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We theoretically study the formation of single-particle bound states confined by strain at the center
of bubbles in monolayers of transition-metal dichalcogenides (TMDs). Bubbles ubiquitously form in
two-dimensional crystals on top of a substrate by the competition between van der Waals forces and
the hydrostatic pressure exerted by trapped fluid. This leads to strong strain at the center of the
bubble that reduces the bangap locally, creating potential wells for the electrons that confine states
inside. We simulate the spectrum versus the bubble radius for the four semiconducting group VI
TMDs, MoS2, WSe2, WS2 and MoSe2, and find an overall Fock-Darwin spectrum of bubble bound
states, characterised by small deviations compatible with Berry curvature effects. We analyse the
density of states, the state degeneracies, orbital structure and optical transition rules. Our results
show that elastic bubbles in these materials are remarkably efficient at confining photocarriers.

Introduction.— The possibility of applying mechanical
stress to a system is an extremely useful tool to locally
tune its electronic and optical properties. Atomically-
thin two-dimensional (2D) crystals and van der Waals
(vdW) materials1–3 are particularly suited for strain en-
gineering and straintronics4 applications. Their 2D sur-
face can be easily accessed by indenters and probes, they
can be integrated with nanopatterned substrates, and
stacked and/or twisted with respect to other 2D crystals,
developing tensions between them that depend on the lat-
tice mismatches, twist angles or pressure 5–7. Moreover,
the mechanical properties can be typically described with
the elastic theory of membranes and strongly differ from
those of their 3D counterparts. Together with graphene
and phosphorene, group-VI transition metal dichalco-
genides (TMDs) in particular have been shown, both in
theory8,9 and in experiments10–12, to be ideal candidates
for strain engineering. One of the peculiar properties of
TMDs under strain is the reduction of the band gap13

in the regions where tensile strain is applied. This prop-
erty can be exploited to funnel excitons created upon
irradiation to well defined regions characterised by a re-
duced gap14,15. Upon exciton recombination, quantised
single-photon emission is achieved16–23, that represents a
key ingredient for quantum information processing and
quantum technologies24. At the basis of single-photon
quantized emission is the localisation of bound states by
strain-induced quantum confinement, that can be also
used as spin-valley qubits25–27.

In this work we theoretically investigate the forma-
tion of bound states in small bubbles that naturally
arise in monolayer TMDs deposited over a substrate.
It has been theoretically and experimentally shown that
substances, typically hydrocarbons, become trapped be-
tween the crystal and the atomically flat substrate and
lead, through the competition between vdW forces and

elastic energy, to the formation of bubbles with shape
and internal pressure that are universal for 2D crystals28.
Typical sizes range from sub-10 nm to sub-micron, with
very high internal pressure of the order of GPa. This
leads to very strong and highly localised elastic strains.
By simulating bubbles of up to 10 nm in size we show
here that bubble strain leads to a sizeable suppression of
the local bandgap in the bubble, that acts as a potential
well for conduction band carriers. As a result, strongly
localised, valley-degenerate electronic states quickly de-
velop in the bubbles. The spectrum of confined states
is non-trivial, and inherits features of the low energy
structure of the conduction band. A similar strain-
induced confinement effect has been recently explored
in which the strain is extrinsic, produced in the TMD
by indentation with nanopillars patterned on the sub-
strate17–19,22,23,29,30.

Our findings can be generalised to bubbles with non-
universal profiles, or to interacting photocarriers relevant
for the problem of exciton funnelling. More generally,
they provide a basis for studies on quantum confinement
of spin-valley qubits, and may contribute to a character-
isation of novel optical selection rules in 2D systems31,32.

Elasticity theory and bubble profile.— The universal
shape of bubbles of atomically thin crystals has been
obtained self-consistently in Ref. [28] assuming constant
volume, with the crystal profile adapting to the compe-
tition between the hydrostatic pressure of the trapped
fluid and the vdW attraction of the 2D crystal and the
substrate at the edges. In-plane stiffness and the energy
associated to out-of-plane bending determine the rigidity
of the 2D crystal. In-plane stiffness is described by the
theory of elasticity33 through Lamé coefficients, λ and µ,
or alternatively through the Young’s modulus, Y , and the
Poisson’s ratio, ν. The out-of-plane bending is accounted
for by the bending rigidity κ. For curvature radii beyond
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FIG. 1. (color online) Bands in MoS2 (a) and WSe2 (b) with-
out strains (dashed) and under uniform biaxial strain εmax

(solid red), see Eq. (6) (spin-orbit interaction [SOI] not in-
cluded). (c) Density of states (DOS) integrated over all space
for an MoS2 monolayer without strains (dashed) and in the
presence of a superlattice of bubbles (solid red), with bubble
radius R = 3nm, height-over-radius aspect ratio hmax/R =
0.14, and separation between bubbles of L = 9.5nm. With
the bubbles, DOS peaks appear inside the gap close to the
conduction band edge at 0.85 eV (with semiconducting gap
Eg = 1.82eV). (d) The same as (a) for a WSe2 monolayer.
Here the conduction band edge is at 0.62eV and Eg = 1.57eV.
(e-g) Local density of states plotted on the MoS2 lattice with
the periodic superlattice of small bubbles (black circles) for
the three energies marked in (c). SOI is not considered in the
present results.

a scale `anh ∼
√
Y/κ (on the order of 1nm for MoS2),

bending rigidity can be neglected.28 This is the case of
all realistic bubbles observed in experiments. The total
energy is then reduced to the contributions from the in-
plane elastic energy and the energy of the trapped fluid.
The bubble profile is then obtained by energy minimisa-
tion. (An alternative but equivalent approach considers
a constant pressure P inside the bubble, with the bubble
profile resulting from the condition of static equilibrium)

Assuming circular bubbles of radius R an isotropic so-
lution can be described in terms of the height profile

h(r) = hmaxh̃(r/R), (1)

with h̃(r) a normalised dimensionless function. Using
dimensional arguments the total energy is written as

Etot = Eel − PV = c1Y
h4

max

R2
− cV PR2hmax, (2)

where c1 and cV are dimensionless constants that de-
scribe the elastic energy and the volume, respectively,
associated to the bubble shape defined by the function
h̃(r). Minimising the energy with respect to hmax we
obtain for the aspect ratio of the bubble

hmax

R
=

(
cV PR

4c1Y

)1/3

, (3)

that gives Etot[h̃] = − 3
4

[
c4V [h̃]/c1[h̃]

]1/3 (
P 4R10/(4Y )

)1/2
.

The profile h̃ is obtained by minimisation of the total
energy and its value turns out to be independent of R,
P , and Y [28]. The associated in-plane displacement,
ur(r) can be obtained by solving a Poisson equation
with the source given in terms of the function h(r) [28].
The self-consistent solution is accurately approximated
by a parabolic profile

h(r) ≈ hmax(1− (r/R)2), (4)

which in turn yields a radial displacement of the form

ur ≈
h2

max

2R

λ+ 3µ

λ+ 2µ

r

R

(
1− r2

R2

)
. (5)

We use this approximate profile to simulate the bubble
electronic structure through a tight-binding model. Note
that the maximum biaxial strain εmax is reached at the
center of the bubble, and that it only depends on the
aspect ratio, not the radius,

εmax =
1

2

λ+ 3µ

λ+ 2µ

(
hmax

R

)2

. (6)

Tight-binding model.— Most monolayer TMDs, such
as MoS2 or WSe2, are direct bandgap semiconductors,
with a gap of the order of 2 eV placed at the two in-
equivalent K and K ′ points of the Brillouin zone (BZ)
and characterised by peculiar optical selection rules, that
promote circular dichroism34,35. Their conduction band
also presents a second minimum placed at the so-called Q
point of the BZ, along the Γ-K direction, which is six-fold
degenerate (see Fig. 1[a,b]). Contrary to what happens
in other 2D materials like graphene or black phosphorus,
the conduction and valence bands of TMDs present a very
rich orbital contribution.36,37 They are made by hybridi-
sation of the d orbitals of the metal (Mo or W), and the
p orbitals of the chalcogen (S or Se). In addition, TMDs
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are characterised by strong spin-orbit interaction (SOI),
which leads to a large splitting of the valence band at the
K and K ′ points of the BZ, as well as at the conduction
band edge at the Q point.37

The electronic band structure of TMDs is well de-
scribed by a Slater-Koster tight-binding approximation
throughout the BZ.36 The model includes 11 orbitals:
the five d orbitals of the metal atom and the six p or-
bitals of the two chalcogen atoms in the unit cell. We
refer the reader to Refs. [36 and 37] for details of the
model. The tight-binding Hamiltonian can be expressed
in real space as

H =
∑
i,µν

εµ,νc
†
i,µci,ν +

∑
ij,µν

[tij,µνc
†
i,µcj,ν + H.c.], (7)

where c†i,µ(ci,µ) creates (annihilates) an electron in the
unit cell i in the atomic orbital µ = 1, . . . , 11.

The above tight-binding approximation is especially
useful to study modifications in the band structure due
to realistic deformations of the crystal. Strain leads to
variations in the interatomic bond lengths, which modi-
fies the corresponding hopping terms tij,µν(rij) as

tij,µν(rij) = tij,µν(r0
ij) exp

[
−Λij,µν

(
|rij |
|r0
ij |
− 1

)]
.(8)

Here |r0
ij | is the separation between atoms labelled

by (i, µ) and (j, ν) in the absence of strain, |rij |
the distance in the presence of strain, and Λij,µν =
−d ln tij,µν(r)/d ln(r)|r=|r0ij | is the bond-resolved local

electron-phonon coupling. The intersite vectors in the
strained lattice rij are obtained from the strain tensor ε
as rij = r0

ij + ε · r0
ij . Following previous works,9,15 we

make use the Wills-Harrison argument38 that predicts
a dependence Λij,µν ≈ lµ + lν + 1, where lµ(lν) is the
absolute value of the angular momentum of the orbital
µ (ν), leading to bond-dependent electron-phonon cou-
plings. The most prominent effect of tensile strain in
TMDs is a suppression of their gap. Red lines in Figure
1(a,b) illustrate the effect. Under realistic biaxial strains
ε . 5−10% it is accurate to describe the variation of the
gap ∆Egap by a proportionality constant γ > 0,

∆Egap = −γ ε. (9)

For MoS2, γ ≈ 6.4eV, or 64meV per 1% of strain.
Spectrum of a circular bubble.— We now consider cir-

cular bubbles of radius R described using the above for-
malism. We construct a periodic triangular superlattice
of them, with a period L such that both L/R and hmax/R
are fixed. We simulate the electronic structure of the
system using the MathQ package39. Spin and spin-orbit
interaction are neglected at this stage. In Fig. 1 we show
the bands and the corresponding density of states (DOS)
for unstrained MoS2 and WSe2 (dashed lines in panels a-
d). Note in panels (c,d) the two DOS steps (‘K edge’ and
‘Q edge’) corresponding to the K/K’ and Q band min-
ima. We also show the bands under uniform strain εmax
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FIG. 2. Evolution of the energy of the subgap bound states
inside a monolayer MoS2 bubble as a function of bubble ra-
dius R. The aspect ratio is fixed to hmax/R = 0.14. The
spectrum is compatible with an overall Fock-Darwin spec-
trum, with alternating even (circle marker) and odd (square
marker) parity states. States independently detach from the
K and K′ valleys, giving an additional double degeneracy to
each level. The overall degeneracy d = 2, 4, 6, . . . (ignoring
spin) is represented with a color code: orange for d = 2, red
for the d = 4, blue for d = 6, etc.. Inset: sketch of the bubble
profile h(r) = hmax(1 − (r/R)2).

representative of the bubble center (solid red in a-b), and
the global density of states in the presence of a bubble
superlattice of a small R = 3 nm radius (red lines in pan-
els c-d). We assume a bubble aspect ratio hmax/R = 0.14
similar to those observed in experiments28, and a super-
lattice period L/R ≈ 3.1.

Notably, even for such small bubbles, we find that in
both materials a quasi-flat band of localised states, two
per bubble, drops into the uniform gap from the conduc-
tion band (see ‘e’ arrow). These are valley degenerate
states localised inside the bubbles that detach from the
valence K, K ′ points by virtue of the strain-induced sup-
pression of the local gap. Panel e shows the probability
density of one such valley degenerate state (black circles
mark the bubble contours). Panel f corresponds to a state
at a higher energy, not energetically detached from the
band continuum, and therefore delocalised outside the
bubbles. We also show in panel g a state from the strong
peak visible between the K and Q edges (‘g’ arrow in
panel c). This state is rather remarkable. While it lives
within a delocalised background of states, it is strongly
localised inside the bubbles. It is in fact six-fold degener-
ate, d = 6, in contrast to the d = 2 degeneracy of state e.
Its origin is completely analogous to the latter, however,
but instead of detaching from the K,K ′ points, the six
states per bubble detach from the Q-edge formed by the
six Q points in the bandstructure. Given the smoothness
of the bubble, the Q states remain mostly orthogonal to
the delocalised K,K’ in their background, which allow
them to remain highly localised.
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FIG. 3. Effect of the spin-orbit interaction on the bound
state levels of the bubble in a MoS2 monolayer. (a) Evolution
versus bubble radius R. (b) Level structure and classification
in terms of angular momentum and point of detachment from
the unstrained bandstructure for a bubble of radius R = 6
nm (shown in orange in a)).

To better understand the formation of localised states
we compute the low-energy spectrum of the bubble su-
perlattice at the Γ point around the conduction edge as
the bubble radius R increases. We fix the bubble aspect
ratio to L/R ≈ 6.2 to keep the bubbles well separated.
The results are shown in Fig. 2. We find a dense contin-
uum of states above the gap, plus a set of non-dispersive
discrete levels that again detach from the K edge into
the bulk gap for any R & 3nm (their value is essentially
insensitive to L as soon as L/R & 2). The Q states are
not readily visible in this plot, as they lie inside the bulk
continuum.

The energy of K bound-states falls as ε(R) ≈ ε0 +α/R
for some level-specific values of ε0, α. They also follow
a clear pattern in their degeneracy d. K-state energies
are divided in groups of orbital degeneracy d = gvdn,
with gv = 2 and dn = 1, 2, 3, . . . (without counting spin
degeneracy for the moment). These are color coded in
Fig. 2 in orange (d = 2), red (d = 4), blue (d = 6), etc..
The long wavelength nature of the strain perturbation
guarantees that the valley index remains a good quan-
tum number, providing a valley degeneracy gv = 2. This
is confirmed also by the atomic orbital composition of the
bound states, that show approximately a 90 % Mo char-
acter and a 10 % S character (not shown), compatible
with states detaching from the K and K ′ valleys. By in-
spection of the spatial profile of the local density of states
[with a maximum (node) at R = 0 for the s-wave (p-wave,
d-wave) states, see Fig. 4 (a)], we establish that the d = 2
states are valley degenerate s-wave solutions (zero angu-
lar momentum l = 0), the d = 4 group is composed by
valley degenerate p-wave solutions with l = ±1, the d = 6
group is composed by valley degenerate s-wave solutions
and valley degenerate d-wave solutions with l = ±2.

2d K 2s K

1s K 1s K'

1p K,K’

2d K' 2s K'

1s Q

Optical transitionsb)Local Density of Statesa)
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FIG. 4. Orbital structure of low energy bound states: (a)
local density of states of the first 15 levels shown in Fig. 3b)
for a radius of R = 6 nm. The size of the circle corresponds to
3R/2. (b) Optical transition follow the rule σ = τ + l, which
gives rise to circular dichroism for the bubble states, similar
to that of the unstrained material.

The asymptotic behaviour of these states ε(R→∞) =
ε0 also supports the above picture. The effect of strain
εmax at the center of the bubble is to locally reduce the
minima of the conduction band, as shown in Fig. 1(a-b).
This reduction is expected to affect both the minima at
the K and Q points. s-wave states that detach from the
K points saturate at large R to a certain energy ε0 = EK
in the gap, while s-wave states that detach from the Q
points saturate to the higher ε0 = EQ of Q points under
strain, see Fig. 1. Note that the minimal R→∞ energy
EK of confined states depends only on the aspect ratio
of the bubbles [through εmax, see Eq. (6)],

EK = E0
K − γ

1

2

λ+ 3µ

λ+ 2µ

(
hmax

R

)2

(10)

where E0
K is the conduction band edge for the TMD in

question, and γ is defined in Eq. (9).
Classification of bound states.— In the preceding sec-

tion we computed the bubble electronic structure us-
ing a precise tight-binding model based on ab-initio re-
sults. Despite its complexity, we noted that the resulting
level degeneracy and the level spacing of bubble bound
states are compatible with a simple Fock-Darwin spec-
trum, characterised by a level degeneracy dn (save for a
weak fine structure splitting), and alternating even and
odd parity pn = (−1)dn+1 (circles and squares, respec-
tively, in Fig. 2).

In this section we explain this structure using a simple
effective-mass approximation for the bubble K/K’ elec-
trons, Heff = p2/2m∗+V (r). This model is parametrised
by an effective mass m∗, and an effective parabolic con-
fining potential V (r) = m∗ω2

0r
2/2 + ε0, with ωc the con-

fining strength and ε0 = EK . The radius of the bubble
defines the size of the confining potential V (r), so that

ω0 =
√

2ε0/m∗/R. The spectrum of Heff is given by
Fock-Darwin levels, εn = ~ωc(n+ 1), with n = 0, 1, 2, . . .
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soi indicate the SOI gap that develops in the strained region at the K and Q points, respectively.

the principal quantum number. The cylindrical sym-
metry of the problem promotes a decomposition of the
principal quantum number in n = 2nr + |l|, with the ra-
dial quantum number nr = 0, 1, 2, . . . and the azimuthal
quantum number l = −nr,−nr + 2, . . . , nr − 2, nr [30].
It then follows that levels detach from the K, K ′ points
in the original Brillouin zone according to the law

εnr,l(R) =
~
√

2ε0/m∗

R
(2nr + |l|+ 1) + ε0, (11)

so that each principal quantum number n, characterized
by a degeneracy dn = n + 1, provides a total d = 2dn
orbital degeneracy, when accounting for the valley de-
gree of freedom for K,K ′ points. The ground state is
given by the combination (nr, l) = (0, 0) and well de-
scribes the d = 2 (orange) degenerate states that appear
in the numerical simulations. Analogously, states given
by the combination (nr, l) = (0,±1) well agree with the
d = 4 (red) group of levels. However, a closer inspection
of Fig. 2 shows a weak splitting between the p+ and p−

states. We ascribe this splitting to a Berry curvature ef-
fect, not included in Heff , that acts as an additional val-
ley orbital angular momentum and separates p± states
within the same valley (see Appendix). The d = 6 group
is formed by the valley degenerate two sets of states given
by the combination (nr, l) = (0,±2), (1, 0), that accord-
ing to Eq. (11) are expected to be degenerate. In fact, in
the simulation the s-wave and d-wave solutions appear to
admix and slightly split (see Fig. 4). This is due to the
fact that, within the same parity sector, long wavelength
perturbations can split them.

Spin-orbit interaction.— We now consider the effect of
SOI, a very relevant perturbation in TMDs that substan-
tially modifies the band structure. A good approximation
is to neglect the spin-flipping terms, that couple low en-
ergy states to high energy bands due to parity change. It
follows that sz is a good quantum number for the low en-

ergy states of the conduction and valence band37. Since
inversion symmetry is broken in TMDs, states at valleys
K and K ′ are spin split in a time-reversal invariant way,
so that spin ↑ states at valley K are degenerate with
spin ↓ states at valley K ′, and viceversa. Analogously,
SOI splits states at the Q points, so that spin ↑ states
at three Q points surrounding valley K along the three
equivalent Γ − K directions are degenerate with spin ↓
states at the three Q′ points surrounding valley K ′, and
viceversa. From an orbital point of view, this SOI mixes
dxy and dx2−y2 on the metal, and px, py on the chalcogen
sites, as analysed in Refs. 36 and 37.

In Fig. 3a we show the full subgap spectrum of a bub-
ble on monolayer MoS2 versus the radius R, including
SOI. The spectrum remains time-reversal symmetric, so
all levels remain at least two-fold Kramer’s degenerate af-
ter adding SOI. The originally 4-fold degenerate ground
state (including spin) is split by SOI into Kramers dou-
blets with opposite spins in opposite valleys, | ↑ K〉 and
| ↓ K ′〉, that could be used as spin-valley qubit25–27 – an
elastic analogue of quantum dot spin-qubits. The origi-
nally 8-fold first excited state (Fig. 2, red) is split by SOI
in two groups of four states, that are then split by Berry
curvature into Kramers doublets, and so on.

Additionally, we see that, thanks to the SOI, states
that detach from the Q points can now bind strongly
enough to enter the gap (blue in Fig. 3). They are recog-
nised by their offset energy from the K-states, their de-
generacy (always a multiple of three), and by their orbital
composition (approximately 80 % Mo content and 20 %
S content, precisely the expected orbital contribution for
the Q points of the BZ.37). We see that the six states

(| ↑ Q1,2,3〉, | ↓ Q′1,2,3〉) are separated by ∆Q
soi from the

six states (| ↓ Q1,2,3〉, | ↑ Q′1,2,3〉) by the strong SOI. This
is due to the fact that the strong SOI lowers the energy
of the SOI-split states at the Q points relative to the
K/K’ points in the conduction band of the unstrained
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material, so that they can more easily fall into the gap
by application of strain at the center of the bubble.

In Fig. 3b we show the spectrum of a bubble of radius
R = 6 nm of the spin ↑ component and we specify the
bound state angular momentum and the point of detach-
ment in the unstrained band structure. The spectrum
of the opposite spin component is identical with valley
labels interchanged due to time-reversal symmetry. The
spatial profile of the local density of state of the first 15
levels appearing in Fig. 3b is shown in Fig. 4a, where we
recognise the different angular momentum solutions.

In Fig. 5 we finally show the spectrum versus bub-
ble radius for the other three group VI-semiconducting
TMDs, WSe2, WS2 and MoSe2. We find a similar
phenomenology, with levels that follow an overall Fock-
Darwin spectrum, split by the strong SOI. For the case of
MoSe2 and WSe2 only states that detach from the K and
K ′ points fall into the gap, whereas for the case of WS2

we observe that s-wave (circles) and p-wave (squares) Q-
states fall into the gap.

Optically selection rules.— The bound states that de-
tach from the valleys K and K ′ give rise to well defined
selection rules for optical transitions. A valley angular
momentum τ = ±1 can be assigned to those states, so
that optical transition are identical to those of the unper-
turbed material and satisfy l+τ = σ, where σ = ±1 is the
circular polarisation state of light. This rule is respon-
sible for the circular dichroism in these materials34,35,40.
In particular, σ± circularly polarised light couples to 1s
and 2s states in valley τ = ±1, and to l = ±2 d-wave
states at valley τ = ∓1. Analogously, p-wave solutions
are optically dark.

At the same time, states that detach from the min-
ima at Q have in-plane momentum that strongly differs
from the top valence band states, that remain at K even
under strain. Therefore, only indirect transitions are al-
lowed for Q states, which renders them optical dark too.
These considerations are important when comparing the
spectral structure predicted in this work with photoemis-
sion and absorption measurements.

Conclusions.— We have analysed the elastic and elec-
tronic structure of circular bubbles formed spontaneously
by gas or liquids trapped under monolayer TMD crys-
tals. We have found that, as a result of the unique ten-
dency of TMDs to reduce their bandgap under strain,
bubbles are able to efficiently confine electronic states,
which acquire an energy inside the gap and a rich sym-
metry structure. We find that their asymptotic binding
energy E0

K − EK depends quadratically on the aspect
ratio of the bubbles, and the sensitivity γ of the gap
to strain, see Eq. (10). We have also identified a host
of additional bound states of varying degeneracies and
angular momentum components, with and without spin-
orbit interaction. Particularly intriguing is a family of
Q-point, optically dark states with a three-fold orbital
degeneracy per spin component connected to the symme-
try of the lattice under 120◦ rotations. These states are
strongly affected by spin-orbit interactions. We expect

their degeneracy to be broken in non-circular bubbles,
under uniaxial strain of the lattice, or by close proxim-
ity to other bubbles. These effects can serve as a very
direct probe into the band structure of TMDs, as well
as a versatile and realistic route towards electronic con-
trol through strain engineering. We further expect that
the confinement of states found here for atomically thin
bubbles will also be present in other structures such as
2D crystals deposited on substrates with nanodomes or
nanopillars,17–19,22,23,29,30 since the induced strain in the
membranes is considerably higher than the one in natu-
rally formed bubbles.
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Appendix A: Effect of Diracness

In this section we provide an analysis beyond the
parabolic conduction band approximation presented in
the main text, that accounts for the valence band and
the action of the strain as a local reduction of the semi-
conducting gap at the center of the bubble. Nevertheless,
it is instructive to first consider a parabolic dispersion
and a step-like potential well at the center of the bub-
ble described by εc(r) = −εcθ(R − r). For −εc < ε < 0
the solution for r < R is a Bessel function of the first
kind Jl(kr), with k =

√
2m∗(ε+ εc) and for r > R is

a modified Bessel function of the second kind Kl(qr),
with q =

√
−2m∗ε, that are well behaved at r = 0 and

r →∞, respectively. By matching the wavefunction and
its derivative at r = R we obtain the following implicit
equation for the eigenvalues,

qK ′l(qR)Jl(kR)− kJ ′l (kR)Kl(qR) = 0. (A1)

The roots are given by the zeros of the Bessel function,
that are characterised by the azimuthal quantum number
l = 0,±1,±2, . . . and a radial quantum number for each
l, nl = 0, 1, 2, . . .. It is clear from Eq. (A1) that solution
with same |l| are strictly degenerate, whereas solutions
belonging to the same parity sector are split by the step-
like potential, that can be considered as a smooth pertur-
bation on the atomic scale. In particular, it follows that
Fock-Darwin levels (2, 0), (0,±2) need not be degenerate,
as it is observed in the simulations of Fig. 2.

In order to understand the splitting of the solution with
same |l| we need to go beyond the parabolic approxima-
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FIG. 6. Evolution of the bound state levels with the radius
of the bubble R for the gapped Dirac equation with position
dependent gap, as given by the roots of Eq. (A4). Solutions
with l = 0 (orange), l = ±1 (red solid/dashed), and l = ±2
(blue solid/dashed) are shown. A symmetric gap ∆ = E0

K =
0.85 eV has been chosen, the Dirac velocity has been set to
v =

√
∆/m∗, with conduction band effective mass m∗ =

0.49 me, and the reduced gap value ∆c ≡ EK = 0.75 eV has
been chosen at the bubble center.

tion and assume a two-band Dirac model for the valence
and conduction band. The action of the strain is to mod-
ify the gap at the center of the bubble, which acquires a
dependence on the position, ∆(r). For simplicity we now
assume a step-like profile, ∆(r) = ∆cθ(R−r)+∆θ(r−R),
with R the radius of the bubble. The Hamiltonian for
each valley reads

Hτ =

(
∆(r) v(τpx − ipy)

v(τpx + ipy) −∆(r)

)
, (A2)

with τ = ±1 the valley index and v the Dirac veloc-
ity. The problem is solved by matching the solutions
for r < R and r > R at r = R. Writing τpx ± ipy =

−ie±iτφ(τ∂r ± i 1
r∂φ), the eigenfunctions in the regions

r < R and r > R are written in terms of Bessel functions
Z

(j)
l (x),

(j)
τ,l (r, φ) =

eilφ√
2π

(
αk,jZ

(j)
l (kr)

τ jeiτφβk,jZ
(j)
l+τ (kr)

)
, (A3)

where j = 0, 1 refer to r < 0 and r > R, respectively,

Z
(0)
l (x) = Jl(x) and Z

(1)
l (x) = Kl(x). The secular prob-

lem at energy ∆c < ε < ∆ is solved by αk,j = ∆j + ε and

βk,j = −ivkj , with ∆0 = ∆c, ∆1 = ∆, vk0 =
√
ε2 −∆2

c ,

and vk1 =
√

∆2 − ε2. Matching the wavefunctions at
r = R gives the following eigenvalues equation

τ
k1(∆c + ε)

k0(∆ + ε)
=
Jl+τ (k0R)Kl(k1R)

Jl(k0R)Kl+τ (k1R)
. (A4)

Similarity and differences with Eq. (A1) are manifest, the
confining action of the bulk evanescent solution is similar
and the main difference stems from the mixing of the l
with l± 1 solutions, in a way that solutions with ±|l| are
no longer degenerate within the same valley.

In Fig. 6 we plot the roots of Eq. (A4) versus the
radius R for a single valley τ = 1 and for the values
l = 0,±1,±2. The spectrum captures very accurately
the results of the simulations Fig. 2. The splitting be-
tween the ±|l| solutions is appreciated for small radius R
and the levels become degenerate in the limit of large R.
The splitting at small R is a consequence of the Diracness
of the problem. At a given valley, the Berry curvature of
the Dirac Hamiltonian provides an additional flux that
treads with opposite sign states with opposite angular
momentum. In the other valley the role of positive and
negative angular momentum states is reversed, so as to
preserve time-reversal symmetry, and the states (τ, l) and
(−τ,−l) remain degenerate.
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