

UNIVERSIDAD AUTÓNOMA DE MADRID

ESCUELA POLITÉCNICA SUPERIOR

TRABAJO FIN DE MÁSTER

Desarrollo de entorno on line de programación para computación natural

Máster Universitario en Investigación e Innovación en Tecnologías de la Información y las

Comunicaciones (i2-TIC)

Autor: SAMI NAYYEF AL-DABBAGH, Bashar

Tutor: ORTEGA DE LA PUENTE, Alfonso

Departamento de Escuela Politécnica Superior

FECHA: 12, 2019

DESARROLLO DE ENTORNO ON LINE DE PROGRAMACIÓN PARA COMPUTACIÓN NATURAL

2

Approved by:

Dr. David Camacho, Advisor

School of EPS Ingeniería Informática

UAM

Universidad Autónoma de Madrid

 Dr. Miguel Ángel Mora

School of EPS Ingeniería Informática

UAM

Universidad Autónoma de Madrid

Dr. Marina de la Cruz

School of UCM Ingeniería Informática y

CIEMAT

Universidad Complutense de Madrid

 Dr. Francisco Saiz

EPS Ingeniería Informática UAM

Universidad Autónoma de Madrid

Dr. Sandra Gómez Canaval

School of Departamento de Sistemas

Informáticos ETSII UPM

Universidad Politécnica de Madrid

 Dr. Rafael Lahoz Beltra

Matemática Aplicada UCM

Universidad Complutense de Madrid

 Date Approved: Dec. 02 , 2019

3

ACKNOWLEDGEMENTS

I am overwhelmed in all humbleness and gratefulness to acknowledge my depth to all those

who have helped me to put these ideas, well above the level of simplicity and into something

concrete.

I would like to express my special thanks of gratitude to my Adviser who gave me a golden

opportunity to do this wonderful project on the topic "DESARROLLO DE ENTORNO ON

LINE DE PROGRAMACIÓN PARA COMPUTACIÓN NATURAL", which also helped me in

doing a lot of Research and I came to know about so many new things. I am really thankful to

him.

Any attempt at any level can’t be satisfactorily completed without the support and guidance

of my parents, my wife, brothers and friends.

I would like to thank my parents who helped me a lot in gathering guiding me from time to

time in making this project, despite their busy schedules, they gave me different ideas in making

this project unique.

Thanking you,

Bashar Sami Nayyef Al-Dabbagh

4

5

TABLE OF CONTENTS

ACKNOWLEDGEMENTS.. 3

TABLE OF CONTENTS ... 5

LIST OF FIGURES ... 7

LIST OF TABLES ... 9

ABSTRACT .. 10

CHAPTER 1. INTRODUCTION .. 11

1.1 MOTIVATIONS .. 11

1.2 OBJECTIVES AND APPROACH ... 13

CHAPTER 2. BACKGROUND AND RELATED WORK ... 14

2.1 BLOCK-BASED PROGRAMING ... 14

2.1.1 Blockly .. 15

2.1.2 Examples of Projects based on Blockly .. 16

2.1.3 End User Programming ... 18

2.2 CELLULAR AUTOMATA .. 19

2.2.1 Elementary Cellular Automata .. 19

2.2.2 Game of Life ... 21

2.2.3 Examples of Cellular Automata Simulators .. 22

2.3 NETWORK OF EVOLUTIONARY PROCESSORS (NEPS) .. 26

2.3.1 NEPs Architecture .. 27

2.3.2 Simulators Examples ... 28

CHAPTER 3. DESIGN AND METHODOLOGY ... 33

3.1 CELLULAR AUTOMATA .. 33

6

3.1.1 Elementary Cellular Automata .. 33

3.1.2 Game of Life ... 36

3.1.3 General Cellular Automata that can be represented in 2D grids ... 37

3.1.4 nD Cellular Automata ... 39

3.2 NEPS ON BLOCKLY .. 45

3.2.1 NEPs API .. 47

3.2.2 NEPs Blocks.. 48

3.2.3 NEPs Visual Representation .. 60

3.2.4 Example ... 61

3.2.5 Run on Server using http request ... 64

CHAPTER 4. RESULTS AND ANALYSIS .. 69

4.1 CELLULAR AUTOMATA BLOCKLY SIMULATOR... 69

4.1.1 Proposed example for the experiment ... 71

4.1.2 Survey Questions ... 75

4.2 CONDUCTING THE EXPERIMENT ... 76

4.2.1 Experiment’s Results ... 76

CHAPTER 5. CONCLUSION AND FUTURE WORK .. 84

5.1 CONCLUSION .. 84

5.2 FUTURE WORK .. 85

APPENDIX A QUESTIONNAIRE FOR EXPERIMENT .. 87

APPENDIX B. NEPS BLOCKLY EXAMPLES .. 88

1. SAT PROBLEM ... 88

2. HAMILTONIAN PATH PROBLEM .. 91

3. 3COLOR.. 93

REFERENCES .. 102

7

LIST OF FIGURES

FIGURE 1: EXAMPLE OF BLOCK-BASED PROGRAMMING [16]. ... 15

FIGURE 2: A SCREENSHOT OF A DEMO APPLICATION FOR BLOCKLY [14].. 16

FIGURE 3: PROJECTS BUILD BASED ON BLOCKLY PLATFORM. THE FIRST EXAMPLE IS FROM "BLOCKLY.GAMES" [14] AND THE

SECOND IS FROM "MAKE.GAMEFROOT.COM" [24]. ... 17

FIGURE 4: MIXED (BLOCKS AND TEXT) PLATFORM TO LEARN PROGRAMING BUILT BASED ON BLOCKLY [26]. 18

FIGURE 5:EXAMPLES OF ELEMENTARY CELLULAR AUTOMATA. THE RULES ASSOCIATED WITH THESE EXAMPLES ARE SHOWN

IN [9]... 20

FIGURE 6: EXAMPLE OF ELEMENTARY CELLULAR AUTOMATA RULES [9]. .. 21

FIGURE 7: A CELLULAR AUTOMATA SIMULATOR AS PRESENTED IN [42]... 23

FIGURE 8: A CELLULAR AUTOMATA SIMULATOR AS PRESENTED IN [43]... 24

FIGURE 9: A CELLULAR AUTOMATA EXAMPLE AS PRESENTED IN [44]. .. 25

FIGURE 10: NETWORK OF EVOLUTIONARY PROCESSORS (NEPS) SIMPLIFIED ARCHITECTURE. ... 27

FIGURE 11: A SCREENSHOT OF THE JNEPVIEW SIMULATOR [45]. .. 30

FIGURE 12: SCREENSHOT OF ATOM3 SIMULATOR. UML CLASS DIAGRAM WINDOW [46]. ... 31

FIGURE 13: SCREENSHOT OF ATOM3 SIMULATOR. VISUAL REPRESENTATION OF THE NEPS DESIGNED IN PREVIOUS FIGURE

[46]. ... 31

FIGURE 14: BLOCKS FOR IMPLEMENTING THE ELEMENTARY CELLULAR AUTOMATA. .. 34

FIGURE 15: ELEMENTARY CELLULAR AUTOMATA IMPLEMENTED USING BLOCKS OF THE CELLULAR AUTOMATA CATEGORY.

THE CELLULAR AUTOMATA SHOWED APPLIES RULE NO. 30 ON 40 ROWS OF THE GRID. .. 35

FIGURE 16: BLOCKS OF THE GAME OF LIFE CATEGORY. ... 36

FIGURE 17: GAME OF LIFE EXAMPLE WITH SETTING THAT LEADS TO SPACESHIP BEHAVIOR. .. 37

FIGURE 18: GAME OF LIFE EXAMPLE, RUN STEPS. IT CAN BE SEEN THAT THE SHAPE THE EXAMPLE STARTS WITH IN STEP 0

(INITIAL STATE) IS REPEATED AT SHOWN AGAIN IN STEP 4 SHIFTED ONE ROW AND ONE COLUMN................................. 37

FIGURE 19: BLOCKS OF 2D CELLULAR CATEGORY. ... 39

8

FIGURE 20: BOCKS OF ND CELLULAR CATEGORY. .. 42

FIGURE 21: OFFSET COORDINATES OF 2D GRID. THIS SCHEME CAN BE EXPANDED FOR ANY ND GRID. 43

FIGURE 22: COMPLETE SYSTEM OF PROPOSED PROJECT. IT CONSISTS OF CLIENT SIDE AND SERVER SIDE. 47

FIGURE 23: BLOCKS OF NEP CATEGORY. CONSISTS OF TWO BLOCKS: NEP CREATE AND NEP SET SYMBOLS. 50

FIGURE 24: BLOCKS OF CONNECTIONS CATEGORY IN NEP. IT CONSISTS OF TEN BLOCKS. THESE BLOCKS ARE USED TO SET

LINKS BETWEEN NODES OF THE NEP.. 51

FIGURE 25: EXAMPLES OF CONNECTION BLOCKS. ... 54

FIGURE 26: BLOCKS IN STOPPING CONDITION CATEGORY. ... 55

FIGURE 27: NEP SET NODE BLOCK. THIS BLOCK IS LOCATED INSIDE THE NODES CATEGORY. .. 58

FIGURE 28: RULES BLOCKS. THESE BLOCKS COVER ALL TYPES OF RULES WHICH HAVE BEEN ADOPTED IN THE LITERATURE.

 ... 59

FIGURE 29: FILTER BLOCKS.. 59

FIGURE 30: EXAMPLE OF THE VISUAL REPRESENTATION OF THE NEPS. ... 61

FIGURE 31: SIMPLE NEP EXAMPLE ON BLOCKLY. .. 62

FIGURE 32: BLOCKS FOR IMPLEMENTATION OF ELEMENTARY CELLULAR AUTOMATA USING THE ND TOOL. THE CA IS

IMPLEMENTED WITH RULE 30. .. 73

FIGURE 33: RESULTS OF RUNNING OF THE ELEMENTARY CELLULAR AUTOMATA IN FIGURE 19 FOR 29 STEPS ON 30X30

GRID. .. 74

FIGURE 34: 30X30 EMPTY TEMPLATE GRID. THIS GRID WILL BE PROVIDED PRINTED ON PAPER FOR THE CONTROL GROUP

(BY HAND ON PAPER). ... 75

9

LIST OF TABLES

TABLE 1: FEATURES COMPARISON OF CURRENT AVAILED CELLULAR AUTOMATA SIMULATORS AND THE SIMULATORS

PROPOSED IN THIS WORK. THE PROPOSED SIMULATORS OVERCOME ALL OTHER SIMULATORS. 26

TABLE 2: RESULTS OF THE FIRST TWO PARTS OF THE SURVEY (BASIC INFORMATION AND PREVIOUS SKILLS). 78

TABLE 3: RESULTS OF THE QUESTIONS IN THE THIRD PART OF THE SURVEY FOR BOTH GROUPS. ... 80

TABLE 4: EFFECTS OF BLOCKLY ON TIME CONSUMPTION, UNDERSTANDING OF CA, AND FUTURE INTEREST IN CA. 82

10

ABSTRACT

This work proposes a natural computer programming (for CA and NEPs) environment

platform using Blockly. The platform is a web-based tool that provides simulators for two well-

known natural computing systems: Cellular Automata (CA) and Network of Evolutionary

Processors (NEPs). CA programming blocks presented in this work provide the ability to design

and implement several types of CA including Elementary cellular automata, 2D cellular

automata, and nD cellular automata. The tool also provides a graphical representation of CA’s

grid through projection for any CA that has 3 or more dimensions. A NEPs Blockly

programming environment is presented in this work. It provides the ability to design and

simulate NEPs. Blocks are used as flexible user interface to enter NEPs specifications. The

blocks automatically generate a standard XML configurations code which can be sent to the

server side of the simulator for implementation. The tool also provides a graphical

representation for the static topology of the system.

Both CA and NEPs Blockly programming environments have been tested in several rather

academic examples. The work presents an online simulation platform for natural computing

algorithm using visual programing tool, namely Blockly. The proposed platform provides

software engineering tools for setting up algorithms and also ease of use especially for teaching

of these algorithm. The software engineering tools has been implemented on the NEPs as there is

much more software tools already presented for cellular automata. The software designed for

NEPs are a set of blocks to implement several types of connections between nodes. These blocks

reduce time and complexity in setting up NEPs with fully connected nodes, for instance. In the

other hand, cellular automata algorithm has been chosen to test the ease of the process of

teaching and learning natural computing algorithms as they are much better-known model. The

test has been conducted with students, teachers and researchers. Results of the experiment

showed that the CA Blockly simulator outperforms traditional manual methods of implementing

CA. It also showed that the proposed environment has desired features such as ease of use and

decreases learning time. The NEPs part of the system has been tested against several

applications. It showed that it provides a flexible designing tool for NEPs. It outperforms

traditional XML coding methods in terms of ease of use and designing time. In addition we have

designed specific high level constructs that automatize in some way the specific of complex

NEPs’ topologies by hand. They could be considered as embryonic software engineering tools to

program NEPs.

Our tool is considered a generic platform for web-based implementation. It has desired

features and wide range of properties that could attract the scientific community to adapt and

develop in the future.

11

CHAPTER 1. INTRODUCTION

1.1 Motivations

Natural inspired computing has been attracting interests in the last decades. Several models

and algorithms have been presented. Natural inspired computing has several advantages over

conventional computing such as parallel processing of data, resiliency, and low power

consumption. Network of Evolutionary Processors (NEPs) is one of the promising natural

inspired algorithms [1, 2]. A NEP consists of a number of cells connected via links. The cells

represent the processing units (nodes) in the system while the links are used to transfer data

between these processing units. Each node contains a series of words that represent its DNA in

the natural analogy. Words are processed by implementing simple operations such as insertions

and deletion of symbols from the words and transmitting and receiving words to/from other

nodes. NEPs are characterized by their simple structure, inherent parallel processing of data, and

adaptation to solve several problems. Several versions of NEPs have been proposed [3] which

have been successful applied on several problems [4]. For instance, NEPs show to be more

adequate at processing NP-problems compared to conventional computing [5]. Several

implementations of NEPs have been presented [6-8].

Cellular automata are another class of natural inspired computing models. They consist of

a grid of cells that change their state based on pre-specified rules through a number of discrete

time steps [9]. The rules are built to set the new state of a given cell based on the previous state

of that cell and the neighboring cells. The rules are applied to the grid iteratively as many times

as desired but to the complete grid simultaneously. Cellular automata were introduced by Von

Neuman and Stanislaw Ulam in the 1940s [10]. Cellular automata have several applications in

12

computer processors, cryptography, error correction code and more [11]. Due to its relatively

early introduction compared to NEPs, cellular automata have large number of implementations.

NEPs and cellular automata are presented here in the context of developing the motivations

of this research. Detailed introduction of both NEPs and cellular automata is presented in the

next chapter.

Almost all of NEPs implementations take complicated syntax specific inputs inform of

text. Some implementations use XML format to describe the executed NEP while others use

custom designed P-lingua. Using such types of input, users are expected to learn the syntax and

grammar of the input file. This leads to difficult experience for expected users and add extra

requirement in learning this technology. At the same time, most of the implementations for

cellular automata are not easy to access or learn.

Visual Programing Languages (VPLs) could be an alternative solution as input mechanism

to NEPs. VPLs is similar to Lego bricks where programing statements is represented as blocks

that can be connected in a prespecified way [12]. An example of VPLs is Scratch. It is blocks

based visual programming language that has been mainly used for educational purposes [13].

Another example is Blockly which is an open source library presented by Google [14]. Blockly

is a client-side visual code editor which has been used for several web and mobile applications

including education, games, and others. In [15], Blockly has been utilized as a visual

programming technique for multi-agent systems where the validity of using Blockly has been

successfully demonstrated.

13

In this project, we propose an implementation for NEPs and cellular automata using

Blockly. The proposed implementation is a web-based application that is free and easy to use. It

is explained in detail in the rest of this document.

The hypothesis of this project is that a development tool for natural computing, accessible online

and based on block languages and offering an effective and effective connection with simulators

of the different paradigms should popularize the use of these computer models. The main

objective of this project is to extend the current prototype by completing its functionality in the

following aspects

1.2 Objectives and approach

This project reduces the complexity of using natural computing. It also makes it available

online for ease of access. It focuses on simplifying the use and access of NEPs and cellular

automata using VLPs. The objectives of this work can be summarized as:

● Reduces the complexity of using natural computing algorithms, specifically NEPs

and cellular automata, by utilizing Blockly tool.

● Produce easy to access online simulator. If the simulators were executed in a

powerful server, it might lead to reduce required execution resources for the user.

● The new introduced simulator might reduce the execution time if a powerful server

is used.

The above three points are ordered based on importance which means that our main goal is

ease learning and access for natural computing. Other points can be considered as secondary

aims

14

CHAPTER 2. BACKGROUND AND RELATED WORK

2.1 Block-based programing

Block-based programing or coding is a visual methodology to write script/code in which

code texts is represented as blocks [16]. Each block is analogues to a specific task, statement, or

function in the text-based programing. Figure 1 shows an example of block-based programing

platform [16]. The blocks are distinguished by their names, color, and shapes. Building (writing)

a program is accomplished by connected a number of blocks on an order based on the purpose of

the program. This code development has gained attraction especially for learning purposed.

Several block-based programing platforms have been presented including Blockly [14], Scrach

[16], and PencilCode [17]. These platforms have been widely adopted especially by the learning

communities. They provide an easy to learn methodology to learn coding while cutting the

learning curve. For Instance, AppInverter platform has been used by more than one million

unique users in one month from 195 countries [18]. By the time of writing this document

Scratch platform has been used by more than 46 million registered users [19]. Block-based

programming has become a widely implemented approach for successful without requiring

considerable experience. This approach also represents an introduction to programming in an

accessible manner [20-22].

15

Figure 1: Example of block-based programming [16].

2.1.1 Blockly

 Blockly is a block-based code editor library which can be integrated in web or phone

apps [14]. It is an open source project originally developed by google. Like other similar

platforms, it used interconnected graphical blocks to represent code concept such as variable

definition, loops, conditional statement etc. It provides the ability to develop code by moving and

connecting blocks and without the need for writing scripts. Figure 2 shows a screenshot of a code

editor developed based on Blockly. In this example blocks are used to develop a simple program

that type the sentence “Hello World” for a number of times. As can be seen in this figure, the

blocks are interpreted into JavaScript code. In addition, this code editor can translate the blocks

into several other languages such as Python, PHP, Lua, and Dart.

 The Blockly platform provides several interesting features such as: uniform JavaScript

open source code, it is completely client-side platform and does not requires any server-side

processing. In addition, it is compatible with all major web browser and it can be customized and

extended.

16

Figure 2: A screenshot of a demo application for Blockly [14].

2.1.2 Examples of Projects based on Blockly

All these features made it one of the most used block-based programing libraries. For

instance, Code.org built off of Blockly platform a code editor for bother learning coding and

developing apps [15]. Makewonder.com [23] uses Blockly platform for robot programing.

Gamefroot.com uses Blockly for both building and running games [24]. Figure 3 shows

screenshots of two projects built based on Blockly platform. The first is “blockly.games” [14],

which is a website that provides several games which are played by using blocks. The second is

“gamefroot.com” [24], which takes Blockly to the next level to not only playing games but also

developing games.

17

Figure 3: Projects build based on Blockly platform. The first example is from

"blockly.games" [14] and the second is from "make.gamefroot.com" [24].

Several searchers have used Blockly to simplify programing and provide easy tools to

teach programing. For example, Alrubaye has used mixed of visual and text tool to teach

programing [25-26]. Figure 4 shows a screenshot of this platform. The visual tool uses Blockly

while the blocks are instantly shown to the user as translated code. Results of this work showed

that students can learn faster using this platform compared to text only.

18

Figure 4: Mixed (blocks and text) platform to learn programing built based on Blockly

[26].

In addition, visual programing tools have been used in several applications such as Alice

[27] and AgentCubes [28] which help the user to program three-dimension simulations. Other

projects have used blocks based programing to build modeling and simulation tools [29-31],

playing video games [34], [35], manipulating media [36], as well as mobile application

development [32], [33]. Moreover, an increasing number of tools and libraries have been

developed to ensure that new block-based languages or embed block-based programming

interfaces can be easily developed in existing applications [37], [38].

2.1.3 End User Programming

End user programing is writing application level scripts that simplify specific task within

the application [39]. Results of this script is intended to be personal and specified for one task.

For example, writing a script in Photoshop to apply filters on pictures with pre-determined

parameters is considered as an example of end user programing. Another example is writing a

script for processing data in a spreadsheet to calculate statistics. The syntax of such programing

is usually application specific. For this reason, the syntax could be complex for the user who are

19

not specialized in programing. Using block-based programing can simplifies the end user

programing where users are not required to learn any programing skills or memories syntax.

In the context of this work, end user programing is analogues to the settings or

parameters of the applications (Cellular automata and NEPs). For instance, some NEPs

simulation uses XML files to set its parameters (refer to the next sections for more details). This

file is written in a very specific form that is predefined and understood by the core of the

simulators. Since the simulation platform proposed in this work uses block based programing,

the end user programing will be highly simplified which leads to better user experience.

2.2 Cellular Automata

Cellular automata can be considered as a class of natural computing algorithm. It consists

of a grid of cells each with their states. The states of the cells are changed based on prespecified

rules. Several types of cellular automata have been presented in the literature such as elementary

cellular automata and game of life [9]. Some of these types are presented in the next subsections.

2.2.1 Elementary Cellular Automata

The simplest cellular automata family presented is “The Elementary Cellular Automata”

[9]. It is composed by a nontrivial linear set of cellular automata whose evolution is shown on

2D grids. It simulated line by line base and each cell has only two states (1 or 0). The new state

of a cell on one line depends on the state of the cell in the previous line and the two adjacent

cells in each side. The number of different options for the states of the cell and the two neighbor

cells is 23 = 8. This means that there are 8 possible patterns for the neighborhood. Figure 6 shows

a number of examples of rules. The ideal is to set the cell in the current row to one if the status of

20

the three cells in the row above matches the rule been implemented. For instance, in rule 30, the

cell will be changed to one on only four cases as can be seen in Figure 6.

The number of rules of this kind of cellular automata is thus, 28 = 256. This means that

there are 256 different rules for the 3 neighborhoods. Tens of papers analyzing the behavior of

these rules have been presented [9] [11]. Some of the rules, for instance rules showed interesting

behaviors. Figure 5shows the behaviors of some of them.

Figure 5:Examples of Elementary Cellular Automata. The rules associated with these

examples are shown in [9].

21

Figure 6: Example of Elementary Cellular Automata rules [9].

2.2.2 Game of Life

Game of life is a special version of cellular automata proposed by the British mathematician

John Horton Conway in the 1970s [40]. It is a two dimensional cellular automata where each cell

has only two state “live” or “dead”. This version of the cellular automata has no inputs except the

initial states of the cells. The states of the cells evolve based on predetermined sold rules. Unlike

the Elementary Cellular Automata, the game of life runs applies its rules on two dimensions.

This means that the rules are applied on all cells in each time step. The rules are built considering

that each cell has eight neighbors. The game of life has four main rules as follows:

● Any live cell with fewer than two live neighbors dies.

● Any live cell with two or three live neighbors’ lives for the next generation.

● Any live cell with more than three live neighbors dies.

● Any dead cell with exactly three live neighbors’ lives.

22

The game of life should start from a basic configuration of the cells. Based on the

configuration, the behavior of the cells in the grid will be changed. Several patterns of behavior

noticed such as: Still lives, Oscillation, and Spaceship. This Wikipedia page shows life demo of

some of these patterns [41].

2.2.3 Examples of Cellular Automata Simulators

Tens of cellular automata simulators have been presented throughout the past decades.

Most of these simulators are available online for free. This section introduces some of these

simulators while comparing their specifications with the proposed work. The comparison will be

built based on a number of factors which are related for instance ease of use, covered types of

cellular automata, and integration with other computational algorithms. The simulators presented

here are selected based on a Google search for the keywords “cellular automata simulators”.

Next is evaluation of the first three results in this search.

The first is an online open source simulator [42]. A screenshot of the website is presented

in Figure 7. The simulator provides colorful animation of cellular automata grid. It also provides

easy to use interface. On the other hand, it covers only one cellular automata type which is game

of life. Users are allowed to choose only specific cases of this types. The tool does not provide

the ability for the users to design their own rules.

23

Figure 7: A cellular automata simulator as presented in [42].

The second simulator is presented in [43]. This simulator provides clean and easy to use

interface with animation of the cellular automata grid as shown in Figure 8. However, it covers

only the elementary cellular automata. Users are allowed to only choose one of the 256 rules of

this kind of cellular automata. They are also provided with tools to manage the animation canvas.

At the time this simulator can be considered a simple starting point for users who are interested

in learning cellular automata, it does not provide flexibility for the users to develop their own

cellular automata models.

24

Figure 8: A cellular automata simulator as presented in [43].

The simulator presented in [44] is specialized in only 3D cellular automata. Figure 9

shows a screen shot of this simulator. It provides a nice-looking 3D representation of the cellular

automata grid with flexible navigation and rotation tools. However, as in the other examples, this

simulator does not cover all types of cellular automata and does not provide easy to use rules

designer.

25

Figure 9: A cellular automata example as presented in [44].

 The above-mentioned examples of cellular automata simulators have several interesting

features such as ease of use and nice interface. These features are suitable for users who are

interested in learning cellular automata especially those who are focusing on learning simple

examples. However, these simulators lack several features that are necessary for comprehensive

implementation of all kinds of cellular automata. They also do not provide the users with

sufficient tools to design and/or analyze cellular automata models based on flexible rules. Table

1 shows features comparison of the simulators already presented in this section and the simulator

proposed in this work.

 Unlike the examples discussed in this section, the simulator proposed in this work is

intended to cover all the features which are essentials for designing and analysis of cellular

automata. It provides easy to use interface with very high flexibility. It covers all types of

cellular automata including 3D cellular automata. The simulator also provides tools to design

26

rules with colorful cell state. Above all of these features, the simulators will be implemented

inside a Blockly platform which allows integrating the cellular automata models to other

computational algorithms.

Table 1: Features comparison of current availed cellular automata simulators and the

simulators proposed in this work. The proposed simulators overcome all other simulators.

Simulator Easy

Use

All

types

of CA

Rules

Designer

Colorful

State

3D

CA

Integration

with other

platforms

http://robinforest.net/

[42]

Yes No No Yes No No

http://devinacker.github

.io/celldemo/ [43]

Yes No No No No No

http://cubes.io/ [44] Yes No No No Yes No

Proposed simulator Yes Yes Yes Yes Yes Yes

2.3 Network of Evolutionary Processors (NEPs)

Network of Evolutionary Processors (NEPs) is class of the natural inspired algorithms [1,

2]. It consists of a number of small processors called “evolutionary processors”. These

processors can perform very simple operations on the received data before the data is sent to

another processor. It is theoretically capable of solving NP-problems with polynomial resources

[5]. NEPs are characterized by their simple structure, inherent parallel processing of data, and

adaptation to solve several problems. Several versions of NEPs have been proposed [3] which

have been successful applied on several problems [4]. It is known for its inherently parallel

processing of data. It was originally intended to be a hardware computing platform, however,

most of the successful realization of NEPs are software simulation. A number of NEPs

simulators are discussed later in this section.

http://robinforest.net/
http://cubes.io/

27

2.3.1 NEPs Architecture

NEPs consists of a number of processors. These processors are connected via links which

transmit data between processors in parallel. The transmitted data can be thought of as a DNA

sequence that are sent among cells. In this analogy, the evolutionary processors can be thought of

as cells or nodes. As the DNA sequence is been moved from one cell to another, it may evolve

by mutations. The mutations are performed based on selected operations in the evolutionary

processors. The number of processors, links, operations, and any other parameters may differ

from one network to another depending on the application.

Figure 10 shows a simple architecture of one NEPs. In this figure, the NEPs consists of

four processors that are connected in a ring topology. In addition to performing mutation

operation, the nodes contain filters to prevent or permit specific DNA sequence to pass through.

For this reason, each node might or might not be associated with filters.

Figure 10: Network of Evolutionary Processors (NEPs) simplified architecture.

28

The DNA sequence or “words” are processed by implementing simple operations such as

insertions and deletion of symbols from the words and transmitting and receiving words to/from

other nodes. In addition to these operations, several other factors govern the work of NEPs. Next

is a list of these factor:

1. Symbol set: These are a set of symbols which are forming the DNA or word

sequence. They can be thought as the alphabet for the transferred data.

2. Number of nodes: The number of nodes that form the network.

3. Connections: The pattern based on which the nodes are connected. This pattern

could be a regular network topology such as fully connected, ring, start etc. It

could be also set as an irregular pattern. Selecting this pattern completely depends

of the application or the problem in hand.

4. Stopping condition: The state of the network at which the operation stops. The

condition is selected based on the nature of the problem been solved. Four

stopping condition have been presented in the literature: Consecutive Config,

Maximum Steps, Words Disappear, and Non-Empty Node.

5. Rules: The operations performed in each node. A limited number of operations

have been presented in the literature such as Insertion, Substitution, Deletion, and

Splicing.

6. Filters: The filters are used at each node to permit or prevent specific words from

passing through this node.

More details about the NEPs setting parameters are presented in the next chapter.

2.3.2 Simulators Examples

29

Since it was presented, several software simulators for NEPs have been presented. The

simulators include bother visual and textual programing methodologies. In this sub-section, some

of these simulators will be presented. Early work by several research groups have presented

several versions of NEPs simulators [1-3]. These simulators, however, are now considered

outdated as they don’t cover the general NEPs concepts that have been developed since then. A

JAVA based simulators was presented in [4]. In the time this simulator made advances in terms

of the improving the performance by utilizing parallel implementation, it focused only on

decision making problems. In addition, flags have been raised about timing issues between

evolutionary processors and communication steps. In [7] a general NEPs simulator was

presented “jNEP”. It is intended to simulator any NEPs in the literature where this simulation

counted for all different variations of NEPs in terms of rules, filters, and connection. It also

provides an option for parallel execution which utilizes the inherent parallel nature of NEPs. In

addition, it is designed in an adoptable and flexible designed that make it easy to extend to

include new stopping conditions, filters, or evolutionary rules. This simulator takes an XML file

as an input. This file contains all necessary setting to describe any NEPs. The syntax of this file

is carefully designed and formed as a BNF. The outputs of the simulators are presented as text in

the terminal. This simulation was used as a base for the Blockly-based simulator presented in this

work. More details about this simulator and the adaptation methodology is presented in the

second section of the next chapter.

Based on jNEP another simulator “jNEPView is presented [45]. This simulator provides

a visual representation of the NEPs executed with tools to analyze its performance. With this

simulator users can track DNA sequence generated by each node.

30

Figure 11: A screenshot of the jNEPView simulator [45].

 The jNEPView provides visual representation for the network topology and the sequence

output, however, it does not provide a visual programing for the setting of the NEPs and users

manually write XML files to be entered to the simulators. In [46] a new simulator “AToM3” is

presented to fix this gap. This Python based simulator provides a visual methodology to setup

NEPs settings. NEPs settings are entered to the simulator as UML class diagram. Figure 12

shows UML class diagram design window. In the other end, generate a visual representation for

the NEPs with XML setting file. Figure 13 shows network topography of the NEPs designed in

Figure 12. This simulator uses geometrical shapes to represent different aspects of the NEPs

model. For instance, it uses small rectangle for stopping conditions, triangles for filters, and

ovals for rules.

31

Figure 12: Screenshot of AToM3 simulator. UML class diagram window [46].

Figure 13: Screenshot of AToM3 simulator. Visual representation of the NEPs designed in

previous figure [46].

While AToM3 provides appealing visual representation for the implemented NEPs, it

does not execute the model directly. Instead, it generates an XML file that is entered to jNEP for

implementation. The simulator proposed in this work provides the features of all of the

simulators mentioned in this section and more. It provides the following:

 Easy to use visual methodology to setup NEPs based on Blockly.

32

 Software solutions to automatically setup several regular network topologies.

 Visual representation of the network topography.

 Online implementation with server-side execution of the network which could

dramatically increases the performance.

Details about the proposed simulators are presented in the next chapter.

33

CHAPTER 3. DESIGN AND METHODOLOGY

The goals of his project can be divided into two main parts. The first is designing a web

based specification (programming) environment for some natural computers (NEPs and cellular

automata) utilizing Blockly for testing the adequacy of block languages for this purpose and

exploring some “software engineering” tools. The second is testing the system and checking the

validity of our hypothesis. The first section focuses on building the simulator for Cellular

automata. Blockly is used as input methodology to set up the setting for the different types of

cellular automata. The simulator is built within the blocks. This means that the simulation for the

cellular automata will be executed as JavaScript code in the web browser. The second section

present the NEPs simulator. The blocks are also used as input methodology to set up NEPs.

However, unlike cellular automata simulator, NEPs simulator is executed at the server side. This

means that the inputs entered using the blocks are structured and sent to the server to be executed

and the results are sent back.

3.1 Cellular Automata

In this section, we present the part of the system related with cellular automata. We will

show several examples by means of which we will describe the different parts of the system.

3.1.1 Elementary Cellular Automata

34

Elementary cellular automata can be considered as the simplest type of cellular automata.

It consists of 2D grid where each cell has only two states: on and off or 0 and 1. This type has

been introduced in chapter 2.

In the next paragraphs we will describe the blocks of the system related with this type of

cellular automata. Figure 14 shows the blocks in this category.

Figure 14: Blocks for implementing the Elementary Cellular Automata.

The first block is Cellular_simulator. This block was for learning purposes where it ran

the simulation of the cellular automata in one step. The next four blocks are breakdowns of the

work implemented by this block. These four blocks give flexibility for the user to design the

desired cellular automata.

The second block is Create. The block is used to set the size (height and width) and the

color of the “On” state of the cellular automata. The state could be any color out of the 70 colors

provided by the color input field. The Height and Width inputs are used to set the size of the

gird. These values can be larger than the size of the canvas. If these values are left to zeros, the

35

grid is automatically created to fill the canvas. As given by Cellular Automata Law, the cells in

the created grid are automatically set to be to the “Off” state. The third block is SetCell. This

block is used to set only one cell in the first line of the grid to the “On” state. More than one

SetCell blocks can be used to set more than one cell in the first line. The color of the cell set in

this block is changed to the color specified in the Create Block. The block is designed to accept

values that are within the size of the created grid. Otherwise, an alert message will pop up. The

SetRule block is used to specify the rule to be applied on the cellular automata. The input value

of this block could be any number between 0 and 255. The Run block is used to simulate the

cellular automata based on the setting specified on the previous three blocks. This block has only

one input which is the number of steps to be ran. In this specific case, each step means applying

the rule on the next row in the grid.

Figure 15 shows an example using the blocks of this category to implement an

Elementary Cellular Automata. The size of the grid is 48x48 that is ran over 40 rows using rule

no. 30.

Figure 15: Elementary Cellular Automata implemented using blocks of the Cellular

Automata category. The cellular automata showed applies rule no. 30 on 40 rows of the

grid.

36

3.1.2 Game of Life

This type of cellular automata has been introduced in chapter 2. This section introduces

blocks used to implement game of life. Figure 16 shows the blocks of the Game of Life

Category. Three blocks only are used in this category: Create, SetCell, and Run. The Create

block is similar to the create block of the previous category. It is used to create a grid of cells

with specific size and color for the “Live” state. All of the cells in the created grid are set to

initially be in the “dead” state. If the input size of the grid is bigger than the size of the canvas,

the website will show an alert message while if the inputs are zeros, the grid will be created to

full the whole canvas. The SetCell block is used to set one cell in the grid to “Live” state. It has

two inputs to specify the position of the cell in the grid using the row and column coordinates. A

number of this block can be used to set the state of any desired number of cells. The Run block

has only one input which is the number of steps to be ran. All of the cells in the grid are tested

using the game of life rule in each step at runtime.

Figure 16: Blocks of the Game of life category.

37

 Figure 17 shows a game of life example of a setting that generates a glider (refer to

this website mentioned above for examples of this behavior. The grid in this figure is before

applying game of life rule. Figure 18 shows the run steps of this example. It can be seen that the

initial state of the grid appears again in step 4, however, shifted one row and one column due to

the glider behavior of game of life.

Figure 17: Game of life example with setting that leads to spaceship behavior.

Figure 18: Game of life Example, run steps. It can be seen that the shape the example starts

with in Step 0 (initial state) is repeated at shown again in step 4 shifted one row and one

column.

3.1.3 General Cellular Automata that can be represented in 2D grids

In this category, blocks are designed to work on custom 2D cellular automata. The blocks

give the user the ability to start a cellular automaton from scratch through designing rules that

run on 2D as in game of life or in row by row as in the Elementary Cellular automata. These two

different simulation schemes can be implemented on the same grid simultaneously. Such

38

integration, provides the user the flexibility to simulate, analyze, and test different configurations

of cellular automata in one platform. It is also important to mention that the possible states of the

cells in this category are 70 which are the colored provide by the color input field.

Figure 19 shows the blocks in this category. Seven blocks are designed for this category.

Next is the description of each block. Some of the blocks are similar to the blocks described in

the above-mentioned categories such as the first and second blocks which are used to create grid

and set cell in the grid. SetRule 2D block is used to design rules for the 2D cellular automata (in

this block we assume Moore’s neighborhood, where each cell has eight neighbors in addition to

itself). This block takes ten inputs, nine inputs for the old state of the cell itself and the 8

surrounding neighbors while the tenth input is for the new state of the cell. As many blocks of

SetRule 2D can be used to set different rules. The rules are saved in the website to be

implemented using the run blocks. Run 2D block is similar to Run 2D block in Game of life

category. Run 2D line is used to apply the rules one line at a time. This category also includes

blocks that work with 1D implementation similar to the Elementary Cellular automata. The

setRule 1D is used to design rules for this purpose. It takes six inputs, the first five are for the

old state of the cell and the two neighboring cells form each side while the sixth input is for the

new state of the cell. Run 1D block is used to apply the 1D rules. It works on a single row at a

time. The two inputs of this block are to set the row and steps where the rules will be applied. It

processes cells in one row from left to right based on the number of steps been entered. If the

number of steps is too big, the processing will start back from the left. This will add toroidal

boundary conditions to the implementation.

39

Figure 19: Blocks of 2D cellular category.

3.1.4 nD Cellular Automata

The nD cellular automata is designed to be a generic implementation of any cellular

automaton. It covers any type of cellular automata with all varieties of rules and states. The grid

of cells could be designed to be of any dimensions starting from 2D up to any desired number

dimensions. Unlike the 2D cellular automata, the states of the cells in the nD cellular automata

expanded to cover any integer number. The nD cellular automata is also expanded to cover any

set of rules. The next section explains the blocks designed for the nD cellular automata, their

uses, and internal implementation.

Figure 20 shows the blocks of the nD Cellular category. This category contains six blocks

as follows:

Create nD: This block is used to create the nD grid of cells. It might look similar to the create

blocks of the other categories, however, it has more complicated tasks. It takes two inputs:

Dimensions, is used to set the number of dimensions of the cellular automata and Size: is used to

set the length of the dimensions. To simplify the work of the nD cellular, it is assumed that the

40

lengths of the dimensions of the nD cellular automata are the same. For example, using the

values: Dimension = 3, Size = 10 in this block will create a 3D cellular automata that has the

lengths of 10x10x10. The values of the cells of the nD cellular automata are saved in a 1D array

regardless of the dimensionality of the cellular automata. This approach requires the use of

appropriate transformation between nD coordinates (of the cellular automata) and 1D

coordinates (of the 1D array in the code used to save the values), this process will simplify the

overhead of saving grids of unspecified dimensions. Special JavaScript functions are designed to

transfer the nD coordinates to 1D coordinates and vice versa. The first function is nD2oneD.

This function is used to transfer nD coordinates to 1D coordinates. It takes three values as inputs:

the nD coordinates, number of dimensions in the cellular, and the length of the dimensions. The

transformation from nD to 1D is similar to the transformation from Binary to Decimal except

that in this function will use the length of the dimensions as base to this transformation. The next

Equation is used to change the indexes between nD and 1D as follows:

1𝐷𝑖𝑛𝑑𝑒𝑥 = ∑𝑛
𝑖=1 𝑛𝐷𝑖𝑛𝑑𝑒𝑥𝑖

𝑑

where:

n: is the number of dimensions

d: is the length of the dimensions (the same for all dimensions).

For example, consider the coordinate {3,7,2} a 3D grid with sizes 15x15x15. The 1D coordinate

(index) of this 3D coordinates is calculated as follows:

41

1Dindex = 3 * 150 + 7 * 151 + 2 * 152

1Dindex = 3* 1 + 7 * 15 + 2 * 225

1Dindex = 558

The second function is oneD2nD. This function is used to transfer 1D coordinates to nD

coordinates. It takes three values as inputs: the 1D coordinate, the number of dimensions in the

cellular, and the length of the dimensions. The transformation from 1D to nD is similar to the

transformation from Decimal to Binary except that in this function will use the length of the

dimensions as base to this transformation.

For example, consider the 1D index 558. The 3D coordinates of a 3D grid with size

15x15x15 is calculated as shown in the next table:

Base 1D 1D÷15 reminde

r

15 558 558÷15 =

37

3

15 37 37÷15 = 2 7

15 2 2÷15 =0 2

 0

According to the above table the 3D coordinates is {3,7,2}.

42

Figure 20: Bocks of nD Cellular Category.

Set Cell: This block is used to change the state of one cell in the nD grid. It takes two inputs:

Cell Coordinates which is used to enter the coordinates of the cell to change its state and State

which is the new state of the cell. Since the number of the dimensions of the grid is not specified

until run time, the coordinates of the cell to be set is entered as text. For example, the coordinates

of the 3D grid (3, 7, 2) is simply entered as “3, 7, 2” with comma separating the numbers. In

JavaScript, the .split () method is used to change the entered text into a numerical array. For

instance, it transfers the text “3, 7, 2” to the 1D numerical array [3, 7, 2]. Any number of this

block can be used to change the states of any number of cells in the grid as desired.

Set Rule nd: This block is used to design the rules of the cellular automata. It is used in

combination with the next block in this category, Rule Part. As explained in the previous

43

chapter, each rule depends on the states of a number of or all of the neighboring cells in the grid.

However, the numbers of neighboring cells in the nD grids varies depending on the number of

the dimensions of the grid. For example, the number of neighboring cells for the 2D, 3D, and 4D

grids are 8, 26, and 80 respectively. It is not possible to design block with such undetermined

number of inputs. For this reason, the rules in the nD cellular automata are designed using these

two blocks. The first block, Set Rule nd, serves for two purposes. The first is to take the new

state of the rule while the second is to be used as a container for the second block, Rule Part.

This block takes the coordinates of one neighboring cell and its state. The coordinates of the

neighboring cells are specified by means of offsets from the center cell that is the current one.

For instance, the cell to the left side of the center cell can be referred to in offset coordinates as

{0,-1} while the sell under the center cell can be referred to in offset coordinates as {1, 0}.

Figure 21 shows offset coordinates of 2D grids. This scheme can be expanded for any nD grid.

Offsets are entered as text and they are processed in the same way as in the Set Cell block.

Figure 21: Offset coordinates of 2D grid. This scheme can be expanded for any nD grid.

Unlimited number of Part Rule blocks can be used inside Set Rule nd block depending on

the rule and the number of dimensions of the grid. Using these two blocks, any rule can be

44

designed for any cellular automata regardless of the number of dimensions or length of any

dimension. Unlimited number of rules can be entered to the system. All of the rules will be

applied to the cellular automata in the order they entered.

Run nD: This block is used to apply the nD rules to the nD cellular automata grid. This block is

similar to all other Run blocks in terms of the abstract functionality. However, it is much more

complicated considering that it works on nD grids. The oneD2nd and the nD2oneD functions are

continuously used in the code of this block. In addition, an extra function is used:

nD2oneDoffset. This function is used to specify the neighbors of the cell in rule based on the

offset. It takes the coordinates of the cell and the offset of the neighbor and change it directly to

the 1D index, so the run block takes the value of this neighbor from the 1D matrix. The steps of

this function are: (1) adding the offset to the coordinates of the cell, and this will give the

coordinates of the neighbor, (2) changing that coordinates to the 1D representation using the

function nD2oneD as described above. There is a condition inserted between these two steps.

This condition ensures that the neighbor cell will not be out of the cellular length. The usual

toroidal boundary conditions are used in this case too.

Display: This is a unique block that is not included in all other categories. It is used to show the

grid of the implemented cellular automata. If the number of dimensions of the cellular automata

is 3 or higher, it is impossible to show such grid on a 2D canvas without projection. One 2D slice

of the nD cellular automata will be shown at a time. The display block will be used for this

purpose. The display block shows a 2D projection of any nD cellular automata. The input

“Projection Axes” controls the projection. In general, for any 2D projection, two types of inputs

45

are required. The first one is used to select the two axes that will be projected. The second one, is

used to set specific values for the other axes. For example, if we want to extract 2D projection

for a 3D model, that means we want to show a 2D slice of that 3D model. Let’s assume that we

have a 3D model in which each axis is of length 10. This would give us a cube that contains

1000 cells coming from 10 length by 10 width by 10 height. If we want to do a 2D projection of

this model, it means that we will show a 10 by 10 slice of the 3D model. This slice should have a

full span of two of the axes and a specific value of the third axis. So if we enter x, x, 3 in the

display block, it means show the third horizontal slice of the 3D model. In the same way x, 5, x

means show the fifth vertical slice in the width direction while 6, x, x means show the sixth

vertical slice the length direction. To summarize, the input to the display block should contain a

series of “x” characters and numbers. The length of the series should be equal to the number of

dimensions of the CA. The “x” character means that this particular axis should have a full span

while a number means that this axis should have that specific constant value in for this

projection. There should be only two “x” characters as we are doing a 2D projection. This block

also used to change the cell’s states values into color so that they can be shown in the canvas as

colored cells.

3.2 NEPs on Blockly

The Blockly system for NEPs is a tool that uses custom designed blocks to design NEPs,

generate XML configuration structure. The resulted XML can be considered as input to another

different tool developed in [6]. The system described in this document is designed with four

specifications in mind:

46

1. The ability to design, implement and show results of the most recent update of NEPs in

the literature.

2. Utilize the recent tools presented in the field to reduce development time.

3. Easiness for the user.

4. The flexibility to adapt for any future development such as add more rules, filters, and

stopping conditions or connect the tool to other remote servers.

 Figure 22 shows a schematic of the NEPs tool. The client side is a website designed to

take user inputs in form of Blockly programs. Their blocks are designed to represent features and

properties of NEPs. The website interprets the blocks into an XML configuration file for NEPs.

The XML configuration file is sent in an Http request to the server side where the NEP is

simulated. The output of the simulation is sent back to the client side. The output of the

simulation will be shown to the user as text and as a graphical representation. In addition, the

tool contains extra features such as auto-generate of edges of the NEPs.

47

Figure 22: Complete system of proposed project. It consists of client side and server side.

From Figure 22, we can divide the workload of the development process of the tools into

server side and client side. The server side includes the development of a NEPs simulator API

which runs on a remote server. The client side includes the development of blocks, http request

handler, and show results. This section describes the development process of all of these

components in details.

3.2.1 NEPs API

The NEPs API is developed based on a tool called jNEP which was proposed by Emilio

Garia [6]. jNEP is a software tool that simulates NEPs. It takes XML configuration file as input

and print the output on console terminal. jNEP provides various desired features for running such

type of natural computing systems. It is built to be a generic platform that can be updated as

48

needed to adapt to any new changes or additions to the concept or implementation of NEPs. It

can also be executed in a Java parallel computing platform.

The NEPs API is built by updating jNEP. The update process includes the following steps:

1. Update the main method of jNEP to a regular method that received XML configuration

code as a string.

2. Test the new method with available examples from the literature.

3. Redirect the console.print to a text file instead of the operating system.

4. Test (Same as step 2)

5. Temporarily save the file on the server. And used it as a return value for the method.

6. Build Java restful API base off of the new created method. This API receive XML

configuration file of a NEP as input and return a text file of the results as output.

7. Test the API locally (Same inputs as in step 2).

8. Deploy the API on an online server.

9. Test the online version of the API (Same inputs as in step 2).

The steps described above were striate forward and I faced no major challenges while

performing them. However, there is only one con that I faced at deploying the API. It was very

hard to find a hosting server that support Java restful API. The once that are found were rather

expensive.

3.2.2 NEPs Blocks

There are two main purposes for these blocks. The first one is to receive and process users’

inputs to generate the equivalent XML configuration of the desired NEPs. The second is to

49

generate a static visual representation of the designed NEPs structure. This chapter discusses the

blocks in detail. The blocks used for NEPs are classified into six categories as follows:

● NEP

● Connections

● Stopping Condition

● NODEs

● Rules

● Filters

Each one of these categories cover specific aspects of the NEPs. As it has been mentioned

several times, the end goal of these blocks is to generate the XML configuration file that

describes the specific NEP. The first block “NEP Create” create an XML object as a public

variable. This object can be accessed by all of the blocks in the system. Each bloc can edit this

XML object based on the data gained from the user. As blocks are implemented, the XML

configuration code is written. It is also important to mention that this XML object is also used as

a way to communicate between the blocks because it carries all of the information about the NEP

while it is designed. For example, the set edge blocks can extract the number of nodes from this

object. This information is vital to test whether the vertex values entered by the user are within

the range of the nodes in the NEP.

The next section describes the blocks of each category:

NEP: This category includes two blocks. The first block is NEP Create. This block is used to

create a NEP. It has only one input which is No. Nodes. It takes an integer number that

represents the number of nodes in the NEP to be created. The second block is NEP Set Symbols.

50

This block is used to set the symbols of the NEP. Any number of symbols can be entered. Figure

23 shows these blocks.

Figure 23: Blocks of NEP category. Consists of two blocks: NEP Create and NEP Set

Symbols.

The blocks in the NEP category generate XML code based on the standard BNF format as

follows that has been taken from [6].

- [configFile]::=<?xmlversion=”1.0”?><NEPnodes=“[integer]”>[alphabetTag][graphTag][pro-

cessorsTag] [stoppingConditionsTag] </NEP>

- [alphabetTag] ::= <ALPHABET symbols=“[symbolList]”/>

Connections: This category includes a number of blocks to create edges between the nodes

within the NEP. The edges in the NEP are considered as links to transferee information between

nodes. In this category, ten blocks are included to create, remove and manages edges. Figure 24

shows these blocks.

51

Figure 24: Blocks of Connections category in NEP. It consists of ten blocks. These blocks

are used to set links between nodes of the NEP.

The blocks in this category are explained below. To see how they work you can follow

the examples in Figure 25.

The first block is Graph Add Edges. This block is used to set one or more edges

between two nodes or more nodes. It has two inputs: Vertix1 and Vertex 2 which represent the

number of nodes to be connected with these edges.

With NEPs that has high number of edges, fully connected NEP for instance, it will be time

consuming to use only this block to set the edges. For this reason, seven extra blocks are added

to this category. These blocks are used to set a number of edges as one package in one step. The

blocks cover four main types of network topologies including ring, star, line, and fully

connected. These blocks will reduce the amount of work and time consumed by used to set up

such highly connected network using the first block. The points 2-8 explains these blocks. These

constructs are not part of the basic NEP definition. They could be considered as a kind of

“software engineering” feature that automatically generates the proper connections for these

types of topology.

52

1. Graph Ring: This block adds edges between all nodes of the NEP to create ring

topology. It creates n-1 edges, where n is the number of nodes in the NEP. This block

has no inputs.

2. Graph Ring Limited: This is a limited version of the previous block. It creates edges in

ring fashion between specific nodes. The number of these nodes are entered to the block

separated by comma.

3. Graph Star: This block is used to create edges between all nodes to form star network

topology. It has only one input which is used to set the center node of the star topology.

4. Graph Line: This block creates line network topology between sequenced nodes in the

NEP. It has two inputs Start Node and End Node which are used to specify the nodes at

the start and end of the line topology.

5. Graph Line Limited: This block is similar to the previous block; however, it creates line

topology between specific node. It has one input to specify the nodes included in this

topology.

6. Graph Fully Connected: This is one of the important blocks in this category. It creates

fully connected network topology between all nodes in the NEP. It is very common in the

NEP literature to create fully connected NEP with a number of edges that is equal to nXn,

where n is the number of nodes in the NEP. This block comes handy to auto-generate this

high number of edges in one step.

7. Graph Fully Connected Limited: This block is similar to the previous block; however,

it creates a fully connected topology between specific nodes.

8. Graph Remove Edges: This block is used to remove edges from the NEP.

53

9. Graph Remove Duplicates: This block is used to remove any duplicated edges. The

duplicated edges can be resulted from using to auto-generate blocks.

The resulted code of all of these blocks follows the standard BNF format provided in the

literature [6]:

- [graphTag]::=<GRAPH>[edge]</GRAPH>

- [edge] ::= <EDGE vertex1=“[integer]” vertex2=“[integer]”/> [edge]

- [edge] ::= λ

Figure 13 shows these blocks.

54

Figure 25: Examples of connection blocks.

55

Stopping Conditions: This category contains blocks that cover all types of stopping conditions

in the literature. Four blocks are designed to represent the four main stopping conditions. The

blocks in this category are shown in Figure 26.

Figure 26: Blocks in Stopping Condition category.

The supported stopping conditions can be easily expanded to cover more conditions. The

curretrly supported stopping conditions blocks are:

1. Maximum Steps: It forces the NEP to stop after running for a number of steps. It has

only one input which is the number of steps as integer.

2. Words Disappear: It forces the NEP to stop when all of the specified words are no

longer in the NEP. This block has only one input as text for the word to disappear. The

words are entered with a comma separating them.

56

3. ConsecutiveConfig: This block is to represent the ConsecutiveConfig stopping

condition. This block has no inputs. According to this type of Stopping condition, the

NEP stops the first time a configuration is repeated in two consecutive cycles of the NEP.

4. Non-Empty Node: This stopping condition forces the NEP to stop if the specified node

is not empty. Such stopping condition is used for NEP that has an output node.

Using any of the above block will add its related code to the XML file. The syntax of the resulted

specifications of the stopping condition in the next BNF format taken from [6] is as follows:

-[stoppingConditionsTag] ::= <STOPPING CONDITION> [conditionTag] </STOPPING

CONDITION> - -

[conditionTag]::=<CONDITIONtype=“MaximumStepsStoppingCondition”maximum=“[integer]

”/> [conditionTag]

-

[conditionTag]::=<CONDITIONtype=“WordsDisappearStoppingCondition”words=“[wordList]”

/> [conditionTag]

- [conditionTag] ::= <CONDITION type=“ConsecutiveConfigStoppingCondition”/> [condition-

Tag]

-

[conditionTag]::=<CONDITIONtype=“NonEmptyNodeStoppingCondition”nodeID=“[integer]”/

> [conditionTag]

- [conditionTag] ::= λ

NODEs: This category contains only one block which is named NEP Set Node. Figure 27

shows this block. This block is used to add nodes to the NEP. Each block of this type that is

added to the system produce a node in the resulted XML. This block has to inputs: initCond and

auxiliaryWords which are used to set the initial condition and auxiliary words of the node

respectively. The node also accepts two type of internal blocks: Rules and Filters. These rules are

57

used to set the rules and filters of the generated node. The Rules and Filters blocks are discussed

in the next subsections.

The BNF syntax for this block taken from [6] is as follows:

- [nodeTag] ::= <NODE initCond=”[wordList]” [auxWordList]> [evolutionaryRulesTag] [node-

FiltersTag] </NODE> [nodeTag]

- [nodeTag] ::= λ

- [auxWordList] ::= auxiliaryWords=”[wordList]” | λ

- [evolutionaryRulesTag]::=<EVOLUTIONARY RULES>[ruleTag]</EVOLUTIONARY

RULES>

- [ruleTag] ::= <RULE ruleType=“[ruleType]” actionType=“[actionType]” symbol=“[symbol]”

newSymbol=“[symbol]”/> [ruleTag]

-

[ruleTag]::=<RULEruleType=”splicing”wordX=“[symbolList]”wordY=“[symbolList]”wordU=“

[symbolList]” wordV=“[symbolList]”/> [ruleTag]

-

[ruleTag]::=<RULEruleType=”splicingChoudhary”wordX=“[symbolList]”wordY=“[symbolList

]” wordU=“[symbolList]” wordV=“[symbolList]”/> [ruleTag]

- [ruleTag] ::= λ

- [ruleType] ::= insertion | deletion | substitution - [actionType] ::= LEFT | RIGHT | ANY

[nodeFiltersTag] ::= <FILTERS>[inputFilterTag] [outputFilterTag]</FILTERS>

[nodeFiltersTag] ::= <FILTERS>[inputFilterTag]</FILTERS>

[nodeFiltersTag] ::= <FILTERS>[outputFilterTag]</FILTERS> [nodeFiltersTag] ::=

<FILTERS></FILTERS>

- [inputFilterTag] ::= <INPUT [filterSpec]/>

- [outputFilterTag] ::= <OUTPUT [filterSpec]/>

-

[filterSpec]::=type=[filterType]permittingContext=“[symbolList]”forbiddingContext=“[symbolL

ist]” - [filterSpec] ::= type=“SetMembershipFilter” wordSet=“[wordList]”

- [filterSpec] ::= type=“RegularLangMembershipFilter” regularExpression=“[regExpression]”

- [filterType]::=1|2|3|4

58

Figure 27: NEP Set Node block. This block is located inside the NODEs category.

Rules: This category contains blocks that cover all types of rules available in the literature.

Figure 28 shows the blocks included in this category. The blocks are discussed below:

1. NEP Set Rule Insertion: This block represents the insertion rule of the NEP. It has three

inputs: a dropdown list to select the action type (left, right, any), symbol, and the symbol

itself.

2. NEP Set Rule Substitution: This block represents the substitution rule. It has two

inputs: the old and the new symbols.

3. NEP Set Rule Deletion: This block represents the Deletion rule and has only one input

to specify the symbol to be deleted.

4. NEP Set Rule Splicing: This block can be used to represent the two types of Splicing

rule: Splicing and Splicing Choudhary. It has five inputs: a dropdown list to select the

type of splicing rules and four extra inputs for the four words involved in the rule, that

are, word x, word y, word U, and wordV.

Figure 16 shows these blocks.

59

Figure 28: Rules blocks. These blocks cover all types of rules which have been adopted in

the literature.

As in the case of stopping condition, the system can easily be expanded to cover any new types

of rules.

Filters: The filter category contains three blocks that represent the four standards filters and two

membership filters. The blocks in this category are shown in Figure 29 The blocks are discussed

in detail as follows:

Figure 29: Filter blocks.

60

1. NEP Set Filter: This block is used to set any of the four standard types of filter. In has

four inputs: two dropdown lists to select the direction (input, output) and the Filter type

while the other two to set the Permitting and Forbidding Contexts.

2. NEP Membership Filter: It represents the membership filter and has only one input to

specify the set of word to be permitted.

3. NEP RegularLang Filter: It is used to set regular expressions based filters. This block

has two inputs: a dropdown list to set the direction and another input to set the regular

expression.

3.2.3 NEPs Visual Representation

The proposed Blockly tool for NEPs provides a visual representation of the static NEP

topology while the user is designing it. The topology includes the nodes and the edges that are

connecting them. Figure 18 shows an example of the visual representation for the NEPs. The tool

represents the nodes as red circles. Each node is labeled with its integer number that is also its

sequential number. The edges are represented as black lines connecting the nodes.

In previous figures we have shown several examples of this graphic NEPs representation.

Figure 30 shows one more example.

61

Figure 30: Example of the visual representation of the NEPs.

3.2.4 Example

In this example we demonstrate the system ability to auto generate XML configuration

file for a simple NEP. This example was originally presented in [6] and it was used to test the

jNEP simulator. In this section, the same example is used to test the new proposed tool. This

NEP consists of two nodes that are connected. The first node inserts the symbol B while the

second one deletes it. The system has two symbols A and B. The first node starts with the word

A_B as an initial condition while the second node has no initial condition. The NEP stops after

executing 8 steps. Using the proposed Blockly system, we will design this example. Figure 31

shows the Blockly design for this example.

62

Figure 31: Simple NEP example on Blockly.

 After running this Blockly program. The system successfully generated the desired XML

file with accurate configuration. Next is the generated XML code:

<?xml version="1.0"?>

<!--NEP Config file-->

<!--This xml file is autogenerated from blockly-->

<NEP nodes="2">

 <ALPHABET symbols="A_B"/>

 <GRAPH>

 <EDGE vertex1="0" vertex2="1"/>

 </GRAPH>

 <EVOLUTIONARY_PROCESSORS>

63

 <NODE initCond="A_B">

 <EVOLUTIONARY_RULES>

 <RULE ruleType="deletion" actionType="ANY" symbol="B"
newSymbol=" "/>

 </EVOLUTIONARY_RULES>

 <FILTERS>

 <INPUT type="2" permittingContext="A_B"
forbiddingContext=""/>

 <OUTPUT type="2" permittingContext="A_B"
forbiddingContext=""/>

 </FILTERS>

 </NODE>

 <NODE initCond="">

 <EVOLUTIONARY_RULES>

 <RULE ruleType="insertion" actionType="RIGHT"
symbol="B" newSymbol=""/>

 </EVOLUTIONARY_RULES>

 <FILTERS>

 <INPUT type="2" permittingContext="A_B"
forbiddingContext=""/>

 <OUTPUT type="2" permittingContext="A_B"
forbiddingContext=""/>

 </FILTERS>

 </NODE>

 </EVOLUTIONARY_PROCESSORS>

 <STOPPING_CONDITION>

 <CONDITION type="MaximumStepsStoppingCondition" maximum="8"/>

 </STOPPING_CONDITION>

64

</NEP>

3.2.5 Run on Server using http request

Once the NEP is designed and a complete XML configuration code is generated, the

designed NEP can be executed on the server. The generated XML is sent to the server using an

http request. The user can run NEPs on the server by clicking on the button labeled “RUN ON

SERVER”. This http request is implemented as a function that is triggered by clicking on this

button. When the results are back from the server, it is shown on a separate text area.

Next is the result of running the XML code of the example from the previous sub-section:

XML CONFIGURATION FILE LOADED AND PARSED SUCCESSFULLY...

GRAPH INFO PARSED SUCCESSFULLY...

STOPPING CONDITIONS INFO PARSED SUCCESSFULLY...

EVOLUTIONARY PROCESSORS INFO PARSED SUCCESSFULLY...

NEP RUNNING...

*************** NEP INITIAL CONFIGURATION

 --- Evolutionary Processor 0 ---

A_B

 --- Evolutionary Processor 1 ---

evolving: 16

65

*************** NEP CONFIGURATION - EVOLUTIONARY STEP - TOTAL STEPS: 1

 --- Evolutionary Processor 0 ---

A

 --- Evolutionary Processor 1 ---

output filtering: 0

delivering and input filtering: 0

*************** NEP CONFIGURATION - COMMUNICATION STEP - TOTAL STEPS:
2 ***************

 --- Evolutionary Processor 0 ---

 --- Evolutionary Processor 1 ---

A

evolving: 0

*************** NEP CONFIGURATION - EVOLUTIONARY STEP - TOTAL STEPS: 3

 --- Evolutionary Processor 0 ---

 --- Evolutionary Processor 1 ---

A_B

66

output filtering: 0

delivering and input filtering: 0

*************** NEP CONFIGURATION - COMMUNICATION STEP - TOTAL STEPS:
4 ***************

 --- Evolutionary Processor 0 ---

A_B

 --- Evolutionary Processor 1 ---

evolving: 0

*************** NEP CONFIGURATION - EVOLUTIONARY STEP - TOTAL STEPS: 5

 --- Evolutionary Processor 0 ---

A

 --- Evolutionary Processor 1 ---

output filtering: 0

delivering and input filtering: 0

*************** NEP CONFIGURATION - COMMUNICATION STEP - TOTAL STEPS:
6 ***************

 --- Evolutionary Processor 0 ---

67

 --- Evolutionary Processor 1 ---

A

evolving: 0

*************** NEP CONFIGURATION - EVOLUTIONARY STEP - TOTAL STEPS: 7

 --- Evolutionary Processor 0 ---

 --- Evolutionary Processor 1 ---

A_B

output filtering: 14

delivering and input filtering: 0

*************** NEP CONFIGURATION - COMMUNICATION STEP - TOTAL STEPS:
8 ***************

 --- Evolutionary Processor 0 ---

A_B

 --- Evolutionary Processor 1 ---

----------------------- NEP has stopped!!! -----------------------

68

Stopping condition found:
net.e_delrosal.jnep.stopping.MaximumStepsStoppingCondition

--

We are glad you used jNEP

Orignally designed by: Emilio del Rosal

Made available online through blockly by: Bashar Sami

69

CHAPTER 4. RESULTS AND ANALYSIS

This chapter discusses and evaluates the contributions of this work. The work presents an

online developing platform for natural computing algorithm using visual programing tool,

namely Blockly. The proposed platform provides software engineering tools for setting up

algorithms and we try to also ease the teaching-learning process of these models of computation.

The software engineering tools has been implemented mainly on the NEPs part as there is much

more software tools already presented for cellular automata. The software designed for NEPs are

a set of blocks to implement several types of connections between nodes. These blocks reduce

time and complexity in setting up NEPs with fully connected nodes, for instance. In the other

hand, cellular automata algorithm has been chosen to test the ease of the process of teaching and

learning natural computing algorithms as they are much better-known model. The test has been

conducted with students, teachers and researchers. The software tools designed for NEPs have

been already presented in the previous chapter with examples. This chapter introduces the

experiment conducted to examine the ease of teaching of natural computing algorithm using the

proposed Blockly based simulator compared to conventional manual implementation.

4.1 Cellular Automata Blockly Simulator

The Cellular Automata system on Blockly provides an easy methodology for researchers in

natural computing projects. The validity of the system was tested by means of an experiment

which includes two groups of users. The first group (test group) will be asked to implement CA

examples using the proposed Blockly system. The second group (control group) will be asked to

implement the same CA examples manually on paper. After the test, both of the groups will be

asked to fill a questionnaire that is used to evaluate the ease of use. The data collected from the

70

two groups will be analyzed and compared to each other. The hypothesis is that the first group

which uses the proposed Blockly environment will need less time to implement their CA

examples. They will also be more likely to use this system in the future in their research. To

make sure that the participants are not biased, it is suggested that they should have some sort of

experience in IT and that this is not their first time they are introduced to programing languages.

The steps of the experiment can be summarized as follows:

1. Give an introduction about CA and make sure that the participants understand it.

The introduction includes:

● The definition of CA.

● Applications in the industry with examples

● Natural computing algorithms inspired by CA

● Simple examples of CA (Elementary Cellular Automata and Game of life). This

step includes implementation of simple Elementary Cellular Automata by hand on

the white board.

2. Introduce the proposed CA environment using Blockly (This step is for the test group

only)

This step should focus on the ease of implementing CA using the proposed Blockly

system. A number of Elementary CA and GoL configurations will be implemented using

the direct implementation tools available in the proposed system while the participants

71

will be asked to implement the example(s) included in the experiment using the generic

nD Blockly tool. For this reason, the nD tool will be also presented for the participants of

the test group.

3. Introduce the example(s) that they should implement.

4. Participants will implement one example.

5. Implement the example (the proposed example for this experiment is presented in detail

in the next section).

6. Collect results of the examples in the form of screenshots and/or text.

7. Present the questionnaire for both groups.

8. Collect the filled forms.

9. Analyzed the data.

4.1.1 Proposed example for the experiment

As discussed above, the experiment will be conducted both, with Blockly and by hand.

Implementing CA by hand on paper could be sometimes complicated and might take a long time.

Considering this fact, we propose the Elementary Cellular Automata for this experiment. The

proposed Blockly system for CA includes direct implementation of ECA where the rules are

internally designed, and users need only to select one out of 255 rules available in this type of

CA. However, in this experiment, participants of the test group will be asked to design and

implement this type of cellular automata using the generic nD tool. Figure 1 and Figure 2 show

examples of the Elementary Cellular Automata with the rules’ breakdown. One of these

examples can be used for this experiment.

72

Both of the participants groups will be asked to implement one of the examples shown in Figure

1 (same example for both groups). The test group will implement it using nD Blockly tool while

the control group will implement it by hand on paper.

The next sections explain the idle solutions of both groups for Elementary Cellular Automata

with rule 30, run it for 29 steps on grid of 30x30.

Ideal Solution for Test Group (using Blockly) for ECA with Rule 30

This group is expected to implement this ECA using the nD Blockly tool. After they

implement it, they will be asked to provide a screenshot of the blocks and screenshot of the

resulted grid.

Figure 32 and Figure 33 show the blocks and results of this examples respectively.

73

Figure 32: Blocks for implementation of Elementary Cellular Automata using the nD tool.

The CA is implemented with rule 30.

74

Figure 33: Results of running of the Elementary Cellular Automata in figure 19 for 29

steps on 30x30 grid.

Ideal Solution for Control Group (by hand on paper) for ECA with Rule 30

This group will be asked to implement the Cellular Automata by hand on paper. They

will be provided with a 30x30 grid printed on paper to implement the example. An example of

the grid is shown in Figure 34. The expected results on this grid should be similar to the grid

shown on Figure 33.

75

Figure 34: 30x30 empty template grid. This grid will be provided printed on paper for the

control group (by hand on paper).

4.1.2 Survey Questions

At the end of the experiment, the participants of both groups (Test and Control) were asked

to answer a few questions about their experience. A complete copy of the questionnaire can be

found in Appendix A. The questions in the survey are divided into four parts. Next is an

explanation about these parts:

1. The questions in the first part collect basic information about the participants like their

age, profession, and gender.

2. The second part is “Previous Skills”. In this part information about participants’ previous

skills is collected like whether they have heard of CA before or not.

76

3. The third part is to evaluate the participants’ understanding about CA.

4. The fourth part is about the example in the experiment. There are two versions of this

part one for each group (Test and Control).

4.2 Conducting the experiment

The experiment was conducted in collaboration with the Computer Science Department at

Al-Nahrain University, Baghdad, which is one of the highly ranked universities in Iraq. The

participants are mainly faculty and staff of the Computer Science Department. The experiment

was conducted at the same department on Jun 12, 2019.

Ten participants were included in this experiment. The participants were divided into two

groups (Test and Control). Four participants were allocated to the control group (working by

hand on paper) while the other 6 were allocated to the test group (use Blockly tool). Participants

enrolled each group following their personal preferences.

The experiment followed the same steps as explained in the beginning of this section. The

next section presents and analyzes the results of this experiment.

4.2.1 Experiment’s Results

This section discusses the results of the experiment. It is divided into four sub-sections.

Each of them presents and analyzes the results of a specific aspect of the experiment. The first, is

devoted to participants’ previous background and experience while the other three talks about

participants answers to the survey’s questions.

77

4.2.1.1 Participants Answers

As presented in the previous section, participants were asked to solve a question in nD

cellular automata. The example was selected to be from rule 30 of elementary cellular automata.

Four participants were asked to solve the example by hand on paper and the 6 remainder

participants were asked to solve it in Blockly using nD cellular tool. Only one out of the four

participants who tried to solve the example on paper was successful in solving the example while

the other three failed in solving the example. On the other hand, all of the six participants how

tried solving the example in Blockly were able to correctly solve it. At the end of the experiment

the four participant who tried solving the example on paper were asked to resolve it in Blockly.

All of these four participants correctly solved the example when they tried Blockly.

4.2.1.2 Basic Information and Previous Skills

Table 2 shows the results of the first two parts of the survey (basic information and

previous skills). The data in the table shows that all of the participants are of age above 30 and

they can be categorized into faculty, staff, and one grad student. The data also show that the

participants are almost equal in gender category where 40 % of the participants are male and

60% are female. All of the participants have programming language skills. Java programing

language appeared to be common among the participants with 80% while other programing

languages appeared in the table with 30% or less. It was also found that 60% of the participants

have not learned about CA before the time of this experiment.

78

Table 2: Results of the first two parts of the survey (basic information and previous skills).

Participa
nts

Age Profession Gender Programming
Language

Know CA
Before

1 31 Programmer Male C#, java script No

2 33 Eng. Male C#, java script, java No

3 40 Teacher
Assistant

Female Sql, ASP, C++
No

4 38 Teacher Female Matlab, java, C++ Yes

5 36 Grad Student Male python, java, C# Yes

6 38 Professor Female Visual Basic, C,
Java No

7 44 Teacher
Assistant

Female C, Java, Visual
basic No

8 34 Teacher Male MatLab, MathCad,
R No

9 34 Teacher Female java, python, C++ Yes

10 34 Teacher
Assistant

Female Java, C, Visual
Basic Yes

Analysis Mean:
36.2

Faculty and
Staff

40% Male

60%
Female

Java: 80%

C, C++, C#: 30%
each

Visual Basic: 30%

Yes: 40%

No: 60%

79

4.2.1.3 Evaluation of Understanding

This part collects information about participants understanding of CA after they have

already conducted the experiment. The goal is to conduct cross-groups comparison of

participants understanding of CA. Two multiple choices questions included in this part as

follows:

Q1: How do you evaluate your understanding of CA? (choices 1-5 where 5 is good

understanding and 1 is basic understanding)

Q2: How do you evaluate the easiness of CA? (choices 1-5 where 5 is very easy and 1 is

difficult)

Table 3 shows the results of these two questions for both groups. Results show that there

is no statistically significant difference between the two groups. This could be a result of the way

the experiment was conducted where both of the groups existed in the same room while the

researcher was presenting CA. This means that they all received the exact same explanation of

the topic. The other reason is that the control group (those who used paper) were asked to redo

the experiment using Blockly after they finished working on paper. This probably lead to

enhance their understanding of CA because they used both ways. Even though, the results of this

section show no advantages when using Blockly but the results of the last section of the survey

shows significant advantage to Blockly.

80

Table 3: Results of the questions in the third part of the survey for both groups.

Participa
nts

Group

Test (Blockly)

Control (by hand)

Q1: Understanding
of CA

Q2: Easiness of
CA

1 Control 4 4

2 Control 4 5

3 Control 5 4

4 Test 2 1

5 Control 2 4

6 Test 3 4

7 Test 3 4

8 Test 2 3

9 Test 4 5

10 Test 4 4

Analysis Test mean: 60%

Control mean: 40%

Test mean: 3

Control mean: 3.75

Test mean: 3.5

Control mean:
4.25

4.2.1.4 Evaluation of Ease of Use

The last part of the survey tests how using Blockly CA tool affected participants

experience with CA. This part includes three questions that targets time consumption, effects of

tool on understanding, and future interest in CA. The questions are:

81

Q1: How long did you spend in solving the question in today’s experiment? (minutes)

Q2: How do you think (Blockly or on paper) affected your understanding of Cellular Automata?

Q3: Based on today’s experience, do you think that you will use Cellular Automata in your work

in the future?

Table 4 shows the results of the questions of the last part in survey for both groups. It can

be easily seen how Blockly has significant advantages over paper group. It can be also seen that

all participants tried using Blockly. This is because the participants who solved the example on

paper were asked to resolve it using Blockly. For this reason, this table shows that all participants

answered the questions related to Blockly while only four answered the questions related to

paper use. Next is analysis of this results in terms of time consumption, understanding of CA,

and future interest.

Time consumption: The time consumed to solve the example in Blockly is in order of a few

minutes (mean 2.9 minutes) while the time consumed to solve the same example on paper is in

orders of hours (mean 1:33 hours). These numbers show that solving the example in Blockly

about 32 times faster than solving it on paper. Numbers also showed that participants who tried

solving the example on paper first took longer time when they tried to solve it in Blockly

compared to those who directly started using Blockly. This could mean that they were confused

because of using of the manual try on paper.

Understanding of CA: Results showed that all participants who tried to solve the example by

hand on paper think that it made it difficult for them to understand CA while those who tried

using Blockly think that using Blockly made it easier for them to understand CA. It can be also

82

seen from the results that the 4 participants who tried the paper way all change their answers

from “made it difficult” to “made it easy” when they switched to using Blockly.

Future interest: Results showed that 60% of participants who tried Blockly expressed their

interests in using CA in their work in the future. On the other hand, all participants from the

control group (on paper) showed no interest in using CA in the future. However, three out of four

participants change their interest when they tried Blockly the second time.

Table 4: Effects of Blockly on time consumption, understanding of CA, and future interest

in CA.

Participan
ts

Q1: Time
consumed

Q2: Effect of
understanding

Q3: Use in the
future

Blockly Paper Blockly Paper Blockly Paper

1
8 min

2:15
hour

made it
easy

made it very
difficult Yes No

2
6 min

2:30
hour

made it
easy

made it
difficult Yes No

3
3 min 1 hour

made it
easy

made it
difficult Yes No

4
1 min x

made it
easy x Yes x

5
4 min 28 min

made it
super easy

made it
difficult No No

6
1 min x

made it
easy

x
No

x

7
1 min x

made it
easy

x
No

x

8
2 min x

made it
easy

x
No

x

83

9
1 min x

made it
easy

x
Yes

x

10
2 min x

made it
easy

x
Yes

x

Analysis

Blockly mean: 2.9
min

Paper mean: 1:33
hours

Blockly mean: Made it
easy

Paper mean: Made it
difficult

Blockly: Yes 60%

Paper: No 100%

84

CHAPTER 5. CONCLUSION AND FUTURE WORK

5.1 Conclusion

This work proposed a natural computer programming (for CA and NEPs) environment

platform using Blockly. The platform is a web based tool that provides simulators for two major

natural computing systems: Cellular Automata (CA) and Network of Evolutionary Processors

(NEPs). CA is a grid of cells that changes their state based on pre-specified rules through a

number of discrete time steps. CA has been used in several applications such as modeling of

physical system, traffic control, and flood propagation. CA programming blocks presented in this

work provide the ability to design and implement several types of CA including Elementary

cellular automata, 2D cellular automata, and nD cellular automata. The nD CA is a generic

simulation for any type of CA. It provides flexibility for the user in terms of number of

dimensions, size, and the rules. The nD tools also provide potentially unlimited number of states

that can be represented in the CA grid. The tool also provides a graphical representation of CA’s

grid through projection for any CA that has 3 or more dimensions. NEPs is one of the promising

natural inspired computing models. It consists of a finite number of small processors (nodes).

The processors are connected through edges (links) to transfer data between the processors. Data

is a series of symbols called words which are processed inside the nodes by simple operations

such insertion, deletion or substitution. NEPs is powerful at processing NP-complete problems

compared to conventional computers. A NEPs Blockly programming environment is presented in

this work. It provides the ability to design and simulate NEPs. Blocks are used as flexible user

interface to enter NEPs specifications. The blocks automatically generate a standard XML

85

configurations code which can be sent to the server side of the simulator for implementation.

The tool also provides a graphical representation for the static topology of the system.

Both CA and NEPs Blockly programming environments have been tested in several rather

academic examples. We have tested our hypothesis about improving the learning process of

natural programming by means of blocks programming languages by means of a real activity in

the classroom. Results of the experiment showed that the CA Blockly simulator outperforms

traditional manual methods of implementing CA. It also showed that the proposed environment

has desired features such as ease of use and decreases learning time. The NEPs part of the system

has been tested against several applications. It showed that it provides a flexible designing tool

for NEPs. It outperforms traditional XML coding methods in terms of ease of use and designing

time. In addition we have designed specific high level constructs that automatize in some way

the specific of complex NEPs’ topologies by hand. They could be considered as embryonic

software engineering tools to program NEPs.

5.2 Future Work

Our environment can be considered as a generic platform for CA and NEPs. They can be

expanded in several directions. The CA part can be expanded to cover grids with different

tessellations such as triangles and hexagons. The current CA simulator executes the work locally

inside the web browser which limits the performance due to the constraints in memory and

processing power. A server-side simulator can be added to the tool to improve the performance.

A parallel processing server can be used to accelerate processing speed.

The NEPs environment can also be expanded in several directions. As in CA simulator, a

parallel server-side simulator is highly recommended to improve the performance of the NEPs

86

simulator. The tool is designed with such expansion is in mind. The current server-side

simulator sends results back to the client side as one big chunk at the end of the execution. This

can be updated to send results back to the client side in small chunks while the current job is

executed instead of waiting until the whole job completely executed. Such updated would

dramatically decrease the communication latency which improves the performance of the whole

tool.

87

APPENDIX A QUESTIONNAIRE FOR EXPERIMENT

This questionnaire is used during the experiment to test the ease of teaching and learning of

cellular automata using the proposed simulator using Blockly.

88

APPENDIX B. NEPS BLOCKLY EXAMPLES

These examples have been introduced in [6] using manual writing of XML configurations. In

this appendix, we introduce the them using Blockly implementation.

1. SAT problem

89

90

91

2. Hamiltonian path problem

92

93

3. 3Color

94

95

96

97

98

99

100

101

102

REFERENCES

[1] Juan Castellanos, Carlos Martín-Vide, Victor Mitrana, and José M Sempere. Networks Of

evolutionary processors.Acta Informatica, 39(6-7):517–529, 2003.

[2] Juan Castellanos, Carlos Martin-Vide, Victor Mitrana, and Jose M Sempere. Solvingnp-

complete problems with networks of evolutionary processors. InInternational Work-

Conference on Artificial Neural Networks, pages 621–628. Springer, 2001.

 [3] Erzsébet Csuhaj-Varjú, Carlos Martín-Vide, and Victor Mitrana. Hybrid networks

ofevolutionary processors are computationally complete.Acta Informatica, 41(4-5):257–

272, 2005.

[4] Nuria Gomez Blas, Miguel Angel Diaz, Juan Castellanos, and Francisco Serradilla.Networks

of evolutionary processors (nep) as decision support systems. 2008.

[5] Castellanos, J., Martin-Vide, C., Mitrana, V., & Sempere, J. M. (2001, June). Solving NP-

complete problems with networks of evolutionary processors. In International Work-

Conference on Artificial Neural Networks (pp. 621-628). Springer, Berlin, Heidelberg.

[6] Emilio del Rosal García. Real life applications of bio-inspired computing models: Eap and

neps. 2013. PhD thesis.

[7] Emilio Del Rosal, Rafael Nunez, Carlos Castaneda, and Alfonso Ortega. Simulating neps in a

cluster with jnep. InProceedings of International Conference on

Computers,Communications and Control, ICCCC. Citeseer, 2008.

[8] Carmen Navarrete Navarrete, Marina de la Cruz Echeandia, Eloy Anguiano Rey, Al-fonso

Ortega de la Puente, and Jose Miguel Rojas. Parallel simulation of neps onclusters. In2011

IEEE/WIC/ACM International Conferences on Web Intelligence andIntelligent Agent

Technology, volume 3, pages 171–174. IEEE, 2011.

[9] Stephen Wolfram.A new kind of science, volume 5. Wolfram media Champaign, IL,2002.

[10] Clifford A Pickover.The math book: from Pythagoras to the 57th dimension, 250 milestones

in the history of mathematics. Sterling Publishing Company, Inc., 2009.

103

[11] S. Wolfram.Cellular Automata And Complexity: Collected Papers. CRC Press, 2018.

[12] Martin Erwig, Karl Smeltzer, and Xiangyu Wang. What is a visual language?Journalof

Visual Languages & Computing, 38:9–17, 2017.

[13] https://scratch.mit.edu/, Accessed October 2019.

[14] https://developers.google.com/blockly/guides/overview, Accessed October 2019.

 [15] https://code.org , Accessed October 2019.

[16] https://en.scratch-wiki.info/wiki/Block-Based_Coding, Accessed October 2019.

[17] https://pencilcode.net/ , Accessed October 2019.

[18] http://appinventor.mit.edu/, Accessed November 2019.

[19] https://scratch.mit.edu/statistics/, Accessed November 2019.

[20] Franklin, Diana, et al. "Using upper-elementary student performance to understand

conceptual sequencing in a blocks-based curriculum." Proceedings of the 2017 ACM

SIGCSE Technical Symposium on Computer Science Education. ACM, 2017.

[21] Grover, Shuchi, Roy Pea, and Stephen Cooper. "Designing for deeper learning in a blended

computer science course for middle school students." Computer Science Education 25.2

(2015): 199-237.

[22]Weintrop, David, and Uri Wilensky. "Comparing block-based and text-based programming

in high school computer science classrooms." ACM Transactions on Computing Education

(TOCE) 18.1 (2017): 3.

[23] https://www.makewonder.com/, Accessed, October 2019.

[24] https://make.gamefroot.com/games/new, Accessed, October 2019.

https://scratch.mit.edu/
https://developers.google.com/blockly/guides/overview
https://code.org/
https://en.scratch-wiki.info/wiki/Block-Based_Coding
https://pencilcode.net/
http://appinventor.mit.edu/
https://scratch.mit.edu/statistics/
https://www.makewonder.com/
https://make.gamefroot.com/games/new

104

[25] Alrubaye, Hussein. Comparison of visual programming and hybrid programming

environments in transferring programming skills. Diss. Rochester Institute of Technology, 2017.

[26] Alrubaye, H., Ludi, S., & Mkaouer, M. W. (2019, November). Comparison of block-based

and hybrid-based environments in transferring programming skills to text-based environments.

In Proceedings of the 29th Annual International Conference on Computer Science and Software

Engineering (pp. 100-109). IBM Corp.

[27] Cooper, Stephen, Wanda Dann, and Randy Pausch. "Alice: a 3-D tool for introductory

programming concepts." Journal of Computing Sciences in Colleges 15.5 (2000): 107-116.

[28] Ioannidou, Andri, Alexander Repenning, and David C. Webb. "AgentCubes: Incremental

3D end-user development." Journal of Visual Languages & Computing 20.4 (2009): 236-

251.

[29] A. Begel, E. Klopfer, "Starlogo TNG: An introduction to game development", J. E-Learn.,

2007.

[30] M. S. Horn, C. Brady, A. Hjorth, A. Wagh, U. Wilensky, "Frog pond: a codefirst learning

environment on evolution and natural selection", Proceedings of IDC, pp. 357-360, 2014.

[31] M. H. Wilkerson-Jerde, U. Wilensky, "Restructuring Change Interpreting Changes: The

DeltaTick Modeling and Analysis Toolkit", Proc. of the Constructionism 2010 Conference,

2010.

[32] W. Slany, "Tinkering with Pocket Code a Scratch-like programming app for your

smartphone", Proc. of Constructionism Austria, 2014.

[33] D. Wolber, H. Abelson, E. Spertus, L. Looney, App Inventor 2: Create Your Own Android

Apps, Beijing:O'Reilly Media, 2014.

[34] S. Esper, S. R. Foster, W. G. Griswold, "CodeSpells: embodying the metaphor of wizardry

for programming", Proceedings of the 18th ACM ITiCSE, pp. 249-254, 2013.

105

[35] D. Weintrop, U. Wilensky, "RoboBuilder: A program-to-play constructionist video

game", Proceedings of the Constructionism 2012 Conference, 2012.

[36] J. Maloney, M. Nagle, J. Monig, "GP: A General Purpose Blocks-Based

Language", Proceedings of the 2017 ACM SIGCSE, pp. 739-739, 2017.

[37] D. Bau, "Droplet a blocks-based editor for text code", J. Comput. Sci. Coll., vol. 30, no. 6,

pp. 138-144, 2015.

[38] N. Fraser, "Ten things we've learned from Blockly", 2015 IEEE Blocks and Beyond

Workshop (Blocks and Beyond), pp. 49-50, 2015.

[39] Ko, Andrew J., et al. "The state of the art in end-user software engineering." ACM

Computing Surveys (CSUR) 43.3 (2011): 21.

[40] Gardner, Martin. "Mathematical games-The fantastic combinations of John Conway’s new

solitaire game, Life, 1970." Scientific American, October: 120-123

[41] https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life , Accessed, October 2019

[42] http://robinforest.net/post/cellular-automata/, Accessed, October 2019.

[43] http://devinacker.github.io/celldemo/, Accessed, October 2019.

[44] http://cubes.io/, Accessed, October 2019.

[45] del Rosal, E., & Cuéllar, M. (2009, June). jNEPView: A graphical trace viewer for the

simulations of nEPs. In International Work-Conference on the Interplay Between Natural and

Artificial Computation (pp. 356-365). Springer, Berlin, Heidelberg.

[46] Jimenez, A., del Rosal, E., & de Lara, J. (2010). A visual language for modelling and

simulation of networks of evolutionary processors. In Trends in Practical Applications of Agents

and Multiagent Systems (pp. 411-418). Springer, Berlin, Heidelberg.

https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life
http://robinforest.net/post/cellular-automata/
http://devinacker.github.io/celldemo/
http://cubes.io/

