEACTIVATION PROCEDURE EXAMINATION
A glance at the code level also allows us to reach all the
necessary details to understand how both the key provided
to the user and the deactivation key are generated. Although
in most of the samples there are signs of the use of obfus-
cation techniques, the code can be easily untangled. First
of all, a striking piece of code reveals (listing 13) that the
app retrieves the IMEI number (line 1):

Listing. 13. IMEI code retrieval in the Hongyan variant.

In the next line (line 2), two hash functions are composed,
taking as input the IMEI number. Thus, a variable saves the
result of the SHA-1 of the MD5 of the IMEI, which is the
value later displayed in the red ransomware screen. At this
point, if the user provides this number to the attacker, he will
send back the deactivation code.

In the same package class (named lock.java in most
samples) we can also find the procedure to check whether
the deactivation code inserted by the user is correct. It is
simply a string comparison between the value inputted by
the user and a transformation of the number provided to the
attacker, based again on the the use of cryptographic hash
functions:

Listing. 14. Deactivation code check in the Hongyan variant.

Actually, this new value is computed through a similar
process to the one described before: it is the SHA-256 of
the MD5 of the value given on the screen. In short, the key
which deactivates the ransomware (and starts the decryption
of user’s data) is computed as:

SHA− 1(MD5(SHA− 256(MD5(IMEI )))) (1)
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FIGURE 4. Different samples of the Hongyan and Huanmie variants of the Jisut ransomware. Each sample is identified by the first 8 characters of its
SHA-256 hash.

When the user introduces this value and clicks on the
Decrypt button, all the files are decrypted and the ransomware
can be uninstalled.

4) VARIATIONS OF THIS VARIANT
The above analysis is intended to describe the particularities
of the Jisut variant. However, after a long manual search
through the VirusTotal Intelligence service, we have found
multiple samples which implement a plethora of interesting
but mostlyminor changes. A comparative assessment of these
samples allows us to evaluate how different modification
were sequentially introduced. Fig. 4 shows the differences we
found between a number of important samples of this variant.
Each sample is represented by the first 8 hex characters of

their SHA-256 signature.14 The first submission date of the
sample to the VirusTotal portal is also included.15

In general terms, we have found that the Hongyan version
is the one which has led to most variations. The sample
identified by 5212B6A8 in the diagram (the first 8 characters
of the SHA-256 hash) has led to new samples with minor
changes (as shown in the left part of the upper box) and to
another set of applications where the adrt package has been
extracted to include the LogCatBroadcaster.class as

14The complete signatures can be found at http://aida.ii.uam.
es/jisutnoransom/index.php/jisut-hashes/

15This date does not represent when the sample was built or deployed,
but when it was first uploaded to the VirusTotal portal. This is the reason of
having samples in Fig. 4 shown as offspring of samples with a newer date
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a new class (in the group of apps placed at the right of the
box).

On the other hand, an important branch starts with sample
CDE39A13. It can be seen as the first attempt to make the
encryption key harder to retrieve, although the underwhelm-
ing implementation of this idea just consists on a bigger text
needing to be decrypted in order to obtain said key. This
sample leads to a new subset where substantial changes are
included. For instance, within the code of sample 1C8A5045,
together with a lot of useless classes we can find again a clone
of the previous versions under path com.a.a.android.
admin.hongyan. But a new package has been added under
com.a.a.android.admin.huanmie, which seems to
be mostly a copy of previous ones with some modifications
aimed to hinder attempts at reverse engineering. This is also
a clear evidence of the evolution of malware, where an old
version is taken to build a new and better one. Surprisingly,
the encryption process remains identical so we can still easily
decrypt every file with just a few lines of code.

In this sample, the main difference lies in the computation
of the deactivation key:

Listing. 15. Obfuscated key deactivation, Hongyan variant.

The above code was obtained using the JADX tool,
although it produces some decompilation problems probably
due to the use of Chinese characters. There are a number of
computations which finally lead to a value which is concate-
nated to this.val$xx. While this last value is the same
as the resulting from Equation 1, now it is concatenated with
a new value computed by this confusing procedure. As the
result of the decompilation process, there is one missing
variable declaration, the one related to f158. It appears that the
value of this variable is not relevant at all. When simplifying
all the computations, the variables start to cancel each other
out. The last variable key_decryption is:

((i− j− k)+ (m+ n+ i1+ 1)) (2)

Lets replace j, which is i-k:

i− i+ k − k + m+ n+ i1+ 1 (3)

The remaining variables are constants: m = 3, n = 1, i1 = 2.
So:

key_decryption = m+ n+ i1+ 1 = 7 (4)

So, in the end, the new deactivation key is calculated in
almost the same way as in the previously variant. The only
real change involves the additional concatenation of a ‘‘7’’:

SHA− 1(MD5(SHA− 256(MD5(IMEI ))+ ‘‘7’’)) (5)

Finally, a more advanced variation (AE3F772B) was
found, where the malicious payload is hidden following a
procedure already taken by other ransomware. In this case,
several files with an .acc extension contain the compiled
code, which is loaded at runtime.

F. THE COM.BLL.APKIN VARIANT
This variant was first reported in 2017 by Lukas Stefanko [30]
as a ransomware capable of talking to victims. Again pri-
marily targeting Chinese users, this version asks for device
administration privileges and informs the user that it is neces-
sary to pay the ransom in order to unlock the device together,
also displaying a classical locking screen stating the QQ
number which the user must contact. The application lies in
MainActivity.class, which is in charge of detectingwhen a key
is pressed, and to launch a method which decrypts a text file.
This file can be found under assets/bll, and contains a
large seemingly random text.

The method initialises a large array with Chinese charac-
ters, building which seems to be a decryptor based on simple
transformations. But this time, they are not totally useless.
Instead, the file is read as a bytes array and passed as an
argument to the enorde() object (line 18 in Listing 16), which
is a decryption method previously initialised with the key bll
(see line 3). The enorde class contains both an encryption
and decryption method based on different transformation and
bytes operations. When applied to the bll file, it results in
a new text file which actually is a new apk. This new apk is
saved in a file on the external storage directory (see line 6),
and then it is read again (see line 11).

This new apk has been obfuscated using the Jiagu 36016

tool, as the name of the compiled libraries suggest. Among
the files found in this new apk, there are references to the
JavaMail library, which indicates the use of mail services for
communication.

16http://jiagu.360.cn/
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Listing. 16. Hidden app recovering process, Hongyan variant.

V. DISCUSSION
As shown in the previous sections, the Jisut family has
explored different modifications and refinements in order to
improve its ability to lock users’ devices and obtain a ransom
from its victims. Although some of the techniques exposed
do not entail a high degree of technical sophistication, they
can be used to help in understanding the operation of the
criminal group behind the ransomware, and possibly as well
to establish authorship. Some of the later techniques reveal
a higher degree of technical acumen, particularly those that
dynamically load code. This, in our opinion, makes the use
of dynamic analysis tools mandatory to deal with the most
recent ransomware variants. We also believe the study per-
formed in this work can have valuable didactic contents for
anyone starting its journey in Android malware forensics.
Furthermore, while we have focused on theAndroid platform,
other environments such as iOS are not exempt from this
kind of threat. Although in general malware exploits specific
weaknesses of the target operating system, it is expected that
many of the common patterns and techniques will be spread
across platforms.

VI. CONCLUSION
The Jisut family can boast of a long and illustrious career
infecting Android smartphones. The family has evolved in
interesting ways to produce new variants, where both the
graphics and technical details vary while the core of the ran-
somware is nearly identical. Throughout this paper we have

analysed the most important variants of this ransomware,
describing how they take control of the device and try to
coerce the user to pay a ransom. We have described their
encryption, deactivation and screen locking mechanisms,
information that we hope will be useful for past, present and
future victims. At the same time, we have also shown how
these variants evolve and how past versions are taken as a
template to build up new, more powerful and more complex
variants.

The main objective of our work is to help not only victims
and beginners in Android forensic and malware analysis,
but also those interested in designing anti-malware tools.
For this we provide them with a detailed characterisation of
a currently active ransomware family. In our future work,
we plan to extend the approach followed in this paper to
analyse other Android malware families and to perform more
detailed comparative assessments.
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Universidad Politécnica de Madrid, 28031 Spain

Abstract

Cybersecurity has become a major concern for society, mainly motivated by the increasing number of cyber attacks and
the wide range of targeted objectives. Due to the popularity of smartphones and tablets, Android devices are considered
an entry point in many attack vectors. Malware applications are among the most used tactics and tools to perpetrate a
cyber attack, so it is critical to study new ways of detecting them. In these detection mechanisms, machine learning has
been used to build classifiers that are e↵ective in discerning if an application is malware or benignware. However, training
such classifiers require big amounts of labelled data which, in this context, consist of categorised malware and benignware
Android applications represented by a set of features able to describe their behaviour. For that purpose, in this paper
we present OmniDroid, a large and comprehensive dataset of features extracted from 22,000 real malware and goodware
samples, aiming to help anti-malware tools creators and researchers when improving, or developing, new mechanisms
and tools for Android malware detection. Furthermore, the characteristics of the dataset make it suitable to be used as a
benchmark dataset to test classification and clustering algorithms or new representation techniques, among others. The
dataset has been released under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
and was built using AndroPyTool, our automated framework for dynamic and static analysis of Android applications.
Finally, we test a set of ensemble classifiers over this dataset and propose a malware detection approach based on the
fusion of static and dynamic features through the combination of ensemble classifiers. The experimental results show
the feasibility and potential usability (for the machine learning, soft computing and cyber security communities) of our
automated framework and the publicly available dataset.

Keywords: Malware analysis, Android, Hybrid features fusion, Malware dataset

1. Introduction

Due to the presence of technology in all areas of our
daily lives, cyber security has become one of the main con-
cerns to be addressed by the society as a whole. In recent
years, there has been a large number of attacks and, what
is even more remarkable, to a wide variety of objectives.
Some recent well-known examples include denial of service
attacks such as that performed by the Mirai botnet [1] and
a massive data hijacking led by the ransom-ware Wan-
nacry [2].

Furthermore, mobile devices are everywhere nowadays
due to their popularity. Even in big companies this has
been noticed, thus implementing new policies such as
BYOD (Bring Your Own Device) and increasing the num-
ber of telecommuting employees. But, on the other hand,
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this blurs the perimeter security even more in these com-
panies. Mobile devices can be considered as an entry point
in any attack vector since the security measures are not so
developed as in PCs. Hence, it is required to research
new techniques for the automatic detection of malware for
mobile devices, especially those that use Android operat-
ing system, since it represents over the 80% of the market
share compared to iOS (around 15%), according to the
Worldwide Quarterly Mobile Phone Tracker [3].

Cyber attacks manage to produce unprecedented levels
of disruption, where attackers usually leverage diverse
tools and tactics, such as zero-day vulnerabilities and mal-
ware [4]. This situation makes malware detection tech-
niques worth studying and improving, in order to pre-
vent and/or mitigate the e↵ects of cyber attacks. Ma-
chine learning techniques can help to satisfy this demand,
building classifiers that discern whether a precise Android
application is malware or benignware. Algorithms such as
Decision Trees [5], Support-Vector Machines [6] and Naive
Bayes [7], to name a few, are able to build such classifiers.
Going further, ensemble methods for machine learning [8]
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aim at e↵ectively integrating many kinds of classification
methods and learners to benefit from each ones advantages
and overcome their individual drawbacks, hence improving
the overall performance of the classification.

Nevertheless, machine learning techniques require large
datasets of representative features extracted from real
samples, which defines one of the goals of this paper: to
present a comprehensive dataset of dynamic and static fea-
tures from Android applications called OmniDroid. This
dataset can help other researchers to improve and develop
new automatic malware detection techniques for Android
devices. At the same time, the characteristics of this data-
set make it suitable to be employed as a benchmark data-
set to apply and test di↵erent algorithms and techniques,
such as classification, clustering, association rule learning,
pattern recognition or even to test representation learning
algorithms. In order to make the OmniDroid dataset easy
to use, all the data are provided in JSON and CSV formats
and are publicly available.1

The OmniDroid dataset has been built using AndroPy-
Tool [9, 10], an automated open source tool for dynamic
and static analysis of Android applications. Hence, an-
other goal of this paper is to present AndroPyTool in depth
and to describe its functionality.

The main contributions of this paper can be summar-
ised as follows:

• AndroPyTool, a new tool for the automatic extrac-
tion of both static and dynamic features from sets of
Android applications, is presented.

• The aforementioned tool has been used to generate
a dataset (called OmniDroid) of static and dynamic
features extracted from Android benignware and
malware samples. The dataset is publicly available
under a Creative Commons Attribution-NonCom-
mercial-ShareAlike 4.0 International License [11].

• A thorough analysis showing statistics regarding
the di↵erences found between the two categories of
samples and among the samples belonging to the
same set.

• The performance of several ensemble classifiers from
the state of the art have been studied to assess the
feasibility of the features selected to build new de-
tection or classification models based on ensemble
techniques. It also illustrates the potential advant-
ages of using the tool and the dataset when build-
ing ensemble methods to detect and classify Android
malware.

• Finally, an Android malware detection approach,
based on the fusion of static and dynamic features
through the combination of an ensemble of classifiers
following a voting scheme, is presented.

1https://aida.ii.uam.es/datasets/

2. Basics on Android malware detection

Malware, in its di↵erent forms, represents a major is-
sue a↵ecting di↵erent platforms, from personal computers
to smartphones or to the Internet of Things (IoT). From
the appearance of the first virus designed for computers in
the 70’s, trojans, viruses or spyware, among others, have
been developing di↵erent shapes to deal with the coun-
termeasures imposed by operating systems and anti-virus
engines. This has led to a race where security experts are
always pursuing black hat hackers. To tackle this problem,
malware detection tools try to extract and model the be-
haviour of a suspicious sample, which is compared against
benign or malicious patterns in order to make a decision.
This section describes the most used features capable of
representing these behaviours and how they are used in
the literature.

2.1. Basic features for Android malware analysis

In order to model the behaviour of a benign or mali-
cious app, it is required to establish a representation able
to describe in depth its actions and purposes. Two ap-
proaches to conduct this modelling process are possible: a
static or a dynamic analysis, presenting di↵erent proced-
ures to be performed, at the same time that entail a series
of advantages and disadvantages. In order to characterise
the behaviour of a given sample following static analysis
techniques, it is possible to inspect the package, to decom-
pile the code or to access the di↵erent files contained in
the package (i.e. the Android Manifest). This allows to
gather a set of relevant and useful features, such as a list
of API calls invoked throughout the code or the set of An-
droid permissions required in order to deploy the whole
functionality of the sample.

In contrast, dynamic analysis opts for capturing the ac-
tions that are actually triggered by the suspicious sample,
leveraging an emulator or even a physical device to run
the app while a monitoring agent captures a series of in-
dicators, such as hardware components accessed, network
tra�c or system calls invoked. One of the main benefits of
following a dynamic approach lies in its ability to capture
events invoked in obfuscated sections of code or included
in code dynamically loaded. In these two examples, static
analysis faces a major barrier.

Detection and classification tools leverage groups of
specific features, whether static, dynamic or combinations
of both, through di↵erent representation techniques, such
as histograms, graphs or Markov models. This subsection
describes the most employed and cited features in the lit-
erature and how they are handled when building detection
and classification tools. A summary of the di↵erent state-
of-the-art approaches is provided in Table 1.

API calls are within the most used features. Whether
static or dynamically extracted, they allow to model the
behaviour of a sample and to characterise the actions it
can take. For instance, DroidMat [24] performs API Calls

2



Detection/
classification

method

API
calls

Files
access

Intents Permissions
Network
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Hardware

Native
Code

Hidden
files/

dynamic
loading

ICC Metainf. Opcodes
System

commands
Strings

Taint
analysis

ADROIT[12] D D
Andro-Dumpsys[13] D D D D
AndroDialysis[14] D D
Andromaly[15] D D
Apposcopy[16] D D
Dendroid[17] D
DREBIN[18] D D D D

DroidAnalytics[19] D D D
DroidAPIMiner[20] D

DroidDet[21] D D D
DroidFusion[22] D D D D D
DroidLegacy[23] D
DroidMat[24] D D D D D

DroidMiner[25] D D D
DroidScribe[26] D D D D
DroidSieve[27] D D D D D D D D

Gascon et al.[28] D
ICCDetector[29] D D D

Madam[30] D D D D
Manilyzer[31] D D
Marvin[32] D D D D D D D
MAST[33] D D D D

Peiravian et al.[34] D D
RevealDroid[35] D D D
Sheen et al.[36] D D
Wang et al.[37] D D D D
Yerima et al.[38] D D D D
Yerima et al.[39] D D D
Zhang et al.[40] D D

OmniDroid D D D D D D D D D D D
Table 1: Relation of features extracted and used by di↵erent Android malware detection and classification state-of-the-art approaches. The
bottom lines indicates the set of features that the presented dataset OmniDroid contains. In the case of the detection of files accessed, the use
of dynamic code loading techniques or information related to network connections, these are extracted during the dynamic analysis performed
with DroidBox.

tracing from the di↵erent app components. DroidAP-
IMiner [20] also focuses on such API calls that are con-
sidered critical by the authors and include the arguments
used when the call is invoked. API calls have also been
used in the form of call graphs [28].

A relation of the Intents declared by an application can
also be deemed as a key information source to categorise
the behaviour of a sample. As in the case of API calls, a
list of actions defined by Intents can be static or dynamic-
ally extracted. There are many examples in the literature
studying this feature. In MAST [33], di↵erent indicators
of the application functionality, including Intent actions,
are analysed based on the assumption that these factors
di↵er from benign samples. This feature has also been
used to group malicious samples based on similarity [13].
For further information, the e↵ectiveness of Intent actions
for revealing malicious behavioural patterns has been eval-
uated by Feizollah et al. [14].

Android permissions are one of the most relevant char-
acteristics in the Android malware detection scenario, even
though they cannot o↵er a detailed description of the in-
tentions that a suspicious application could take. Malware
detection models based on machine learning algorithms
have been trained with datasets of permissions combined

with API calls [34]. In combination with many other fea-
tures, such as filtered intents, network information or data
regarding the use of hardware components, Support Vec-
tor Machines are trained in Drebin [18] for malware family
classification. With a special focus on detecting obfuscated
malware, DroidSieve [27] combines permissions with a list
of invoked components or API calls, among others.

From a more general point of view, other methods
base their malware detection mechanisms solely on meta-
information provided by the developers. Such is the case
of ADROIT [12], a system that trains machine learning
algorithms with a set of features extracted from the An-
droid Manifest and performs a text mining process on the
description text of the application. Another example is
Manilyzer [31], focused on using the information which
can be gathered from the Android Manifest files to train
machine learning algorithms.

Other possibilities to face this problem, involving stat-
ically features extracted as well, are based on the em-
ployment of opcodes or system commands. Droid Analyt-
ics [19] is a system aimed at assisting to retrieve opcode
level information from Android malware. A study on the
e↵ectiveness of opcodes for malware family classification
can also be found in the literature [41]. System commands
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have been used in combination with a parallel machine
learning classifier [39] or Bayesian classification [38]. An-
other possibility is to analyse the information transmitted
through the Inter-Component Communications (ICC) ser-
vice, which can be used by malware to perform malicious
actions such as installing a new application [29].

Within the set of features under a static analysis ap-
proach, taint analysis has also served for designing detec-
tion and classification tools. FlowDroid [42] can be con-
sidered as the most important exponent of this kind of
analysis. RevealDroid [35] is an accurate and obfuscation
resilient Android malware detection tool where informa-
tion flows extracted with FlowDroid play a fundamental
role to detect malicious patterns. Another example of the
use of taint analysis is Apposcopy [16].

All the features described so far are mainly extracted
through the use of static analysis techniques, what is to
say, they do not imply code execution. While static fea-
tures are easy to extract and provide detailed information,
they present some inherent shortcomings. One of the most
important examples is the inability to trace the actual be-
haviour of a sample when running in a real device, which
prevents, in many cases, to reveal the malicious payload
of a malware instance. There is an important number of
researches trying to bypass this problem by monitoring
the application actions in an emulator. One example is
Andromaly [15], which applies machine learning to varied
metrics of the system behaviour collected in runtime. An-
other instance of this kind of analysis is DroidScribe [26],
which monitors API calls invoked in runtime to detect An-
droid malware.

2.2. Malware detection tools and classification techniques

It is possible to find in the literature several tools aimed
at detecting Android malware, as well as classifying and
categorising them among families that share certain fea-
tures.

For instance, RevealDroid [35] is both a malware clas-
sification and detection tool which employs a varied set
of static features including sensitive API calls, API pack-
ages, API flows obtained with FlowDroid [42] and a list of
actions of the Intents. Then, a C4.5 decision-tree and a
1-Nearest-Neighbour (1NN) machine learning algorithms
are trained, taking as input all these features extracted
from Android benign and malware samples belonging to
di↵erent families. DroidSIFT [40] is a semantic-based clas-
sifier, which uses API dependency graphs to train a Näıve
Bayes classifier. In Dendroid [17], code structures serve to
compare samples and to train both a classification and a
clustering algorithm. Drebin [18] follows the same pattern,
it extracts a large of features including hardware compon-
ents, requested permissions, app components, filtered in-
tents, restricted API calls, used permissions, suspicious
API calls and network addresses to train Support Vector
Machines.

DroidMiner [25] builds behaviour graphs called Com-
ponent Behaviour Graphs (CBG) based on the commu-

nication between API functions and sensitive Android
resources and di↵erent classification algorithms such as
SVMs or Random Forest are trained. DroidAPIMiner [20]
extracts API calls based on their presence in malicious
samples and are used to perform, as in previous examples,
a training process of di↵erent machine learning algorithms.
DroidLegacy [23] performs family classification by extract-
ing signatures that can be found in malicious applications
and that can be used in repackaged, originally benign,
samples. Then, similarity measures are used to compare
samples. MAST [33] helps in the triaging process mak-
ing use of features extracted from the application package.
Finally, MOCDROID [43] uses an evolutionary approach
and third party calls to perform malware detection.

From the classification model perspective, a broad
range of techniques have been used in this scenario.
Among these, ensemble based classifiers have been re-
peatedly employed showing a good behaviour. These
methods have proved to be powerful in imbalanced prob-
lems [44] as well as in binary and multi-class domains [45].
For instance, statically extracted features (including per-
missions, API calls and a set of system events) are used
to feed a rotation forest model [21], which improves the
results when compared against a classic Support Vector
Machine classifier. A blend of API calls and permissions
also defines the set of features employed to train a multi-
feature collaborative decision fusion (MCDF) [36], through
a pool of classifiers including J48, Random Tree and De-
cision Stump.

In DroidFusion [22], the classification is performed at
two di↵erent levels. First, several low level classifiers are
trained, involving Random Tree, REPTree, J48, Voted
Perceptron and also ensemble methods. Then, their results
are combined to define the final output using four proposed
ranking-based methods. In a similar approach [37], 11 dif-
ferent static features categories are filtered using a SVM
classifier and then are sent to the input of an ensemble
classifier composed of five models: SVM, Random Forest,
K-Nearest Neighbors, Classification and Regression Tree
(CART) and Naive Bayes. These models are combined
through a majority voting scheme.

All previous approaches, no matter the algorithm em-
ployed, require datasets of features extracted from mal-
ware and harmless samples in order to train their models.

2.3. Android malware datasets

Machine learning based malware detection tools re-
quire datasets of samples labelled as malware or benign
to be trained and tested. The use of these datasets is
essential in order to build reliable malware detection or
classification methods. For that purpose, di↵erent data-
sets of Android samples have been made public over the
past years. The Android Malware Genome Project [46]
was launched in 2012, however, it was abandoned in 2015.
Drebin [18] contains malware samples labelled as di↵er-
ent malware families, but it is too old, since the samples
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were gathered from August 2010 to October 2012. Con-
tagio [47] periodically publishes new malware applications
found in the wild. The AndroZoo project [48] o↵ers a huge
dataset containing more than 5,700,000 samples which are
currently being analysed with di↵erent antivirus engines.
Other source where it is possible to find Android malware
families is the android-malware GitHub repository [49]
which includes APKs of di↵erent varieties. More recently,
the Android Malware Dataset [50] was released. It con-
tains 24,553 samples gathered from 2010 to 2016 of 71
malware families.

In addition to datasets, there are also online services
that make it possible to retrieve both benign and mali-
cious applications. For instance, many researchers collect
samples directly from application stores, such as Google
Play or Aptoide, specially when searching for benignware.
On the other hand, malware can be obtained from online
applications such as the VirusTotal Intelligence service2.

While these datasets o↵er sets of raw samples, other
projects provide features or logs already extracted from
samples. In this line, DroidCat [51, 52] is composed of
440 and 508 logs of malicious and benign samples, re-
spectively. AndroMalShare [53] also provides a dataset of
features extracted from malware samples, including static
and dynamic analysis. If compared to OmniDroid, An-
droMalshare only includes malware samples and the fea-
tures set is not as broad. The Kharon project [54] provides
a reduced set of Android malware samples of di↵erent fam-
ilies and includes some technical implementation details.
The Koodous portal3 o↵ers a huge dataset of malicious
and benign samples only for research purposes, in this case
including a report of features. In contrast, OmniDroid
provides a wider set of features. Androzoo [48] provides a
large set of Android Apks for research purposes.

In this work, samples provided by Koodous and Andro-
zoo were used as the starting point in order to analyse a
large set of samples considered as malware and considered
as harmless.

2.4. Android malware analysis tools

To day there exist a plethora of available tools for the
analysis of suspicious Android applications aimed at ex-
tracting di↵erent types of characteristics. For instance, a
GitHub repository [55] o↵ers an overview of the existing
tools and links to useful resources. In particular, there is
an important number of utilities focused on reverse engin-
eering processes able to extract groups of features. For
example, AndroGuard [56] is a Python library which ex-
tracts varied information from code, resources or the An-
droid Manifest.

Other well-known tool is smali/backsmali [57], an as-
sembler and disassembler of the DEX files which contain
the bytecode of the application. Apktool [58] allows to

2https://www.virustotal.com/intelligence
3https://koodous.com/

decode the resources contained in the executable file. It
also provides other powerful utilities such as repacking the
sample. Dex2jar [59] is aimed at converting Dalvik byte-
code files into Java compiled files with extension jar exten-
sion. This allows to later decompile the code using other
tools such as jd-gui [60], which reconstructs the code and
allows to visualise it. A similar functionality is provided by
jadx [61]. FlowDroid [42] performs taint analysis over An-
droid applications, providing useful and detailed informa-
tion related to the di↵erent information flow which occur
during the application lifecycle.

From the dynamic analysis perspective, DroidBox [62]
enables to monitor a wide series of events such as accesses
to files, network tra�c or DEX files dynamically loaded in
run time. An alternative to DroidBox is CuckooDroid [63].
The greatest weakness of both tools lies in that they are
implemented for old versions of the Android platform.

3. AndroPyTool

Currently, there is a plethora of tools for the extraction
of static and dynamic features from Android applications.
However, each one focuses on a precise kind of features,
so obtaining a comprehensive set of both static and dy-
namic features becomes an Herculean task. It involves
setting up every tool with their respective configuration
files and environment, as well as grouping the results ob-
tained individually to build a complete data set. That is
the motivation behind the development of AndroPyTool,
in other words, to o↵er an all-in-one solution to the An-
droid malware research community capable of performing
a full feature extraction process from suspicious samples.

AndroPyTool is an integrated framework developed in
Python aimed at obtaining varied dynamic and static fea-
tures from a set of Android applications. It embeds the
most used Android malware analysis tools, performs in-
spection on the source code and retrieves behaviour infor-
mation when the sample is run within a controlled envir-
onment. The tool provides a detailed report for every ana-
lysed application, including a large batch of fine-grained
representative characteristics.

Any interested researcher can get involved in the pro-
ject by making improvements or fixing bugs. The source
code of the project is hosted at GitHub [10]. Furthermore,
AndroPyTool can be used through a Docker container,
which allows to easily run the tool in just two steps. Refer
to the source code repository to get a full description of
the arguments and to know how to install and launch the
tool without using the Docker image (i.e. using the source
code).

This section comprises a description of the aforemen-
tioned tool, detailing what are the computed features.

3.1. Tool operation

As an integrated framework, AndroPyTool includes
several Android analysis and processing tools to provide
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Figure 1: AndroPyTool feature extraction process. The application follows a seven steps process in which static and dynamic analysis tools
are executed (steps 1–6), to finally process and group these results into an unified dataset (step 7).

detailed reports on the features and behaviour of applica-
tions. To achieve this, every application file (namely apk)
follows a pipeline comprising seven steps (see Figure 1),
which are detailed below:

1. APK filtering: The first step aims at inspecting
every sample by using the AndroGuard tool [56] to
determine whether the sample is a valid Android ap-
plication.

2. Virustotal analysis: the tool retrieves a report of
the application from the Virustotal online web ap-
plication. The report contains the results from the
scan performed by Virustotal as well as resulting

data from the analysis of the application by more
than 60 distinct anti-malware engines.

3. Dataset partitioning: in this step, which is op-
tional, each sample is labelled as malware if tagged
this way by at least ✏ antivirus based on the Virus-
Total report. This criteria can be modified by the
final user of the tool, who can establish his/her own
threshold ✏.

4. FlowDroid execution: this tool, based on taint
analysis, is run against every sample.

5. FlowDroid results processing: there is a pro-
cessing step of those results provided by FlowDroid,
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Figure 2: Filtering processes applied to build the OmniDroid dataset. The final allocation of benignware and malware samples depends on
the ✏ parameter, which defines the minimum number of antivirus which test positive for malware in order to consider a sample as malicious
or benign.

in order to extract the connections between sources
and sinks. The reason of dividing the extraction and
processing of information flows lies in that di↵erent
representations are possible, thus allowing to modify
the processing step independently.

6. DroidBox execution: a customised version of
DroidBox [62], an Android dynamic analysis tool,
that includes the Strace tool is run against the
sample in this step.

7. Feature extraction: in this step, the tool gathers,
reorganise and structure the results as reports of ex-
tracted features. The combined dataset of features
extracted for all applications is provided in the fol-
lowing formats: as a comma-separated value (CSV),
as a JavaScript Object Notation file (JSON), and as
a MongoDB database.

Next section provides a description of the Omnidroid
dataset, including the features extracted by the tool for
every given Android application along the aforementioned
process.

4. Dataset description

The OmniDroid dataset was built using AndroPy-
Tool [10]. With this tool, a large set of samples from two
di↵erent sources were analysed. In the first place, both be-
nign and malicious samples were gathered from a dataset
of 100,000 samples that the Koodous4 Team kindly gave
us for research purposes. Additional samples from the An-
droZoo5 portal have been included to supplement the first
set and also to promote variety within the malware set
of samples, thus avoiding potential sources of bias (virus
creators, creation date, etc.).

A filtering process was followed in order to remove re-
peated applications and those that are considered as in-
valid (they cannot be actually installed and executed). As

4https://koodous.com/
5https://androzoo.uni.lu/

it can be seen in Fig. 2, a first filter consists of removing
those samples that are represented by repeated packages
names, thus avoiding several instances of the same ap-
plication and their related feature vector. Then, invalid
applications were detected with the AndroGuard tool [56]
included into AndroPyTool in order to remove apps that
cannot be executed. The third step pursues the same
objective, but in this case discarding samples that could
not be actually executed in the Android emulator used by
DroidBox. All samples define a minimum SDK version un-
der API 16 in their Android Manifest, ensuring that this
is not a disadvantage for the use of DroidBox, which uses
this API level.

AndroPyTool run on the di↵erent sets of samples un-
til a considerable number of samples was analysed: 21,018
malware samples and 11,973 benign samples. Although
the Koodous dataset already makes a distinction between
malicious and non-malicious samples, all samples (includ-
ing those obtained from AndroZoo) were submitted to
VirusTotal. This allows to obtain an updated report for
every application which includes the scan result obtained
from a series of antivirus engines and which can be used
to label each sample as malware or benignware. Thus, the
rate of positives delivered by the antivirus engines imple-
mented by the VirusTotal portal is included as pre-static
information for each sample. Since a low rate of antivirus
reporting malicious content could be due to false positives,
the final allocation of samples to a malware or benignware
set will be in hands of the users of the OmniDroid dataset,
who can establish their own criteria. In this line, a pro-
cedure such as the one implemented by AndroPyTool can
be used, where the label of each sample is set according to
a threshold ✏.

Due to the high computational load required to obtain
the full analysis from each sample, the finally built data-
set contains a subset of the applications gathered. This
reduction was addressed aiming to keep a balanced data-
set containing both malware and benignware samples. For
that purpose, the threshold parameter ✏ was set to 1. Ac-
cording to this criteria, the finally generated and published
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dataset is composed by 11,000 malware and 11,000 benign-
ware samples.

All the features present in this dataset have been ex-
tracted from the aforementioned set of applications by ex-
ecuting AndroPyTool. A general overview of the number
of features extracted can be depicted in Table 2, where the
most important groups of characteristics are represented.
Table 1 compares the features contained in the OmniDroid
dataset against the characteristics used by di↵erent meth-
ods proposed for Android malware detection and classific-
ation.

Feature Count Feature Count

Permissions 5,501 Services 4,365
Opcodes 224 Receivers 6,415
API calls 2,129 API Packages 212
System commands 103 FlowDroid 961
Activities 6,089

Table 2: Number of the most important features included in the
OmniDroid dataset by category.

The next subsections describe each of the features that
are provided for each sample.

4.1. Features extracted through pre-static analysis

This entry provides general information about the ap-
plication, such as its file name, MD5, SHA-1 and SHA-256
checksums, a field reporting the number of positives in its
VirusTotal report and the total number of antivirus en-
gines from which scan results were obtained. Although
most of these elements cannot be actually considered as
behavioural features, these fields can be used to keep track
of the APK for any further analysis (see Table 3). This
kind of features also includes a categorisation of the sample
according to the AVClass [54] tool, which aims to achieve
a consensus between the outputs given by the di↵erent an-
tivirus engines run by VirusTotal (see Section 4.4). This
tool starts from a set of labelled samples to extract a list
of tokens, detects alias of the same family, applies sev-
eral filters and reveals the most convenient token for each
particular sample.

4.2. Features extracted through static analysis

Once the pre-static features are obtained, a set of new
features, which are extracted using static analysis tech-
niques (see Table 4), is gathered from the samples and in-
corporated into the dataset. These features are: package
name, permissions, opcodes, main activity’s name, API
calls, strings, system commands, and a list of intents whose
activities, services and receivers are able to manage inde-
pendently. All applications have been analysed with the
Flowdroid [42] tool as well, so these reports are included
into OmniDroid.

The main goal of this set of features is to provide an in-
sight of the application expected behaviour and the range

Feature Description

Filename Filename of the APK

VT positives Number of antivirus which test positive
for malware

VT engines Number of antivirus used in the analysis

AVClass Agreed malware label from several detec-
tion engines according to [54]

md5 MD5 checksum of the APK

sha1 SHA-1 checksum of the APK

sha256 SHA-256 checksum of the APK

Table 3: Pre-static features available in the dataset.

Feature Description

API calls Count of system calls performed by
an APK

Main activity Name of the Main Activity
Opcodes Count of opcodes performed by an

APK
Package name Name of the package
Permissions Which permissions uses the APK
Intent receivers Set of an APK’s receivers
Intent services Services used by an application
Intent activities Activities declared by an APK
Strings Set of defined strings (with use

count) within an APK
System commands Set of system commands ran by the

app
FlowDroid Path to the results obtained by

FlowDroid [42]

Table 4: Static analysis features available in the dataset.

of actions that it could take based on a static analysis of
the code which does not imply code execution. While this
kind of analysis cannot reflect the real behaviour of the
sample, which will only be revealed if the sample is run, it
feeds the analysis report of a sample with valuable infor-
mation. For instance, a list of permissions required o↵ers
a general picture of the range of actions that the sample
could take. Furthermore, this information can also be used
to compare declared and expected (static analysis) beha-
viour of a sample with the actually performed (dynamic
analysis).

In the first place, a complete list of API calls found in
the code is provided. It is important to note that those
calls that are invoked through reflection or dynamic code
loading among other obfuscation techniques are not de-
tected by this kind of analysis. In the OmniDroid data-
set, API calls can be found grouped by the class in which
they are defined or by their package6. Secondly, permis-

6A list of all Android API packages can be found at https://

developer.android.com/reference/packages.html
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sions show device functionalities that the application can
use, and system commands o↵er an overview of the actions
that can occur at a low level, so they can reveal interesting
actions performed, such as privilege escalation.

Other static features include Dalvik opcodes, obtained
by analysing the Dalvik bytecode and that are useful to
discern the behaviour of the sample at a low level. At
the same time, a list of intents that are used to invoke
other application components allows to make a profile of
the sample based on actions performed and the events that
trigger these actions. Another kind of feature included are
strings which are found within the code and that could
contain sections of code prepared to be executed in run
time.

Finally, a report built using the FlowDroid tool is also
included in this section. This is a useful tool that per-
forms taint analysis over the application code, in order to
discover connections between a source and a sink. These
sources and sinks, which have been previously defined by
the SuSi framework [64], allow to model those data leaks
performed during the application life-cycle. For instance,
this allows to discover connections where the IMEI of the
device is sent to a third-party using the network. Flow-
Droid was run limiting the RAM memory to 10GB and
the execution time to 5 min.

4.3. Features extracted through dynamic analysis

This category of features groups the dynamic analysis
results obtained with a customised version of the well
known framework Droidbox [62]. This framework provides
interesting features that can be analysed, such as network
activity, accessed files, sent SMS and cryptographic func-
tions that were captured during the execution. This frame-
work7 was adapted to obtain more detailed dynamic re-
ports. This modification consist on deploying the Strace
tool inside the Android emulator device, which allow to
obtain a fine-grained list of all system calls performed in
run time at the Linux level. When the analysis ends, this
file is extracted and saved. Furthermore, there was also
two more modifications applied to DroidBox. On the one
side, the behaviour of the MonkeyRunner tool already im-
plemented in DroidBox, was changed with the aim of stim-
ulating the sample under analysis with a higher number of
simulated user actions on the screen and buttons. On the
other hand, this modified version allows to run the sample
in a non GUI environment, thus enabling to run multiple
simultaneous emulator instances in computing nodes.

In contrast to static analysis, the use of a dynamic ana-
lysis tool allows to model the real behaviour exhibited in a
simulated environment where the application is executed.
Giving capabilities to the sample, such as internet access,
allows to capture those actions that are only visible when
particular conditions are met. For instance, monitoring

7https://github.com/alexMyG/DroidBox_AndroPyTool

the suspicious application while it is being executed al-
lows to reveal system calls which are invoked due to the
use of reflection or dynamic code loading.

The OmniDroid dataset contains the whole execution
log with all the events captured by the DroidBox tool and
a log generated with Strace for each application analysed.
These two information sources o↵er large amounts of data
which in case of being used in combination with machine
learning classifier need to be filtered and processed. The
final user of this dataset is free to apply the most appro-
priate techniques and methods for this purpose. Further-
more, since these two logs report a sorted list of events
where each one has its timestamp attached, it is also pos-
sible apply online learning techniques [65].

Each execution was run for 300 s in an emulator run-
ning Android 4.1.1 (the version employed by DroidBox)
with an armeabi-v7a architecture.

4.4. VirusTotal report

In addition to the aforementioned features, all APKs
have been analysed with the online malware detection tool
VirusTotal. In fact, what this platform does is to analyse
the APK using diverse malware detection engines such as:
AVG, Avast and F-Secure, to name a few. Hence, data
regarding this category are the results obtained from each
malware detection engine, namely a negative/positive de-
tection as well as the categorisation given by each anti-
virus engine. This report is included as a ground truth to
categorise each simple sample between malicious or non
malignant and to allocate a family or variant tag to each
sample as well. The final user of OmniDroid is in charge
of defining the ✏ threshold as the minimum number of pos-
itives which determine the nature of the sample.

4.5. Protection against adversarial attacks

Recent research has proven that adversarial attacks
against machine learning aided detection tools can provoke
misclassifications [66]. The wide set of features contained
in the OmniDroid dataset, extracted using both a static
and a dynamic analysis approach allow to build resilient
detection and classification tools. While methods relying
on a reduced set of features can be more easily deceived
(i.e. a modification of a single feature can lead to a misclas-
sification), those that employ a large set of characteristics
to describe the application behaviour present a significant
barrier against this kind of attacks.

5. Dataset analysis and benchmark

All features extracted in this dataset define a large
space from which di↵erent comparisons and considerations
can be made. For instance, it is possible to analyse the
presence of particular features when observing malware or
benign samples. For these experiments, the threshold ✏ has
been set to 1, so benign samples are those that are con-
sidered as such by all antivirus engines, while those that
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Malware Benignware
Permission % samples Permission % samples

INTERNET 96.21% INTERNET 94.82%
ACCESS NETWORK STATE 85.45% ACCESS NETWORK STATE 72.95%
WRITE EXTERNAL STORAGE 81.31% WRITE EXTERNAL STORAGE 61.49%
READ PHONE STATE 80.21% WAKE LOCK 41.60%
ACCESS WIFI STATE 60.40% ACCESS WIFI STATE 39.14%
WAKE LOCK 49.05% READ PHONE STATE 37.13%
ACCESS COARSE LOCATION 41.99% VIBRATE 33.33%
GET TASKS 39.12% ACCESS FINE LOCATION 27.70%
ACCESS FINE LOCATION 37.00% ACCESS COARSE LOCATION 27.45%
VIBRATE 36.87% GET ACCOUNTS 26.82%

Table 5: Ten most frequent permissions declared in the Android Manifest for each application in the malware and benignware sets.

are labelled as malware by at least antivirus are allocated
to the malware set.

5.1. Dataset analysis

An evaluation of how di↵erent samples employ the dif-
ferent features is a useful mechanism to draw general con-
clusions regarding the di↵erences between both types of
samples. In the next subsection, di↵erent features are as-
sessed individually.

5.1.1. Permissions required analysis

Table 5 shows the top 10 permissions used among the
malware and the benignware set (in terms of percentage
of samples where the permission is reflected in the An-
droid Manifest). Most of the samples of both categories
required Internet access in order to be executed, so no con-
clusion can be drawn from this fact. However, there is one
which makes a big di↵erence, the READ PHONE STATE per-
mission. It allows to read relevant information such as the
phone number, ongoing calls or cellular network informa-
tion. The o�cial Android documentation already warns
about the danger of this permission, as it can be used to
access very sensitive information. While about 80% of the
malware malware samples require this permission, this fig-
ure decreases to 37% in the benignware set.

In general, malware is more likely to demand permis-
sions, thus accessing a large set of functionalities. For in-
stance, SMS related permissions are much more present
among malicious samples. In particular, SEND SMS or
RECEIVE SMS permissions are required by 29% and 24% of
the malware samples respectively, while this numbers de-
crease to 5% within the benign set. This leads to conclude
that the use of SMS services is an important indicator to
consider whether a suspicious sample is malicious or not.
Among the rest of permissions, the use of RECEIVE BOOT -

COMPLETE is also relevant in the case of malware. Most of
those samples categorised as malware employ this permis-
sion to activate the malicious payload once the device has
been restarted.

5.1.2. Opcodes analysis

A study on the use of opcodes has also been performed.
Table 6 shows the top 10 opcodes found among the smali

Malware Benignware
Opcode % samples Opcode % samples

return-void 100.0% return-void 100.0%
invoke-direct 100.0% invoke-direct 100.0%
invoke-static 99.95% invoke-super 99.99%
invoke-virtual 99.95% invoke-virtual 99.99%
new-instance 99.95% move-result-object 99.97%
move-result-object 99.95% invoke-static 99.96%
const/4 99.94% new-instance 99.96%
move-result 99.92% goto 99.88%
goto 99.88% move-result 99.87%
if-eqz 99.78% const/4 99.87%

Table 6: Ten most frequent opcodes found in the smali code obtained
for each application in the malware and benignware sets.

code in the malware and benignware sets. In general, an
analysis based on counting the use of particular opcodes
will not lead to any conclusive assessment. Proof of this,
is that the top 50 opcodes are used by at least 90% of the
samples, which means that no di↵erences can be found
when comparing both batches of samples. This is an ex-
pected circumstance, given that opcodes show instructions
at a very high level, so they cannot be used to distinguish
relevant behaviours. For instance, the use of invoke op-
codes allows to know when a system call is invoked from
the application, but without the specific call specification,
no possible intentions can be inferred.

5.1.3. System commands analysis

Malware Benignware
System command % samples System command % samples
id 67.14% id 68.56%
start 53.38% top 66.83%
gzip 41.52% start 59.55%
date 39.55% service 59.04%
service 32.61% gzip 52.35%
log 32.48% input 47.41%
input 27.59% mv 46.85%
stop 26.65% log 43.41%
sh 25.91% sh 42.89%
top 24.98% stop 37.33%

Table 7: Ten most frequent system commands found within the code
of each application in the malware and benignware sets.

Contrary to the trends seen in the usage of permissions
by both types of samples, in the OmniDroid dataset the
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Malware Benignware
API Package % samples API Package % samples

android.app 99.96% android.app 99.65%
java.lang 99.91% java.lang 99.56%
java.io 98.8% android.content 99.44%
android.content 97.85% java.io 99.02%
android.os 94.58% android.content.res 98.57%
android.content.res 94.0% android.widget 96.65%
android.util 91.45% android.os 96.56%
android.net 91.42% android.view 96.47%
java.util 90.25% java.lang.ref 96.47%
android.widget 90.05% android.util 96.28%

Table 8: Ten most frequent API packages referenced on each applic-
ation in both the malware and benignware sets.

use of system commands were more significant among be-
nign samples (see Table 7). However, there can be found
important details among them. For instance, 19% of the
malware samples make use of the chmod command, which
is necessary to give write and execution permissions to
hidden scripts included among the app files. Among the
benign samples, this number is reduced to 5%. In contrast,
a wide set of system commands that could be tentatively
associated with malicious behaviours, are in fact more used
among benign samples. For instance, the commands gzip
and mv could be used to decompress a file containing a ma-
licious payload and to place it in the system apps folder,
however, both are more commonly employed among be-
nign samples. The rest of system commands do not allow
to extract any relevant conclusion that could make a dif-
ference between both kinds of samples.

5.1.4. API packages analysis

API calls form a useful mechanism to identify relev-
ant di↵erences between samples with good or non-legal
intentions. In this study, these calls are grouped by the
API packages in which they are defined, in order to depict
general characteristic patterns. In table 8 it is possible
to observe this ranking of number of calls per API pack-
age. In general, both types of samples exhibit a similar
use of the most common API packages. For instance, the
android.app and java.lang packages, which are present in
all samples, include the most basic functionality of the
Android environment and Java language features respect-
ively. An important di↵erence can be found in the an-
droid.telephony groups of API calls. While 83% of the
malicious samples invoke calls contained in this package,
this number is reduced to 63% in the benignware set. As
it was already observed when analysing the use of di↵erent
permissions, services related to telephony and SMS remain
very present among malware samples.

5.1.5. Intents analysis

Intents are a key communication element in the An-
droid environment. Basically, they allow to ask permis-
sion to the system to run another application component.
Thus, Intents describe the actions that an application can
take. For instance, an Intent could demand actions such as

making a phone call or taking a picture. Table 9 shows the
top 10 actions declared in the Android Manifest by Intent-
filters grouped by the nature of the samples. There are
noticeable patterns which can be inferred from this rank-
ing. Permission android.intent.action.BOOT COMPLETED is
declared in the Android Manifest in order to allow the ap-
plication to receive a broadcast intent reporting when the
device has been restarted. This is typically employed by
malware aiming to hide the malicious payload until the
next device boot-up and to force that a malicious applic-
ation is actually executed even if the user does not start
it manually. While about 38% of the malware samples are
listening to this broadcast, only 19% of the benign apps do
it. Another examples of broadly used permissions among
malicious samples is android.intent.action.USER PRESENT

or those related to the SMS services (as already noted
when analysing the use of Android permissions) such as
android.provider.Telephony.SMS RECEIVED.

5.2. FlowDroid analysis

Information flows represent vital information to under-
stand the behaviour of a sample and are able to reveal
patterns that could be associated to a sequence of mali-
cious actions. In order to assess the di↵erences between
the malware and the benignware sets, Fig. 3 shows the
number of flows found across all samples between categor-
ies of sources (at the left) and sinks (at the right). These
31 categories are defined by the SuSi framework [64].

As it can be seen, there is an important number of
links between the NOT EXISTING and NO CATEGORY (those
related to non-private data) categories. These categories
have been omitted in the rest of the study. When analys-
ing information flows in the malware diagram starting from
the DATABASE INFORMATION category, an important num-
ber reach the LOCATION INFORMATION category, mainly fo-
cused on getting information regarding the device location.

There are also important patterns which can be de-
duced from the malware set. For example, there is a big
number of information flows from SMS MMS to IPC (inter-
process communication). In contrast, SMS MMS category
shows little activity in the benign set. At the same time,
there is more activity in this set starting from IPC and
FILE categories. As sink, UNIQUE IDENTIFIER category re-
ceives an important number of flows, which is a remarkable
fact, since it includes relevant calls such as getDeviceId()
or getImei(). These calls are often used by malware for
many purposes. For instance, they can be used to gener-
ate unique keys which are later employed to encrypt user’s
files. Another important category with a similar behaviour
in both datasets is LOG, which includes a broad range of
actions such as those related to wallpaper or policies man-
aging.

5.3. Dynamic features analysis

The dynamic traces obtained with DroidBox have also
been studied. In general terms, both collections show
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Malware Benignware
Intent % samples Intent % samples

android.intent.action.MAIN 99.86% android.intent.action.MAIN 99.81%
android.intent.action.BOOT COMPLETED 38.05% android.intent.action.VIEW 21.64%
android.net.conn.CONNECTIVITY CHANGE 26.01% com.google.android.c2dm.intent.RECEIVE 21.45%
android.intent.action.USER PRESENT 25.80% android.intent.action.BOOT COMPLETED 19.46%
android.intent.action.PACKAGE ADDED 24.00% com.google.android.c2dm.intent.REGISTRATION 14.74%
android.intent.action.VIEW 16.96% android.net.conn.CONNECTIVITY CHANGE 11.65%
android.provider.Telephony.SMS RECEIVED 15.42% com.android.vending.INSTALL REFERRER 10.67%
android.intent.action.PACKAGE REMOVED 15.15% android.intent.action.USER PRESENT 6.73%
com.google.android.c2dm.intent.RECEIVE 11.47% android.intent.action.PACKAGE REMOVED 5.95%
com.google.android.c2dm.intent.REGISTRATION 8.78% android.appwidget.action.APPWIDGET UPDATE 5.68%

Table 9: Ten most frequent Android intents in the apps from both malware and benignware sets.24/7/2018 SankeyID2ee34348e8e05

http://150.244.58.188:8787/custom/googleVis/SankeyID2ee34348e8e05.html 1/1

Data: df_malware_melt • Chart ID: SankeyID2ee34348e8e05 • googleVis-0.6.2 
R version 3.5.0 (2018-04-23) • Google Terms of Use • Documentation and Data Policy

SMS_MMS

UNIQUE_IDENTIFIER.

FILE

NETWORK

DATABASE_INFORMATION

LOG

NOT_EXISTING

IPC

NO_CATEGORY

BLUETOOTH_INFORMATION.

NETWORK.

DATABASE_INFORMATION.

VIDEO

CALENDAR_INFORMATION.

LOCATION_INFORMATION.

BUNDLE.

AUDIO.

NOT_EXISTING.

IPC.

ACCOUNT_INFORMATION.

NO_CATEGORY.

NETWORK_INFORMATION.

(a)

24/7/2018 SankeyID2ee34eb50044

http://150.244.58.188:8787/custom/googleVis/SankeyID2ee34eb50044.html 1/1

Data: df_benignware_melt • Chart ID: SankeyID2ee34eb50044 • googleVis-0.6.2 
R version 3.5.0 (2018-04-23) • Google Terms of Use • Documentation and Data Policy

SMS_MMS UNIQUE_IDENTIFIER.

FILE

NETWORK

DATABASE_INFORMATION

LOG

NOT_EXISTING

IPC

NO_CATEGORY

BLUETOOTH_INFORMATION.

NETWORK.

DATABASE_INFORMATION.

VIDEO

CALENDAR_INFORMATION.

WIDGET.
LOCATION_INFORMATION.

BUNDLE.

AUDIO.

NOT_EXISTING.

IPC.

ACCOUNT_INFORMATION.

NO_CATEGORY.

NETWORK_INFORMATION.

(b)

Figure 3: Number of information flows between categories of sinks and sources discovered by FlowDroid among all samples in the (a) malware
set and in the (b) benignware set.
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datasets.
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Dynamic feature Malware Benignware
accessedfiles 315.74 341.44
cryptousage 12.56 5.70
dataleaks 3.59 1.67
dexclass 2.78 2.33
fdaccess 315.72 341.42
opennet 5.56 4.25
phonecalls 0.01 0.02
recvnet 19.05 20.48
sendnet 4.85 2.65
sendsms 0.21 0.00
servicestart 7.60 7.84

Table 10: Average number of dynamic operations per execution in
the malware and benignware set.

a very similar behaviour when they are executed (see
Table 10). The most relevant di↵erentiating factor lies
in the number of cryptographic operations performed by
the malware set. On average, malicious samples invoke
12.56 operations, while in the benignware set this figure
falls by half. A greater use of SMS services can also be
reflected in these dynamic traces, which are more present
in the malware set.

Fig. 4 shows the cumulative sum of the number of op-
erations through the 300 seconds execution in the emu-
lator for each di↵erent category of operations. In general,
malware deploys a slightly more active behaviour, a fact
which is more remarkable in the case of the cryptousage

and dataleaks categories. In the rest of categories, both
sets perform very close. For instance, servicestart and
fdaccess show a completely parallel behaviour. Finally,
it should be noted that both kinds of samples mainly load
code from dex classes in the first 30 seconds.

6. Testing the data using ensemble-based classific-
ation algorithms

Many malware detection and classification tools are
based on machine learning algorithms, performing a learn-
ing process from a training set of samples represented by
a set of features. The purpose of the process described
in this section is to demonstrate the feasibility and ease of
use of the dataset when using it to build classifiers through
machine learning methods (in particular, ensemble meth-
ods), rather than building a malware classifier achieving a
high accuracy. In other words, show that the dataset is us-
able out-of-the-box, and although some promising experi-
mental results are currently obtained, there is still a large
room for improvement. These methods were used separ-
ately over the set of static and dynamic features extracted,
and finally a fusion based approach where both types of
features are combined is proposed. The same threshold
related to the minimum number of positives applied in the
previous section, defined by ✏ = 1, is again used to train
and test these algorithms.

6.1. Classification results based on static features

Statically extracted features can be used to build rep-
resentative sample vectors where each position represents
the number of occurrences that a certain characteristic is
present in the sample (i.e. the number of times that a spe-
cific API call is invoked). Given a set of samples X of size
n:

X = {x1, x2, . . . , xn} (1)

Each sample xi is represented by a vector of m static
characteristics:

xi = {sc1
i , sc

2
i , . . . , sc

m
i } (2)

At the same time, each sample xi is categorised as be-
nign or malicious according to its label li, li 2 {0, 1} Our
objective is to train the classifier than establishes this re-
lation:

Cls(xi) = (p(li), li) (3)

Six well-known state-of-the-art ensemble methods for
classification were trained with di↵erent combinations of
features. These algorithms, executed with the Scikit-learn
library for Python [67], are: AdaBoost, Bagging (with
Random Forest estimators), ExtraTrees, Gradient Boost-
ing, Random Forest (all of them using a parameter of 100
internal estimators) and a Voting classifier combining a
Random Forest, KNN and a simple decision tree classifier
as estimators with the same weights. The CSV file used
in these experiments (containing all the labelled features
vectors) is also publicly available.

For all the experiments, based on di↵erent features
combinations, the average accuracy is shown. The results
for each experiment is calculated based on a cross valida-
tion process of 10 folds. Table 11 depicts the classification
results for individuals features as the only input for the
classification and for di↵erent combinations of features as
well.

By analysing the results achieved by each static fea-
ture, API calls allow to obtain the maximum accuracy
with a random forest classifier, reaching 89.3%. If grou-
ping these API calls by the API package in which they
are defined, these features become useless to distinguish
between malware and benignware. In the second place,
appears the combinations that include the use of API calls,
achieving around 89.2% accuracy, which can be considered
as a high and also similar value. Other features such as
FlowDroid, a feature which apparently could reveal im-
portant traces related to malicious behaviours (such as
sending the device IMEI to an attacker) or system com-
mands are not able to make a division of the feature space
with the same level of precision. In general, random forest
clearly achieves the best results in most of the experiments
in terms of accuracy and precision. Nevertheless, a Bag-
ging classifier obtains similar results for certain combina-
tions of features.
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Features set Metric AdaBoost Bagging ExtraTrees Gradient Boosting Random Forest Voting

Activities
Acc 0.506 ± 0.002 0.506 ± 0.002 0.506 ± 0.002 0.506 ± 0.002 0.506 ± 0.002 0.506 ± 0.002
Prec 0.602 ± 0.036 0.602 ± 0.036 0.602 ± 0.036 0.602 ± 0.036 0.602 ± 0.036 0.602 ± 0.036

API calls
Acc 0.859 ± 0.008 0.891 ± 0.007 0.89 ± 0.006 0.871 ± 0.009 0.893 ± 0.006 0.886 ± 0.006
Prec 0.859 ± 0.008 0.892 ± 0.007 0.89 ± 0.006 0.871 ± 0.009 0.893 ± 0.006 0.887 ± 0.006

API Packages
Acc 0.5 ± 0 0.5 ± 0 0.5 ± 0 0.5 ± 0 0.5 ± 0 0.5 ± 0
Prec 0.25 ± 0 0.25 ± 0 0.25 ± 0 0.25 ± 0 0.25 ± 0 0.25 ± 0

FlowDroid
Acc 0.677 ± 0.009 0.706 ± 0.008 0.708 ± 0.008 0.681 ± 0.01 0.708 ± 0.008 0.704 ± 0.009
Prec 0.72 ± 0.013 0.744 ± 0.009 0.748 ± 0.009 0.723 ± 0.013 0.746 ± 0.009 0.744 ± 0.01

FlowDroid, API calls
Acc 0.86 ± 0.01 0.891 ± 0.007 0.889 ± 0.006 0.872 ± 0.007 0.892 ± 0.007 0.886 ± 0.006
Prec 0.86 ± 0.01 0.892 ± 0.007 0.89 ± 0.006 0.872 ± 0.007 0.892 ± 0.007 0.886 ± 0.006

FlowDroid, API Packages
Acc 0.677 ± 0.009 0.708 ± 0.008 0.709 ± 0.008 0.681 ± 0.01 0.707 ± 0.01 0.704 ± 0.008
Prec 0.72 ± 0.013 0.745 ± 0.009 0.749 ± 0.009 0.722 ± 0.013 0.745 ± 0.011 0.745 ± 0.01

Opcodes
Acc 0.833 ± 0.011 0.873 ± 0.01 0.869 ± 0.007 0.846 ± 0.009 0.874 ± 0.012 0.868 ± 0.009
Prec 0.833 ± 0.011 0.873 ± 0.009 0.869 ± 0.007 0.846 ± 0.009 0.874 ± 0.011 0.868 ± 0.009

Permissions
Acc 0.781 ± 0.01 0.824 ± 0.006 0.824 ± 0.006 0.792 ± 0.008 0.825 ± 0.007 0.821 ± 0.008
Prec 0.781 ± 0.01 0.826 ± 0.006 0.826 ± 0.006 0.792 ± 0.008 0.827 ± 0.006 0.823 ± 0.008

Receivers
Acc 0.824 ± 0.005 0.876 ± 0.01 0.877 ± 0.009 0.84 ± 0.005 0.877 ± 0.01 0.875 ± 0.009
Prec 0.825 ± 0.006 0.876 ± 0.01 0.877 ± 0.009 0.84 ± 0.005 0.877 ± 0.01 0.875 ± 0.009

Receivers, API calls
Acc 0.858 ± 0.01 0.889 ± 0.006 0.89 ± 0.008 0.875 ± 0.007 0.892 ± 0.008 0.885 ± 0.007
Prec 0.858 ± 0.01 0.889 ± 0.006 0.891 ± 0.008 0.875 ± 0.007 0.892 ± 0.008 0.885 ± 0.007

Receivers, API calls,
Opcodes, Permissions

Acc 0.862 ± 0.009 0.89 ± 0.008 0.891 ± 0.008 0.88 ± 0.008 0.891 ± 0.007 0.884 ± 0.008
Prec 0.862 ± 0.009 0.89 ± 0.008 0.891 ± 0.008 0.88 ± 0.008 0.892 ± 0.007 0.884 ± 0.008

Receivers, API calls, Opcodes,
Permissions, FlowDroid

Acc 0.865 ± 0.008 0.889 ± 0.007 0.892 ± 0.009 0.879 ± 0.008 0.891 ± 0.008 0.883 ± 0.007
Prec 0.865 ± 0.008 0.89 ± 0.007 0.893 ± 0.009 0.88 ± 0.008 0.892 ± 0.008 0.883 ± 0.007

Receivers, Services,
Activities

Acc 0.825 ± 0.005 0.875 ± 0.008 0.877 ± 0.007 0.843 ± 0.008 0.876 ± 0.008 0.876 ± 0.008
Prec 0.826 ± 0.005 0.875 ± 0.008 0.878 ± 0.007 0.843 ± 0.008 0.876 ± 0.008 0.876 ± 0.008

Receivers, Services,
Activities, API calls

Acc 0.858 ± 0.01 0.889 ± 0.007 0.888 ± 0.006 0.874 ± 0.008 0.889 ± 0.007 0.884 ± 0.007
Prec 0.858 ± 0.01 0.889 ± 0.007 0.889 ± 0.006 0.874 ± 0.008 0.89 ± 0.007 0.884 ± 0.007

Services
Acc 0.515 ± 0.003 0.516 ± 0.002 0.516 ± 0.002 0.515 ± 0.003 0.516 ± 0.002 0.516 ± 0.003
Prec 0.749 ± 0.013 0.741 ± 0.015 0.743 ± 0.015 0.75 ± 0.012 0.741 ± 0.015 0.742 ± 0.015

System commands
Acc 0.761 ± 0.009 0.827 ± 0.007 0.827 ± 0.007 0.776 ± 0.007 0.826 ± 0.006 0.82 ± 0.008
Prec 0.763 ± 0.009 0.828 ± 0.007 0.828 ± 0.007 0.777 ± 0.007 0.827 ± 0.006 0.821 ± 0.008

Table 11: Performance of several ensemble learning algorithms from the state of the art according to the static feature set used as input. The
best overall results are highlighted in bold type.

Features set Metric AdaBoost Bagging ExtraTrees Gradient Boosting Random Forest Voting
Transitions Acc 0.731 ± 0.01 0.776 ± 0.01 0.775 ± 0.012 0.741 ± 0.007 0.775 ± 0.009 0.763 ± 0.009
Transitions Prec 0.731 ± 0.01 0.777 ± 0.01 0.776 ± 0.012 0.741 ± 0.007 0.775 ± 0.009 0.764 ± 0.009
Frequencies Acc 0.739 ± 0.009 0.78 ± 0.012 0.774 ± 0.01 0.743 ± 0.009 0.778 ± 0.011 0.768 ± 0.008
Frequencies Prec 0.74 ± 0.009 0.78 ± 0.012 0.774 ± 0.01 0.743 ± 0.008 0.778 ± 0.011 0.769 ± 0.008
Combination Acc 0.742 ± 0.009 0.786 ± 0.007 0.779 ± 0.007 0.751 ± 0.006 0.785 ± 0.006 0.771 ± 0.011
Combination Prec 0.743 ± 0.009 0.786 ± 0.008 0.78 ± 0.007 0.751 ± 0.006 0.785 ± 0.006 0.772 ± 0.011

Table 12: Performance of several ensemble learning algorithms from the state of the art according to the dynamic feature set used as input.
The best overall performance is highlighted in bold type.

6.2. Classification results based on dynamic features

Once the static features have been analysed, it is tested
the use of the dynamic information, extracted after the
execution of each sample in an emulator monitored by
the DroidBox tool. Each analysis delivers a temporal
sequence of actions performed throughout the execution,
where each action is linked to a category (i.e. file access),
a timestamp and a series of parameters (i.e. the path of
the file accessed). In order to build a feature vector which
can be used to represent the sample behaviour, a Markov
chains based representation [68] was employed, as previ-
ously were used by Mart́ın et al. [69] to model DroiBox
dynamic traces. This model allows to represent the trans-
itions probabilities aij between a series of n states:

S = {S1, S2, . . . , Sn} (4)

The full dynamic trace of a certain sample xi is firstly
transformed into a n ⇤ n matrix of n unique states, which
represent the transition probability between each pair of
states. Each state is represented by the category of the
action and a series of arguments. An example of state
is: fdaccess\operation=read|path=/proc/tty, which
indicates a file operation of type read over a file located
at /proc/tty. All paths were truncated to limit their
depth to two levels. In addition, only those transitions
with ai > 0 were considered in order to reduce the matrix
size. A final set of 1,127 states were obtained.

In order to place this information into a feature vector,
the matrix of each sample was flattened, thus generating
a representative vector of k transitions probabilities:

xi = {tp1
i , tp

2
i , . . . , tp

k
i } (5)
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At the same time, the frequency of each state were also
considered, as it can provide supplementary data able to
improve the representation of the sample behaviour. In
this case, there is a new representative vector including
the frequency of o states for each sample:

xi = {sf1
i , sf2

i , . . . , sfo
i } (6)

Both representations can be combined in order to build
a new vector containing transition probabilities and fre-
quencies of states:

xi = {tp1
i , tp

2
i , . . . , tp

k
i , sf1

i , sf2
i , . . . , sfm

i } (7)

These representations were implemented an tested with
the same pool of algorithms tested previously with the
static features vectors. The results obtained are shown
in Table 12, and include the classification accuracy and
precision using both representations independently, and
a third one combining transitions and states frequencies.
Again, a 10-fold cross validation is employed.

Opposite of what one would expect, the use of frequen-
cies states allows to reach higher accuracy values than
using the transition probabilities among states, meaning
that the distribution of states provides a better descrip-
tion of the samples behaviour. However, a combination of
both features allows to achieve the best results, by using a
Bagging model composed of Random Forest classifiers or
a single Random Forest. Both allow to obtain 78.6% in
terms of accuracy and precision.

In comparison to the results achieved through the use
of static features, dynamically extracted characteristics ex-
perience an important fall of more than 10%. There are
several reasons which can be attributed to this fact. On
the one side, reports delivered by the dynamic analysis tool
used, DroidBox, could be not enough detailed in order to
make a division of the space able to di↵erentiate between
malicious and benign applications. Besides, DroidBox has
not been updated in the last years and could be not able to
monitor the most recent malware applications behaviours.
However, there are other plausible explanations. For in-
stance, malware samples have proven to be able to detect
when they run in a sandbox, thus not deploying the mali-
cious payload [70]. For the classifier perspective, there is
space for future users of the OmniDroid dataset for apply-
ing techniques aimed at building stronger estimators. For
instance, the use of diversity-inducing methods can help
in this task [71].

6.3. Static-dynamic fusion method for detecting Android
malware

The two previous sections describe how the state-of-
the-art ensemble methods works when our set of static
and dynamic features are given as a feature vectors for
classification. As it has been shown, the use of a classifier
with an input based on static features allows to improve
the accuracy when it is compared against a dynamic based

approach. Despite of this, the growing complexity of mal-
ware makes necessary to apply any available techniques,
to discern the nature of a given suspicious sample. To this
end, a new approach was developed based on fusion of the
behaviour information extracted from a hybrid analysis
where the static and dynamic features are combined.

This fusion approach is based on joining the classi-
fication models that work best in each type of feature
(static and dynamic) to build a voting classifier where each
model contributes to the final categorisation. It features
three di↵erent representations to generate the classifier.
While it adopts API calls as static features (they obtain
the best results in the static comparison), it also uses the
three representations analysed in the dynamic analysis ap-
proach. Thus, there is a mixture of API calls features
which are combined with transition probabilities (equa-
tion 8), frequencies states (equation 9) and combination
of both (equation 10) to build three vectors:

xtpi = {sc1
i , sc

2
i , . . . , sc

m
i , tp1

i , tp
2
i , . . . , tp

k
i } (8)

xsfi = {sc1
i , sc

2
i , . . . , sc

m
i , sf1

i , sf2
i , . . . , sfo

i } (9)

xdci = {sc1
i , sc

2
i , . . . , sc

m
i , tp1

i , tp
2
i ,

. . . , tpk
i , sf1

i , sf2
i , . . . , sfo

i }
(10)

The design of the voting classifier implemented is rep-
resented in Fig. 5. It includes a Random Forest classifier
which is in charge of classifying the static features section
of the input vector, while a Bagging classifier (it slightly
exceed the results of Random Forest) receives dynamic fea-
tures. Each classifier contributes to the classification of
a given feature according to two weight parameters WRF

and WBG. The final categorisation is calculated as follows:

Cls(xi) =
⇥

WRF Si+WBGDi

2

⇤
= li, li 2 {0, 1} (11)

A grid search was run to decide the best value for WRF

and WBG within the range [0.1, 0.9]. The results are shown
in Table 13. As it could be expected, and according to the
results previously seen, when analysing the use dynamic
features as the only input, in these experiments the best
results are also achieved by combining transition probabil-
ities and frequencies of states. The best result is achieved
using WRF = 0.7 and WBG = 0.3, after a 10-fold cross
validation process. This fusion approach achieves 89.7%
accuracy, which slightly improves the results when both
types of features are used independently.

7. Conclusions

Android conforms a platform that has been selected
as the target by many black hats to perform malicious
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Figure 5: Static-dynamic fusion approach based on a voting classifier which combines static and dynamic classification models.

WRF WBG Metric Transitions Frequencies Combination

0.1 0.9
Acc 0.812 ± 0.01 0.81 ± 0.01 0.815 ± 0.011
Prec 0.813 ± 0.01 0.81 ± 0.01 0.816 ± 0.011

0.2 0.8
Acc 0.834 ± 0.01 0.83 ± 0.007 0.837 ± 0.009
Prec 0.835 ± 0.01 0.83 ± 0.007 0.838 ± 0.009

0.3 0.7
Acc 0.86 ± 0.008 0.854 ± 0.008 0.861 ± 0.007
Prec 0.86 ± 0.008 0.855 ± 0.008 0.862 ± 0.007

0.4 0.6
Acc 0.879 ± 0.006 0.873 ± 0.007 0.88 ± 0.007
Prec 0.879 ± 0.006 0.873 ± 0.007 0.88 ± 0.007

0.5 0.5
Acc 0.891 ± 0.007 0.887 ± 0.008 0.892 ± 0.007
Prec 0.891 ± 0.006 0.887 ± 0.007 0.892 ± 0.007

0.6 0.4
Acc 0.896 ± 0.01 0.895 ± 0.008 0.894 ± 0.01
Prec 0.896 ± 0.01 0.896 ± 0.008 0.894 ± 0.01

0.7 0.3
Acc 0.895 ± 0.008 0.896 ± 0.008 0.897 ± 0.008
Prec 0.895 ± 0.008 0.896 ± 0.008 0.897 ± 0.007

0.8 0.2
Acc 0.895 ± 0.008 0.896 ± 0.008 0.895 ± 0.007
Prec 0.895 ± 0.008 0.896 ± 0.008 0.896 ± 0.007

0.9 0.1
Acc 0.893 ± 0.008 0.893 ± 0.008 0.894 ± 0.006
Prec 0.893 ± 0.008 0.894 ± 0.008 0.894 ± 0.006

Table 13: Results achieved with the static-dynamic fusion approach.
W1 and W2 represent the weight given to the Random Forest clas-
sifier and to the Bagging classifier in the voting-based approach,
responsible of receiving as input the static and dynamic features re-
spectively.

attacks, or to develop applications with non-legal pur-
poses. Many of the e↵orts made towards counteracting
these attacks are based on the training process of an an-
timalware tool. This process, specially when is based on
a machine learning algorithm, requires from a large data-
set of samples to be adequately trained. Previously to use
this kind of algorithms, it is necessary to extract and ana-
lyse an adequate set of features that could be used during
the learning process. OmniDroid primarily aims to set
a benchmark dataset useful for those who are developing
antimalware tools. Instead of providing a set of execut-
able files, this dataset provides already analysed samples
using di↵erent state-of-the-art malware analysis tools in
order to facilitate the process. The characteristics of the
OmniDroid dataset make it also suitable to be used as a
general purpose benchmark dataset. For instance, it could
be employed to perform algorithms comparison, to test
feature selection techniques, or to assess new clustering or
classification algorithms among many others possibilities.

Throughout this paper, we have evaluated this data-
set, performed di↵erent studies and provided results after
analysing groups of features individually, in order to de-
liver interested researchers with a preliminary evaluation

of the data, as well as demonstrating the high potential the
dataset has and its ease of use. Although the experimental
results show a good performance for most of the state-of-
the art algorithms analysed, there is still a clear room for
improvement over OmniDroid dataset. This could help to
a researcher to train, test and evaluate the performance of
their algorithms, or simply to compare their malware de-
tection techniques using OmniDroid as a new, clean and
correctly pre-processed, data benchmark.

Finally, we are considering to expand the architecture
of AndroPyTool [10], in order to allow extracting more
features for each sample by integrating other feature ex-
traction and reverse engineering tools. At the same time,
we will work in the near future with the goal of increasing
the number of samples contained in the OmniDroid data-
set, updating it to introduce recent samples found in the
wild. The OmniDroid dataset, and their future updates,
will be available for the research community at the AIDA
Datasets Repository8.
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A B S T R A C T

Malware writers are usually focused on those platforms which are most used among common users, with
the aim of attacking as many devices as possible. Due to this reason, Android has been heavily attacked for
years. Efforts dedicated to combat Android malware are mainly concentrated on detection, in order to prevent
malicious software to be installed in a target device. However, it is equally important to put effort into an
automatic classification of the type, or family, of a malware sample, in order to establish which actions are
necessary to mitigate the damage caused. In this paper, we present CANDYMAN, a tool that classifies Android
malware families by combining dynamic analysis and Markov chains. A dynamic analysis process allows to
extract representative information of a malware sample, in form of a sequence of states, while a Markov chain
allows to model the transition probabilities between the states of the sequence, which will be used as features
in the classification process. The space of features built is used to train classical Machine Learning, including
methods for imbalanced learning, and Deep Learning algorithms, over a dataset of malware samples from
different families, in order to evaluate the proposed method. Using a collection of 5,560 malware samples grouped
into 179 different families (extracted from the Drebin dataset), and once made a selection based on a minimum
number of relevant and valid samples, a final set of 4,442 samples grouped into 24 different malware families
was used. The experimental results indicate a precision performance of 81.8% over this dataset.

1. Introduction

It is well known that an important amount of effort is dedicated
to combat the huge number of malicious software samples which
are detected every day. This causes that new malware samples are
incrementally improved with the aim of bypassing the last counter-
measures implemented by Anti-Virus engines, anti-malware detectors,
and application stores. This situation represents a vicious circle: a step
forward by one side forces the other side to go further. Within the
scope of malware that is designed to attack mobile platforms, Android
represents a target especially elected for implementing new malware,
mainly due to some of its attributes, such as the large number of devices
running this operating system or the high degree of freedom that offers
to the developer when creating new software.

Different techniques have been developed to extract representative
behavioural patterns in Android applications, which are later used
to build models able to discern between malware and benignware, or
between different families of malware. These techniques are grouped
into two broad categories: static analysis and dynamic analysis. While
the formers are focused on those features reported by code inspection,

* Corresponding author.
E-mail address: david.camacho@uam.es (D. Camacho).

the second ones opt for monitoring the actions performed by the appli-
cation while it is being executed. Both types of analysis feature some
advantages and disadvantages. While static analysis is fast, it is also
very vulnerable to code transformations which hinder the extraction
of details revealing a malicious payload within the application. On the
other hand, dynamic analysis offers a thorough mechanism for analysing
applications, but it is much more computationally expensive (Faruki et
al., 2015).

Both analysis approaches are often combined with Machine Learning
methods to build classification and detection tools that receive as
input a feature vector representing a target application and deliver a
label, classifying it as benignware or malware. Typically, these Machine
Learning methods include Decision Trees (Perdisci et al., 2008), Support
Vector Machines (Gorla et al., 2014), Regression based methods (Ham
et al., 2013), K-Nearest Neighbours (Chen et al., 2016), or Artificial
Neural Networks (Dahl et al., 2013) among others (Shabtai et al., 2009).
When dealing with multi-class datasets and when the number of samples
representative of each class is not proportional, imbalanced learning
algorithms are the most appropriate procedure to take. Under-sampling,

https://doi.org/10.1016/j.engappai.2018.06.006
Received 31 July 2017; Received in revised form 20 June 2018; Accepted 24 June 2018
Available online 29 June 2018
0952-1976/© 2018 Elsevier Ltd. All rights reserved.



A. Martín et al. Engineering Applications of Artificial Intelligence 74 (2018) 121–133

over-sampling, hybrid sampling or ensemble sampling are techniques
employed by these algorithms.

However, in the last decade, Deep Learning techniques are playing
an increasingly important role, due to the possibilities offered by the
newest high performance computation infrastructures. Deep Learning
entails a new paradigm for solving complex problems. Its essence dates
back to the well known Artificial Neural Networks (ANN), which were
originated after proposing some concepts in the 1940s based on some
basic ideas of the biological brain operation (Goodfellow et al., 2016).
In the last decade, methods based on Deep Learning are taking a
huge repercussion due to their outstanding ability for dealing with
problems that have traditionally been performed by humans, such as
those related to recognition tasks, image analysis or pattern extraction.
The number and complexity reached by the newest malware forces to
explore new advanced techniques able of analysing and tackling the
different problems caused, since the huge amount of malware make
impossible to human engineers to perform traditional software analysis
for every sample.

When the dynamic behaviour of any malicious sample is analysed
as an ordered sequence of states, it is possible to model the malware
behaviour using techniques from the field of sequential modelling. In
this context, Markov Models (Fink, 2014) are widely used for creating
both descriptive and predictive models of sequence of states, assuming
that the probability of being in a specific state only depends on the
previous states. Although there exist a large variety of Markov Models
researched so far (as Hidden Markov Models (Visser, 2011), or Double
Chain Markov Models (Berchtold, 2002) among others), this work will
be focused on the traditional and well-known Markov chains. By using
these models, it is possible to represent each malware sample by taking
into account the transitions between consecutive states.

In this paper we present a tool named CANDYMAN, which combines
dynamic analysis with a Markov chain-based representation, in order
to model the behaviour of individual applications from different mal-
ware families. Once all the applications are represented in the same
feature space using the proposed model, based on the combination of
Markov chains and several malware analysis tools as DroidBox,1 and
monkeyrunner2 which allow to generate a state sequence representation
of any app considered, it is possible to apply different Machine Learning
classification algorithms, including Deep Learning techniques, to test
their ability at classifying accurately malware into their respective
families.

The main contributions of this paper can be summarised as follows:

∙ From a collection of 5560 malware samples grouped in 179
different families extracted from the Drebin dataset (Arp et al.,
2014), and once made a preprocessing selection of relevant
samples, a final set of 4442 samples grouped into 24 different
malware families has been analysed. All these samples have been
analysed with the DroidBox tool, which performs a dynamic
analysis process where all actions executed are captured. After
each execution, a set of timestamped events of different types is
obtained.

∙ Since the number of possible events extracted by DroidBox is too
large, we gather similar events into common states. Thus, we can
express the result of the dynamic analysis as an ordered sequence
of states.

∙ A new model to represent the sequence of states for every malware
sample, based on Markov Chains that contain the transition
probabilities between consecutive states, is proposed. The infor-
mation of the Markov Chains will be later used as part of the
feature space in the classification process.

1 https://github.com/pjlantz/droidbox
2 https://developer.android.com/studio/test/monkeyrunner/index.html

∙ A study of Android malware families is performed based on the
space defined by the transition probabilities given by the Markov
chains. This allows both, to establish conclusions based on the
importance of the different kinds of actions, and to evaluate the
proximity between families in the feature space.

∙ Finally, different experiments have been carried out in order
to test the performance of several classical Machine Learning
algorithms (Random Forest, Bagging, K-Nearest Neighbours, De-
cision Tree and Support Vector Machines), in combination with
different imbalanced learning algorithms (SMOTE, Random Over
Sampler, Random Under Sampler or ADASYN among others) and
Deep Learning techniques (using the popular Keras framework),
to classify samples into the according malware family.

The rest of the paper has been structured as follows: after a brief
description of the backgrounds and previous research related to this
work shown in Section 2, we describe the proposed methodology in
Section 3, it provides a complete description for the whole process,
from the data extraction and preprocessing, to the modelling and clas-
sification task. The experimental environment and setup for applying
the proposed methodology is described in Section 4, and then Section 5
shows the results obtained in the experimentation that have been carried
out. Finally, Section 6 summarises the conclusions extracted from this
work, and propose some future research lines of work.

2. Background

This paper exploits the benefits of combining dynamic malware anal-
ysis together with Markov chains-based behavioural representation for
classification purposes. In this section, previous researches conducted
on these topics are summarised. Previously, a brief section is in charge
of introducing the context of Android malware families, defining the
concepts of Markov models and Markov chains and introducing the
concept of Deep Learning and its architectures.

2.1. Android malware families

Android malware samples are usually classified into families. Samples
belonging to the same family show similar behaviour, exploit the same
vulnerabilities and have the same objectives. It is to note that classifying
malware in families is different from categorising them according to
their type (e.g., a dropper, or a trojan) (Massarelli et al., 2017). Below
is briefly described the behaviour of some of the most common malware
families, all of them used in this work:

∙ FakeInstaller : FakeInstaller is a widespread mobile malware fam-
ily. It has spoofed the Olympic Games Results App, Skype, Flash
Player, Opera and many other top applications. It sends SMS
messages to premium rate numbers, without the user’s consent,
passing itself off as the installer for a legitimate application.
There is a large number of variants for this malware, and it is
distributed on hundreds of websites and fake markets.

∙ Opfake: In addition to sending out SMS messages to premium-
rate numbers, this malware also monitors SMS messages and is
capable of deleting/moving messages based on the originating
phone numbers and message content.

∙ Plankton: Plankton variants silently forward information about
the device to a remote location. In addition, they download an
additional file onto the device.

∙ GinMaster : It steals confidential information from the device and
sends it to a remote website.

∙ Iconosys: It may leak the information that it requested from users
during the registration to other unintended recipients.

∙ Kmin: These malware variants display a message as a decoy,
while silently performing multiple malicious routines, including
sending SMS messages to a premium-rate number and download-
ing and installing an additional application onto the device.
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Fig. 1. Example of a 3-state Markov chain. The values of 𝑎𝑖𝑗 represent the state
transition probabilities, and the values of 𝛱𝑖 the initial state probabilities.

∙ FakeRun: It is a malware that deceives users into raising its rating
on Google Play. It pretends to be an ad-module stopper but in
fact, it includes several ad-modules.

2.2. Markov models & Markov chains

Generally speaking, Markov models are stochastic models mainly
used for the modelling and prediction of sequences of symbols, and
time series in general (Fink, 2014). All of them follow the so-called
Markov property, i.e, the assumption that future states in a sequence
depend only on the current state, not on the events that occurred
before it. This type of models have been successfully applied in different
topics, such as activity recognition (Duong et al., 2005), modelling of
human behavioural patterns (Rodríguez-Fernández et al., 2016a, b) and
failure prediction (Salfner and Malek, 2007). There are a wide variety
of Markov models that have been researched and applied over decades.
We can classify them based on:

1. The representation of time in the sequences, i.e, whether the time
is divided into discrete time steps (discrete-time models) or it
is considered as a continuous variable (continuous-time models)
(Anderson, 2012).

2. The state space of the process we are modelling, whether it is a
finite or countable state space (which is most common), or it is a
continuous or general state space (Karatzas and Shreve, 2012).

3. Whether every sequential state is fully observable (an observa-
tion is a state) or it is partially observable, i.e, the observations
produced in a state are related to it, but they are insufficient
to fully determine it, as it happens in Hidden Markov Models
(Visser, 2011).

4. Whether the system or process modelled is autonomous, i.e, only
dependent on the system state, or it is to be adjusted based on
some controls or actions applied to the system, as it happens in
Markov Decision Processes (Puterman, 2014).

In this work we are focused on one of the simplest Markov Models,
the Discrete-Time Markov Chains (or just Markov Chains) for a finite
state space. They are characterised by a set of 𝑁 discrete states 𝑆 ={
𝑆1, 𝑆2,… , 𝑆𝑁

}
which follow the first-order Markov property, namely

that the probability of moving to the next state depends only on the
present state and not on the previous states. The transition probabilities
between the states of a Markov chain are denoted by a square matrix A,
with entries:

𝑎𝑖𝑗 (𝑡) ∶= 𝑃 (𝑠𝑡+1 = 𝑆𝑗 |𝑠𝑡 = 𝑆𝑖), 1 ≤ 𝑖, 𝑗 ≤ 𝑁 (1)

This is a stochastic process, so we have that ∑𝑁
𝑗=1𝑎𝑖𝑗 = 0 for all 1 ≤ 𝑖 ≤ 𝑁 .

Also, we need to specify the set of initial state probabilities, 𝛱 , defined
as:

𝛱𝑖 ∶= 𝑃 (𝑠1 = 𝑆𝑖), 1 ≤ 𝑖 ≤ 𝑁 (2)

A graphical view of a Markov chain is shown in Fig. 1.

2.3. Imbalanced learning methods

One of the most common problems when performing multiclass
classification is the possible lack of a representative amount of samples
of a certain class, which causes an unbalanced dataset. When dealing
with this kind of datasets, it becomes necessary to use imbalanced
learning algorithms (He and Garcia, 2009), which allow to preprocess
the training set in order to build a new set of vectors which can later
be used to build a classifier that creates a wider separation between
samples belonging to different classes. These algorithms apply different
techniques which can be grouped into different categories. Under-
sampling makes reference to those techniques that remove samples from
classes with high representation in order to create an homogeneous set
of samples representative of all families. Random Under Sampling is one
of the most used techniques of this kind. Over-sampling techniques follow
the opposite direction, they generate new examples by duplicating ex-
isting ones, mostly of the minority classes. An example of this technique
is the Random Over Sampling algorithm. There can also be found hybrid
approaches, where the two techniques mentioned above are combined
(CSeiffert et al., 2009).

2.4. Deep learning

Deep Learning is one the most promising subfields of Artificial
Intelligence. Although its fundamental ideas were posed a few decades
ago, under the term cybernetics in the 1940’s or connectionism in the 80’s
(Goodfellow et al., 2016), the new possibilities offered by the newest
hardware make possible to use these models to solve complex and varied
problems.

The basic and most important model under the concept of Deep
Learning is represented by the feedforward networks, where layers of
neurons are concatenated in order to build a large set of connections,
where the information is only transmitted in one direction and whose
initially random weights evolve throughout the training process in order
to infer knowledge. A possible improvement consists in introducing
Dropout layers (Srivastava et al., 2014), where a set of neurons is
disabled with the goal of avoiding overfitting.

Recurrent neural networks offer an interesting procedure when
dealing with time sequences (Lipton et al., 2015). The difference
lies in introducing cycles, so each neuron keeps certain information.
Long short-term memory networks (Gers et al., 2002) are a variant of
recurrent neural networks, aimed to learn longer time spaces.

Convolutional neural networks (Krizhevsky et al., 2012) have posed
as a powerful mechanism to solve complex problems mainly related
to image recognition. Typically these models consist on a sequence of
layers with different purposes. For instance, the convolutional layer
applies several filters to the features space in order to focus on a reduced
set of information. Pooling layers combine the information received
from the previous layer in order to build a new representation. Fully
connected layers are in charge of inferring knowledge once the input
has been processed by the previous layers.

2.5. Related work

Malware designed for the Android platform presents a real and com-
plex problem. To tackle it, multiple approaches have been developed,
and they are primarily categorised into two different types of analysis:
static and dynamic analysis. Regarding static analysis, various works
have studied different methods and different types of features, such as
API calls (Martín et al., 2016c), Android Intents (Feizollah et al., 2017)
in combination with Android Permissions, showing that both features
allow to build fast and reliable detection systems, information reported
by the Android Manifest file (Sanz et al., 2013), API calls graphs (Zhang
et al., 2014), inter-process communications (Xu et al., 2016) or strings
(Martín et al., 2016b).
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All these features allow to build deep search spaces where malware
can be represented. In order to extract relations from this space and with
the goal of developing accurate detection tools, different techniques
have been employed, many of them based on Machine Learning tech-
niques. Thus, techniques such as Evolutionary Algorithms (Martín et al.,
2016a), Support Vector Machines (Gorla et al., 2014), Regression based
methods (Ham et al., 2013) or K-Nearest Neighbours (Chen et al., 2016)
among others have been used in this domain.

In contrast, this paper focuses on the second ones, which involve
greater complexity, but allow to generate a deeper model representing
the behaviour and intentions of a target application. There are different
tools focused on dynamic analysis, such as Crowdroid (Burguera et al.,
2011), which monitors API calls at the kernel level or DroidScope (Yan
and Yin, 2012), which monitors at hardware, OS and Dalvik Virtual
Machine level.

A dynamic analysis typically involves applying a representation tech-
nique to convert a sequence of events into a model which characterises
the behaviour of the app. Stochastic models have been widely applied
for this purpose, as it is the case of Markov models. For instance,
they have been used as a statistical approach for distinguish between
user initiated applications and malicious ones. Markov models are used
to generate behaviour graphs based on GUI interactions (Xie et al.,
2010). This approach is, however, focused on some old linux-based and
symbian devices.

With a similar goal, these models have been applied to model
malicious and benign Android Intents patterns, captured through the
ADB tool. The stochastic models are used to calculate the proximity
of new samples to a previously generated model representing malware
samples (Chen et al., 2014). Markov models have also been used
in combination with behaviour traces extracted with the DroidBox
framework with the goal of studying how the malicious code of a
malware is triggered (Suarez-Tangil et al., 2014), which sometimes
only occurs when a restrictive set of conditions are fulfilled. In this
case, Markov models allow to minimise the search space, employing
an effective representation to model system events.

Recently, Hidden Markov models (HMMs) and also structural en-
tropy based methods have been applied for modelling the sequence
of instructions that better fit the behaviour of an application using
opcodes as states (Canfora et al., 2016). The HMM allows to compare
new sequences of opcodes to deliver a label (benignware or malware)
as result. The authors show the results for different Android malware
families. In another research, sequences of API calls are extracted using
static analysis, building a behaviour representation by using a Markov
model for each app. These models allow to train Machine Learning
algorithms for building classification tools (Mariconti et al., 2016).

Therefore, the literature has demonstrated how Markov models are
able to generate useful representations of the behaviour of malicious,
or benign, software. Multiple times have been combined with classical
Machine Learning classification algorithms, such as those based on
decision trees, to build accurate classification tools, as it is the case of
MaMaDroid (Mariconti et al., 2016). But newer techniques like Deep
Learning have also been explored, as it is the case of DroidDetector
(Yuan et al., 2016), which employs Deep Learning to build a detection
tool based on a combination of static and dynamic features, involving
permissions, API calls and dynamic traces extracted with DroidBox.
DroidDelver (Hou et al., 2016b) uses Deep Belief Networks over blocks
of API calls to categorise applications. Deep4MalDroid employs Stacked
AutoEncoders (SAEs) to detect malicious patterns based on Linux kernel
calls (Hou et al., 2016a).

In this paper we draw a novel combination of dynamic analysis and
Markov chains to model the sequences of states incurred during the
execution of a malware sample and thus obtaining a deep representation
for each sample. Later, both classical machine and Deep Learning
algorithms are tested over a malware dataset divided by families to test
their ability to discriminate between the different behaviours found.
This combination of dynamic traces modelled as Markov chains and
Deep Learning allows to accurately infer the rules that divide the space
where the different malware families are defined.

3. Modelling Android malware dynamic behaviours

In this section, we describe the whole process for representing a
malicious sample as a Markov chain, and how to apply this technique for
classifying a whole dataset of malicious samples into a set of families. A
general and graphical view of this process can be seen in Fig. 2.

3.1. Extracting dynamic behaviours

Although static malware analysis techniques offer a fast and use-
ful mechanism to extract significant information from a suspicious
application, they do not allow to model the real behaviour of an
application when running in a real environment. Different techniques,
which fall within the scope of the so-called obfuscation techniques, can
be deliberately employed with the aim of shaping the code into a new
different scheme, with different classes and methods names or including
sections of code which are never reached. For example, a series of
useless system calls can be included into a section of the code which is
executed based on a condition, whose evaluation is always false when is
executed. In contrast, a dynamic analysis allows to model the behaviour
of a suspicious application based on the actions actually exhibited in a
controlled execution environment. One of the major advantages of this
kind of analysis lies in that it is possible to capture events which are
triggered after certain conditions are met.

In this work, the DroidBox tool has been used to extract different
information when an Android application is executed in an emulator
provided by the Android studio framework. This tool converts an
Android emulator into a mobile sandbox which monitor a series of
actions and events which occur while executing the application. All
these events are captured and sent to the logcat register, which serves as
a pipe to monitor all the events by an external application, independent
from the emulator.

In order to control the application from outside of the emulator,
DroidBox makes use of the monkeyrunner tool. This tool enables to send
actions such as launching applications or sending keystrokes. At the
same time, this is useful to force the application to trigger certain events
which usually only become visible when the app is really being used
by a human. Thus, monkeyrunner is executed simultaneously with the
application, and a set of random actions over the emulator is launched,
including varied movements simulating the movement of a finger on the
screen in different directions, touching different buttons, both physical
and those displayed by the app, or introducing text in a text field if
present.

The information gathered by this framework includes incoming
and outgoing network data, file read and write operations, started
services and loaded classes, information leaks via the network, file
and SMS services, circumvented permissions, cryptographic operations,
broadcast receivers and sent SMS and phone calls. All this data is
reported in a JSON file which is delivered after an Android application
has been analysed with DroidBox. This file is organised in multiple
fields according to the different categories of events. Each event includes
specific details such as the name of an started service or the timestamp of
the event, measured in milliseconds from the beginning of the execution.

3.2. Modelling dynamic behaviour with Markov chains

Once the dynamic behaviour of a malware sample has been pro-
cessed into a JavaScript Object Notation (JSON) file, the next step
consists in expressing that behaviour in terms of a Markov model, more
specifically, in terms of a Markov chain. A graphical overview of this
process is given in Fig. 3.

The key issue here is that every action made by a malware sample
is recorded into the JSON file along with a timestamp, which allows us
to sort them and express the behaviour of the app in terms of a state
sequence. Then, the state sequence is modelled as a first-order Markov
process, i.e, we make the assumption that the value of a state in the
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Fig. 2. Workflow of CANDYMAN: a dataset of applications received as input is analysed with DroidBox. Then the sequence of events delivered are modelled through
a Markov chains that are finally used as feature vectors of the applications, and serve as input to a set of Machine Learning classification algorithms.

Fig. 3. Transforming a behaviour file into a Markov transition matrix. Every record under a field of the behaviour file (A or B in this figure) is identified with a
timestamp, which can be used to sort the information contained in the records in terms of a state sequence. The transitions between states in this sequence can in turn
be modelled as a transition probability matrix, or Markov transition matrix.

sequence depends only on the value of the previous state. Thus, we
can analyse the transitions between adjacent states and create a state
transition probability matrix, 𝐴, where 𝑎𝑖𝑗 represents the probability of
going from state 𝑖 to state 𝑗.

The set of states visited by a malware sample depends on the events
recorded in the behaviour file. In this work, we define the following
states, gathering the different fields contained in that JSON file into a
common set of states:

∙ fdaccess: This field describes every file access made by the
malware sample. Every event recorded under this field will be
mapped to the state fdaccess [base-path-𝛿], where base-
path-𝛿 is the base path of that file access, trimmed to depth 𝛿.
For instance, a file access to the path /dev/input/event0
will be mapped to the state fdaccess /dev/, providing that
𝛿 = 2.

∙ dataleaks: This field describes leaks of sensitive information
stored on the phone by the user. This involves contacts, cal-
endar entries, emails, call history and SMS data. Additionally,
phone-specific information like IMEI, phone number, installed
applications and GPS coordinates is seen as sensitive data. Every
record under this field will be mapped to the state dataleaks
[type] [tags], where type identifies the context of the data
leak (outgoing network data, write operations to files or outgoing
SMS), and tags contains labels with the type of information that
has been stored in the data leak. As an example, a network data
leak storing the IMEI of the phone would be mapped to the state
dataleaks Network TAINT_IMEI.

∙ dexclass: This field contains information about the external
calls made by the malware sample, in order to execute code
that is not installed as part of the application. Every record
under this field will be mapped to the state dexclass [base-
path-𝛿], where base-path-𝛿 is the path of the .apk executed,
trimmed to depth 𝛿. For instance, an execution of the APK file
/system/app/QuickSearchBox.apk will be mapped to
the state dexclass /system/, in case that 𝛿 = 2.

∙ opennet: This field describes every network connection
opened, giving information about the remote destination, such as
the host address and the port. Every record under this field will
be mapped to the state opennet, i.e, we gather every action of
opening a connection into the same state, regardless the specific
connection details.

∙ sendnet: This field contains one record for every chunk of
outgoing data transferred between the malware sample and a
remote network destination, except the case when the data con-
tains leaks (in that case the traffic is saved under the dataleaks
field). Every record under this field will be mapped to the state
sendnet net write [tags], where tags contains labels
with the type of information sent.

∙ recvnet: This field contains one record for every chunk of
incoming data transferred between a remote network destination
and the malware sample, except the case when the data contains
leaks (in that case the traffic is saved under the dataleaks
field). Every record under this field will be mapped to the state
recvnet net read, i.e, we gather every instance of incoming
network traffic into the same state, regardless the specific traffic
details.

∙ servicestart: This field monitors every API call executed
by the malware sample. Every record under this field will be
mapped to the state servicestart [base-name-𝛿], where
base-name-𝛿 is the name of the API call, up to the namespace
of depth 𝛿. As an example, an API call to com.android.music
.MediaPlaybackService would be gathered into the state
servicestart com.android, in case that 𝛿 = 2.

∙ sendsms: Sending SMS messages is a common issue for malware
due to SMS messages can be performed unnoticed when the
device is not used, and even in the background without any indi-
cation of this action. This fields records information about every
sent SMS, including the destination number and the contents of
the message. Every record under this field will be ampped into
the state sendsms, i.e, we gather every action of sending a SMS
into the same state, regardless the specific SMS details.
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Fig. 4. Malware family classification using Markov chains. This example shows how a set of 𝑁 Markov chains, each of them represented by a 𝑀 × 𝑀 transition
probability matrix and the frequency of each different state, are gathered into a 𝑁 × (𝑀2 + 𝑀) feature matrix. This feature matrix is used to train a multi-class
classifier that predicts the family of a malware sample.

3.3. Using Markov chains to perform malware family classification

Although the creation of a Markov chain for modelling the behaviour
of a malware sample is useful by its own in a descriptive way (i.e, one
can analyse the values of the transition probability matrix to extract
some behavioural patterns), the aim of this work consists in using
those Markov chains in a classification process in which the family of a
malware sample is predicted.

One important issue to consider is the fact that, given 𝑁 different
malware samples, the resulting Markov transition matrices for each of
them will possibly contain different states, and even different number
of states, which makes more difficult to compare the samples from a
classification point of view. To solve this issue, first we compute the
state sequence for each malware sample (Fig. 3, step 1), and then, we
define the common state space as the union of the state space of each
sequence. Thus, the rows and columns of the Markov transition matrices
will be identified by this common state space, and will be the same for
every malware sample in the dataset.

Although Markov chains allow to build a useful representation of
the behaviour of each sample, where the transitions between different
events are modelled, they do not consider the individual importance
of each state. For instance, a particular family can be characterised by
a considerable number of file operations and SMS sent. That is why
the frequency of each state has also been included into the model,
ensuring that every application is not only represented by the transitions
probabilities between each possible pair of states but also by the
frequencies itself of the states.

In Fig. 4 we show graphically the process to format the Markov
chains of 𝑁 malware samples into a format suitable for a classification
process, i.e., into a set of feature vectors. As it can be seen, what we
do is to vectorise, by columns, the contents of the transition probability
matrix of each Markov chain. Let 𝑀 be the size of the common state
space for all our malware samples, each transition probability matrix
will be 𝑀 ×𝑀 . Adding also the frequency of each state, the total size of
each feature vector will be 𝑀2 +𝑀 . Normally, when gathering all the
feature vectors, we will find many zero-features, i.e, many transitions
with zero-probability in every sample. In order to avoid useless features
in the classification process, columns with less than 𝜖 non-zero values
are removed from the feature space. The value of the hyperparameter 𝜖
will be fixed in the experimentation section.

Once each malicious sample has been represented as a feature
vector, it is possible to train different Machine Learning classification
algorithms. We have employed both classical algorithms, imbalanced
learning techniques and Deep Learning architectures. Regarding clas-
sical Machine Learning algorithms, we used a Decision Tree based
algorithm, Random Forests, K-nearest Neighbours, a Bagging classifier

composed of Random Forest classifiers and Support Vector Machines
with linear, rbf and sigmoid kernels. In the case of imbalanced learning
algorithms, we employed a wide set of over-sampling, under-sampling
and hybrid techniques.

Deep Learning has also been explored testing different combina-
tions of fully connected layers with different number of neurons,
Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM)
and Convolutional Neural Networks (CNNs). Since the problem being
addressed presents a multi-class and unbalanced scenario, when using
fully connected layers, these have been disposed in cooperation with
dropout layers, which have proven to be very effective at improving the
performance, specially when dealing with overfitting effects (Srivastava
et al., 2014).

3.4. Applicability to other platforms

Although the methodology presented here has been proposed specif-
ically for Android and the Droidbox tool, the underlying concepts can
be applied straightforwardly to any other OS, such as Windows or Mac
OS, as long as a tool for extracting dynamic behaviour is available. At
the very least, the tool must extract, for any behavioural aspect of an
application, the timestamp and the name of the event extracted. This
information will allow the creation of state sequences, as seen in the
previous sections.

There are currently numerous examples of dynamic analysis tools
that has been used in other situations and platforms, such as Cuckoo
Sandbox (Qiao et al., 2013), ProcMon (Wagner et al., 2015), or MAL-
HEUR (Rieck et al., 2011). All these tools are applicable within the
proposed methodology, as long as a set of states and a set of classes
to predict are defined.

4. Experimental setup

This section describes the experimental setup for validating the
proposed methodology. This setup includes different components, such
as the dataset used, the details related to the dynamic analysis, the
Markov chains construction process, and the parametrisation of the
Machine Learning algorithms trained.

4.1. Dataset

In order to test the capability of the method designed to classify
malware into their respective Android malware families, several ex-
periments have been performed using the Drebin dataset (Arp et al.,
2014), a collection of 5560 malware samples grouped in 179 different
families where initially gathered. Only those families with at least 20
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Table 1
Distribution of the malware families and samples from the Drebin dataset finally used in the experiments.

Family No. samples Family No. samples Family No. samples

Adrd 79 FakeRun 60 Jifake 28
BaseBridge 311 Gappusin 46 Kmin 95
Boxer 25 Geinimi 80 MobileTx 68
DroidDream 77 GinMaster 334 Opfake 597
DroidKungFu 658 Glodream 68 Plankton 478
ExploitLinuxLotoor 67 Hamob 26 SMSreg 38
FakeDoc 132 Iconosys 135 SendPay 58
FakeInstaller 904 Imlog 42 Yzhc 36

samples are kept, resulting in a final dataset of 24 different malware
families. We have selected 20 as the minimum number of samples
per family due to it is used in similar experiments with the Drebin
dataset found in the literature (Dash et al., 2016). Furthermore, we
removed invalid applications by using the Androguard (Desnos et al.,
2011) tool and discarding those that could not be later executed in the
Android emulator. The final dataset employed in the experiments stores
a collection of 4442 samples.

4.2. Dynamic traces extraction

Each app of the dataset was executed in an emulated Android device,
managed with the DroidBox tool, to extract sequences for the different
events occurred in the system. A maximum time of 300 s was fixed to
execute each application in which 10,000 pseudo-random events were
triggered using the Monkey tool aiming to simulate different interactions
with the application. Once the app has been running for the defined
period, the emulator is terminated and a report of all the events is
saved. Each time a new app is executed, the emulator starts from a
clean Android image, thus always starting from the same conditions.
Several applications were removed in this step due to some errors during
their execution. As it was described above, the final dataset of samples
executed contains 4442 samples grouped into 24 different malware
families, according to the distribution shown in Table 1. The emulated
device elected was a Nexus 4 running Android 4.1.1, which is the last
version supported by DroidBox.

4.3. Parameter tuning for building Markov chains

As it was mentioned in Section 3, there are some fields in the
behaviour file of a malicious sample, such as fdaccess or dexclass,
that contain information about a specific path to which the sample is
accessing. In order to avoid too many states in the Markov chains, those
paths are considered only up to a depth level given by the parameter 𝛿. In
this experiment, we set 𝛿 = 1, so, as an example, the records fdaccess
read /proc/001/ and fdaccess read /proc/002/will belong
to the same aggregated state: fdaccess read /.

On the other hand, the hyperparameter 𝜖, which regulates the
minimum number of samples in which a transition must occur in order
to be included in the feature space, was experimentally set to 10.

4.4. Machine learning algorithms parametrisation

The scikit-learn library3 was used to train four classical Machine
Learning algorithms (Random Forest, Decision Trees, Bagging classifier,
KNN and SVM). Random Forest was executed using 100 internal trees,
as it is also the case of the Random Forest used in the Bagging classifier.
Decision Tree based algorithm and K-Nearest Neighbours were executed
with the default parameters, where a total of 10 executions were run
for each algorithm. SVMs were executed with linear, rbf and sigmoid as
kernel functions. The scikit-learn library was executed in combination

3 http://scikit-learn.org/stable/

Table 2
Parameters tested for each Deep Learning model trained.

Deep Learning model Range of parameters

Fully connected + Dropout No. Neurons = [50, 100, 300, 500]
No. Layers = [2,3,4,6]

CNN
No. Filters = [10, 30, 50]
Filter length = [5, 10, 15]
Pooling size = [2, 5, 10]

RNN No. units = [2, 5, 10, 20]
LSTM No. units = [2, 6, 10]

with the imbalance-learn library4 in order to run the imbalanced
learning algorithms.

On the other hand, the Keras framework was used5 to train different
deep neural architectures. Keras is a framework written in Python that
serves as a high level API to define architectures, which can be trained
using TensorFlow (Abadi et al., 2016) or Theano,6 two of the most
popular Deep Learning libraries. All the experiments have been executed
using the TensorFlow library, due to the large amount of documentation
available and its high performance.

When fully connected layers were used, two different types of layers
were used in Keras, the Dense layer, which is a classical fully connected
layer with 𝑛 neurons and the Dropout layer, where a set of neurons are
dropped during the training step, based on a probability 𝑝, with the aim
of reducing the overfitting effect. In the experiments, this probability
was fixed to 𝑝 = 0.2. For building a Convolutional Neural Network,
a combination of Convolution1D (for dealing with one dimensional
features space), MaxPooling1D, Flatten and a final Dense layer were used.
In the case of the Long Short-Term Memory model, a LSTM and a Dense
layers were involved. For a simple Recurrent Neural Network model,
only the SimpleRNN Keras layer was necessary. Table 2 shows the range
of parameters tested for each possible network model.

The remaining parameters were configured as follows: Adam was
used as the optimiser for the neural network; every activation function
was a sigmoid function (except in the Recurrent Neural Network model,
where different functions were tested due to its importance in this
model); a normal function was used for the initialisation process; and
the training instances were grouped in packages of 10 examples (the
batch size parameter of Keras).

4.5. Design of experiments

The different components comprising the feature space described in
Fig. 4 allow to design several experiments, the three types of features
used, transitions probabilities, states frequencies, and aggregated state
frequencies grouped, have been used to define five different kind of
experiments:

∙ Experiment 1: Transition probabilities. This experiment aims
to study whether the Markov chain-based representation of
malware samples is able, by its own, to define a feature space
that effectively discriminates malware families.

4 http://contrib.scikit-learn.org/imbalanced-learn/stable/index.html
5 https://keras.io/
6 http://deeplearning.net/software/theano/
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∙ Experiment 2: State frequencies. This experiment tries to show
whether the distribution of state frequencies is able, by its own,
to discern between families of malware and how it performs in
comparison to the previous experiment.

∙ Experiment 3: Aggregated state frequencies. This experiment
is similar to the previous one, but instead of using the whole
state space of the dataset, we aggregate those states belonging
to the same ‘‘superstate’’. As an example, close states such as
fdaccess read /proc/ and fdaccess read /dev/
will be aggregated to the superstate fdaccess. This experiment
allow us to determine whether taking into account a smaller
number of states provides better classification results.

∙ Experiment 4: Transition probabilities & state frequencies.
Here, a combination of transitions probabilities and states fre-
quencies is evaluated, which allows to study how the different
Machine Learning algorithms behave when a bigger feature space
is employed.

∙ Experiment 5: Transitions probabilities & aggregated state
frequencies. Finally, a combination of transitions probabilities
and aggregated state frequencies is also tested.

4.6. Data-related settings

For both, the classical Machine Learning algorithms and Deep Learn-
ing configurations, 70% of the data was dedicated to training and 30%
for testing. In the case of Deep Learning, 10% of the training dataset
was used to monitor the learning curve, and stop the process when the
accuracy is not improved during 50 iterations.

5. Experimental results

In this section, the space built based on the combination of all the
possible transitions between events and states frequencies for all the
samples is analysed through the application of different Machine Learn-
ing algorithms, with the aim of evaluating the degree of discrimination
and the performance at allocating samples to their malware family.
Furthermore, states frequencies have also been studied grouping the
events into the eight kinds of events described in Section 3.2.

5.1. Families space analysis

Modelling malware samples as sequences of events provides a useful
way of understanding their behaviour at runtime. This allows to analyse
not only how different malware families differ from each other, but
also to extract the common patterns shared across all of them. Before
studying the different malware families represented in the dataset used,
a high-level analysis of the most frequent state transitions has been
made.

Fig. 5 shows the distribution of transitions between ‘‘superstates’’.
As it can be seen, most of the states related to file read operations
(superstate fdaccess) are followed by the same type of operation. The
same applies to write operations, but with less number of occurrences.
There are also important transitions between different events. For
instance, a considerable amount of write operations are followed by read
operations, and vice versa. Another point to note is high symmetry of
the graph, which means that for every states 𝐴 and 𝐵, the probability
of going from 𝐴 to 𝐵 is very similar to the probability of going from 𝐵
to 𝐴.

Deepening into the space of transitions, Table 3 shows the top 10
most frequent state transitions. As it can be seen, a repeated file read
operation (fdaccess read) leads this ranking. It can be assumed
that this transition represents a common pattern between applications,
meaning that is not relevant for distinguishing between families. The
second transition is also a self transition, consisting in a repeated write
operation. These top two transitions accumulate more frequency than
the rest of transitions together.

Table 3
Top 10 count of state transitions in the Drebin dataset, considering 𝛿 = 1 for the
creation of the state sequences.

Position Source Destiny Count

1 fdaccess read fdaccess read 288 568
2 fdaccess write fdaccess write 271 215
3 fdaccess read pipe fdaccess read pipe 48 716
4 fdaccess write fdaccess read 25 541
5 servicestart com servicestart com 23 926
6 fdaccess read fdaccess write 23 425
7 recvnet net read recvnet net read 10 703
8 recvnet net read fdaccess write 9 045
9 servicestart com fdaccess read 8 989

10 fdaccess read servicestart com 7 886

In order to evaluate how the malware families are distributed in
this space of transitions, Fig. 6 shows a two dimensional projection of
all the transitions after applying a Principal Component Analysis (PCA)
process. Each family is displayed as a point representing the mean in the
projected space, together with lines representing the standard in the two
dimensions. This plot is aimed to show how particular families present
closer behaviour than others. For instance, it can be seen that there
are some families that are represented by a large variety of transitions,
such as Hamob, while some other ones are defined in a small region,
such as Fake Installer, Opfake or Plankton, which are some of the
most prevalent families in the wild. In general terms, families are well
distributed over the definition space, although some of them, like Yzhc
and SMSreg (represented by X and W in the figure respectively) are
located very close to each other. This makes sense due to these families
are characterised by a high frequency of accesses to sensitive data and
information related to the network state.

5.2. Applying machine learning algorithms

Table 4 shows the average accuracy, F1, recall and precision mea-
sures for the five classical classification algorithms trained in the five
experiments drawn in the previous section. As it can be seen, grouping
the states frequencies by the ‘‘superstate’’ they belong to (Experiment
3) causes a drop in all the measures used by more than 19%. When
comparing Experiments 1 and 2, which involve isolated transition
probabilities and isolated states frequencies respectively, it can be seen
that isolated states allow a better discrimination, reaching a 80.3% in
terms of F1 measure. However, the best values are obtained when these
two feature spaces are combined (Experiment 4) and a Random Forest
classifier is used. If we combine state transitions with aggregated states
frequencies (Experiment 5), the four measures tested are slightly worse.
SVMs are only competitive when a linear kernel is employed, but it
cannot improve the results achieved by the Random Forest algorithm.

Results obtained applying Deep Learning techniques are present in
Table 5. The results provided are determined by the best combination
of parameters found for each architecture (these combinations can be
found in Table 2). For all the experiments, Deep Learning is not able to
surpass the results obtained with classical Machine Learning algorithms.
It is remarkable that the best results for Deep jLearning are achieved in
Experiment 4 using a fully connected model. Regarding the use of Deep
Learning with fully connected layers in Experiment 5, an architecture
of 2 layers of 300 neurons turned out to be best. In the case of the
experiment 4, where the best F1 and Precision measures are obtained,
a Convolutional Neural Network with 10 filters of size 15 and with a
pooling layer with size 5. The poor results achieved with the RNN and
LSTM models are mainly due to the transformations performed when
modelling the dynamic traces using Markov Chains, where the original
time sequences are no longer present.

The results achieved by Random Forest in comparison to Deep Learn-
ing indicates that a logical rule-based approach is able to discriminate
better the feature space rather than using a connectionist approach.
However, the imbalance among the samples belonging to the different
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Fig. 5. Flow diagram representing the transition frequencies between the main states defined in this work for the dynamic behaviour of malware samples. For a
sake of clarity in the visualisation, close states such as fdaccess read /proc/ and fdaccess read /dev/ have been gathered into the same ‘‘superstate’’
fdaccess.

Fig. 6. Distribution of state transitions by family, after applying Principal Component Analysis (PCA) to reduce to 2 the dimensionality of the state transition.

families of malware makes it necessary to study appropriate algorithms
to deal with this problem as well. For this reason, we have tested differ-
ent imbalanced learning algorithms in order to build new datasets able
to reach higher precision. Table 6 shows the results in terms of precision
(which allows to compare how the different approaches behave when

taking into account each family in an individual manner). The best result
is achieved in Experiment 4 (combination of transition probabilities and
states weights) and using the SMOTE Tomek algorithm in combination
with the Random Forest classification algorithm, reaching 81.8% in
terms of precision. This algorithm performs an over-sampling process
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Table 4
Summary of the results achieved with Bagging, Decision Tree, K-Nearest Neighbours, Random Forest and SVM with different kernel functions classification algorithms
for the different experiments.

Experiment Metric ML algorithm

Bagging Decision tree Nearest neighbours Random forest SVM linear SVM rbf SVM sigmoid

Experiment 1: Transition probabilities

Accuracy 0.799 0.679 0.739 0.801 0.748 0.512 0.426
F1 0.779 0.678 0.728 0.784 0.728 0.462 0.359
Precision 0.787 0.681 0.729 0.792 0.738 0.529 0.516
Recall 0.799 0.679 0.739 0.801 0.748 0.512 0.426

Experiment 2: States frequencies

Accuracy 0.805 0.741 0.708 0.813 0.454 0.288 0.257
F1 0.793 0.739 0.697 0.803 0.414 0.194 0.148
Precision 0.797 0.74 0.697 0.804 0.614 0.412 0.178
Recall 0.805 0.741 0.708 0.813 0.454 0.288 0.257

Experiment 3: States frequencies grouped

Accuracy 0.666 0.626 0.563 0.667 0.269 0.23 0.221
F1 0.654 0.62 0.541 0.659 0.156 0.114 0.098
Precision 0.655 0.622 0.557 0.658 0.146 0.162 0.137
Recall 0.666 0.626 0.563 0.667 0.269 0.23 0.221

Experiment 4: Transitions probabilities &
states frequencies

Accuracy 0.811 0.723 0.719 0.818 0.752 0.489 0.333
F1 0.792 0.721 0.709 0.802 0.734 0.439 0.255
Precision 0.801 0.723 0.712 0.807 0.745 0.53 0.431
Recall 0.811 0.723 0.719 0.818 0.752 0.489 0.333

Experiment 5: Transitions probabilities &
states frequencies grouped

Accuracy 0.808 0.713 0.742 0.815 0.748 0.509 0.422
F1 0.789 0.71 0.729 0.799 0.728 0.458 0.355
Precision 0.797 0.71 0.734 0.806 0.736 0.529 0.509
Recall 0.808 0.713 0.742 0.815 0.748 0.509 0.422

Table 5
Summary of the results achieved with different Deep Learning architectures for the different experiments.

Experiment Metric Deep learning architecture

CNN Fully Connected + Dropout LSTM RNN

Experiment 1: Transition probabilities

Accuracy 0.76 0.773 0.204 0.204
F1 0.755 0.767 0.069 0.069
Precision 0.757 0.769 0.041 0.041
Recall 0.76 0.773 0.204 0.204

Experiment 2: States frequencies

Accuracy 0.752 0.698 0.204 0.204
F1 0.739 0.672 0.069 0.069
Precision 0.744 0.699 0.041 0.041
Recall 0.752 0.698 0.204 0.204

Experiment 3: States frequencies grouped

Accuracy 0.445 0.512 0.204 0.204
F1 0.39 0.471 0.069 0.069
Precision 0.403 0.502 0.041 0.041
Recall 0.445 0.512 0.204 0.204

Experiment 4: Transitions probabilities & states frequencies

Accuracy 0.768 0.778 0.204 0.204
F1 0.764 0.768 0.069 0.069
Precision 0.766 0.768 0.041 0.041
Recall 0.768 0.778 0.204 0.204

Experiment 5: Transitions probabilities & states frequencies grouped

Accuracy 0.762 0.771 0.204 0.204
F1 0.758 0.757 0.069 0.069
Precision 0.761 0.755 0.041 0.041
Recall 0.762 0.771 0.204 0.204

where majority classes are sequentially removed. In comparison to the
results achieved when applying solely the Random Forest classifier, this
one reduced this value to 80.7% precision.

The confusion matrix obtained after training the Random Forest
algorithm is shown in Fig. 7. This figures reveals the most complicated
families to discern and how their samples are allocated to other families.
For instance, SMSreg presents a behaviour which is difficult to cate-
gorise. More than 40% of its samples are wrongly entirely assigned to
the Fake Installer family. A similar fact can also be observed in the Yzhc
family. For the rest of families, Random Forest achieves excellent results,
reaching close to 100% of correctly allocated samples for most of the
families. On the other hand, Deep Learning achieves high performance
values, although a bit worse than Random Forest.

The results gathered in Tables 4–6 do not show individual execution
results, but averages over a total of 10 executions. It is important to
analyse the statistical significance between those averages, specially
between the different experiments proposed, in order to provide a
more robust comparison between them. Thus, a pairwise Mann–Whitney

U test (Corder and Foreman, 2014) between experiments has been
performed over the results of the best classifier found (Random Forest
+ SMOTE Tomek). The performance metric used in the test is the F1
measure. The results of this pairwise comparison are gathered into a
matrix of p-values, shown in Table 7. As it can be seen, Experiment 4,
which achieves the best results in the previous tables, reaches statistical
significant differences with respect to the rest of the experiments,
excepting Experiment 5. With this, we can conclude that the inclusion
of transition probabilities in combination with state frequencies, as
proposed in this work, improves the performance of the classification
process with respect to classic and simplistic approaches where only
state frequencies are considered (Experiments 2 and 3).

6. Conclusions

Dynamic analysis offers thorough information of the behaviour of
a malware sample. As a result of modelling this information with a
Markov chain, samples can be represented by the transition probabilities
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Table 6
Summary of the results achieved by different imbalanced learning algorithms in combination with the Random
Forest classification algorithm for the different experiments.

Imbalanced learning algorithm Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5

ADASYN 0.808 0.803 0.654 0.816 0.806
AllKNN 0.76 0.757 0.6 0.774 0.768
Cluster centroids 0.77 0.703 0.593 0.788 0.781
Condensed nearest neighbour 0.611 0.617 0.453 0.643 0.609
Edited nearest neighbours 0.71 0.691 0.544 0.723 0.714
Instance hardness threshold 0.74 0.75 0.637 0.761 0.741
Near miss 0.45 0.454 0.334 0.404 0.459
One sided selection 0.711 0.717 0.593 0.742 0.698
Random over sampler 0.799 0.796 0.655 0.806 0.804
Random under sampler 0.704 0.718 0.553 0.724 0.725
Repeated edited nearest neighbours 0.708 0.683 0.516 0.722 0.715
SMOTE 0.807 0.805 0.658 0.815 0.813
SMOTE borderline 1 0.804 0.797 0.648 0.808 0.809
SMOTE borderline 2 0.797 0.799 0.647 0.815 0.806
SMOTE svm 0.801 0.8 0.654 0.813 0.812
SMOTE ENN 0.808 0.792 0.654 0.816 0.812
SMOTE tomek 0.809 0.805 0.66 0.818 0.813
Tomek links 0.784 0.796 0.656 0.796 0.803

Fig. 7. Confusion matrix of the best execution performed by Random Forest algorithm. Only values greater than 0.05 are shown for a better visualisation.

Table 7
p-values for the pairwise Wilcoxon rank sum statistical tests performed between
the different type of experiments, using the results of the F1 measure for the
best found classifier (Random Forest + SMOTE Tomek). p-values under 0.05
represent significant differences.

Ex. 1 Ex. 2 Ex. 3 Ex. 4

Experiment 2 4.35 × 10−1
Experiment 3 1.08 × 10−4 1.08 × 10−4
Experiment 4 1.94 × 10−2 6.30 × 10−3 1.08 × 10−4
Experiment 5 1.06 × 10−1 3.57 × 10−2 1.08 × 10−4 4.35 × 10−1

between pairs of consecutive states. Several Machine Learning algo-

rithms have been applied to classify malware using this representation,

including Deep Learning approaches. The results show that it is possible

to discriminate malware families with high accuracy, specially when
combining the information from the state transitions with the state
frequency distribution. To the best of our knowledge, no previous
research has been previously focused on studying the combination of
both dynamic analysis and Deep Learning for family classification. As
future lines of work, the work presented here will be extended to other
varieties of Markov models, such as higher order Markov chains or
Hidden Markov Models, to develop a formal comparison among them
in terms of predictive performance. At the same time, we would like
to explore the possibilities of RNNs and LSTM models when applied
directly to the dynamic traces, instead of employing the Markov chains
based representation. Finally, other possible interesting research could
be to study how to hybridise the features derived from the dynamic
behaviour with those derived from static analysis, in order to improve
the accuracy of the classifier.
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a b s t r a c t 

Machine learning classification algorithms are widely applied to different malware analysis problems be- 

cause of their proven abilities to learn from examples and perform relatively well with little human input. 

Use cases include the labelling of malicious samples according to families during triage of suspected mal- 

ware. However, automated algorithms are vulnerable to attacks. An attacker could carefully manipulate 

the sample to force the algorithm to produce a particular output. In this paper we discuss one such at- 

tack on Android malware classifiers. We design and implement a prototype tool, called IagoDroid, that 

takes as input a malware sample and a target family, and modifies the sample to cause it to be classi- 

fied as belonging to this family while preserving its original semantics. Our technique relies on a search 

process that generates variants of the original sample without modifying their semantics. We tested Iago- 

Droid against RevealDroid, a recent, open source, Android malware classifier based on a variety of static 

features. IagoDroid successfully forces misclassification for 28 of the 29 representative malware families 

present in the DREBIN dataset. Remarkably, it does so by modifying just a single feature of the origi- 

nal malware. On average, it finds the first evasive sample in the first search iteration, and converges to 

a 100% evasive population within 4 iterations. Finally, we introduce RevealDroid ∗ , a more robust classi- 

fier that implements several techniques proposed in other adversarial learning domains. Our experiments 

suggest that RevealDroid ∗ can correctly detect up to 99% of the variants generated by IagoDroid. 

© 2017 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Detecting and classifying malware is a challenge that has 

steadily increased over time. Not only has the rate of produc- 

tion of distinct files been increasing but the methods used to 

evade detection have become more sophisticated. For instance, 

malicious apps have been observed colluding to achieve their 

desired outcomes ( Labs, 2016; Zhou & Jiang, 2012 ). The quan- 

tity of malware targeting mobile devices doubled in the year 

to July 2016 ( Labs, 2016 ), with a clear trend towards the reuse 

of source code instead of developing new variants from scratch 

( Zhou & Jiang, 2012 ). Mobile malware variants are produced 

through component reuse and also via obfuscation. Considering 

the advances in machine learning techniques in the last decades, 

there is widespread interest in applying these to the malware 
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triage problem. Contemporary machine learning algorithms pro- 

vide the potential to improve scalability and offer high flexibility 

regarding the features employed during the classification of mal- 

ware into families ( Dash et al., 2016; Gandotra, Bansal, & Sofat, 

2014 ). However, an informed adversary can deliberately alter the 

decision process of an automated classifier by different means. 

The problem of employing machine learning algorithms in ad- 

versarial environments has previously been studied in security 

related contexts such as spam, intrusion detection, or malware 

classification ( Biggio, Rieck et al., 2014; Dalvi, Domingos, Sanghai, 

& Verma, 2004; Lowd & Meek, 2005 ). In the same way, different 

countermeasures have been proposed ( Biggio, Corona, Fumera, 

Giacinto, & Roli, 2011; Chinavle, Kolari, Oates, & Finin, 2009 ). 

This paper investigates the automated disruption of An- 

droid malware triage, the process by which decisions are 

made in regard to the further analysis steps for a suspicious 

file ( Chakradeo, Reaves, Traynor, & Enck, 2013 ). A critical step dur- 

ing this process, that may affect the choice of subsequent analysis 

techniques, is the identification of the malware family of a highly 

suspicious file. Our attack is that a malware writer, in deploying 

https://doi.org/10.1016/j.eswa.2017.11.032 
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variants from a relatively novel family, attempts to disguise them 

as a different family, one that is less likely to attract intensive 

scrutiny. This may hide novel indicators of compromise such as 

DNS records, malicious URLs, or exploits ( Lakhotia, Walenstein, 

Miles, & Singh, 2013 ). 

In this scenario, the power of the malware writer or adversary 

is as follows: she has control over her malware sample and is 

able to extract static features such as intents-actions, API calls, 

and information flows. In addition, she knows the feature space 

used by the targeted classifier and has access to the classifi- 

cation/misclassification probability. This is a relatively strong 

assumption, yet the attacker still has the limitation of not knowing 

the underlying classification algorithm and she needs to preserve 

the semantics of the executable. Besides, she wants to automate 

the process. Our solution to this problem, a tool called IagoDroid, 

uses evolutionary algorithms to perform a search that identifies 

a minimal number of changes to the features in order to effect a 

family misclassification. IagoDroid can randomly choose a family 

or target a specific family. 

Assuming further knowledge about the classifier is unrealistic 

in practice. Since the mapping (from vectors to labels) imple- 

mented by the classifier is unknown, there is no other option 

but to treat it as a black box that can be repeatedly queried 

during search. Even when this is not the case and the details 

about the classifier are fully known, obtaining an actionable 

analytical description of such a mapping might not be always 

possible, particularly for non-linear classifiers that capture com- 

plex interactions among features to produce the output label. 

Population-based search mechanisms such as genetic algorithms 

have proven to perform remarkably well in challenging domains 

where more traditional search algorithms have not succeeded 

( Sivanandam & Deepa, 2007 ). 

Attacks against classifiers have been discussed before, both 

from a theoretical point of view and in particular security domains 

such as spam or intrusion detection. In this paper we study the 

impact of an attack against multiclass Android malware classifiers. 

Android apps are extremely easy to decompile, manipulate and 

repackage again into a new app. This makes it easy to introduce 

new artefacts (e.g., components, API calls, intents, information 

flows) in the app that will affect its associated feature vector and, 

therefore, the label given by a classifier. If carefully introduced 

(for instance, in if-then blocks only accessible through an opaque 

predicate that always evaluates to false), such modifications will 

not affect the app’s execution semantics. 

To demonstrate our approach, IagoDroid attacks family clas- 

sification by RevealDroid ( Garcia, Hammad, Pedrood, Bagheri- 

Khaligh, & Malek, 2015 ), a recently proposed malware classifier 

employing existing static analysis features. Our choice of Reveal- 

Droid is for convenience (it is open source and ready to use) and 

because it incorporates most of the static features discussed in 

the literature (API calls, information flows, and so on). However, 

IagoDroid is agnostic with respect to the classifier used and can 

be applied to different classifiers. Moreover, we have subsequently 

designed a countermeasure that can detect when a potential 

evasion has been performed and can recover a set of potential 

original families. 

The main contributions of this paper are summarized as 

follows: 

• We propose a novel classification evasion attack against any 

triage process where the family classification relies on static 

analysis. We demonstrate, in particular, that IagoDroid can 

evade an open source classifier named RevealDroid , a freely 

available multi-class malware classifier which combines several 

different features. To do so, we employ evolutionary algorithms, 

a technique which has been previously employed in the context 

of evading classifiers for security applications ( Pastrana, Orfila, 

& Ribagorda, 2011; Xu, Qi, & Evans, 2016 ) (see Section 2 ). 
• We train RevealDroid using 1919 malware samples from the 

DREBIN ( Arp, Spreitzenbarth, Hubner, Gascon, & Rieck, 2014 ) 

dataset divided into 29 different malware families. IagoDroid 

successfully forces misclassification of 28 of the 29 families, in 

the process modifying only a single feature of the original mal- 

ware feature vector. On average, IagoDroid is able to find the 

first evasive file within the first generation and converges on a 

100% evasive population within 4 generations (see Section 4 ). 

It was able to find approximately 14,0 0 0 evasive variants from 

more than 290 initial malware samples within 2 min. 
• The countermeasure, named by us as RevealDroid 

∗, detects 

potential evasions in between 90% and 99% of the output 

of IagoDroid, depending on the number of modifications in- 

troduced, and can identify potential original families for the 

malware (see Section 5 ). 

The rest of this paper is organized as follows: In Section 2 , 

we present our approach, introducing issues related to our 

contribution such as the adopted adversarial model, the target 

classifier, and the parameters of the genetic algorithm compo- 

nent. Section 3 describes the experiments and our configuration 

of them. In Section 4 we analyse and discuss the results while 

Section 5 describes the countermeasure proposed. Section 6 in- 

troduces the most relevant, related contributions found in the 

literature and finally Section 7 concludes the paper. 

2. IagoDroid 

This section describes IagoDroid, a prototype tool that induces 

mislabelling of malware families during the triaging process for 

potential malware samples. Given the importance of automated 

systems to detect and classify malware, to understand how these 

systems can fail (and how can they be strengthened) when attacks 

are directed against their integrity is an important task. Iago- 

Droid’s main goal is to demonstrate that an attack on an Android 

malware classification tool is feasible, by forcing it to produce a 

family misclassification as the result of some minor changes in the 

original sample and without modifying its semantics. 

Following the taxonomy of attacks on machine learning de- 

veloped by Barreno, Nelson, Sears, Joseph, and Tygar (2006) , our 

approach can be positioned as follows: 

• Exploratory Attacks: The attack described in this paper is ex- 

ploratory since it does not aim at altering the training process 

but the classification itself, offline. 
• Targeted Attacks: Regarding specificity, the proposed attack 

is focused on misleading the label given by the classifier to a 

particular sample. Nevertheless, the use of evolutionary search 

to find a proper mutation strategy can be used to fool the 

detection of any sample in the dataset as demonstrated in the 

following sections of the paper. 
• Integrity Attacks: In contrast to attacks against the availability 

of the classifier, we do not seek to induce random classification 

errors. We aim to coerce an intended family misclassification 

for specific input samples. 

The basic idea behind the IagoDroid attack is that the feature 

vector of a malicious application can be transformed by injecting 

new specific, incremental values, and this can eventually result 

in the assignment of an incorrect family label. These changes 

in the feature vector require modifications in the app’s code 

and resources, in order to build a new sample corresponding to 

the desired feature vector. For instance, it may be necessary to 

include a new API call. Moreover, these changes are made while 

simultaneously keeping the semantics of the app invariant. The 
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Fig. 1. General scheme of IagoDroid. 

key to achieving semantic invariance is to only consider small, 

incremental changes in the app (i.e., adding new API calls or new 

permissions) each of which does not alter the original semantics. 

Obtaining the list of transformations to apply to the feature 

vector can be seen as a search problem in which a search heuristic 

finds a solution (i.e., a new feature vector) based on the proximity 

of the current feature vector to one associated with a label differ- 

ent from the current one. This proximity can be calculated based 

on the output of a malware classifier, by measuring the probability 

of the feature vector being classified as the original label or as a 

different label. 

Fig. 1 shows the general architecture of IagoDroid. There are 

two main pipelines, one depicted above the other. The upper 

pipeline shows the process of building the classification algorithm 

used to drive the heuristic search. This algorithm takes as input 

a set of samples placed in a feature space. These samples are 

employed to train the classifier and obtain a classification model. 

On the other hand, the process of performing the attack is shown 

in the bottom pipeline. In this case the process starts by picking a 

malware sample whose family label we wish to alter. Additionally, 

the attack pipeline can also take a target family (see Section 2.1 ). 

IagoDroid employs a genetic algorithm to perform the heuristic 

search, as these algorithms to adapt to problems of high com- 

plexity. The search is guided by a fitness function which uses the 

classification model previously trained to find the solutions that in- 

duce misclassification. Finally, the application is modified in order 

to adapt it to its new feature vector and it is repackaged to obtain 

a new app which is able to evade a correct family classification. 

The following subsections present the context for IagoDroid, 

starting from a description of the adversarial model, a speci- 

fication of the target classifier and finishing with the problem 

formalisation. 

2.1. Adversarial model 

In our scenario, we consider an adversary who aims to evade 

the correct classification of a sample belonging to family A by 

misclassifying it as family B . 

The goal of the adversary is to ensure that it is possible to miss 

the identification of the correct family. We consider two cases. In 

the first scenario, the selection of the target family is delegated 

to the evolutionary algorithm which will merely try to change the 

label of the input feature vector with the minimum number of 

changes. In the second scenario, the target family is also an input 

and the search will attempt to find the feature changes that attain 

this specific misclassification. 

As introduced in Section 1 , the adversary seeks to thwart the 

deployment of proper countermeasures. To appreciate how the 

attacker achieves this, it is useful to specify what the adversary 

knows about the classifier. Given that IagoDroid is based on a 

well known classification algorithm whose source code is publicly 

available, we allow the feature set employed by the classifier to be 

known to the attacker. We assume the attacker is able to create 

new feature vectors and submit them directly to the classifier 

without any constraint. We assume that the classifier interacts 

with the submitted feature vectors as if they had been extracted 

from applications created or modified by the adversary. In other 

words, the search is conducted at the feature vector level, without 

directly modifying the malware sample until a solution is found. 

Regarding the classifier output, the attacker receives two val- 

ues: the label assigned to the input vector and a classification 

score, indicating the trust/reliability of the classification. Since 

the adversary is able to deploy her own implementation of the 

classifier, we do not consider any limitation in the number of 

feature vectors that can be submitted, hence the attacker has 

an unbounded number of attempts to lead the classifier to a 

compromised verdict. 

This scenario for the adversarial capabilities is realistic since 

the target classifier can be well documented (i.e., no security 

through obscurity) or else reversed. 

2.2. Target classifier 

We decided to use an already proposed and documented 

classifier in our work. Our selection criteria for choosing a target 

classifier included good classifier precision and high diversity in 

the features it uses. While there are several classifiers discussed 

in the literature, few of them consider an important and represen- 

tative set of features and are freely available to download. Table 1 

compares the use of different features by the most important 

classifiers described in the literature and notes whether they can 

be downloaded to be used for our purposes. From the nine anal- 

ysed proposals, only the authors of three of them have released 

the source code of their solutions, RevealDroid , Dendroid and 

DroidLegacy . Of these, RevealDroid is the most appropriate 

one since it uses the widest set of features. In addition, it was 

designed and tested for malware family classification. 

RevealDroid classifier building 

RevealDroid consists of a series of components that enable 

the extraction of three different kinds of data from Android apps: 

API calls, intent actions, and streams and flows. These features can 

be used to build a dataset and then to train a machine learning 

algorithm to perform a classification task that predicts the family 

label of previously unseen samples. Each group of features is 

extracted separately and is sequentially added to the feature 

vector for each application, with the objective of controlling and 
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Table 1 

Android malware classification methods using machine learning approaches. 

Classifier Code structures Permissions Api Calls Intent-actions Flow analysis Tested for families 

classification 

Freely available to 

download 

RevealDroid ( Garcia et al., 2015 ) ✗ ✗ 
√ √ √ √ √ 

DroidSIFT ( Zhang et al., 2014 ) ✗ 
√ √ √ √ 

✗ ✗ 

Dendroid ( Suarez-Tangil et al., 2014 ) 
√ 

✗ ✗ ✗ ✗ 
√ √ 

Drebin ( Arp et al., 2014 ) ✗ 
√ √ √ 

✗ 
√ 

✗ 

DroidMiner ( Yang et al., 2014 ) ✗ ✗ 
√ √ 

✗ 
√ 

✗ 

DroidAPIMiner ( Aafer et al., 2013 ) ✗ ✗ 
√ 

✗ ✗ ✗ ✗ 

VILO ( Lakhotia et al., 2013 ) 
√ 

✗ ✗ ✗ ✗ 
√ 

✗ 

DroidLegacy ( Deshotels et al., 2014 ) ✗ ✗ 
√ 

✗ ✗ 
√ √ 

MAST ( Chakradeo et al., 2013 ) 
√ √ 

✗ 
√ 

✗ ✗ ✗ 

supervising the whole process. We used the original code of 

RevealDroid , downloaded from its public repository. 1 

The first feature extracted from each application is a list of the 

API calls found in the code, which allows one to obtain a high 

level description of the expected behaviour of the application. 

These API calls can be included in the feature vector of an app 

in two ways: grouping the calls by using the 30 security-sensitive 

API categories defined by Rasthofer, Arzt, and Bodden (2014) , or 

grouping the calls by using the Android package in which they are 

defined. Revealdroid follows this second approach. 

The second step of the dataset building process consists of 

including intent actions data. Intent actions are identifiers of 

different events that happen within the lifecycle of an application 

such as launching a new activity or a new service. This is also a 

useful information source for detecting and classifying malicious 

applications ( Chin, Felt, Greenwood, & Wagner, 2011 ). 

Thirdly, RevealDroid uses information flows to characterise 

the samples. An information flow can be seen as the path followed 

by a piece of sensitive data through the flow graph of a program. 

In this case, an information flow is represented as a pair consisting 

of a source (i.e. an API call providing data to the app) and a sink 

(i.e. the app providing data as input for another API call). 

The final step involves the training process of a machine 

learning classification algorithm. The authors of RevealDroid use a 

decision tree based algorithm, C4.5, and the 1-nearest neighbour 

algorithm. Nevertheless, any other machine learning algorithm 

might be used instead. 

2.3. Problem formalisation 

In this subsection we provide a formal description of the attack. 

Our experimental dataset can be formalised as the set X , 

containing samples of different malware families. However, since 

we are solely interested in the feature vectors describing different 

properties of each sample, X can be represented as the set of n 

feature vectors: 

X = { x 1 , x 2 , . . . , x n } . (1) 

Each feature vector x i is composed of k different features, extracted 

directly from the original application: 

x i = { x 1 i , x 
2 
i , . . . , x 

k 
i } . (2) 

Initially, each sample in the dataset is labelled with the name 

of the family it belongs to. We name the set of all the possible 

labels in the dataset as Y . Thus, the classifier C can be defined as 

a function mapping a feature vector x i ∈ X to the most likely label 

y j ∈ Y , paired with its probability of being the correct label: 

C(x i ) = (p(y j ) , y j ) , y j ∈ Y, (3) 

where p ( y j ) is the probability of y j being the true label of x i as 

estimated by the classifier. 

1 https://bitbucket.org/joshuaga/revealdroid . 

Finally, we formalise our search approach at a high level of 

abstraction as a function accepting two arguments: a feature 

vector which is to be misclassified, obtained from the app, and the 

original label that we want to avoid. The output of this function 

( x ′ 
i 
) will be the original vector with a set of changes (e.g., incre- 

ment the value of a feature) to be applied to the original feature 

vector x i . Once this new vector has been created, the classifier C 

will assign a new label y ′ 
j 

to this modified vector: 

IagoDroid (x i , y j ) = x ′ i : y ′ j ∈ Y, y ′ j � = y j . (4) 

We consider the changes as a � vector satisfying: x i + � = x ′ 
i 
. 

2.4. Genetic approach 

This section describes the design details of the genetic algo- 

rithm that is at the core of IagoDroid. 

2.4.1. Encoding 

Each individual I i present in the evolutionary process is de- 

signed to represent a possible new feature vector x ′ 
i 

containing k 

different f eatures or genes. Since the goal of IagoDroid is to intro- 

duce modifications in the feature vector so that the associated app 

gets misclassified while preserving its semantics, the individual’s 

encoding is designed to only allow incremental changes in each 

feature. Thus, the individual starts with the same feature vector as 

the sample received as input x i . Once the minimum value of each 

gene I 
j 
i 

of the individuals is established, it is also necessary to fix a 

maximum threshold MT to limit the number of changes and facili- 

tate their implementation. Then, [ x i , x i + MT ] is the range for each 

gene in each individual I i . This restriction on the values of each 

individual will be present through the entire evolutionary process. 

2.4.2. Genetic operators 

Four operators are in charge of driving the evolutionary process 

across a number of generations. The selection operator is elitist, 

picking the n best individuals in each generation to be part of 

the next generation. Reproduction is performed by means of a 

standard tournament operator. For crossover we opt for a uniform 

operator and, lastly, a random mutation operator is used to in- 

troduce diversity in the population by changing the value of some 

genes randomly (within the ranges specified above). 

2.4.3. Fitness function 

The fitness function uses the gradient of the classifier output 

(score) to guide the genetic search. Specifically it uses the proba- 

bility of the class that the algorithm wants to avoid. This can be 

formally defined as: 

f (x i , y j ) = 

{
1 − p(y j ) if (p(y j ) , y j ) = C(x i ) 

1 otherwise 
(5) 

where x i is the feature vector of the application, y j indicates its 

family and p represents the probability assigned to the classifica- 

tion. 



A. Calleja et al. / Expert Systems With Applications 95 (2018) 113–126 117 

2.5. Targeting specific families 

The approach described so far addresses a genetic search 

seeking to reach different malware families, providing an effective 

technique to hide the real family of a malicious application. How- 

ever, the search has no control over the final family label that will 

be assigned to the modified sample. This represents an interesting 

issue, since an attacker might well wish to target specific families 

with different purposes (for instance, to force defenders to deploy 

specific incorrect countermeasures). To address this issue, the 

fitness function can be easily modified to guide the search to 

individuals representing feature vectors classified as a given target 

family. The new fitness function is as follows: 

f (x i , y k ) = 

{
p(y k ) if C(x i ) � = (p(y k ) , y k ) 

1 otherwise 
(6) 

where y k represents the target family label. 

3. Experimentation 

We next discuss the experiments that we have performed 

to validate our proposal. The experiments address the following 

research questions: 

• RQ1: How much effort does it take to find the modifications 

needed to misclassify a particular sample? 
• RQ2: Which features are more often involved when modifying a 

sample? 
• RQ3: Given a malware family, is the cost of forcing misclassifica- 

tion errors in its samples constant for all possible target families 

or are some families easier to target than others? 

Our main goal is to provide evidence that our approach can 

induce a misclassification error in a targeted malware classi- 

fier. Accordingly, the experiments discussed in this section have 

been executed using only the first fitness function presented in 

Section 2.4.3 and we did not direct the genetic search towards a 

particular family classification. The rest of this section describes 

the experimental setting, including the dataset, classifiers and pa- 

rameters used. To facilitate the reproducibility of our experiments, 

we have created open source versions of our implementation, 

dataset and scripts used throughout this work 2 . 

3.1. Dataset 

We tested our approach using the DREBIN dataset ( Arp et al., 

2014 ). This dataset contains 5560 malicious Android apps classified 

into 179 different families. Unfortunately, the number of samples 

per family is not balanced, resulting in some families with a low 

number of samples (e.g., 47 families contain just 1 sample). We 

therefore removed all classes containing less than 10 samples, 

resulting in a final dataset composed of 5198 samples distributed 

in 54 different families. 

We then leveraged a number of existing tools to extract the 

features from each sample in the dataset. API calls and intent ac- 

tions were obtained using Androguard 

3 , a fairly well known static 

analysis tool. To extract information flows we used FlowDroid 

( Arzt et al., 2014 ), a taint analysis tool that finds source-sink con- 

nections. FlowDroid can be tuned through different parameters 

to maximise either performance or precision. We set parameters 

to achieve as much precision as possible. This approach differs 

slightly from the procedure followed by other works that have 

2 The dataset is available at https://data.mendeley.com/datasets/4sksrpm5vj/1 

and the code at https://github.com/hdg7/IagoDroid . 
3 https://github.com/androguard/androguard 

generally aimed at maximising performance by compromising 

precision (e.g., Garcia et al., 2015 ). Using FlowDroid to extract in- 

formation flows introduces two important issues. First, the time it 

takes to analyse a single app ranges from a few minutes to several 

hours in the worst case. Furthermore, it unexpectedly crashes for 

many apps. These two issues (scalability and stability) forced us 

to dramatically reduce the number of samples actually used in 

the experiments. Thus, from the original set of 5189 samples, only 

1919 samples belonging to 29 different families were successfully 

processed by FlowDroid . 

Finally, once the final dataset was built, we carried out a basic 

covariance analysis among the features to remove those that did 

not provide any additional information. 

3.2. Target classifier 

To demonstrate our approach, we relied on RevealDroid , 

an Android malware classifier that uses various static features 

and allows the use of different machine learning classification 

algorithms. While the original authors used C4.5 and 1-NN, we 

restricted ourselves to C4.5 since it showed better accuracy and 

precision. Nevertheless, our approach is not limited to a particular 

classification algorithm and should work with any other classifica- 

tion approach. The C4.5 algorithm was trained using the RWeka 

package for R , keeping its default parameters. We use 2/3 of the 

data for training combined with 10 cross-fold validation and the 

remaining 1/3 for testing. The testing accuracy is 88% averaged 

over 50 runs. 

3.3. Genetic search 

The genetic algorithm was configured using the following pa- 

rameters: a mutation probability of 0.1; a crossover probability of 

0.8; population size equal to 50; maximum number of generations 

equal to 20; elitism parameter of 3; and a maximum number of 

transformations per allele of 1 (though we set an increment that 

provides a transformation probability per allele ranging from 0.6 

to 1). 

3.4. Attack steps 

This subsection discusses the sequence of steps followed by an 

attacker to force the missclassification of a particular sample. Re- 

call ( Section 2.1 ) that we assume an adversary with full knowledge 

and unlimited access to the classifier. 

The first step is to extract the features from the malicious sam- 

ples that will be eventually mutated. Androguard and FlowDroid 

extract these features and generate the feature vector x i . This fea- 

ture vector provides a basis for the genetic search. Since the aim 

of the attacker is to change the final label of the sample without 

altering its functionality, the way in which the components of 

this vector may be modified during the search is restricted. For 

instance, if a particular API call is used in the original sample, the 

mutated sample must keep this feature (i.e., if the component of 

this API call is set to 1 in the original vector it cannot be set to 0). 

Otherwise the semantics of the application will be altered and the 

malicious behaviour will not be preserved. The genetic algorithm 

takes this into account and only mutates these features by adding 

additional intent actions, API calls or information flows, without 

removing any of the original values . Under this premise, the search 

process generates new individuals by evolving the previous genera- 

tion. On each iteration, the fitness function evaluates for every sin- 

gle individual whether the correct classification has been evaded. 

Once a solution is found, the attacker applies the mutation 

strategy found by the genetic search to the original malware sam- 

ple. This will require adding a combination of new intent actions, 
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API calls, and/or new information flows. To alter the original APK 

file, the attacker first decompresses it to access the files packed 

inside, such as the manifest or the DEX file(s). Adding a new 

intent action, API call or information flow requires disassembling 

the original DEX file, which contains the bytecode responsible 

for the app’s functionality and is generated at compilation time 

from the original Java source code. There are several tools to carry 

out this process. Smali and Backsmali 4 are well known tools 

for translating the Dalvik bytecode contained the DEX file into 

human readable (smali) code. The result of disassembling a DEX 

file using these tools is a set of files related to the original Java 

sources. These files can easily be modified by the attacker to add 

a new call to an Android API method or a new intent action. To 

avoid introducing undesirable extra functionality into the app, the 

attacker can put the newly added code blocks within conditional 

sentences (i.e., if-then) driven by opaque predicates that always 

evaluate to false. This would prevent optimizers from removing 

them while achieving the two-fold goals of having those features 

in the code but not executing them. Once the new elements 

have been added to the code, the process can be reversed using 

Backsmali to repackage the APK file. 

Unlike API calls or intent actions, information flows are related 

to the execution paths of the program. This means that a particular 

information flow will only be detected if it happens as part of the 

instructions that are actually executed when the app runs. This is 

a consequence of the way in which taint analysis tools based on 

symbolic execution, such as FlowDroid , explore the application to 

find possible data flows, building the application flow graph and 

following all the possible paths within the application. To insert 

a new information flow the attacker needs to place it within a 

method that will be eventually called. Android apps implement 

several callbacks (such as those used for managing the life-cycle 

of activities and services) to interact with different events taking 

place in the operating system. Thus, finding pieces of code that 

will certainly be executed is not difficult. To add a new informa- 

tion flow, the attacker can follow the procedure described above 

for intent actions and API calls. 

We have manually tested the attacks with one of the samples 

in our dataset. Specifically, we modified an app labelled as a 

member of the Plankton family and, after altering it according 

to the found mutation strategy, the classifier misclassified it as 

a member of the BaseBridge family. Achieving misclassification 

only required the addition of a single intent action (ACTION INPUT 

METHOD CHANGED). After following the previously described 

steps, we examined the app and extracted the new feature vector. 

This new vector contains the feature ACTION INPUT METHOD 

CHANGED along with the original features of the app, showing 

that the modification step worked as expected while keeping the 

original features unchanged. Finally, we ran the classifier over this 

sample and obtained the wrong label (BaseBridge) as expected. 

4. Results 

We next discuss our experimental results. The experiments aim 

to provide answers to the three research questions introduced 

in the previous section. All the experiments were executed on a 

cluster of 6 nodes, each node equipped with 24 cores and 128Gb 

of RAM memory. 

We took a random subset, selected uniformly across families, 

of samples from our main dataset for the experiments. This subset 

was composed of 290 samples, taking 10 samples per family from 

29 different families. As we mentioned above, there are families 

4 https://github.com/JesusFreke/smali 

that only have 10 samples, hence the need to pick at most 10 apps 

per family to balance the final sample. 

4.1. Evasion effort 

The first research question aims to measure the effort required 

by the attacker to find a mutation strategy that induces a clas- 

sification error. We attempt to answer this question from three 

different points of view: (i) the number of generations required by 

the search to achieve evasion (i.e., to find a single individual evad- 

ing the correct classification) and convergence (a whole generation 

evading correct classification); (ii) the number of modifications in 

the feature vector required; and (iii) the number of queries to the 

classifier (this is correlated with the first perspective but it is a 

standard metric in evasion environments ( Biggio et al., 2013 )). 

Table 3 summarizes the results for the experiments carried out. 

It shows how many generations were enough to achieve evasion 

and at which point the genetic search converges (i.e., all individu- 

als being misclassified). Remarkably, a solution is found in the first 

generation for all families but BaseBridge. This means that a single 

iteration of the genetic algorithm is required to evade the correct 

classification of a single sample. This achievement suggests that 

the search effort is low and the search might be replaced by a sim- 

ple analytical process consisting on adding changes to the features 

(i.e., adding API calls, or intents among others). As a sanity check, 

we analysed this possibility considering transformations from a 

single sample of a specific family to another (in this case, from 

GinMaster to DroidKungFu). The analytical process can only add 

changes. However, all possible transformations from the vectors 

of GinMaster to vectors of DroidKungFu require subtractions. This 

would change the app semantics. Considering only those features 

that can be added, the analytical process requires between 500 and 

16,0 0 0 changes from the original to the target vector. Using the 

same samples, the GA found solutions with only one change. 

The average number of generations required to achieve conver- 

gence is around 4 for all families. Notable deviations include Droid- 

KungFu, whose samples require around 7 generations, and SMSreg 

with less than 2 generations. This demonstrates that the evasion 

technique is extremely efficient against the classifier for the fam- 

ilies tested. The only family whose samples cannot be successfully 

mutated so as to be classified as some other family is BaseBridge. A 

careful analysis of the results and the classifier’s inner working for 

this family shows that samples with this label have a strong cor- 

relation with the ACTION_INPUT_METHOD_CHANGE feature. Every 

time this feature is present, the sample is classified as belonging to 

BaseBridge. Since the semantics preserving rules prevent us from 

removing any features, this poses a clear limitation on the attack. 

The total amount of time taken for these experiments using the 

sample subset of 290 individuals is around 2 min. Within this time 

span, the search found 14,0 0 0 mutation strategies able to evade 

the classifier. This number can be broken down into 50 different 

mutation strategies for 280 individuals (omitting the ten individu- 

als that belong to the BaseBridge family). This gives us interesting 

information about the performance of the attack and demonstrates 

how easy it is to evade a malware classifier such as RevealDroid . 

To discover the minimum number of modifications needed to 

achieve misclassification, we set the change probability to the min- 

imum value (0.6). The results are shown in Table 3 . In this case, 

we selected malware samples uniformly from the whole dataset, 

considering a realistic scenario in which an attacker would employ 

different malware samples without any previous knowledge about 

their classifications. In this scenario, some samples were then 

misclassified by RevealDroid , showing that no modification is 

needed to evade it. 

In almost all cases the average number of modifications is close 

to 1. This means that the evasion technique only needs to modify 
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a single feature in order to evade classification, revealing how 

fragile malware classifiers such as RevealDroid are. In order to 

explore this case in more depth, Section 4.2 studies the impact of 

the different features during the misclassification attack. 

Finally, the number of queries to the classifier during the evo- 

lution depends on the number of generations and the population 

size. In each generation a single query is executed for each sample 

in the population. Since our approach only needs one generation 

to succeed, 50 queries are needed per sample. This number is 

higher if we require the convergence of the whole population, as 

needs up to 350 queries ( 7 × 50 ) in the worst case. 

RQ1 . Our results show that misclassification can be achieved 

in just one generation of the genetic search. This translates to 

a number of queries to the classifier ranging from 50 to 350 per 

sample. Furthermore, only one mutation is needed to induce 

a misclassification error for most samples. 

4.2. Relevant features for the attack 

In order to understand which features are more related to a 

particular family, we performed an analysis of the most relevant 

features affected during the mutation process. We followed the 

same approach as in the experiments discussed in Section 4.1 , 

where only one feature is needed to change the family classifi- 

cation. Table 3 shows the feature that is changed most often and 

the overall probability for this feature to be modified during the 

search. 

The feature most frequently added is AC- 

TION_INPUT_METHOD_CHANGED. As we mentioned above, this 

feature is tightly coupled with the BaseBridge family, in such a 

way that whenever it is added to the feature vector, the sample is 

classified as belonging to BaseBridge. 

ACTION_USER_PRESENT is another feature that is present in 

the modifications, especially for families such as Kmin, Steek, 

Yzhc and Fatakr. These families are closely related to remote 

server connections (Kmin and Yzhc) and sending SMS messages 

(Steek and Fatakr) containing private information, so they do not 

necessarily focus on user actions. 

RQ2 . The feature ACTION_INPUT_METHOD_CHANGED is 

used most often due to its close relationship with the Base- 

Bridge family. ACTION_USER_PRESENT is used next often, 

appearing in four families with a common behaviour (leaking 

information from the device). 

4.3. Transition between families during evasion 

The final experiment attempts to measure the difficulty of 

mutating samples from each family to each potential target family. 

To do this, we measured the most commonly changing patterns 

among the different families during the search. Fig. 2 depicts a 

probabilistic representation of the most frequent changes between 

families. Unsurprisingly, BaseBridge is the family to which samples 

are most commonly reclassified. This is related to our previous 

analysis in Section 4.2 , which showed that any sample with the 

feature ACTION_INPUT_METHOD_CHANGED set to one is classified 

as belonging to BaseBridge regardless of any other features. 

Some interesting relationships can be found, such as the one 

between Plankton and Nyleaker, which share almost the same 

intent actions, Plankton having a couple of actions more than 

Nyleaker. Kmin and GinMaster have a close relationship with 

Fig. 2. Most frequent classification errors between families induced during the 

search. 

DroidKungFu: a single modification of a flow based on MMS 

(Kmin) or the ACTION_USER_PRESENT feature (GinMaster) causes 

the original sample to be classified as belonging to DroidKungFu. 

A similar case happens with Fatakr and Nandrobox, in which a 

single modification of the ACTION_USER_PRESENT feature causes a 

misclassification. 

Interestingly, the matrix shown in Fig. 2 is asymmetric. This 

means that samples from family A can be mutated into samples of 

family B but the inverse process was not found possible during the 

search. The only cases in which both mutations are possible are 

Plankton and DroidKungFu, DroidKungFu and Kmin, and Adrd and 

DroidKungFu. This suggests that DroidKungFu is a heterogeneous 

family. Finally, we note that there are 9 families that can never be 

targets: GinMaster, Nyleaker, Geinimi, Imlog, ExploitLinuxLotoor, 

Xsider, Yzhc, FakeRun and Hamob. This is a consequence of how 

the classifier builds the classification model, keeping some families 

bounded to specific feature ranges that are modified during the 

evolution process. 

RQ3 . The effort required to mutate a sample from an original 

classification to classification as a target family depends on 

both families, with some mutations being impossible. 

5. A countermeasure 

The results discussed in the previous section demonstrate that 

it is generally possible (and in fact easy) to cause a misclassifica- 

tion error in a typical Android malware classifier. This is ultimately 

accomplished by injecting additional artefacts into the sample, 

such as new API calls or intents, that will affect the feature vector 

associated with the app. 

We next discuss how such attacks can be countered through 

the use of a more robust classifier. Our proposal first aims at 

detecting potential attack cases (i.e., samples deliberately modified 

so as to induce a classification error) and then at backtracking 

the changes to identify potential source families. Both strategies 

constitute variations of ideas proposed before in the field of adver- 

sarial machine learning ( Chinavle et al., 2009 ). However, this is the 

first countermeasure discussing the ability to backtrack the attack. 
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Fig. 3. Countermeasure schema including RevealDroid ∗ . 

5.1. Detecting potential misclassifications 

The result of an attack, such as the one shown in this paper, is 

an app modified in a way that will deceive a classification system, 

causing it to return an incorrect family label. The underlying 

causes for such an error are related to the manner in which the 

algorithm at the core of the classifier works. In the case of Re- 

vealDroid , each alteration introduced in the application translates 

into features that will change the path followed along the decision 

tree, thus driving the output to a different leaf and, therefore, a 

different label. 

In order to detect potential attempts to evade the classifier, we 

propose an extension of the target classifier: Revealdroid 

∗. This 

enhanced version of RevealDroid employs a pool of C4.5 trees 

instead of relying on just one instance. Each classifier in the pool 

makes decisions based on different subsets of features present in 

the feature vector, making it more robust against deliberate mod- 

ifications. Thus, each classifier chooses its own subset of features 

randomly at runtime. Therefore, a potential attacker has no evident 

way of modifying the vector in order to evade all the classifiers at 

once. The final label assigned to a sample by this enhanced version 

of RevealDroid results from majority voting. Our countermeasure 

is inspired by those proposed by different authors in the literature. 

The bagging (boosting and aggregating) approach has proven to 

be effective in enhancing the robustness of classifiers in various 

related problems ( Biggio et al., 2011; Perdisci, Gu, & Lee, 2006 ). 

Fig. 3 shows the architecture proposed for RevealDroid 

∗ and 

the whole schema for the countermeasure. The countermeasure 

consists of measuring the level of agreement between Reveal- 

Droid and RevealDroid 

∗. When these two tools disagree, we con- 

sider that an attacker achieved a potential evasion. RevealDroid 

∗

must keep the same classifier, training data and parameters as 

RevealDroid , in order to generate similar outputs and reduce the 

false alarm (or false positive) rate. However, for the triage process, 

the priority is to reduce false negatives in order to guarantee that 

an important sample is not misclassified as irrelevant. 

The feature extraction process of RevealDroid 

∗ remains un- 

changed, using the same feature vector for each app with a list of 

API calls, intent actions and information flows. Once the feature 

vector is generated for each app, features are randomly partitioned 

into a number of groups. That is, each feature is randomly as- 

signed to one (and just one) group, guaranteeing that all groups 

have the same number of features. The number of groups can be 

manually tuned and also equals the number of classifiers (C4.5 

in our case) used in the ensemble. Each classifier is then trained 

with all the instances using the subset of features allocated for it, 

seeking to maximise the separation among labels in this reduced 

feature space. 

The classification process for a new malware sample with 

RevealDroid 

∗ is also outlined in Fig. 3 . Once again, the feature 

vector is generated following the rules of RevealDroid . In a 

second step, the list of features is divided into groups depending 

on the split previously performed when training the models. Each 

instance of the C4.5 algorithm delivers a label according to its 

portion of the feature space and a majority rule is applied to 

obtain the final label for the input sample. 

The strength of RevealDroid 

∗ lies in reducing the fragility of 

a single-classifier structure such as that of RevealDroid , in which 

just a simple change in the feature vector may lead to a classifi- 

cation error. When using multiple classifiers, the effort required to 

achieve a successful evasion becomes considerably more complex 

since the attacker needs to evade the majority of the classifiers in 

the ensemble. As a sanity check on RevealDroid 

∗’s classification 

ability, we calculated its accuracy (see the plot at the bottom 

of Fig. 6 ). The accuracy (88%) is similar to that of RevealDroid 

(75–91%). 

To evaluate the ability of the countermeasure to detect when a 

sample has been altered so as to evade a correct classification, we 

have used our attack to generate a representative set of apps suc- 

cessfully mutated, departing from, and trying to reach, all possible 

families following the approach described in Section 2.5 . With 

this procedure, a subset of more than 10,0 0 0 individuals were 

successfully mutated. All these individuals were classified using 

RevealDroid 

∗, yielding the results showed in Fig. 4 . Each series 

in the figure is related to a specific configuration of the genetic 

algorithm, where an increment of 1 means that it is possible to 

generate individuals with up to 30 changes in the feature vector, 

whereas an increment of 0.6 reduces the number of changes to 

around 1. The reasons for this relationship between the increment 

parameter and the number of possible changes lies in the proba- 

bility used internally by the genetic algorithm. Since every change 

must be manually injected into the application by the attacker, we 

may assume that in most cases the attacker would be interested 

in applying the minimum number of changes needed to achieve 

misclassification as a different family. This situation is represented 

by an increment equal to 0.6. In contrast, if the number of changes 

is not an issue for the attacker, a higher value of this parame- 

ter can be considered. As Fig. 4 shows, the label delivered by 

RevealDroid 

∗ differs considerably from the fake label pursued by 

the attacker, thereby notifying of a potential classification attack. 

With a maximum increment of 0.6 (around 1, 2 or 3 changes in- 

jected), using 14 different classifiers RevealDroid 

∗ will fail to de- 

tect the attack in 0.9% of the cases (false negatives), which means 

that the evasion will be detected in 99.1% of the evaluations. 

The false positives of the countermeasure are computed by 

evaluating RevealDroid 

∗ with RevealDroid ’s test data (this 

data has non-mutated fresh samples for RevealDroid and 

RevealDroid 

∗). The level of disagreement is calculated using the 

test output. Fig. 6 (top) shows that the false positive rate of our 

countermeasure ranges between 8% and 13.5%. Because the focus 
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Fig. 4. False negative rates for the countermeasure with respect to the number of classifiers used in RevealDroid ∗ . 

Fig. 5. Transition matrix to target families. 

of the triage process is avoiding false negatives, we consider this 

result reasonable. 

5.2. Reversing the attack 

Once a sample has been suspected as the result of a misclas- 

sification attack, determining its original family is the next natural 

step. Reversing the transformation process that the attacker may 

have implemented is a complex task, particularly because of the 

difficulty of differentiating between the original app behaviour and 

the actions deliberately injected to cause the classification error. 

However, the search process used during the attack offers the 

means to evaluate a number of possible original family classifica- 

tion candidates. The search was used between each possible pair 

of families in order to evaluate the transition probabilities be- 

tween them (as the number of individuals belonging to a specific 

family able to reach a target family divided by the total number of 

individuals in the original family). The results of this experiment 

are shown in Fig. 5 . The fitness function used here is the one de- 

scribed in Section 2.5 , which allows one to target specific families. 

Since this matrix represents all possible transitions between orig- 

inal malware samples of different families and mutated samples, 

it is also possible to use this artefact to reveal the possible source 

families of an application detected as misclassified. Furthermore, it 

Fig. 6. False positive rate for the countermeasure (top) and accuracy of 

RevealDroid ∗ depending on the number of classifiers used in RevealDroid ∗ construc- 

tion. 

is also possible to order these candidate families by the transition 

probabilities. 

For instance, Fig. 7 shows the probabilities of being the original 

family of a malware sample classified as Kmin family, according 

to the corresponding row of Fig. 5 . In this example, there are 

6 potential source families in which all the individuals were 

successfully mutated to be classified as Kmin, and these form a 

set of 6 prospective original families. 

6. Related work 

In this section we discuss the context for our work as it re- 

lates to Android static analysis, adversarial machine learning and 

countermeasures. 

6.1. Android static analysis 

Our work is focused on attacking a machine learning algo- 

rithm which operates on a space generated by static analysis 
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Fig. 7. Probabilities of being the origin family of a malware sample mutated to 

Kmin family. 

features. We discuss the most relevant static analyses for our 

work: permissions, API calls, intent actions and flows. 

Permissions have been identified as potential signifiers of 

malicious intentions. Tools like Kirim ( Enck, Ongtang, & McDaniel, 

2009 ) were used to detect anomalous settings containing mali- 

cious behaviour and tools like DroidRanger ( Zhou, Wang, Zhou, & 

Jiang, 2012 ) leverage heuristics to perform the same task. API calls 

can be used to detect malware and generate signatures, which is 

the case for DroidLegacy ( Deshotels, Notani, & Lakhotia, 2014 ) 

and DroidAPIMiner ( Aafer, Du, & Yin, 2013 ). Current trends use 

both flow analysis, i.e. information leaks between data sources 

and potentially malicious sinks, and intent actions, remote pro- 

cedures where one application can use the privileges of another 

one to perform malicious activities. Flows have been studied 

using tools such as FlowDroid ( Arzt et al., 2014 ) and DroidSafe 

( Gordon et al., 2015 ), while intents have been studied in different 

ways: from the detection of communication vulnerabilities using 

ComDroid ( Chin et al., 2011 ); to validation of the interaction 

between components with Epicc ( Octeau et al., 2013 ); to points 

to communication between objects in different applications us- 

ing Amandroid ( Wei, Roy, & Ou, 2014 ); and to hybridization 

these methods, as seen in DidFail ( Klieber, Flynn, Bhosale, Jia, & 

Bauer, 2014 ) which hybridizes Epicc and FlowDroid to improve 

detection through aggregated information. 

Other work, out of the scope of our analysis but also related to 

static analysis for Android, uses a description language to identify 

semantic-based signatures, such as Apposcopy ( Feng, Anand, 

Dillig, & Aiken, 2014 ), or aims to detect the context that triggers 

the malicious behaviour, such as AppContext ( Yang et al., 2015 ) 

and TriggerScope ( Fratantonio et al., 2016 ). 

In our work, we target techniques that use static analysis 

features and leverage machine learning algorithms to detect or 

classify malware. These techniques, provided in Table 1 , use the 

previously discussed tools to extract feature vectors that feed a 

machine learning algorithm. Tools like DroidSIFT ( Zhang, Duan, 

Yin, & Zhao, 2014 ) and DroidAPIMiner ( Aafer et al., 2013 ) have 

only been used for the detection problem, in which malware 

and goodware must be discriminated, while tools like Dendroid 

( Suarez-Tangil, Tapiador, Peris-Lopez, & Blasco, 2014 ), DroidLegacy 

( Deshotels et al., 2014 ), Drebin ( Arp et al., 2014 ), DroidMiner 

( Yang, Xu, Gu, Yegneswaran, & Porras, 2014 ) and RevealDroid 

( Garcia et al., 2015 ) have also been used for family classification, 

with RevealDroid covering the largest spectrum in the feature 

space. This was the main reason for choosing RevealDroid as the 

targeted classifier in our work. We also targeted the triage prob- 

lem, which is closely related to the family classification problem 

as Lakhotia et al. state during the description of their tool VILO 

( Lakhotia et al., 2013 ). This problem has also been examined from 

a detection perspective using ranking based algorithms in MAST 

( Chakradeo et al., 2013 ). Our goal here was to attack the triage 

process using adversarial machine learning. 

6.2. Adversarial machine learning 

Evasion and Adversarial Learning ( Huang, Joseph, Nelson, 

Rubinstein, & Tygar, 2011 ) are widely studied topics in both the 

machine learning and computer security areas ( Barreno et al., 

2006; Lowd & Meek, 2005; Ptacek & Newsham, 1998 ). Given the 

success of machine learning techniques for addressing security 

related problems such as malware analysis, spam identification, 

or intrusion detection, testing the resilience and robustness of 

these approaches against an informed adversary is a necessary 

activity. 

There is a wide spectrum of applications of machine learning 

algorithms in classification problems. Their reliability is closely 

linked to the reliability of the systems that depend on them. 

Adversarial learning is then an important problem that must be 

addressed. According to Barreno et al., the main weaknesses of 

machine learning algorithms lie precisely in their adaptation abil- 

ity, which can be exploited by attackers to cause deliberate errors 

( Barreno, Nelson, Joseph, & Tygar, 2010 ). This presents a complex 

issue, since machine learning theory takes as its basis that the 

training dataset used in a learning process remains representative 

of the problem domain and assumes intentionally harmful modi- 

fications of the data do not happen ( Laskov & Lippmann, 2010 ). 

The problem of learning in hostile environments was first 

considered by Kearns and Li (1993) . In this work, the authors 

developed an extension to Valiant’s Probably Approximately Correct 

(PAC) framework ( Valiant, 1984; 1985 ). The extension allows the 

algorithm to learn even when a dataset has been polluted with 

erroneous data, introduced by an active adversary. This adversar- 

ial behaviour is modelled following a worst-case approach (i.e., 

unbounded computational power and access to the classification 

history are assumed). The main contribution of this work was to 

provide methods to limit the maximum portion of the dataset 

polluted by the adversary without having a negative effect on the 

classification result. 

The proliferation of classification and detection tools relying on 

machine learning techniques has promoted an increased interest 

in attacking these tools, taking advantage of the weaknesses in 

classification algorithms. These attacks are very varied and depend 

mainly on the adversarial model considered, since the capabilities 

of the attacker and her knowledge about the classifier define the 

impact of the attack. 

All these attacks against machine learning can be categorised by 

point of view. From a coarse perspective, the attacks can be classi- 

fied in two categories: poisoning attacks ( Biggio, Nelson, & Laskov, 

2012 ) and evasion attacks ( Xu et al., 2016 ). In the former case, the 

attack is performed during the training stage. In this scenario the 

adversary introduces fake or malformed data into the training set. 

This will lead the classifier to learn an inaccurate model and then 

classify further instances incorrectly. In the latter case, the attack 

is performed during the classification stage. The feature vector 

belonging to a particular sample is modified so as to force the clas- 

sifier to produce a wrong label. The proposed attack in this paper 

falls in the evasion category as we try to fool an already trained 

model by distorting the feature vector of a particular sample. 

Barreno et al. (2006) provide an extended taxonomy of the dif- 

ferent attacks against machine learning applications. They model 

attack spaces using three key concepts: influence ( whether it affects 

the training stage or the classification itself ), specificity ( whether the 
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attack tries to misdirect the classification of data belonging to a par- 

ticular class or, alternatively, causes no discrimination to happen ) and 

the security property violated by the attacker ( whether the attack 

is against the classifier’s availability or against the result’s integrity ). 

A practical example of how classification algorithms can be suc- 

cessfully evaded is the classifier-agnostic attack strategy described 

by Biggio et al. for assessing the security of machine learning 

applications ( Biggio et al., 2013 ). They propose an adversarial 

strategy based on gradient descent attacks. They consider different 

threat models depending on how much information the attacker 

has regarding the attacked classifier. The authors demonstrate 

how their strategy could be employed to evade classifiers such 

as SVM and neural networks trained for detecting malicious PDF 

files. 

In an approach similar to our own work but applied to a dif- 

ferent problem, Vigna, Robertson, and Balzarotti (2004) developed 

a framework for measuring the resilience of a signature-based 

Network intrusion detection system (NIDS) against an adversary. 

The authors employed mutation strategies for modifying known 

exploits. Mutations were applied at network, application and code 

level, and included modifying the shape of network packets, inject- 

ing malformed data, and hiding malicious code using polymorphic 

engines. Ten real world exploits were mutated using different 

strategies and used to measure the resilience of two NIDS prod- 

ucts. The experiment confirmed that evading the NIDS signatures is 

feasible, especially when combining different mutation techniques. 

Although this research has the injection of specific information 

to provoke a malfunction in a detection system in common with 

the attack that we describe in this paper, the problem varies 

significantly, since we are focused on malware classification. 

Other research focused on NIDS was presented by 

Pastrana et al. (2011) . It also takes advantage of genetic program- 

ming, in this case as a search heuristic for finding modification 

routines capable of evading a particular NIDS. These modification 

routines take a malicious network packet as input and apply 

different adjustments (e.g.: changing a particular value within the 

data payload, altering the TCP header, etc.). The authors tested 

the framework against C4.5 and Naïve–Bayes. By using this ge- 

netic search, the authors obtained individuals able of inducing 

non-negligible error rates in both classifiers, attaining a 37% 

classification error rate in the Naïve–Bayes classifier. In our work, 

by contrast, we are finding modifications to evade a correct family 

malware classification, rather than evading its detection (thus 

assuming that the sample will still be detected as malware with 

high probability). 

Genetic programming has also been successfully employed in 

fooling the detection of malicious code. In particular Xu et al. 

presented EvadeML, a framework for automatically evading PDF 

malware classifiers ( Xu et al., 2016 ). PDF files have been frequently 

used by attackers as hosts for embedded malware. The authors of 

that paper employed genetic search for finding the best modifica- 

tion strategy leading to evasion of detection by two PDF malware 

detection systems (PDFrate and Hidost) built on top of machine 

learning solutions. Up to 500 malicious payloads were successfully 

evaded using the discovered strategies. Again, an evolutionary 

algorithm is used to evade detection rather than to evade a correct 

classification between malware families. 

Another example of adversarial learning to evade the detection 

of malicious PDF files is the mimicry attack ( Maiorca, Corona, 

& Giacinto, 2013 ) that injects malicious code into a benign file 

using 3 different strategies: injecting an EXE (EXEembed), a PDF 

(PDFembed) or a Javascript (JSinject) payload. The evaluation of 

these tools shows high detection evasion effectiveness (100% for 

EXEembed and PDFembed and 80% for JSinject) on the 6 variants 

generated by the authors. Again, in contrast to our attack, this 

research is not focused on re-shaping malware for evading a 

correct classification and the domain is different. The evasion of 

PDF detection has been extensively analysed in Laskov (2014) , 

demonstrating the vulnerabilities of a known online PDF analyser 

to this kind of attacks. The interaction between malware families 

has indeed been studied but from an unsupervised learning per- 

spective, using clustering algorithms ( Biggio, Rieck et al., 2014 ). 

Here, the authors inject new samples into the training process 

with the aim of disrupting the result. 

On the Android side, there are new evasion strategies which 

aim to attack machine learning ( Grosse, Papernot, Manoharan, 

Backes, & McDaniel, 2016; Meng et al., 2016 ) and antivirus systems 

( Aydogan & Sen, 2015; Meng et al., 2016; Xue et al., 2017; Zheng, 

Lee, & Lui, 2012 ). The first technique in this area was ADAM 

( Zheng et al., 2012 ), which manipulates malware via re-packing 

and obfuscation. ADAM was created to audit antivirus systems 

and it showed good effectiveness against VirusTotal, reaching 

an evasion rate close to a 50%. In a similar line, Aydogan and 

Sen (2015) include a genetic programming framework to the 

obfuscation process, reporting an evasion effectiveness up to 33% 

against 8 antivirus systems. The effectiveness of evasion strategies 

was extended to new machine learning techniques, such as deep 

learning, by Grosse et al. (2016) , who were able to reach up to 

an 80% evasion rate by adding perturbations to the malware vari- 

ants through junk code. This effective strategy was also followed 

by Mystique ( Meng et al., 2016 ), and its extension, Mystique-S 

( Xue et al., 2017 ). The former uses a multi-objective genetic 

algorithm to reduce the classification rate of machine learning 

algorithms and anti-viruses, while it maximizes the attack be- 

haviour; the later generates the code dynamically to reach the 

same goal. They are able to evade the detectors up to 80% of the 

time for Mystique and 94% of the time for Mystique-S. An interest- 

ing case for evasion, out-of-the-box from the previous techniques, 

was introduced by Vidas and Christin (2014) who generated an 

attack based on red pills, i.e., detecting environmental conditions. 

This strategy combines the detection of behaviour, performance, 

hardware and software components. They were able to reach an 

86% evasion rate. Our tool, IagoDroid, is focused on attacking 

the static analysis features of a machine learning classifier, and 

it is able to reach a 97% evasion rate. Compared with the other 

related tools of the state of the art, it is a competitive result (for a 

summary comparing all the above mentioned tools, see Table 2 . 

6.3. Counteracting adversarial learning techniques 

The security community has worked both on testing classifica- 

tion systems built on top of machine learning techniques against 

different kinds of attacks and on designing countermeasures to 

deal with this problem. For instance, Chinavle et al. studied the 

effect of em ploying learning ensembles for combatting adversaries 

in a spam detection scenario ( Chinavle et al., 2009 ). Their approach 

demonstrated that through the use of different classifiers, it is 

possible to detect performance degradation (due to evasion attacks 

on behalf of a motivated adversary) and automatically repair this 

condition. Their approach allows the system to maintain a high 

degree of accuracy through time while reducing the number of 

re-training stages. 

Barreno et al. elaborated on the security and reliability of 

machine learning ( Barreno et al., 2006 ), proposing a framework to 

evaluate the security of a particular machine learning application. 

In the same line, Biggio, Fumera, and Roli (2014) proposed a 

framework to introduce countermeasures against attackers while 

designing the classifier, instead of applying them later during 

training or test stages. The main contribution of this work is the 

lack of bounds for a particular classifier, making the framework 

flexible. 
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Table 2 

A comparison among different evasion methodologies related to IagoDroid, separated in general techniques and Android specific. 

Method Target Type of attack Evasion rate 

PDF and Network 

Pastrana ( Pastrana et al., 2011 ) C4.5 & Naïve Bayes Network injection 37% 

Vigna ( Vigna et al., 2004 ) Network intrusion detectors Mutation of exploits 90% 

Biggio ( Biggio et al., 2013 ) SVM & Nearest Neighbour Noise injection & Gradient Descent up to 100% 

EvadeMl ( Xu et al., 2016 ) PDFRate & Hidost Genetic Programming 90% 

EXEembed ( Maiorca et al., 2013 ) PDF malware detectors EXE payload embedding up to 100% 

PDFembed ( Maiorca et al., 2013 ) PDF malware detectors PDF embedding up to 100% 

JSinject ( Maiorca et al., 2013 ) PDF malware detectors Javascript embedding up to 80% 

Laskov ( Laskov, 2014 ) PDFRate Noise injection up to 72% 

Biggio ( Biggio, Rieck et al., 2014 ) Behavioural Clustering Data poisoning 76% 

Android 

Mystique ( Meng et al., 2016 ) Anti-virus & Machine Learning Code injection & Genetic Algorithms up to 80% 

Mystique-S ( Xue et al., 2017 ) Anti-virus Dynamic code generation 94% 

Vidas ( Vidas & Christin, 2014 ) Dynamic Analysis tools Red Pills 86% 

Grosse ( Grosse et al., 2016 ) Deep Learning Perturbation up to 80% 

ADAM ( Zheng et al., 2012 ) Anti-virus Re-packing and obfuscation up to 50% 

Aydogan ( Aydogan & Sen, 2015 ) Anti-virus Genetic Programming and Obfuscation up to 33% 

IagoDroid RevealDroid Code injection & Genetic Algorithms 97% 

Table 3 

Summary of experimental results. The table shows, for each malware family, the number of generations re- 

quired to find a first solution, the average number of generations required to achieve convergence, the average 

number of modifications, and the feature that is most frequently changed. 

Family First sol. Avg. conv. Avg. mod. Feature 

Plankton 1 3.3 1.0 ACTION_INPUT_METHOD_CHANGED (0.7) 

GinMaster 1 3.7 1.0 SMS_MMS (0.6) 

Kmin 1 4.3 1.0 ACTION_USER_PRESENT (0.6) 

Glodream 1 4.7 0.8 ACTION_INPUT_METHOD_CHANGED (0.4) 

BaseBridge Inf Inf – –

Nyleaker 1 3.6 1.0 NETWORK__LOG (0.4) 

Gappusin 1 3.4 0.9 ACTION_INPUT_METHOD_CHANGED (0.3) 

Geinimi 1 3.9 1.0 NETWORK_INFORMATION (0.5) 

Imlog 1 4.7 1.2 ACTION_INPUT_METHOD_CHANGED (0.7) 

DroidKungFu 1 7.2 0.7 IPC__NETWORK (0.2) 

Iconosys 1 3.5 1.1 NETWORK__LOG (0.3) 

Adrd 1 3.6 0.8 ACTION_INPUT_METHOD_CHANGED (0.5) 

DroidDream 1 4.1 0.8 ACTION_INPUT_METHOD_CHANGED (0.4) 

Dougalek 1 3.5 1.0 ACTION_INPUT_METHOD_CHANGED (0.4) 

MobileTx 1 3.2 1.0 FILE (0.5) 

FakeInstaller 1 3.5 1.0 ACTION_INPUT_METHOD_CHANGED (0.5) 

ExploitLinuxLotoor 1 2.1 0.8 ACTION_INPUT_METHOD_CHANGED (0.4) 

Steek 1 3.9 1.0 ACTION_USER_PRESENT (0.4) 

Opfake 1 4.8 0.9 ACTION_INPUT_METHOD_CHANGED (0.5) 

Nandrobox 1 3.2 1.0 ACTION_INPUT_METHOD_CHANGED (0.4) 

Xsider 1 3.1 1.0 ACTION_INPUT_METHOD_CHANGED (0.6) 

Yzhc 1 4.5 0.8 ACTION_USER_PRESENT (0.4) 

Fatakr 1 3.2 1.0 ACTION_USER_PRESENT (0.7) 

FakeRun 1 4.4 1.0 ACTION_INPUT_METHOD_CHANGED (0.4) 

Mobilespy 1 3.1 0.9 ACTION_MAIN (0.4) 

Hamob 1 3.4 1.0 ACTION_INPUT_METHOD_CHANGED (0.3) 

Jifake 1 2.6 0.8 android.net (0.3) 

Fakengry 1 2.6 0.6 UNIQUE_IDENTIFIER_DB_INFORMATION (0.2) 

SMSreg 1 1.6 0.9 ACTION_INPUT_METHOD_CHANGED (0.3) 

Dalvi et al. (2004) studied the development of robust classifiers. 

They addressed the problem as a game between the attacker and 

the target classifier. In their approach, the attacker’s strategy is 

used as input for generating a classifier resilient to particular 

adversarial behaviour. Addressing the problem from a game the- 

oretical perspective, the authors improved the working of vanilla 

Naïve–Bayes classifier in a spam detection case, dramatically 

reducing the number of errors. 

From a more general point of view, the effectiveness of dif- 

ferent strategies that deal with evasion attacks has been studied 

elsewhere. For instance, Support Vector Machines have been 

evaluated ( Russu, Demontis, Biggio, Fumera, & Roli, 2016 ), con- 

cluding that the selection of the kernel function is crucial. Feature 

selection based countermeasures have been studied ( Budhraja & 

Oates, 2015 ), showing that this can be counterproductive since it 

reduces the accuracy of the classifier in some cases. There is also 

a framework focused on evaluating the potential attack scenarios 

due to the use of feature selection methods ( Xiao et al., 2015 ). 

Although the above countermeasures are able to successfully 

narrow the effects produced by attacks on machine learning clas- 

sifiers, they are mainly focused on detection problems: a binary 

classification between benign and malicious software. However, 

a classification task into different malware families constitutes a 

different scenario in which there can be an important number of 

classes closely located in the search space. 

7. Conclusions 

IagoDroid demonstrates that any Android malware classification 

scheme that relies exclusively on static analysis during triage is a 

sensitive process that can easily be destabilised. IagoDroid is able 

to fool the RevealDroid classifier into misclassifying the family for 



A. Calleja et al. / Expert Systems With Applications 95 (2018) 113–126 125 

28 out of 29 families in the dataset by modifying a single feature 

of the original malware. In the process, this attack generates up to 

14,0 0 0 new variants for 290 malware samples in just 2 min. 

As a countermeasure, we split the feature space into differ- 

ent overlapping sets where different classifiers work together to 

detect potential evasions. This method, named RevealDroid 

∗, is 

demonstrably effective for a small number of modifications but 

less useful when the number of modifications is high. In the 

latter case, it is able to reduce the number of evasive variants 

that IagoDroid generates, but cannot prevent it from generating 

at least some. In consequence, RevealDroid 

∗ forces producers of 

malware variants to find techniques to modify a higher number 

of features during the variants generation process. In the case 

where an evasive file is detected, our countermeasure is also able 

to track the original malware family, providing an opportunity to 

reconsider the malware priority during the triage process. 

This countermeasure shows some of the limitations of the 

evasion method. The first limitation is related to the adversarial 

environment. IagoDroid has full knowledge of the underlying 

classifier. This limits the possibility of having strong results in 

different scenarios, even when the technique may still be applica- 

ble. Another significant limitation of the technique is in the final 

generation of the variants, which in the current version requires 

human intervention to transform the suggested vector of changes 

into the actual variant. 

These limitations inspire several, possible lines of future work, 

starting from measuring the ability of IagoDroid to cause misclas- 

sification in commercial tools, such as antivirus engines. This line 

of research would require an extension to the tool’s capabilities 

such as providing automatic injection of changes within opaque 

predicates. From a research perspective, IagoDroid is useful for 

studying the limitations on the robustness of machine learning 

classifiers and, indeed, our future work will focus on defining 

sound measures based on evasion abilities. This will help to un- 

derstand which classifications algorithms are stronger than others 

when faced with adversaries for algorithms based on both static 

and dynamic analysis. Finally, the backtracking ability of our coun- 

termeasure can be understood as a Markov model among families 

and transitions. This knowledge can be used to study more deeply 

the different relationships among Android malware families. 
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