UNIVERSIDAD AUTONOMA DE MADRID

ESCUELA POLITECNICA SUPERIOR

Eiruela
P|:|||‘I'é-|:|'|| i UNIVERSIDAD AUTONOMA
Superior

TRABAJO FIN DE MASTER

Desarrollo de entorno on line de programacion para computacion natural

Master Universitario en Investigacion e Innovacion en Tecnologias de la Informacion y las
Comunicaciones (i2-TIC)

Autor: SAMI NAYYEF AL-DABBAGH, Bashar
Tutor: ORTEGA DE LA PUENTE, Alfonso

Departamento de Escuela Politécnica Superior

FECHA: 12,2019

DESARROLLO DE ENTORNO ON LINE DE PROGRAMACION PARA COMPUTACION NATURAL

Approved by:

Dr. David Camacho, Advisor

School of EPS Ingenieria Informatical
UAM

Universidad Autonoma de Madrid

Dr. Miguel Angel Mora

School of EPS Ingenieria Informatica
UAM

Universidad Autonoma de Madrid

Dr. Marina de la Cruz

School of UCM Ingenieria Informatica y
CIEMAT

Universidad Complutense de Madrid

Dr. Francisco Saiz
EPS Ingenieria Informatica UAM
Universidad Autonoma de Madrid

Dr. Sandra Gémez Canaval

School of Departamento de Sistemas
Informaticos ETSII UPM

Universidad Politécnica de Madrid

Dr. Rafael Lahoz Beltra
Matematica Aplicada UCM
Universidad Complutense de Madrid

Date Approved: Dec. 02,2019

ACKNOWLEDGEMENTS

I am overwhelmed in all humbleness and gratefulness to acknowledge my depth to all those
who have helped me to put these ideas, well above the level of simplicity and into something

concrete.

I would like to express my special thanks of gratitude to my Adviser who gave me a golden
opportunity to do this wonderful project on the topic "DESARROLLO DE ENTORNO ON
LINE DE PROGRAMACION PARA COMPUTACION NATURAL", which also helped me in
doing a lot of Research and | came to know about so many new things. | am really thankful to

him.

Any attempt at any level can’t be satisfactorily completed without the support and guidance

of my parents, my wife, brothers and friends.

I would like to thank my parents who helped me a lot in gathering guiding me from time to
time in making this project, despite their busy schedules, they gave me different ideas in making

this project unique.

Thanking you,

Bashar Sami Nayyef Al-Dabbagh

TABLE OF CONTENTS

ACKNOWLED GEMENTS......ootststststsssesessse s st st st st e se s sesssesesesesssssssssssessssssssseses 3
TABLE OF CONTENTScotstststststssnsssssssnsnses 5
LIST OF FIGURESocutttetststsesssssssssesssssssssssssssssessss e s st st st s st 8 585858 RE A8 R ERE RS 7
00 3 0. 021 2 10 00, 9
5 33 2 O3 10
CHAPTER 1. INTRODUCTION ...coststsssans 11
1.1 IMOTIVATIONS c.cuvvutsseesessessesssssssss s s sesssssass bbb bR R SRS R RS 11
1.2 OBJECTIVES AND APPROACH w.ucucuiuttrtsesssssssesesessssssssesessssssssesssssssssssesssssassssesasssssssesssssssessesssssssesnssssssssessssesssssassssensassnsnsnen 13
CHAPTER 2. BACKGROUND AND RELATED WORK ... 14
2.1 BLOCK-BASED PROGRAMING ...cuutuuiusisusssisssssssssisssssssssssssssssssssssssssss s ssssssb s ssssss bbb bbb bbb 14
2.1.1 Blockly 15

2.1.2 Examples of Projects based on Blockly 16

2.1.3 End User Programming 18

2.2 CELLULAR AUTOMATA ..ottuititsssssssss bbbt sssss bbb bbb bbb 19
2.2.1 Elementary Cellular Automata 19
2.2.2 Game of Life 21

2.2.3 Examples of Cellular Automata Simulators 22

2.3 NETWORK OF EVOLUTIONARY PROCESSORS (INEPS) ..ottt ssessse s ssssssssesssssssssssscans 26
2.3.1 NEPs Architecture 27

2.3.2 Simulators Examples. 28
CHAPTER 3. DESIGN AND METHODOLOGY ...covtstntsmsmsessses 33
3.1 CELLULAR AUTOMATA ...ttt sss s bbb b bbb bbb bbb bbb bbb 33

3.1.1 Elementary Cellular Automata

33

3.1.2 Game of Life

36

3.1.3 General Cellular Automata that can be represented in 2D grids

37

3.1.4 nD Cellular Automata

39

3.2 INEPS ON BLOCKLY ottt ssssssssssss s ssssssssssssssssssssessssasssssssssssssassssssassssssassssssassssssassssssansssssassssssansssnsansans

3.2.1 NEPsAPI

47

3.2.2 NEPs Blocks.

48

3.2.3 NEPs Visual Representation

60

324 Example

61

3.2.5 Runon Server using http request

64

CHAPTER 4. RESULTS AND ANALYSISootiimnmmsnmmsmssssnssssssssssss s sssssssssssssssssssssssssssnas

4.1 CELLULAR AUTOMATA BLOCKLY SIMULATOR...ceiiststirismsrssissssssesssssssssssssssssssssssssassssssassssssassssssassssssassssssasssssssnsssssansans

4.1.1 Proposed example for the experiment

.69

71

4.1.2 Survey Questions

75

4.2 CONDUCTING THE EXPERIMENT ..ucvitrtruserersrsssesesesssssessssssssssssssseessssssssssssssssasasasessssssssssssssssssnsssssssssssssssesssssasesessssssnsnsaes

w76

76

4.2.1 Experiment’s Results

CHAPTERS5. CONCLUSION AND FUTURE WORK ..o

5.1 (00 (0 L 013 () [T

5.2 FUTURE WORK ...ttt ssss s bsss s bbb bt s s b ss s b st bt st s bbb b b ee bbb bttt b e e

APPENDIX A QUESTIONNAIRE FOR EXPERIMENT ...

APPENDIX B. NEPS BLOCKLY EXAMPLESccccimmmnsmsmssssssssnsssssms s s

1. SAT PROBLEM...ouitiuiuicuescessssssssssssssessasasasassssssssssssssssssssssssssststssatasasasasassssnsasassssssssssssssnssssssasans
2. HAMILTONIAN PATH PROBLEM ...cucuiuiutiecscassssessassssesssssassssesssssassssssssssssssssssassasssssnsssssssssensassasssnes

3. 11000 70) OO TTTTT

REFERENCES. ... it s AR RSB AR ERRRR R RS

LIST OF FIGURES

FIGURE 1: EXAMPLE OF BLOCK-BASED PROGRAMMING [L6].cooirimririiiinirnencessns s sssssssssssssssssssssssans 15
FIGURE 2: A SCREENSHOT OF A DEMO APPLICATION FOR BLOCKLY [14]......cciiinirieinirensenesessss e sssssssssssssssssssssnans 16
FIGURE 3: PROJECTS BUILD BASED ON BLOCKLY PLATFORM. THE FIRST EXAMPLE IS FROM "BLOCKLY.GAMES" [14] AND THE

SECOND IS FROM "MAKE.GAMEFROOT.COM" [24]ovriiieiriiniresc st ssssss s ssssssssssssssssssssasens 17
FIGURE 4: MIXED (BLOCKS AND TEXT) PLATFORM TO LEARN PROGRAMING BUILT BASED ON BLOCKLY [26]........ccccvunuuunee 18

FIGURE 5:EXAMPLES OF ELEMENTARY CELLULAR AUTOMATA. THE RULES ASSOCIATED WITH THESE EXAMPLES ARE SHOWN

1 2 PP 20
FIGURE 6: EXAMPLE OF ELEMENTARY CELLULAR AUTOMATA RULES [9]..covririniriiesenenensenss s ssssssssesssssnans 21
FIGURE 7: A CELLULAR AUTOMATA SIMULATOR AS PRESENTED IN [42].....cooviiiririeeinirnensens s ssssssssessssssans 23
FIGURE 8: A CELLULAR AUTOMATA SIMULATOR AS PRESENTED IN [43] ..ccvnininiininineenenensinsinsinsinsssessesssssssssssssssessessessessssssnes 24
FIGURE 9: A CELLULAR AUTOMATA EXAMPLE AS PRESENTED IN [44]....crvsinsinsiniininninesnesenssnsinsinssssssessesssssssssssssssssssssssssssssssssnes 25
FIGURE 10: NETWORK OF EVOLUTIONARY PROCESSORS (NEPS) SIMPLIFIED ARCHITECTURE.c.ovreurersrnsirnsressnssessessessesssees 27
FIGURE 11: A SCREENSHOT OF THE JNEPVIEW SIMULATOR [45]....cvirierrenininninniesesesssns e sssssssssssssssssssnes 30
FIGURE 12: SCREENSHOT OF ATOM3 SIMULATOR. UML CLASS DIAGRAM WINDOW [46].......c.ccvurrerrerernrnrrrnirerresressesessensenees 31

FIGURE 13: SCREENSHOT OF ATOM3 SIMULATOR. VISUAL REPRESENTATION OF THE NEPS DESIGNED IN PREVIOUS FIGURE

FIGURE 15: ELEMENTARY CELLULAR AUTOMATA IMPLEMENTED USING BLOCKS OF THE CELLULAR AUTOMATA CATEGORY.

THE CELLULAR AUTOMATA SHOWED APPLIES RULE NO. 30 ON 40 ROWS OF THE GRID.........cocoiererererererenesessssssssssssssssnns 35
FIGURE 16: BLOCKS OF THE GAME OF LIFE CATEGORY.cucoiiiiiisiiessisssssssssssssstssassssssssssssssssssssssssssssssssssssssasssassssssssssssasssssssssens 36
FIGURE 17: GAME OF LIFE EXAMPLE WITH SETTING THAT LEADS TO SPACESHIP BEHAVIOR.coceceiuitrericsseseesesssssssssessssenes 37

FIGURE 18: GAME OF LIFE EXAMPLE, RUN STEPS. IT CAN BE SEEN THAT THE SHAPE THE EXAMPLE STARTS WITH IN STEP 0
(lNlTlAL STATE) IS REPEATED AT SHOWN AGAIN IN STEP 4 SHIFTED ONE ROW AND ONE COLUMN.......cceoveremmerrererennnnns 37

FIGURE 19: BLOCKS OF 2D CELLULAR CATEGORY.cevtetetiueuisesesssssssssssssssssssssssssassssssssssssssssssssssssssssssssssstatatassssssssssssnsassssssssens 39

FIGURE 20: BOCKS OF ND CELLULAR CATEGORY.ceceititiiititeiisiseessssessssssssssssssssssssssssssassssssesssssssssssssesssssssssssssssssssssssssssssssssssnsans 42

FIGURE 21: OFFSET COORDINATES OF 2D GRID. THIS SCHEME CAN BE EXPANDED FOR ANY ND GRID.........ccccvevrvrmrneseinnnennnns 43
FIGURE 22: COMPLETE SYSTEM OF PROPOSED PROJECT. IT CONSISTS OF CLIENT SIDE AND SERVER SIDE.c.cooeeviniemininennnns 47
FIGURE 23: BLOCKS OF NEP CATEGORY. CONSISTS OF TWO BLOCKS: NEP CREATE AND NEP SET SYMBOLS.covuunene. 50

FIGURE 24: BLOCKS OF CONNECTIONS CATEGORY IN NEP. IT CONSISTS OF TEN BLOCKS. THESE BLOCKS ARE USED TO SET

LINKS BETWEEN NODES OF THE NEP..........oiirrs e et 51
FIGURE 25: EXAMPLES OF CONNECTION BLOCKS.cvtituitiiuntnessesssnss 54
FIGURE 26: BLOCKS IN STOPPING CONDITION CATEGORY.certreiuirnrreresssssssesessssssssssessssssssssessssssssssessssssssssesssssssssssssssssssssesssssnses 55
FIGURE 27: NEP SET NODE BLOCK. THIS BLOCK IS LOCATED INSIDE THE NODES CATEGORY.ccccovivnurenirnrnirenessnsnsnesesssnnns 58

FIGURE 28: RULES BLOCKS. THESE BLOCKS COVER ALL TYPES OF RULES WHICH HAVE BEEN ADOPTED IN THE LITERATURE.

... 59
FIGURE 29: FILTER BLOCKS......ccittuitststsessssstsessssssssssessssssssssesessssssssssesssssessssesssssssessesssssssssssssssesessessassasessssassssessesssssesessssssssssessensassases 59
FIGURE 30: EXAMPLE OF THE VISUAL REPRESENTATION OF THE NEPS.........cccoiiiii s sssnns 61
FIGURE 31: SIMPLE NEP EXAMPLE ON BLOCKLY.c.ouvtuiiiurinierisisissssisess s sssss st ssssssssssssssssssssssssssnssssnes 62
FIGURE 32: BLOCKS FOR IMPLEMENTATION OF ELEMENTARY CELLULAR AUTOMATA USING THE ND TOOL. THE CA 1S
IMPLEMENTED WITH RULE 3 0.ttt st snsssnenssnens 73
FIGURE 33: RESULTS OF RUNNING OF THE ELEMENTARY CELLULAR AUTOMATA IN FIGURE 19 FOR 29 STEPS ON 30x30
GRID......ceuiueueeeuesseassstssssessssesssesss e s se s ee s s e s s s e e b e e e E e e e e e e e R e e e R AR e R e R e e e e e 74

FIGURE 34: 30X30 EMPTY TEMPLATE GRID. THIS GRID WILL BE PROVIDED PRINTED ON PAPER FOR THE CONTROL GROUP

(BY HAND ON PAPER)......cutuueureeueeseeseessessssseessessssssessssassssesssssesssessssssessessssasesssssasssesssbassssessssssssessesssessessesssessessessesssssesssessesasesns 75

LIST OF TABLES

TABLE 1: FEATURES COMPARISON OF CURRENT AVAILED CELLULAR AUTOMATA SIMULATORS AND THE SIMULATORS

PROPOSED IN THIS WORK. THE PROPOSED SIMULATORS OVERCOME ALL OTHER SIMULATORS.cccovvtrenstressresssressnens 26
TABLE 2: RESULTS OF THE FIRST TWO PARTS OF THE SURVEY (BASIC INFORMATION AND PREVIOUS SKILLS).ccveurerenenees 78
TABLE 3: RESULTS OF THE QUESTIONS IN THE THIRD PART OF THE SURVEY FOR BOTH GROUPS.cocoovureirnireresessnssenesesssnnns 80
TABLE 4: EFFECTS OF BLOCKLY ON TIME CONSUMPTION, UNDERSTANDING OF CA, AND FUTURE INTEREST IN CA. 82

ABSTRACT

This work proposes a natural computer programming (for CA and NEPs) environment
platform using Blockly. The platform is a web-based tool that provides simulators for two well-
known natural computing systems: Cellular Automata (CA) and Network of Evolutionary
Processors (NEPs). CA programming blocks presented in this work provide the ability to design
and implement several types of CA including Elementary cellular automata, 2D cellular
automata, and nD cellular automata. The tool also provides a graphical representation of CA’s
grid through projection for any CA that has 3 or more dimensions. A NEPs Blockly
programming environment is presented in this work. It provides the ability to design and
simulate NEPs. Blocks are used as flexible user interface to enter NEPs specifications. The
blocks automatically generate a standard XML configurations code which can be sent to the
server side of the simulator for implementation. The tool also provides a graphical
representation for the static topology of the system.

Both CA and NEPs Blockly programming environments have been tested in several rather
academic examples. The work presents an online simulation platform for natural computing
algorithm using visual programing tool, namely Blockly. The proposed platform provides
software engineering tools for setting up algorithms and also ease of use especially for teaching
of these algorithm. The software engineering tools has been implemented on the NEPs as there is
much more software tools already presented for cellular automata. The software designed for
NEPs are a set of blocks to implement several types of connections between nodes. These blocks
reduce time and complexity in setting up NEPs with fully connected nodes, for instance. In the
other hand, cellular automata algorithm has been chosen to test the ease of the process of
teaching and learning natural computing algorithms as they are much better-known model. The
test has been conducted with students, teachers and researchers. Results of the experiment
showed that the CA Blockly simulator outperforms traditional manual methods of implementing
CA. It also showed that the proposed environment has desired features such as ease of use and
decreases learning time. The NEPs part of the system has been tested against several
applications. It showed that it provides a flexible designing tool for NEPs. It outperforms
traditional XML coding methods in terms of ease of use and designing time. In addition we have
designed specific high level constructs that automatize in some way the specific of complex
NEPs’ topologies by hand. They could be considered as embryonic software engineering tools to
program NEPs.

Our tool is considered a generic platform for web-based implementation. It has desired
features and wide range of properties that could attract the scientific community to adapt and
develop in the future.

10

CHAPTER 1. INTRODUCTION

1.1 Motivations

Natural inspired computing has been attracting interests in the last decades. Several models
and algorithms have been presented. Natural inspired computing has several advantages over
conventional computing such as parallel processing of data, resiliency, and low power
consumption. Network of Evolutionary Processors (NEPs) is one of the promising natural
inspired algorithms [1, 2]. A NEP consists of a number of cells connected via links. The cells
represent the processing units (nodes) in the system while the links are used to transfer data
between these processing units. Each node contains a series of words that represent its DNA in
the natural analogy. Words are processed by implementing simple operations such as insertions
and deletion of symbols from the words and transmitting and receiving words to/from other
nodes. NEPs are characterized by their simple structure, inherent parallel processing of data, and
adaptation to solve several problems. Several versions of NEPs have been proposed [3] which
have been successful applied on several problems [4]. For instance, NEPs show to be more
adequate at processing NP-problems compared to conventional computing [5]. Several

implementations of NEPs have been presented [6-8].

Cellular automata are another class of natural inspired computing models. They consist of
a grid of cells that change their state based on pre-specified rules through a number of discrete
time steps [9]. The rules are built to set the new state of a given cell based on the previous state
of that cell and the neighboring cells. The rules are applied to the grid iteratively as many times
as desired but to the complete grid simultaneously. Cellular automata were introduced by Von
Neuman and Stanislaw Ulam in the 1940s [10]. Cellular automata have several applications in

11

computer processors, cryptography, error correction code and more [11]. Due to its relatively

early introduction compared to NEPs, cellular automata have large number of implementations.

NEPs and cellular automata are presented here in the context of developing the motivations
of this research. Detailed introduction of both NEPs and cellular automata is presented in the

next chapter.

Almost all of NEPs implementations take complicated syntax specific inputs inform of
text. Some implementations use XML format to describe the executed NEP while others use
custom designed P-lingua. Using such types of input, users are expected to learn the syntax and
grammar of the input file. This leads to difficult experience for expected users and add extra
requirement in learning this technology. At the same time, most of the implementations for

cellular automata are not easy to access or learn.

Visual Programing Languages (VPLSs) could be an alternative solution as input mechanism
to NEPs. VPLs is similar to Lego bricks where programing statements is represented as blocks
that can be connected in a prespecified way [12]. An example of VVPLs is Scratch. It is blocks
based visual programming language that has been mainly used for educational purposes [13].
Another example is Blockly which is an open source library presented by Google [14]. Blockly
is a client-side visual code editor which has been used for several web and mobile applications
including education, games, and others. In [15], Blockly has been utilized as a visual
programming technique for multi-agent systems where the validity of using Blockly has been

successfully demonstrated.

12

In this project, we propose an implementation for NEPs and cellular automata using
Blockly. The proposed implementation is a web-based application that is free and easy to use. It

is explained in detail in the rest of this document.

The hypothesis of this project is that a development tool for natural computing, accessible online
and based on block languages and offering an effective and effective connection with simulators
of the different paradigms should popularize the use of these computer models. The main
objective of this project is to extend the current prototype by completing its functionality in the

following aspects

1.2 Objectives and approach

This project reduces the complexity of using natural computing. It also makes it available
online for ease of access. It focuses on simplifying the use and access of NEPs and cellular

automata using VLPs. The objectives of this work can be summarized as:

e Reduces the complexity of using natural computing algorithms, specifically NEPs
and cellular automata, by utilizing Blockly tool.

e Produce easy to access online simulator. If the simulators were executed in a
powerful server, it might lead to reduce required execution resources for the user.

e The new introduced simulator might reduce the execution time if a powerful server

is used.

The above three points are ordered based on importance which means that our main goal is
ease learning and access for natural computing. Other points can be considered as secondary

aims

13

CHAPTER 2. BACKGROUND AND RELATED WORK

2.1 Block-based programing

Block-based programing or coding is a visual methodology to write script/code in which
code texts is represented as blocks [16]. Each block is analogues to a specific task, statement, or
function in the text-based programing. Figure 1 shows an example of block-based programing
platform [16]. The blocks are distinguished by their names, color, and shapes. Building (writing)
a program is accomplished by connected a number of blocks on an order based on the purpose of
the program. This code development has gained attraction especially for learning purposed.
Several block-based programing platforms have been presented including Blockly [14], Scrach
[16], and PencilCode [17]. These platforms have been widely adopted especially by the learning
communities. They provide an easy to learn methodology to learn coding while cutting the
learning curve. For Instance, Applnverter platform has been used by more than one million
unique users in one month from 195 countries [18]. By the time of writing this document
Scratch platform has been used by more than 46 million registered users [19]. Block-based
programming has become a widely implemented approach for successful without requiring
considerable experience. This approach also represents an introduction to programming in an

accessible manner [20-22].

14

CEEB ®- rFie e Tutorias Join Scratch Signin
. s

5
Q

H
3
5] [

il

o

i@ i@ 10 ¢

©
3
=

[)
H ¢ &1 &
B [-)
.e 1
(-}

operntors | [1 et P

5
g
g
g
g

<
-

Z
@
g
H
B
ES
5
Y
¢
¢
Fe
4
.

rection ()

H o
‘|
!

N
o
Q
0

Figure 1. Example of block-based programming [16].
2.1.1 Blockly

Blockly is a block-based code editor library which can be integrated in web or phone
apps [14]. It is an open source project originally developed by google. Like other similar
platforms, it used interconnected graphical blocks to represent code concept such as variable
definition, loops, conditional statement etc. It provides the ability to develop code by moving and
connecting blocks and without the need for writing scripts. Figure 2 shows a screenshot of a code
editor developed based on Blockly. In this example blocks are used to develop a simple program
that type the sentence “Hello World” for a number of times. As can be seen in this figure, the
blocks are interpreted into JavaScript code. In addition, this code editor can translate the blocks

into several other languages such as Python, PHP, Lua, and Dart.

The Blockly platform provides several interesting features such as: uniform JavaScript
open source code, it is completely client-side platform and does not requires any server-side
processing. In addition, it is compatible with all major web browser and it can be customized and

extended.

15

Logic ¥ Count ~ 1) Language: JavaScript ¥

Loops L 1 1
" t: repeat (TLICRS | (<~] (3] var Count;
al 1 I

S it 4 Hello World! |2
e (p : J » ” Count = 1;
Lists set [2T8 to | 1 while (Count <= 3) {

\ window.alert('Hello World!');
Color Count = Count + 1;

}

Variables
Functions

Figure 2: A screenshot of a demo application for Blockly [14].

2.1.2 Examples of Projects based on Blockly

All these features made it one of the most used block-based programing libraries. For
instance, Code.org built off of Blockly platform a code editor for bother learning coding and
developing apps [15]. Makewonder.com [23] uses Blockly platform for robot programing.
Gamefroot.com uses Blockly for both building and running games [24]. Figure 3 shows
screenshots of two projects built based on Blockly platform. The first is “blockly.games” [14],
which is a website that provides several games which are played by using blocks. The second is
“gamefroot.com” [24], which takes Blockly to the next level to not only playing games but also

developing games.

16

Blockly Games : Bird 8

heading 13

a does not have worm E
[x - J{ <~ Il 50/

(y - Jl <~ Il 50)

—_
o

af

—

The 'and' block is true only if
both its inputs are true.

» Run Program

https://blockly.games/

Untitled Script

Scratch Blocks

Control Flow

Animation

o [ecpuen]

i backspace/delete ?

https://make.gamefroot.com/

Figure 3: Projects build based on Blockly platform. The first example is from
"blockly.games™ [14] and the second is from "*make.gamefroot.com™ [24].

Several searchers have used Blockly to simplify programing and provide easy tools to
teach programing. For example, Alrubaye has used mixed of visual and text tool to teach
programing [25-26]. Figure 4 shows a screenshot of this platform. The visual tool uses Blockly
while the blocks are instantly shown to the user as translated code. Results of this work showed

that students can learn faster using this platform compared to text only.

17

Blocks v | L} code

s 1 y=1
Move Control 1 await read 'x=', defer x

. S 25if x > 0
A peraions 3 write 'x is a positive number'
Text Sprites 4-else
Sound Snippets 5 write 'x is a negative number'
6

write 'Hello.'|
)

debug x
}ype 'ZZN(=.~)%xz2"

typebox yellow)|
Lo VAR

typeline() |

(J:)

Figure 4: Mixed (blocks and text) platform to learn programing built based on Blockly
[26].

In addition, visual programing tools have been used in several applications such as Alice
[27] and AgentCubes [28] which help the user to program three-dimension simulations. Other
projects have used blocks based programing to build modeling and simulation tools [29-31],
playing video games [34], [35], manipulating media [36], as well as mobile application
development [32], [33]. Moreover, an increasing number of tools and libraries have been
developed to ensure that new block-based languages or embed block-based programming

interfaces can be easily developed in existing applications [37], [38].

2.1.3 End User Programming

End user programing is writing application level scripts that simplify specific task within
the application [39]. Results of this script is intended to be personal and specified for one task.
For example, writing a script in Photoshop to apply filters on pictures with pre-determined
parameters is considered as an example of end user programing. Another example is writing a
script for processing data in a spreadsheet to calculate statistics. The syntax of such programing

is usually application specific. For this reason, the syntax could be complex for the user who are

18

not specialized in programing. Using block-based programing can simplifies the end user

programing where users are not required to learn any programing skills or memories syntax.

In the context of this work, end user programing is analogues to the settings or
parameters of the applications (Cellular automata and NEPs). For instance, some NEPs
simulation uses XML files to set its parameters (refer to the next sections for more details). This
file is written in a very specific form that is predefined and understood by the core of the
simulators. Since the simulation platform proposed in this work uses block based programing,

the end user programing will be highly simplified which leads to better user experience.

2.2 Cellular Automata

Cellular automata can be considered as a class of natural computing algorithm. It consists
of a grid of cells each with their states. The states of the cells are changed based on prespecified
rules. Several types of cellular automata have been presented in the literature such as elementary

cellular automata and game of life [9]. Some of these types are presented in the next subsections.

2.2.1 Elementary Cellular Automata

The simplest cellular automata family presented is “The Elementary Cellular Automata”
[9]. It is composed by a nontrivial linear set of cellular automata whose evolution is shown on
2D grids. It simulated line by line base and each cell has only two states (1 or 0). The new state
of a cell on one line depends on the state of the cell in the previous line and the two adjacent
cells in each side. The number of different options for the states of the cell and the two neighbor
cells is 2% = 8. This means that there are 8 possible patterns for the neighborhood. Figure 6 shows

a number of examples of rules. The ideal is to set the cell in the current row to one if the status of

19

the three cells in the row above matches the rule been implemented. For instance, in rule 30, the

cell will be changed to one on only four cases as can be seen in Figure 6.

The number of rules of this kind of cellular automata is thus, 28 = 256. This means that
there are 256 different rules for the 3 neighborhoods. Tens of papers analyzing the behavior of
these rules have been presented [9] [11]. Some of the rules, for instance rules showed interesting

behaviors. Figure 5shows the behaviors of some of them.

rule 30 rule 54 rule 6

N

rule 62 rule NI rule 94

4N
o AT"H"TD.
A,

rule 102 rule 110 rule 122

‘ﬁ By
R,

rule 126 rule 150 rule 158

)b
¥
i,

o2
i,
LT JII.
iy - R wie
rule 182 rule 188 rule 10}
rule 220 rufe 222 rule 250

Elei i

V

Figure 5:Examples of Elementary Cellular Automata. The rules associated with these
examples are shown in [9].

20

rule 30 rule 126
ol = e
o 0 0 1 1 1 1 0 o 1 1 1 1 1 1 0
rule 54 rule 150

el " " el S el e "

o 0 1 1 0 1 1 0 10 0 1 0 1 1 0
rule 60 rule 158
e B A ™

0o 01 1 1 1 0 0 1 0 0 1 1 1 1 0
rule 62 rule 182

e] e e =

0 0 1 1 1 1 1 0 10 1 1 0 1 1 0
rule 90 rule 188

oo o = ™ e

01 0 1 1 0 1 0 1 0 1 1 1 1 0 0
rule 94 rule 190

[= =0 = e =[] [R T

01 0 1 1 1 1 0 10 1 1 1 1 1 0
rule 102 rule 220

R o e (MR R

01 1 0 0 1 1 0 11 0 1 1 1 0 0
rule 110 rule 222
el B b il A w AR aae o o Ee

01 1 0 1 1 1 0 1 1 0 1 1 1 1 0
rule 122 rule 250

e] (R R

01 11 10 10 111 1 1 010

Figure 6: Example of Elementary Cellular Automata rules [9].

2.2.2 Game of Life

Game of life is a special version of cellular automata proposed by the British mathematician
John Horton Conway in the 1970s [40]. It is a two dimensional cellular automata where each cell
has only two state “live” or “dead”. This version of the cellular automata has no inputs except the
initial states of the cells. The states of the cells evolve based on predetermined sold rules. Unlike
the Elementary Cellular Automata, the game of life runs applies its rules on two dimensions.
This means that the rules are applied on all cells in each time step. The rules are built considering

that each cell has eight neighbors. The game of life has four main rules as follows:

e Any live cell with fewer than two live neighbors dies.
e Any live cell with two or three live neighbors’ lives for the next generation.
e Any live cell with more than three live neighbors dies.

e Any dead cell with exactly three live neighbors’ lives.

21

The game of life should start from a basic configuration of the cells. Based on the
configuration, the behavior of the cells in the grid will be changed. Several patterns of behavior
noticed such as: Still lives, Oscillation, and Spaceship. This Wikipedia page shows life demo of

some of these patterns [41].

2.2.3 Examples of Cellular Automata Simulators

Tens of cellular automata simulators have been presented throughout the past decades.
Most of these simulators are available online for free. This section introduces some of these
simulators while comparing their specifications with the proposed work. The comparison will be
built based on a number of factors which are related for instance ease of use, covered types of
cellular automata, and integration with other computational algorithms. The simulators presented
here are selected based on a Google search for the keywords “cellular automata simulators”.

Next is evaluation of the first three results in this search.

The first is an online open source simulator [42]. A screenshot of the website is presented
in Figure 7. The simulator provides colorful animation of cellular automata grid. It also provides
easy to use interface. On the other hand, it covers only one cellular automata type which is game
of life. Users are allowed to choose only specific cases of this types. The tool does not provide

the ability for the users to design their own rules.

22

Cellular Automata Simulator

I wrote a cellular automation simulator using Processing,js. If you like Conway’s Game of

Life, Brian’s Brain or others, this should interest you!

Enter Rule rake |2 3467/2678/6

Github

Figure 7: A cellular automata simulator as presented in [42].

The second simulator is presented in [43]. This simulator provides clean and easy to use
interface with animation of the cellular automata grid as shown in Figure 8. However, it covers
only the elementary cellular automata. Users are allowed to only choose one of the 256 rules of
this kind of cellular automata. They are also provided with tools to manage the animation canvas.
At the time this simulator can be considered a simple starting point for users who are interested
in learning cellular automata, it does not provide flexibility for the users to develop their own

cellular automata models.

23

Readme - About elementary cellular automata
About Rule 30 - Rule 90 - Rule 110 - Rule 184

Create a next-state rule set, or select a preset.
Rule 30 Rule 80 Rule 110 Rule 184 Random

111 110 101 100 011 010 001 000

90

Select a starting condition:

© Impulse 25%
Left 50%

Center 75%
Right Random

Start Pause Scroll continuously

=

Figure 8: A cellular automata simulator as presented in [43].

The simulator presented in [44] is specialized in only 3D cellular automata. Figure 9
shows a screen shot of this simulator. It provides a nice-looking 3D representation of the cellular
automata grid with flexible navigation and rotation tools. However, as in the other examples, this
simulator does not cover all types of cellular automata and does not provide easy to use rules

designer.

24

cubes.io is a bigblueboo labs experiment.

Navigation

Evolve

Initial State

Sphere

- | Shrink = None
Null | Wraparound

ALWMgAWAZA

ule Editor...

t Take photo

Figure 9: A cellular automata example as presented in [44].

The above-mentioned examples of cellular automata simulators have several interesting
features such as ease of use and nice interface. These features are suitable for users who are
interested in learning cellular automata especially those who are focusing on learning simple
examples. However, these simulators lack several features that are necessary for comprehensive
implementation of all kinds of cellular automata. They also do not provide the users with
sufficient tools to design and/or analyze cellular automata models based on flexible rules. Table
1 shows features comparison of the simulators already presented in this section and the simulator

proposed in this work.

Unlike the examples discussed in this section, the simulator proposed in this work is
intended to cover all the features which are essentials for designing and analysis of cellular
automata. It provides easy to use interface with very high flexibility. It covers all types of

cellular automata including 3D cellular automata. The simulator also provides tools to design

25

rules with colorful cell state. Above all of these features, the simulators will be implemented
inside a Blockly platform which allows integrating the cellular automata models to other

computational algorithms.

Table 1: Features comparison of current availed cellular automata simulators and the
simulators proposed in this work. The proposed simulators overcome all other simulators.

Simulator Easy All Rules Colorful | 3D | Integration

Use types Designer | State CA | with other
of CA platforms

http://robinforest.net/ Yes No No Yes No | No

[42]

http://devinacker.github | Yes No No No No | No

.io/celldemo/ [43]

http://cubes.io/ [44] Yes No No No Yes | No

Proposed simulator Yes Yes Yes Yes Yes | Yes

2.3 Network of Evolutionary Processors (NEPs)

Network of Evolutionary Processors (NEPS) is class of the natural inspired algorithms [1,
2]. It consists of a number of small processors called “evolutionary processors”. These
processors can perform very simple operations on the received data before the data is sent to
another processor. It is theoretically capable of solving NP-problems with polynomial resources
[5]. NEPs are characterized by their simple structure, inherent parallel processing of data, and
adaptation to solve several problems. Several versions of NEPs have been proposed [3] which
have been successful applied on several problems [4]. It is known for its inherently parallel
processing of data. It was originally intended to be a hardware computing platform, however,
most of the successful realization of NEPs are software simulation. A number of NEPs

simulators are discussed later in this section.

26

http://robinforest.net/
http://cubes.io/

2.3.1 NEPs Architecture

NEPs consists of a number of processors. These processors are connected via links which
transmit data between processors in parallel. The transmitted data can be thought of as a DNA
sequence that are sent among cells. In this analogy, the evolutionary processors can be thought of
as cells or nodes. As the DNA sequence is been moved from one cell to another, it may evolve
by mutations. The mutations are performed based on selected operations in the evolutionary
processors. The number of processors, links, operations, and any other parameters may differ

from one network to another depending on the application.

Figure 10 shows a simple architecture of one NEPs. In this figure, the NEPs consists of
four processors that are connected in a ring topology. In addition to performing mutation
operation, the nodes contain filters to prevent or permit specific DNA sequence to pass through.

For this reason, each node might or might not be associated with filters.

Processor Processor

£\ Link i)\

Filters Filters

Procgssor Procgssor

Filters Filters

Figure 10: Network of Evolutionary Processors (NEPs) simplified architecture.

27

The DNA sequence or “words” are processed by implementing simple operations such as
insertions and deletion of symbols from the words and transmitting and receiving words to/from
other nodes. In addition to these operations, several other factors govern the work of NEPs. Next

is a list of these factor:

1. Symbol set: These are a set of symbols which are forming the DNA or word
sequence. They can be thought as the alphabet for the transferred data.

2. Number of nodes: The number of nodes that form the network.

3. Connections: The pattern based on which the nodes are connected. This pattern
could be a regular network topology such as fully connected, ring, start etc. It
could be also set as an irregular pattern. Selecting this pattern completely depends
of the application or the problem in hand.

4. Stopping condition: The state of the network at which the operation stops. The
condition is selected based on the nature of the problem been solved. Four
stopping condition have been presented in the literature: Consecutive Config,
Maximum Steps, Words Disappear, and Non-Empty Node.

5. Rules: The operations performed in each node. A limited number of operations
have been presented in the literature such as Insertion, Substitution, Deletion, and
Splicing.

6. Filters: The filters are used at each node to permit or prevent specific words from

passing through this node.

More details about the NEPs setting parameters are presented in the next chapter.

2.3.2 Simulators Examples

28

Since it was presented, several software simulators for NEPs have been presented. The
simulators include bother visual and textual programing methodologies. In this sub-section, some
of these simulators will be presented. Early work by several research groups have presented
several versions of NEPs simulators [1-3]. These simulators, however, are now considered
outdated as they don’t cover the general NEPs concepts that have been developed since then. A
JAVA based simulators was presented in [4]. In the time this simulator made advances in terms
of the improving the performance by utilizing parallel implementation, it focused only on
decision making problems. In addition, flags have been raised about timing issues between
evolutionary processors and communication steps. In [7] a general NEPs simulator was
presented “jNEP”. It is intended to simulator any NEPs in the literature where this simulation
counted for all different variations of NEPs in terms of rules, filters, and connection. It also
provides an option for parallel execution which utilizes the inherent parallel nature of NEPs. In
addition, it is designed in an adoptable and flexible designed that make it easy to extend to
include new stopping conditions, filters, or evolutionary rules. This simulator takes an XML file
as an input. This file contains all necessary setting to describe any NEPs. The syntax of this file
is carefully designed and formed as a BNF. The outputs of the simulators are presented as text in
the terminal. This simulation was used as a base for the Blockly-based simulator presented in this
work. More details about this simulator and the adaptation methodology is presented in the

second section of the next chapter.

Based on jNEP another simulator “jNEPView is presented [45]. This simulator provides
a visual representation of the NEPs executed with tools to analyze its performance. With this

simulator users can track DNA sequence generated by each node.

29

Figure 11: A screenshot of the JNEPView simulator [45].

The JNEPView provides visual representation for the network topology and the sequence
output, however, it does not provide a visual programing for the setting of the NEPs and users
manually write XML files to be entered to the simulators. In [46] a new simulator “AToM3” is
presented to fix this gap. This Python based simulator provides a visual methodology to setup
NEPs settings. NEPs settings are entered to the simulator as UML class diagram. Figure 12
shows UML class diagram design window. In the other end, generate a visual representation for
the NEPs with XML setting file. Figure 13 shows network topography of the NEPs designed in
Figure 12. This simulator uses geometrical shapes to represent different aspects of the NEPs
model. For instance, it uses small rectangle for stopping conditions, triangles for filters, and

ovals for rules.

30

out

ect| Delete| Insert model| Expand madel
= Visual ops | Smooth| Insert point | Delste point| Change connector

Class

1 e
Vsl ops | Smocth | Ineest peint | Delete paint | Change cornectar

L E

MarimumStepsSC 8

oo o
Viows wrs_ciapges
s o empty_noce:

Nesw ihatet

‘ =

Figure 13: Screenshot of AToM3 simulator. Visual representation of the NEPs designed in
previous figure [46].

While AToM:? provides appealing visual representation for the implemented NEPs, it
does not execute the model directly. Instead, it generates an XML file that is entered to jNEP for
implementation. The simulator proposed in this work provides the features of all of the

simulators mentioned in this section and more. It provides the following:

e Easy to use visual methodology to setup NEPs based on Blockly.

31

e Software solutions to automatically setup several regular network topologies.
e Visual representation of the network topography.
e Online implementation with server-side execution of the network which could

dramatically increases the performance.

Details about the proposed simulators are presented in the next chapter.

32

CHAPTER 3.DESIGN AND METHODOLOGY

The goals of his project can be divided into two main parts. The first is designing a web
based specification (programming) environment for some natural computers (NEPs and cellular
automata) utilizing Blockly for testing the adequacy of block languages for this purpose and
exploring some “software engineering” tools. The second is testing the system and checking the
validity of our hypothesis. The first section focuses on building the simulator for Cellular
automata. Blockly is used as input methodology to set up the setting for the different types of
cellular automata. The simulator is built within the blocks. This means that the simulation for the
cellular automata will be executed as JavaScript code in the web browser. The second section
present the NEPs simulator. The blocks are also used as input methodology to set up NEPs.
However, unlike cellular automata simulator, NEPs simulator is executed at the server side. This
means that the inputs entered using the blocks are structured and sent to the server to be executed

and the results are sent back.

3.1 Cellular Automata

In this section, we present the part of the system related with cellular automata. We will

show several examples by means of which we will describe the different parts of the system.

3.1.1 Elementary Cellular Automata

33

Elementary cellular automata can be considered as the simplest type of cellular automata.

It consists of 2D grid where each cell has only two states: on and off or 0 and 1. This type has

been introduced in chapter 2.

In the next paragraphs we will describe the blocks of the system related with this type of

cellular automata. Figure 14 shows the blocks in this category.

L1] | 1 1 |

Logic :
Loops = ‘
Math

Text "0 "0
Lists ‘ ‘
Colour

Variables =
Functions

Draw 1

Game of Life o
2D Cellular
nD Cellular

Figure 14: Blocks for implementing the Elementary Cellular Automata.

The first block is Cellular_simulator. This block was for learning purposes where it ran

the simulation of the cellular automata in one step. The next four blocks are breakdowns of the

work implemented by this block. These four blocks give flexibility for the user to design the

desired cellular automata.

The second block is Create. The block is used to set the size (height and width) and the

color of the “On” state of the cellular automata. The state could be any color out of the 70 colors

provided by the color input field. The Height and Width inputs are used to set the size of the

gird. These values can be larger than the size of the canvas. If these values are left to zeros, the

34

grid is automatically created to fill the canvas. As given by Cellular Automata Law, the cells in
the created grid are automatically set to be to the “Off” state. The third block is SetCell. This
block is used to set only one cell in the first line of the grid to the “On” state. More than one
SetCell blocks can be used to set more than one cell in the first line. The color of the cell set in
this block is changed to the color specified in the Create Block. The block is designed to accept
values that are within the size of the created grid. Otherwise, an alert message will pop up. The
SetRule block is used to specify the rule to be applied on the cellular automata. The input value
of this block could be any number between 0 and 255. The Run block is used to simulate the
cellular automata based on the setting specified on the previous three blocks. This block has only
one input which is the number of steps to be ran. In this specific case, each step means applying

the rule on the next row in the grid.

Figure 15 shows an example using the blocks of this category to implement an
Elementary Cellular Automata. The size of the grid is 48x48 that is ran over 40 rows using rule

no. 30.

Logic Drawing Space Width : aso Drawing Space Height: 2s0
Loops

Math

Text

Lists

Colour

Variables 48 48 []
Functions e

Draw =
Cellular Autotmata
Game of Life a0 |
2D Cellular
nD Cellular

Figure 15: Elementary Cellular Automata implemented using blocks of the Cellular
Automata category. The cellular automata showed applies rule no. 30 on 40 rows of the
grid.

35

3.1.2 Game of Life

This type of cellular automata has been introduced in chapter 2. This section introduces
blocks used to implement game of life. Figure 16 shows the blocks of the Game of Life
Category. Three blocks only are used in this category: Create, SetCell, and Run. The Create
block is similar to the create block of the previous category. It is used to create a grid of cells
with specific size and color for the “Live” state. All of the cells in the created grid are set to
initially be in the “dead” state. If the input size of the grid is bigger than the size of the canvas,
the website will show an alert message while if the inputs are zeros, the grid will be created to
full the whole canvas. The SetCell block is used to set one cell in the grid to “Live” state. It has
two inputs to specify the position of the cell in the grid using the row and column coordinates. A
number of this block can be used to set the state of any desired number of cells. The Run block
has only one input which is the number of steps to be ran. All of the cells in the grid are tested

using the game of life rule in each step at runtime.

i
I Math
|
| st
I Colour
Run: St
I Variables
I Functions
I Draw
I Cellular Autotmata
| 2D Cellular
[nDCellular

Figure 16: Blocks of the Game of life category.

36

Figure 17 shows a game of life example of a setting that generates a glider (refer to
this website mentioned above for examples of this behavior. The grid in this figure is before
applying game of life rule. Figure 18 shows the run steps of this example. It can be seen that the
initial state of the grid appears again in step 4, however, shifted one row and one column due to

the glider behavior of game of life.

Drawing Space Widt|
cm:mumﬂmam St Color T

Run: Steps ﬂ

Figure 17: Game of life example with setting that leads to spaceship behavior.

Figure 18: Game of life Example, run steps. It can be seen that the shape the example starts
with in Step 0 (initial state) is repeated at shown again in step 4 shifted one row and one
column.

3.1.3 General Cellular Automata that can be represented in 2D grids

In this category, blocks are designed to work on custom 2D cellular automata. The blocks
give the user the ability to start a cellular automaton from scratch through designing rules that
run on 2D as in game of life or in row by row as in the Elementary Cellular automata. These two

different simulation schemes can be implemented on the same grid simultaneously. Such

37

integration, provides the user the flexibility to simulate, analyze, and test different configurations
of cellular automata in one platform. It is also important to mention that the possible states of the

cells in this category are 70 which are the colored provide by the color input field.

Figure 19 shows the blocks in this category. Seven blocks are designed for this category.
Next is the description of each block. Some of the blocks are similar to the blocks described in
the above-mentioned categories such as the first and second blocks which are used to create grid
and set cell in the grid. SetRule 2D block is used to design rules for the 2D cellular automata (in
this block we assume Moore’s neighborhood, where each cell has eight neighbors in addition to
itself). This block takes ten inputs, nine inputs for the old state of the cell itself and the 8
surrounding neighbors while the tenth input is for the new state of the cell. As many blocks of
SetRule 2D can be used to set different rules. The rules are saved in the website to be
implemented using the run blocks. Run 2D block is similar to Run 2D block in Game of life
category. Run 2D line is used to apply the rules one line at a time. This category also includes
blocks that work with 1D implementation similar to the Elementary Cellular automata. The
setRule 1D is used to design rules for this purpose. It takes six inputs, the first five are for the
old state of the cell and the two neighboring cells form each side while the sixth input is for the
new state of the cell. Run 1D block is used to apply the 1D rules. It works on a single row at a
time. The two inputs of this block are to set the row and steps where the rules will be applied. It
processes cells in one row from left to right based on the number of steps been entered. If the
number of steps is too big, the processing will start back from the left. This will add toroidal

boundary conditions to the implementation.

38

Logic

Cellular Autotmata el Rl Jeil |
Game of Life

|

I Loops

I Math

| Text

| usts

I colour

| Vvariables

| Functions cligciz@@ci3@
| Draw c2i@c2@c:
|

|

|

nD Cellular

Figure 19: Blocks of 2D cellular category.

3.1.4 nD Cellular Automata

The nD cellular automata is designed to be a generic implementation of any cellular
automaton. It covers any type of cellular automata with all varieties of rules and states. The grid
of cells could be designed to be of any dimensions starting from 2D up to any desired number
dimensions. Unlike the 2D cellular automata, the states of the cells in the nD cellular automata
expanded to cover any integer number. The nD cellular automata is also expanded to cover any
set of rules. The next section explains the blocks designed for the nD cellular automata, their

uses, and internal implementation.

Figure 20 shows the blocks of the nD Cellular category. This category contains six blocks

as follows:

Create nD: This block is used to create the nD grid of cells. It might look similar to the create
blocks of the other categories, however, it has more complicated tasks. It takes two inputs:
Dimensions, is used to set the number of dimensions of the cellular automata and Size: is used to

set the length of the dimensions. To simplify the work of the nD cellular, it is assumed that the

39

lengths of the dimensions of the nD cellular automata are the same. For example, using the
values: Dimension = 3, Size = 10 in this block will create a 3D cellular automata that has the
lengths of 10x10x10. The values of the cells of the nD cellular automata are saved in a 1D array
regardless of the dimensionality of the cellular automata. This approach requires the use of
appropriate transformation between nD coordinates (of the cellular automata) and 1D
coordinates (of the 1D array in the code used to save the values), this process will simplify the
overhead of saving grids of unspecified dimensions. Special JavaScript functions are designed to
transfer the nD coordinates to 1D coordinates and vice versa. The first function is nD2oneD.
This function is used to transfer nD coordinates to 1D coordinates. It takes three values as inputs:
the nD coordinates, number of dimensions in the cellular, and the length of the dimensions. The
transformation from nD to 1D is similar to the transformation from Binary to Decimal except
that in this function will use the length of the dimensions as base to this transformation. The next

Equation is used to change the indexes between nD and 1D as follows:

1Dindex = Y, nDindex}

where:

n: is the number of dimensions

d: is the length of the dimensions (the same for all dimensions).

For example, consider the coordinate {3,7,2} a 3D grid with sizes 15x15x15. The 1D coordinate

(index) of this 3D coordinates is calculated as follows:

40

1Dindex = 3 * 15° + 7 * 151 + 2 * 152

1Dingex =3* 1+ 7* 15+ 2 * 225

1Dindex = 558

The second function is oneD2nD. This function is used to transfer 1D coordinates to nD
coordinates. It takes three values as inputs: the 1D coordinate, the number of dimensions in the
cellular, and the length of the dimensions. The transformation from 1D to nD is similar to the
transformation from Decimal to Binary except that in this function will use the length of the

dimensions as base to this transformation.

For example, consider the 1D index 558. The 3D coordinates of a 3D grid with size

15x15x15 is calculated as shown in the next table:

Base 1D 1D-+15 reminde
r
15 558 558+15 =3
37

15 37 37+15=2 7

15 2 2+15 =0 2

According to the above table the 3D coordinates is {3,7,2}.

41

Logic
Create nD: Dimentions Size
Lo

Math

i
[
|
|
i
i
i
i
i

Colour
Set Rule nd: New State n
Variables
o Rule Part:
Functions

Draw

IR FEN Rule Part: State u Offset Coordinates

I Game of Life
| 2D cCellular

nD Cellular Bz G n

NEP

Connections Display: Projecti -
_~ play: Projection Axes
. Stoping Condition

I
|
[
| NODEs
l Rules
| Filters

Figure 20: Bocks of nD Cellular Category.
Set Cell: This block is used to change the state of one cell in the nD grid. It takes two inputs:
Cell Coordinates which is used to enter the coordinates of the cell to change its state and State
which is the new state of the cell. Since the number of the dimensions of the grid is not specified
until run time, the coordinates of the cell to be set is entered as text. For example, the coordinates
of the 3D grid (3, 7, 2) is simply entered as “3, 7, 2” with comma separating the numbers. In
JavaScript, the .split () method is used to change the entered text into a numerical array. For
instance, it transfers the text “3, 7, 2” to the 1D numerical array [3, 7, 2]. Any number of this

block can be used to change the states of any number of cells in the grid as desired.

Set Rule nd: This block is used to design the rules of the cellular automata. It is used in

combination with the next block in this category, Rule Part. As explained in the previous

42

chapter, each rule depends on the states of a number of or all of the neighboring cells in the grid.
However, the numbers of neighboring cells in the nD grids varies depending on the number of
the dimensions of the grid. For example, the number of neighboring cells for the 2D, 3D, and 4D
grids are 8, 26, and 80 respectively. It is not possible to design block with such undetermined
number of inputs. For this reason, the rules in the nD cellular automata are designed using these
two blocks. The first block, Set Rule nd, serves for two purposes. The first is to take the new
state of the rule while the second is to be used as a container for the second block, Rule Part.
This block takes the coordinates of one neighboring cell and its state. The coordinates of the
neighboring cells are specified by means of offsets from the center cell that is the current one.
For instance, the cell to the left side of the center cell can be referred to in offset coordinates as
{0,-1} while the sell under the center cell can be referred to in offset coordinates as {1, 0}.
Figure 21 shows offset coordinates of 2D grids. This scheme can be expanded for any nD grid.

Offsets are entered as text and they are processed in the same way as in the Set Cell block.

(-1,-1)| (-1,0) (-1,1)

(0,-1) | (0,0) (0,1)

(1,-1) (1,0) (1,1)

Figure 21: Offset coordinates of 2D grid. This scheme can be expanded for any nD grid.

Unlimited number of Part Rule blocks can be used inside Set Rule nd block depending on

the rule and the number of dimensions of the grid. Using these two blocks, any rule can be

43

designed for any cellular automata regardless of the number of dimensions or length of any
dimension. Unlimited number of rules can be entered to the system. All of the rules will be

applied to the cellular automata in the order they entered.

Run nD: This block is used to apply the nD rules to the nD cellular automata grid. This block is
similar to all other Run blocks in terms of the abstract functionality. However, it is much more
complicated considering that it works on nD grids. The oneD2nd and the nD2oneD functions are
continuously used in the code of this block. In addition, an extra function is used:
nD2oneDoffset. This function is used to specify the neighbors of the cell in rule based on the
offset. It takes the coordinates of the cell and the offset of the neighbor and change it directly to
the 1D index, so the run block takes the value of this neighbor from the 1D matrix. The steps of
this function are: (1) adding the offset to the coordinates of the cell, and this will give the
coordinates of the neighbor, (2) changing that coordinates to the 1D representation using the
function nD2oneD as described above. There is a condition inserted between these two steps.
This condition ensures that the neighbor cell will not be out of the cellular length. The usual

toroidal boundary conditions are used in this case too.

Display: This is a unique block that is not included in all other categories. It is used to show the
grid of the implemented cellular automata. If the number of dimensions of the cellular automata
is 3 or higher, it is impossible to show such grid on a 2D canvas without projection. One 2D slice
of the nD cellular automata will be shown at a time. The display block will be used for this
purpose. The display block shows a 2D projection of any nD cellular automata. The input

“Projection Axes” controls the projection. In general, for any 2D projection, two types of inputs

44

are required. The first one is used to select the two axes that will be projected. The second one, is
used to set specific values for the other axes. For example, if we want to extract 2D projection
for a 3D model, that means we want to show a 2D slice of that 3D model. Let’s assume that we
have a 3D model in which each axis is of length 10. This would give us a cube that contains
1000 cells coming from 10 length by 10 width by 10 height. If we want to do a 2D projection of
this model, it means that we will show a 10 by 10 slice of the 3D model. This slice should have a
full span of two of the axes and a specific value of the third axis. So if we enter X, X, 3 in the
display block, it means show the third horizontal slice of the 3D model. In the same way X, 5, x
means show the fifth vertical slice in the width direction while 6, X, X means show the sixth
vertical slice the length direction. To summarize, the input to the display block should contain a
series of “x” characters and numbers. The length of the series should be equal to the number of
dimensions of the CA. The “x” character means that this particular axis should have a full span
while a number means that this axis should have that specific constant value in for this
projection. There should be only two “x” characters as we are doing a 2D projection. This block
also used to change the cell’s states values into color so that they can be shown in the canvas as

colored cells.

3.2 NEPs on Blockly

The Blockly system for NEPs is a tool that uses custom designed blocks to design NEPs,
generate XML configuration structure. The resulted XML can be considered as input to another
different tool developed in [6]. The system described in this document is designed with four

specifications in mind:

45

1. The ability to design, implement and show results of the most recent update of NEPSs in
the literature.

2. Utilize the recent tools presented in the field to reduce development time.

3. Easiness for the user.

4. The flexibility to adapt for any future development such as add more rules, filters, and

stopping conditions or connect the tool to other remote servers.

Figure 22 shows a schematic of the NEPs tool. The client side is a website designed to
take user inputs in form of Blockly programs. Their blocks are designed to represent features and
properties of NEPs. The website interprets the blocks into an XML configuration file for NEPs.
The XML configuration file is sent in an Http request to the server side where the NEP is
simulated. The output of the simulation is sent back to the client side. The output of the
simulation will be shown to the user as text and as a graphical representation. In addition, the

tool contains extra features such as auto-generate of edges of the NEPs.

46

Client-side Server-side

HTML, JavaScript, Java
CSS, AngularJS

User
input as W
Blocks

XML file .
Simulator

Http request

Output

Figure 22: Complete system of proposed project. It consists of client side and server side.

From Figure 22, we can divide the workload of the development process of the tools into
server side and client side. The server side includes the development of a NEPs simulator API
which runs on a remote server. The client side includes the development of blocks, http request
handler, and show results. This section describes the development process of all of these

components in details.

3.2.1 NEPsAPI

The NEPs API is developed based on a tool called JNEP which was proposed by Emilio
Garia [6]. JNEP is a software tool that simulates NEPs. It takes XML configuration file as input
and print the output on console terminal. JNEP provides various desired features for running such

type of natural computing systems. It is built to be a generic platform that can be updated as

47

needed to adapt to any new changes or additions to the concept or implementation of NEPs. It

can also be executed in a Java parallel computing platform.

The NEPs API is built by updating JNEP. The update process includes the following steps:

1. Update the main method of JNEP to a regular method that received XML configuration
code as a string.

2. Test the new method with available examples from the literature.

3. Redirect the console.print to a text file instead of the operating system.

4. Test (Same as step 2)

5. Temporarily save the file on the server. And used it as a return value for the method.

6. Build Java restful APl base off of the new created method. This API receive XML
configuration file of a NEP as input and return a text file of the results as output.

7. Test the API locally (Same inputs as in step 2).

8. Deploy the API on an online server.

9. Test the online version of the API (Same inputs as in step 2).

The steps described above were striate forward and | faced no major challenges while
performing them. However, there is only one con that | faced at deploying the API. It was very
hard to find a hosting server that support Java restful API. The once that are found were rather

expensive.

3.2.2 NEPs Blocks

There are two main purposes for these blocks. The first one is to receive and process users’

inputs to generate the equivalent XML configuration of the desired NEPs. The second is to

48

generate a static visual representation of the designed NEPs structure. This chapter discusses the

blocks in detail. The blocks used for NEPs are classified into six categories as follows:

e NEP

e Connections

e Stopping Condition
e NODEs

e Rules

Filters

Each one of these categories cover specific aspects of the NEPs. As it has been mentioned
several times, the end goal of these blocks is to generate the XML configuration file that
describes the specific NEP. The first block “NEP Create” create an XML object as a public
variable. This object can be accessed by all of the blocks in the system. Each bloc can edit this
XML object based on the data gained from the user. As blocks are implemented, the XML
configuration code is written. It is also important to mention that this XML object is also used as
a way to communicate between the blocks because it carries all of the information about the NEP
while it is designed. For example, the set edge blocks can extract the number of nodes from this
object. This information is vital to test whether the vertex values entered by the user are within

the range of the nodes in the NEP.

The next section describes the blocks of each category:

NEP: This category includes two blocks. The first block is NEP Create. This block is used to
create a NEP. It has only one input which is No. Nodes. It takes an integer number that

represents the number of nodes in the NEP to be created. The second block is NEP Set Symbols.

49

This block is used to set the symbols of the NEP. Any number of symbols can be entered. Figure

23 shows these blocks.

| o
| Math
| =
I Lists
| colour
I Variables
I Functions
I Draw
Cellular Autotmata
| Game of Life
| 2D Cellular
I nD Cellular
[_NEP_______ |

Figure 23: Blocks of NEP category. Consists of two blocks: NEP Create and NEP Set
Symbols.

The blocks in the NEP category generate XML code based on the standard BNF format as

follows that has been taken from [6].

- [configFile]::=<?xmlversion="1.0"?><NEPnodes="[integer]|”>[alphabetTag][graphTag][pro-
cessorsTag] [stoppingConditionsTag] </NEP>

- [alphabetTag] ::= <ALPHABET symbols=“[symbolList]”/>

Connections: This category includes a number of blocks to create edges between the nodes
within the NEP. The edges in the NEP are considered as links to transferee information between
nodes. In this category, ten blocks are included to create, remove and manages edges. Figure 24

shows these blocks.

50

I Logic Graph Add Edges: Vertixt ofSEER Vertx2 oSN
[Loops

I Math

I Text

I i

| colour

| Functions

=

! Cellular Autotmata

[2D cCellular

| nDcCellular

. Stoping Condition

| NobDEs
[Rules

[Fitters

Figure 24: Blocks of Connections category in NEP. It consists of ten blocks. These blocks
are used to set links between nodes of the NEP.

The blocks in this category are explained below. To see how they work you can follow

the examples in Figure 25.

The first block is Graph Add Edges. This block is used to set one or more edges
between two nodes or more nodes. It has two inputs: Vertix1 and Vertex 2 which represent the
number of nodes to be connected with these edges.

With NEPs that has high number of edges, fully connected NEP for instance, it will be time
consuming to use only this block to set the edges. For this reason, seven extra blocks are added
to this category. These blocks are used to set a number of edges as one package in one step. The
blocks cover four main types of network topologies including ring, star, line, and fully
connected. These blocks will reduce the amount of work and time consumed by used to set up
such highly connected network using the first block. The points 2-8 explains these blocks. These
constructs are not part of the basic NEP definition. They could be considered as a kind of
“software engineering” feature that automatically generates the proper connections for these

types of topology.

51

. Graph Ring: This block adds edges between all nodes of the NEP to create ring
topology. It creates n-1 edges, where n is the number of nodes in the NEP. This block
has no inputs.

. Graph Ring Limited: This is a limited version of the previous block. It creates edges in
ring fashion between specific nodes. The number of these nodes are entered to the block
separated by comma.

. Graph Star: This block is used to create edges between all nodes to form star network
topology. It has only one input which is used to set the center node of the star topology.

. Graph Line: This block creates line network topology between sequenced nodes in the
NEP. It has two inputs Start Node and End Node which are used to specify the nodes at
the start and end of the line topology.

. Graph Line Limited: This block is similar to the previous block; however, it creates line
topology between specific node. It has one input to specify the nodes included in this
topology.

. Graph Fully Connected: This is one of the important blocks in this category. It creates
fully connected network topology between all nodes in the NEP. It is very common in the
NEP literature to create fully connected NEP with a number of edges that is equal to nXn,
where n is the number of nodes in the NEP. This block comes handy to auto-generate this
high number of edges in one step.

. Graph Fully Connected Limited: This block is similar to the previous block; however,
it creates a fully connected topology between specific nodes.

. Graph Remove Edges: This block is used to remove edges from the NEP.

52

9. Graph Remove Duplicates: This block is used to remove any duplicated edges. The

duplicated edges can be resulted from using to auto-generate blocks.

The resulted code of all of these blocks follows the standard BNF format provided in the
literature [6]:

- [graphTag]::=<GRAPH>[edge]</GRAPH>

- [edge] ::= <EDGE vertex1="[integer]” vertex2="[integer]|”/> [edge]

- [edge] ::=A

Figure 13 shows these blocks.

53

e © e @

e @ < e
e e @ =]
& & > @
e © @ 9

zm
Graph Add Edges Graph Ring
e @ e e
@ & =] @
@ @ = -
e @ S &
e O e @O
Graph Ring Limited Graph Line
e @ e @O
@ @ @ =]
= @ & e
@ = -] @
e © e 9o
Graph Line Limited: Nodes
Graph Line Limited Graph Star
e e ® o
@ . .® e o
e e e e
e e =] 9
@ 9O @ ©

Graph Fully Connected

Graph Fully Connected Limited: Nodes 1,2,45,7,9

Graph Fully Connected

Graph Gully Connected Limited

Figure 25: Examples of connection blocks.

54

Stopping Conditions: This category contains blocks that cover all types of stopping conditions
in the literature. Four blocks are designed to represent the four main stopping conditions. The

blocks in this category are shown in Figure 26.

Logic
Loops ‘\
Math

Text » ‘
Lists =

Colour

Variables
Functions

Draw o
Cellular Autotmata
Game of Life
2D Cellular

I nD Cellular
NEP

I Connections

| nNoDEs
Rules
Filters

Figure 26: Blocks in Stopping Condition category.

The supported stopping conditions can be easily expanded to cover more conditions. The

curretrly supported stopping conditions blocks are:

1. Maximum Steps: It forces the NEP to stop after running for a number of steps. It has
only one input which is the number of steps as integer.

2. Words Disappear: It forces the NEP to stop when all of the specified words are no
longer in the NEP. This block has only one input as text for the word to disappear. The

words are entered with a comma separating them.

55

3. ConsecutiveConfig: This block is to represent the ConsecutiveConfig stopping
condition. This block has no inputs. According to this type of Stopping condition, the
NEP stops the first time a configuration is repeated in two consecutive cycles of the NEP.

4. Non-Empty Node: This stopping condition forces the NEP to stop if the specified node

IS not empty. Such stopping condition is used for NEP that has an output node.

Using any of the above block will add its related code to the XML file. The syntax of the resulted

specifications of the stopping condition in the next BNF format taken from [6] is as follows:

-[stoppingConditionsTag] ::= <STOPPING CONDITION> [conditionTag] </STOPPING
CONDITION> - -
[conditionTag]::=<CONDITIONtype=“MaximumStepsStoppingCondition”’maximum="[integer]
/> [conditionTag]

[conditionTag]::=<CONDITIONtype="“WordsDisappearStoppingCondition”words="“[wordList]”
/> [conditionTag]

- [conditionTag] ::= <CONDITION type="“ConsecutiveConfigStoppingCondition”/> [condition-
Tag]

[conditionTag]::=<CONDITIONtype=“NonEmptyNodeStoppingCondition”nodeID="integer]”/
> [conditionTag]

- [conditionTag] ::= A

NODEs: This category contains only one block which is named NEP Set Node. Figure 27
shows this block. This block is used to add nodes to the NEP. Each block of this type that is
added to the system produce a node in the resulted XML. This block has to inputs: initCond and
auxiliaryWords which are used to set the initial condition and auxiliary words of the node

respectively. The node also accepts two type of internal blocks: Rules and Filters. These rules are

56

used to set the rules and filters of the generated node. The Rules and Filters blocks are discussed

in the next subsections.
The BNF syntax for this block taken from [6] is as follows:

- [nodeTag] ::= <NODE initCond="[wordList]” [auxWordList]> [evolutionaryRulesTag] [node-
FiltersTag] </NODE> [nodeTag]

- [nodeTag] ::=A
- [auxWordList] ::= auxiliaryWords="[wordList]” | A

- [evolutionaryRulesTag]::=<EVOLUTIONARY RULES>[ruleTag]</EVOLUTIONARY
RULES>

- [ruleTag] ::= <RULE ruleType="“[ruleType]” actionType=“[actionType]” symbol=“[symbol]”
newSymbol=“[symbol]”/> [ruleTag]

[ruleTag]::=<RULEruleType="splicing”wordX="[symbolList]’wordY="[symbolList]’wordU="
[symbolList]” wordV="[symbolList]”/> [ruleTag]

[ruleTag]::=<RULEruleType="splicingChoudhary”wordX="[symbolList]’wordY="[symbolList
1 wordU="[symbolList]” wordV="[symbolList]”/> [ruleTag]

- [ruleTag] ::=A
- [ruleType] ::= insertion | deletion | substitution - [actionType] ::= LEFT | RIGHT | ANY

[nodeFiltersTag] ::= <FILTERS>[inputFilterTag] [outputFilterTag]</FILTERS>
[nodeFiltersTag] ::= <FILTERS>[inputFilterTag]</FILTERS>

[nodeFiltersTag] ::= <FILTERS>[outputFilterTag]</FILTERS> [nodeFiltersTag] ::=
<FILTERS></FILTERS>

- [inputFilterTag] ::= <INPUT [filterSpec]/>
- [outputFilterTag] ::= <OUTPUT ([filterSpec]/>

[filterSpec]::=type=[filter Type]permittingContext="[symbolList]’forbiddingContext="[symbolL
ist]” - [filterSpec] ::= type="“SetMembershipFilter” wordSet="[wordList]”

- [filterSpec] ::= type="“RegularLangMembershipFilter” regularExpression="[regExpression]”

- [filterType]::=1|2|3|4

57

NEP Set Node initCond: - auxiliaryWords: -

Rules:

Filters:

Figure 27: NEP Set Node block. This block is located inside the NODEs category.

Rules: This category contains blocks that cover all types of rules available in the literature.

Figure 28 shows the blocks included in this category. The blocks are discussed below:

1. NEP Set Rule Insertion: This block represents the insertion rule of the NEP. It has three
inputs: a dropdown list to select the action type (left, right, any), symbol, and the symbol
itself.

2. NEP Set Rule Substitution: This block represents the substitution rule. It has two
inputs: the old and the new symbols.

3. NEP Set Rule Deletion: This block represents the Deletion rule and has only one input
to specify the symbol to be deleted.

4. NEP Set Rule Splicing: This block can be used to represent the two types of Splicing
rule: Splicing and Splicing Choudhary. It has five inputs: a dropdown list to select the
type of splicing rules and four extra inputs for the four words involved in the rule, that

are, word x, word y, word U, and wordV.

Figure 16 shows these blocks.

58

Text
Lists
Colour

Variables NEP Set Rule Substitution: Symbol - New Symbol |-

Functions

Draw
NEP Set Rule Deletion: Symbol
Cellular Autotmata. y -

Game of Life

2D Cellular NEP Set Rule Splicing: Rule Type XTI wordX m I
nD Cellular

NEP

Connections
Stoping Condition
NODEs

| Fiters

NEP Set Rule Insertion: Action Type [(TS7E3 Symbol - New Symbol -

Figure 28: Rules blocks. These blocks cover all types of rules which have been adopted in
the literature.

As in the case of stopping condition, the system can easily be expanded to cover any new types

of rules.

Filters: The filter category contains three blocks that represent the four standards filters and two
membership filters. The blocks in this category are shown in Figure 29 The blocks are discussed

in detail as follows:

Logic : . 0 - o 2
Mg NEP Set Filter: [Tk Filter Type Permitting Context: - Forbidding Context: -

Math
Text
Lists
Colour

Variables NEP RegularLang Filter: {[il:"1&a Regular Expression: -

Functions

NEP Membership Filter: (72 Word Set: -

|

1

|

1

|

i

|

1

I Draw

I Cellular Autotmata
I Game of Life

| 2D cCellular

| nDcellular

I nep

| cConnections

|| Stoping Condition
| NODEs

[Rules

Figure 29: Filter blocks.

59

1. NEP Set Filter: This block is used to set any of the four standard types of filter. In has
four inputs: two dropdown lists to select the direction (input, output) and the Filter type
while the other two to set the Permitting and Forbidding Contexts.

2. NEP Membership Filter: It represents the membership filter and has only one input to
specify the set of word to be permitted.

3. NEP RegularLang Filter: It is used to set regular expressions based filters. This block
has two inputs: a dropdown list to set the direction and another input to set the regular

expression.

3.2.3 NEPs Visual Representation

The proposed Blockly tool for NEPs provides a visual representation of the static NEP
topology while the user is designing it. The topology includes the nodes and the edges that are
connecting them. Figure 18 shows an example of the visual representation for the NEPs. The tool
represents the nodes as red circles. Each node is labeled with its integer number that is also its

sequential number. The edges are represented as black lines connecting the nodes.

In previous figures we have shown several examples of this graphic NEPSs representation.

Figure 30 shows one more example.

60

Figure 30: Example of the visual representation of the NEPs.

3.2.4 Example

In this example we demonstrate the system ability to auto generate XML configuration
file for a simple NEP. This example was originally presented in [6] and it was used to test the
JNEP simulator. In this section, the same example is used to test the new proposed tool. This
NEP consists of two nodes that are connected. The first node inserts the symbol B while the
second one deletes it. The system has two symbols A and B. The first node starts with the word
A B as an initial condition while the second node has no initial condition. The NEP stops after
executing 8 steps. Using the proposed Blockly system, we will design this example. Figure 31

shows the Blockly design for this example.

61

NEP Create: No. Nodes ﬂ

NEP Set Symboles:

Graph Add Edges: Vertix1 n Vertix2 _

NEP Set Node initCond: auxiliaryWords: -
Rules: ' NEP Set Rule Deletion: Symbol n

—

Filters: | NEP Set Filter: ([27%@ Filter Type {23 Permitting Context: Forbidding Context: -

NEP Set Filter: (e]T<TE3 Filter Type 3 Permitting Context: Forbidding Context: -

—

NEP Set Node initCond: - auxiliaryWords: -

Rules: : :
NEP Set Rule Insertion: Action Type (i[ii@ Symbol New Symbol
n -

Filters: | NEP Set Filter: ([{%3 Filter Type 53 Permitting Context: Forbidding Context: -
NEP Set Filter: (&>l 1@ Filter Type [ZB@ Permitting Context: Forbidding Context: -

—

NEP Stoping Condition: Maximum Steps ﬂ

Figure 31: Simple NEP example on Blockly.
After running this Blockly program. The system successfully generated the desired XML

file with accurate configuration. Next is the generated XML code:

<?xml version="1.0"?>
<!--NEP Config file-->
<!--This xml file is autogenerated from blockly-->
<NEP nodes="2">

<ALPHABET symbols="A B"/>

<GRAPH>

<EDGE vertex1="0" vertex2="1"/>
</GRAPH>

<EVOLUTIONARY_PROCESSORS>

62

<NODE initCond="A_B">
<EVOLUTIONARY_RULES>

<RULE ruleType="deletion" actionType="ANY" symbol="B"
newSymbol=" "/>

</EVOLUTIONARY_RULES>
<FILTERS>

<INPUT type="2" permittingContext="A_B"
forbiddingContext=""/>

<OUTPUT type="2" permittingContext="A_B"
forbiddingContext=""/>

</FILTERS>

</NODE>

<NODE initCond="">
<EVOLUTIONARY_RULES>

<RULE ruleType="insertion" actionType="RIGHT"
symbol="B" newSymbol=""/>

</EVOLUTIONARY_RULES>
<FILTERS>

<INPUT type="2" permittingContext="A B"
forbiddingContext=""/>

<OUTPUT type="2" permittingContext="A B"
forbiddingContext=""/>

</FILTERS>
</NODE>
</EVOLUTIONARY_PROCESSORS>
<STOPPING_CONDITION>
<CONDITION type="MaximumStepsStoppingCondition" maximum="8"/>
</STOPPING_CONDITION>

63

</NEP>

3.2.5 Run on Server using http request

Once the NEP is designed and a complete XML configuration code is generated, the
designed NEP can be executed on the server. The generated XML is sent to the server using an
http request. The user can run NEPs on the server by clicking on the button labeled “RUN ON
SERVER”. This http request is implemented as a function that is triggered by clicking on this

button. When the results are back from the server, it is shown on a separate text area.

Next is the result of running the XML code of the example from the previous sub-section:

XML CONFIGURATION FILE LOADED AND PARSED SUCCESSFULLY...
GRAPH INFO PARSED SUCCESSFULLY...

STOPPING CONDITIONS INFO PARSED SUCCESSFULLY...
EVOLUTIONARY PROCESSORS INFO PARSED SUCCESSFULLY...

NEP RUNNING...

Fokok ok ok ok ok ok ok ok okok ok NEP INITIAL CONFIGURATION
Kk ok oK K ok oK ok Kk ok K ok ok

--- Evolutionary Processor 0 ---

--- Evolutionary Processor 1 ---

evolving: 16

64

koo R dckkckx*x NEP CONFIGURATION - EVOLUTIONARY STEP - TOTAL STEPS: 1

>k 3k 3k 3k 3k >k 3k >k >k 5k >k 5k %k ok k

--- Evolutionary Processor 0 ---

--- Evolutionary Processor 1 ---

output filtering: ©
delivering and input filtering: ©

HAFKARR AR Kk x k% NEP CONFIGURATION - COMMUNICATION STEP - TOTAL STEPS:
2 ook kokok ok ok ok ok ok ok

--- Evolutionary Processor 0 ---

--- Evolutionary Processor 1 ---

evolving: ©

HAHFRARA AR Kk xx%k* NEP CONFIGURATION - EVOLUTIONARY STEP - TOTAL STEPS: 3
KK KK K KK KK KK KK

--- Evolutionary Processor 0 ---

--- Evolutionary Processor 1 ---

65

output filtering: ©
delivering and input filtering: ©

kR R Ak kxx NEP CONFIGURATION - COMMUNICATION STEP - TOTAL STEPS:

4k kRkokckockook ok okok sk ok k ok

--- Evolutionary Processor 0 ---

--- Evolutionary Processor 1 ---

evolving: ©

HAFAARA Ak Kk x %% NEP CONFIGURATION - EVOLUTIONARY STEP - TOTAL STEPS: 5

>k >k 3k 3k 5k 5k 3k 3k >k >k %k k ok k ok

--- Evolutionary Processor 0 ---

--- Evolutionary Processor 1 ---

output filtering: ©
delivering and input filtering: ©

HArFRARA KKk xx k% NEP CONFIGURATION - COMMUNICATION STEP - TOTAL STEPS:

6 kKkkokokskokock kok sk >k ok ok

--- Evolutionary Processor 0 ---

66

--- Evolutionary Processor 1 ---

evolving: ©

Frkokokckkkokxkokkkx NEP CONFIGURATION - EVOLUTIONARY STEP - TOTAL STEPS: 7
ok ok ok ok ok ok ok ok ok ok ok ok ok ok

--- Evolutionary Processor 0 ---

--- Evolutionary Processor 1 ---

output filtering: 14
delivering and input filtering: ©

HAAKARA Ak Kk x*k*% NEP CONFIGURATION - COMMUNICATION STEP - TOTAL STEPS:
8 ksk sk sk ok sk ok ok ok k sk ok ok

--- Evolutionary Processor 0 ---

--- Evolutionary Processor 1 ---

67

Stopping condition found:
net.e_delrosal.jnep.stopping.MaximumStepsStoppingCondition

We are glad you used jJNEP

Orignally designed by: Emilio del Rosal

Made available online through blockly by: Bashar Sami

68

CHAPTER 4. RESULTS AND ANALYSIS

This chapter discusses and evaluates the contributions of this work. The work presents an
online developing platform for natural computing algorithm using visual programing tool,
namely Blockly. The proposed platform provides software engineering tools for setting up
algorithms and we try to also ease the teaching-learning process of these models of computation.
The software engineering tools has been implemented mainly on the NEPs part as there is much
more software tools already presented for cellular automata. The software designed for NEPs are
a set of blocks to implement several types of connections between nodes. These blocks reduce
time and complexity in setting up NEPs with fully connected nodes, for instance. In the other
hand, cellular automata algorithm has been chosen to test the ease of the process of teaching and
learning natural computing algorithms as they are much better-known model. The test has been
conducted with students, teachers and researchers. The software tools designed for NEPs have
been already presented in the previous chapter with examples. This chapter introduces the
experiment conducted to examine the ease of teaching of natural computing algorithm using the

proposed Blockly based simulator compared to conventional manual implementation.

4.1 Cellular Automata Blockly Simulator

The Cellular Automata system on Blockly provides an easy methodology for researchers in
natural computing projects. The validity of the system was tested by means of an experiment
which includes two groups of users. The first group (test group) will be asked to implement CA
examples using the proposed Blockly system. The second group (control group) will be asked to
implement the same CA examples manually on paper. After the test, both of the groups will be
asked to fill a questionnaire that is used to evaluate the ease of use. The data collected from the

69

two groups will be analyzed and compared to each other. The hypothesis is that the first group
which uses the proposed Blockly environment will need less time to implement their CA
examples. They will also be more likely to use this system in the future in their research. To
make sure that the participants are not biased, it is suggested that they should have some sort of

experience in IT and that this is not their first time they are introduced to programing languages.

The steps of the experiment can be summarized as follows:

1. Give an introduction about CA and make sure that the participants understand it.

The introduction includes:

The definition of CA.

e Applications in the industry with examples

e Natural computing algorithms inspired by CA

e Simple examples of CA (Elementary Cellular Automata and Game of life). This
step includes implementation of simple Elementary Cellular Automata by hand on

the white board.

2. Introduce the proposed CA environment using Blockly (This step is for the test group
only)
This step should focus on the ease of implementing CA using the proposed Blockly
system. A number of Elementary CA and GoL configurations will be implemented using

the direct implementation tools available in the proposed system while the participants

70

411

will be asked to implement the example(s) included in the experiment using the generic
nD Blockly tool. For this reason, the nD tool will be also presented for the participants of
the test group.

Introduce the example(s) that they should implement.

Participants will implement one example.

Implement the example (the proposed example for this experiment is presented in detail
in the next section).

Collect results of the examples in the form of screenshots and/or text.

Present the questionnaire for both groups.

Collect the filled forms.

Analyzed the data.

Proposed example for the experiment

As discussed above, the experiment will be conducted both, with Blockly and by hand.

Implementing CA by hand on paper could be sometimes complicated and might take a long time.

Considering this fact, we propose the Elementary Cellular Automata for this experiment. The

proposed Blockly system for CA includes direct implementation of ECA where the rules are

internally designed, and users need only to select one out of 255 rules available in this type of

CA. However, in this experiment, participants of the test group will be asked to design and

implement this type of cellular automata using the generic nD tool. Figure 1 and Figure 2 show

examples of the Elementary Cellular Automata with the rules’ breakdown. One of these

examples can be used for this experiment.

71

Both of the participants groups will be asked to implement one of the examples shown in Figure
1 (same example for both groups). The test group will implement it using nD Blockly tool while

the control group will implement it by hand on paper.

The next sections explain the idle solutions of both groups for Elementary Cellular Automata

with rule 30, run it for 29 steps on grid of 30x30.

Ideal Solution for Test Group (using Blockly) for ECA with Rule 30

This group is expected to implement this ECA using the nD Blockly tool. After they
implement it, they will be asked to provide a screenshot of the blocks and screenshot of the

resulted grid.

Figure 32 and Figure 33 show the blocks and results of this examples respectively.

72

Create nD: Dimention ﬂ Size m

Set Cell: Cell Coordination m State

Set Rule nd: New State n

Rule Part: | gyje Part: State n

Rule Part: State n

Rule Part: State
G L

Set Rule nd: New State n

Rule Part: ' Ryle part: State o]

Rule Part: State n
Rule Part: State n
|

Set Rule nd: New State ﬂ

Rule Part: | pujg Part: State n

Rule Part: State n

Rule Part: State n
—

Set Rule nd: New State n

Rule Part: | pue part: State n

Rule Part: State n
Rule Part: State ﬂ

—

Run nD: Steps ﬂ

Offset Coordination
Offset Coordination

Offset Coordination

Offset Coordination m
Offset Coordination
Offset Coordination n
Offset Coordination
Offset Coordination m
Offset Coordination
Offset Coordination jRISTRNRNN
Offset Coordination “

Offset Coordination

Display: Projection Axes “ Tessellation

Figure 32: Blocks for implementation of Elementary Cellular Automata using the nD tool.
The CA is implemented with rule 30.

73

Figure 33: Results of running of the Elementary Cellular Automata in figure 19 for 29
steps on 30x30 grid.

Ideal Solution for Control Group (by hand on paper) for ECA with Rule 30

This group will be asked to implement the Cellular Automata by hand on paper. They
will be provided with a 30x30 grid printed on paper to implement the example. An example of

the grid is shown in Figure 34. The expected results on this grid should be similar to the grid

shown on Figure 33.

74

Figure 34: 30x30 empty template grid. This grid will be provided printed on paper for the
control group (by hand on paper).

4.1.2 Survey Questions

At the end of the experiment, the participants of both groups (Test and Control) were asked
to answer a few questions about their experience. A complete copy of the questionnaire can be
found in Appendix A. The questions in the survey are divided into four parts. Next is an

explanation about these parts:

1. The questions in the first part collect basic information about the participants like their
age, profession, and gender.
2. The second part is “Previous Skills”. In this part information about participants’ previous

skills is collected like whether they have heard of CA before or not.

75

3. The third part is to evaluate the participants’ understanding about CA.
4. The fourth part is about the example in the experiment. There are two versions of this

part one for each group (Test and Control).

4.2 Conducting the experiment

The experiment was conducted in collaboration with the Computer Science Department at
Al-Nahrain University, Baghdad, which is one of the highly ranked universities in Iraq. The
participants are mainly faculty and staff of the Computer Science Department. The experiment

was conducted at the same department on Jun 12, 2019.

Ten participants were included in this experiment. The participants were divided into two
groups (Test and Control). Four participants were allocated to the control group (working by
hand on paper) while the other 6 were allocated to the test group (use Blockly tool). Participants

enrolled each group following their personal preferences.

The experiment followed the same steps as explained in the beginning of this section. The

next section presents and analyzes the results of this experiment.

4.2.1 Experiment’s Results

This section discusses the results of the experiment. It is divided into four sub-sections.
Each of them presents and analyzes the results of a specific aspect of the experiment. The first, is
devoted to participants’ previous background and experience while the other three talks about

participants answers to the survey’s questions.

76

4.2.1.1 Participants Answers

As presented in the previous section, participants were asked to solve a question in nD
cellular automata. The example was selected to be from rule 30 of elementary cellular automata.
Four participants were asked to solve the example by hand on paper and the 6 remainder
participants were asked to solve it in Blockly using nD cellular tool. Only one out of the four
participants who tried to solve the example on paper was successful in solving the example while
the other three failed in solving the example. On the other hand, all of the six participants how
tried solving the example in Blockly were able to correctly solve it. At the end of the experiment
the four participant who tried solving the example on paper were asked to resolve it in Blockly.

All of these four participants correctly solved the example when they tried Blockly.

4.2.1.2 Basic Information and Previous Skills

Table 2 shows the results of the first two parts of the survey (basic information and
previous skills). The data in the table shows that all of the participants are of age above 30 and
they can be categorized into faculty, staff, and one grad student. The data also show that the
participants are almost equal in gender category where 40 % of the participants are male and
60% are female. All of the participants have programming language skills. Java programing
language appeared to be common among the participants with 80% while other programing
languages appeared in the table with 30% or less. It was also found that 60% of the participants

have not learned about CA before the time of this experiment.

77

Table 2: Results of the first two parts of the survey (basic information and previous skills).

Participa | Age Profession Gender Programming Know CA
nts Language Before
1 31 Programmer Male C#, java script No
2 33 Eng. Male C#, java script, java | No
3 40 Teacher Female Sql, ASP, C++

Assistant No
4 38 Teacher Female Matlab, java, C++ Yes
5 36 Grad Student | Male python, java, C# Yes
6 38 Professor Female Visual Basic, C,

Java No

7 44 Teacher Female C, Java, Visual

Assistant basic No
8 34 Teacher Male MatLab, MathCad,

R No

9 34 Teacher Female java, python, C++ Yes
10 34 Teacher Female Java, C, Visual

Assistant Basic Yes
Analysis | Mean: Faculty and | 40% Male | Java: 80% Yes: 40%

36.2 Staff
60% C, C++, C#: 30% | No: 60%
Female each

Visual Basic: 30%

78

4.2.1.3 Evaluation of Understanding

This part collects information about participants understanding of CA after they have
already conducted the experiment. The goal is to conduct cross-groups comparison of
participants understanding of CA. Two multiple choices questions included in this part as

follows:

Q1l: How do you evaluate your understanding of CA? (choices 1-5 where 5 is good

understanding and 1 is basic understanding)

Q2: How do you evaluate the easiness of CA? (choices 1-5 where 5 is very easy and 1 is

difficult)

Table 3 shows the results of these two questions for both groups. Results show that there
is no statistically significant difference between the two groups. This could be a result of the way
the experiment was conducted where both of the groups existed in the same room while the
researcher was presenting CA. This means that they all received the exact same explanation of
the topic. The other reason is that the control group (those who used paper) were asked to redo
the experiment using Blockly after they finished working on paper. This probably lead to
enhance their understanding of CA because they used both ways. Even though, the results of this
section show no advantages when using Blockly but the results of the last section of the survey

shows significant advantage to Blockly.

79

Table 3: Results of the questions in the third part of the survey for both groups.

Participa | Group Q1: Understanding | Q2: Easiness of
nts of CA CA
Test (Blockly)
Control (by hand)
1 Control 4 4
2 Control 4 5
3 Control 5 4
4 Test 2 1
5 Control 2 4
6 Test 3 4
7 Test 3 4
8 Test 2 3
9 Test 4 5
10 Test 4 4
Analysis | Test mean: 60% Test mean: 3 Test mean: 3.5
Control mean: 40% Control mean: 3.75 g:f(;rétrol mean:

4.2.1.4 Evaluation of Ease of Use

The last part of the survey tests how using Blockly CA tool affected participants
experience with CA. This part includes three questions that targets time consumption, effects of

tool on understanding, and future interest in CA. The questions are:

80

Q1: How long did you spend in solving the question in today’s experiment? (minutes)

Q2: How do you think (Blockly or on paper) affected your understanding of Cellular Automata?

Q3: Based on today’s experience, do you think that you will use Cellular Automata in your work

in the future?

Table 4 shows the results of the questions of the last part in survey for both groups. It can
be easily seen how Blockly has significant advantages over paper group. It can be also seen that
all participants tried using Blockly. This is because the participants who solved the example on
paper were asked to resolve it using Blockly. For this reason, this table shows that all participants
answered the questions related to Blockly while only four answered the questions related to
paper use. Next is analysis of this results in terms of time consumption, understanding of CA,

and future interest.

Time consumption: The time consumed to solve the example in Blockly is in order of a few
minutes (mean 2.9 minutes) while the time consumed to solve the same example on paper is in
orders of hours (mean 1:33 hours). These numbers show that solving the example in Blockly
about 32 times faster than solving it on paper. Numbers also showed that participants who tried
solving the example on paper first took longer time when they tried to solve it in Blockly
compared to those who directly started using Blockly. This could mean that they were confused

because of using of the manual try on paper.

Understanding of CA: Results showed that all participants who tried to solve the example by
hand on paper think that it made it difficult for them to understand CA while those who tried

using Blockly think that using Blockly made it easier for them to understand CA. It can be also

81

seen from the results that the 4 participants who tried the paper way all change their answers

from “made it difficult” to “made it easy” when they switched to using Blockly.

Future interest: Results showed that 60% of participants who tried Blockly expressed their
interests in using CA in their work in the future. On the other hand, all participants from the
control group (on paper) showed no interest in using CA in the future. However, three out of four

participants change their interest when they tried Blockly the second time.

Table 4: Effects of Blockly on time consumption, understanding of CA, and future interest

in CA.

Q1: Time | Q2: Effect of | Q3: Use in the

Participan | consumed understanding future
ts

Blockly | Paper Blockly Paper Blockly Paper
1 2:15 made it | made it very

8 min hour easy difficult Yes No
2 2:30 made it | made it

6 min hour easy difficult Yes No
3 made it | made it

3 min 1 hour easy difficult Yes No
4 made it

1 min X easy X Yes X
5 made it | made it

4 min 28 min super easy | difficult No No
6 made it | X X

1 min X easy No
7 made it | X X

1 min X easy No
8 made it | X X

2 min X easy No

82

9 made it X
1 min X easy Yes

10 made it X
2 min X easy Yes
Blockly mean: 2.9 | Blockly mean: Made it | Blockly: Yes 60%
min easy

Analysis Paper: No 100%
Paper mean: 1:33 | Paper mean: Made it
hours difficult

83

CHAPTER 5. CONCLUSION AND FUTURE WORK

5.1 Conclusion

This work proposed a natural computer programming (for CA and NEPS) environment
platform using Blockly. The platform is a web based tool that provides simulators for two major
natural computing systems: Cellular Automata (CA) and Network of Evolutionary Processors
(NEPs). CA is a grid of cells that changes their state based on pre-specified rules through a
number of discrete time steps. CA has been used in several applications such as modeling of
physical system, traffic control, and flood propagation. CA programming blocks presented in this
work provide the ability to design and implement several types of CA including Elementary
cellular automata, 2D cellular automata, and nD cellular automata. The nD CA is a generic
simulation for any type of CA. It provides flexibility for the user in terms of number of
dimensions, size, and the rules. The nD tools also provide potentially unlimited number of states
that can be represented in the CA grid. The tool also provides a graphical representation of CA’s
grid through projection for any CA that has 3 or more dimensions. NEPs is one of the promising
natural inspired computing models. It consists of a finite number of small processors (nodes).
The processors are connected through edges (links) to transfer data between the processors. Data
is a series of symbols called words which are processed inside the nodes by simple operations
such insertion, deletion or substitution. NEPs is powerful at processing NP-complete problems
compared to conventional computers. A NEPs Blockly programming environment is presented in
this work. It provides the ability to design and simulate NEPs. Blocks are used as flexible user

interface to enter NEPs specifications. The blocks automatically generate a standard XML

84

configurations code which can be sent to the server side of the simulator for implementation.

The tool also provides a graphical representation for the static topology of the system.

Both CA and NEPs Blockly programming environments have been tested in several rather
academic examples. We have tested our hypothesis about improving the learning process of
natural programming by means of blocks programming languages by means of a real activity in
the classroom. Results of the experiment showed that the CA Blockly simulator outperforms
traditional manual methods of implementing CA. It also showed that the proposed environment
has desired features such as ease of use and decreases learning time. The NEPs part of the system
has been tested against several applications. It showed that it provides a flexible designing tool
for NEPs. It outperforms traditional XML coding methods in terms of ease of use and designing
time. In addition we have designed specific high level constructs that automatize in some way
the specific of complex NEPs’ topologies by hand. They could be considered as embryonic

software engineering tools to program NEPs.

5.2 Future Work

Our environment can be considered as a generic platform for CA and NEPs. They can be
expanded in several directions. The CA part can be expanded to cover grids with different
tessellations such as triangles and hexagons. The current CA simulator executes the work locally
inside the web browser which limits the performance due to the constraints in memory and
processing power. A server-side simulator can be added to the tool to improve the performance.

A parallel processing server can be used to accelerate processing speed.

The NEPs environment can also be expanded in several directions. As in CA simulator, a
parallel server-side simulator is highly recommended to improve the performance of the NEPs

85

simulator. The tool is designed with such expansion is in mind. The current server-side
simulator sends results back to the client side as one big chunk at the end of the execution. This
can be updated to send results back to the client side in small chunks while the current job is
executed instead of waiting until the whole job completely executed. Such updated would
dramatically decrease the communication latency which improves the performance of the whole

tool.

86

APPENDIX A QUESTIONNAIRE FOR EXPERIMENT

This questionnaire is used during the experiment to test the ease of teaching and learning of

cellular automata using the proposed simulator using Blockly.

Final survey
General and Background Questions —“alal 4Ly
Age: Profession Gender
_ranlt gl epeinll
Previous skills ALl gl

Do you have programing skills? Yes No

Fine ol ol slga lnf o A ¥y
If yes, what languages do you usually use? 1.
fiole lpariind W enlall o Lo e amis Dol Y1 il (5 2.

3.
Have you learned about Cellular automata before this Yes No
day? At ¥
fopill s [CA e cuala s
Evaluation Questions =il LLici
Based on todoy’s presentation, how do you evaluate your understanding of Cellular Automata?
CCellular Automata Hlees i a8« ol wvisill oz ull o 20

1 | 2 | 3 | 4 | 5 | (5 good understanding, 1 very basic understanding)

How do you evaluate the easiness of using Cellular Automata?
fCellular Automataasi Lseu 7 psf 38
1 | 2 | 2 | 4 | 5 | 5 very easy and 1 difficult
Test Group (Blockly) Questions
How long did you spent in solving the question in today’s experiment? Minutes
Goall Lypad 6 Mpall g 6 cmon o B o e oS s
How do you think Blockly affected your understanding of Cellular Automata?
feellufar Automata e e 5 5Blockly of wti ik

made it very difficult made it difficult no affection made it easy made it super easy
fia Loe Lomee g L1 foa 2l
Based on todoy’s experience, do you think that you will use Cellular Yes No
Automata in your work in the future?
A dles _iCellular Automata sosteis I s s o o ull 4 pas e 2l
foLital
Control Group (by hand)
How long did you spent in solving the question in today’s experiment? Minutes
feellular Automatasbsatol Lae o g pesd ik ey

How do you think solving the gquestion on papers affected your understanding of Cellular Automata?

feellular Automatad egs o ol 510 e Nl of smied Cik

Automata in your work in the future?
o e dcellular Automata aasdciu il sz s o p il Ljas, e 2l
£ Lot alt

made it very difficult made it difficult no affection made it easy made it super easy
e Lerie A7 ad Al fia e
Based on todoy’s experience, do you think that you will use Cellular Yes No

87

APPENDIX B. NEPS BLOCKLY EXAMPLES

These examples have been introduced in [6] using manual writing of XML configurations.

this appendix, we introduce the them using Blockly implementation.

1. SAT problem

MEF Cregie: o Hodes. HJEN]

NEF Sat Symolas-

Graph Fully Connecied

MEF Sinping Conettion: Mon Empty Keaa. B
MEF SatModa InCond: [A | AHD [B OR G)} aundianpons: { [A=1]_# [[A=0] & [[B=1] &4 [B=0 #[[C=1] ...
Pl | pep ot Fuka Spicing. Fuss Typs ETTZ0EN wore W = (]] A= T #

P st ot st e Ty TR ot WK e o -

WEP Gat Fula Spicing Fuls Typs E C oy

MEP Sat Fuks Sphcing Fuks Typs:
HEP Sat Fuks Spboing. Fuss Typae [

HEP Sat Fuls Spicing: Fus Type E7Z TR wons. [B=1]
NEF Bat Fuls Spoing Fuse Typa ETTE cing] = L4
T mmm_ o o

HEP Sat Fuks Spicing: Fusa Typs ELETTE wonse [} [_pe=0] - #
MEP Sat Fuks Spicing: Fusa Typs [ETTZTTIEN wonse (] 1 [c=t] - 2

Flers | pep st Filer [0S Fiter Typs (X0 Parmitting Cortese fJESIIIEI Forésding Contast JA=1]_[B=1] [C=1] JA=0| [B=0f [o=0] & L& §) 1 I
NEF Sot Fiker: [=7 =TI Fitor Typs CI0 Permilting Conbast: Forbidding Conimd: -

MEF Sot Mode InRCond: - asdianavoms _

Fubas

Ftars | wep Sot Filer: [[TI7ES Fitor Typo [EIE8 Parmitting Contex: SJEIII Forbidding Context: A B C WA 1B C_AND_OR | |
MEF Sat Filer: [+ ET 5N Filter Typa |5 Penmiliing Confiesd: - Forbidding Conast: A=t _[EB=1]_JC=1] [A=0| [B=0] [o=0) & L= §) 1 I

MEF Sot Mode InkCord: - acdiandVords: 2 [A=0) | ¥ [A=1])& J* 1))
Fules” | prr St Fide Sphong: Fule Type ERT=TTIE wond< r A CE 1)}

MEF Eal Fula Sphoing

HEF Sat Fuka Spboing

HEF Sat Fuka Spboing

HEF Bat Fuska Splcingr

MEF Eal Fula Sphoing
MEF ol Fuka Sphoing Splicing C r =101 0
HEP Sal Fula Splicng Fule Type ET[Z TR wondd r A0 61 8]

e |y ot Filer: [[TI00 Fiier Typo (I8 Parmitiing Confiest SR Foadng Con: RN
MEF Saf Fillor: [ZT =TI Filer Typa KK Panmiting Contet: SJEININI Forbiccing Contes: o IEICIE

—

MEF Sattode intConc: SN acdiaywens

Fules: | WEP Sat Fuls Spicing. Fus Typs EELETTIEN wons(r (N =~ # wory 1}
et VT v W
HEF Eal Fula Sphoing. Fule Type ETTTIEN wondd r OFR_tA)] worol! W{JEIERE werr N
WEF Sat Fula Spcing. Rule Typa ETIZTTIE wond! wonf B} worml) £ woneh

HEF Sat Fula Splicing. Fule Type ETIZTTIEN wordd f A3}

L

HEP Saf Fula Splcing. Fule Type ERTZ57I0 wondx wond (=88] wordU! L3 W uF
=

Flers | per St Filer [(Z7700 Fiter Type (858 Parmitiing Confiesd: Fashidding Contmed:
MEF Saf Fillor: (=TT Filer Typa KK Panmiting Conte: SJEEIIIRI Forbiscing Contes:: o SIENI NN

88

rHEF SatMoca intCoret RN @ucdsanyWonds:

Fies | pEP Sat Fula Bpicing. Fule Type ETTETTEE wonzd. SIS v G oLl] worchy 13}
N etk Spbing. e Thpe £ e W v oENCRNN - oI = W
MEF Sat Fula Splcing: Fule Typs ETT0IEN word ISR word OR IE)] wordl WEEYESY wonre W EEERYE
NP St Fda ptcing. Fude Ty ETTTER worz RN v oy of T o= o

HEF Sat Fuls Sphoing Fuls Type E=7 2T wonee o' CJ worti = m“

.

Flers | pEp Sat Fiker 70730 Fiior Typa LS Pammitting Confiast Foshideding Comtmd-
NEF St Filar: (L7730 Filar Typs [EI0 Pormitting Cortsce: WERIIENY Fortiiding Consee SRR

MEF Sal Nnda | nitCon - aLod Bary\ o s

Rl | EP Bat Fule Spidng. Fule Typs ETTTEN wored NEIIERY worrr C)] wordL) x wortv SRR
P st Pt St ot T 517D e N e W = oSN = o
N T It ~—— IF - &
N St et st e Ty 1278 et R ety o ==

HEP Sat Rula Splicing. Ruls Typs BT L20 | wonsd — B} wort) o ENEN o o

-

Flar | pep et Filer [[T07I0 Fiior Type [EIE) Panmiting Confiosd: Forbidding Contet: N e=s IR0
NEF St Filker: (T30 Filer Typs I Permitting Corss: SRR Fortiicing Corsee: SRR

MEF Sat Mods |nECond: - aurd BaryWords:

Rules pEP Fot Fide Spldng mumt_rf"'-m—m oR A} oLl = worhd
e —— R —— gyl —
Pt e S Pt Ty T e N e oENTN v o = W

b e g ot e TR e W s o e W

HEP Gat Ruls Spicing Russ Typs 72125 I wonsd WY) Ll = mﬂu“

LS.

Flar | pep et Filker [[T7I0 Fiior Type [EIE) Panmiting Confiosd: Foshickding Comimd:
MEP St Fiker- [T Fiter Typs [EIE Parmitting Contast - Fortidding Crntast m

rer sottoos inecone: oY acianywoms

Flles” | prp Rt Fide Splcing l-':.u'r'.-mt_"""rnmw_m ORE)} oL * e
R e R P
WEF Sat Fule Sphoing Rue Typs ETZETTIE word WJSINER worc =) o CE ~

HEP Bat Ruls Spicing Fuls Typs TR wonsd word'Y) wordL) 3 worty WS

Rt | per Sat Fiker: (777N Fitor Type [Panmiting Conest: SICRU I Forhiccing Canbmd:
MEF Sat Filar- [=7 =T J5) Filtor Typa L) Parmilting Confiesd: - Forbididing Confiast: m

NEF Sat bods intCone: SRR ucdsanywwords:

s | n st e Spting: Fude Typm ETT=TEN v NN P
A ——— N ——— P —
B St Pt Sphcing. Pt Ty TR worot N worsv WECRIN = o - VN

HEP Sat Rule Splicing. Fuls Typs ETT=0 I wonsd word'Y £ oLl] worchy SRR

Flers | pep Sat Fiker L0030 Fiter Typa [Pamitting Confast m Frorbidirfing Crnfiast
HEF Sat Filar- [2772T 300 Filtor Typas £ Parmilting Conficsd: _ Forbicding Conast m

(-

89

2. Hamiltonian path problem

MEP Cracha: Ma. Modes r‘E'

HEF Bal Syrmibokas i1 z3456

Gimph furid Ediges: Wil o00,1.1,22.33.8 4 5556 Wiartbe? 1,353231,3241,512E,7 I
MEF Sai Mode InBCond _ asdharyWWorts: -

e ep mot Rk insartion: AcSon Typs IE70E0 Symiol n Maw Symbol -

AR wep gt Filer: ITSTEN Filter Type [N Parmilting Conleod: iD1232566 Forbidding Corted SRR

HEF Sat Filler- (=TT i) Filer Typa 50 Prrniting Contewt: i01z3266 Forticcing Somies o P

MEP Sat Mioda inECond _ il o _

Fsles” pep mot Rk insartion: AcSon Typs [IE70 80 Symiol _ Maw Symbol -

AR wep st Filer: ITST G Filber Type [0 Parmilting Coneod: iD1232566 Forbicding Corted SRR

Forticiding Comiss -

NEFP Sat Filler (=T 7T 30 Fikar Typa 30 Perrmiting Comlmt 01 23256

—
MEP Eat Mioda inlCondt - s relian o -

Fulss’ P ot Rule nserdion: AcSon Typs 57530 Symbal R e symoo WS

—

AR ep pat Filter [0 Filter Type [0 Parmilting Conlesd: iD133L466 Forbicding Conbasd -

HEF Sat Filler: [ZT"=TIC Fikier Typa FI0) Pesrniing Conlast: io1z3266 Forbiaang Comecs MR

MEP Sat Mode InECond - aecdlianhionss -

Fuss MEP Set Rule Insarion: Acion Typa 5080 Symeol ol IENEE rew symecl oSS

| -

Flars EP Set Fiec [T Fiber Typas 30 Parmilting Conisd 0123466

HEP Sat Flier- [ET TGN Fiker Type EIGN Permiting Conted: io1z3456

MEP Eot Mioda inBCond - ‘il Ao -

Fuss MEP Set Rule Insarion: Acion Typa L5080 Symeol of N rew syrecl oSN

L —

FRE ER et Fier LZTEGE Filbar Ty 30 Panmilting Comacs: iD1238E6 Forticding Contet (JRE 580

MEP Eat Mioda inlCondt - s relian o _

Fulss P ot Rule nserdion: AcSon Typs [ETEE Symbal |— Pt Bl -

HEF Sat Filler [ET T I0) Filker Typa E3E Perniting Contot i01z3L66 Forticcing Comes oSS

MEP Eat Mioda inlCondt _ s relian o _

Pl P nob Fuke Insadion: Acion Typa [E 30 Symbal _ M St -

AR pep pat Filter [TETI0N Filter Type E0 Parrilting Conlesd: iD123866 Forbidding Confiast: -

MEP Sat Filter [+ =T 08 Fikar Tynas 350 Peirmitting Comest io1z3456 Forbicioing Cormiast -

.
MEP Bat Mode inBCond - aa ey onEs |-

Fiskas:

FRos wrp s A (CTEN Filtar Tyne [EI0I Parmitting Conmeot: iD12345 Forbicioing Contest: -

AR ep pembership Pl [T I0N Word Sat

91

92

3. 3Color

KEF Crstw: o Mades WS

Lo b el bt g1 b2 rF oF b3 r3 g3 b rd g4 BE 05 g5 B ... I

Graph Fuly Comacind
HEF Satbioda iniCond: NEETIEE R EIRAN ~odinwocs:
FUBS NEP ot Fula Subamition: Sy SRICUNEN Mo Symoc SlRLORT
NEF Bat Fula Subaiiiion: Symec SENEGR Hew Seroo SR
HEF St Rula Subati thon: Symial “ Maw Byerbal “
NEF Sat Fula Substition: Symeo WEREFIES hew symoo SRR
NEF Bat Fula Subaiiiion: Symea HINEGIRY Hew Seroa SRS
HEF St Rula Sobati thon: Symbal “ Maw Enerbal “
NEP Sat Rl Scbatmution: Symeol WICERI Mo Symoa SRR
NEF Sat Rula Sobati tion: Symia n Maw Bl n
NEF Sat Rula Subsifition: Symed WRIEEIREN New Syroa (TR0
NEP Sat Rl Scbatmution: Symeol WG Mo Symoa SR
MEF Sat Rula SUbstetion: Symba n Maw Birbal n
NEF Sat Rula Subsifition: Symed WIETIR hew syroa WY
NEP Sat Rl Scbatmution: Symeol WG Mev Symoa SR
MEF Sat Rula SUbstetion: Symba n Maw Birbal
NEF Sat Rula Subsifition: Symeo ERELIREN hew Symoal SRECTR

L=
T p— s p—]
NEP Sat Fiter- [ET 7T Filar Tyna 0 Parmitng Contet: - Forbiitng Cones m
versatbicda nicons S svasver I
Fubs WEP Baf Rula Daloton: Bymbal '“

PR HEP Sat Fiter: (71108 Ftor Ty (8 Parmiting Content: WIFEI Foticang Contes: JE TN L R L R A I

NEP Sat Fiter: (XTI Filer Typa [0 Pemiting Cortuet. {ERIIY Forticorg Cone: NG OL R Nt N o I

MEF Satboda inkCond: - audianios -

Rule pEp Sat R Sbe tion: Bymbal Neaw Eyrmibol
k EE e oo oS

Flers wEP St Filer 27 15 Fiter Ty [Parmilting Contesé “ Forbidding Conlmd: B1_R1_G1 B2 Rz G2 B3 R: &3 B2 R G4 B5 AS G5 al... I
HEF Sat Filer: [T Fiar Typa (i) Farmiting Cortad: WETIR Forticaing Contmet: SRR
L

HEF Satioda inicon: NN audianstioms: RN

FURS HEP Sat Rela Subiiion: Sy RN Mew Syricl WIIGERE

FRMS. | WEP Sat Fiter: [N Filur Typa (00 Parmiting Conime: NRIESIR Forticing Contes: {IEIGIIC -G L R I
HEF Sat Filer- [=7 T/ J) Filier Typa [Permiting Confud: “ Fortidding Contast: -

HEF Satboda inkConc: RN audianstionds: RN

RS P ot Rug Substition: Symbal “ Maw Byrmoal n

FRSrS. WP Sat Fater: [N Filur Typs [Parmitig Conime: WRIESIRY Ferticing Cortns: MO =t e R I

HEF Bat Filer- [+ T35 Filior Typa [Pemiing Conlast Forhidding Conla
" el i L3

93

KEF Satbioda iniConc: ISR audiorytions RN
FUES NEP Bat R Subatiution: Symial IR Mo syrecl WD
MEP Saf Ruln Subsiftion: Symid “ Maww Eygmbal ﬂ
RIS NEP St Fiter: (Y11 Filor Ty (0 Parmitting Contest: JERETITIN Forbiccing Contes: (NN

NEP St Fater. (17T Fitor Tyna 1D Pomiting ot IR Fovtiocorg comee

ver satoda inacont WY sy
Fuls NEP Bat Rula Substiution: Symba n Maw Bl n
NEF Sat il Subsiiution; Symia Mesw Ermtza
" L ekt &
FIlerS NEp Sat Pt (727100 Fior Typs [0 Parmitting Conime: JERESICONNN Fortidang Conime: (IR

NEP St Fater: [ET7T Fikar Tys 1D Pomiting Cortut: IR Forticcorg cone: {ERETET

ner sattoce naconc: I svasvers:
Fuss NEP Bot Rulg Subsifiution: Symid M Sy “
NEP Sat Fuda Substnton: Symeal WRCER Mew ymoa IS
FIlrS. nep Sat Pt (TN Fiar Typs [Parmitting Conime: NERESHCOIN Forticeing corsmt: o SN
WEP at Filer: [=7 T Jg Filer Ty [Permiting Conimt: - Fortidding Conlad: B gl b2 2 g2

L=
MEF Saf oda InkCond: - audian o -
RS nepsat Ao bamten: Symea TR Mew Symec RN
HEP Sat Ruda Subatition: Symool EICTIY Mew Symool oSN
MEP Saf Rula Subaiition: Syl n M Symicid “
NEP Bat Fuln Subatfution: Symbol SSICEIR How Symiol (SR
HEP 5ot Ruda Subaiition: Symool IR ew sy oI
MEP Saf Ruln Subsiftion: Symid “ M Symicid “
NEP Sat Ruda Subatiution: Symol RGN Mew Syodl WfECHN
Ty p—
:EFHI*‘.m Fiar Typs () Parmeiting Cortne: NJRECIR Forusasrg conme: I LA L L I
ver satoda inacons IR sy
FLRS wp Bot g Subeiition: Symbal) e oroo ST
RS nep sat P (TG0 Fior Typs [Pamitting Conme: JRETIR Fotidsng Conime: TS L e L L L L L L I
S—
NEP S Fiter: (17T Fikor Tyna 1D Pomiting ot NJIETIR Foricing conine: NN
ner et oda inacon: WY suasyvers
Fuks NEP Bat Rl Subsution: Symba n I m:u“

—

Filers. NEP Sat Fitr: LTI Fior Typs (0 Parmiting Conie: PR Fotiddng Contme: oI L L L I

NEP St Fiter: (170D Fikor Tyno 1D Pomiting ot {ERCTIN] Forticing Coriest: of S

MEF Sat Moda iniCond: - audianghions: -
FukS nepsatRieamton: Symea fIETIN e Srmod I

L=

el L e - Ll B BT R B4 RiG1 B2 Rz G2 B3 R G3 Bé R4 G4 BG RS &6 al.. I

NEP St Filer- [£T T} Fiter Typa 1) Permiling Conlmet: “ Fiorbiiding Conlaot -

94

neP Batboda inecanc: W asyvirs: I
Fuks NEP Bat Fula Subetiution: Symba “ Parw Symicd ﬂ
NEF Sat Rudn Subsituiion: Symeal WRECRN Hew Symbol WSREINN
RN P sat P (72700 Fiter Typs (K0 Permitteg Contt: {ESEEICTIN Forbiscing cortast: oSS

NEF St Fier. [ETTIED Fitar Typs KD Farmiting Cortat. IR Forticng conee: BN S

L=

MEP Bl Moda InfiCond: - awdianyfiords -

P NEP Bat R Subaition: Symecl SRR Mew Syeoc -0
NEP Sat Fuia Sucamtion: Symeat {IEERR v oo ST

FIRGMS. NEP et Pt (727 Fitar Typs (0 Parmitting Coniet: JIECIGTINY| Fotiasng conime: N
WEP Sat Filer- [+ T 00 Fitar Typsa [Prsmiting Contmt: - Forticiding Conted: B4 g1 |

e
MEF Eat Moda inkiCond: - aucdianyors: -
RS NEP St Ra Subamiion: Syreal KRN Mo syreod WEEEETN
NEF 5ot Ruda Subsmution: Syreal WICERY Mew Symoal WIEI
FIRGrS: NEP ot Fiter (72700 Filor Typs (0 Parmitting Coniest: NJIECRCINNY Forticring ot oSNNI
WEF Bat Filer: [=7 7§58 Fiter Ty [Parmiing Conlaxt - Forbicding Conles:

ver sattioda ncons: W auiarvicrs RN
RS NEP Sat R Sutaition: Symeal (IIGTI Mew 5meo fJEENEN
WEF Sat Ruka Subsiiticon; Symial “ Mo Syl n
NEF Sat Fuda Subatiution: Symbol EETINN Mow Syt EITETIN
NEF 5ot Ruda Subsimtion: Symeat WICERR Mew Symec
MEF Sat Ruka Subsiition; Symial “ Mawi Syt n
NEF Sat Fudn Subatiution: Symbol TR Mow Symit EFERNEN
NEP 5at Ruia Sucatmtion: Symeal HISECIR Mew Sy oECTR
FIRGMS. NEP et Fater: (727 Fitar Typs D Parmitting Contest: NJIECIR Fortiddng Conime: JEEIE T o
MEF Sat Filar- [[£TZTI5) Filer Typa [Parmiing Conmet: “ Farbiciding Conlmt B1 Rl G1 EZ Az G2 B3 A3 G3 B4 Ré G4 B5 A5 G5 al ... I
L=
WEF Eat Hoda iniCorct RN aurdtiaréis: RN
RS neP sat Rua sucamuton: Symeol WICOI Mew Syroal WL
FIRSMS: NEP ot Fiter (727100 Fior Typs (100 Pamitting Coniest: fIECI Fortiddng Contne: TG T R L e = I
NEF Sat Fitar- (77T Filar Typa [Pamiting Contat Forticiing Contmt
b AEETH L
MEF Sat Mot InRCond: - audian o -
RS NP Bat Fua Subattution: Symeol IR Mew Symect EETI
RS P ot e (77100 Filter Tyna (10 Parmitting Conteot: [o WErnle Dl Bi R1 G EZ AT G2 B3 R3 53 B4 RE G4 B A5 GG al.. I

S
NEF St Filer. [ETTIED it Typa (KD Parmiting Cortaet. MEETIN Forticang coriet: of SN

ner sathioda nacons: IR avesyvers oI
Fukesr -
= :Ea:n.hs.mu. Symial “ Masw Enrrad “

FRirS. NEP St Filer: (727050 Fiter Ty (K0 Permittrg Contet: (ST Fotidang Conee: (T T L T L I

NEP et Fltar: (71D Filer Typs () Pt Cortme: {NETI Forticiang Conme: {JRI

95

rEFEattione nacon: NN audirnysicrs IR
Fuks e sat s suemaon: Symea) TN Mew symec ETEE
NEF Sat Auba Substiufion: Symbd “ Mesw Byl “
FIRE N Sat Filer: (7 Fitar Tyns () Pamiting Coniest: JEIEERTI Forvicdng Conted: (NN

NEF Sat Filar: (ZT711K) Fikar Typa 1K) Famiting Contudt: WS Forcicang Coniest

ver satboce nacon: W awaervers: I
Fulss NEP Sof Run Substiution; Symba “ Masw Byl n
NEF Sat Ak SLbetiution: Symbd Maw Syroal L
L
RN NEP Sal Filer: (TG0 Fils Typs A Parmitting Coniest: WERESIGUNGY Forticiing Conin: RN

NEP Sat Fiter: (TN Filor Typa BN et Cortue: MR Fortkasng Conteot

versattica ineCon: W oy oI
Fulss NEP Sat Rula Substiution: Symbal “ M Symiod “
NEF St Fuda Subaiiution: Symeol JIIETI New Seroo WJEETI)
PR Ngp sat Fier: (727 Fiar Tyns (K0 Pamatieg Consse: SFERCINNN Fortng com: oSN

NEF Sat Filer: {77, Jg) Filiar Tyna [Pemilting Conlmet: - Forbididing Conlast

L=

MEF EatModa InfCond: - aundlianthioris: -

FUES NP St Rua Subatmion: Syme) fIETIIN Mow Syrmec TN
NEP Bt Fda Subatiution: Symeal {IETI] Hewsveoc WED
NEF Sat Ak S_betiution: Symbd “ Pire Syl “
NEF Sat Rl Sutstution: Symeo RGN s Sy pRSRECIN
NEP St Ruda Sueamation: Symeal NIETIRY vew syoo WENE]
HEF Sat Ruba Substfufion: Symbd “ M Syl “
NP S Ruda Subattuton: Syt B oo JEEIE

PR N Sat Filer: (727K Filr Ty () Pamiting Coniet: WISECII Fortidding Cotme: IR DRI 0

NEF Sat Flar: (1K) Fikar Typa 1) Fermiting Cortut: {INIECIR Forticing Conime: {EIEI L o I
L=

ver satboce nacon: W awservers: I
RukS wep oot Rug Subsiidion: Symed N revorma JEETH
PR NP Sat Fler: (776 Filr Typs () Parmitieg Coniest: JIETII Fortidang Contmt: TG Lot L e L e L L I

NEP Sat Fiter: (ST Filer Tyna KD Parmting Contmt: WIS Fovtisrg Contee: SR

ver satboca nacon: W swservers: JE
Pk Emmm:wnr 'I'rtd“

L ==
FIE NEP Sat Filer: (7000 Fior Ty () Permiteg Conese: (RFTIN Fotidang Cortme: JE T e L A R A I

NEP Sat Fiar: (Z12T1G) il Typa () Pemeiting Cortot. ISR Fomiccing coreasr: oSSR

neEF sathoda inacons: WERINN audiansnionss: RN
RS e sat o susemuton: Symea EIEEIR rew oo o SEETE]

(.

AR e st Fter: ([Z2V0 Filtr Ty I Parmitting Coniese: G SN B i G1 B2 AT G2 B3 R3 GA B4 RE G4 B5 RS G5 al.. I

NEP Bat Fiter: (=T ST Filiar Typa [{IE) Permilting Conlmt: “ Forbidding Conlend -

96

WEF Satbioda niCons: RN ausdiarnyhioris: NN

FULS NEP Bt Ruda Subsition: Spmiol KR Mew Syrec NEREETE
MEP Sat Ruia SUbet® ton: Mesw Sl
H_ ik, * Bndied & |

Rl P ot Fiter (275 Filor Ty [Parmilting Conled: Fiovbiciding Contast -
P St o CUIED s 1 Pt e R oo one

o

HEF Satbioda niCons: USRI ausdiarnyhioris: SRR

FURS NEP Bt Rule Subsiution: Symeol WECR Mew S WIIETEN
MEF Sat RLif SUESt.tion: Waw By
k i, Bebal = |

Rl P ot Fiter [TZTIE) Filor Ty [Parmilting Conteed: Farbicising Contmet -
P Pl T3 Py G Pt Gt] Pt

MEF Saf Moda InBCond: - audianMords: -

FUES WP Bat Rula Subsiiution: Symbal n Mo Symbal “
NEF Sat Fula Suettion: Symeot JEITERRNN o Symnal NN
AR e ot e [Z2T3G Fitar Typs [Parmitting Contat Fortiing Cortat: WSRINN
1 5t .G o 60 g v] s corne

vep sat oo inicant: W soaervvers I

FUES WP Bat Rula Subsiiution: Symbal “ Haaw Syl
NEP Sat Ruda Sueamtion: Spmeot I e symed WREIN
NEP Sat Rk Subaintion: Symeal {IEEIR Mew syreo N
NEF Bat Rl Subsition: Symial “ Haaw Syl -
NEF Sat Fuda Subsition: Spmicl TR Hew Symoed WSEIN
NEP Sat Rl Subaittion: Symeal {IEIR] vowsyres DR
NEF Bat Rl Subsition: Symial “ Mo Symibicd “

PR P St Fiter (227G Filr Typs [Parmitting Contas: B rotiosrg Coiee: JEETT LTS
NEF Bat Fiter- [ZTZTIC) Fikkar Typa [Perriting Conaxt SESTULSNE By R G B R G2 B3 A3 G3 B4 RA G4 BS RS G5 al.. I

ner et tode inicont: I sweeyvers:
Fubs NP ot Rula Substiution: Symbal Nasw Byl

k N o
Fileri nEP Bt Fiter (2700 Filor Ty () Pamitting Cone G TR gy Ry G B2 R G2 B3 A3 G3 B4 RA G4 BG RS G5 al. I

NEF Siat Filr: (=T TTIG) Fiar Typa [Parmifting Conimct: RN Forticsing Conim: SSI

o

HEF Satbioda niCons: ERIN ausdianyniomis: R

PSS NEP Sat Fuda Sutaiiion: Syreal WIEIR Mo svoc NGEREN

PR NP St Fer- [T Fitar Ty 1K Parmiting Conest: {JECI| Fotiarg conee JEIEE LS LN I
WEF Sat Fiter: [£1 i) Filar Typa [Pamiting Conlmt: “ Firticiding Contast -

rEFsattiooe nacons RN ausiaryvoms R

Pk NEP Sot R Suraiiion: Symeol WECIR Mew S oSN

AR ep St Fiter [Z2TIE Filor Tyns (I Parmitting Contas: GURTSICAT By Ri G B2 2 G2 B3 A3 G3 BA Ré 54 BG RS G5 al.. I

NEF Bat Filer- [=7 T/ Fiker Typa [Pamiing Conimet “ Frbidding Conlad: -

L —

97

WEF Satbioda iniCorc: RSN audianéticrrs- IR
P NEP Bat R Sutamtion: Symect fIIECIRY tewsyec NEEENEN
MEP Sat Rula Subsifution; By “ Masw Enrrinal “
FRr wr mot Fiter: [Z2T10G0 Filar Typss [Parmitting Conas: Forticing Contt: RN

NEF Sat Filer. [E72TIED Fitar Typa (K0 Parmiting Cortuct: MY Forticorg Conee: T TN T

neP Sattoda ineconc: W suasryvirs: I
Fuls WEP Bat Rula Subsfiution: Symed n Paasw Exgrmacd n
NEF Bat Fula Sutstmution: Symool NIETIR Haw Bymoa NS
—
PR hr Got Fiter: (52700 Filar Typss [0 Parmitting Conas: Forticang Conimt: RN

NEF Sat Fier. [E72TIED Fitar Typs (K0 Parmiting Cortuct: MR Fortioorg conee: IR TR

neP Sattoda ineconc: W swasryvirs: I
Fuls WEP Bat Rula Subsfiution: Symed “ M Symcd “
NEF Sat Ruda Subamtion: Symect W Mew Symoa WICIN
PR her Got Fiter: (22T Filar Typss 0K Parmitting Conas: Fosticeing Corimt. SN
MEP St Filer- [+ T i) Fiter Typa [Permiing Contmet: - Forbiciing Coned: B2 2 g2 b & A

-
HEP Eat Moda InkCond: - aundliary Mo -
RS NP Bt Fuda Subattution: Symeol fEIETIR Mew Symeo JEER
NEF 5ot Ruda Subaiution: Symect WICERNN Mew 5yrocl WA
WEF Sat Ruba Subsiition: Symidl “ Merar Sy “
NEF Gal Fula Subsifution: Symool INSRGIREN Mow Symoa SR
NEF 5ot Ruda Subaiution: Symect WICIRINY Mew 5yrocl WIS
WEF Sat Ruba Subsiition: Symidl “ Merar Sy “
NEF Sat Fuda Subsitution: Symect SIECIR Mew 5ymocl WEJN
FRr her mot Fiter- [Z2TE0 Filar Typss 0K Parmitting Conas: Farbiding Conindt:

NEF Sat Fier. [E77ZTIED Fitar Typs (K0 Parmiting Cortet. WIRECI| Fortidang conimt: R L I
[

neP Sattoda ineconc: W wasyvirs: I
FUbS 1D Got R Sobsiiution: Symbal EER 1o oo T
PR NP St P (2150 Fitor Typs 150 Permittng Contet: (ST Fotidsng ot JEETEOE LR L L L L I

NEP Sa Fier: [ST7ZTIED Fibar Typa (1N Pasiting Cortmst. WREJY| Fovticsng conime: SEINER]

ner sathiode nacons: IR awesvors oI
Fubs NEP Bat Rula Substiution: Symbal M Syl
" “@y S w@n
RS WEP Bat Fiter: [TZT1IG) Filer Type [Permitting Conlest “ Fartidcing Conlmd: B1 R G1 B2 RZ G2 B3 R3 G3 B Ré G4 BG RS G5 al.. I

NER Bat Fier: (E17ZTIED Fitar Typa (K0 Parmitieg Cortat: EIECRR Fortiocing cortast: o S

NEF St Hoda inkConc: (RN audianticrs: (QRRINY
RS NP Bt o Subamution: Syme WIEI Mew 5o W]

o

RIS NEP St Fater: (270 Fiter Typs KD Parmiting Contet: NESECIR Fotidong conme: fEIEE L L I

MEF Sat Fiter- [£T=TI) Filer Typa [Permiting Conlmt: “ Fovbiiing Coniged: -

98

WEF Gat Hoda iniConc: (NN audtaryvions: RN

R ngr sat Rue sucamuton: Symea IR rewsvreo T
WEF Baf Ruin Substition: Bymbal PR Mew Syl
" g SN

FRM WP Bt Filer |7 Filor Type [Pamitting Conie m Farbldcing Confmt: -
NEP Bat Fitar: (TN Filor Typa (I Pormitting Cortuot: SN Forbiciding Conast &2

L
WEF Gaf Hoda iniConc: (IR audiaryions: (R
RS NgP et Rl Subaiution: Symeol SEIR Mew oo WIETEN
NEF Bat Rula Subsii tion; Symbal PRl Mew Syrrbal
" . = | il
PR WP Gat Filer: ([T=7GN Filor Tyna [EIE8 Parmitting Contet: m Farblcing Confmt: -

€7 o TRy O et e] o

MEP Sat Moda iniCond: - audianiMords -

Flks WEP Gt Ruba Subst tion: Symbd n M Syl “
NEF Gat Rl Subatiution: Symoal WRETRE Mew Eyrba W30
PR NP sat Pt (27N Fiter Typs (G0 Parmittng Cone: JEETREJI) Fortiaing Contmnt: WY
WEF Sat Fiter: (TN Filar Typa KD Pormiting Cortast:. NI Forviseg coneoe: {IEREE TN

v sat oo inicon: S avaervrers W
FLES WEP Baf Ruln Subeliution: Symba “ M Symical
NEP Sat Fuln Subaiiution: Symicl JERCTINN Hewr Symoct WREIN
HEF Sat Rude Subatiution: Symeal IR Mew sy SN
HEF Sat Rl Sobatiution: Symhal “ Masw Sy n
HEF Sat Fude Subaitution: Symeal IIECIRY Mew syrool WEI
NEF Sat Ruda Sucamution: Symeat ICRN Mewsymea NEE
l_hEFHFl.IiE.l:mm: Symial “ Maw Sy “
PR P at Filer (727108 Filar Tya [Parmitting Conleat: B Fotioseg Contne:
NP Sat Far (ETTED P Ty () Pamiting Cordast U e EEEEULEEE oi Ri G B2 R2 G2 B3 R3 G2 B4 Ré G4 BS RS G al.. I

MEP Sat Mo InBCon: - aLoiandfiors -
Fukss P ot Rule Substittion: Symiol Hasw Enrroal

! e " Dbl o
FiRars: NEP et Filer: L2150 Fitor Typs [Permittng Comet: JFTI Fotiasng Coniee: T LA L L e I

WEP Sat Filar: (7710 Filar Typa [0 Parmitting Cortt: NSEDI Forticiing Contme: ISR

L8

MEP Sat Moda inliCond: - audliary o -

RS NEP Sat Ruda Subaition: Symea SIECIR M= syrecl NS

FIRSMS: Ng et Fiter: T2 Fitor Typs [0 Parmiting Coniot: NECIR| Forckdng Cortee: MCIEIEIE L L - I
MEP Sat Filler: [=T =T i) Fikar Typa [Permilting Conladt: “ Fortidcing Conbet: -

WEF Gathoda inecons: W audiaryvions:

FUBS D sot g Subsiiiution: Symbol o bl S

Bl =2 S et - AR B R Y e EESt R B RiGYE2 R2 G2 B3 R3 G3 B4 R4 G4 ES RS G5 ai.. I

MEP af Filar: (=727 iG] Filar Typa |G Permiing Contmst: Forhidding Conta:
" T gL L2

99

MEP SatMod iniCont - auLdianores -
Pk -
L Lrﬂau&mu. Bymi “ Masw EiTal n

NEF Sat Fler (571153 il Typa 1D Pt Cortet MRETIRN Fovticng Conie: (RN

NEP Satbode iniCont ISR audianvioris: (S
FUE nep sat o subamation: Syreot WIEIY Mow syrec ARE
WEF Bat Rula Subatition; Sy “ Masw Bl “
R wep pat P (7750 Filr Ty [Parmitting Contas Fortisang Conast: (RN
NEF Sat Flr: (77210 Fitar Typa K0 Pamoting Corinst: NI Forbisong Conit: (T REE Nkl

nep sathicca nacons: WY suasvers: N

FUkS NEP Bat Rula Sobaifufion; Sy “ Masw EiTal ﬂ
NEP Bt Rula Subatiution: Syl (SERELINN aw Symicl (SR
L~

FIRSM. NP o Fier. (71D Fitor Ty 0 Parmitteg Conest: JIECE I Foriaang Conimt (SRR
NE St Fir: (ET72TE0 Fitar Ty (0 Paoting Cortuc: MY Fortiong Cone

nepsathioca nacons WY ey Y
Fulss NEF Saf Fuln Subsiution: Symbad n N Sy “
NEP St Rula Subatiution: Syrool ISEELIE haw Symocl ISEE: I
FIREE . NgP St . (727D Fila Ty KD Pormiting Coniet: RECHC N Forticeing Cori: ffSSNNY
NEP Bat Filer: |72 J5) Filar Ty [JE Prsmiting Conimet - Forticcing Contet. RIS RET E LT 3

-

MEF Sat Moo iniCond: - aucdliaryoris -

FUS. NP ot Ruda Sutainton: Syed (IETRN Mew syrel fESE
NEP Sat R Subathtion: Syreal WRNCTRNY Mo syrot WEEINN
NEF Bat Rula Substiution; Sy “ M Symice n
NEP St Rula Subatiution: Syl SSSIGIINEN How Bymia RIEIEN
NEP Sat R Subathtion: Syreal WEREIY Mew syrod WEINN
WEF Bat Fula Substiution; Syt “ M Symice “
NEP Bt Rula Subatiution: Syl (SEEJNN Mow 3ymbol SRR

FIRSM. NP o Fier. (77D Fitor Ty 0 Parmittrg Conest: JECIRN Fortiddeg Coriu:

100

101

REFERENCES

[1] Juan Castellanos, Carlos Martin-Vide, Victor Mitrana, and José M Sempere. Networks Of
evolutionary processors.Acta Informatica, 39(6-7):517-529, 2003.

[2] Juan Castellanos, Carlos Martin-Vide, Victor Mitrana, and Jose M Sempere. Solvingnp-
complete problems with networks of evolutionary processors. InInternational Work-
Conference on Artificial Neural Networks, pages 621-628. Springer, 2001.

[3] Erzsébet Csuhaj-Varju, Carlos Martin-Vide, and Victor Mitrana. Hybrid networks
ofevolutionary processors are computationally complete.Acta Informatica, 41(4-5):257—
272, 2005.

[4] Nuria Gomez Blas, Miguel Angel Diaz, Juan Castellanos, and Francisco Serradilla.Networks
of evolutionary processors (nep) as decision support systems. 2008.

[5] Castellanos, J., Martin-Vide, C., Mitrana, V., & Sempere, J. M. (2001, June). Solving NP-
complete problems with networks of evolutionary processors. In International Work-
Conference on Artificial Neural Networks (pp. 621-628). Springer, Berlin, Heidelberg.

[6] Emilio del Rosal Garcia. Real life applications of bio-inspired computing models: Eap and
neps. 2013. PhD thesis.

[7] Emilio Del Rosal, Rafael Nunez, Carlos Castaneda, and Alfonso Ortega. Simulating neps in a
cluster with jnep. InProceedings of International Conference on
Computers,Communications and Control, ICCCC. Citeseer, 2008.

[8] Carmen Navarrete Navarrete, Marina de la Cruz Echeandia, Eloy Anguiano Rey, Al-fonso
Ortega de la Puente, and Jose Miguel Rojas. Parallel simulation of neps onclusters. In2011
IEEE/WIC/ACM International Conferences on Web Intelligence andIntelligent Agent
Technology, volume 3, pages 171-174. IEEE, 2011.

[9] Stephen Wolfram.A new kind of science, volume 5. Wolfram media Champaign, IL,2002.

[10] Clifford A Pickover.The math book: from Pythagoras to the 57th dimension, 250 milestones
in the history of mathematics. Sterling Publishing Company, Inc., 20009.

102

[11] S. Wolfram.Cellular Automata And Complexity: Collected Papers. CRC Press, 2018.

[12] Martin Erwig, Karl Smeltzer, and Xiangyu Wang. What is a visual language?Journalof
Visual Languages & Computing, 38:9-17, 2017.

[13] https://scratch.mit.edu/, Accessed October 2019.

[14] https://developers.google.com/blockly/guides/overview, Accessed October 2019.

[15] https://code.org , Accessed October 20109.

[16] https://en.scratch-wiki.info/wiki/Block-Based_Coding, Accessed October 2019.

[17] https://pencilcode.net/ , Accessed October 2019.

[18] http://appinventor.mit.edu/, Accessed November 2019.

[19] https://scratch.mit.edu/statistics/, Accessed November 2019.

[20] Franklin, Diana, et al. "Using upper-elementary student performance to understand
conceptual sequencing in a blocks-based curriculum.” Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science Education. ACM, 2017.

[21] Grover, Shuchi, Roy Pea, and Stephen Cooper. "Designing for deeper learning in a blended
computer science course for middle school students.” Computer Science Education 25.2
(2015): 199-237.

[22]Weintrop, David, and Uri Wilensky. "Comparing block-based and text-based programming
in high school computer science classrooms.” ACM Transactions on Computing Education
(TOCE) 18.1 (2017): 3.

[23] https://www.makewonder.com/, Accessed, October 2019.

[24] https://make.gamefroot.com/games/new, Accessed, October 2019.

103

https://scratch.mit.edu/
https://developers.google.com/blockly/guides/overview
https://code.org/
https://en.scratch-wiki.info/wiki/Block-Based_Coding
https://pencilcode.net/
http://appinventor.mit.edu/
https://scratch.mit.edu/statistics/
https://www.makewonder.com/
https://make.gamefroot.com/games/new

[25] Alrubaye, Hussein. Comparison of visual programming and hybrid programming

environments in transferring programming skills. Diss. Rochester Institute of Technology, 2017.

[26] Alrubaye, H., Ludi, S., & Mkaouer, M. W. (2019, November). Comparison of block-based
and hybrid-based environments in transferring programming skills to text-based environments.
In Proceedings of the 29th Annual International Conference on Computer Science and Software

Engineering (pp. 100-109). IBM Corp.

[27] Cooper, Stephen, Wanda Dann, and Randy Pausch. "Alice: a 3-D tool for introductory
programming concepts.” Journal of Computing Sciences in Colleges 15.5 (2000): 107-116.

[28] loannidou, Andri, Alexander Repenning, and David C. Webb. "AgentCubes: Incremental
3D end-user development.” Journal of Visual Languages & Computing 20.4 (2009): 236-
251.

[29] A. Begel, E. Klopfer, "Starlogo TNG: An introduction to game development”, J. E-Learn.,
2007.

[30] M. S. Horn, C. Brady, A. Hjorth, A. Wagh, U. Wilensky, "Frog pond: a codefirst learning
environment on evolution and natural selection", Proceedings of IDC, pp. 357-360, 2014.

[31] M. H. Wilkerson-Jerde, U. Wilensky, "Restructuring Change Interpreting Changes: The
DeltaTick Modeling and Analysis Toolkit", Proc. of the Constructionism 2010 Conference,
2010.

[32] W. Slany, "Tinkering with Pocket Code a Scratch-like programming app for your
smartphone”, Proc. of Constructionism Austria, 2014.

[33] D. Wolber, H. Abelson, E. Spertus, L. Looney, App Inventor 2: Create Your Own Android
Apps, Beijing:O'Reilly Media, 2014.

[34] S. Esper, S. R. Foster, W. G. Griswold, "CodeSpells: embodying the metaphor of wizardry
for programming”, Proceedings of the 18th ACM ITiCSE, pp. 249-254, 2013.

104

[35] D. Weintrop, U. Wilensky, "RoboBuilder: A program-to-play constructionist video
game", Proceedings of the Constructionism 2012 Conference, 2012.

[36] J. Maloney, M. Nagle, J. Monig, "GP: A General Purpose Blocks-Based
Language”, Proceedings of the 2017 ACM SIGCSE, pp. 739-739, 2017.

[37] D. Bau, "Droplet a blocks-based editor for text code", J. Comput. Sci. Coll., vol. 30, no. 6,
pp. 138-144, 2015.

[38] N. Fraser, "Ten things we've learned from Blockly", 2015 IEEE Blocks and Beyond
Workshop (Blocks and Beyond), pp. 49-50, 2015.

[39] Ko, Andrew J., et al. "The state of the art in end-user software engineering."” ACM
Computing Surveys (CSUR) 43.3 (2011): 21.

[40] Gardner, Martin. "Mathematical games-The fantastic combinations of John Conway’s new
solitaire game, Life, 1970." Scientific American, October: 120-123

[41] https://en.wikipedia.org/wiki/Conway%27s_Game_of Life , Accessed, October 2019

[42] http://robinforest.net/post/cellular-automata/, Accessed, October 2019.

[43] http://devinacker.github.io/celldemo/, Accessed, October 2019.

[44] http://cubes.io/, Accessed, October 2019.

[45] del Rosal, E., & Cuéllar, M. (2009, June). JNEPView: A graphical trace viewer for the
simulations of nEPs. In International Work-Conference on the Interplay Between Natural and

Artificial Computation (pp. 356-365). Springer, Berlin, Heidelberg.

[46] Jimenez, A., del Rosal, E., & de Lara, J. (2010). A visual language for modelling and
simulation of networks of evolutionary processors. In Trends in Practical Applications of Agents

and Multiagent Systems (pp. 411-418). Springer, Berlin, Heidelberg.

105

https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life
http://robinforest.net/post/cellular-automata/
http://devinacker.github.io/celldemo/
http://cubes.io/

