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SUMMARY 

In eukaryotic cells, three RNA polymerases transcribe the genome, each specialized in 

transcribing a specific set of genes. Pol II synthesizes mRNA, Pol III produces short 

untranslated RNAs and Pol I transcribes ribosomal DNA (rDNA). The latter produces the 

rRNA precursor, which after maturation constitutes the backbone of the ribosome. Pol I 

accounts for approximately 60% of the total transcriptional activity in growing cells and 

also carries out the supervision of rDNA integrity. Therefore, it is a key determinant for 

the control of the normal function of the cell. Environmental threats can generate DNA 

lesions that are cytotoxic for the cell and one of the most known is UV-light. The principal 

DNA damage produced by this external agent is cis-syn cyclobutane pyrimidine dimers 

(CPDs), a bulky DNA lesion that can introduce distortions in the DNA helix, thus 

obstructing fundamental processes such as transcription. The main goal of this Ph.D. 

Thesis is understanding the structural basis of Pol I stalled at UV light-induced DNA 

damage. The principal contribution is the cryo-EM structure at 3.6 Å resolution and the 

derived atomic model of Pol I in elongation complex containing a CPD lesion at the DNA 

TS. This structure shows that the CPD lesion induces an early translocation intermediate, 

along with several conformational rearrangements in Pol I structural elements inside the 

DNA binding cleft, which contribute to enzyme stalling. The structure revealed that the 

BH residue R1015 plays a relevant role for enzyme arresting, which was confirmed by 

mutational analysis using E.coli RNA polymerase as a model system. In vitro 

transcription assays comparing the Pol I and Pol II behavior in the presence of CPD reveal 

that, while Pol II can slowly bypass the lesion, Pol I stalls right before the lesion due to 

the balance between a slow nucleotide incorporation and a fast-intrinsic RNA cleavage 

activity. Altogether, our results reveal the molecular mechanism of Pol I stalling at CPD 

lesions, which is distinct from Pol II arrest. This PhD Thesis opens the avenue to unravel 

the molecular mechanisms underlying cell endurance to lesions on rDNA.  
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PRESENTACIÓN 

En las células eucariotas, tres ARN polimerasas (Pols) transcriben el genoma, y cada una 

es especialista en transcribir un conjunto específico de genes. Pol II sintetiza ARNm, Pol 

III produce ARNs cortos no transcritos y Pol I transcribe el ADN ribosomal (ADNr). Éste 

último produce el ARNr precursor, el cual después de su procesamiento constituye el 

esqueleto del ribosoma. Pol I representa aproximadamente el 60% de la actividad 

transcripcional total en células en crecimiento y además lleva a cabo la supervisión de la 

integridad del rADN. Por lo tanto, es una clave determinante para el control del normal 

funcionamiento de la célula. Las amenazas medioambientales pueden generar lesiones en 

el ADN que son citotóxicas para las células, y una de las más conocidas es la luz 

ultravioleta (UV). El principal daño en el ADN producido por este agente externo es el 

cis-syn dímero de pirimidina ciclobutano (DPC), una lesión voluminosa en el ADN, la 

cual puede introducir distorsiones en la hélice de ADN y, por lo tanto, puede obstruir 

procesos fundamentales como la transcripción. El principal objetivo de esta tesis doctoral 

es entender las bases estructurales de Pol I bloqueado por un daño en el ADN inducido 

por la luz UV. La principal contribución es la estructura por crio microscopía electrónica 

a 3.6 Å de resolución y el modelo atómico derivado de Pol I en complejo de elongación 

conteniendo una lesión DPC en la hebra molde de ADN. Esta estructura muestra que la 

lesión de DPC induce un intermedio de translocación temprano que, sumado a varias 

reorganizaciones conformacionales de elementos estructurales de Pol I dentro de la 

hendidura donde se produce la unión del ADN, contribuyen a detener a la enzima. La 

estructura reveló que el residuo de arginina 1015 de la hélice puente es importante para 

el bloqueo de la enzima, lo que fue confirmado por análisis mutacionales usando la ARN 

polimerasa de E.coli como sistema modelo. Los ensayos de transcripción in vitro 

comparando el comportamiento de Pol I y Pol II en presencia de DPC revelan que 

mientras Pol II puede saltar lentamente la lesión, Pol I se bloquea delante de la lesión 

debido al balance entre una incorporación de nucleótidos lenta y una actividad intrínseca 

de corte del ARN rápida. En conjunto, nuestros resultados revelan el mecanismo 

molecular de Pol I bloqueado por una lesión DPC, el cual es diferente de Pol II detenido. 

Esta tesis doctoral abre una vía para descifrar los mecanismos moleculares que subyacen 

en la resistencia celular a las lesiones en el ADNr.  

 



7 

 

TABLE OF CONTENTS 

LIST OF FIGURES ...................................................................................................... 11 

LIST OF TABLES ........................................................................................................ 12 

ABBREVIATIONS ....................................................................................................... 13 

INTRODUCTION .......................................................................................................... 15 

 Transcription ........................................................................................................ 17 

 RNA Polymerases ............................................................................................... 18 

2.1. Bacterial RNA Polymerase .......................................................................... 18 

2.2. Archaeal RNA Polymerase .......................................................................... 19 

2.3. Eukaryotic RNA Polymerases ...................................................................... 20 

2.3.1. RNA Polymerase II .................................................................................. 20 

2.3.2. RNA Polymerase III ................................................................................. 20 

2.3.3. RNA Polymerase I .................................................................................... 21 

 RNA polymerases show common features .......................................................... 22 

 RNA polymerases transcription elongation ......................................................... 23 

 Pol I transcription initiation ................................................................................. 26 

5.1. rDNA ............................................................................................................ 26 

5.2. The assembly of the Pol I initiation complex ............................................... 27 

 Conformational states in Pol I ............................................................................. 28 

 DNA lesion recognition and repair pathways...................................................... 30 

 The arrest of RNA polymerase II by UV light-induced lesions .......................... 33 

 The Nobel Prize in Chemistry for developing    cryo-EM .................................. 34 

OBJECTIVES ................................................................................................................. 37 

MATERIALS AND METHODS ................................................................................... 41 

 Materials .............................................................................................................. 43 

1.1. Media and additives ..................................................................................... 43 

1.2. Native polyacrylamide gel electrophoresis .................................................. 43 



8 

 

1.3. Denaturing urea polyacrylamide gel electrophoresis ................................... 44 

 Assembly of the DNA-RNA scaffold containing the CPD lesion....................... 45 

 A190 gene cloning into pRS315 vector ............................................................... 46 

 Mutant yeast strain construction .......................................................................... 47 

 Pol I endogenous expression and purification ..................................................... 48 

5.1. Pol I endogenous expression ........................................................................ 48 

5.2. Pol I purifications ......................................................................................... 48 

 In vitro transcription elongation assays ............................................................... 50 

 In vitro assembly of Pol I-ECCPD complex .......................................................... 51 

 Cryo-EM sample preparation, data collection and image processing ................. 51 

8.1. Sample preparation and data collection ....................................................... 51 

8.2. Cryo-EM data processing ............................................................................. 52 

 Structure modelling ............................................................................................. 52 

 Data availability ............................................................................................... 54 

RESULTS ....................................................................................................................... 55 

 Expression and purification of Pol I .................................................................... 57 

 In vitro assembly of the DNA/RNA scaffold and   Pol I-ECCPD ......................... 59 

 Cryo-EM structure of Pol I-ECCPD ...................................................................... 60 

 The CPD lesion occupies an intermediate position above the Pol I bridge helix 66 

 CPD-Mediated stalling is different in Pol I and   Pol II ...................................... 68 

 Specific contacts with Pol I stabilize the CPD lesion .......................................... 70 

 Pol I blocks at CPD lesions ................................................................................. 72 

7.1. AC40-TAP Pol I isolation for mutational studies ........................................ 73 

7.2. The Pol I RNA-cleavage activity is involved in CPD-induced stalling ....... 75 

 Specific bridge helix residues play an important role in transcription processing 

of CPD lesions ............................................................................................................ 78 

DISCUSSION ................................................................................................................. 81 



9 

 

 The optimization of Pol I isolation and Pol I-ECCPD assembly ........................... 83 

 Complete atomic model of CPD-stalled Pol I ..................................................... 85 

 Pol I-ECCPD adopts an early intermediate translocation state .............................. 87 

 Structural rearrangements inside the DNA-binding cleft of Pol I-ECCPD explain 

the blocking ................................................................................................................ 90 

 Specific mutations modify the transcriptional processing of CPD lesions ......... 92 

 The Pol I elongation rate depends on the balance between nucleotide addition 

and intrinsic cleavage ................................................................................................. 93 

 Distinct mechanistic models for Pol I and Pol II processing of CPD lesions ..... 94 

 TC-NER in Pol II and Pol I ................................................................................. 95 

CONCLUSIONS ........................................................................................................ 99 

CONCLUSIONES ...................................................................................................... 99 

 

 

  



11 

 

LIST OF FIGURES 

Figure 1. Structures of the multi-subunit RNAPs ..................................................... 19 

Figure 2. Elements associated to transcription elongation and different stages at 

the nucleotide addition site .......................................................................................... 25 

Figure 3. rDNA organization. ...................................................................................... 27 

Figure 4. Three major conformational states of Pol I ............................................... 29 

Figure 5. Steps of two NER subpathways (figure adapted from Mitchell et al 2003).

 ........................................................................................................................................ 32 

Figure 6. Structures of stalled Pol II-ECCPD showing the CPD lesion at different 

locations. ........................................................................................................................ 34 

Figure 7. A190-TAP A43ΔCt Pol I purification ......................................................... 58 

Figure 8. Electrophoretic mobility shift assay testing DNA/RNA scaffold and Pol I-

ECCPD assemblies. ......................................................................................................... 60 

Figure 9. Cryo-EM image processing ......................................................................... 62 

Figure 10. Cryo-EM structure of CPD-stalled Pol I ................................................. 64 

Figure 11. Cryo-EM structure of Pol I-ECCPD with A49 subunit fully-ordered. .... 65 

Figure 12. Translocation state of CPD-stalled Pol I .................................................. 67 

Figure 13. Comparison of CPD-stalled Pol I and Pol II............................................ 69 

Figure 14. Comparison of CPD-stalled Pol I with undamaged Pol I-EC ................ 71 

Figure 15. CPD lesion effect on Pol I and Pol II elongation ..................................... 72 

Figure 16. AC40-TAP Pol I and Pol III purification ................................................. 74 

Figure 17. Comparison of Pol I purified from different yeast strains ..................... 75 

Figure 18. RNA cleavage activity effect in Pol I and Pol II to bypass the CPD 

lesion. ............................................................................................................................. 76 

Figure 19. CPD lesion effect on cleavage assays. ....................................................... 77 

Figure 20. Mechanism of CPD lesion-induced Pol I stalling .................................... 79 

Figure 21. Mechanisms to deal with CPD lesions in Pol I and Pol II. ..................... 94 

 



12 

 

LIST OF TABLES 

Table 1. Homology in RNAP subunits. ....................................................................... 22 

Table 2. Cell culture media. ......................................................................................... 43 

Table 3. Cell culture additives. .................................................................................... 43 

Table 4. Recipe for native polyacrylamide gels. ........................................................ 44 

Table 5. Recipe for nucleic acid acrylamide gels. ...................................................... 44 

Table 6. Recipe for urea polyacrylamide gels. ........................................................... 45 

Table 7. Reaction mixture for transcription bubble scale-up. ................................. 46 

Table 8. Reaction mixtures for transcription bubble controls. ................................ 46 

Table 9. Reaction mixtures of rpa190 and pRS315 plasmid digestions. .................. 47 

Table 10. Reaction mixtures for Pol I-ECCPD and controls. ..................................... 51 

Table 11. Cryo-EM data collection and refinement statistics. ................................. 53 

Table 12. Pol I variants detected in the A190-TAP purification. ............................. 57 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



13 

 

ABBREVIATIONS 

Abs260nm absorbance at 260 nanometers 

Abs280nm absorbance at 280 nanometers 

APS ammonium persulfate 

Un amount of enzyme required to digest 1 μg of λ DNA (HindIII digest) in 

1 hour at 37°C in a total reaction volume of 50 μl 

U amount of enzyme that will incorporate 10 nanomol of dNTP into acid 

insoluble material in 30 minutes at 74°C 

°C degree Celsius 

g gram 

g gravitational force 

h hour 

kDa kilodalton 

keV kiloelectronvolt 

kV kilovolt 

L litre 

µg microgram 

µL/min microliter per minute 

µm micrometer 

µM micromolar 

mg milligram 

min minute 

mL milliliter 

mm millimeter 

mM millimolar 

min minute 

M molar 

nm nanometer 

nt nucleotide 

OD600nm optical density at 600 nanometers 

% (v/v) percentage of a liquid product volume per volume of solution using the 

same volume units 

% (w/v) percentage of weight of solute in grams per volume of solution in 

milliliters 

PDB Protein Data Bank 

pmol picomole 

RO run-off 

rpm revolutions per minute 

RT room temperature 

s second 

TEMED tetramethylethylenediamine 

UV ultraviolet 

V volt 

 



15 

 

 

 

 

INTRODUCTION    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



17 

 

 Transcription 

The Central Dogma of Molecular Biology (Crick 1970) describes how genetic 

information is transferred from DNA to RNA and, eventually, to proteins in a one-way 

direction. The first sequential step, where DNA is used as template to obtain the different 

types of RNA (Perdew 2006), is known as transcription and occurs in all living organisms. 

RNA molecules can directly play a role inside the cell, for instance constituting the 

backbone of the ribosome, or can encode information that is used for protein synthesis. 

The latter process is known as translation and constitutes the second stage in gene 

expression.  

Together with the ribosome, which translates the RNA chains, the central component of 

the gene expression is RNA polymerase (RNAP), responsible for DNA transcription. 

RNAP utilizes the DNA strand as template to synthesize RNA molecules, using 

ribonucleoside triphosphates. The RNA monomers are composed by a common backbone 

(the sugar ribose and three phosphate groups) and one of the four nitrogenous bases: 

adenine (A), guanine (G), cytosine (C) or uracil (U). RNAP extends the RNA chain in the 

5’ to 3’ direction by the formation of phosphodiester bonds between the 3’-OH end of the 

RNA strand and the α-phosphate of the ribonucleotide, releasing a pyrophosphate ion. 

While a single-subunit RNAP encoded by bacteriophages T7 or SP6 can directly 

recognize the promoter site without the presence of auxiliary regulatory factors 

(Cheetham and Steitz 2000, Steitz 2009), bacterial, archaeal and eukaryotic multi-subunit 

RNAPs are highly regulated with auxiliary proteins, known as transcription factors (TFs). 

TFs modulate the RNAPs activities during the three phases of the transcription cycle: 

initiation, elongation and termination. Besides TFs, other molecules such as RNA or 

single nucleotides can also modulate transcription. Bacterial, archaeal and eukaryotic 

RNAPs are highly conserved in evolution, showing a common structural framework, and 

operate by related molecular mechanisms (Werner et al 2007).  

Specific DNA sequences where the transcription of a gene is initiated are known as 

promoters and are located near the transcription start sites (TSSs). Transcription initiation 

commences with the sequential assembly of TFs and RNAPs at promoter DNA to form 

the pre-initiation complex (PIC) (Murakami et al 2013). Once the macromolecular 

assembly is ready, the PIC transitions from the closed complex (CC), where the DNA is 

double-stranded, to the open complex (OC) in which the DNA is melted (Sainsbury et al 
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2015, He et al 2016, Plaschka et al 2016, Sadian et al 2017). The template strand (TS), 

which is defined as the DNA chain used by RNAP to attach complementary bases during 

transcription, reaches the active site. Then, RNAP starts to move along the TS to produce 

the first phosphodiester bonds. At this stage, the complex is termed initially transcribing 

complex (ITC) (Liu et al 2011). When the transcript length reaches about 25 nt, RNAP is 

released from the promoter and elongation starts. The melted DNA region, the 

synthesized RNA molecule and the enzyme form the elongation complex (EC). The 

termination step is also highly regulated. In this stage, the EC stops due to different 

signals, such as termination TFs or termination signal sequences. RNAP is disassembled 

from the DNA to re-initiate transcription, the DNA recovers the double helix structure 

and the RNA chain is released. 

In prokaryotes, transcription of the entire genome is carried out by a single RNAP. This 

process takes place in the cytoplasm and is coupled to translation. Eukaryotic cells use 

three different RNAPs and each of them is specialized in the transcription of distinct gene 

types. The RNA chains are synthesized in the cell nucleus and their production is not 

coupled to translation. Most often, immature RNA requires processing in order to be 

exported to the cytoplasm. Yeast RNA polymerase I (Pol I) synthesizes the ribosomal 

RNA precursor (35S rRNA), later processed to mature rRNAs (25S, 18S and 5.8S), which 

form the ribosome scaffold. RNA polymerase II (Pol II) mainly transcribes mRNAs and 

RNA polymerase III (Pol III) produces short untranslated RNAs such as tRNAs and the 

5S rRNA, which also forms part of the ribosome.  

Archaeal transcription is a hybrid of eukaryotic and bacterial transcriptional 

characteristics. RNA synthesis takes place in the cytoplasm, is coupled to translation and 

all genes are transcribed by a single RNAP. However, the composition and structure of 

the RNAP, as well as the most important TFs, are similar to the eukaryotic kingdom. 

 RNA Polymerases 

2.1. Bacterial RNA Polymerase 

Bacterial RNA polymerase (bRNAP) carries out the synthesis of all cellular RNA and is 

composed by five subunits (’, , two identical α subunits and ) (Murakami et al 2002), 

which form the core. In spite of being catalytically active, the bRNAP core must bind 

sigma factor (σ) to constitute the bRNAP holoenzyme and initiate transcription. Single-

http://rosalind.info/glossary/nucleobase/
http://rosalind.info/glossary/rna-transcription/
http://rosalind.info/glossary/rna-transcription/
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polypeptide σ is required to locate the promoter DNA and assists bRNAP to melt the 

DNA duplex and form the OC (Campbell et al 2002, Bae et al 2015). ’ and  are the 

largest subunits and form a characteristic structure known as crab-claw (Zhang et al 

1999), conforming a central cleft and the active site (Figure 1). The two α subunits interact 

with promoter DNA and are involved in heterodimer ’ assembly. Subunit  is the 

smallest and it is involved in assembly and conformational maintenance of bRNAP. It is 

the only subunit that can be deleted without affecting the survival of the organism 

(Mathew and Chatterji 2006). 

 

Figure 1. Structures of the multi-subunit RNAPs. Atomic models represented as surfaces. 

Conserved subunits are represented in the same color. PDB codes are indicated below. 

2.2. Archaeal RNA Polymerase  

Distinct X-ray crystal structures of archaeal RNA polymerase (aRNAP) revealed its 

architecture (Hirata et al 2008, Korkhin et al 2009). Like bRNAP, it transcribes all genes. 

The five subunits forming the aRNAP core are conserved in eukaryotes and bacteria. 



20 

 

Depending on the archaeal species, this enzyme can be composed from 11 to 13 subunits 

(Figure 1). Polypeptides RpoA’ and RpoA’’, encoded from two genes (Langer et al 1995), 

interact to form the RpoA’+RpoA’’, orthologous to bacterial ’ (Table 1). The second 

largest subunit, RpoB, is orthologous to bacterial  subunit and forms the cleft with 

RpoA+RpoA’’, which contains the active site. RpoD and RpoL subunits are orthologs of 

the two α subunits in bacteria and are responsible for the stability and assembly of the 

largest heterodimer. RpoK subunit (ortholog of  subunit in bacteria) helps to the 

interaction between RpoA’+RpoA’’ and the stalk, a sub-complex formed by RpoE and 

RpoF. This heterodimer protrudes from aRNAP and is not present in bRNAP. Subunits 

RpoH, RpoG, RpoN and RpoP and their orthologs are only present in archaea and 

eukaryotic RNAPs.  

2.3. Eukaryotic RNA Polymerases 

Eukaryotic cells express three nuclear RNAPs. Although these enzymes share the 

catalytic mechanism, there are important differences between them, such as the number 

of subunits, the size and other special features. 

2.3.1. RNA Polymerase II 

RNA polymerase II (Pol II) comprises 12 subunits with a total mass of 500 kDa (Figure 

1) and produces all mRNAs and several small nuclear RNAs. The two largest subunits 

are Rpb1 and Rpb2, which form the cleft and the active site and share homology with ’ 

and  in bacteria and RpoA’+RpoA’’ and RpoB in archaea. Rpb3 and Rpb11 form a 

heterodimer and function as the α/α or RpoD/RpoL subcomplexes. Pol II presents five 

subunits in common with the other two eukaryotic RNAPs (Rpb5, Rpb6, Rpb8, Rpb10 

and Rpb12). These subunits have homologs in archaea (Minakhin et al 2001) and are 

specially important to maintain the architecture and assembly. Rpb9 does not have 

homologs in archaea and it interacts with Rpb1 and Rpb2. Rpb4 and Rpb7 form a stalk, 

such as RpoE and RpoF in archaea.  

2.3.2. RNA Polymerase III 

RNA polymerase III (Pol III), the largest among all RNAPs, is composed of 17 subunits 

with a total weight of approximately 700 kDa (Figure 1). It produces small non-coding 

RNAs, including all tRNAs and the 5S rRNA. Subunits C160 and C128, with homologs 
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in all multi-subunit RNAPs (Table 1), form the cleft and the active center of the enzyme. 

The heterodimer AC40 and AC19 is shared with Pol I and it is homologous of 

Rpb3/Rpb11 subcomplex in Pol II. The Pol III core is completed by subunit C11, involved 

in RNA cleavage. C11 N-terminal and C-terminal domains are homologous of Rpb9 and 

TFIIS from Pol II, respectively (Chédin et al 1998), and the latter is involved in RNA 

cleavage activity in Pol II (Wind and Reines 2000). The Pol III stalk is formed by subunits 

C17 and C25, which is involved in transcription initiation. The C53/C37 heterodimer is 

related to TFIIF, which has an elongation-stimulatory activity in Pol II (Knutson et al 

2016). Finally, the C82/C34/C31 heterotrimer is positioned on C160 clamp domain and 

it is involved in transcription initiation (Wei and Chen 2018). C34 and C82 share 

homology with TFIIE, which acts in the transition from initiation to elongation in Pol II 

transcription (Compe et al 2019). 

2.3.3. RNA Polymerase I 

RNA polymerase I (Pol I) is a macromolecular enzyme (Figure 1) composed of 14 

subunits that produces rRNA, which after maturation conforms the backbone of the 

ribosome. The two largest Pol I subunits, A190 and A135, constituting the DNA-binding 

cleft, contain regions homologous to Pol II subunits Rpb1 and Rpb2 respectively (Kuhn 

et al 2007). They also are homologous to the cleft-forming subunits from bacteria, archaea 

and Pol III (Table 1). The A12.2 N-terminal domain in Pol I is counterpart to Rpb9 in Pol 

II and the C11 N-terminal region in Pol III. The A12.2 C-terminal domain, which confers 

RNA cleavage activity to the Pol I active center, is homologous to Pol II TFIIS and the 

C11 C-terminal domain in Pol III. The A14/A43 heterodimer forms the stalk and it is 

homologous to the archaeal and eukaryotic stalk heterodimers. The enzyme is completed 

with the peripheral subcomplex A49/A34.5, which is structurally and functionally analog 

to the TFIIF heterodimer. This heterodimer is required for elongation-stimulatory activity 

(Kuhn et al 2007, Geiger et al 2010) and its deletion decreases Pol I activity (Huet et al 

1975, Liljelund et al 1992). The A49/A34.5 dimerization module is anchored opposite 

the stalk similarly to TFIIF in Pol II (Vannini and Cramer 2012). The A49 C-terminal 

domain is homologous to TFIIE and is located close to the DNA-binding cleft in the EC. 
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Table 1. Homology in RNAP subunits. 

 
 

 RNA polymerases show common features  

There are several structural and molecular features shared between archaea, bacterial and 

eukaryotic RNAPs that suggest a common ancestry (Langer et al 1995, Hirata et al 2008). 

This is reflected in the sequence and structure of their subunits, the interactions with TFs 

and the molecular mechanisms (Werner and Grohmann 2011). First, their two largest 

subunits form a DNA-binding cleft and the active site of the enzyme is located within. In 

the active site, three conserved aspartate residues coordinate a Mg2+ ion, which is required 

for catalytic activity. Beyond the active site, the DNA path is blocked by a structural 

element named as “wall” (Cramer et al 2001). A fundamental conserved element, the 

Prokaryotes Eukaryotes 

bRNAP aRNAP Pol II Pol III Pol I 

’ RpoA‵+RpoA‵‵ Rpb1 C160 A190 

 RpoB Rpb2 C128 A135 

α RpoD Rpb3 AC40 

α RpoL Rpb11 AC19 

 RpoK Rpb6 (ABC23) 

 RpoH Rpb5 (ABC27) 

 RpoG Rpb8 (ABC14.5) 

 RpoN Rpb10 (ABC10) 

 RpoP Rpb12 (ABC10α) 

 RpoF Rpb4 C17 A14 

 RpoE Rpb7 C25 A43 

  Rpb9 C11-Nt A12.2-Nt 

  TFIIS-Ct C11-Ct A12.2-Ct 

  TFIIFα C37 A49-Nt 

  TFIIF C53 A34.5 

  TFIIE C34 A49-Ct 

  TFIIEα C82  

   C31  
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bridge helix (BH), lies inside the largest subunit and is involved in enzyme translocation 

along template DNA, likely through a fully folded/partially unfolded transition that 

allows displacement of the protein complex toward downstream DNA (Cheung and 

Cramer 2012). The five-subunit core is homologous in the three kingdoms, suggesting a 

common background. Furthermore, the enzymes show two channels, one for the substrate 

NTPs and the other for the RNA product (Khatter et al 2017).  

Another important element is the subcomplex that forms the stalk, which does not exist 

in bRNAP but is a recognizable feature from archaea to eukaryotic RNAPs and modulates 

the three transcription cycle steps (Werner and Grohmann 2011). The stalk is dissociable 

in Pol II, but is strongly bound in aRNAP (Grohmann et al 2009), Pol I and Pol III 

(Fernández-Tornero et al 2013, Hoffmann et al 2015). The position of the stalk in relation 

with the core is highly conserved between aRNAP and the three eukaryotic RNAPs 

(Fernández-Tornero et al 2007). 

The folding of conserved elements around the active site is essentially identical in nuclear 

RNAPs and aRNAP (Hirata and Murakami 2009), most differences between the enzymes 

being greater as the distance to the central part increases. Almost all the structural 

discrepancies between archaeal and eukaryotic RNAPs can be classified as simple 

addition of eukaryotic RNAP-specific polypeptides to aRNAP rather than changes in the 

main RNAP architecture. It seems likely that the structure of aRNAP has been maintained 

from the ancestor of archaea and eukaryotes, whereas nuclear RNAPs further 

accompanied the evolutionary lines of the eukaryotic kingdom. 

  RNA polymerases transcription elongation 

For gene transcription to occur, a fundamental structure of nucleic acids must be 

maintained: the transcription bubble. This bubble is formed by a double DNA helix which 

displays a central region with approximately 15 impaired nts and an RNA chain with 8 or 

9 residues hybridized with the TS (Figure 2A). Structural studies using yeast cells have 

identified two conserved elements adjacent to the active site with irreplaceable function 

in translocation: the aforementioned BH and the trigger loop (TL) (Cramer et al 2001, 

Gnatt et al 2001) (Figure 2B). The BH, highly conserved in sequence, divides the RNAPs 

central cleft into a main DNA loading channel and a secondary channel for NTP entry 

(Zhang et al 1999, Zhang et al 2015). The BH is straight in elongating RNAPs and 

oscillates between folded and bent states during the transcription cycle, facilitating the 
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entrance of nts into the active site. The TL is a flexible element that swings between two 

positions: near the active site or closer to the downstream DNA. This oscillating 

movement allows establishing both direct and indirect contacts with the RNAP active 

center and is involved in correct NTP selection at the nucleotide addition site. (Wang et 

al 2006). 

During transcription elongation, the RNAPs move stepwise along a DNA TS and 

repeatedly perform the nucleotide addition cycle (NAC), a mechanism conserved in all 

three kingdoms of life (Brueckner et al 2009). The TS is positioned close to the active 

site and contains the i+1 position, which is defined as the nucleotide that is 

complementary to the incoming NTP substrate (Murakami et al 2002). The NAC starts 

when a NTP substrate extends the growing 3′-end of the RNA chain by DNA template-

directed formation of an RNA phosphodiester bond and the release of a pyrophosphate 

ion (Brueckner et al 2009) (Figure 2C). At post-translocation state, i+1 position remains 

empty, the BH is folded and TL is open. NTP entry and closure of the active center leads 

to complete folding of the TL. NTP binding requires the presence of two catalytic metal 

ions (A and B). Metal ion A is persistently bound to the active site by three conserved 

aspartate residues, while metal ion B enters with NTP substrate. The catalysis reaction 

and the consequent liberation of a pyrophosphate ion destabilize the TL closed 

conformation and break the TL contacts with the active site, leading to TL return to the 

open state. At this stage, termed the pre-translocated state, the BH bends to allow the 

forward movement of the DNA/RNA hybrid to a new position. Downstream DNA is 

translocated until the next nt in the TS reaches the i+1 position (Brueckner et al 2009). 

The BH reversion to the straight state without movement of nucleic acids creates an empty 

site at position i+1 for entrance of the next nucleotide, completing the NAC (Gnatt et al 

2001) (Figure 2C). Structural comparison of RNAPs at different translocation states 

revealed that the straight/bent states shown by the BH are important for the interaction 

between nucleic acids and protein during translocation of the enzyme and the orchestrated 

movements of the TL are essential for catalysis (Cheung et al 2012). 
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Figure 2. Elements associated to transcription elongation and different stages at the 

nucleotide addition site. (A) Schematic figure of the transcription bubble, showing the TS, NTS 

and RNA chain in blue, cyan and red, respectively. RNAP is colored in light yellow. (B) Atomic 

model of Pol I transcription bubble, BH and TL (extracted from Pol I-EC (Tafur et al 2016)). The 

BH and TL are colored in green and red, respectively. (C) Schematic representation of the NAC 

(adapted from Brueckner and Cramer 2008 with modifications). The vertical dashed lines indicate 

i+1 position.  

Although structural studies have enhanced the understanding of the transcription process, 

only static snapshots of the starting and ending points of NAC were achieved (Figure 2C). 

Molecular dynamics studies revealed that NAC presents four metastable states and two 

of them are structurally unidentified intermediate states. These studies showed that two 

conserved amino acids at the BH of Pol II, T831 and Y836, directly interact with the DNA 

transition nucleotide i+1 and play an important role in the DNA/RNA hybrid translocation 

(Silva et al 2014). 

Elongation stage is not a smooth and continuous process; RNAPs are prone to pausing 

when they sense certain DNA sequences, encounter a DNA lesion in the TS or 
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misincorporate a noncomplementary nucleotide. This temporary arrest situation 

represents a rate-limiting step during transcription elongation (Kireeva and Kashlev 

2009). In these cases, RNAPs may delay the extension of the RNA chain (Weixlbaumer 

et al 2013). In prokaryotes, pausing regulates the expression of operons, such as trp or his 

(Landick and Yanofsky 1987, Chan and Landick 1989), maintain the transcription-

translation coupling and plays an important role in termination (Landick 2006). The 

intermediate state of bRNAP reveals a relaxed, open-clamp conformation, similar to the 

nucleic acid free bRNAP core. Inside the cleft, the enzyme exhibits a kinked BH and a 

widened RNA exit channel. The kinked BH blocks the TS i+1 position and obstructs the 

NTP substrate entry, and the opened RNA exit channel allows the formation of a stable 

RNA hairpin (Weixlbaumer et al 2013). In eukaryotic cells, Pol II is paused in the 

promoter-proximal regions (Muse et al 2007, Core and Lis 2008). Among other functions, 

pausing can provide the time to load the elongation regulators, be involved in splice-site 

selection and aid adequate RNA folding (Toulokhonov et al 2007). Structural studies in 

Pol II revealed that the pause state corresponds to an inactive intermediate between pre-

translocated and post-translocated stages, which results from a rearrangement of the EC 

that inhibits nt addition (Sydow et al 2009).  

 Pol I transcription initiation  

Ribosome biosynthesis is a central cellular process extremely regulated and a huge 

metabolic effort that in eukaryotes requires the coordinated action of all three nuclear 

RNAPs (Laferté et al 2006, Schneider et al 2007). In fact, Pol I transcription, as a crucial 

step for ribosome biogenesis, is regulated in different manners, such as disruption of 

inactive Pol I homodimers into monomers (Torreira et al 2017) or adjustments in the 

number of active rRNA genes and chromatin structure (Birch and Zomerdijk 2008). In 

particular, Pol I initiation is specially modulated and recent studies have provided further 

structural and biochemical insights into this regulation (Engel et al 2017, Han et al 2017, 

Sadian et al 2017, Torreira et al 2017). 

5.1. rDNA 

Several decades ago, Pol I was observed transcribing the rDNA repeats by electron 

microscopy and forming specific structures known as Miller spreads, resembling 

Christmas trees (Miller and Beatty 1969). Intercalated matrix units (Mx) and matrix-free 
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segments (S) were visible, as well as Pol I molecules loaded on a single rDNA gene (black 

dots in the “tree trunks”) (Figure 3A). The detailed examination of Mx revealed that each 

of them is composed by hundreds of fibrils connected by one end to the “tree trunk”. 

These fibrils are the 35S pre-rRNA and they increase in length from the beginning to the 

end of the rDNA gene (Figure 3A). 

In the yeast nucleolus, there are 150-200 copies of rRNA genes of about 9 kb each 

(Russell and Zomerdijk 2005), located on chromosome XII (Petes 1979). The repeat are 

organized as tandem head-to-tail repeats and constitute the nucleolar organizing regions 

(NORs) (Russell and Zomerdijk 2005). Each rDNA repeat contains the small 5S rRNA 

gene, the transcribed region coding for the 35S pre-rRNA and non-transcribed regions, 

such as Pol I promoter, which contains two main regions, the upstream activating 

sequence (UAS) and the core element (CE) (Figure 3B). 

 

Figure 3. rDNA organization. (A) Miller spread of a Triturus viridescens oocyte (Miller and 

Beatty 1969). Scale bar - 1 µm. Mx, matrix units; S, matrix-free segments. (B) Schematic of yeast 

rDNA organization. Chr, chromosome; Cen, centromere; Tel, telomere; CE, core element; UAS, 

upstream activating sequence.  

5.2. The assembly of the Pol I initiation complex 

The first step in transcription is the assembly of a PIC (Knutson et al 2014, Han et al 

2017, Sadian et al 2017). Yeast requires a unique set of general transcription factors 

(GTFs): the Upstream Activating Factor (UAF), the TATA-binding protein (TBP), the 

Core Factor (CF) and the regulatory factor Rrn3 (Schneider 2011). GTFs are found only 

in the promoter (Bier et al 2004) and do not participate in the elongation stage. They bind 

sequentially to specific DNA sequences in the promoter: the UAS and the CE.  
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First of all, UAF forms a stable complex with the UAS in the promoter, and seems not to 

require CF, Pol I or Rrn3 for the interaction (Goetze et al 2010). Although the rDNA 

promoter does not contain the TATA-box, the next step is the recruitment of TBP, likely 

playing a role, together with the UAF, in the attachment of the CF to the PIC (Steffan et 

al 1996). The third step is the interaction of the CF with the CE. This three-subunit 

complex (Lalo et al 1996, Lin et al 1996) contacts Pol I and Rrn3 and plays a central role 

in PIC assembly. In vitro assays revealed that the CF does not require UAF and TBP for 

promoter recognition, and it is essential to direct Pol I:Rrn3 complex to the TSS and basal 

transcription initiation (Keener et al 1998, Pilsl et al 2016, Engel et al 2017). Once UAF, 

TBP and CF form a stable complex, the last step is the recruitment of Pol I in complex 

with Rrn3. This regulatory factor is functionally conserved in eukaryotic cells (Schnapp 

et al 1993, Bodem et al 2000, Moorefield et al 2000) and interacts with the A43 stalk 

subunit of Pol I (Peyroche et al 2000), the A14 subunit, the A135 stalk-binding region, 

the A190 dock domain, the AC40/AC19 heterodimer and Rpb6 (Engel et al 2016, Pilsl et 

al 2016, Torreira et al 2017). Upon recruitment of Pol I:Rrn3 to the TSS, forming the CC, 

the double helix DNA is melted and forms the OC. The DNA opening permits the TS to 

reach the active site, and downstream DNA is positioned within the cleft. Pol I, similar to 

other eukaryotic RNAPs, forms the ITC. Once the nascent RNA is between 8 and 12 nt 

in length, Pol I clears the promoter (Kahl et al 2000) and converts the ITC to a stable EC. 

Rrn3 leaves the transcribing complex very early in the elongation stage and is not part of 

a stable Pol I-EC (Bier et al 2004).  Occasionally, the step from ITC to EC is unsuccessful 

and the enzyme and a short RNA transcript are released. 

 Conformational states in Pol I 

There are three major conformations of the Pol I enzyme (Fernández-Tornero 2018). X-

ray crystal structures of yeast Pol I (Engel et al 2013, Fernández-Tornero et al 2013) were 

nearly identical and described Pol I in the inactive dimeric state. The principal interaction 

in the dimers involves A43-Ct (251-326) insertion in the cleft of the neighboring 

monomer. A43-Ct can be divided into three regions; a long α-helix (amino acids 273 to 

293), a -hairpin (298 to 309) and an acidic C-tail (311 to 326). In vivo mutational assays 

with the -hairpin partially truncated and deleted C-tail (A43 Δ307-326) showed the 

disruption of Pol I dimers (Torreira et al 2017). In addition to homodimerization, the 

principal main inactivation characteristics are that the BH is partially unfolded in its 
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central region, a DNA-mimicking loop prevents downstream DNA accommodation near 

the active site and an open cleft of about 42 Å in width is unable to trap the DNA (Figure 

4A). Furthermore, the A12.2-Ct involved in the RNA cleavage, is placed inside the pore 

(Kuhn et al 2007). 

 

Figure 4. Three major conformational states of Pol I. The subunits forming the structures are 

colored according to the bottom legend. (A) Dimeric Pol I (PDB:4C3H). (B) Monomeric Pol I 

(PDB:5LMX). (C) Monomeric Pol I in elongation state with an artificial transcription bubble 

(PDB:5M3F). 

Pol I activation involves the disruption of the dimers, reorganization of the DNA-

mimicking loop and cleft closing. The free monomeric structure presents a semi-

expanded cleft of about 38 Å in width (Figure 4B), a partially unfolded BH and disordered 

TL and DNA-mimicking loop. The A12.2-Ct domain has been found either disordered or 

partially ordered inside the pore. In addition, the stalk (heterodimer A14/A43) appears 

flexible in monomeric Pol I (Figure 4B). Pol I in the ITC and EC is represented by the 

third conformational state (Figure 4C). This conformation is defined by a full closure of 

the cleft (about 30 Å in width) to maintain the nucleic acids bound at the active site and 

a fully ordered BH (Neyer et al 2016, Tafur et al 2016, Sadian et al 2017). Other two 

important features are that the DNA-mimicking loop is disordered, as expected by the 

presence of nucleic acids in the cleft, and the A12.2-Ct domain is flexible, as the 
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elongating Pol I does not require its cleavage domain in place while polymerizing the 

RNA. 

 DNA lesion recognition and repair pathways 

The maintenance of genomic DNA integrity is essential for the normal function of the 

cell, as well as for the cell survival (Pani and Nudler 2017). Consequently, chemical 

changes in the genetic material are connected to DNA mutagenesis, cancer and apoptosis. 

DNA damage can be produced by exogenous agents like genotoxic chemical products, 

radiation or pollution, or endogenous sources, such as reactive oxygen species (Sancar et 

al 2004, Hanawalt et al 2008).  

The universal repair mechanism is the nucleotide excision repair (NER), which removes 

longer sections containing diverse bulky and helix-distorting lesions (Wirth et al 2016, 

Peyresaubes et al 2017). Defects in NER activity are associated with several rare 

autosomal recessive human disorders, including Cockayne syndrome (CS) and 

Xeroderma pigmentosum (XP). CS is characterized by neurological dysfunction, 

including retinal degradation and XP exhibits a high incidence of internal tumors. 

Sunlight hypersensitivity and high skin cancer in different severity levels are hallmarks 

of the two diseases (Hanawalt and Spivak 2008).  

Multiple factors affect the NER capability, like DNA and histone modifications, 

condensed chromatin domains or DNA dynamics (Yang et al 2019). NER can be divided 

into two subpathways: global genome-nucleotide excision repair (GG-NER), which deals 

with damage anywhere in the genome (Hanawalt and Spivak 2008) and transcription 

coupled-nucleotide excision repair (TC-NER), which is activated when RNAPs are 

blocked by bulky DNA lesions in the template DNA of actively transcribed genes 

(Tornaletti and Hanawalt 1999) (Figure 5). TC and GG-NER are divided into four 

principal steps: damage recognition, verification, incision (pre-incision repair complex 

assembly and dual incision steps) and gap filling (DNA synthesis and ligation steps), and 

the mechanisms only differ in the first step.  

In GG-NER of yeast, the lesion is sensed by the Rad4-Rad23 complex (Figure 5), which 

is orthologous to human XPC-RAD23B. Rad4 repair factor is localized to the DNA lesion 

and indirectly recognizes diverse chemically and structurally DNA double helix 

distortions in vitro (Kong et al 2016, Mu et al 2018). The lesion recognition by Rad4-
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Rad23 complex is necessary to trigger GG-NER. The transcription factor TFIIH contains 

the two DNA helicases Rad3 and Rad25 that translocate on ssDNA at opposites directions 

and are essential for creating a bubble structure (Sung et al 1987, Guzder et al 1994, Sung 

et al 1996). The two endonucleases, Rad1–Rad10 complex and Rad2, incise the damaged 

DNA strand on the 5′- and 3′-side of the lesion, respectively and both show structure-

specific activity (Prakash and Prakash 2000). The damage binding factors include Rad14 

that binds with high specificity to UV damage DNA and RPA, a heterotrimeric protein 

complex essential to protect an exposed single stranded DNA (ssDNA) and DNA 

replication (Yates et al 2018). In TC-NER subpathway, DNA damage is initially 

recognized by RNAPs (Hanawalt and Spivak 2008), which arrest at the DNA lesion and 

trigger the repair (Lainé and Egly 2006, Lindsey-Boltz and Sancar 2007, Wang et al 

2018). This process is dependent on the repair proteins Rad26 and Rad28 in yeast cells, 

homologs to human Cockayne syndrome proteins CSB and CSA, respectively. These 

transcription-repair factors, together with the TFIIH complex and Rad2, remove Pol II 

from the lesion and recruit the subsequent NER factors (Rad14, Rad1-Rad10 complex 

and RPA) (Mitchell et al 2003) (Figure 5). Both NER subpathways eliminate the DNA 

damage by dual incisions bracketing the lesion, removing a DNA fragment between 24 

and 32 nucleotides in eukaryotes and 12 to 13 nucleotides in prokaryotes (Sancar and 

Reardon 2004). The new DNA fragment is produced by DNA polymerases ,  or  (Ogi 

and Lehmann 2006) using the NTS as template. The NER cycle ends with the ligation of 

the newly synthesized DNA. 

In yeast rDNA, TC-NER occurs only in active repeats (Conconi et al 2002). Occasionally, 

blocked Pol I is displaced by nucleosomes and GG-NER removes the DNA damage from 

the TS (Charton et al 2015). TC-NER in rRNA genes is independent of Rad26, an 

essential repair factor of Pol II transcribed genes (Verhage et al 1996). Yeast Rad4 repair 

protein is needed to remove DNA lesions in the intergenic space and in the inactive rRNA 

genes, whereas it is not essential for TC-NER in active rDNA.  

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/transcription-factor-iih
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/endonuclease
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/dna-strand
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In mammalian cells, the DNA repair proteins of TC-NER in Pol II genes have been found 

in Pol I transcription sites, such as CSB, TFIIH and other components of the NER 

machinery (Hannan et al 1999, Bradsher et al 2002, Iben et al 2002). However, a direct 

role for these factors in the TC-NER of rDNA has yet to be demonstrated. In contrast to 

the TC-NER observed in many genes of mammalian cells transcribed by Pol II (Hanawalt 

and Spivak 1999), no evidence for TC-NER was found in the rDNA of higher eukaryotes 

(Yang et al 2019). 

 

Figure 5. Steps of two NER subpathways (figure adapted from Mitchell et al 2003). Common 

steps of NER mechanisms are depicted in the middle of the figure. The lesion is represented as a 

maroon triangle. 
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 The arrest of RNA polymerase II by UV light-

induced lesions 

One of the best-known environmental threats is UV light, which can generate bulky DNA 

lesions that are cytotoxic (Mitchell et al 2003). The main UV light-induced DNA lesions 

are cis-syn cyclobutane pyrimidine dimers (CPDs) and 6-4 photodimers (Ravanat et al 

2001), that covalently crosslink two adjacent nucleotides in the same strand. These UV 

light-induced photoproducts produce an important distortion of the local DNA duplex 

structure that interferes with base pairing and obstructs fundamental processes such as 

transcription (Hoeijmakers 2001).  

The first structural studies about CPD-induced blocked transcription were performed 

using Pol II, the best-studied eukaryotic RNA polymerase. There are several structures of 

Pol II in EC with a transcription bubble containing the bulky CPD lesion at different 

positions (Pol II-ECCPD) (Figure 6). While the overall structures of those Pol II-ECCPD are 

nearly identical to the damage-free Pol II-EC (Kettenberger et al 2004), important 

differences are observed in the vicinity of the active center. 

The X-ray structure containing the CPD lesion at i+2/i+3 position exhibited a post-

translocated state (Figure 6A). This complex was used to perform time-dependent RNA 

transcription assays, which showed that Pol II is blocked after nucleotide incorporation 

opposite both pyrimidines. The incorporation rate opposite the 3’-T was approximately 

16 nt/h, while the addition rate opposite 5’-T was 2.4 nt/h. When the CPD damage has 

reached the active site and remains stably accommodated at i-1/i+1 position, also 

revealing a post-translocated state (Figure 6C).  

Subsequent structural studies by X-ray crystallography obtained the Pol II-ECCPD 

containing the DNA damage at position i+1/i+2. This structure showed that the 

pyrimidine dimer is located above the BH and cannot reach the canonical position i+1 

site (Figure 6B) (Walmacq et al 2012). This translocation represents an intermediate 

between pre- and post-translocated states for undamaged TS (Silva et al 2014). 

Complementary RNA transcription assays using two different mismatched RNAs 

opposite the CPD lesion at i-1/i+1 position concluded that Pol II can bypass the 

pyrimidine dimer if it incorporates adenine opposite the 5’-T (Brueckner et al 2007). 

Therefore, the Pol II behavior in the presence of the CPD lesion results in the non-
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template AMP incorporation according to the A-rule followed by two possibilities; an 

addition of another AMP, leading to lesion bypass or a misincorporation of UMP, leading 

to arrest. The incorporation of the first adenine together with slight conformational 

changes of BH and TL helps to stabilize the CPD lesion into the active site. From the 

branch-point, the second incorporation event drives Pol II between two pathways. 

Blocked Pol II presents the CPD lesion within the active site, which is not accessible to 

the repair factors (Walmacq et al 2012). Whereas blocked Pol II at the lesion recruits the 

repair machinery, this is not enough for lesion removal (Hanawalt and Spivak 2008).  

 

Figure 6. Structures of stalled Pol II-ECCPD showing the CPD lesion at different locations. 

RNA, TS, NTS, and the BH motif of RNA Pol II (Rpb1 810-847) are colored in red, blue, cyan 

and green, respectively. The CPD lesion is highlighted in yellow. The magnesium ion at the active 

site is colored in purple. The Pol II active site is indicated by a dashed circle. 

 The Nobel Prize in Chemistry for developing    

cryo-EM 

Understanding how macromolecular complexes carry out their roles in cells is a central 

issue in molecular biology. To this aim, one fundamental study field is structural biology, 

which deduces the 3D arrangement of the atoms (Bai et al 2015). The most used 

techniques are nuclear magnetic resonance (NMR), X-ray crystallography (X-ray) and 

cryo-EM. Among others, one of the limiting factors to perform structural studies is the 

sample amount. Cryo-EM needs much less protein (about 0.1 mg) than X-ray 

crystallography. Besides, high-quality diffracting crystals are not required. Due to these 

reasons and the advances in the technique, the number of novel protein complex structures 

obtained by cryo-EM has been increasing (Fernandez-Leiro and Scheres 2016). 

Fundamental issues were improved in recent years: sample preparation, microscopes, 
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detectors and the image processing software. It is now possible to reach atomic resolution 

in 3D density maps of biological assemblies. 

First observations of the specimens using EM were done by negative-staining, where the 

water is replaced by a dried solution of heavy-metal salt, although this method resolution 

is limited by the grain size (Brenner and Horne 1959). One of the most fundamental cryo-

EM improvements consists on the preservation of the sample in a close-to-native state 

embedded in amorphous ice (not crystalline) after flash freezing in liquid ethane at liquid 

nitrogen temperatures. This was fundamental to gain a better understanding of biological 

function (Bai et al 2015).  

In addition, the accelerating voltage has been increased from 120 kV to 300 kV and 

thermionic emission electron guns were replaced by field emission guns. The increase of 

the electron beam temporal stability was enhanced decreasing the temperature of the 

electron source cathodes; and the vacuum around frozen specimens was improved, 

reducing ice contamination and allowing data collection for days rather than hours, so 

much more images can be recorded, specially now with automatic image acquisition.  

Likewise key to the development of cryo-EM were the new generation electron detectors, 

able to obtain information with unprecedent speed and sensitivity (Kühlbrandt 2014). 

First EM images were recorded on photographic film, and more recently, with charge-

coupled device (CCD) cameras. These cameras work well at low energies, however their 

detective quantum efficiency (DQE) decrease at higher energies. This introduces noise to 

the received signal and eventually affects the 3D density map resolution. The new 

commercial cameras have a DQE much higher than film and CCD cameras. Therefore, 

they reach a high signal to noise ratio and they can detect individual events of 300 kV 

electrons (McMullan et al 2014). Direct electron detectors can continuously integrate 

electrons without any additional conversion step, storing and processing individual 

frames, which form a “movie”. In fact, dealing with “movies” prompted other 

development, the alignment of individual movies frames, which improves the signal to 

noise ratio of individual particles and partially accounts for their beam induced motion 

(Brilot et al 2012, Campbell et al 2012). 

Improvements in computer programs for image processing were performed as well to 

address the difficulties with heterogeneous samples. Maximum likelihood algorithms 

applied to microscopy (Sheres 2010, Sigworth et al 2010, Sheres 2012), were developed 
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from the method used previously by X-ray crystallography community (Henderson 

2015). The RELION program (Sheres 2012), which is widely used, incorporates 

maximum likelihood algorithms. 

Professors Richard Henderson, Jacques Dubochet and Joaquim Frank were awarded the 

2017 Nobel Prize in Chemistry for their effort on developing cryo-EM for the high-

resolution structure determination of biomolecules in solution. Richard Henderson 

succeeded in using an electron microscope to generate a 3D image of a protein at atomic 

resolution. Joachim Frank developed an image processing method in which the electron 

microscope’s blurred 2D images are analyzed and merged to reveal a sharp 3D structure. 

Jacques Dubochet succeeded in vitrifying water, allowing the biomolecules to retain their 

natural shape even under the microscope vacuum. The enormous advance in this field 

over the last time was characterized by the term “Resolution Revolution” (Kühlbrandt 

2014). 

All the advances in cryo-EM were essential for the results described in this Ph.D. thesis. 

The obtained cryo-EM maps permitted to build the first published atomic model of Pol I 

stalled at the CPD lesion, revealing important mechanistic insights. The structures, 

complemented with biochemical studies, shed light on how Pol I is blocked upon 

encountering a bulky distortion in the template DNA. 
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The main objective of this work was the 3D structural determination by cryo-EM of Pol 

I in elongation complex containing a CPD lesion in the position i+1/i+2 of the template 

DNA strand. To this aim, several objectives were planned. 

 

• To assemble in vitro the transcription bubble efficiently and the Pol I-ECCPD 

complex under native conditions. 

 

• To prepare cryo-EM grids for data collection at a Titan Krios equipped with 

direct-electron detector to elucidate the 3D structure of Pol I-ECCPD by cryo-EM 

at a quasi-atomic resolution. 

 

• To obtain a refined atomic model for Pol I-ECCPD. 

 

• To compare Pol I-ECCPD with Pol II-ECCPD and both lesion-free Pol I-EC and Pol 

II-EC. 

 

• To compare the behavior of Pol I and Pol II in the presence of a CPD lesion using 

in vitro transcriptional assays. 

 

• To validate structural results by performing mutational analysis and in vitro 

transcription assays to confirm the role of certain amino acids. 
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 Materials 

1.1. Media and additives 

All media were prepared by dissolving the components in water and autoclaving at 121°C 

for 20 min. 

Table 2. Cell culture media. 

Name Composition 

Lysogeny broth (LB) 1% (w/v) tryptone, 0.5% (w/v) yeast extract, 1% (w/v) NaCl 

LB plates 1% (w/v) tryptone, 0.5% (w/v) yeast extract, 1% (w/v) NaCl, 1.5% 

(w/v) agar 

NYZ+ 1% (w/v) NZ amine, 0.5% (w/v) yeast extract, 0.5% NaCl, 0.4% (w/v) 

glucose* 

YPD 1% (w/v) yeast extract, 2% (w/v) bactopeptone, 2% (w/v) glucose* 

YPDA 1% (w/v) yeast extract, 2% (w/v) bactopeptone, 2% (w/v) glucose*, 

0.003% (w/v) adenine hemisulfate 

YPD plates 1% (w/v) yeast extract, 2% (w/v) bactopeptone, 2% (w/v) glucose*, 

2% (w/v) agar 

* A 40% (w/v) glucose stock solution was prepared separately, autoclaved at 110 °C and 

added under sterile conditions. 

Table 3. Cell culture additives. 

Stock Work concentration 

Ampicillin 1000x 100 µg/mL 

Chloramphenicol 1000x 25 µg/mL 

MgSO4 80x 12.5 mM 

MgCl2 80x 12.5 mM 

 

1.2. Native polyacrylamide gel electrophoresis 

Native gels for protein samples were run at 120 V and 4°C in running buffer 1 (25 mM 

Tris, 192 mM glycine, 2 mM DTT). 
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Table 4. Recipe for native polyacrylamide gels. 

Gels with 0.75 mm spacer plates (BIORAD) 

 Percentage 

Stock 4.5 % 7.0 % 

                Sterile deionised H2O 6.3 mL 5.7 mL 

1.5 M Tris pH 8.8 2.5 mL 2.5 mL 

40% Acrylamide/Bis Solution 19:1 (BIORAD) 1.1 mL 1.7 mL 

APS 10% (w/v) (prepared from APS powder, BIORAD) 100 µL 100 µL 

TEMED (BIORAD) 10 µL 10 µL 

 

Nucleic acid polyacrylamide gels were run at 100 V and 4°C in running buffer TAE 1x 

(40 mM Tris, 20 mM acetic acid and 1 mM EDTA). 

Table 5. Recipe for nucleic acid acrylamide gels. 

Stock 20% 

Sterile deionised H2O 3.03 mL 

30% acrylamide (BIORAD) 6.66 mL 

TAE 50x 200 µL 

APS 10% (w/v) (prepared from APS powder, BIORAD) 100 µL 

TEMED (BIORAD) 20 µL 

 

1.3. Denaturing urea polyacrylamide gel electrophoresis 

Urea gels for in vitro transcription assays were run at 25 V and RT in running buffer 

TBE 1x (89 mM Tris base, 89 mM boric acid and 2 mM EDTA). 
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Table 6. Recipe for urea polyacrylamide gels. 

Stock 12% 

Urea (Merck) 56.7 g 

TBE 10x 13.5 mL 

Sterile deionized H2O 96 mL 

40% Bis-acrylamide 19:1 (BIORAD) 40.5 mL 

APS 10% (w/v) (prepared from APS powder, BIORAD) 1 mL 

TEMED (BIORAD) 100 µL 

 

 Assembly of the DNA-RNA scaffold containing the 

CPD lesion 

In order to prepare stock solutions, non-template DNA strand (NTS -

5'GCAGCCTAGTTGATCTCATAGCCCATTCCTACTCAGGAGAAGGAGCAGAG

CG-3'), CPD-containing template DNA strand (TS - 

5'CGCTCTGCTCCTTCTCCTTTCCTCTCGATGGCTATGAGATCAACTAGGCTGC

3') where TT represents the thymine dimer and 10-mer RNA (5'- AUCGAGAGGA-3') 

HPLC purified (Trilink Biotechnology) were separately resuspended in sterile H2O. 

Gloves were used whenever handling the nucleic acids to avoid DNase or RNase 

contamination. The DNA strands were incubated in equimolar amounts in Buffer A (10 

mM HEPES pH 8.0, 150 mM NaCl) (Table 7) 0.22 µm filter-sterilized, heated 5 min to 

95°C and slow-cooled to 4°C. Immediately, double equimolar amounts of the RNA strand 

were added (Table 7), the mixture heated 5 min to 45°C and gradually cooled down to 

4°C. The optimal formation of the scaffold (Table 7) and controls (Table 8) was analyzed 

by 20% native acrylamide gels detected with ethidium bromide. All nucleic acids were 

quantified using Abs260nm in a spectrophotometer (Nanodrop, Thermo Fisher). 
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Table 7. Reaction mixture for transcription bubble scale-up. 

 
TS-CPD/NTS/RNA 

scale-up 

NTS (80 pmol/µL) 2.5 µL (200 pmol) 

TS-CPD (65 pmol/µL) 3.1 µL (200 pmol) 

Buffer A (10x) 2.0 µL 

Sterile deionised H2O 7.7 µL 

RNA (85 pmol/µL) 4.7 µL (400 pmol) 

Total volume 20 µL 

 

Table 8. Reaction mixtures for transcription bubble controls. 

 NTS TS TS/NTS RNA 

NTS 

(8 pmol/µL) 

1.3 µL 

(10 pmol) 
------- 

1.3 µL 

(10 pmol) 
------ 

TS-CPD strand 

(6.5 pmol/µL) 
------ 

1.5 µL 

(10 pmol) 

1.5 µL 

(10 pmol) 
------ 

Buffer A (5x) 1.0 µL 1.0 µL 1.0 µL 1.0 µL 

Sterile deionised H2O 2.7 µL 2.5 µL 1.2 µL 2.8 µL 

RNA strand 

(8.5 pmol/µL) 
------ ------ ------ 

1.2 µL 

(10 pmol) 

Total volume 5 µL 5 µL 5 µL 5 µL 

 

 A190 gene cloning into pRS315 vector 

S. cerevisiae rpa190 inserted in pFL38 vector (courtesy by Olivier Gadal’s laboratory) 

and pRS315 plasmid (Addgene) were digested with SalI/SacI restriction enzymes (New 

England Biolabs (NEB)) (Table 9) at 37°C overnight. 5 µL of both double digestions 

were run in an agarose gel to check digestion occurred. Next, the entire digestion volumes 

were loaded in a 1% (w/v) agarose gel and purified using QIAquick Gel Extraction Kit 

(Qiagen) following the commercial protocol with minor modifications. Both purified 

DNA fragments were eluted separately in 30 µL Elution buffer (10 mM Tris-HCl pH 8.5 

at 25°C) and quantified by Abs260nm in a NanoDrop spectrophotometer (Thermo Fisher). 
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Table 9. Reaction mixtures of rpa190 and pRS315 plasmid digestions. 

 Insert Vector 

Purified pFL38-A190 plasmid (173 ng/µL) 5.8 µL (1 µg) -------- 

Purified pRS315 plasmid (257 ng/µL) -------- 3.9 µL (1 µg) 

Buffer CutSmart 10x (NEB) 5.0 µL 5.0 µL 

SalI – HF® 20 Un/µL (NEB) 1.0 µL 1.0 µL 

SacI 20 Un/µL (NEB) 1.0 µL 1.0 µL 

Sterile deionised H2O 37.2 µL 39.1 µL 

Total volume 50 µL 50 µL 

 

The digested insert and vector were ligated overnight at 22°C using T4 DNA Ligase 

(NEB) at 1:1 and 3:1 insert:vector molar ratio. A control reaction without the A190 gene 

fragment was set following standard molecular biology protocols. The whole ligation was 

transformed in homemade chemically competent DH5α cells, which were plated in LB 

plates supplemented with ampicillin. Three colonies from the ligation reactions were 

digested with restriction enzymes to find positive digestion profiles and later sequenced 

(Secugen S. L.) to confirm A190 gene insertion into the plasmid. 

 Mutant yeast strain construction  

The previously obtained pRS315-A190 plasmid was used to transform a yeast strain 

containing a tandem affinity purification tag (TAP-tag) (Rigaut et al 1999) at the AC40 

subunit (AC40-TAP). This transformation was performed by the lithium acetate method 

(adapted from Giezt et al 1995). Colonies were selected on YPD plates containing 

appropriate selection markers and analyzed by colony PCR. 
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 Pol I endogenous expression and purification 

5.1. Pol I endogenous expression 

A S. cerevisiae strain with the TAP-tag fused to the C-ter of A190 subunit was further 

modified to truncate the C-ter of A43 subunit (Δ307-326), thus avoiding the assembly of 

inactive dimeric Pol I enzymes (Torreira et al 2017). This strain was used in the cryo-EM 

reconstruction of Pol I-ECCPD. Pol I in vitro transcription assays were performed using a 

genetically modified strain expressing the TAP-tag fused to the C-ter of AC40 subunit, 

and a strain further lacking the last 47 C-ter residues of A12.2 subunit. For all strains, and 

starting from glycerol stocks, fresh YPD plates were seeded and left 2 to 3 days at 30°C. 

One big and isolated colony of each strain was transferred to 5 mL YPDA supplemented 

with ampicillin to avoid bacterial contamination and was grown 24 h at 30°C and 220 

rpm. The 5 mL pre-inoculum was used to start 500 mL YPDA cultures and the cells were 

grown 24 h at 30°C and 220 rpm. For A190-TAP strain, a 75 L fermenter was inoculated, 

while 12 L of final culture were inoculated for AC40-TAP strains, until cells reached 

OD600nm 5.5 – 6.0. Then, cells were centrifuged 30 min at 8000 g, 4°C, and the pellet 

shipped in dry ice and stored at -80°C.  

5.2. Pol I purifications 

All chromatographic separations were performed at 4°C and the 0.22 µm filtered buffers 

and protein fractions kept on ice throughout the purification. Approximately 500 g of 

A190-TAP or 80 g of AC40-TAP cellular pellets were resuspended with equivalent 

volumes of Buffer L (250 mM Tris-HCl pH 7.4, 20% (v/v) glycerol, 250 mM ammonium 

sulfate, 1 mM EDTA pH 8.0, 10 mM MgCl2, 10 µM ZnCl2, 10 mM betamercaptoethanol) 

supplemented with protease-inhibitors (1 mM phenylmethanesulfonyl fluoride, 2 µg/ml 

leupeptine, 4 mM benzamidine, 1.4 µg/ml pepstatine A), phosphatase inhibitors (50 mM 

sodium fluoride, 2 mM sodium pyrophosphate, 5 mM betaglycerophosphate) and DNAse 

(DNase I recombinant, RNase-free, Roche). Cells were lysed at 4°C with glass beads 

using a BeadBeater (Biospec). The lysates were centrifuged 1 h at 25000 g at 4°C and the 

supernatants carefully transferred into a cooled flask. Approximately 4 mL and 0.5 mL 

of IgG Sepharose 6 Fast Flow resin (GE Healthcare) respectively were equilibrated in 

Buffer IgG (50 mM Tris-HCl pH 7.4, 5% (v/v) glycerol, 200 mM NaCl, 1 mM MgCl2, 

10 µM ZnCl2 and 5 mM DTT) and incubated with the supernatants overnight at 4°C in a 

Stuart® roller mixer (model SB3) set to 8 rpm. 
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The whole soluble protein incubations with IgG resin were centrifuged at 4°C, 600 g and 

5 min. The supernatants were carefully removed with a pipette and the IgG resins were 

washed five times (resuspending and centrifuging each time) using a total minimum of 

10 column volumes (CV). After, the IgG resin bound A190-TAP Pol I was resuspended 

in 10 mL Buffer IgG while IgG resin bound AC40-TAP Pol I was resuspended in 2 mL 

Buffer IgG. 800 µL TEV protease (0.5 mg/ml) were added to A190-TAP Pol I IgG resin 

and 6 uL TEV protease (10 mg/mL) were added to AC40-TAP Pol I IgG resin and the 

mixtures were left incubating overnight at 4°C and 8 rpm in a roller mixer (Stuart®). 

Pol I released into solution was recovered by separation of the supernatant and the resin 

by centrifugation at 4°C, 600 g and 5 min. The beads were washed several times with 

Buffer IgG to maximize Pol I recovery. The whole supernatants were applied into cooled 

Poly-Prep® Chromatography Columns (Bio-Rad) to completely remove the IgG beads. 

The flowthrough was centrifuged 30 min at 15000 g and 4°C and carefully transferred to 

a clean tube. A190-TAP Pol I sample was loaded in a Mono Q 5/50 GL (GE Healthcare) 

and AC40-TAP Pol I was loaded in a Mono Q PC 1.6/5 (GE Healthcare), both anion-

exchange columns equilibrated in Buffer MQ A (20 mM Tris pH 7.4, 200 mM NaCl, 1 

mM MgCl2, 10 µM ZnCl2, 5 mM DTT). A190-TAP Pol I was eluted running a gradient 

from 0% to 50% Buffer MQ B (20 mM Tris pH 7.4, 1 M NaCl, 1 mM MgCl2, 10 µM 

ZnCl2, 5 mM DTT) at 0.5 mL/min in 30 CV and collected in 500 µL fractions. AC40-

TAP Pol I was eluted using the same buffers and gradient conditions at 50 µL/min in 3 

CV and collected in 50 µL fractions. Fractions representing the chromatogram peak 

profiles were analyzed in 15% SDS-PAGE gels coomassie-stained to assess protein purity 

and help in the decision of the pools to form. 4.5% native gels of selected fractions, run 

at 120 V, 4°C, for 3 h, loading 2 µg of protein and likewise coomassie-stained, were also 

useful in the decision of which fractions to join. The pools were formed, concentrated in 

a 30 kDa cut-off Amicon Ultra-0.5 mL centrifugal filter (Merck Millipore) and quantified 

before and after concentration to monitor protein recovery. Aliquots were frozen in liquid 

N2 and stored at -80 °C. The protein was stored at the salt concentration correspondent to 

anion-exchange chromatography elution. The purification protocol of A190-TAP Pol I 

retrieved 14-subunit Pol I lacking the last 49 residues of A43 (Pol I A43ΔCt) and Pol I 

ΔA49/A34.5 lacking the last 49 residues of A43 (Pol I A43ΔCt ΔA49/A34.5). Because 

AC40 subunit is shared by Pol I and Pol III, the purification protocol of AC40-TAP Pol I 
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yielded intact 14-subunit Pol I, 12-subunit Pol I ΔA49/A34.5 (Pol I ΔA49/A34.5), and 

intact 17-subunit Pol III. 

 In vitro transcription elongation assays 

In vitro transcription elongation assay with full DNA/RNA scaffold was performed based 

on previous reported methods with slight modifications (Awrey et al 1998) . The DNA 

and RNA oligo sequences used in this assay were: CPD-containing template DNA was 

the same strand as structural studies; non-template DNA in vitro transcription assays (5’-

GCAGCCTAGTTGATCTCATATTTCATTCCTACTCAGGAGAAGGAGCAGAGG -

3’), RNA oligos (8mer for transcription extension: 5’-AUCGAGAG-3’; 11mer for 

cleavage assay: 5’-AUCGAGAGGAA-3’). For transcription control assays with lesion-

free scaffold, the nucleic acid sequences were: lesion-free template DNA (5’-

CGCTCTGCTCCTTCTCCTTTCCTCTCGATGGCTATGAGATCAACTAG - 3’), non-

template DNA (5’-

CTAGTTGATCTCATATTTCATTCCTACTCAGGAGAAGGAGCAGAGCG - 3’) 

and 8mer RNA oligo labeled. In all cases, HPLC-purified oligos were obtained from 

TriLink. An aliquot of 8-mer or 11-mer 5’-32P labeled RNA was annealed with a 1.5-fold 

molar amount of template DNA strand and 2.0-fold amount of non-template in vitro 

transcription assays DNA strand to form the DNA/RNA scaffold in a Buffer A (20 mM 

Tris-HCl pH 7.5, 150 mM KCl and 5 mM DTT). An aliquot of DNA/RNA scaffold was 

incubated with a five molar excess amount of purified 12- subunit Pol II, 14-subunit Pol 

I or E.coli RNAP on ice for 10 min, followed by incubation at room temperature (23°C) 

for 10 min. The transcription was chased by adding an equal volume of solution C (20 

mM Tris-HCl pH 7.5, 150 mM NaCl, 5 mM MgCl2, 5 mM DTT and 2 mM NTP). Final 

reaction concentrations after mixing were 30 nM scaffold, 150 nM Pol I or Pol II and 1 

mM NTP. Reactions were quenched at various times (0, 0.3, 1, 3, 10, 30 and 90 min) by 

addition of one volume Buffer STOP (0.5 M EDTA pH 8.0). For the transcript cleavage 

assay, the scaffold was incubated with the RNA polymerase for 10 min on ice. The 

cleavage reaction started by adding 5 mM MgCl2, and the temperature switched to room 

temperature (23°C) by water bath. In the experiment with TFIIS-stimulated cleavage 

assay, TFIIS was added to the reaction system at time 0 (final concentration of TFIIS: 

100 nM). Cleavage reactions were quenched at various time points (0, 1, 3, 10 and 30 

min). For the chase experiment, 1 mM NTP was added to the system with additional 60 
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s incubation before quenching the reaction. The transcript was analyzed by 12% (w/v) 

denaturing urea/PAGE. The gel was visualized by phosphorimaging and analyzed using 

Image Laboratory software (BioRad).  

 In vitro assembly of Pol I-ECCPD complex 

2 µg of 14-subunit Pol I A43ΔCt were incubated with the artificial transcription bubble 

in a 1:1 molar ratio 1 h at 20°C in 0.22 µm filter-sterilized Buffer I (10 mM HEPES pH 

8.0, 150 mM NaCl, 5 mM DTT) (Table 10). Pol I-ECCPD mixture, 14-subunit Pol I 

A43ΔCt and artificial transcription bubble controls, were loaded in 4.5% and 7% native 

gels. The interaction was assessed with ethidium bromide to detect the nucleic acids and, 

subsequently, coomassie-stained to detect the protein.                                                                                                                                                                                                                                                                                                                                                                                                                                        

Table 10. Reaction mixtures for Pol I-ECCPD and controls. 

 DNA/RNA scaffold Pol I A43ΔCt PolI-ECCPD 

Pol I A43ΔCt 6µg/µL 

(10.2 pmol/µL) 
---------- 

0.34 µL 

(3.4 pmol) 

0.6 µL 

(6.8 pmol) 

DNA/RNA scaffold 

(2 pmol/µL) 

2.0 µL 

(4 pmol) 
---------- 

3.4 µL 

(6.8 pmol) 

Buffer I (5x) 1.2 µL 1.2 µL 1.2 µL 

MgCl2 (5x) 1.2 µL 1.2 µL 1.2 µL 

Sterile H2O 1.6 µL 3.3 µL ----------- 

50% GlyOH + Buffer I 6 µL 6 µL 6 µL 

Final volume 12 µL 12 µL 12.4 µL 

 

 Cryo-EM sample preparation, data collection and 

image processing 

8.1. Sample preparation and data collection 

For cryo-EM analysis, 3.5 µL of Pol I-ECCPD at 0.22 mg/ml were applied to glow-

discharged copper 400 mesh R 2/1 grids (Quantifoil) and incubated in the chamber of a 

FEI Vitrobot Mark III at 4°C and 95% humidity for 15 s. The grids were blotted for 3 sec 
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at an offset of –3 mm on both sides and vitrified by plunging into liquid ethane cooled 

down to liquid nitrogen temperature.  

Data were collected on a FEI Titan Krios electron microscope operated at 300 kV, using 

a K2 summit direct electron detector (Gatan) and equipped with the FEI automated single 

particle acquisition software (EPU). Images were acquired at defocus values varying 

between 1.5 and 4.0 µm and nominal magnification of 47,170x, yielding a pixel size of 

1.06 Å. The camera was operated in dose-fractionation counting mode collecting 32 

frames per movie, with a dose rate of 5.9 e– per pixel per sec for 8 sec total exposure. 

8.2. Cryo-EM data processing 

2056 movies of the vitrified Pol I-ECCPD complex were averaged using optical flow 

correction implemented in Scipion (Abrishami et al 2015) and their CTF parameters were 

estimated using CTFFIND4 (Rohou et al 2015). In a first step, 1864 particles were picked 

manually and reference-free 2D classes were generated, five of which were used for 

template-based auto-picking after low-pass filtering to 20 Å. Approximately 460,000 

particles were automatically selected and extracted with a 288 pixel box using Relion 

(Kimanius et al 2016), also employed for subsequent processing. Four rounds of 

reference-free 2D class averaging yielded a stack of 291,639 good-quality particles that 

were used to generate an initial 3D model employing a reference generated from the PDB 

entry 4C3I filtered to 60 Å. Four independent runs of 3D classification were performed 

using masks for the nucleic acid scaffold inside the cleft, A49-Nt/A34.5, the stalk, and 

upstream DNA plus the A49-Ct. In each case, the best classes were selected and 

subsequently refined, followed by correction of local defocus of the individual particles 

using GCTF (Zhang 2016) and local motion and radiation damage using particle polishing 

as implemented in Relion. Final post-processing was performed using automatic masking 

and B-factor sharpening. FSC and local resolution estimations were performed using the 

routines implemented in Relion (Kimanius et al 2016). Subsequent structural analysis was 

performed with the model derived from the initial map. 

  Structure modelling 

The available structures of undamaged Pol I EC (PDBs: 5M3F, 5M5X) were fitted into 

the cryo-EM maps using UCSF Chimera (Pettersen et al 2004) and used as starting point 

for model building, which was performed in Coot (Emsley et al 2004). The structures 
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were refined using real space refinement as implemented in Phenix (Adams et al 2010). 

The same procedure was used for the cryo-EM map of Pol I-ECCPD + upstream DNA with 

fully ordered A49, using as starting point the models 5W66 and 5M64. Refinement 

statistics of both structures are summarized in Table 11. 

Table 11. Cryo-EM data collection and refinement statistics. 

 Pol I-ECCPD Pol I-ECCPD + upstream DNA 

with A49 fully ordered 

Pixel size (Å/pixel) 1.06 

Number of grids 1 

Days of data collection 2 

All micrographs 2,056 

Selected micrographs 1,878 

Particles after 2D-class 291,639 

Final number of particles 254,079 60,297 

Resolution (Å) 3.6 4.6 

AccuracyRotations (°) 1.46 1.78 

AccuracyTranslation (pixel) 0.80 1.05 

Map sharpening B-factor (Å2) -94 -133 

Ramachandran plot  

Outliers (%) 0% 0% 

Allowed (%) 7.5% 8.5% 

Favoured (%) 92.5% 91.5% 

Map CC (around atoms) 0.711 0.711 

RMSD bond lengths (Å) 0.06 0.05 

RMSD bond angles (°) 0.87 0.82 

All-atom clashscore 5.46% 6.70% 

Rotamer outliers (%) 0.05% 0.05% 

C-beta deviations 0 0 

EMDB code EMD-0146 EMD-0147 

PDB code 6H67 6H68 
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 Data availability 

Pol I-ECCPD and Pol I-ECCPD + upstream DNA with A49 fully ordered cryo-EM maps 

(3.6 Å and 4.6 Å, respectively) were deposited in the Electron Microscopy Database 

under accession numbers EMD-0146 and EMD-0147. The derived atomic models were 

deposited in the Protein Data Bank under accession codes 6H67 and 6H68, respectively. 
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  Expression and purification of Pol I 

In order to obtain the protein complex with high purity and homogeneity and due to the 

difficulty to assemble the enzyme from the individual components or through co-

expression strategies, Pol I was obtained from yeast endogenous expression. The strain 

contained a deletion from residues 307 to 326 at the A43 subunit (A43ΔCt). Recent 

studies revealed that this deletion was enough to disrupt Pol I dimers formation in vivo 

(Torreira et al 2017); therefore, the modified strain allowed us to obtain the enzyme in 

the monomeric state. The tandem affinity purification (TAP) tag method to purify 

proteins complexes preserving their structural integrity was used (Rigaut et al 1999). As 

expected, the yield was significantly lower compared to overexpression protocols. The 

most successful purification using A190-TAP strain yielded 35 µg of Pol I per L of 

fermenter culture. In this purification, Pol I was isolated using two chromatography steps. 

The purification started with a high-affinity step based on the interaction between the 

protein A in TAP-tag and the IgG resin, allowing the removal of most contaminants at a 

very early stage. After extensive washing of the IgG beads and elution by cleavage with 

the TEV protease, a fraction containing the enzyme was obtained. An additional 

purification step was an anion-exchange chromatography. Using a NaCl gradient, this 

step separated Pol I from nucleic acids and completely removed the TEV protease and 

minor contaminants. The purification allowed the identification of different Pol I variants 

with different subunit composition (Table 12). Importantly, an enriched 14-subunit Pol I 

population was systematically obtained, constituting the most significant isolated species, 

which was used in the cryo-EM studies.  

Table 12. Pol I variants detected in the A190-TAP purification. 

Subpopulation Nomenclature Description 

Pol I A43ΔCt Pol I 
14-subunit Pol I lacking last 20 C-ter residues in 

A43 (A43Δ307-326) 

Pol I A43ΔCt 

ΔA49/A34.5 
Pol I* 

12-subunit Pol I lacking last 20 C-ter residues in 

A43 (A43Δ307-326) and A49/A34.5 heterodimer 

 

The A190-TAP Pol I anion-exchange chromatogram revealed one asymmetric peak 

showing a “shoulder” at higher salt concentration (Figure 7A). As expected, analysis of 

the eluted fractions by SDS-PAGE demonstrated that A43 migrated at 37 kDa and not 

around 43 kDa (Figure 7B), proving that the enzyme lacked full length A43. Also, SDS-
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PAGE analysis of the latest anion-exchange fractions showed 12-subunit Pol I (Pol I*) 

lacking A49 and A34.5 subunits (Figure 7B). 

 

Figure 7. A190-TAP A43ΔCt Pol I purification. (A) Anion-exchange chromatography of Pol I. 

Abs280nm and Abs260nm curves are in blue and red, respectively, and conductivity in orange. Red, 

green, blue, yellow, pink and orange spheres represent fractions analyzed in (C). (B) Coomassie-

stained 15% SDS-PAGE showing Pol I and Pol I*. (C) 4% native gel of Pol I + Pol I* peak in 

(A). 

When loading individual fractions of the peak in a native gel, three bands were observed 

(Figure 7C). The intensity of the slow-migrating band is higher at low salt concentration. 

The relative intensities change as the peak elutes and eventually, the last fraction contains 

only the fast-migrating band. The upper band corresponded to Pol I and the band below 

to Pol I*. Thus, the anion exchange chromatography did not completely resolve 14-

subunit Pol I and Pol I*. Additionally, in the native gels, an extra band between Pol I and 
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Pol I* was visible (Figure 7C). This extra band in the native gel corresponds to Pol I 

A43ΔCt ΔA49. In fact, the existence of Pol I variants lacking only A49 or A34.5 might 

occur, as both subunits present extended arms fixing them to A135 in Pol I (Fernández-

Tornero et al 2013).  

 In vitro assembly of the DNA/RNA scaffold and   

Pol I-ECCPD 

To understand the structural organization of Pol I in the presence of a CPD lesion, in 

collaboration with Professor Dong Wang’s laboratory at University of California San 

Diego (UCSD), a DNA/RNA scaffold was designed in order to mimic nucleic acids 

during elongation. This DNA/RNA scaffold contained a CPD lesion at positions i+1/i+2 

of the TS. It consisted of a 52-mer DNA duplex with a 12-nucleotide mismatched bubble 

region and a 10-mer RNA strand complementary to the DNA TS. Analysis of the 

DNA/RNA scaffold in a polyacrylamide native gel reveals different electrophoretic 

mobility for single-stranded chains, TS/NTS double helix strands and the full DNA/RNA 

scaffold. Thus, the DNA/RNA scaffold was efficiently formed (Figure 8A). Moreover, 

there is a small signal for free TS/NTS double helix. 

In order to check Pol I-ECCPD formation, the enzyme was incubated 1 hour at 20°C with 

different molar ratios, and the incubations were analyzed by 4.5% and 7% native gels 

(Figure 8B). As controls, Pol I and the DNA/RNA scaffold were run separately. Analysis 

of the coomassie-staining reveals that there is a migration shift between Pol I and Pol I-

ECCPD, suggesting protein complex and nucleic acid scaffold interaction (Figure 8B, 

upper left panel). In addition, ethidium bromide detection of the DNA/RNA scaffold in 

complex with Pol I generated a signal overlapping with the coomassie-stained band 

(Figure 8B, all panels), confirming the interaction. Also, the DNA/RNA scaffold control 

migrates faster than the nucleic acids in the elongating complex (Figure 8B, lower right 

panel). Finally, it can be observed a low percentage of free DNA/RNA scaffold in the 

1:1.2 molar ratio incubation, suggesting that Pol I was completely occupied by the 

DNA/RNA scaffold and a small amount of nucleic acids is free. 
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Figure 8. Electrophoretic mobility shift assay testing DNA/RNA scaffold and Pol I-ECCPD 

assemblies. (A) 20% acrylamide native gel of artificial transcription bubble assembly detected 

with ethidium bromide. (B) 4.5% (left side) and 7% (right side) acrylamide native gels of Pol I 

incubation with artificial transcription bubble and controls. Upper panels: coomassie-staining. 

Lower panels: ethidium bromide detection. 

 Cryo-EM structure of Pol I-ECCPD 

With the objective of obtaining the cryo-EM structure of Pol I-ECCPD at high resolution, 

we collected images in a Titan Krios equipped with a direct electron detector. The 2D 

micrographs revealed adequate protein concentration in the grid and a proper ice 

thickness (Figure 9A). Two sequential pre-processing steps were done; first, 2,056 

movies were aligned using optical flow correction, implemented in Scipion (Abrishami 

et al 2015), then the CTF parameters of each micrograph were estimated using Ctffind4 

(Rohou and Grigorieff 2015). A manual micrograph selection was done by inspection of 

Thon rings, allowing to discard 178 micrographs based on three factors: defocus not in 

the range -1.0 to -4.0 µm, drift or the astigmatism. Reference-free 2D averages showed a 

significant level of detail (Figure 9B), revealing secondary structure elements. To avoid 
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the bias in the first 3D refinement, we used as reference the 14-subunit crystal structure 

of Pol I in the inactive state (PDB: 4C3I) (Fernández-Tornero et al 2013) filtered at 60 Å, 

which shows the open cleft and does not contain nucleic acid scaffold inside. To obtain 

the structural information of the different regions of interest, four independent runs of 

focused 3D classification were performed (Figure 9C), using as reference the previous 

3D-refine cryo-EM map: i) in the DNA/RNA scaffold within the cleft, ii) in the A49-

Nt/A34.5 heterodimer, iii) in the stalk, and iv) in the upstream DNA plus A49-Ct.  

The first 3D classification was focused on the artificial transcription bubble. The particles 

were divided in four classes and three of them contained density for the area of interest. 

The particles from these classes were joined together and 3D refinement was performed. 

The cryo-EM map yielded a resolution of 4.2 Å, allowing recognition of α-helices and -

strands. After per-particle CTF determination (Zhang et al 2016), per-particle motion 

correction (particle polishing in RELION) and post-processing map sharpening, the 

procedure yielded a map of Pol I-ECCPD identical to the 4.2 Å reconstruction but attaining 

a resolution of 3.6 Å (Figure 9C). Besides, local resolution at regions close to the active 

site showed detail up to 3.4 Å. Despite having a slight DNA/RNA scaffold excess in the 

sample, around 12.4% of the total particles after 2D-classification did not exhibit 

DNA/RNA scaffold or showed poor density map for it.  

Mobile regions were modeled using maps derived from focused 3D classifications. The 

A49-Nt/A34.5 heterodimer module in certain conditions can dissociate from the enzyme 

(Huet et al 1976) and the 3D focused classification allowed to sort between Pol I and Pol 

I*. Only 43.4% of the total particles after 2D-classification built the cryo-EM map, 

yielding a resolution of 4.2 Å. 3D focused classification based on the stalk contained 21% 

of the particles and the final cryo-EM map reached 4.4 Å of resolution. The last focused 

refinement was done using as mask the A49-Ct domain plus the upstream DNA. Particles 

composing this map were 20.7% of the outputted from 2D classification and the global 

resolution was 4.6 Å. Besides the A49-Ct and the upstream DNA, this map showed 

density that corresponds to the A49 linker, the stretch of residues that links A49-Ct and 

A49-Nt. The local resolution maps revealed that the highest resolution was in the enzyme 

core (blue color) while the more flexible areas extended toward the periphery (red color). 

FSC curves were calculated for each cryo-EM map (Figure 9D). 
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Figure 9. Cryo-EM image processing. (A) Typical field of the aligned movies. (B) Initial 

reference-free 2D averages showing a significant level of detail. (C) Data processing strategy 

showing the first 3D-refine with good-quality particles and the final maps resulting from the four 

focused classifications. Below, local resolution estimation according to the legend. For each map, 

an overall view (above legend) and a central slice (below legend) are presented. (D) FSC curves 

between half maps according to gold standard (blue) and between the cryo-EM map and derived 

atomic model (red). 
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The first three focused maps allowed us to reconstruct the atomic model of Pol I-ECCPD 

at highest resolution (Figure 10A). The principal flexible regions lacking density in Pol 

I-ECCPD structure were: A12.2-Ct, NTS at the mismatch, A49-Ct, upstream DNA and the 

A190 DNA-mimicking loop. Pol I core, the DNA/RNA hybrid and DNA downstream 

were refined against the 3.6 Å cryo-EM map. Although the second and third 3D-focused 

maps overall resolutions were lower (4.2 Å and 4.4 Å, respectively), these maps showed 

stronger density for A49-Nt/A34.5 heterodimer and the stalk, allowing its modelling. 

Structural details of significant regions in Pol I-ECCPD corroborate the quality of the cryo-

EM reconstruction and the derived atomic model (Figure 10B). Two important built 

regions inside the highest resolution map are shown: the CPD lesion (Figure 10C, upper 

right panel) and the active site including the magnesium ion (Figure 10C, lower right 

panel). 

Even though the last map presented the lowest resolution (4.6 Å), its significance relies 

in the fact that it contains extra density with respect to the other maps. This map showed 

strong density for A49-Ct, A49 linker and the upstream DNA (Figure 11A), allowing to 

build these structural elements. However, the external area of the upstream DNA and the 

mismatch of NTS were not present in any of the maps (Figure 11B), likely due to their 

high flexibility. The 4.6 Å map also showed density for the DNA/RNA hybrid, 

downstream DNA, the A49-Nt/A34.5 module and the stalk.  
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Figure 10. Cryo-EM structure of CPD-stalled Pol I. Extracted from Sanz-Murillo et al (2018). 

(A) Cryo-EM reconstruction of Pol I-ECCPD at 3.6 Å resolution superposed with the derived 

atomic model, indicating the different subunits in the enzyme. (B) Close-up views of regions in 

the 3D map of Pol I-ECCPD and the selected domains of the atomic model colored as in Figure 1. 

(C) Cryo-EM map and derived model of the scaffold in Pol I-ECCPD at a resolution of 3.6 Å (left 

panel). Zoomed-in views around the CPD lesion (upper right panel) and the active site with the 

magnesium ion (lower right panel). 
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Figure 11. Cryo-EM structure of Pol I-ECCPD with A49 subunit fully-ordered. (A) Derived 

atomic model form the map showing the A49-Ct, A49 linker and upstream DNA represented as 

surface. (B) Schematic diagram of the artificial transcription bubble. Filled squares display the 

built nucleotides in the atomic model. (C) Cryo-EM map of the DNA/RNA scaffold at a 4.6 Å 

and derived atomic model. 
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 The CPD lesion occupies an intermediate position 

above the Pol I bridge helix  

With the objective of determining the translocation cycle stage of the Pol I-ECCPD, 

alignment of different atomic models of Pol II or bRNAP with Pol I-ECCPD structure were 

carried out, based on BH sequence (Figure 12). Five different structures were used, three 

of them representing a distinct translocation state inside the transcription cycle (PDBs 

1I6H pre-translocated state, 1Y1W post-translocated state and 2E2H NTP insertion state), 

PDB 4A3D showing an initial RNA addition intermediate (Cheung et al 2011) and PDB 

6FLP exhibiting a paused bRNAP (Guo et al 2018).  

The CPD thymines in Pol I-ECCPD accommodate at a position that is similar to that 

occupied by nucleotides i+1/i+2 in the Pol II structure of the pre-translocated state (Figure 

12A), but in Pol I they are slightly more advanced toward the active site. Besides, the 

base pair immediately upstream of the lesion occupies an intermediate location between 

canonical positions i and i−1 in the Pol II pre-translocated state, suggesting that while the 

DNA/RNA hybrid moves forward to the post-translocation state, the downstream DNA 

remains blocked. Comparison with Pol II post-translocated state showed that in Pol-

ECCPD, the NTP entry site is partially occluded due to the position of the 3′ end RNA 

(Figure 12B). Superposition with Pol II in the pre-insertion stage showed that the 

incoming NTP lies at 1.9 Å from the base at the 3′end of RNA molecule in Pol I-ECCPD 

(Figure 12C). This distance is too short to allow nucleotide entrance. 

Furthermore, a similar configuration of the DNA/RNA hybrid has been observed for Pol 

II initiation complexes with four- to six-nucleotide RNAs (Cheung et al 2011) (Figure 

12D). Paused bacterial RNAP (Guo et al 2018, Kang et al 2018) (Figure 12E) also exhibits 

an intermediate translocation state similar to Pol I-ECCPD. The RNA strand adopts a post-

translocated state, still maintaining TS pairs. Besides, the TS presents a halfway 

conformational state, leading the i+1 TS base pair located between the thymine dimer 

(Guo et al 2018). Overall, the results show that Pol I-ECCPD complex presents an 

intermediate translocation state that is incompatible with nucleotide addition opposite the 

CPD lesion.  
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Figure 12. Translocation state of CPD-stalled Pol I. Extracted from (Sanz-Murillo et al 2018) 

Superposition of Pol I-ECCPD with Pol II in the pre-translocated (A), post-translocated (B), and 

NTP insertion (C) stages of the nucleotide addition cycle, Pol II in an initial RNA addition 

intermediate (D) and paused bRNAP (E).  
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 CPD-Mediated stalling is different in Pol I and   

Pol II 

To obtain further information about CPD-mediated Pol I stalling, we compared our 

structure with that of CPD-stalled Pol II (Walmacq et al 2012) and Pol II inhibited by α-

amanitin (Brueckner and Cramer 2008), both structures showing an intermediate 

translocation state. To do this, atomic structure models were aligned using the BH as 

reference point (Figure 13).  

In the Pol II-ECCPD, the CPD thymines at positions i+1/i+2 are disengaged from 

downstream DNA but the 3’T is not able to reach the canonical position of the active site 

(Figure 13A, upper panel). This situation leaves an enlarged NTP binding site that allows 

for non-templated addition (Walmacq et al 2012). In contrast, the NTP entry site in CPD-

stalled Pol I is reduced by the nucleotide at the 3’ end of RNA (Figure 13A, upper panel). 

Besides, the structure revealed that the CPD lesion in Pol I-ECCPD and the immediately 

upstream base pair at the i position lie about 7 Å backward, in comparison with the 

equivalent Pol II structure. This suggests that Pol I shows an early blockage of 

translocation upon encounter of the CPD lesion in comparison to Pol II. The kinked BH 

and the wedged TL of Pol I-ECCPD are absent in the Pol II-ECCPD (Figure 13A, below 

panel).  

We further compared the Pol I-ECCPD structure with that of Pol II inhibited by α-amanitin 

(Brueckner and Cramer 2008, Kaplan et al 2008). Comparing both structures, the scaffold 

in α-amanitin-arrested Pol II showed a configuration where downstream nucleotides at 

positions i+1/i+2 are located similarly as in CPD-stalled Pol I (Figure 13B, upper panel). 

However, the i+1 base in α-amanitin-arrested Pol II is crossed over the bridge helix and 

reaches the canonical i+1 template position, while the 3’T in the CPD lesion in CPD-

stalled Pol I remains on the downstream side of the BH (Figure 13B, upper panel), which 

is likely due to the covalent bonds between the thymines in the CPD lesion, forming a 

cyclobutane. Moreover, in the case of Pol I-ECCPD, the RNA base pair at the i position is 

tilted toward the NTP site and its DNA template counterpart is retarded and tilted with 

respect to that observed in the α-amanitin-inhibited Pol II. With respect to the BH, this 

element, in both cases, is kinked and the BH residues that establish contacts with template 

DNA in Pol I-ECCPD are either not conserved or differently oriented in Pol II inhibited by 

α-amanitin (Figure 13B, below panel).  
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Figure 13. Comparison of CPD-stalled Pol I and Pol II. Extracted from (Sanz-Murillo et al 

2018). (A, upper panel) Side view of the superposition with Pol II-ECCPD, with Pol II shown in 

gray and the CPD lesion shown in yellow. (A, below panel) Close-up view where only the bridge 

helix and trigger loop are shown. (B, upper panel) Side view of the superposition with α-amanitin-

inhibited Pol II shown in gray. (B, below panel) Close-up view, where only the bridge helix and 

trigger loop are shown.  

These results suggest that the mechanism of Pol I stalling at CPD lesions is caused by 

blockage of translocation rather than by nucleotide misincorporation opposite the lesion, 

as described for Pol II (Brueckner et al 2007). The comparison with Pol II-ECCPD and α-

amanitin-inhibited Pol II structure confirmed that Pol I-ECCPD is stalled at an early stage 

of translocation. 
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 Specific contacts with Pol I stabilize the CPD lesion 

To obtain further insights into CPD-mediated Pol I stalling, Pol I-ECCPD was compared 

with the known atomic models for lesion free Pol I-EC. The configuration of Pol I-ECCPD 

structure is overall similar to that found in these atomic structures (Neyer et al 2016, Tafur 

et al 2016). However, the stalled Pol I represented an intermediate of translocation, 

whereas the transcribing Pol I structures corresponded to the canonical post-translocated 

state. In addition, the DNA upstream of Pol I-ECCPD with fully-ordered A49 showed a tilt 

in comparison with the cryo-EM structure of lesion-free Pol I-EC (Figure 14A).  

Inside the cleft, several Pol I structural elements undergo conformational changes that are 

likely relevant for enzyme stalling. The cleft in the Pol I-ECCPD is closed, compatible with 

the recently defined conformation III of the enzyme (Fernández-Tornero 2018). In lesion-

free Pol I-EC, the BH, comprising residues 992-1028 in subunit A190, presents a fully 

regular helical configuration, while the BH in CPD-stalled Pol I-EC is kinked at its central 

region (residues 1009-1015 in A190). This kink showed a maximum distance of 1.2 Å 

toward the TS respect to the fully regular helix (Figure 14B and 14C).  

Within the kinked region, the R1015 in A190 subunit is conserved in Pol I from yeast to 

humans, as shown in the multi-alignment, but does not exist in other types of RNAPs, 

including bacterial RNAP, archaeal RNAP and eukaryotic Pol II and Pol III. Besides, 

these alignments revealed that S1014 is not conserved in eukaryotic Pol II, Pol III and 

bacterial RNAP. However, a few organisms present an amino acid serine in Pol II and 

archaeal RNAP (Figure 14D) at this position.  

Strikingly, the side chain of R1015 in Pol I-ECCPD complex lies at 5.3 Å of distance from 

the 3’T in the CPD lesion, which is compatible with a cation- interaction, while in lesion-

free EC this distance is 8.2 Å, which is too far for such interaction (Figure 14E). 

Moreover, S1014 lies at hydrogen bond distance from the TS backbone next to the CPD 

lesion, unlike Pol I-EC, where this residue is toward the opposite side of the TS. In Pol I-

ECCPD, R1021 lies at hydrogen bond distance from the backbone phosphate within the 

thymine dimer (Figure 14C), maintaining a similar position in Pol I-EC. The BH kink 

associates with a wedged conformation of the trigger loop, such that residue T1201 lies 

next to BH residue K1012. Additional rearrangements inside the Pol I cleft mainly affect 

switch loop 2 in A190, which is involved in clamp swinging in Pol II (Cramer et al 2001). 

In Pol I-ECCPD, this loop approaches downstream DNA and contacts the backbone 
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phosphate within the CPD lesion through R468. Moreover, two basic residues, K462 and 

K463, alter their configuration to approach the template strand, with K463 lying at 

hydrogen bond distance (Figure 14F). These results suggest that the structural 

rearrangement inside the cleft generates a network of interactions around the CPD lesion 

that likely contributes to enzyme stalling. 

 

Figure 14. Comparison of CPD-stalled Pol I with undamaged Pol I-EC. (Extracted from Sanz-

Murillo et al 2018). (A) Side view of the superposition with undamaged Pol I-EC shown in gray. 

(B) Front view where only the BH and the TL are shown. (C) Close-up view around the BH and 

TL. (D) Sequence alignment of RNA polymerase BH. Fully and partially-conserved residues are 

boxed in red and white, respectively. Top numbering is for S. cerevisiae Pol I. (E) Close-up view 

around the CPD lesion, with distances between the side chain of R1015 and the closest base in 

downstream TS. (F). Close-up view around switch loop 2. 
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 Pol I blocks at CPD lesions 

For the purpose of investigating the behavior of Pol I in the presence of UV light-induced 

DNA damage, in collaboration with Professor Dong Wang’s laboratory, in vitro 

transcription elongation assays were carried out. The transcriptional activity of Pol I was 

tested using a nucleic acid scaffold containing a site-specific CPD lesion on the template 

strand (Figure 15A). The artificial scaffold includes an 8-mer RNA molecule whose 3’ 

end base-pairs with the TS two nucleotides before the CPD lesion (Figure 15B).   

 

Figure 15. CPD lesion effect on Pol I and Pol II elongation. Extracted from (Sanz-Murillo et 

al 2018). (A) Structure of the CPD lesion. (B) Scheme of DNA/RNA scaffold. Template DNA, 

non-template DNA and RNA are shown in blue, cyan and red respectively. Orange corresponds 

to CPD lesion. (C) In vitro transcription assays of Pol I and Pol II on a scaffold containing a site-

specific CPD lesion in the presence of 1 mM NTPs. Different RNA lengths are highlighted in 

different colors, with time points indicated on the graph in min. (D) Pol I vs Pol II kobs graphic 

(ND, not detectable).  

Transcription assays of Pol I versus Pol II showed that upon NTP addition two nucleotides 

were incorporated to the RNA molecule by Pol I and it stalled when the CPD lesion 

reached the active site. Approximately 90% of the RNA molecules at time point 20 s (0.3 

min) are 10-mer, while 10% remained 8-mer and a slight band appeared as 9-mer RNA, 

this latter remained even at long time (90 min incubation), which indicates the persistent 

presence of an intermediate (Figure 15C). Transcription extension beyond the 10-mer 

RNA is not observed even after 90 min of incubation. At short time reaction, most Pol II 

stalled at 10-mer RNA, with a slightly presence of 11-mer, but slowly extends to 11-mer 

and 12-mer after nucleotide incorporation opposite the CPD lesion (Figure 15C). Both 

gels were represented as intensity signal graphics, clearly showing that Pol I was blocked 
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at 10-mer RNA, while Pol II is blocked after incorporation of two nucleotides opposite 

the thymine dimer. Nucleotide addition opposite the upstream thymine (3’-T) is 

efficiently achieved (within 3 min of incubation), while addition opposite the 5’-T is 

much slower (90 min incubation). Besides, the incorporation rate constant (kobs) for both 

enzymes were measured, and Pol II kobs is significantly higher than that for Pol I (Figure 

15D), supporting the result.  

Because Pol I has intrinsic 3’-RNA cleavage activity due to the presence of the A12.2 

subunit (Kuhn et al 2007), the final Pol I product transcription may be an equilibrium 

between polymerization and cleavage activities. To dissect the polymerization and 

intrinsic cleavage activities in Pol I, we performed transcription assays using as controls 

a purified mutant harboring a truncation in A12.2-Ct (Pol I ΔA12-Ct) that abolishes its 

strong cleavage activity. Because this strain was tagged at AC40 subunit, we first 

performed the AC40-TAP Pol I purification and later checked that the presence of the 

TAP-tag at different sites (A190 or AC40) did not influence the outcome of the in vitro 

transcription assays. 

7.1. AC40-TAP Pol I isolation for mutational studies 

Pol I purification from AC40-TAP strain was performed using the previous protocol. The 

isolation yielded 14 µg of total Pol I per liter of culture. Due to the fact that the tagged 

subunit is shared by Pol I and Pol III, both enzymes were isolated. Unlike the A190-TAP 

purification, the anion-exchange chromatogram showed two asymmetric peaks (Figure 

16A). The first corresponded to Pol I elution, which showed a “shoulder” in the ascending 

part of the curve. SDS-PAGE analysis of eluted fractions demonstrated the “shoulder” 

eluted 14-subunit Pol I enzyme (Figure 16B, lane 1), while the peak with the highest 

absorbance maximum corresponded to 12-subunit Pol I A49/A34.5 (Figure 16B, lane 2). 

The peak with the second highest absorbance maximum corresponds to Pol III elution at 

391 mM NaCl (Figure 16A). SDS-PAGE analysis of Pol III peak showed a high purity 

and homogeneity of the enzyme (Figure 16C). All fractions collected from the second 

peak contained 17 subunits at the expected migration region, which suggested no 

degradation.  
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Figure 16. AC40-TAP Pol I and Pol III purification. (A) Anion-exchange chromatography of 

Pol I and Pol III. Abs280nm and Abs260nm curves are in blue and red, respectively, and conductivity 

in orange. (B) Coomassie-stained 15% SDS-PAGE gels of Pol I (left panel) and Pol III (right 

panel) peak. 

Table 17. Pol I and Pol III variants detected in the AC40-TAP purification. 

Nomenclature Description 

Pol I 14-subunit Pol I, complete 

Pol I ΔA49/34.5 12-subunit Pol I lacking A49/34.5 heterodimer 

Pol III 17-subunit Pol III, complete 
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Pol I enzyme used for in vitro transcriptional assays was tagged at AC40 subunit. To 

confirm that the change of tandem affinity position did not affect the biochemical results, 

in vitro transcription assays were performed using a lesion-free complete scaffold (Figure 

17A). Both Pol I enzymes showed equal result in the urea gel (Figure 17B). Therefore, 

the position of the affinity tag does not affect the transcriptional assays. 

 

Figure 17. Comparison of Pol I purified from different yeast strains. (A) Scheme of lesion-

free DNA/RNA scaffold. Cyan, blue and red colors correspond to non-template DNA, template 

DNA and RNA, respectively. (B) In vitro transcription assays of AC40-TAP and A190-TAP Pol 

I on a lesion-free scaffold in the presence of 20 µM NTPs. Time points were 0 s, 20 s, 1, 3 and 10 

min.   

7.2. The Pol I RNA-cleavage activity is involved in CPD-induced 

stalling 

To test if the RNA cleavage activity is involved in Pol I stalling, we first performed in 

vitro transcription assays using the previous transcription bubble containing the CPD 

lesion (Figure 15B). In contrast to AC40-TAP Pol I-WT, Pol I ΔA12.2-Ct mutant 

incorporated nucleotides opposite CPD lesions to generate 11-mer and 12-mer like Pol 

II, while Pol II+TFIIS led to a greater reduction of 11-mer and 12-mer products (Figure 

18). The results also show that the in vitro RNA cleavage activity of AC40-TAP Pol I-

WT is faster than Pol II+TFIIS (Figure 18). 
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Figure 18. RNA cleavage activity effect in Pol I and Pol II to bypass the CPD lesion. 

Comparison of Pol I and Pol II processing of the CPD lesion in the presence (AC40-TAP Pol I-

WT and Pol II+TFIIS) and absence (Pol I ΔA12.2-Ct and Pol II) of strong RNA cleavage activity, 

using the same conditions. RO indicates an expected position of the run-off product.  

In vitro cleavage assays were performed to analyze the RNA cleavage activity effect when 

the RNA product mimics the insertion opposite of the 3′-T in the CPD lesion. AC40-TAP 

Pol I-WT, Pol I ΔA12.2-Ct, Pol II and Pol II+TFIIS were assembled with a scaffold 

containing an RNA 11-mer (Figure 19A), mimicking the insertion product opposite the 

3’T in the CPD lesion. The reactions were performed by adding 5 mM MgCl2 and the 

results showed that while the 11-mer is readily cleaved to short transcripts (9-mer and 8-

mer at later points) in AC40-TAP Pol I-WT and Pol II+TFIIS systems, it remains stable 

in Pol I ΔA12.2-Ct complex, even in the presence of NTPs. Pol II did not show nucleotide 

incorporation at early times, but in the presence of 1 mM NTPs and after 30 min of 

incubation, the RNA 11-mer could be slowly extended showing a low intensity band at 

12-mer, suggesting that a small percentage of Pol II is able to add a nucleotide opposite 

the 5’-T (Figure 19B), contrary to Pol I ΔA12.2-Ct. This revealed that Pol II bypasses 

CPD lesions more efficiently than Pol I ΔA12.2-Ct. In systems with strong intrinsic 

cleavage activity (Pol I-WT and Pol II+TFIIS), the appearance of the 10-mer product is 

found to concur with the disappearance of 11-mer in the presence of NTP (Figure 19B). 

To test if the RNA product after cleavage remains active, in vitro transcription assays 

were performed by addition of 1 mM NTPs and RNA cleavage assay after 60 s incubation. 

The results revealed that the shortened transcripts produced by Pol I-WT and Pol 
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II+TFIIS in the presence of magnesium can be chased by adding nucleotides to the 10-

mer in both systems. As expected, Pol I ΔA12.2-Ct and Pol II cannot cleave the 11-mer, 

and addition of 1 mM NTPs did not stimulate RNA extension in neither RNA polymerase 

(Figure 19C).  

 

Figure 19. CPD lesion effect on cleavage assays. Extracted from (Sanz-Murillo et al 2018). (A) 

Schematic transcription bubble used for in vitro transcription assays. TS and NTS are shown in 

blue and cyan, respectively. Thymines of the CPD lesion are shown in orange. RNA is shown in 

red, and the adenine nucleotide opposite to 3′-T is shown in purple. (B) In vitro transcription 

assays using a scaffold with an 11-mer RNA that mimics transcript extension opposite the 3’-T 

in the CPD lesion. The cleavage reaction was started by adding 5 mM MgCl2 at room temperature 

and stopped at 1, 3, 10 and 30 min. (C) The cleaved RNA product remains active and can be 

chased by adding 1 mM NTPs. 

The results showed distinct behaviors between Pol I and Pol II upon CPD lesion 

encounter. While Pol II can insert additional nucleotides opposite the damage (11-mer 

and 12-mer), Pol I blocked right before the CPD lesion (10-mer). This difference is due 

to the combination of slower incorporation opposite the CPD lesion and faster intrinsic 

cleavage activity in Pol I. 
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 Specific bridge helix residues play an important 

role in transcription processing of CPD lesions 

Our structural results identified two residues of the BH that are fundamental for CPD 

lesion blockage. The alignment (Figures 14D and 20A) showed that the R1015 residue in 

A190 subunit is unique in Pol I. The main difference is that the side chain has a positive 

charge, while both Pol II and Pol III have a negatively charged glutamate and E. coli 

shows a polar amino acid residue. S1014 is also unique in Pol I, while Pol II, Pol III and 

E. coli RNAP have an alanine residue. To investigate the role of these amino acids in 

CPD lesion recognition, in collaboration with Dr. Georgiy A. Belogurov’s laboratory, we 

used E. coli RNAP as a model system, due to the simplicity of the system.  

To test the effect of N792 substitution, we used a full transcription bubble containing a 

CPD lesion on the template strand with an 8-mer RNA molecule (Figure 20B). bRNAP 

wild type (bRNAP-WT) as a control and mutants were incubated with the nucleic acids 

and the elongation triggered by adding 1 mM NTPs (Figure 20C). The urea gel showed 

that all three RNAPs incorporated a nucleotide opposite 3’-T, but not at the same rate. 

The N792D mutant showed an 11-mer RNA band at very early time, while N792R mutant 

presented an 11-mer RNA at 10 min time point. Compared all three rate constants (kobs), 

the value for Pol II-like RNAP was 4.1 times larger than RNAP-WT. This latter kobs value 

was 2.6 times larger than Pol I-like RNAP (Figure 20D). These results confirmed that Pol 

II-like bRNAP incorporate nucleotides opposite the CPD lesion faster than Pol I-like, 

meaning that the residue in that specific BH position plays an important role in 

transcriptional processivity. 

To know if S1014 residue has effect in transcription processing over a CPD lesion in Pol 

I (equivalent to A791 in bRNAP), two mutant strains were used: one single mutant, 

A791S, and a double mutant, A791S/N792R, using as control bRNAP-WT and the 

previous studied mutant N792R (Pol II-like). In vitro transcription assays showed that all 

four strains could introduce a nucleotide opposite the 3’-T of the CPD lesion (11-mer) 

(Figure 20E), but the kobs showed different values (Figure 20F). The bRNAP-N792R and 

bRNAP-A791S/N792R kobs are smaller than bRNAP-A791S and bRNAP-WT values. 

The difference between bRNAP-WT and bRNAP-A791S kobs values is not significant. 

The substitution of N792 (equivalent to R1015 in Pol I and E833 in Pol III) seems to play 

the principal role for the CPD processing. 
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Figure 20. Mechanism of CPD lesion-induced Pol I stalling. Extracted from (Sanz-Murillo et 

al 2018). (A) Pol I-specific residues revealed by sequence alignment of the BH region for the 

three RNAPs in yeast and E.coli RNAP. Fully and partially conserved residues are boxed in red 

and white, respectively. A190-R1015E in Pol I and ’-N792 in bRNAP are labeled on the top and 

bottom, respectively. (B) DNA/RNA scaffold used for in vitro transcription assays. (C) 

Comparison between N792 mutants in the E. coli RNAP system using in vitro transcription 

assays. The NTP concentration is 1 mM, with time points as in Fig. 15C. (D) Quantification of 

the 10-mer RNA extension in (C). (E) In vitro transcription assay of WT and mutants of E. coli 

RNAP. The reaction was chased by adding 1 mM of NTPs and stopped at identical time points as 

in Fig. 15C. (F) Quantification of the 10-mer RNA extension in (E). All data are mean and SD 

(n=3). NS, not significant. 
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In this work, we provide biochemical and structural evidence for the mechanism of Pol I 

stalling by CPD lesions, which are commonly formed on DNA as a result of UV light 

irradiation. Pol I was endogenously expressed and purified from yeast with high quality, 

and the isolated enzyme was composed by two populations: Pol I and Pol I*. Image 

processing yielded a 3.6 Å resolution cryo-EM map of Pol I stalled at a CPD lesion. The 

comparison between undamaged Pol I-EC and Pol I-ECCPD atomic models showed that 

the main structural changes occur at the Pol I-ECCPD cleft, where a cation- interaction is 

established between R1015 and the CPD lesion. Comparison with Pol II-EC at different 

translocation states defined that our structure displays an early intermediate translocation 

stage. Biochemical assays revealed that Pol I is persistently blocked when the CPD lesion 

reaches the active site, contrary to Pol II, which is able to incorporate nucleotides opposite 

of both thymines upon long incubation. A balance between a slow nucleotide 

incorporation and fast cleavage explains Pol I stalling. These combined results revealed 

that Pol I and Pol II present different mechanisms to deal with the CPD damage. 

 The optimization of Pol I isolation and Pol I-ECCPD 

assembly 

Previous studies identified the A43 C-terminal tail as an important element to form Pol I 

homodimers (Engel et al 2013, Fernández-Tornero et al 2013). Its dimerization role was 

confirmed in vivo by fluorescence microscopy studies (Torreira et al 2017) and 

phenotypic assays demonstrated that the truncated strain does not have its growth 

affected. This region is present but only partially conserved in most fungi and vertebrates 

(Beckouët et al 2011), and it is involved in the regulation of the activation of rRNA 

synthesis. As a monomer and in elongation, the A43 C-terminal tail is fully disordered 

(Engel et al 2016, Neyer et al 2016, Pilsl et al 2016, Tafur et al 2016, Torreira et al 2017), 

suggesting that this domain does not play a role modulating the elongation stage. Based 

on these facts, it was decided to use the A190-TAP Pol I lacking the A43 C-terminal tail 

in the structural studies, allowing the obtention of an active monomeric enzyme. 

To purify the Pol I multi-subunit enzyme, a protocol previously established (Moreno-

Morcillo et al 2014) was modified to increment the yield and reduce the time. The former 

protocol included three steps: low-affinity heparin, high-affinity IgG resin and polishing 

using anion-exchange. In the improved protocol, the first chromatography was removed. 
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Using IgG resin as the only affinity purification step, quite pure sample was obtained. 

Like in the former protocol, the anionic exchange permitted the removal of TEV protease 

and nucleic acids still present in the sample, further increasing protein purity.  

Using this improved protocol, Pol I was reproducibly isolated with a minor presence of 

Pol I*. The continuous presence of the enzyme lacking A49/A34.5 could be due to both 

macromolecular complexes establishing an equilibrium in vivo. Lack of the heterodimer, 

or at least one of the subunits, alters the Pol I template specificity and its capacity to 

transcribe (Huet et al 1975). A recent report suggests that the A49/A34.5 dissociation in 

vivo is specifically involved in the regulation of Pol I transcription initiation and early 

elongation (Tafur et al 2019). In vitro assays showed that the presence of the heterodimer 

is strongly involved in promoter-dependent transcription, and the addition of the A49-Ct 

domain to Pol I* is enough to reestablish this transcriptional activity (Pilsl et al 2016). 

However, not only the absence of these subunits is involved in rDNA processing. Recent 

biochemical studies found that specific mutations at the interface formed by the two 

largest subunits and A12.2 could restore the normal rDNA transcription and increases Pol 

I density on rDNA when A49 is absent (Darrière et al 2019). Specifically, it was proposed 

that the A135-F301S or A12.2-S6L mutations stimulate DNA capture and facilitate the 

cleft closure in the absence of A49. The combination of Pol I mutated with the presence 

of A49 results in a super-active Pol I (Darrière et al 2019). Whether the A49/A34.5 

heterodimer takes part in all stages of transcription, or its field of activity is delimited to 

initiation stage and early elongation, can be an interesting field of study. 

To generate the Pol I-ECCPD complex, our approach was to use electromobility shift 

assays to test nucleic acid-nucleic acid and protein-nucleic acid interactions. First, the 

binding of the two DNA strands and the RNA chain to form the transcription bubble was 

assessed. The ternary nucleic acid complex was efficiently assembled using equivalent 

molar ratios of the three nucleic acid strands. After that, Pol I was incubated with 

increasing amounts of the transcription bubble to choose the best molar ratio. The 

different electromobility between Pol I and Pol I-ECCPD demonstrated the interaction was 

occurring and the best molar ratio was 1:1.2 (Pol I: transcription bubble). The minor 

excess of nucleic acids was intended to achieve full Pol I occupancy. 
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 Complete atomic model of CPD-stalled Pol I 

Preserving macromolecular complexes in a near native state allows better understanding 

of their biological function. Therefore, cryo-EM was selected to perform the structural 

determination of Pol I-ECCPD and Pol I-ECCPD with fully-ordered A49. The resulting cryo-

EM density maps were obtained from the same dataset. Pol I itself has demonstrated to 

be a source of heterogeneity, as even the samples most enriched in Pol I contained Pol I*. 

Data processing strategies, such as focused 3D classification, are widely used to classify 

related, but not identical protein complexes (Scheres et al 2007, van Heel et al 2009). 

Thus, a heterogeneous sample represents an opportunity rather than a disadvantage to 

analyze different components and/or conformations (Nogales and Scheres 2015). For 

other structural techniques such as X-ray crystallography, the heterogeneity would have 

probably been an obstacle, while it could be resolved by 2D and 3D classification 

implemented in single-particle cryo-EM. 

Four regions were selected for 3D focused classification. The selection was based on the 

interest of the specific area, flexibility or dissociation of the region. The first 3D focused 

classification was based on the nucleic acid scaffold. This classification revealed that a 

small percentage of Pol I particles showed poor density for the DNA/RNA scaffold. This 

indicates that not all the Pol I molecules contained the bubble, although an excess of 

nucleic acids was used. Perhaps incubation conditions could be further optimized. This 

cryo-EM map attained the highest resolution and allowed us to build the atomic model of 

the Pol I core, and, more importantly, the Pol I cleft and the nucleic acids. In the map, the 

density for A49/A34.5 heterodimer was not observed. This may be because the cryo-EM 

map is constituted by a mix of Pol I-ECCPD and Pol I*-ECCPD particles.  

The A49-Nt/A34.5 anchors the N-terminal domain of A12.2 subunit and contains a 

dimerization module conserved in Pol II initiation factor TFIIF and Pol III C37/C53 

(Fernández-Tornero et al 2010, Geiger et al 2010, Vannini et al 2012). The 3D focused 

classification based on the A49-Nt/A34.5 heterodimer accounted for 50% of the input 

particles, even when a 14-subunit Pol I enriched fraction was used to prepare the sample 

(in the native gels, approximately 80% of the sample was 14-subunit Pol I, while 20% 

corresponded to Pol I*). The decrease in 14-subunit Pol I percentage could be explained 

taking into account that the heterodimer is easily dissociated (Huet et al 1975). 

Dissociation of A49/A34.5 has been related to the binding of elongation factors to Pol I 
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such as Spt4/5 and Paf1C (Tafur et al 2019). Both factors are also involved in the 

transition from initiation to elongation in Pol II, where the initiation factors TFIIE and 

TFIIF block Spt4/5 and Paf1C binding (Xu Y et al 2017). An additional hypothesis is that 

the heterodimer might have been partially disengaged during sample vitrification.  

Even after a 3D classification focused on A49-Nt/A34.5 heterodimer, the cryo-EM map 

did not show density for the A49-Ct domain. This latter region is involved in processivity 

both in vivo and in vitro (Beckouet et al 2008), DNA-binding, initiation and elongation 

(Geiger et al 2010). The 3D-focused classification based on A49-Ct domain yielded a 

complete map, showing the A49-Nt/A34.5 heterodimer, the stalk and the transcription 

bubble, including the upstream DNA. However, the number of particles contained in this 

map was the lowest, approximately 20% of the 3D classification input, and, in 

consequence, the resolution was 4.6 Å.  

Another region with poor density in the cryo-EM map at 3.6 Å is the stalk. This area is 

known to be flexible in monomeric Pol I, unlike the enzyme bound to Rrn3 and Pol I in 

the dimeric state (Engel et al 2013, Fernández-Tornero et al 2013, Engel et al 2016, Pilsl 

et al 2016, Torreira et al 2017). The stalk is involved in transcription initiation, mainly 

through the interaction with Rrn3. To obtain information on this area, a 3D focused 

classification was carried out, which presented 21% of the total 2D selected particles. 

This map defined the A14/A43 dimer, which is in a similar conformation as Pol I-EC 

stalk. A14/A43 subcomplex is anchored to Pol I and it co-operates with A49-Nt/A34.5 

heterodimer through interactions of A49-Ct and the hydrophilic domains of A43 

(Beckoüet et al 2011).  

The complete elongation complex at 4.6 Å was modelled, excluding the A43 C-tail, 

absent from our sample, as well as the A12.2-Ct domain and the DNA-mimicking loop, 

which did not show cryo-EM density, likely due to flexibility. The C-terminus of A12.2, 

responsible for intrinsic Pol I RNA cleavage activity, is absent in the four maps. The same 

occurs in two monomeric Pol I structures and two Pol I:Rrn3 reconstructions (Pilsl et al 

2016, Torreira et al 2017). Binding of the nucleic acids inside the cleft maintains the 

closed conformation and expulses the A12.2-Ct from the pore (Neyer et al 2016, Tafur et 

al 2016). In the reconstruction of Pol I-OC, density for the A12.2-Ct is present, as well as 

in one monomeric Pol I and one Pol I:Rrn3 map (Engel et al 2016, Neyer et al 2016, Tafur 

te al 2016); nonetheless, the catalytic hairpin in A12.2-Ct appears to be mobile. Most 
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likely, A12.2-Ct might displace (or at least its catalytic hairpin) and is excluded from the 

active site when the cleft is closed, allowing Pol I to establish extensive contacts with the 

RNA chain (Tafur et al 2016). Thus, the fact that A12.2-Ct remains flexible in the four 

maps of this work agrees with published results and it makes sense that a domain 

specialized in RNA cleavage is only stabilized under specific conditions at concrete time 

windows. Furthermore, recent work has revealed that A12.2-Ct domain can alternate 

between TFIIS and Rpb9 positions in Pol II, depending on the presence of the A49/A34.5 

heterodimer (Tafur et al 2019). In the 12-subunit Pol I structure, the A12.2-Ct occupies 

the space left empty by A34.5, interacting with the A135 subunit (Tafur et al 2019).  

The three maps focused on the DNA/RNA scaffold, A49-Nt/A34.5 and the stalk were 

used to build the first atomic model, in turn used as reference to construct the second 

model, which contains the A49-Ct and the DNA upstream, only using the cryo-EM map 

focused on both elements. Possibly, the absence of the A49-Nt/A34.5, the stalk, the A49-

Ct and the upstream DNA areas in the high-resolution cryo-EM map might be resolved 

using crosslinking. Two previous reports published damage-free Pol I-ECs (Neyer et al 

2016, Tafur et al 2016), one of them using glutaraldehyde crosslinking to fix the 

elongation complex (Neyer et al 2016). However, regardless of the chemical fixation, 

both Pol I-ECS, when compared to Pol I-ECCPD and Pol I-ECCPD with fully-ordered A49, 

are essentially identical, only showing minor differences in the cleft, which are critical to 

understand CPD-induced Pol I stalling. 

 Pol I-ECCPD adopts an early intermediate 

translocation state 

The resolution achieved with the cryo-EM maps allowed model building of the enzyme 

and DNA/RNA scaffold, revealing the accurate position of the CPD lesion. To understand 

the translocation stage of Pol I-ECCPD, comparative analysis of Pol II at different stages 

of elongation was performed (Gnatt et al 2001, Kettenberger et al 2004). These studies 

confirmed that, once the CPD lesion has reached i+1/i+2 position, Pol I is blocked at an 

early intermediate configuration in the translocation cycle, which is characterized by 

unexpected structural features. The captured intermediate state of Pol I-ECCPD is 

attributed to the fact that intrastrand crosslinks at the CPD lesion twist the DNA strand 

and restrain the flexibility of the phosphodiester backbone of the TS, which impedes the 

regular translocation cycle. The CPD lesion accommodates above the BH, in a similar 
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position for i+1/i+2 to the pre-translocated state, and the 5’-T remains partially base-

paired with its NTS counterpart, unlike Pol II at pre-translocated stage. The position of 

the i base pair in the Pol I-ECCPD upstream is tilted toward the BH and occupies a non-

canonical position, unlike in pre- and post-translocated states. The RNA 3’-end, which 

pairs the DNA base at the position i, occupies an intermediate position and partially 

impedes the NTP entry. This is confirmed by superposition of Pol I-ECCPD with Pol II at 

the pre-insertion state (Wang et al 2006), as the incoming NTP remains 1.9 Å closer to 

the 3’end RNA chain in Pol I-ECCPD than in the RNA canonical stage.  

Interestingly, a similar configuration of DNA/RNA hybrid and downstream DNA was 

observed for Pol II ITCs with RNAs of four, five, six and seven nucleotides, which mimic 

the pathway from the Pol II-OC to Pol II-EC. Unlike Pol I-ECCPD, these structures present 

a tilted DNA/RNA hybrid, where the RNA product always occupies a post-translocated 

state, leaving the NTP entry site free. Binding of the NTP substrate to the tilted complexes 

induces the standard conformation of the hybrid and stabilizes the fully post-translocated 

state (Cheung et al 2011). 

As Pol I-ECCPD, Pol II-EC inhibited by α-amanitin presents an intermediate translocation 

stage (Brueckner and Cramer 2008). Both structures display a configuration between the 

pre- and post-translocation state at the downstream DNA TS. Furthermore, the BH in both 

cases presents a shifted conformation towards to upstream DNA, which partially occupies 

the active site and the TL exhibits a wedged conformation, stabilizing the kinked BH. 

However, these structures also show two different features inside the enzymes. The 

inhibited Pol II structure shows a DNA/RNA hybrid at pre-translocated stage while Pol I 

presents an early intermediate state. The i+1 base at the blocked Pol II lies also above the 

BH; however, it occupies a different position, more advanced regarding the 3’-T of the 

CPD lesion. Despite having in both cases a blocked stage, these configurations are due to 

different reasons. Pol I-ECCPD is stalled by restrictions on the movement of the CPD 

lesion, which cannot enter into the active site. Meanwhile, the Pol II-EC is blocked by a 

network of interactions between the α-amanitin and the surrounding BH and TL amino 

acids. 

Several crystallographic structures of Pol II-ECCPD containing the CPD lesion at different 

positions were described (Brueckner et al 2007, Walmacq et al 2012) and their 

configurations are slightly different in comparison with the Pol I-ECCPD. In the case of 
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blocked Pol I, the CPD lesion remains slightly behind towards the downstream DNA. 

CPD-stalled Pol II at position i+1/i+2 revealed that the lesion is disengaged from 

downstream DNA, but the 3’-T is not able to reach the canonical i+1 position, leaving the 

regular site for the templating DNA unoccupied and an enlarged NTP entry site. In vitro 

transcription assays show that Pol II preferentially incorporates an adenine opposite the 

3’-T. The space to accommodate the incoming NTP and the lack of DNA template in the 

correct position provides the conditions for non-templated addition, allowing the entry of 

a purine residue (Walmacq et al 2012). Testing the extension with a matched 5’-T adenine 

base pair, the RNA was elongated to the run-off transcript; however, the incorporation of 

an uridine nucleotide at this position maintains Pol II stalled (Brueckner et al 2007), 

consistent with the A-rule (Strauss 1991, Taylor 2002). The post-translocated state after 

the first adenine incorporation seems to be the mechanistic key between error-induced 

stalling or error-free bypass (Walmacq et al 2012). 

Recent molecular dynamics studies identified two translocation intermediates between 

the pre- and post-translocated states in Pol II (Silva et al 2014). In the first intermediate, 

the DNA/RNA hybrid has been translocated and the base at i+1 is positioned above the 

bridge helix. In the second intermediate, the template base at i+1 has passed the bridge 

helix but not yet occupied the canonical templating position. The Pol I-ECCPD presents an 

early intermediate that is only slightly advanced from the pre-translocated state, in which 

the base pair at the i position presents a unique midway configuration between the pre- 

and post-translocation states and the CPD lesion stalls earlier than the first intermediate 

identified by molecular dynamics. Altogether, the comparison with the Pol II-ECCPD 

structures containing the CPD lesions at different positions, Pol II inhibited by α-

amanitin, Pol II ITCs and taking into account the four metastable stages described in Pol 

II-EC translocation cycle by dynamic simulation studies (Silva et al 2014) allowed to 

conclude that Pol I-ECCPD atomic model showed a novel early intermediate translocation 

state. 
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 Structural rearrangements inside the DNA-binding 

cleft of Pol I-ECCPD explain the blocking 

Overall, Pol I shows a similar configuration in Pol I-ECCPD and lesion-free Pol I-ECs 

(Neyer et al 2016, Tafur et al 2016). Nevertheless, the most significant structural changes 

occur inside the cleft and explain Pol I blockage by the CPD lesion. In Pol I-ECCPD, the 

enzyme BH is kinked in its central region and the TL is wedged, whereas in the two 

available post-translocated Pol I-ECs the BH is fully folded and the TL remains flexible 

(Neyer et al 2016, Tafur et al 2016).  

Specific rearrangements also occur in the amino acids that surround the CPD damage. 

The Pol I-specific R1015 residue establishes a cation- interaction with the 3’-T of the 

CPD lesion. This contact is not possible in Pol I-EC structures because they present a 

post-translocated stage, and this arginine residue lies at a distance of 8.2 Å from the i+2 

DNA TS  position (Neyer et al 2016, Tafur et al 2016). S1014 at CPD-stalled Pol I lies at 

hydrogen bond distance with the phosphate DNA backbone next to the lesion, while in 

damage-free Pol I-ECs the residue is oriented towards the opposite side. The movement 

of the DNA TS could also be important for the S1014 contact, as the 3’-T phosphate 

approaches S1014 due to the sterically restricted movement of the CPD and the equivalent 

DNA backbone position in Pol-ECs is oriented toward the opposite side of the BH. 

Multi-alignment of protein sequences of several prokaryotic and eukaryotic organisms 

exhibits interesting features. The central regions of the BHs show fully and partially-

conserved residues; nevertheless, there are three consecutive highly variable amino acids 

that correspond to the positions S1014, R1015 and S1016 in Pol I A190 subunit. The area 

occupied by these three residues plays an important role in the translocation cycle, as 

around it the main variations in terms of position occur during the continuous bending 

motion of the BH. The positively-charged R1015 is fully conserved in Pol I, whereas Pol 

II and Pol III present a negatively-charged glutamate in this position. In archaea, the 

residue located in an equivalent position is a glutamine, while in bRNAP different 

residues are present: a polar asparagine in E. coli or a negatively-charged aspartate in T. 

aquaticus. S1014 is also strictly conserved in Pol I, while Pol II and Pol III display a 

hydrophobic alanine in almost all species with the exception of D.discoideum and 

A.thaliana, organisms that show a polar serine. S1016 is also completely conserved in 

Pol I, while Pol II and Pol III present a polar threonine. Overall, these three amino acids 
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are fully conserved between Pol I BHs, whereas Pol II and Pol III BHs amino acids are 

conserved between them.  

In yeast, R1021 is conserved in the three RNAPs, as well as from bacteria to humans 

(Cramer et al 2001). The equivalent position in Pol II-ECCPD containing the CPD lesion 

at i+1/i+2 shows its side chain turned towards the largest subunit and not at hydrogen 

bond distance of the 5’-T phosphate, unlike Pol I-ECCPD, where the residue lies closer to 

the 3’-T phosphate. In Pol I-EC, this residue remains at the same position as Pol I-ECCPD. 

Nevertheless, the distance is larger because the TS adopts its canonical position. Another 

strictly conserved residue in the BH is T1013. Molecular dynamic simulations and single-

mutagenesis assays performed in Pol II revealed that T831, equivalent to T1013 in Pol I, 

acts as a checkpoint to examine the stabilities of the base pair in the active site. This 

residue detects the 3’-terminal base paring of DNA/RNA hybrid, promoting the RNA 3’-

end nucleotide into a frayed state if the base pair is mismatched (Da et al 2016). 

Inside the cleft, switch loop 2 plays a role in the transition to a transcribing complex, 

reordering when the nucleic acids enter the cleft and contacting the DNA/RNA hybrid in 

the active center (Cramer et al 2001, Gnatt et al 2001). The insertion of a glycine residue 

between the two conserved lysine residues in Pol II and Pol III suggests an extra mobility 

that Pol I switch loop 2 lacks. In Pol I-ECCPD, switch loop 2 alters its configuration to 

approach the TS. K463 lies at hydrogen bond distance of the nucleotide upstream of the 

CPD lesion, while K462 remains at a distance which does not allow interaction. On the 

contrary, in Pol I-ECs this loop presents alternative arrangements, but never interacting 

with the DNA (Neyer et al 2016, Tafur et al 2016). R468, also belonging to switch loop 

2, is conserved in the three RNAPs. This residue lies at hydrogen bond distance with the 

3’T phosphate in the Pol I-ECCPD, while in Pol II-ECCPD R337 (equivalent to R468) does 

not interact with the CPD. Instead, R337 contacts the phosphate in the 5’-T, due to the 

different position of the CPD lesion. Undamaged Pol I-EC presents the R468 oriented 

slightly towards the enzyme, hampering the interaction with the canonical DNA TS. In 

summary, Pol I-ECCPD blocked structure is secured by a unique set of specific interactions 

between the DNA TS and conserved Pol I regions surrounding the CPD lesion. 
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 Specific mutations modify the transcriptional 

processing of CPD lesions 

One of the principal defining features of RNAPs is the BH, which is implicated in 

translocation and fidelity of NTP incorporation (Kireeva et al 2012). The central role of 

Pol I R1015 in CPD lesion recognition was studied by single mutational analysis and in 

vitro transcription assays. The mutations were introduced in bRNAP, given that, in 

comparison to yeast, bacteria are simple organisms with straightforward genetic 

manipulation. Besides, this organism is used widely as a model system, and the presence 

of a polar residue in the required position allowed to distinguish the effect of the charge. 

Pol I-like bRNAP mutant (N792R) exhibited a kobs 2.6 times less respect to bRNAP-WT, 

while the Pol II-like mutant (N792D) increased the transcriptional rate 4.1 times. These 

results showed that the residue located in this position plays an important role in the 

processing of the CPD lesion, allowing faster incorporation of the nucleotide opposite the 

3’-T in Pol II and slower incorporation in Pol I. This correlates with the fact that the 3’-

T in the CPD lesion and R1015 in Pol I-ECCPD and contrary to Pol I-EC, establish a cation-

 interaction. This type of interaction, among others, plays an important role in protein 

interactions (Dougherty 1996) and this kind of electrostatic attraction is achieved when 

an cationic side chain (K or R) is near an aromatic side chain (F, Y or W) (Gallivan and 

Dougherty 1999). In Pol I-ECCPD, the cation- interaction is produced using as aromatic 

electron donator the nitrogenous base of the 3’-T. Although this interaction explains the 

slow bypass of the DNA damage in Pol I, it did not fully explain the in vitro transcription 

results where Pol I is persistently blocked.  

bRNAP mutations were also carried out to assess the role of Pol I S1014 in CPD lesion 

transcription. In vitro transcription assays revealed that A791S mutant has a distinct 

behavior in comparison to the N792R. In fact, this mutation increases 1.1 times the kobs. 

This effect could suggest that the serine residue contributes in a minimal way to decelerate 

the CPD bypass. The double mutant A791S/N792R reduced the kobs by half respect to 

bRNAP-WT, but this catalytic rate constant is still 1.3 times higher than the N792R single 

mutant constant. These assays confirmed the principal role of Pol I R1015 in CPD 

processing. 
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 The Pol I elongation rate depends on the balance 

between nucleotide addition and intrinsic cleavage 

In fast growing cells with a high demand of protein, Pol I needs to perform a fast 

elongation and has a strong backtracking and cleavage activity to prevent transcriptional 

arrest (Darzacq et al 2007, Lisica et al 2016). Pol I contains the A12.2-Ct domain, which 

is responsible for the intrinsic RNA cleavage, while Pol II needs to recruit an independent 

transcription factor, TFIIS (Kuhn et al 2007). In vitro transcription assays show that, 

unlike Pol II, Pol I is not able to bypass the CPD lesion even after long incubation at a 

high NTP concentration. Nevertheless, Pol I with A12.2-Ct truncated can bypass the CPD 

lesion, incorporating RNA nucleotides opposite both thymines, but is less prone than Pol 

II (without TFIIS) to incorporate nucleotides. Pol II incubated with TFIIS, which is 

homologous to A12.2-Ct, did not incorporate nucleotides opposite the 5’-T. Thus, in vitro 

RNA incorporation assays unveiled that the RNA cleavage activity plays an important 

role in CPD bypass.  

The combination of both nucleotide incorporation and RNA cleavage activities in Pol I 

were dissected by in vitro cleavage assays, using an 11-mer RNA that mimics transcript 

extension opposite the 3’-T in the CPD lesion. Pol I-WT and Pol II+TFIIS were able to 

cleave the RNA transcript readily and their cleavage rates are similar. However, in the 

absence of RNA cleavage activity, truncated Pol I and Pol II do not cleave the RNA. After 

cleavage, Pol I and Pol II+TFIIS are able to incorporate nucleotides to the RNA product; 

nonetheless, Pol I does not reach again the 11-mer RNA length. Altogether, in spite of 

both displaying RNA cleavage activity, Pol I pyrophosphorolysis is stronger, as Pol I 

profits of A12.2-Ct being continually bound to the enzyme. Pol II has a weak intrinsic 

RNA cleavage with subunit Rpb9 and requires the TFIIS to improve its capacity (Lisica 

et al 2016). The distinct behavior of Pol I in relation to Pol II is due to the combination 

of slower nucleotide incorporation opposite the CPD lesion and much faster intrinsic 

RNA cleavage activity. These distinct mechanisms can be explained due to Pol II 

transcription system not requiring the constant presence of a cleavage factor. This enzyme 

can be more error-prone without provoking a lethal consequence in the cell. Nevertheless, 

Pol I system is only designed to transcribe ribosomal RNA genes in order to originate the 

backbone of the ribosome, therefore it must execute rapidly without introducing errors. 
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 Distinct mechanistic models for Pol I and Pol II 

processing of CPD lesions 

Knowing the specific features that can explain the Pol I blocking, the behavior of Pol I vs 

Pol II stalling at a CPD lesion was analyzed using in vitro transcription assays. In a 

previous work, a time course experiment using Pol II and a DNA/RNA scaffold with a 

CPD showed that RNA incorporation opposite 3’-T is slower than nucleotide addition 

opposite to a canonical DNA TS, and the second RNA incorporation opposite 5’-T is 

even slower. The combination of distortions produced by the pyrimidine dimer and 

misincorporation opposite the 5’-T result in Pol II blocking (Brueckner et al 2007). Unlike 

Pol II, Pol I can only extend the RNA molecule until the 3’-T reaches the active site. 

The combination of the structural and biochemical data present in this Ph.D. thesis 

provides insights into the mechanism of Pol I stalling by CPD lesions. Pol I and Pol II 

showed mechanisms that significantly differ (Figure 21). Slow thymine dimer 

recognition, responsibility of R1015 in A190, in addition to a fast-intrinsic RNA cleavage 

carried out by A12.2-Ct, prevents the incorporation of an adenine, unlike in Pol II.  
 

 

Figure 21. Mechanisms to deal with CPD lesions in Pol I and Pol II. (Extracted from Sanz-

Murillo et al 2018). Scheme of distinct mechanisms of CPD lesion recognition by transcribing 

Pol II (Left) and Pol I (Right). The translocation barrier and the translocation block are indicated 

with a dashed line and a solid horizontal line, respectively. 
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Pol I cleaves this first added nucleotide and maintains an addition-cleavage equilibrium, 

resulting in an impediment to bypass the CPD. Due to the absence of the arginine residue, 

Pol II can incorporate an adenine opposite the 3’-T faster than Pol I lacking A12.2-Ct. 

The weak intrinsic RNA cleavage function of Rpb9 allows the untemplated addition of 

uracil opposite the 5’-T, leaving the enzyme blocked (Brueckner 2007, Walmacq 2012). 

Over the last decade, structural studies of Pol II with several DNA lesions, such as a DNA 

alkylation (Xu et al 2017), an oxidative DNA lesion 8,5′-cyclo-2’-deoxyadenosine 

(CydA) (Walmacq et al 2015) or an abasic lesion (Wang et al 2018), were carried out to 

understand how this enzyme recognizes and processes the DNA damage (Wang et al 

2018). The abasic lesion exhibits the same behavior as the CPD lesion under 

physiological conditions, following the A-rule (Wang et al 2018). Pol II-EC-CdyA 

preferentially performs the addition of an adenine opposite lesion, but it also can 

incorporate an adenine residue opposite the TS next to the lesion. This can generate 

mutant RNA transcripts, except at DNA sequences containing a thymine 5′ of the lesion 

(Walmacq et al 2015). Alkylation lesions revealed different transcriptional responses of 

Pol II, depending on the position of the ethyl group of thymine (Xu et al 2017). All these 

studies were performed using Pol II. Nonetheless, the mechanistic and biochemical 

insights of Pol I whit this kind of lesions is still not understood. 

 TC-NER in Pol II and Pol I 

TC-NER in Pol II has been extensively studied, due to the fundamental role of this 

enzyme for the cell. The knowledge of this mechanism has benefited from the cooperation 

of several groups specialized in DNA repair and transcription. Previous reports have 

described how the repair factors act and are recruited when Pol II is arrested by bulky 

lesions. CSB has been considered as the master coordinator of TC-NER in mammalian 

cells, being among the first proteins to be recruited to the arrested Pol II (Wang et al 

2018), avoiding the TFIIS-induced backtracking. The Pol II-CSB interaction activates the 

recruitment of TFIIH to catalyze the transcription bubble opening. From that point, the 

reparation steps are triggered sequentially. Rad26, the CSB ortholog in S. cerevisiae, was 

recently structural and biochemically characterized. Those observations revealed that the 

interaction between Rad26 and Pol II can help to distinguish different Pol II arrest 

scenarios, and the persistent arrest at a voluminous lesion, such as a CPD lesion, triggers 

the initiation of TC-NER (Xu et al 2017). The Pol II-Rad26 complex structure was solved 
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using single-particle cryo-EM (Xu et al 2017), showing that the repair factor is bound to 

upstream DNA and the interface between them is conserved from yeast to humans. 

Further biochemical and structural insights will contribute to understand better the 

molecular mechanism of TC-NER. Likely, this knowledge will help develop new 

chemotherapeutic drugs targeting TC-NER sub-pathway (Wang et al 2018). 

The TC-NER mechanism in Pol I has not been described as in deeply as in Pol II. A 

previous report demonstrated that strand-specific repair occurs in transcriptionally active 

rRNA genes in yeast and it is not found in the inactive rDNA copies (Conconi et al 2002). 

Therefore, this suggests that TC-NER in Pol I exists as a repair mechanism in yeast 

(Charton et al 2015) and this process was demonstrated to be independent of Rad26, 

(Verhage et al 1996). However, a recent report has shown by analytical methods that TC-

NER in rDNA is not involved in repairing damages caused by UV or by cisplatin in 

human and mouse cell lines (Yang et al 2019); nevertheless, the molecular basis of TC-

NER mediated by Pol I in yeast remains unclear. 

Over the last two decades, the special nucleolar environment of the rDNA and the 

involvement of Pol I in TC-NER has been identified as an interesting field to study. The 

structural and biochemical results present in this Ph.D. thesis pave the way to unravel the 

molecular mechanism underlying persistent enzyme stalling at CPD lesions on rDNA and 

provide important mechanistic insight into Pol I lesion recognition. In particular, the 

structure of Pol I-ECCPD exhibits molecular interactions between Pol I and the bulky 

lesion and reveal novel mechanistic insight into the role of R1015 recognition. Future 

researches on how Pol I is involved in TC-NER and the sequential steps of the repair 

factors to resolve the damage would deep in our understanding of this essential cell 

process and its relation with the repair pathways. Importantly, several mechanistic 

questions deserve future investigation: which specific signals trigger TC-NER in rDNA? 

How are the repair factors recruited to the Pol I-ECCPD for lesion verification? How are 

the elongation factors displaced when Pol I is blocked? At which stage is Pol I moved 

away from the CPD lesion? What is the fate of Pol I during lesion recognition? When and 

how are the repair proteins released from DNA lesions? What is the function of each of 

them? Finding answers to these questions would contribute to better understand the 

molecular mechanism of CPD lesion repair in rDNA. The work presented here represents 

the first mechanistic insight to resolve this puzzle.  
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CONCLUSIONS 

1. Pol I persistently stalls when CPD reaches the active site. The cryo-EM structure of 

Pol I-ECCPD presents an intermediate configuration between the pre- and post-

translocated states with the CPD lesion lying above the bridge helix, which is slightly 

kinked at its central region. 

2. Several conformational rearrangements create a network of interactions that stabilize 

enzyme stalling. R1015 at the central region of the BH establishes a cation-π 

interaction with the 3’-thymine of the CPD lesion and two basic residues in switch 

loop 2 alter their configuration to approach the TS. 

3. Single mutational analysis using bRNAP as a model system and in vitro transcription 

assays reveal that R1015 plays an important role in the processing of CPD lesions.  

4. Pol I stalls at CPD lesions due to the combination of slow nucleotide incorporation 

opposite the CPD lesion and fast intrinsic RNA cleavage activity of its A12.2-Ct 

domain. 

5. The mechanism of Pol I stalling by CPD lesions significantly differs from that 

observed in Pol II. 

 

CONCLUSIONES 

1. La Pol I se bloquea de manera persistente cuando la lesión CPD alcanza el sitio 

activo. La estructura de crio-ME de Pol I-ECCPD presenta una configuración 

intermedia entre los estados pre- y post-translocados con la lesión de CPD 

posicionada sobre la hélice puente, la cual está ligeramente doblada en su región 

central. 

2. Diferentes reordenamientos en el sitio de unión de ADN en la enzima crean una red 

de interacciones que estabilizan el bloqueo. El residuo R1015 en la región central de 

la hélice puente establece una interacción catión- con la 3’-T de la lesión CPD y 

dos residuos con carga positiva en el lazo conmutador 2 alteran su configuración para 

aproximarse a la hebra molde.  

3. El análisis de mutaciones puntuales usando ARNPb como sistema modelo y los 

ensayos de transcripción in vitro revelan que el residuo R1015 juega un papel 

importante en el procesamiento de las lesiones CPD. 
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4. Pol I se bloquea en las lesiones CPD debido a la combinación de una lenta 

incorporación de nucleótidos de ARN frente a la lesión y una actividad de escisión 

del ARN rápida, debido a la presencia del dominio A12.2-Ct.  

5. El mecanismo de bloqueo de Pol I por las lesiones DPC difiere significativamente 

del observado en Pol II.  

  



101 

 

 

 

 

 

 

BIBLIOGRAPHY 

  



103 

 

Abrishami, V., J. Vargas, X. Li, Y. Cheng, R. Marabini, C. O. S. Sorzano, J. M. Carazo 

(2015). "Alignment of direct detection device micrographs using a robust Optical Flow 

approach." J Struct Biol 189(3): 163-176. 

Adams, P. D., P. V. Afonine, G. Bunkóczi, V. B. Chen, I. W. Davis, N. Echols, J. J. 

Headd, L. W. Hung, G. J. Kapral, R. W. Grosse-Kunstleve, A. J. McCoy, N. W. Moriarty, 

R. Oeffner, R. J. Read, D. C. Richardson, J. S. Richardson, T. C. Terwilliger and P. H. 

Zwart (2010). "PHENIX: a comprehensive Python-based system for macromolecular 

structure solution." Acta Crystallogr D Biol Crystallogr 66(Pt 2): 213-221. 

Awrey, D. E., N. Shimasaki, C. Koth, R. Weilbaecher, V. Olmsted, S. Kazanis, X. Shan, 

J. Arellano, C. H. Arrowsmith, C. M. Kane and A. M. Edwards (1998). "Yeast Transcript 

Elongation Factor (TFIIS), Structure and Function: II: RNA polymerase binding, 

transcript cleavage, and read-through." Journal of Biological Chemistry 273(35): 22595-

22605. 

Bae, B., A. Feklistov, A. Lass-Napiorkowska, R. Landick and S. A. Darst (2015). 

"Structure of a bacterial RNA polymerase holoenzyme open promoter complex." eLife 4: 

e08504. 

Bai, X. C., G. McMullan and S. H. W. Scheres (2015). "How cryo-EM is revolutionizing 

structural biology." Trends in Biochemical Sciences 40(1): 49-57. 

Beckouet, F., S. Labarre-Mariotte, B. Albert, Y. Imazawa, M. Werner, O. Gadal, Y. Nogi 

and P. Thuriaux (2008). "Two RNA polymerase I subunits control the binding and release 

of Rrn3 during transcription." Molecular and cellular biology 28(5): 1596-1605. 

Beckouët, F., S. Mariotte-Labarre, G. Peyroche, Y. Nogi and P. Thuriaux (2011). "Rpa43 

and its partners in the yeast RNA polymerase I transcription complex." FEBS Letters 

585(21): 3355-3359. 

Bier, M., S. Fath and H. Tschochner (2004). "The composition of the RNA polymerase I 

transcription machinery switches from initiation to elongation mode." FEBS Letters 

564(1-2): 41-46. 

Birch, J. L. and J. C. B. M. Zomerdijk (2008). "Structure and function of ribosomal RNA 

gene chromatin." Biochemical Society transactions 36(Pt 4): 619-624. 

Bodem, J., G. Dobreva, U. Hoffmann‐Rohrer, S. Iben, H. Zentgraf, H. Delius, M. Vingron 

and I. Grummt (2000). "TIF‐IA, the factor mediating growth‐dependent control of 

ribosomal RNA synthesis, is the mammalian homolog of yeast Rrn3p." EMBO reports 

1(2): 171. 

Bradsher J., J. A., L. Proietti de Santis, S. Iben, J. L. Vonesch, I. Grummt and J. M. Egly 

(2002). "CSB is a component of RNA polymerase I transcription." Mol Cell 10(4): 819-

829. 

Brenner, S. and R. W. Horne (1959). "A negative staining method for high resolution 

electron microscopy of viruses." Biochimica et Biophysica Acta 34: 103-110. 



104 

 

Brilot, A. F., J. Z. Chen, A. Cheng, J. Pan, S. C. Harrison, C. S. Potter, B. Carragher, R. 

Henderson and N. Grigorieff (2012). "Beam-induced motion of vitrified specimen on 

holey carbon film." Journal of structural biology 177(3): 630-637. 

Brueckner, F. and P. Cramer (2008). "Structural basis of transcription inhibition by α-

amanitin and implications for RNA polymerase II translocation." Nature Structural 

&Amp; Molecular Biology 15: 811. 

Brueckner, F., J. Ortiz and P. Cramer (2009). "A movie of the RNA polymerase 

nucleotide addition cycle." Current Opinion in Structural Biology 19(3): 294-299. 

Brueckner, F., U. Hennecke, T. Carell and P. Cramer (2007). "CPD damage recognition 

by transcribing RNA polymerase II." Science 315(5813): 859-862. 

Campbell, E. A., O. Muzzin, M. Chlenov, J. L. Sun, C. A. Olson, O. Weinman, M. L. 

Trester-Zedlitz and S. A. Darst (2002). "Structure of the Bacterial RNA Polymerase 

Promoter Specificity σ Subunit." Molecular Cell 9(3): 527-539. 

Campbell, M. G., A. Cheng, A. F. Brilot, A. Moeller, D. Lyumkis, D. Veesler, J. Pan, S. 

C. Harrison, C. S. Potter, B. Carragher and N. Grigorieff (2012). "Movies of ice-

embedded particles enhance resolution in electron cryo-microscopy." Structure (London, 

England : 1993) 20(11): 1823-1828. 

Chan, C. L. and R. Landick (1989). "The Salmonella typhimurium his operon leader 

region contains an RNA hairpin-dependent transcription pause site. Mechanistic 

implications of the effect on pausing of altered RNA hairpins." Journal of Biological 

Chemistry 264(34): 20796-20804. 

Charton, R., L. Guintini, F. Peyresaubes and A. Conconi (2015). "Repair of UV induced 

DNA lesions in ribosomal gene chromatin and the role of “Odd” RNA polymerases (I 

and III)." DNA Repair 36: 49-58. 

Chédin, S., M. Riva, P. Schultz, A. Sentenac and C. Carles (1998). "The RNA cleavage 

activity of RNA polymerase III is mediated by an essential TFIIS-like subunit and is 

important for transcription termination." Genes Dev 12: 3857-3871. 

Cheetham, G. M. T., and T. A. Steitz (2000). "Insights into transcription: structure and 

function of single-subunit DNA-dependent RNA polymerases." Current Opinion in 

Structural Biology 10(1): 117-123. 

Cheung, A. C. M., and P. Cramer (2012). "A movie of RNA polymerase II transcription." 

Cell 149: 1431-1437. 

Cheung, A. C. M., S. Sainsbury and P. Cramer (2011). "Structural basis of initial RNA 

polymerase II transcription." The EMBO Journal 30: 4755-4763. 

Compe, E., C. M. Genes, C. Braun, F. Coin and J.-M. Egly (2019). "TFIIE orchestrates 

the recruitment of the TFIIH kinase module at promoter before release during 

transcription." Nature Communications 10(1): 2084. 



105 

 

Conconi, A., V. A. Bespalov and M. J. Smerdon (2002). "Transcription-coupled repair in 

RNA polymerase I-transcribed genes of yeast." Proceedings of the National Academy of 

Sciences 99(2): 649. 

Core, L. J. and J. T. Lis (2008). "Transcription Regulation Through Promoter-Proximal 

Pausing of RNA Polymerase II." Science 319(5871): 1791. 

Cramer, P., D. A. Bushnell and R. D. Kornberg (2001). "Structural basis of transcription: 

RNA polymerase II 2.8 angstrom resolution." Science 292(5523): 1863-1876. 

Crick, F. (1970). "Central Dogma of Molecular Biology." Nature 227(5258): 561-563. 

Da, L.-T., F. Pardo-Avila, L. Xu, D.-A. Silva, L. Zhang, X. Gao, D. Wang and X. Huang 

(2016). "Bridge helix bending promotes RNA polymerase II backtracking through a 

critical and conserved threonine residue." Nature Communications 7: 11244. 

Darrière, T., M. Pilsl, M.-K. Sarthou, A. Chauvier, T. Genty, S. Audibert, C. Dez, I. 

Léger-Silvestre, C. Normand, A. K. Henras, M. Kwapisz, O. Calvo, C. Fernández-

Tornero, H. Tschochner and O. Gadal (2019). "Genetic analyses led to the discovery of a 

super-active mutant of the RNA polymerase I." PLOS Genetics 15(5): e1008157. 

Darzacq, X., Y. Shav-Tal, V. de Turris, Y. Brody, S. M. Shenoy, R. D. Phair and R. H. 

Singer (2007). "In vivo dynamics of RNA polymerase II transcription." Nature Structural 

&Amp; Molecular Biology 14: 796. 

Dougherty, D. A. (1996). "Cation-π Interactions in Chemistry and Biology: A New View 

of Benzene, Phe, Tyr, and Trp." Science 271(5246): 163. 

Emsley, P., and K. Cowtan (2004). "Coot: model-building tools for molecular graphics." 

Acta Crystallogr D Biol Crystallogr 60(Pt 12 Pt 1): 2126-2132. 

Engel, C., T. Gubbey, S. Neyer, S. Sainsbury, C. Oberthuer, C. Baejen, C. Bernecky and 

P. Cramer (2017). "Structural Basis of RNA Polymerase I Transcription Initiation." Cell 

169(1): 120-131.e122. 

Engel, C., J. Plitzko and P. Cramer (2016). "RNA polymerase I–Rrn3 complex at 4.8 Å 

resolution." Nature Communications 7: 12129. 

Engel, C., S. Sainsbury, A. C. Cheung, D. Kostrewa and P. Cramer (2013). "RNA 

polymerase I structure and transcription regulation." Nature 502(7473): 650-655. 

Fernandez-Leiro, R. and S. H. W. Scheres (2016). "Unravelling biological 

macromolecules with cryo-electron microscopy." Nature 537: 339. 

Fernández-Tornero, C. (2018). "RNA polymerase I activation and hibernation: unique 

mechanisms for unique genes." Transcription 9(4): 248-254. 

Fernández-Tornero, C., B. Böttcher, U. J. Rashid, U. Steuerwald, B. Flörchinger, D. P. 

Devos, D. Lindner and C. W. Müller (2010). "Conformational flexibility of RNA 

polymerase III during transcriptional elongation." The EMBO journal 29(22): 3762-3772. 



106 

 

Fernández-Tornero, C., B. Böttcher, M. Riva, C. Carles, U. Steuerwald, Rob W. H. 

Ruigrok, A. Sentenac, C. W. Müller and G. Schoehn (2007). "Insights into Transcription 

Initiation and Termination from the Electron Microscopy Structure of Yeast RNA 

Polymerase III." Molecular Cell 25(6): 813-823. 

Fernández-Tornero, C., M. Moreno-Morcillo, U. J. Rashid, N. M. Taylor, F. M. Ruiz, T. 

Gruene, P. Legrand, U. Steuerwald and C. W. Müller (2013). "Crystal structure of the 14-

subunit RNA polymerase I." Nature 502(7473): 644-649. 

Gallivan, J. P. and D. A. Dougherty (1999). "Cation-pi interactions in structural biology." 

Proceedings of the National Academy of Sciences of the United States of America 96(17): 

9459-9464. 

Geiger, S. R., K. Lorenzen, A. Schreieck, P. Hanecker, D. Kostrewa, A. J. R. Heck and 

P. Cramer (2010). "RNA Polymerase I Contains a TFIIF-Related DNA-Binding 

Subcomplex." Molecular Cell 39(4): 583-594. 

Gietz, R. D., R. H. Schiestl, A. R. Willems and R. A. Woods (1995). "Studies on the 

transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure." Yeast 11(4): 

355-360. 

Gnatt, A. L., P. Cramer, J. Fu, D.A. Bushnell, R. D. Kornberg (2001). "Structural basis 

of transcription: An RNA polymerase II elongation complex at 3.3 angstrom." Science 

292(5523): 1876-1882. 

Goetze, H., M. Wittner, S. Hamperl, M. Hondele, K. Merz, U. Stoeckl and J. Griesenbeck 

(2010). "Alternative Chromatin Structures of the 35S rRNA Genes in Saccharomyces 

cerevisiae Provide a Molecular Basis for the Selective Recruitment of RNA Polymerases 

I and II." Molecular and Cellular Biology 30(8): 2028. 

Grohmann, D., A. Hirtreiter and F. Werner (2009). "RNAP subunits F/E (RPB4/7) are 

stably associated with archaeal RNA polymerase: using fluorescence anisotropy to 

monitor RNAP assembly in vitro." Biochemical Journal 421(3): 339. 

Guo, X., A. G. Myasnikov, J. Chen, C. Crucifix, G. Papai, M. Takacs, P. Schultz and A. 

Weixlbaumer (2018). "Structural basis for NusA stabilized transcriptional pausing." 

Molecular Cell 69(5): 816-827.e814. 

Guzder, S. N., P. Sung, V. Bailly, L. Prakash and S. Prakash (1994). "RAD25 is a DMA 

helicase required for DNA repair and RNA polymerase II transcription." Nature 

369(6481): 578-581. 

Han, Y., C. Yan, T. H. D. Nguyen, A. J. Jackobel, I. Ivanov, B. A. Knutson and Y. He 

(2017). "Structural mechanism of ATP-independent transcription initiation by RNA 

polymerase I." eLife 6: e27414. 

Hanawalt, P. C. and G. Spivak (1999). Transcription-Coupled DNA Repair. Advances in 

DNA Damage and Repair: Oxygen Radical Effects, Cellular Protection, and Biological 

Consequences. M. Dizdaroglu and A. E. Karakaya. Boston, MA, Springer US: 169-179. 

Hanawalt, P. C. and G. Spivak (2008). "Transcription-coupled DNA repair: two decades 

of progress and surprises." Nature Reviews Molecular Cell Biology 9: 958. 



107 

 

Hannan, R. D., A. Cavanaugh, W. M. Hempel, T. Moss and L. Rothblum (1999). 

"Identification of a mammalian RNA polymerase I holoenzyme containing components 

of the DNA repair/replication system." Nucleic acids research 27(18): 3720-3727. 

He, Y., C. Yan, J. Fang, C. Inouye, R. Tjian, I. Ivanov and E. Nogales (2016). "Near-

atomic resolution visualization of human transcription promoter opening." Nature 533: 

359. 

Heel, M., R. Portugal and M. Schatz (2009). Multivariate Statistical Analysis in Single 

Particle (Cryo) Electron Microscopy. 

Henderson, R. (2015). "Overview and future of single particle electron cryomicroscopy." 

Arch Biochem Biophys 581: 19-24. 

Hirata, A., B. J. Klein and K. S. Murakami (2008). "The X-ray crystal structure of RNA 

polymerase from Archaea." Nature 451: 851. 

Hirata, A. and K. S. Murakami (2009). "Archaeal RNA polymerase." Current opinion in 

structural biology 19(6): 724-731. 

Hoeijmakers, J. H. (2001). "Genome manteniance mechanisms for preventing cancer." 

Nature 411: 366-374. 

Hoffmann, N. A., A. J. Jakobi, M. Moreno-Morcillo, S. Glatt, J. Kosinski, W. J. H. Hagen, 

C. Sachse and C. W. Müller (2015). "Molecular structures of unbound and transcribing 

RNA polymerase III." Nature 528: 231. 

Huet, J., J. M. Buhler, A. Sentenac and P. Fromageot (1975). "Dissociation of two 

polypeptide chains from yeast RNA polymerase A." Proceedings of the National 

Academy of Sciences of the United States of America 72(8): 3034-3038. 

Huet, J., F. Wyers, J. M. Buhler, A. Sentenac and P. Fromageot (1976). "Association of 

RNase H activity with yeast RNA polymerase A." Nature 261: 431-433. 

Iben, S., H. Tschochner, M. Bier, D. Hoogstraten, P. Hozák, J. M. Egly and I. Grummt 

(2002). "TFIIH plays an essential role in RNA polymerase I transcription." Cell 109: 297-

306. 

Kahl, B. F., H. Li and M. R. Paule (2000). "DNA melting and promoter clearance by 

eukaryotic RNA polymerase I11Edited by R. Ebright." Journal of Molecular Biology 

299(1): 75-89. 

Kang, J. Y., T. V. Mishanina, M. J. Bellecourt, R. A. Mooney, S. A. Darst and R. Landick 

(2018). "RNA polymerase accommodates a pause RNA hairpin by global conformational 

rearrangements that prolong pausing." Molecular Cell 69(5): 802-815.e801. 

Kaplan, C. D., K. M. Larsson and R. D. Kornberg (2008). "The RNA polymerase II 

trigger loop functions in substrate selection and is directly targeted by alpha-amanitin." 

Molecular Cell 30(5): 547-556. 



108 

 

Keener, J., C. A. Josaitis, J. A. Dodd and M. Nomura (1998). "Reconstitution of Yeast 

RNA Polymerase I Transcription in Vitro from Purified Components." Journal of 

Biological Chemistry 273(50): 33795-33802. 

Kettenberger, H., K. J. Armache and P. Cramer (2004). "Complete RNA polymerase II 

elongation complex structure and its interactions with NTP and TFIIS." Molecular Cell 

16(6): 955-965. 

Khatter, H., M. K. Vorländer and C. W. Müller (2017). "RNA polymerase I and III: 

similar yet unique." Current Opinion in Structural Biology 47: 88-94. 

Kimanius, D., B. O. Forsberg, S. H. Scheres and E. Lindahl (2016). "Accelerated cryo-

EM structure determination woth parallelisation using GPUs in RELION-2." Elife 5. 

Kireeva, M. L. and M. Kashlev (2009). "Mechanism of sequence-specific pausing of 

bacterial RNA polymerase." Proceedings of the National Academy of Sciences 106(22): 

8900. 

Kireeva, M. L., K. Opron, S. A. Seibold, C. Domecq, R. I. Cukier, B. Coulombe, M. 

Kashlev and Z. F. Burton (2012). "Molecular dynamics and mutational analysis of the 

catalytic and translocation cycle of RNA polymerase." BMC biophysics 5: 11-11. 

Knutson, B. A., J. Luo, J. Ranish and S. Hahn (2014). "Architecture of the Saccharomyces 

cerevisiae RNA polymerase I Core Factor complex." Nature Structural &Amp; Molecular 

Biology 21: 810. 

Knutson, B. A., M. L. Smith, N. Walker-Kopp and X. Xu (2016). "Super elongation 

complex contains a TFIIF-related subcomplex." Transcription 7: 133-140. 

Kong, M., L. Liu, X. Chen, Katherine I. Driscoll, P. Mao, S. Böhm, Neil M. Kad, 

Simon C. Watkins, Kara A. Bernstein, John J. Wyrick, J.-H. Min and B. Van Houten 

(2016). "Single-Molecule Imaging Reveals that Rad4 Employs a Dynamic DNA Damage 

Recognition Process." Molecular Cell 64(2): 376-387. 

Korkhin, Y., U. M. Unligil, O. Littlefield, P. J. Nelson, D. I. Stuart, P. B. Sigler, S. D. 

Bell and N. G. A. Abrescia (2009). "Evolution of complex RNA polymerases: the 

complete archaeal RNA polymerase structure." PLoS biology 7(5): e1000102-e1000102. 

Kühlbrandt, W. (2014). "The Resolution Revolution." Science 343(6178): 1443. 

Kuhn, C. D., S. R. Geiger, S. Baumli, M. Gartmann, J. Gerber, S. Jennebach, T. Mielke, 

H. Tschochner, R. Beckmann and P. Cramer (2007). "Functional architecture of RNA 

polymerase I." Cell 11(3): 319-324. 

Laferté, A., E. Favry, A. Sentenac, M. Riva, C. Carles and S. Chédin (2006). "The 

transcriptional activity of RNA polymerase I is a key determinant for the level of all 

ribosome components." Genes & development 20(15): 2030-2040. 

Lainé, J. P. and J. M. Egly (2006). "Initiation of DNA repair mediated by a stalled RNA 

polymerase IIO." The EMBO Journal 25(2): 387. 



109 

 

Lalo, D., J. S. Steffan, J. A. Dodd and M. Nomura (1996). "RRN11 Encodes the Third 

Subunit of the Complex Containing Rrn6p and Rrn7p That Is Essential for the Initiation 

of rDNA Transcription by Yeast RNA Polymerase I." Journal of Biological Chemistry 

271(35): 21062-21067. 

Landick, R. (2006). "The regulatory roles and mechanism of transcriptional pausing." 

Biochemical Society Transactions 34(6): 1062. 

Landick, R. and C. Yanofsky (1987). "Isolation and structural analysis of the Escherichia 

colitrp leader paused transcription complex." Journal of Molecular Biology 196(2): 363-

377. 

Langer, D., J. Hain, P. Thuriaux and W. Zillig (1995). "Transcription in archaea: 

similarity to that in eucarya." Proceedings of the National Academy of Sciences 92(13): 

5768. 

Liljelund, P., S. Mariotte, J. M. Buhler and A. Sentenac (1992). "Characterization and 

mutagenesis of the gene encoding the A49 subunit of RNA polymerase A in 

Saccharomyces cerevisiae." Proceedings of the National Academy of Sciences 89(19): 

9302. 

Lin, C. W., B. Moorefield, J. Payne, P. Aprikian, K. Mitomo and R. H. Reeder (1996). 

"A novel 66-kilodalton protein complexes with Rrn6, Rrn7, and TATA-binding protein 

to promote polymerase I transcription initiation in Saccharomyces cerevisiae." Molecular 

and Cellular Biology 16(11): 6436. 

Lindsey-Boltz, L. A. and A. Sancar (2007). "RNA polymerase: The most specific damage 

recognition protein in cellular responses to DNA damage?" Proceedings of the National 

Academy of Sciences 104(33): 13213. 

Lisica, A., C. Engel, M. Jahnel, É. Roldán, E. A. Galburt, P. Cramer and S. W. Grill 

(2016). "Mechanisms of backtrack recovery by RNA polymerases I and II." Proceedings 

of the National Academy of Sciences 113(11): 2946. 

Liu, X., D. A. Bushnell, D. A. Silva, X. Huang and R. D. Kornberg (2011). "Initiation 

Complex Structure and Promoter Proofreading." Science 333(6042): 633. 

Mathew, R. and D. Chatterji (2006). "The evolving story of the omega subunit of bacterial 

RNA polymerase." Trends in Microbiology 14(10): 450-455. 

McMullan, G., A. R. Faruqi, D. Clare and R. Henderson (2014). "Comparison of optimal 

performance at 300keV of three direct electron detectors for use in low dose electron 

microscopy." Ultramicroscopy 147: 156-163. 

Miller, O. L. and B. R. Beatty (1969). "Visualization of Nucleolar Genes." Science 

164(3882): 955. 

Minakhin, L., S. Bhagat, A. Brunning, E. A. Campbell, S. A. Darst, R. H. Ebright and K. 

Severinov (2001). "Bacterial RNA polymerase subunit ω and eukaryotic RNA 

polymerase subunit RPB6 are sequence, structural, and functional homologs and promote 

RNA polymerase assembly." Proceedings of the National Academy of Sciences 98(3): 

892. 



110 

 

Mitchell, J. R., J. H. Hoeijmakers and L. J. Niedernhofer (2003). "Divide and conquer: 

Nucleotide excision repair battles cancer and ageing." Curr Opin Cell Biol(2): 232-240. 

Moorefield, B., E. A. Greene and R. H. Reeder (2000). "RNA polymerase I transcription 

factor Rrn3 is functionally conserved between yeast and human." Proceedings of the 

National Academy of Sciences 97(9): 4724. 

Moreno-Morcillo, M., N. M. Taylor, T. Gruene, P. Legrand, U. J. Rashid, F. M. Ruiz, U. 

Steuerwald, C. W. Müller and C. Fernández-Tornero (2014). "Solving the RNA 

polymerase I structural puzzle." Acta Crystallogr D Biol Crystallogr 70(10): 2570-2582. 

Mu, H., N. E. Geacintov, S. Broyde, J. E. Yeo and O. D. Schärer (2018). "Molecular basis 

for damage recognition and verification by XPC-RAD23B and TFIIH in nucleotide 

excision repair." DNA Repair 71: 33-42. 

Murakami, K., H. Elmlund, N. Kalisman, D. A. Bushnell, C. M. Adams, M. Azubel, D. 

Elmlund, Y. Levi-Kalisman, X. Liu, B. J. Gibbons, M. Levitt and R. D. Kornberg (2013). 

"Architecture of an RNA Polymerase II Transcription Pre-Initiation Complex." Science 

342(6159): 1238724. 

Murakami, K. S., S. Masuda, E. A. Campbell, O. Muzzin and S. A. Darst (2002). 

"Structural Basis of Transcription Initiation: An RNA Polymerase Holoenzyme-DNA 

Complex." Science 296(5571): 1285. 

Murakami, K. S., S. Masuda and S. A. Darst (2002). "Structural Basis of Transcription 

Initiation: RNA Polymerase Holoenzyme at 4 Å Resolution." Science 296(5571): 1280. 

Muse, G. W., D. A. Gilchrist, S. Nechaev, R. Shah, J. S. Parker, S. F. Grissom, J. 

Zeitlinger and K. Adelman (2007). "RNA polymerase is poised for activation across the 

genome." Nature genetics 39(12): 1507-1511. 

Neyer, S., M. Kunz, C. Geiss, M. Hantsche, V. V. Hodirnau, A. Seybert, C. Engel, M. P. 

Scheffer, P. Cramer and A. S. Frangakis (2016). "Structure of RNA polymerase I 

transcribing ribosomal DNA genes." Nature 540: 607-610. 

Nogales, E. and S. H. Scheres (2015). "Cryo-EM: A Unique Tool for the Visualization of 

Macromolecular Complexity." Molecular Cell 58(4): 677-689. 

Ogi, T. and A. R. Lehmann (2006). "The Y-family DNA polymerase κ (pol κ) functions 

in mammalian nucleotide-excision repair." Nature Cell Biology 8(6): 640-642. 

Pani, B. and E. Nudler (2017). "Mechanistic insights into transcription coupled DNA 

repair." DNA Repair 56: 42-50. 

Perdew, G. H., J. P. VandenHeuvel, and J. M. Petters (2006). Regulation of Gene 

Expression: molecular mechanism. 

Petes, T. D. (1979). "Yeast ribosomal DNA genes are located on chromosome XII." 

Proceedings of the National Academy of Sciences of the United States of America 76(1): 

410-414. 



111 

 

Pettersen, E. F., T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, 

T. E. Ferrin (2004). "UCSF Chimera--a visualization system for exploratory research and 

analysis." J Comput Chem 25(13): 1605-1612. 

Peyresaubes, F., C. Zeledon, L. Guintini, R. Charton, A. Muguet and A. Conconi (2017). 

"RNA Polymerase-I dependent transcription-coupled nucleotide excision repair of UV-

Induced DNA lesions at transcription termination sites, in Saccharomyces cerevisiae." 

Photochem Photobiol 93: 363-374. 

Peyroche, G., P. Milkereit, N. Bischler, H. Tschochner, P. Schultz, A. Sentenac, C. Carles 

and M. Riva (2000). "The recruitment of RNA polymerase I on rDNA is mediated by the 

interaction of the A43 subunit with Rrn3." The EMBO Journal 19(20): 5473. 

Pilsl, M., C. Crucifix, G. Papai, F. Krupp, R. Steinbauer, J. Griesenbeck, P. Milkereit, H. 

Tschochner and P. Schultz (2016). "Structure of the initiation-competent RNA 

polymerase I and its implication for transcription." Nature Communications 7: 12126. 

Plaschka, C., M. Hantsche, C. Dienemann, C. Burzinski, J. Plitzko and P. Cramer (2016). 

"Transcription initiation complex structures elucidate DNA opening." Nature 533: 353. 

Prakash, S. and L. Prakash (2000). "Nucleotide excision repair in yeast." Mutation 

Research/Fundamental and Molecular Mechanisms of Mutagenesis 451(1): 13-24. 

Ravanat, J. L., T. Douki and J. Cadet (2001). "Direct and indirect effects of UV radiation 

on DNA and its components." J Photochem Photobiol B 63: 88-102. 

Rigaut, G., A. Shevchenko, B. Rutz, M. Wilm, M. Mann and B. Séraphin (1999). "A 

generic protein purification method for protein complex characterization and proteome 

exploration." Nat Biotechnol 17(10): 1030-1032. 

Rohou, A., and N. Grigorieff (2015). "CTFFIND4: Fast and accurate defocus estimation 

from electron micrographs." J Struct Biol 192(2): 216-221. 

Russell, J. and J. C. Zomerdijk (2005). "RNA-polymerase-I-directed rDNA transcription, 

life and works." Trends in Biochemical Sciences 30(2): 87-96. 

Sadian, Y., L. Tafur, J. Kosinski, A. J. Jakobi, R. Wetzel, K. Buczak, W. J. H. Hagen, M. 

Beck, C. Sachse and C. W. Müller (2017). "Structural insights into transcription initiation 

by yeast RNA polymerase I." The EMBO Journal 36(18): 2698. 

Sainsbury, S., C. Bernecky and P. Cramer (2015). "Structural basis of transcription 

initiation by RNA polymerase II." Nature Reviews Molecular Cell Biology 16: 129. 

Sancar, A. and J. T. Reardon (2004). Nucleotide Excision Repair in E. Coli and Man. 

Advances in Protein Chemistry, Academic Press. 69: 43-71. 

Scheres, S. H. W., H. Gao, M. Valle, G. T. Herman, P. P. B. Eggermont, J. Frank and J.-

M. Carazo (2007). "Disentangling conformational states of macromolecules in 3D-EM 

through likelihood optimization." Nature Methods 4: 27. 



112 

 

Schnapp, A., G. Schnapp, B. Erny and I. Grummt (1993). "Function of the growth-

regulated transcription initiation factor TIF-IA in initiation complex formation at the 

murine ribosomal gene promoter." Molecular and Cellular Biology 13(11): 6723. 

Schneider, D. A. (2011). "RNA polymerase I activity is regulated at multiple steps in the 

transcription cycle: recent insights into factors that influence transcription elongation." 

Gene 493(2): 176-184. 

Schneider, D. A., A. Michel, M. L. Sikes, L. Vu, J. A. Dodd, S. Salgia, Y. N. Osheim, A. 

L. Beyer and M. Nomura (2007). "Transcription Elongation by RNA Polymerase I Is 

Linked to Efficient rRNA Processing and Ribosome Assembly." Molecular Cell 26(2): 

217-229. 

Sheres, S. H. (2010). "Classification of structural heterogeneity by maximum-likelihood 

methods." Methods Enzymol 482: 295-320. 

Sheres, S. H. (2012). "RELION: implementation of a Bayesian approach to cryo-EM 

structure determination." J Struct Biol 180(3): 519-530. 

Sigworth, F. J., P. C. Doerschuk, J. M. Carazo and S. H. W. Scheres (2010). "An 

introduction to maximum-likelihood methods in cryo-EM." Methods in enzymology 482: 

263-294. 

Silva, D. A., D. R. Weiss, F. Pardo Avila, L.-T. Da, M. Levitt, D. Wang and X. Huang 

(2014). "Millisecond dynamics of RNA polymerase II translocation at atomic resolution." 

Proceedings of the National Academy of Sciences 111: 7665-7670. 

Steffan, J. S., D. A. Keys, J. A. Dodd and M. Nomura (1996). "The role of TBP in rDNA 

transcription by RNA polymerase I in Saccharomyces cerevisiae: TBP is required for 

upstream activation factor-dependent recruitment of core factor." Genes & Development 

10(20): 2551-2563. 

Steitz, T. A. (2009). "The structural changes of T7 RNA polymerase from transcription 

initiation to elongation." Current opinion in structural biology 19(6): 683-690. 

Strauss, B. S. (1991). "The ‘A rule’ of mutagen specificity: A consequence of DNA 

polymerase bypass of non-instructional lesions?" BioEssays 13(2): 79-84. 

Sung, P., S. N. Guzder, L. Prakash and S. Prakash (1996). "Reconstitution of TFIIH and 

Requirement of Its DNA Helicase Subunits, Rad3 and Rad25, in the Incision Step of 

Nucleotide Excision Repair." Journal of Biological Chemistry 271(18): 10821-10826. 

Sung, P., L. Prakash, S. W. Matson and S. Prakash (1987). "RAD3 protein of 

Saccharomyces cerevisiae is a DNA helicase." Proceedings of the National Academy of 

Sciences 84(24): 8951. 

Sydow, J. F., F. Brueckner, A. C. M. Cheung, G. E. Damsma, S. Dengl, E. Lehmann, D. 

Vassylyev and P. Cramer (2009). "Structural Basis of Transcription: Mismatch-Specific 

Fidelity Mechanisms and Paused RNA Polymerase II with Frayed RNA." Molecular Cell 

34(6): 710-721. 



113 

 

Tafur, L., Y. Sadian, J. Hanske, R. Wetzel, F. Weis and C. W. Müller (2019). "The cryo-

EM structure of a 12-subunit variant of RNA polymerase I reveals dissociation of the 

A49-A34.5 heterodimer and rearrangement of subunit A12.2." eLife 8: e43204. 

Tafur, L., Y. Sadian, N. A. Hoffmann, A. J. Jakobi, R. Wetzel, W. J. Hagen, C. Sachse 

and C. W. Müller (2016). "Molecular structures of transcribing RNA polymerase I." Mol 

Cell 64: 1135-1143. 

Taylor, J.-S. (2002). "New structural and mechanistic insight into the A-rule and the 

instructional and non-instructional behavior of DNA photoproducts and other lesions." 

Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 510(1): 55-

70. 

Tornaletti, S., and P. C. Hanawalt (1999). "Effect of DNA lesions on transcription 

elongation." Biochimie 81: 139-146. 

Torreira, E., J. A. Louro, I. Pazos, N. González-Polo, D. Gil-Carton, A. G. Duran, S. Tosi, 

O. Gallego, O. Calvo and C. Fernández-Tornero (2017). "The dynamic assembly of 

distinct RNA polymerase I complexes modulates rDNA transcription." Elife 6. 

Toulokhonov, I., J. Zhang, M. Palangat and R. Landick (2007). "A Central Role of the 

RNA Polymerase Trigger Loop in Active-Site Rearrangement during Transcriptional 

Pausing." Molecular Cell 27(3): 406-419. 

Vannini, A. and P. Cramer (2012). "Conservation between the RNA Polymerase I, II, and 

III Transcription Initiation Machineries." Molecular Cell 45(4): 439-446. 

Verhage, R. A., P. Van de Putte and J. Brouwer (1996). "Repair of rDNA in 

Saccharomyces cerevisiae: RAD4-independent strand-specific nucleotide excision repair 

of RNA polymerase I transcribed genes." Nucleic acids research 24(6): 1020-1025. 

Walmacq, C., A.C. Cheung, M. L. Kireeva, L. Lubkowska, C. Ye, D. Gotte, J. N. 

Strathern, T. Carell, P. Cramer and M. Kashlev (2012). "Mechanism of translesion 

transcription by RNA polymerase II and its role in cellular resistance to DNA damage." 

Cell 46: 18-29. 

Walmacq, C., L. Wang, J. Chong, K. Scibelli, L. Lubkowska, A. Gnatt, P. J. Brooks, D. 

Wang and M. Kashlev (2015). "Mechanism of RNA polymerase II bypass of oxidative 

cyclopurine DNA lesions." Proceedings of the National Academy of Sciences 112(5): 

E410. 

Wang, D., D. A. Bushnell, K. D. Westover, C. D. Kaplan and R. D. Kornberg (2006). 

"Structural basis of transcription: Role of the trigger loop in substrate specificity and 

catalysis." Cell 127: 941-954. 

Wang, W., C. Walmacq, J. Chong, M. Kashlev and D. Wang (2018). "Structural basis of 

transcriptional stalling and bypass of abasic DNA lesion by RNA polymerase II." 

Proceedings of the National Academy of Sciences 115(11): E2538. 

Wang, W., J. Xu, J. Chong and D. Wang (2018). "Structural basis of DNA lesion 

recognition for eukaryotic transcription-coupled nucleotide excision repair." DNA Repair 

71: 43-55. 



114 

 

Wei, Y.-y. and H.-T. Chen (2018). "Functions of the TFIIE-Related Tandem Winged-

Helix Domain of Rpc34 in RNA Polymerase III Initiation and Elongation." Molecular 

and Cellular Biology 38(4): e00105-00117. 

Weixlbaumer, A., K. Leon, R. Landick and Seth A. Darst (2013). "Structural Basis of 

Transcriptional Pausing in Bacteria." Cell 152(3): 431-441. 

Werner, F. (2007). "Structure and function of archaeal RNA polymerases." Molecular 

Microbiology 65(6): 1395-1404. 

Werner, F. and D. Grohmann (2011). "Evolution of multisubunit RNA polymerases in 

the three domains of life." Nature Reviews Microbiology 9: 85. 

Wind, M. and D. Reines (2000). "Transcription elongation factor SII." BioEssays : news 

and reviews in molecular, cellular and developmental biology 22(4): 327-336. 

Wirth, N., J. Gross, H. M. Roth, C. N. Buechner, C. Kisker and I. Tessmer (2016). 

"Conservation and Divergence in Nucleotide Excision Repair Lesion Recognition." The 

Journal of biological chemistry 291(36): 18932-18946. 

Xu, J., I. Lahiri, W. Wang, A. Wier, M. A. Cianfrocco, J. Chong, A. A. Hare, P. B. 

Dervan, F. DiMaio, A. E. Leschziner and D. Wang (2017). "Structural basis for the 

initiation of eukaryotic transcription-coupled DNA repair." Nature 551: 653. 

Xu, L., W. Wang, J. Wu, J. H. Shin, P. Wang, I. C. Unarta, J. Chong, Y. Wang and D. 

Wang (2017). "Mechanism of DNA alkylation-induced transcriptional stalling, lesion 

bypass, and mutagenesis." Proceedings of the National Academy of Sciences 114(34): 

E7082. 

Xu, Y., C. Bernecky, C.-T. Lee, K. C. Maier, B. Schwalb, D. Tegunov, J. M. Plitzko, H. 

Urlaub and P. Cramer (2017). "Architecture of the RNA polymerase II-Paf1C-TFIIS 

transcription elongation complex." Nature Communications 8: 15741. 

Yang, Y., J. Hu, C. P. Selby, W. Li, A. Yimit, Y. Jiang and A. Sancar (2019). "Single-

nucleotide resolution analysis of nucleotide excision repair of ribosomal DNA in humans 

and mice." Journal of Biological Chemistry 294(1): 210-217. 

Yates, L. A., R. J. Aramayo, N. Pokhrel, C. C. Caldwell, J. A. Kaplan, R. L. Perera, M. 

Spies, E. Antony and X. Zhang (2018). "A structural and dynamic model for the assembly 

of Replication Protein A on single-stranded DNA." Nature Communications 9(1): 5447. 

Zhang, G., E. A. Campbell, L. Minakhin, C. Richter, K. Severinov and S. A. Darst (1999). 

"Crystal Structure of Thermus aquaticus Core RNA Polymerase at 3.3 Å Resolution." 

Cell 98(6): 811-824. 

Zhang, K. (2016). "Gctf:Real-time CTF determination and correction." J Struct Biol 193: 

1-12. 

Zhang, N., J. Schäfer, A. Sharma, L. Rayner, X. Zhang, R. Tuma, P. Stockley and M. 

Buck (2015). "Mutations in RNA Polymerase Bridge Helix and Switch Regions Affect 

Active-Site Networks and Transcript-Assisted Hydrolysis." Journal of Molecular Biology 

427(22): 3516-3526. 



115 

 

CONTRIBUTION TO SCIENTIFIC ARTICLES  

Sanz-Murillo, M., J. Xu, G. A. Belogurov, O. Calvo, D. Gil-Carton, M. Moreno-Morcillo, 

D. Wang and C. Fernández-Tornero (2018). "Structural basis of RNA polymerase I 

stalling at UV light-induced DNA damage." Proceedings of the National Academy of 

Sciences 115: 8972-8977. 

 


	Portada
	AGRADECIMIENTOS
	SUMMARY
	PRESENTACIÓN
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABBREVIATIONS
	INTRODUCTION
	OBJECTIVES
	MATERIALS AND METHODS
	RESULTS
	DISCUSSION
	CONCLUSIONS
	CONCLUSIONES
	BIBLIOGRAPHY

