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Abstract: Nowadays, the Hardware-In-the-Loop (HIL) technique is widely used to test different
power electronic converters. These real-time simulations require processing large data at high speed,
which makes this application very suitable for FPGAs (Field Programmable Gate Array) as they are
capable of parallel processing. This paper provides an analytical discussion on three HIL models for
a full-bridge converter. The three models use different possible numerical formats, namely float and
fixed-point, the latter with and without optimizing the width of signals to the embedded DSP (Digital
Signal Processors) blocks of the FPGA. The optimized fixed-point model (OFPM) uses three and two
times fewer DSP blocks or LUTs (Look Up Tables), and the maximum achievable clock frequency is
also up to 35 % and 25 % higher than the float model and non-optimized fixed-point model (nOFPM),
respectively. Furthermore, the models’ accuracy is proportional to the clock frequency, thus the OFPM
is also the most accurate model. Finally, the paper shows the differences in the simulation when
the models include or not losses, proving that not including losses leads to high errors, especially
during transients.

Keywords: hardware in the loop; numerical format; field programmable gate array

1. Introduction

Nowadays, it is necessary to find some alternatives to test power electronic converters to reach
more advantages over the classical test flow which only includes off-line simulations followed by
tests in a real prototype. Off-line simulation is the cheapest and safest possibility to test a power
electronic system especially for the initial phase of testing. However, off-line simulation is not enough
for guaranteeing a proper behavior of the final hardware implementation so tests with both the real
controller and power converter are necessary. However, before testing both the final controller and
power converter together, other intermediate steps are possible, which can accelerate the process, and
also decrease the risk of managing real power [1] when testing the final controller. In the past, to test a
more realistic model of the controller, which is digital in many cases, than just a transfer function or
high-level model, some simulation alternatives appeared. For example, mixed-signal simulators [2], a
mixture of VHDL (Very high-speed integrated circuit Hardware Description Language) and analog
signal extension (VHDL-AMS simulator) [3], or using two different simulators, one for the controller
part which usually designs in VHDL and the other one for the analog power converter part [4], were
employed to tackle this issue. However, these simulation alternatives were not trivial in many cases,
they were usually very slow and, above all, did not meet the requirement of testing the real final
controller in hardware.

Recently, it has been possible to emulate controllers and power converters in real-time (RT), which
is known as HIL (Hardware-In-the-Loop), regardless of whether the controller is analog or digital.
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A comprehensive study on simulation versus HIL alternatives for power converters is accomplished
in [5]. In HIL testing, the power converter is replaced by an emulation of it to mimic the real converter
and it is made to interact with the real controller to test the controller. HIL model is closer to the actual
real system; it saves money, especially in the case of testing expensive systems; allows tests without
damaging the real system; and saves a lot of efforts during the implementation of a design [6–20].

Because of the rapid progress of semiconductors, the switching frequency of the power converter
is increasing. Precise modeling of switched-power converter needs an integration step at least 100
times less than its switching period. The minimum integration step of the microprocessor-based HIL
implementations, which were used traditionally was about hundreds or tens of µs that is not small
enough for high-frequency applications [21]. FPGAs (Field Programmable Gate Array) have resulted
in a revolution of HIL systems because they make it possible to test a digital model of a mid-high
switching frequency power converter in RT (it was nearly impossible by using microprocessors) and
they also have excellent parallel processing capabilities and small bus latencies that make them ideal
for fast RT simulation [4,22–30]. HDL (Hardware Description Language) models of power converters
can be emulated in an FPGA if the model is synthesizable to make it faster in comparison with
microprocessor-based HIL implementations [31,32]. Recently, HIL systems which use FPGAs can
emulate complex power converters with an integration step about 1 µs or lower without requiring
optimization [33]. However, simple and optimized models implemented in FPGA can reach integration
steps under 100 ns [31,32,34].

Different numerical formats used in FPGA-based HIL systems play a crucial role in needed
hardware resources, the minimum achievable clock frequency, the design time, and the accuracy of the
model. A comparison between fixed-point and floating-point representation is done in [5,31], in which
FPGA-based HIL systems were proposed. The results confirmed that floating-point representation
needs more hardware resources and it is not as fast as fixed-point (up to 10 times more resources and
slower) but the effort design is less and the resolution is optimized in different calculations. This is
why most HIL applications use floating-point representation [35]. In fixed-point representation, the
designer has to define the widths of the signals to provide an optimized model, which is much faster
and needs fewer hardware resources [5,31]. It is important to highlight that, even using FPGAs, HIL
models remain simple compared with electrical simulators. In many cases, they do not consider any
losses because that would make the model slower and may not reach RT. However, it is clear that
including some losses would make the model much more accurate.

This paper proposes three different models of the full-bridge converter with and without
considering losses based on different possible numerical formats. It will prove that considering
losses results in more accurate results even if it makes the models more complex which results in
increasing the RT simulation step. The HIL model of the full-bridge is implemented in three different
versions: using floating-point representation, using fixed-point representation without taking into
account the characteristics of FPGA embedded DSP (Digital Signal Processors) blocks, and optimized
fixed-point. The main purpose of this paper is to quantify the differences between these three proposed
models and to compare different possibilities of implementation. However, hardware implementation
of different numerical formats to solve differential equations presents some issues when they are
applied to power electronic converters, which are explained in detail. Furthermore, this paper explores
using the idea that, by limiting the width of signals to those of the embedded DSP blocks in FPGAs,
the model can achieve smaller simulation step, which results in reaching a more accurate model.

In this paper, initially, a full-bridge converter is presented as an application example with and
without considering losses. In Section 2, the equations of the model are calculated by using an
explicit Euler approach, and three different possibilities to model a power converter are discussed.
In Section 3, the reference model, float model, non-optimized fixed-point model (nOFPM), and OFPM
are proposed by using different numerical formats. The implementation of the full-bridge model is
also presented and the schematic of the model is discussed in detail. The benefits of the optimized
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model are confirmed by several experimental and simulation results in Section 4. Finally, conclusions
are given in Section 5.

2. Application Example

In this paper, an HIL system based on an FPGA is presented. The application example is a
full-bridge converter, which is shown in Figure 1, although the idea can be adapted to other topologies.
A full-bridge converter plays a crucial role in industry and it can act as a dc-dc converter to regulate the
output voltage or as a multilevel inverter to create an ac output voltage. To have a more accurate model,
considering the losses of elements such as MOSFETs, inductors, and capacitors is very important.
In Figure 1, two different models are included with and without losses to clarify the differences
between both models.
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Figure 1. Full-bridge topology with and without losses. (a) Ideal full-bridge converter; (b) Non-ideal
full-bridge converter.

2.1. Model of the Plant

The model of the ideal full-bridge converter is shown in Figure 1a, which is the simplest possible
model of a full-bridge. It consists of four power electronic unidirectional switches along with
their anti-parallel diodes. The switches of each leg have complementary states and cannot be on
simultaneously. The input dc source has been denoted by Vin and the output voltage of the full-bridge
can get values between −Vin and +Vin depending on the switching pattern. As mentioned above,
several elements of the full-bridge converter are not ideal. Parasitic resistances and electrical losses of
the electrical components are considered in Figure 1b to propose a more accurate model.

In Figure 1b, RD, Rdson, RL, and RESR are the series resistance of the diode, MOSFET, inductor,
and capacitor, respectively. Besides, VD is the forward voltage of the diode, which is used in the voltage
loss due to diode D. The inductor (L) and the capacitor (C) are the LC filter of the output side of the
converter and their values are related to the switching frequency of MOSFETs and switching pattern,
which are discussed below.
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2.2. Equations

To obtain the model of a full-bridge converter, it must be described in equations. The main idea
of this section is to extract the related equations that are appropriate in FPGA with a fixed discrete
time step. The control signals of switches Q1–Q4, which are inputs of the model, play a vital role in the
operation of the full-bridge. For instance, the equations of the model when Q1 and Q3 are closed are
different from those when Q1 and Q2 are closed. To simplify the equations, three different situations
are introduced, which are shown in Table 1. The current path losses (vL−loss), which affect the calculus
of vL in each of the situations, are calculated based on different switching possibilities. These situations
are categorized based on the number of MOSFETs and diodes in the current path. In Situation I, vL−loss
is obtained by calculating (2Rdson + RL)iL and it shows that in this situation two MOSFETs (Q1 and Q3

or Q2 and Q4) and the inductor are in the current path. In Situation II, all switches are open, and two
diodes are conducting. Finally, components in the current path in Situation III are one diode and one
MOSFET. Table 1 describes all converter configurations considering different switching possibilities
and it is obvious that, in the ideal model (Figure 1a), vL−loss is considered zero. Apart from these losses,
which are included in Equation (4), there are conduction losses in the output capacitor resistance
(vO−loss), proportional to the capacitor current (iC). The value of vO−loss is independent of the different
situations, which is calculated in Table 1, and it affects the output voltage.

Table 1. Different situations and conducting losses.

Situation I Situation II Situation III

ON Switches Q1andQ3 or Q2andQ4 All OFF 1 MOSFET and 1 diode
vL−loss (2Rdson + RL)iL 2VDsign(iL) + (2RD + RL)iL VDsign(iL) + (Rdson + RD + RL)iL
vo−loss RESR iC RESR iC RESR iC

Different models for the full-bridge converter are proposed in this paper which use a fixed time
step and can be implemented in HDL. The purpose of this paper is to compare different models of the
full-bridge converter with a small-time step for testing the control system of a user. It is important to
note that the model must calculate the inductor current (iL) and output voltage (vO) in every time step.
Thus, the model should calculate the exact incremental values of state variables (capacitor voltage
and inductor current). The incremental values of capacitor voltage (∆vC) and inductor current (∆iL) in
discrete time can be formulated as follows:

∆vC =
∆t
L

· iC (1)

∆iL =
∆t
C

· vL (2)

where ∆t is the time step and iC and vL are the capacitor current and the inductor voltage, respectively.
The capacitor current can be formulated as shown in Equation (3) where GL = 1

RO
is the conductance

of the output load. Besides, the inductor voltage depends on the different switching states, thus is
calculated as shown in Equation (4).

iC = iL − iR = iL −
vO
RO

= iL − GLvO (3)
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vL =



Vin − vO − vL−loss I Q1 : ON and Q3 : ON
−Vin − vO − vL−loss I Q2 : ON and Q4 : ON
−Vin − vO − vL−loss I I All switches : OFF and iL > 0
Vin − vO − vL−loss I I All switches : OFF and iL < 0
−vO − vL−loss I I I Only Q1 or Q3 : ON and iL > 0
Vin − vO − vL−loss I I I Only Q1 or Q3 : ON and iL < 0
−Vin − vO − vL−loss I I I Only Q2 or Q4 : ON and iL > 0
−vO − vL−loss I I I Only Q2 or Q4 : ON and iL < 0

(4)

For the sake of accuracy, previous equations consider all losses. To obtain the equations related to
the ideal model, VL−loss can be removed from the equation. The equations of the capacitor voltage and
inductor current can be defined as in Equations (5) and (6). The output voltage of the model depends
on the capacitor voltage and the capacitor current, which is calculated in Equation (7).

vC(k) = vC(k − 1) +
∆t
C

· iC(k − 1) (5)

iL(k) = iL(k − 1) +
∆t
L

· vL(k − 1) (6)

vO(k) = vC(k) + RESR · iC(k − 1) (7)

After defining the equations, the model can be implemented using different numeric representations.
Several possibilities to model the converter in VHDL are discussed in the next subsection.

2.3. Plant Modeling Possibilities

FPGAs have been chosen for the implementation of the models due to their parallel processing
capabilities and the need for emulating in RT. There are three main possibilities to model the power
electronic converters in an FPGA regarding the used numerical format as shown below. The selected
data type determines the minimum time step achievable by the model, hardware resources, the design
effort, the area of the design, etc.

• Real type: The converter can be modeled with the signal type which is called double precision
real. The real data type is defined in the library called MATH_REAL. It is a 64-bits floating-point
numeric type, which is not synthesizable but can reduce the time and complexity of the design.
Therefore, real type can be used only for simulation purposes but cannot be implemented in an
FPGA. In this paper, the real type model of the full-bridge is considered as the reference model
and all other models are compared with this model. It is notable that the numerical error of
the real model, which uses 64 bits for all signals, is negligible because of the high resolution of
the variables.

• Floating-point type: A floating-point type is a numeric type consisting of real numbers represented
in IEEE-754 standard. It takes shorter design time in comparison with fixed-point models because
the equations of the plant can be translated directly into VHDL without considering range or
precision issues. Unlike the real type, the model in float type can be implemented in hardware but
it takes more hardware resources to store than the fixed-point model, as confirmed in Section 4.
It is also slower than the fixed-point model which has an impact on the accuracy of the model.
In this paper, when referring to floating-point, single-precision (32-bits) notation is always used
because the double-precision (64-bits) version would lead to much more hardware resources and
decreased speed.

• Fixed-point type: The logic circuits using floating-point hardware are more complicated than
fixed-point hardware, which means that the fixed-point representation uses smaller size and
achieves smaller simulation step compared with floating-point representation. The drawback is
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that it needs more design effort to determine the optimum signal width considering the fractional
and integer part of every variable of the model. It is notable that the converter is modeled only
once, thus, the longer design time is not a big problem. In fixed-point notation, the designer
determines the number of bits of every variable and they are fixed when the model is implemented.
When the cost is an important consideration, especially in complex systems, fixed-point hardware
can result in significant savings.

The next step is selecting a method to implement the full-bridge converter in an FPGA. In the
following section, an optimized fixed-point model is described that can be useful in implementing the
converter in an FPGA because of the lower simulation step and lower hardware resources.

3. Implementation

The implementation of the full-bridge is explained in this section. Three different implementations
have been developed using real type, float type, and fixed point numerical format. The simplest
approach is using the real type, which allows translating the equations directly into VHDL. It can be
implemented by using Equations (5)–(7). However, as mentioned above, the real numerical format
is not synthesizable, and it cannot be used in a real-time FPGA implementation, thus it is used only
as a reference model for simulation. Real numerical format uses IEEE-754 double precision standard
(64-bits) with a mantisa field of 53 bits. Using this numerical format, numeric resolution problems are
avoided because of the high number of signal bits, thus it is the best choice as the reference model to
have a comparison between different approaches. In this paper, the real numerical format with a time
step of 1 ns is used as the reference model. The schematic of the Full-bridge model without considering
the variable width is shown in Figure 2. This schematic is the result of translating Equations (5)–(7)
into VHDL and using real type.
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Figure 2. Model schematic.

The model has three outputs, vC, iL, and vo, and some inputs: Vin, GL, switches states, the forward
voltage of the diode, the resistance of components, and the values of the output filter (L and C). Thus,
different modulation strategies with different components and any load condition can be modeled.
Blocks 1 and 2 are the accumulators of the state variables which calculate vC and iL, respectively.
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The model uses multiplexers with five select lines, which are the switches control signals (Q1, Q2, Q3,
and Q4) and the sign of the inductor current. The final output of these multiplexers is VL, which is
calculated using Equation (4). It is notable that two more multiplications are used to calculate the
incremental values of the state variables in the design. In addition, the outputs of Blocks 1 and 2 are
the feedback for the next integration step and they will be added to the incremental values in order
to obtain the next values of state variables. Finally, to calculate the output voltage, register VRESR is
used to consider the conduction losses of the output capacitor, as mentioned in Equation (7).

Resolution problems cannot be ignored if single-precision IEEE-754 (float 32) is used because
of the smaller number of fractional bits compared with the reference model, real, which uses 64 bits.
For example, if vout signal were in the range of 200 V, the resolution in float 32 would be around
1.53 × 10−5 V (mantissa of 24 bits) while it would be around 2.84 × 10−14 V (mantissa of 53 bits) in
64 bits real type. It is notable that ∆vC and ∆iL can be around µV and µA when dt (time step) is very
small (around tens of ns). Therefore, float 32 may not have enough resolution for some converters
using a small dt. However, float 32 models are easily designed, basically the same as real type models,
but can be synthesized in an FPGA. Those are the main advantages of float 32 models.

The last possibility for the implementation of the model in an FPGA is fixed-point representation.
In this paper, two different fixed-point models are presented, with and without optimizing the model
to the hardware resources of the FPGA such as the embedded multipliers in Family-7 FPGAs. The
non-optimized fixed-point model, which is called nOFPM in this paper, can be implemented directly
by Equations (5)–(7), but the design time is higher than in the floating-point model, which is the
main disadvantage of fixed-point. The number of bits in this model is high enough and there are
no resolution problems, as discussed below. All signals in this model except constants and the only
independent input, vin, use 40 bits in total and the number of integer bits is calculated based on the
maximum expected value of those signals. For example, the signals of iL and vC state variables have
six and nine integer bits while the number of the fractional bits are 33 and 30 bits, respectively. To
improve the result of area, speed, and accuracy of the fixed-point model, an optimized fixed-point
model based on the number of bits of the embedded DSP blocks of the FPGA is proposed.

QX.Y representation is used for the proposed fixed-point models. In this format, X and Y are the
numbers of the integer and fractional bits, respectively. The number of bits in this format is X + Y + 1,
including the sign bit (most significant bit), thus a Q8.2 signal has 11 bits. The decimal value of the
QX.Y signal can be calculated by multiplying by 2−Y. The X and Y values of all signals should be
calculated by the designer. The important signals’ widths, format, and the resolution of the Full-bridge
fixed-point model are shown in Table 2. In this paper, a comparison between different representations
including an optimized fixed-point model is done to find a trade-off among the resolution, area, and
maximum clock frequency.

Table 2. Signed QX.Y signal formats of the fixed-point model.

Number of bits Format Resolution

Signal nOFPM OFPM nOFPM OFPM nOFPM OFPM Unit

vin 21 11 Q8.12 Q8.2 2−12 2−2 V
ir 40 30 Q6.33 Q6.23 2−33 2−23 A
vC /vo 40 40 Q9.30 Q9.30 2−30 2−30 V
iL 40 40 Q6.33 Q6.33 2−33 2−33 A
i∗L 40 25 Q6.33 Q6.18 2−33 2−18 A
vL 40 25 Q6.33 Q9.15 2−33 2−15 V
iC 40 25 Q6.33 Q6.18 2−33 2−18 A
∆t
L 27 18 Q-14.41 Q-15.32 2−41 2−32 s

H
∆t
C 27 18 Q-11.38 Q-12.29 2−38 2−29 s

F

DSP blocks are integrated into most modern FPGA devices in order to improve the speed and
efficiency of computations. The hardware multipliers in the Family-7 Xilinx series FPGA, DSP48E1
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slice, are improved from 18 × 18 in the Family-6 series to 18 × 25 in the Family-7 series [36,37]. Thus,
the input signals width of the multiplier in OFPM is truncated to 18 and 25 bits to minimize the
number of DSP blocks in the optimized model and maximize speed. The minimization of the number
of the multipliers can affect the maximum clock frequency because of shortening the critical path
in the model. In fact, the main idea of this paper is choosing the optimized signal width including
the fractional and integer bits to increase the clock frequency as much as possible. The increase in
maximum achievable clock frequency can improve the accuracy, however, the reduction of the signal
width is not negligible. The optimized model uses more bits for the integrators to calculate the state
variables, while the feedback signals’ widths are changed to meet the multiplier limitations. In OFPM,
fewer bits are used for feedback signals because they do not need high resolution. To minimize the
number of DSPs, it is necessary to change the signal width of iL by defining the signal i∗L, which has
25 bits. Furthermore, in the schematic of the model, there are some constants, such as GL, ∆t

L , ∆t
C , and

VD, which are the inputs of the multipliers, as can be seen in Figure 2. In OFPM, these constants are
represented with 18 bits to use the minimum number of multipliers. However, in nOFPM, there is no
limitation and more bits are considered for the mentioned constants. It is notable that the pipelining
technique is not used in the proposed models because it would modify Equations (5)–(7). The output
of both state variables depend on the previous values, thus inserting pipeline registers is not allowed.
It would be equivalent to using (k-2) or even previous values instead of (k-1).

4. Results

As explained in Section 2, this paper presents two different models of the full-bridge converter
with and without losses intended to be implemented in FPGAs. As can be seen in Figure 3, the model
without losses produces noticeably different results, especially during the transient. The error of the
model without losses is calculated in Table 3, which is categorized into two different parts (transient
and steady-state error). The steady-state zone is the interval in which the state variable of the model
without losses is in the ±2% band of the final value. It is obvious that the error of the model without
losses cannot be neglected especially in the case of transient error. Thus, it is necessary to include
different losses to the model as in Figure 1b to have a more accurate model.

Table 3. Percentage error of the model without losses.

Transient Steady-state

Capacitor Voltage Error (%) 8.4933 1.2862
Inductor Current Error (%) 38.2581 1.9710
Output Voltage Error (%) 8.2440 1.2943

Once the importance of losses in the model is clear, the next question is which is the most
appropriate numeric representation system. A thorough comparison is done between the reference
model (real model) with losses and three other models with and without losses: floating-point
32-bits, non-optimized fixed-point, and optimized fixed-point. The accuracy of the reference model is
previously confirmed by comparing its outputs with the same model in MATLAB/Simulink and the
theoretical equations. The differences between the reference model and the MATLAB/Simulink model
are shown in Table 4. All the errors shown in this paper are MAE (Mean Absolute Error). The values in
this table show that the results of the VHDL reference model match the simulation results in MATLAB.

vO = (2D − 1) · Vin (8)

vO,loss =
(2D − 1)

1 + (2Rdson + RL)GL
· Vin (9)
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The theoretical value of the output voltage without considering losses and with losses is calculated
as Equations (8) and (9), respectively. The ripple and the mean value of the state variables based on
the real model (reference model) are shown in Table 5, which are compatible with the theory results
in Table 6 that shows the physical parameters of the implemented full-bridge converter. In all tests,
the input voltage is a fixed 200 V dc voltage source and the switching frequency ( fsw) is set at 20 kHz,
while the duty cycle is 0.75. As can be seen, a resistive load has been chosen for the output load and
the switching period (Tsw) of the full-bridge model is 50 µs.
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Figure 3. Comparison of the models simulations with and without losses.

In the following, all comparisons are done based on the reference model, which uses floating-point
of double precision. This is to ensure that the only error sources are the numerical representation or
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the simulation time step, as all the other aspects are equal in the reference model and the rest of the
compared models.

Table 4. Percentage difference between the reference model with losses and the MATLAB/
Simulink model.

VC iL vout

Transient difference (%) 0.0258 0.1289 0.0259
Steady-State difference (%) 0.0011 0.0363 0.0011

Table 5. Ripple and mean values of the signals.

Ripple Mean value

Without Losses With Losses Without Losses With Losses

Capacitor voltage (V) 0.251 0.243 99.9965 98.7356
Inductor current (A) 3.715 3.510 6.2381 6.1707
Output voltage (V) 0.251 1.277 99.9965 98.7355

Table 6. Physical parameters of the full-bridge model.

Rdson(Ω) RL(Ω) GL(Ω−1) RESR(Ω) RD(Ω) VD(V) VO(V)

Without losses 0 0 0.0625 0 0 0 100.000
With losses 0.1 0.005 0.0625 0.36 0.8 0.7 98.735

The proposed models were tested in open loop, without using any closed-loop regulators. This is
important to compare the accuracy of the different models since a closed-loop regulation would lead
to very similar results, masking small model inaccuracies [5]. The control signals of the model were
implemented with a simple DPWM (Digital Pulse Width Modulator). These inputs to the model, which
define the switches states, are used for choosing the appropriate equations, as shown in Equation (4).
It is notable that, although in this example PWM signals are used for the control, the model actually
reads the instantaneous values of the switches control signals, which are the inputs of the model, so any
modulation can be used, without requiring constant frequency or any other limitation. The evaluation
of the proposed systems is done by instantiating the different models, monitoring capacitor voltage,
inductor current, and output voltage, and comparing those values with the ones of the reference model.
As mentioned above, the reference model in VHDL is based on variables of real type and a simulation
step of 1 ns.

Four different tests were done to show the numerical errors related to the different numerical
formats. The first test focused on the error of different numerical formats with a simulation step of 1 ns.
It is obvious that it cannot be reached in RT but it can be very useful to show the resolution problem in
different approaches. The second, third, and fourth tests were carried out with simulation steps of 16,
20, and 24 ns, respectively. These simulation steps were chosen because they correspond to the limits
of RT emulation when using optimized fixed-point, non-optimized fixed-point, and floating-point,
respectively, as shown below.

Figure 4 shows the relation between the transient and the steady-state error of the capacitor
voltage versus the clock period. As can be seen, the numerical error is nearly linear if the clock period
is equal or greater than 16 ns. This situation can be seen in Figure 4, where the accuracy of the models
should be proportional to the simulation step, which means that the error of the model with a lower
clock period should be smaller. This is the expected result because, as the simulation step is reduced,
Equations (5) and (6) are more accurate. It is obvious that there is an anomaly in some of the models
for a simulation step of 1 ns, but it is due to resolution issues in the numerical format.

The error of different numerical formats is very small but it can be analyzed in Tables 7–9 regarding
different integration steps. As can be seen in Table 7, which has the same information as Figure 4, the
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error is very similar between the different models when they use the same simulation step (Tclk) if it is
16 ns or higher. This is because for those simulation steps the numerical resolution of all the models
is high enough. However, when using Tclk = 1ns, the different models have quite different errors.
That is caused by the insufficient resolution of some of the models, especially 32-bit floating-point
and optimized fixed-point. The reason is that the increments in Equations (5) and (6), which are
proportional to ∆t = Tclk, become so small that numerical issues appear. However, a simulation step
of 1 ns is not achievable for RT emulation. This is just to show that numerical resolution issues may
appear for high switching frequency converters (small simulation steps) depending on the application,
and that the simulation step cannot be decreased indefinitely without also increasing the number
of bits.

The other main conclusion of Tables 7–9 is that, when numerical issues are not present, the error is
mainly proportional to the simulation step. Thus, the design rule is to decrease the simulation step as
much as the model allows. The minimum simulation step that can be reached in RT greatly depends on
the complexity of the model, which determines the minimum achievable clock period for RT execution
of each model.

Table 7. Percentage error of the capacitor voltage (the values of error in RT are highlighted).

Float nOFPM OFPM

Tclk(ns) Transient Steady-state Transient Steady-state Transient Steady-state

24 3.8538 × 10−3 1.8121 × 10−4 3.8461 × 10−3 9.8411 × 10−5 3.9712 × 10−3 1.2883 × 10−4

20 3.2838 × 10−3 1.1166 × 10−4 3.1765 × 10−3 8.2517 × 10−5 3.2263 × 10−3 1.1342 × 10−4

16 2.4927 × 10−3 1.6808 × 10−4 2.5065 × 10−3 6.6892 × 10−5 2.6252 × 10−3 9.6293 × 10−5

1 3.5829 × 10−2 1.5891 × 10−2 9.0971 × 10−5 8.3662 × 10−5 1.9425 × 10−4 2.9091 × 10−5

Table 8. Percentage error of the inductor current (the values of error in RT are highlighted).

Float nOFPM OFPM

Tclk(ns) Transient Steady-state Transient Steady-state Transient Steady-state

24 1.6279 × 10−2 1.0107 × 10−3 1.6278 × 10−2 5.6759 × 10−4 1.6725 × 10−2 6.2125 × 10−4

20 1.3860 × 10−2 7.9861 × 10−4 1.3443 × 10−2 4.7458 × 10−4 1.3798 × 10−2 5.3714 × 10−4

16 1.0475 × 10−2 8.5086 × 10−4 1.0606 × 10−2 3.8393 × 10−4 1.1206 × 10−2 4.4490 × 10−4

1 1.5092 × 10−1 4.4609 × 10−2 5.3126 × 10−4 6.8676 × 10−4 1.0264 × 10−3 7.6533 × 10−4

Table 9. Percentage error of the output voltage (the values of error in RT are highlighted).

Float nOFPM OFPM

Tclk(ns) Transient Steady-state Transient Steady-state Transient Steady-state

24 3.9179 × 10−3 1.7985 × 10−4 3.9128 × 10−3 9.7579 × 10−5 4.0350 × 10−3 1.2881 × 10−4

20 3.3360 × 10−3 1.0625 × 10−4 3.2317 × 10−3 8.1659 × 10−5 3.2777 × 10−3 1.1367 × 10−4

16 2.5371 × 10−3 1.6001 × 10−4 2.5502 × 10−3 6.5965 × 10−5 2.6614 × 10−3 9.6861 × 10−5

1 3.5101 × 10−2 1.5261 × 10−2 7.4757 × 10−5 6.6688 × 10−5 1.8305 × 10−4 1.3657 × 10−5

Table 10 shows the synthesis results of the emulation systems after implementation in an
xc7a35ticsg324-1L FPGA, which is a low-cost FPGA. The table presents the results in area and speed
with and without losses. Three different synthesis results are provided including floating-point model,
nOFPM, and OFPM. Furthermore, the three models were synthesized enabling and disabling the use
of DSP blocks, to show the impact of these blocks on the rest of the necessary area (especially Look
Up Tables (LUTs)) and necessary clock period. All previous models were hand-coded for optimum
synthesis results. Besides, an automatic-translated model from MATLAB code to HDL using Fixed-Point
Designer/HDL Coder by MATLAB is shown in this table and is discussed below.

It can be seen that in all models with and without losses, the fixed point models require much
fewer hardware resources than the float model, even 3 and 2.5 times fewer DSP blocks or LUTs and
the minimum possible clock period is also up to 35% and 28% smaller in the models with and without
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losses, respectively. The main reason is that floating-point adders and multipliers are much more
complex than fixed-point ones. It is notable that in these models, which are a direct translation of
Equations (5) to (7), the FPGA clock period is equivalent to the simulation step. Therefore, fixed-point
models can work in real-time using smaller simulation steps, which is the best way of minimizing
model errors as seen before. This is also crucial for RT emulation of middle-high switching frequency
converters. Tables 7–9 highlight the error of each model when using their best achievable simulation
step in each case: 16 ns for OFPM, 20 ns for nOFPM, and 24 ns for float 32.
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Figure 4. Percentage error of the capacitor voltage, depending on the simulation step logarithmic scale.

Regarding both fixed-point models (nOFPM and OFPM), it can be seen that the OFPM
implementation area is quite smaller than nOFPM (it needs fewer FPGA resources), and its maximum
clock frequency is about 25% higher. It was expected, as OFPM uses fewer bits in general, and,
furthermore, its widths are chosen for fitting exactly in one DSP block each one (multipliers 18× 25 bits).

In Table 10, the synthesis results include versions without using the DSP blocks to clarify the
impact of these blocks both in area and speed. In fact, most of the logic resources are dedicated to the
multipliers, which are implemented in the DSP blocks. To have a fair comparison, it can be seen that
the models with losses and without DSP blocks use 752 LUTs for OFPM, 1546 for nOFPM, and 2332 for
floating-point. The same results are obtained for the models without losses as they use 472, 754, and
1182 LUTs for OFPM, nOFPM, and the float model, respectively. Removing DSP blocks is not a good
approach because it can increase the minimum achievable clock frequency, as can be seen in Table 10
for the OFPM. The minimum clock period (Tclk,min), which is equal to the execution time needed by the
FPGA to calculate the integration equations, is the most important parameter for comparing different
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notations because not only a small simulation step is necessary to emulate high-frequency converters
but it also affects the error, as discussed above.

Table 10 also includes results of the automatic translation from MATLAB to HDL code using
fixed-point. To have a fair comparison, this translation uses the same data widths of OFPM. Its
synthesis results are clearly worse than the hand-coded OFPM with area sometimes approaching
floating-point results and with time results even worse than hand-coded floating-point. Therefore, for
optimum synthesis results, hand-coding is highly recommended.

The bar chart in Figure 5 illustrates the numbers in Table 10 to highlight the area and clock
period differences between all models. As a conclusion, area results of the three models are quite
different, which has a direct impact in the final price of the HIL systems. The number of LUTs when
not using DSP blocks is about three times more in floating-point than in OFPM, and a similar or even
higher proportion in the number of DSP blocks when they are enabled. It can also be seen that the
minimum achievable clock period reduces if the OFPM is used, but in less proportion than area. Taking
into account that fixed-point requires more design effort than floating-point, time results may not
compensate the extra design effort depending on the application, but, when area is the main concern,
fixed-point is highly recommended.

Table 10. FPGA resources used by the design and the synthesis results with and without losses
(WL/WoL).

LUTs Flip Flops DSPs Tclk,min(ns)

WL WoL WL WoL WL WoL WL WoL

Floating-Point 907 351 82 64 17 9 21.283 17.807
Non-Optimized Fixed-Point 671 391 101 80 11 9 19.754 17.412
Optimized Fixed-Point 628 412 96 77 5 1 15.784 13.932
Floating-Point (no DSPs) 2332 1182 93 63 0 0 21.050 16.489
Non-Optimized Fixed-Point (no DSPs) 1546 754 100 62 0 0 17.810 15.646
Optimized Fixed-Point (no DSPs) 752 472 94 77 0 0 17.644 13.023
MATLAB HDL translation * 782 305 121 80 9 4 22.342 17.205
MATLAB HDL translation (No DSPs) * 2303 1182 120 80 0 0 22.807 20.981

* Using fixed-point with the same data width as OFPM.
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Figure 5. Synthesis results of different models.

5. Conclusions

In this paper, three different HIL models of the full-bridge converter based on different possible
numerical formats are proposed. The float model, nOFPM, and OFPM achieve simulation steps of
21.283, 19.754, and 15.784 ns in RT, respectively. The main purpose of this paper is to demonstrate
the differences between the different proposed HIL models and compare the used area based on
different numerical formats. OFPM is based on the idea of limiting the width of signals to that of the
embedded DSP blocks in FPGAs in order to save hardware resources. The comparison has shown that
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the hardware resources of this model are one-half and one-third of the nOFPM and the float model,
respectively. A comparison of all proposed models based on the number of LUTs without using the
DSP blocks was accomplished, and the results clarified the differences of hardware resources as they
used 2332, 1546, and 752 LUTs for the float model, nOFPM, and OFPM, respectively. OFPM was
tested using a simulation step of 16 ns (62.5 MHz) with negligible numeric errors (2.6614 × 10−3 and
9.6861 × 10−5 for transient and steady-state, respectively). This noticeably small simulation step also
allows modeling high switching-frequency converters, while the simulation step limits the applications
that can be modeled precisely. The calculated mean absolute errors in RT have proved that the OFPM is
the most accurate model among the three different proposed models in both transient and steady-states
while it needs more design effort than the float model. As can be seen, the decision about which
numerical format should be used is not trivial and it should be taken considering the application. As a
starting point, the model based on float 32 type could be the first implementation choice in terms of
design effort. If the necessary resources must be decreased or the simulation step should be lower, the
fixed-point notation is the solution. However, in this case, an optimized version taking into account
the FPGA resources, such as the width of the DSP blocks, should be used because it has an important
impact on both necessary resources and minimum simulation step.
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