
Engineering Scalable Modelling
Languages

Antonio Garmendia Jorge

Supervisors: Esther Guerra, Ph.D
Juan de Lara, Ph.D

Department of Computer Science
Autonomous University of Madrid

This dissertation is submitted for the degree of
Doctorado en Ingeniería Informática y Telecomunicaciones

August 2019

Abstract

Model-Driven Engineering (MDE) aims at reducing the cost of system development
by raising the level of abstraction at which developers work. MDE-based solutions
frequently involve the creation of Domain-Specific Modelling Languages (DSMLs).
While the definition of DSMLs and their (sometimes graphical) supporting environments
are recurring activities in MDE, they are mostly developed ad-hoc from scratch.
The construction of these environments requires high expertise by developers, which
currently need to spend large efforts for their construction.

This thesis focusses on the development of scalable modelling environments for
DSMLs based on patterns. For this purpose, we propose a catalogue of modularity
patterns that can be used to extend a modelling language with services related to
modularization and scalability. More specifically, these patterns allows defining model
fragmentation strategies, scoping and visibility rules, model indexing services, and
scoped constraints. Once the patterns have been applied to the meta-model of a
modelling language, we synthesize a customized modelling environment enriched with
the defined services, which become applicable to both existing monolithic legacy models
and new models.

A second contribution of this thesis is a set of concepts and technologies to facilitate
the creation of graphical editors. For this purpose, we define heuristics which identify
structures in the DSML abstract syntax, and automatically assign their diagram
representation. Using this approach, developers can create a graphical representation
by default from a meta-model, which later can be customised.

These contributions have been implemented in two Eclipse plug-ins called EMF-
Splitter and EMF-Stencil. On one hand, EMF-Splitter implements the catalogue of
modularity patterns and, on the other hand, EMF-Stencil supports the heuristics and
the generation of a graphical modelling environment. Both tools were evaluated in
different case studies to prove their versatility, efficiency, and capabilities.

iv

Keywords: Model-Driven Engineering, Meta-Modelling Patterns, Domain-Specific
Modelling Languages, Meta-Modelling, Graphical Modelling Environments, Scalability,
Modularity

Resumen

El Desarrollo de Software Dirigido por Modelos (MDE, por sus siglas en inglés) tiene
como objetivo reducir los costes en el desarrollo de aplicaciones, elevando el nivel de
abstracción con el que actualmente trabajan los desarrolladores. Las soluciones basadas
en MDE frecuentemente involucran la creación de Lenguajes de Modelado de Dominio
Específico (DSML, por sus siglas en inglés). Aunque la definición de los DSMLs y sus
entornos gráficos de modelado son actividades recurrentes en MDE, actualmente en
la mayoría de los casos se desarrollan ad-hoc desde cero. La construcción de estos
entornos requiere una alta experiencia por parte de los desarrolladores, que deben
realizar un gran esfuerzo para construirlos.

Esta tesis se centra en el desarrollo de entornos de modelado escalables para DSML
basados en patrones. Para ello, se propone un catálogo de patrones de modularidad que
se pueden utilizar para extender un lenguaje de modelado con servicios relacionados
con la modularización y la escalabilidad. Específicamente, los patrones permiten definir
estrategias de fragmentación de modelos, reglas de alcance y visibilidad, servicios de
indexación de modelos y restricciones de alcance. Una vez que los patrones se han
aplicado al meta-modelo de un lenguaje de modelado, se puede generar automáticamente
un entorno de modelado personalizado enriquecido con los servicios definidos, que
se vuelven aplicables tanto a los modelos monolíticos existentes, como a los nuevos
modelos.

Una segunda contribución de esta tesis es la propuesta de conceptos y tecnologías
para facilitar la creación de editores gráficos. Para ello, definimos heurísticas que
identifican estructuras en la sintaxis abstracta de los DSMLs y asignan automáticamente
su representación en el diagrama. Usando este enfoque, los desarrolladores pueden
crear una representación gráfica por defecto a partir de un meta-modelo.

Estas contribuciones se implementaron en dos plug-ins de Eclipse llamados EMF-
Splitter y EMF-Stencil. Por un lado, EMF-Splitter implementa el catálogo de patrones
y, por otro lado, EMF-Stencil implementa las heurísticas y la generación de un entorno

vi

de modelado gráfico. Ambas herramientas se han evaluado con diferentes casos de
estudio para demostrar su versatilidad, eficiencia y capacidades.

Palabras clave: Desarrollo Dirigido por Modelos, Patrones de Meta-modelado,
Lenguajes de Modelado de Dominio Específico, Entornos Gráficos de Modelado, Escal-
abilidad, Modularidad

Table of contents

Abstract iii

Resumen v

List of figures xi

List of tables xv

Abbreviations xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Technical Contributions . 4

1.2.1 Publications . 5
1.3 Research Visits . 7
1.4 Support . 7
1.5 Organization . 8

2 Background and Related Work 9
2.1 Model-Driven Engineering: Basic Concepts 9

2.1.1 Challenges . 17
2.2 Related Work . 18

2.2.1 Modelling Technologies . 18
2.2.2 Systematic Development of Domain-Specific Modelling Languages 20
2.2.3 Model Scalability and Modularity 22
2.2.4 Frameworks to Create Graphical Editors 24

2.3 Summary and Conclusions . 28

3 Patterns 29
3.1 Types of Patterns . 29

viii Table of contents

3.2 Pattern Specification . 31
3.3 Pattern Services . 35
3.4 Patterns Variants . 36
3.5 Summary and Conclusions . 37

4 A Pattern-based Approach to Language Modularity 39
4.1 Motivation and Running Example . 39
4.2 A Pattern-based Approach to Modularity of DSMLs 41
4.3 Catalogue of Modularity Patterns and Services 42

4.3.1 Model Fragmentation . 42
4.3.2 Reference Scoping . 44
4.3.3 Visibility . 46
4.3.4 Indexing . 47
4.3.5 Scoped Validation . 48

4.4 Summary and Conclusions . 52

5 Support for Graphical and Tabular Concrete Syntax 53
5.1 Motivation . 53
5.2 Graphical Concrete Syntax . 54

5.2.1 Heuristics . 56
5.2.2 Read-only Representation Style for Collections 61

5.3 Tabular Concrete Syntax . 63
5.4 Graphical Representation of a Fragmented Model 64
5.5 Summary and Conclusions . 65

6 Tool Support 67
6.1 DSL-tao . 67
6.2 EMF-Splitter . 70
6.3 EMF-Stencil . 75
6.4 Summary and Conclusions . 79

7 Evaluation 81
7.1 Applicability of the Fragmentation Pattern 81

7.1.1 Threats to Validity . 85
7.2 Fragmentation Scalability . 85

7.2.1 Synthetic Models . 86
7.2.2 Realistic Large Models . 90
7.2.3 Threats to Validity . 92

Table of contents ix

7.3 Comparison with Third Party Tools . 93
7.3.1 Fragmentation vs. Monolithic Models and EMF Tree Editor . . 93
7.3.2 Fragmentation vs. Database Persistence Layer 95
7.3.3 Fragmentation vs. Gephi . 97
7.3.4 Threats to validity . 98

7.4 Performance of Scoped Constraints . 98
7.4.1 Full Constraint Validation in Monolithic and Fragmented Models 100
7.4.2 Effect of Number of Fragments on Scoped Validation Performance101
7.4.3 Comparison of Full Validation and Incremental Validation . . . 102
7.4.4 Effect of a Model Indexer on Scoped Validation Performance . 103
7.4.5 Discussion and Threats to Validity 105

7.5 Case Studies . 105
7.5.1 CAEX . 105
7.5.2 Henshin . 109
7.5.3 Cloud Robotics System . 113

7.6 Applications . 115
7.6.1 Scalable Model Exploration . 116
7.6.2 Creating Graphical Environments by Example 120
7.6.3 Enabling Mobile Domain-Specific Modelling 121

7.7 Summary and Conclusions . 122

8 Conclusions and Future Work 125
8.1 Conclusions . 125
8.2 Future Work . 127

9 Conclusiones y Trabajo Futuro 129
9.1 Conclusiones . 129
9.2 Trabajo Futuro . 131

References 133

Appendix A Scoped constraints for Wind Turbines meta-model 143

Appendix B Scoped constraints for CAEX 147

List of figures

2.1 Model-Driven Engineering overview . 10
2.2 OMG 4-layer architecture . 11
2.3 Meta-model excerpt for Wind Turbines 12
2.4 Abstract syntax of a Wind Turbine model 14
2.5 Graphical representation of a WT model 15
2.6 Example of M2M transformation . 16
2.7 Example of M2T transformation . 16
2.8 Model-Driven Engineering technologies 18
2.9 Meta-model excerpt with the basic concepts of the Ecore meta-modelling

language . 19

3.1 (a) Example of pattern application to domain meta-model. (b) Visual-
ization of applied pattern . 32

3.2 (a) Example of application of pattern with field roles without type. (b)
Visualization of applied pattern . 33

3.3 State machine pattern and some valid instantiations. 34
3.4 (a) Schema of pattern services. (b,c,d) Services in the running example.

(e) Service composition. 35
3.5 Feature model for state machine pattern variants. 37

4.1 Overview of our approach to build modelling environments with modu-
larity services . 42

4.2 (a) Fragmentation pattern. (b) Applying the fragmentation pattern to
the running example . 43

4.3 (a) Scoping pattern. (b) Applying same package scope to reference
Component.states. (c) Effect of pattern application on a fragmented model. 45

4.4 (a) Visibility pattern. (b) Applying same package visibility to class
StateMachine. (c) Effect of pattern application on a fragmented model . 46

xii List of figures

4.5 (a) Indexing pattern. (b) Applying pattern to class StateMachine 47
4.6 A fragmented model where a scoped constraint is to be evaluated on

the InPort i1 . 48
4.7 (a) Scoped validation pattern. (b) Defining a scoped constraint for class

InPort . 52

5.1 GraphicRepresentation meta-model . 55
5.2 Mapping between GraphicRepresentation meta-model and Ecore meta-

model (classes of Ecore are shaded). 56
5.3 (a) Excerpt of WT meta-model. (b) Inferred graphical representation

for classes. (c) Visualization of a graphical representation. 58
5.4 (a) Excerpt of WT meta-model. (b) Inferred labels. (c) Visualization of

graphical representation. 58
5.5 (a) Excerpt of WT meta-model. (b) Graphical representation of composi-

tions using the link strategy. (c) Visualization of graphical representation. 59
5.6 (a) Excerpt of WT meta-model. (b) Graphical representation of compo-

sitions using the containment strategy. (c) Visualization of graphical
representation. 60

5.7 (a) Excerpt of WT meta-model. (b) Graphical representation of compo-
sitions using the affixed strategy. (c) Visualization of graphical repre-
sentation. 60

5.8 (a) Synthetic meta-model. (b) Mapping to create a LinkedList visualiza-
tion. (c) Visualization using the LinkedList representation. 62

5.9 (a) Synthetic meta-model. (b) Mapping to create a Tree visualization.
(c) Visualization using the Tree representation. 62

5.10 (a) Synthetic meta-model. (b) Mapping to create a Loop visualization.
(c) Visualization using the Loop representation. 63

5.11 (a) Synthetic meta-model. (b) Mapping to create a Conditional visualiza-
tion. (c) Visualization using the Conditional representation. 63

5.12 Tabular representation meta-model . 64
5.13 (a) Excerpt of WT meta-model. (b) Mapping to create a tabular

visualization of state machines . (c) Example of a model (d) Visualization
of state machines in tabular form. 64

5.14 Graphical representation of a fragmented model 65

6.1 Excerpt of DSL-tao’s pattern meta-model 68

List of figures xiii

6.2 Using DSL-tao. (1, 2) Applying the StateMachine pattern. (3) Resulting
meta-model. (4) Services. (5) Applied patterns. 70

6.3 Architecture of EMF-Splitter . 71
6.4 Application of the fragmentation pattern using DSL-tao 72
6.5 Dedicated wizard for the application of reference scoping pattern 73
6.6 Dedicated wizard for the visibility pattern application 73
6.7 Dedicated wizard for the indexing pattern application 74
6.8 Dedicated wizard for the scoped validation pattern application 74
6.9 Modelling environment synthesized for the running example 75
6.10 Architecture of EMF-Stencil . 76
6.11 Dedicated wizard for assigning a graphical concrete syntax. Step 1:

Customize heuristics . 77
6.12 Dedicated wizard for assigning a graphical concrete syntax. Step 2:

customization of inferred concrete syntax. 78
6.13 Dedicated wizard for assigning a graphical concrete syntax. Step 3:

customization of appearance of nodes and edges. 78
6.14 Generated modelling environment for the WT meta-model. 79

7.1 Containment depth across the repositories, and distribution of packages
and recursive packages according to the depth. 83

7.2 Meta-model size (in classes) vs containment depth. 84
7.3 Excerpt of the meta-model of one of the MONDO case studies, with

fragmentation strategy annotations. 86
7.4 Results of splitting/merging IKERLAN’s synthetic models. 87
7.5 Effect of the number of files created in split time. Average times of all

models, with sizes in the range 100 - 6.000 elements. 89
7.6 Effect of the number of files in split time. Average times of a set of

models of size 6.000. 89
7.7 JDTAST meta-model, with fragmentation strategy annotations. 90
7.8 Environment generated by EMF-Splitter for the JDTAST meta-model. 91
7.9 Split/merge times over the JDTAST models. 92
7.10 Time required to open the model with EMF’s reflective tree editor (grey

columns to the left) and EMF-Splitter (black columns to the right). . . 94
7.11 Time required to split the models with EMF-Splitter (grey columns to

the left) and import the models into CDO (black columns to the right). 95
7.12 Time required by CDO to import fragmented (grey columns to the left),

and monolithic models (black columns to the right). 96

xiv List of figures

7.13 Constraint validation times in monolithic and fragmented models. . . . 100
7.14 Effect of the number of files on the scoped validation performance. . . . 101
7.15 Comparison of incremental and full scoped validation times. 102
7.17 Building a modelling environment for CAEX. 106
7.18 Environment generated for CAEX. 108
7.19 Comparison of full validation, incremental validation and baseline for

CAEX. 108
7.20 Application of the fragmentation to the Henshin meta-model. 109
7.21 Mapping Henshin meta-model elements to diagram elements. 110
7.22 Customization of the style diagram elements. 111
7.23 Generated Henshin modelling environment. 113
7.24 CRALA meta-model in the DSL-tao environment. 114
7.25 Fragmentation Pattern wizard contributed by EMF-Splitter. 114
7.26 Wizard page 1 contributed by EMF-Stencil. 115
7.27 Wizard page 2 contributed by EMF-Stencil. 116
7.28 Graphical modelling environment generated by EMF-Splitter and EMF-

Stencil. 116
7.29 Instantiation of the pattern and application to the KDM meta-model

(top). A structured model and its physical deployment (bottom). 118
7.30 Visualisation of a KDM model using SAMPLER. 119
7.31 Generating a graphical modelling editor from examples using metaBup

and EMF-Stencil. 121
7.32 Meta-model for the home networking domain (back). Wizard to define

the graphical representation (front). 122
7.33 Screenshot of the Sirius desktop client. 123

List of tables

2.1 Summary of tools to handle large models based on databases. 24
2.2 Summary of tools to develop graphical editors. 27

7.1 Results of splitting and merging the JDTAST models. 91
7.2 Time required (s) to open the biggest fragment model of each project

with the tree editor. 94
7.3 Comparison between opening a model with Gephi, splitting the model

with EMF-Splitter, and loading the biggest fragment produced. 97
7.4 Characteristics of scoped constraints used in the evaluation of performance. 99
7.5 Characteristics of scoped constraints used in the case study (CAEX). . 107
7.6 Mapping between Henshin Unit types and representation styles 111
7.7 Necessary number of loaded objects to explore the fragmented models. 119
7.8 Resources contained by the models at each hierarchical stage. 120

Abbreviations

ADM Architecture-Driven Modernization. 10

ATL ATLAS Transformation Language. 20

CDO Connected Data Objects. 23, 24, 93, 94, 96, 121

CMOF Complete MOF. 10

DSL Domain-Specific Language. 20, 21, 117

DSML Domain-Specific Modelling Language. 1–4, 7–10, 12, 17, 18, 20–22, 25, 27,
29–32, 36–38, 42, 51, 52, 54, 55, 60, 62, 65–68, 76, 78, 110, 116, 117, 120, 122

EMF Eclipse Modeling Framework. 2, 18–20, 24–26, 39, 68, 74, 79, 91, 97, 104, 111,
114, 116, 121

EMOF Essential MOF. 10, 11, 18

EMP Eclipse Modeling Project. 18–20

ETL Epsilon Transformation Language. 20

GMF Graphical Modeling Framework. 25, 39

JDT Java Development Tools. 42

MDA Model-Driven Architecture. 9, 10

MDE Model-Driven Engineering. 1, 2, 7, 9, 10, 12, 13, 15, 17, 18, 20, 21, 24, 25, 29,
120

MOF Meta-Object Facility. 10, 11, 20

xviii Abbreviations

OCL Object Constraint Language. 12–14, 19, 20, 22, 33, 36, 39, 44, 45, 50, 53, 66, 67,
71, 122

OMG Object Management Group. 9–11, 18, 20, 113

OOP Object-Oriented Programming. 9

SDF Syntax Definition Formalism. 20

UML Unified Modelling Language. 2, 10, 11, 17, 19, 91

XMI XML Metadata Interchange. 11, 12, 19, 22, 86, 91, 95

XML Extensible Markup Language. 11, 12, 26

Chapter 1

Introduction

The purpose of this chapter is to provide a general overview of the dissertation.
Section 1.1 describes the motivation of this work, regarding difficulties that have been
detected in software development when the Model-Driven Engineering (MDE) paradigm
is applied, and also the shortcomings addressed in this thesis. Next, Section 1.2
summarizes the publications derived from this work. Section 1.3 briefly reports on a
research stay performed during the thesis. Section 1.4 describes the funding received
for the realization of this thesis and finally, Section 1.5 explains the organization of the
rest of this document.

1.1 Motivation
The MDE paradigm proposes software development by the use of models of a higher
level of abstraction than code [117]. Hence, models are used to automate many
activities, like code generation, system simulation or testing. One of the important
concepts within MDE are Domain-Specific Modelling Languages (DSMLs), which
enable modelling using primitives of a particular domain [67].

The creation of DSMLs is recurrent in MDE, for which one needs to describe their
abstract and concrete syntax, their semantics, and developing a suitable modelling
environment for them. The domain concepts are reflected in the abstract syntax
and formally described by defining a meta-model. The concrete syntax is defined by
mapping each element of the meta-model with one or several representations, either
graphical, textual or a mix of both. The semantics define the reality represented by
the model, which is heavily domain-specific, for example: the network configuration of
a computer system or a relationship of debts between banks [47]. The availability of
the corresponding modelling environment facilitates the creation of valid models of

2 Introduction

the DSML and other basic functionalities like model persistence or model consistency
checking.

Software applications are becoming increasingly complex, and MDE aims to reduce
their production costs [67, 131]. However, while models have a higher level of abstraction
than code, for large systems, models may become large and unwieldy as well. There
are different enabling technologies for MDE, being the Eclipse Modeling Framework
(EMF) [118] a popular framework with a set of compatible plug-ins to facilitate
the creation of DSMLs. However, the existing technologies, including EMF, lack
of appropriate mechanisms for fragmenting models. Hence, models are generally
monolithic, making them costly to process by tools and difficult to understand by
people.

With respect to models, there is an absence of systems facilitating (meta-)model
modularity. Therefore, the composition, extension and re-utilization of (meta-)models,
becomes difficult. Although some environments provide ad-hoc modularization services
for specific modelling languages (e.g.,the Unified Modelling Language (UML)) [5, 39,
61, 85, 90, 102], these are not readily available to developers of new DSMLs. Instead,
developers need to program the required services manually for the platform where
the DSML environment is being built. Since this is a complex task that requires expert
knowledge, most environments for DSMLs end up lacking these features, which hinders
the scalability of modelling in practice. Modularity in DSMLs would bring as a benefit
a scalable approach to the construction of software models through the composition of
smaller model components which can be implemented separately in a simpler way [103].
Another advantage of modularity includes increased flexibility and reuse possibilities,
facilitating distributed teamwork and version control.

Regarding tools, there are software frameworks that facilitate the development
of textual and graphical environments [13, 67, 115], but the creation of DSMLs is
mostly an ad-hoc process lacking the ability to build on existing knowledge coming
from the construction of similar DSMLs. A further difficulty is the fact that graphical
frameworks do not scale well and do not support scalability mechanisms, beyond layers
and hierarchical drill down to describe the different aspects of a model.

Altogether, current approaches to DSML development present the following short-
comings:

• Lack of modularity mechanisms for models, which prevents the creation of very
large models fragmented in smaller chunks.

• Graphical modelling environments do not scale well.

1.1 Motivation 3

• The development of modelling environments for DSMLs is an ad-hoc process,
which requires deep expertise in the specific language development framework
used, sometimes requiring manual programming.

• The definition of services for the modelling environments (including modularity
services) needs to be created ad-hoc by manual programming.

In order to alleviate the identified problems, in this thesis, we propose an approach
to define modularity services for DSMLs, allowing the definition of complex models
from sub-models which are easier to process and reuse. The approach is based on a
catalogue of patterns that contribute services to the DSMLs, including modularity and
concrete syntax services. This way, the construction of DSMLs environments becomes
a systematic process. The patterns currently implemented are:

• Fragmentation: this pattern provides modularity for models, so that models
can be fragmented, and their parts organized into folders and files in the file
system.

• Reference scoping: this pattern applied to a reference reduces the candidate
objects from other fragments to be referenced.

• Visibility: this pattern provides access control to the elements of a fragment
from the outside.

• Indexing: it enables the creation of object indices by selected fields. These
indices can be used for efficient object access [46].

• Scoped validation: it allows the efficient evaluation of integrity constraints
upon a change in a fragmented model, considering only the subset of objects
within the model that has changed.

This systematic approach has been evaluated by implementing case studies such
as Wind Turbines [53], Henshin [4] and Computer Aided Engineering Exchange
(CAEX) [87]. In addition to this, performance tests were performed on the use
of the fragmentation and the scoped validation patterns. On one hand, we measure the
time of fragmenting on realistic and synthetic models, also comparing its usefulness
with third party tools. On the other hand, we evaluate the use of constraints in
fragmented models and compare their evaluation time with the standard evaluation of
constraints.

4 Introduction

As an addition to the previous approach, we developed two patterns which support
the graphical and tabular concrete syntax. We implemented a set of heuristics to
simplify the creation of DSMLs for the graphical representation pattern. In this way,
users can obtain a concrete syntax through the definition of a meta-model. These
patterns are compatible with monolithic and fragmented models, but the latter provides
a graphical modelling environment that scales better. We evaluated the approach
creating modelling environments that mimic existing, monolithic ones, such as Henshin,
CAEX and Wind Turbines.

1.2 Technical Contributions
In addition to the above mentioned fundamental contributions, this thesis also makes
the following technical contributions:

1. The development of an Eclipse plug-in called EMF-Splitter for the development
of DSMLs. EMF-Splitter implements the described catalogue of modularity
patterns for fragmentation, reference scoping, visibility, indexing and scoped
validation.

2. The development of an Eclipse plug-in called EMF-Stencil that implements the
patterns and heuristics related to the graphical syntax of DSMLs.

3. The integration of EMF-Splitter and EMF-Stencil into DSL-tao, which proposes
a pattern-based approach to construct meta-models. The pattern catalogue was
added to DSL-tao and dedicated wizards were implemented. DSL-tao plug-in
can be downloaded at: http://www.miso.es/tools/DSLtao.html.

4. As proof of concept, we develop scalable graphical environments for Henshin [4],
CAEX [87] and Wind Turbine control systems. The latter is an industrial case
study implemented during the MONDO EU project [91] in which part of this
thesis was developed.

The tools EMF-Splitter and EMF-Stencil, that supports the systematic approach
proposed in this thesis, can be downloaded at: http://www.miso.es/tools/EMFSplitter.
html.

http://www.miso.es/tools/DSLtao.html
http://www.miso.es/tools/EMFSplitter.html
http://www.miso.es/tools/EMFSplitter.html

1.2 Technical Contributions 5

1.2.1 Publications

The contributions of this thesis have led to the following publications. These publica-
tions have been organized into five groups: journals, journals under review, international
conferences and workshops, national conferences and book chapters.

Journals:

1. A. Jiménez-Pastor, Antonio Garmendia, and J. de Lara, “Scalable model explo-
ration for model-driven engineering,” Journal of Systems and Software, vol. 132,
pp. 204–225, 2017, Elsevier Science Inc. (JCR: 2.278, Q1 Computer Science,
Software Engineering)

2. J. J. López-Fernández, Antonio Garmendia, E. Guerra, and J. de Lara, “An
example is worth a thousand words: Creating graphical modelling environments
by example,” Software and Systems Modeling (Springer), vol. 18, no. 2, pp. 961–
993, 2019.Invitation to participate in special issue with best papers of ECMFA’16.
(JCR: 1.722, Q2 Computer Science, Software Engineering)

3. Antonio Garmendia, E. Guerra, J. de Lara, A. García-Domínguez, and D. Kolovos,
“Scaling-up domain-specific modelling languages through modularity services,” In
Press of Information and Software Technology, 2019, Elsevier Science Inc. (JCR:
2.921, Q1 Computer Science, Software Engineering)

Journals under review:

1. A. Gómez, X. Mendialdua, K. Barmpis, G. Bergmann, J. Cabot, X. de Carlos,
C. Debreceni, Antonio Garmendia, D. S. Kolovos, J. de Lara, and S. Trujillo,
“Scalable modeling technologies in the wild: An experience report on wind
turbines control applications development,” Software and Systems Modeling
(Springer), 2019.Invitation to participate in special issue with best papers of
ECMFA’17. (Second round of review, JCR: 2.660, Q1 Computer Science,
Software Engineering)

International Conferences and Workshops:

1. Antonio Garmendia, E. Guerra, D. S. Kolovos, and J. de Lara, “EMF Splitter:
A structured approach to EMF modularity,” in Proceedings of the 3rd Workshop
on Extreme Modeling co-located with ACM/IEEE 17th International Conference
on Model Driven Engineering Languages & Systems (XM@MoDELS), Valencia,
Spain, September 29, 2014, pp. 22–31.

6 Introduction

2. Antonio Garmendia, A. Jiménez-Pastor, and J. de Lara, “Scalable model ex-
ploration through abstraction and fragmentation strategies,” in Proceedings of
the 3rd Workshop on Scalable Model Driven Engineering part of the Software
Technologies: Applications and Foundations federation of conferences (STAF),
L’Aquila, Italy, July 23, 2015, pp. 21–31

3. Antonio Garmendia, A. Pescador, E. Guerra, and J. de Lara, “Towards the gen-
eration of graphical modelling environments aided by patterns,” in Proceedings
of 4th International Symposium on Languages, Applications and Technologies
(SLATE), Madrid, Spain, June 18-19, Revised Selected Papers, ser. Commu-
nications in Computer and Information Science 563, Springer, 2015, pp. 160–
168

4. A. Pescador, Antonio Garmendia, E. Guerra, J. S. Cuadrado, and J. de Lara,
“Pattern-based development of domain-specific modelling languages,” in Pro-
ceedings of the 18th ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems (MoDELS), Ottawa, ON, Canada, Septem-
ber 30 - October 2, 2015, pp. 166–175. Core 2015: B, Acceptance Rate:
26.7% (46/172)

5. Antonio Garmendia, “Constructing scalable domain-specific graphical modelling
languages,” in Proceedings of the Doctoral Symposium at the 19th ACM/IEEE
International Conference of Model-Driven Engineering Languages and Systems
(MoDELS), Saint Malo, France, October 2, 2016. Core 2016: B

6. D. Vaquero-Melchor, Antonio Garmendia, E. Guerra, and J. de Lara, “Towards
enabling mobile domain-specific modelling,” in Proceedings of the 11th Inter-
national Joint Conference on Software Technologies (ICSOFT) - Volume 2:
ICSOFT-PT, Lisbon, Portugal, July 24 - 26, 2016, pp. 117–122

7. J. J. López-Fernández, Antonio Garmendia, E. Guerra, and J. de Lara, “Example-
based generation of graphical modelling environments,” in Proceedings of the 12th
European Conference on Modelling Foundations and Applications, (ECMFA),
Held as Part of STAF, Vienna, Austria, July 6-7, ser. LNCS 9764, Springer,
2016, pp. 101–117

8. A. Gómez, X. Mendialdua, G. Bergmann, J. Cabot, C. Debreceni, Antonio
Garmendia, D. S. Kolovos, J. de Lara, and S. Trujillo, “On the opportunities of
scalable modeling technologies: An experience report on wind turbines control

1.3 Research Visits 7

applications development,” in Proceedings of the 13th European Conference
on Modelling Foundations and Applications (ECMFA), Held as Part of STAF,
Marburg, Germany, July 19-20, ser. LNCS 10376, Springer, 2017, pp. 300–315

National Conferences:

1. Antonio Garmendia, E. Guerra, and J. de Lara, “Building scalable graphical
modelling environments with EMFSplitter (tool demo),” in Proceedings of the
XXIII Jornadas de Ingeniería del Software y Bases de Datos (JISBD), September
17-19, 2018, Seville, Spain.

Book Chapters:

1. D. Vaquero-Melchor, Antonio Garmendia, E. Guerra, and J. de Lara, “Domain-
specific modelling using mobile devices,” in Software Technologies, 11th Interna-
tional Joint Conference (ICSOFT), Lisbon, Portugal, July 24-26, Revised Selected
Papers., 2016, pp. 221–238

1.3 Research Visits
During the realization of this PhD, an external research stay was conducted in collabo-
ration with the software engineering group of the University of Marburg, Germany,
supervised by Dr. Gabriele Taentzer. The stay was made in that university for a
period of three months from April 9 to July 9, 2018. As a result of the collaboration,
a graphical editor for the Henshin tool was developed, which will be presented in
Section 7.5.2.

1.4 Support
The first years of the realization of this PhD were supported by the European project
MONDO (http://www.mondo-project.org/). The objective of this project was to
address the scalability issues in MDE, which among other aspects implies the construc-
tion of large models in a systematic manner that can facilitate collaboration. When
MONDO finished, I received an FPI grant from the project “FLEXOR” (TIN2014-
52129-R) with the grant number BES-2015-073098. This project was funded by the
Spanish Ministry of Economy and Competitivity.

http://www.mondo-project.org/

8 Introduction

1.5 Organization
The following is a brief summary of what each of the 7 chapters of this thesis describes.

• Chapter 2 presents an overview of the MDE paradigm and the construction
of DSMLs. In addition, different tools used in the field of MDE are described
and compared.

• Chapter 3 provides a detailed description about the use of patterns in the
creation of DSMLs. This chapter shows examples of how to specify a pattern
and describes a proposal of patterns to assist in the definition of DSMLs.

• Chapter 4 describes the proposed approach for providing modularity to DSMLs.
The approach is based on a catalogue of modularity patterns and services.

• Chapter 5 introduces the proposed approach to assist developers in obtaining
a graphical and tabular concrete syntax for DSMLs. In addition, it explains how
to improve the scalability of graphical representations of fragmented models.

• Chapter 6 provides a general description of the tools developed in this thesis,
which are EMF-Splitter and EMF-Stencil. The first tool generates a scalable
environment using information from instantiated patterns at the meta-model
level. EMF-Stencil assists developers in the concrete syntax instantiation and
automatically generates graphical editors.

• Chapter 7 describes the evaluations carried out using the proposed tools.
Among the different experiments explained in this chapter, an evaluation was
carried out with large models and two modelling environments were created for
Henshin and CAEX. This chapter also describes applications built in collaboration
with other developers using the technologies presented in this thesis.

• Chapter 8 discusses the conclusions obtained with our research and proposes
lines for future research.

Chapter 2

Background and Related Work

This chapter is divided in two parts. The first one (Section 2.1) provides a general
perspective on MDE and basic concepts, such as meta-models, code generators, integrity
constraints, and DSMLs. This part (Section 2.1.1) includes a discussion about open
challenges that have been tackled in this PhD. The second part (Section 2.2) outlines
some technologies and related research, regarding scalability, modularity and the
creation of graphical editors.

2.1 Model-Driven Engineering: Basic Concepts
Programming paradigms have evolved over time, proposing innovative solutions to
challenges in software development, such as re-usability, modular software design, and
improved productivity by increasing the abstraction level of programming languages.
One of the most significant paradigms was Object-Oriented Programming (OOP) [45],
which proposed the use of classes and objects and notions like message passing,
inheritance, polymorphism and encapsulation.

The use of models can be seen as a further step in this direction. What laid the
foundation of using models in software development was the publication of the Model-
Driven Architecture (MDA) by the Object Management Group (OMG) [95]. The OMG
consists mainly of researchers and industry professionals who are dedicated to developing
technological standards. Until that moment, models were only used to document
applications, but the MDA paradigm made them first-class citizens [71], becoming
actively used in all stages of the software development life cycle.

MDE is a software engineering paradigm that promotes a model-centric approach
to software development, where models are used to specify, design, test and generate
code for the final application [19]. MDE was a later concept defined to encompass

10 Background and Related Work

Meta-model

Model

conforms to

Integrity
Constraints

Text to Model (T2M)

defined by

Abstract Syntax

TextualGraphical

executed over

Concrete Syntax

Transformation

constraints

defined over
Model to Model (M2M)

Model to Text (M2T)

1

1

1..*

1..*

0..*

Tabular Tree Form

0..*

1

1

Fig. 2.1 Model-Driven Engineering overview.

other more specific model-driven paradigms such as MDA, the Architecture-Driven
Modernization (ADM) [2] and others that use models created using DSMLs as the
main development artefact [19]. This paradigm aims at reducing the production costs
of software development by enabling the generation of a family of applications for a
given domain instead of focusing on the construction of single applications. Nowadays,
many organisations use MDE to develop their systems [8, 53, 60, 130] or to migrate
legacy code, being supported by model management tools [101].

Many approaches to MDE use DSMLs instead of general-purpose modelling lan-
guages like the UML. DSMLs focus on specific concepts for a particular domain [67],
and their creation is recurrent within the MDE paradigm. Figure 2.1 shows an
overview of the main MDE concepts, which includes models, modelling languages and
transformations. The abstract syntax of a DSML is defined by a meta-model which
specifies the domain elements and their properties and relations [70]. Models should
conform to their meta-models, and specify the structure and behaviour of the systems
they represent [19]. The concrete syntax describes the representation of models and
can be graphical, textual, tabular, and tree form, among others. To ensure the
correctness of an instance model, integrity constraints are frequently attached to
meta-models.

Figure 2.2 shows the 4-layer infrastructure proposed by the OMG, which comprises
the description of languages to represent meta-models, down to the real system. Layer
three includes the definition of a language to represent meta-models, called Meta-
Object Facility (MOF) [96]. This is divided into two parts: Complete MOF (CMOF)
and Essential MOF (EMOF). CMOF is considered a very complex language and, in

2.1 Model-Driven Engineering: Basic Concepts 11

XMI
(XML Metadata Interchange)

Layer 3

Layer 2

Layer 1

Layer 0

instance of

instance of

instance of

Meta-meta-model

Meta-model

Model

Instance/ Real
System

UML
Meta-model

UML
Profile

Meta-model for
custom DSLs

UML
Models

Models based on
custommeta-model

Application

CMOF

EMOF
MOF

Fig. 2.2 OMG 4-layer architecture.

general, meta-models can be described using a subset of concepts such as those defined
in EMOF.

The layer number two of the OMG architecture corresponds to the meta-models
created with MOF. This layer includes domain meta-models like the one shown in
Figure 2.3 (to be described below), as well as meta-models for general purpose modelling
languages and standards like the Unified Modelling Language (UML) [126]. UML is
a standard frequently used in software development that defines a set of diagrams
to describe the structure and behaviour of systems [114]. UML is a very extensive
language and for certain domains, some features are too generic or useless. That is why
domain meta-models are built, which specifically target certain application domains.

Layer number one is where we find the models that are instances of meta-models.
Figure 2.4 shows an example of a model that will be described later. Models represent
the system reality in a precise way to fit a certain purpose. By being domain specific,
models typically suppress technical implementation details and specific platform aspects
where the system is to be deployed.

For the serialization of models and meta-models, the OMG proposes the XML
Metadata Interchange (XMI) standard (Figure 2.2) [97]. XMI is based on the Extensible
Markup Language (XML), a specification for storing documents highly used on the

12 Background and Related Work

WTComponents

name : String

Architecture

name : String
Connector

InPort OutPort

Port
label : String
isPublic : Boolean

inPort outPort
0..10..1

Component

name : String
ports

0..*

elements 0..*

Subsystem

name : String

connectors0..*

subsystems 0..*

ensembles 0..*

subsystems
0..*

ControlSubsystem

name : String

beh

0..*

StateMachine
name : String
isPublic : Boolean

0..*states

Edge

0..*
transitions

DocumentElt

name : String
description: String

Vertex

SimpleStateInitialState

source

target

1

1

states 0..*

states 0..*

Fig. 2.3 Meta-model excerpt for Wind Turbines.

World Wide Web (WWW). XML supports a very flexible definition of serialization.
However, because the objects can be serialized in different ways in XML schemas, this
still makes the exchange of information between tools a complicated task. In order to
fill this gap, XMI defines a set of object-oriented rules, which makes the exchange of
models between modelling frameworks easier [47]. As a consequence, XMI has become
a widespread standard to facilitate the interoperability between MDE tools.

Finally, layer zero corresponds to the real application that is created from the
models or the systems the models represent. Based on models, it is possible to create
databases, user interfaces, configuration files, application code and other artefacts
relying on the target platform. In this way, it is possible to generate a family of
applications for different deployment environments based on models.

As seen in Figure 2.1, the abstract syntax of DSMLs is defined by a meta-model. An
example of a meta-model is presented in Figure 2.3. It is used to describe the controller
software of Wind Turbines (WTs) [53]. The language defines a class WTComponents,
which includes a set of Subsystems. The WT meta-model supports the definition
of components, which contain input and output ports that are connected through
connectors. In addition, the behaviour can be specified using state machines. The gray
background in some classes means that they are abstract classes, and hence cannot be
instantiated.

Generally, there may be some requirements in the domain that can not be fully
expressed in a meta-model. Therefore, as a complement to meta-models, additional
constraints are usually written using the Object Constraint Language (OCL) [23]. OCL
is a declarative language statically typed. It can be used to define meta-model invariants,

2.1 Model-Driven Engineering: Basic Concepts 13

that is, boolean expressions stating conditions that the instances of a meta-model
should satisfy. OCL invariants are declared in the context of a class, and are evaluated
on all objects of that type. A model typed by a meta-model and satisfying all its OCL
invariants is said to conform to the meta-model.

As an example, Listing 1 shows an OCL invariant for the WT meta-model to guar-
antee that each ControlSubsystem contains at least two objects of type StateMachine with
their attribute isPublic equals to false. In this case, the context class is ControlSubsystem,
because the invariant must check each one of its instances.

Line 3-4 define the expression that all instances of type ControlSubsystem must
satisfy. In this expression, self is used to refer to the instance where the expression is
evaluated. The navigation expression self.states obtains all state machines contained
by the ControlSubsystem object. To manage collections, OCL offers a set of operations,
like select. This operation filters a collection to return only the objects that fulfil a
certain condition. In this example, it selects the state machines whose attribute isPublic
is false. Next, the operation size() returns the number of elements in the filtered
collection, which should be greater than or equal to two.

1 context ControlSubsystem
2 inv minNumberOfSMInCSubsystem :
3 self.states→select(stateMachine |
4 stateMachine.isPublic = false)→size() >= 2

Listing 1 Example of OCL constraint for objects of type ControlSubsystem.

Listing 2 shows another example of OCL constraint. Its goal is to verify that the
attribute name is different for objects of type Subsystem. In this case, we use allInstances()
to retrieve all objects of type Subsystem, and the forAll operation to compare the name
of every two objects of type Subsystem. The forAll operation returns true if the given
condition is fulfilled by all instances of the collection.

1 context Subsystem
2 inv SubsystemDifferentNames :
3 Subsystem.allInstances()→forAll(sub1, sub2 |
4 sub1 <> sub2 implies sub1.name <> sub2.name)

Listing 2 Example of OCL constraint for objects of type Subsystem.

Another key concept within MDE is the creation of models (Figure 2.1). These
artefacts must be constructed as instances of the meta-models and to ensure that they
are valid, they must satisfy all OCL constraints in the meta-model. Figure 2.4 shows
a model that is typed by the WT meta-model. In the example model, the object
of type WTComponents is the root element, which directly contains two subsystems.

14 Background and Related Work

:Edge
source

target

:Connector

inPort

outPort

:Subsystem

name = “Hydraulic”

:Subsystem

name = “Generator”

:ControlSubsystem

name = “Transmission”

:Architecture

name = “Unit”

:StateMachine

name = “HUnitControl”
isPublic = false

:InitialState

name = “InitControl”
description = “Start Control”

:SimpleState

name = “Overload”
description = “Overload Alarm”

:SimpleState

name = “Alarm”
description = “Control Alarm”

:Edge
source

target

:Component

label = “comp”

:InPort

label = “port1”
isPublic = false

:OutPort

label = “port2”
isPublic = true

:WTComponents

name = “Wind Turbines”

states

Error!

Fig. 2.4 Abstract syntax of a Wind Turbine model.

The Subsystem called Hydraulic includes a control subsystem with a state machine to
describe its behaviour. The Subsystem called Generator contains an Architecture object
which includes one component with two ports connected by a Connector element. The
model does not satisfy the constraint in Listing 1, because there is only one state
machine where the isPublic attribute is false. The constraint shown in Listing 2 is
satisfied, because all elements of type Subsystem have different names. Hence, altogether
the model does not conform to the WT meta-model.

Figure 2.4 shows the model using abstract syntax, as an object diagram. However,
for proper editing and visualization, languages typically define a concrete syntax,
either graphical or textual. Figure 2.5 shows a graphical representation of the WT
model depicted in Figure 2.4, where the violated OCL invariant is signalled as well.
That is why the ControlSubsystem object appears with an error in the figure. This
diagram shows how objects are related using containment, edges, and adjacency. The
containment relationship is established when one object is displayed inside another, as
shown between objects Hydraulic and Transmission, Generator and Unit, and Transmission
and StateMachine. Adjacency is configured when the border of objects overlap, usually,
one object is selected as the main one and the others are shown as smaller, annexed
parts. The adjacency is shown in the diagram when objects of type Port are annexed
to the main object of type Component. Finally, the edges relate some states with others,

2.1 Model-Driven Engineering: Basic Concepts 15

Wind Turbines

Hydraulic

Transmission

HUnitControl

Alarm
Overload

InitControl

Generator

Unit

comp

port1

port2

Palette
Subsystem
ControlSubsystem

Architecture

StateMachine

Input Port

Connector
Component

Initial State
Simple State

States

isPublic = false

Canvas

Edges

Output Port

Fig. 2.5 Graphical representation of a Wind Turbine model.

connect ports, and components with state machines. This way, some relationships in
the meta-model are graphically represented as spatial relations. Graphical editors offer
a palette from which the user can create objects on the canvas and facilities to edit the
object properties, as shown to the right of Figure 2.5.

The other concept involved in MDE is the Transformation (Figure 2.1). Trans-
formations are used to modify existing models or create other artefacts, such as other
models or source code. Transformations may be classified in different types, among
them we can find Model-to-Model (M2M), Text-to-Model (T2M) and Model-to-Text
(M2T) [29]. M2M transformations can be classified into two types based on the rela-
tionship between the input and output models. If the input model is updated directly,
then the transformation is called in-place, otherwise, if a new output model is created,
it is an out-place transformation.

An example scenario for M2M transformations is when a language needs to be
migrated to a new one, either to optimize a certain operation or to modify the
program structure. When this type of change is performed, old models are no longer
compatible and must be updated to the new version of the language. Figure 2.6 shows
an example of a M2M transformation of type out-place. The source meta-model is
an excerpt of the WT meta-model shown in Figure 2.3, were we have extracted the
classes related to Architecture. The variation of the target meta-model is that the
class Connector disappears, and then, to show the relationship between ports, we added
a reference target from the class OutPort to InPort. The transformation results in a
compatible model where Connector objects are replaced by a target reference.

In M2T transformations, the resulting text may be source code, application docu-
mentation or a configuration file, among other artefacts. When a M2T transformation
generates code, it is frequently called code generator. The code generation can be par-
tial: when some program details are not represented at the meta-model level and
it is necessary to program those manually, or full when all artefacts are generated.

16 Background and Related Work

:Connector

inPort

outPort

:Architecture

name = “Unit”

:Component

label = “comp”

:InPort

label = “port1”
isPublic = false

:OutPort

label = “port2”
isPublic = true

:Architecture

name = “Unit”

:Component

label = “comp”

:InPort

label = “port1”
isPublic = false

:OutPort

label = “port2”
isPublic = true

target

Source Meta-model Target Meta-model

conforms to conforms to

Transformation
Specification

input output

defined
over

defined
over

Architecture

name : String
Connector

InPort OutPort

Port
label : String
isPublic: Boolean

inPort outPort

connectors0..*

0..10..1

Component

name : String

ports0..*

elements 0..*

Architecture

name : String InPort OutPort

Port
label : String
isPublic: Boolean

Component

name : String

ports0..*

elements 0..*

target 0..1

source model target model

Fig. 2.6 Example of M2M transformation.

Figure 2.7 shows an example of code generation from a meta-model to Java source
code.

The last type of transformation is T2M, which is generally used to do reverse
engineering tasks [19]. A field within MDE that offers reverse engineering solutions is
called Model-Driven Reverse Engineering (MDRE) [22]. Companies use this type of
solutions when they need to migrate existing applications to more modern technological
platforms. Its rationale is that some programming language may have been discontinued
over time, but companies still own business processes implemented in these languages,
and so migration to a new language is necessary.

StateMachine
name : String
isPublic : Boolean

Edge

0..*

transitions

Vertex
source

target

1

1

states 0..*

Excerpt of WT Meta-model

Meta-model
to Java code

public class StateMachine {

public String getName() {
public void setName(String newName) {
public boolean isIsPublic() {
public List<Edge> getTransitions() {
public List<Edge> getStates() {

}

public abstract class Vertex { }

public class Edge {

public Vertex getSource() {
public Vertex getTarget() {

}

..
..

..

..

..

..

..

Fig. 2.7 Example of M2T transformation.

2.1 Model-Driven Engineering: Basic Concepts 17

2.1.1 Challenges

Despite the benefits of MDE, and the availability of techniques to build DSMLs, there
are certain limitations regarding the visualization and construction of models, which
motivates this work:

• Scalability: The current modelling practice in MDE is characterized by the
construction of monolithic models. These models may become large and unwieldy
when the systems they represent are complex. Therefore, modelling environments
struggle when development and visualization of large models is needed. At the
same time, the persistence mechanisms of current technology is usually based on
monolithic files, which is inefficient when the files reach large dimensions [77].

• Modularity: Software development using modular design facilitates collabo-
ration between developers separating the application functionality into mod-
ules. In addition, modularity is used as a solution to solve scalability issues.
Within MDE, there are no standard techniques enabling model modularity for
arbitrary modelling languages, but existing proposals are specific for a language,
like the UML [34]; therefore adding to new languages capabilities to compose,
extend or reuse their models is difficult. The availability of modularity tech-
niques would have the advantage of enabling the creation of libraries of model
abstractions, providing standard solutions for problems known, solved and tested.

• Systematic engineering of modelling environments: Building modelling
editors is expensive since they have to adapt to the particularities of the mod-
elling language for which the editor is defined. Building editors for graphical
languages is particularly challenging since their construction typically requires
deep knowledge of the language development framework, and there are no prede-
fined graphical components that can be reused in different environments to reduce
the development time, or heuristics that guide and facilitate the construction of
those environments.

Therefore, in this PhD, we propose the definition of meta-model patterns to define
services for DSMLs [26] and a semi-automatic approach to generate graphical editors.
The modelling environment that is generated will be scalable following the guidelines
of a modularity pattern, and services like scoping, visibility, indexing and concrete
syntax will be defined using patterns as well. In the next section, we will describe some
works related to these topics.

18 Background and Related Work

DSML Transformation

QVT

ATL

ETL

abstract
syntax

Meta-model

Ecore
XMI

model

Editor

Textual Graphical

Xtext

Spoofax GMF

GEF

Spray

Eugenia

Atom3

Sirius

Application
Code

conforms to

Platform

concrete
syntax

generates

OCLinEcore

constraint

Generators

Acceleo Xtend

EMOF

DresdenOCL

EclipseOCL

Graphiti

Tiger

Fig. 2.8 Model-Driven Engineering technologies.

2.2 Related Work
In this section, first we revise current modelling technologies, and then, we focus on
existing works dealing with model fragmentation, large models, the use of patterns
in MDE, and technologies and frameworks to create graphical DSMLs.

2.2.1 Modelling Technologies

Figure 2.8 shows a summary of tools as outlined in this section. There are different tools
that give support to MDE, but the advent of the Eclipse Modeling Project (EMP) [36]
has made popular all the proposed technologies for the Eclipse ecosystem. The Eclipse
Modeling Framework (EMF) [118] is the core of the EMP project. It has become a
widespread technology, and many compatible plug-ins have been developed to facilitate
the creation of DSMLs atop EMF. The EMF project proposes Ecore as the language
to describe meta-models. Nevertheless, EMF supports also the EMOF specification
defined by the OMG, which is very similar to Ecore.

In this thesis, we use Ecore as the technology to create meta-models. Figure 2.9
shows its main concepts. The EPackage class contains EClasssifiers as well as other EPack-
ages. The packages are used to modularize the resulting meta-model, grouping
the EClasses that are related. There are two types of EClasssifiers: EClasses and EDataTypes.
Classes may have EReferences and EAttributes. EReferences can be tagged as containment,

2.2 Related Work 19

EPackage

EClass

abstract : Boolean

0..*

eClassifiers

eSuperTypes

0..*
EDataType

0..*

subEPackages

EClassifier

ENamedElement

name : String

EStructuralFeature

derived : Boolean

ETypedElement

lowerBound : Int
upperBound : Int

EReference

containment : Boolean

eStructuralFeatures

0..*

EAttribute

iD : Boolean

eAttributeType 1 eReferenceType 1

Fig. 2.9 Meta-model excerpt with the basic concepts of the Ecore meta-modelling
language.

with a semantics similar to UML composition associations. This means that they
contain objects of a certain type, otherwise they will only reference them. EClasses
can also hold attributes of primitive data type, like EFloat or EString. EClasses support
multiple inheritance through reference eSuperTypes, so that an EClass inherits the
attributes and references from the declared supertypes.

The EMF framework relies on the XMI format for model and meta-model persis-
tence. XMI provides mechanisms to link objects from different model files, by means of
so-called cross-references. Splitting a very large XMI file into smaller ones improves the
performance of model management tools (editors, transformations, etc.), especially if
these files can be processed separately [56]. However, split automation is not supported
out of the box in standard EMF.

As part of EMP and based on EMF, the Eclipse OCL framework provides a
core implementation that facilitates the construction of tools to define OCL integrity
constraints for meta-models. For example, tools such as OCLinEcore [99] and Dresden
OCL [32] (Figure 2.8) are Eclipse plug-ins based on this framework. OCLinEcore [99]
is a tool that integrates the OCL language within Ecore, providing an editor to
embed OCL constraints as annotations within the meta-model. Dresden OCL [32] is
another tool supporting the definition of OCL constraints, which is basically a parser
for OCL. Dresden OCL separates the OCL constraints from the Ecore file.

There are several tools supporting the definition of textual concrete syntaxes for
modelling and programming languages, such as the Spoofax Language Workbench [66]
and Xtext [13]. Both tools are based on the definition of a grammar from which
an editor and a parser are generated, but they use different technologies for their

20 Background and Related Work

implementation. On the one hand Spoofax [66], uses the Syntax Definition Formalism
(SDF) to define the grammar and generate a partial textual editor, which can be further
customised to add e.g., code completion, new scopes, and syntax highlighting, among
other features. This tool is integrated in Eclipse, and at this time, there is a plan to
build a prototype of Spoofax for the web. On the other hand, Xtext [13], belongs to
the EMP. Xtext allows the synthesis of grammars from Ecore meta-models, which are
used as a basis to generate the parser and an editor for the Eclipse IDE, although it
can also be embedded in a web application.

In MDE, models are frequently used to generate text documentation or code.
Frameworks such as Acceleo [1] and Xtend [133] are languages for code generation
based on templates (Figure 2.8) integrated in the Eclipse IDE.

Acceleo is a code generator for EMF models that started as an independent project,
but was later included in EMP. The working scheme of this tool relies on templates
that generate text files. Acceleo templates support OCL queries which are executed on
the models, although it is possible to call external operations in Java. Xtend is another
framework that provides multi-line template expressions to facilitate code generation,
which is nearly always used together with Xtext, but can also be used independently.

Many of M2M transformation languages have been proposed, such as the AT-
LAS Transformation Language (ATL) [7], the Query/View/Transformation language
(QVT) [107] and the Epsilon Transformation Language (ETL) [74] (Figure 2.8). These
technologies introduce Domain-Specific Languages (DSLs) based on rules to define
M2M transformations. ATL bases its language on OCL and supports unidirectional
transformations, in which the source model is not modified, but it is queried to create
the target model [47]. The ETL language also supports this type of transformations
and is also integrated into the Epsilon family of languages for model management.
Finally, QVT is the OMG proposal to perform M2M transformations. The abstract
syntax of QVT is based on MOF, which consists of three languages: QVT Operational
Mappings, QVT Relations andQVT Core.

As this thesis deals with the engineering of graphical DSMLs, we will describe and
compare in detail the most prominent frameworks for their creation in Section 2.2.4.

2.2.2 Systematic Development of Domain-Specific Modelling
Languages

As discussed in Section 2.1, the creation of DSMLs is recurrent in the MDE paradigm.
In order to improve productivity in the construction of DSMLs, several researchers

2.2 Related Work 21

have devised dedicated engineering processes for this. For example, Strembeck and
Zdun [119] identify four main activities in DSL development based on different projects
in which they have participated. These activities do not have a defined order as it
can vary according to the application context, but they may serve as a guide for DSL
developers [106].

Another work related with the development of DSL is [88]. Mernik et al. identify
patterns for decision, analysis, design, and implementation phases of DSL development.
In this article, the authors extend and improve earlier works on DSL design patterns,
with the aim to help developers in the construction of DSLs. Patterns are structures
that have been previously tested and proved successful to solve a problem. In this way,
a number of studies also deal with the definition and classification of DSL patterns [42,
116].

Due to the complexity of DSL design, works such as [65] describe guidelines to
achieve better quality of the language design. This paper proposes 26 guidelines, of
which we would like to draw the attention to two. The first one states that we should
look at the abstract syntax of existing languages to identify patterns that can be
applied to the new languages. The second guideline recommends providing modularity
mechanisms to new languages, by which the systems can be divided into small pieces
that can refer to each other. Following the same idea, this thesis defines a catalogue of
patterns that are instantiated at the meta-model level to enable modularity.

Several works formalize patterns and automate their application for some notation.
Bottoni and collaborators [17] propose a language for the specification of patterns using
some of them to show their applicability. Another example of pattern specification
is the one realized by France and collaborators [44]. In this approach, a UML-based
pattern specification is described by two class diagrams: one for pattern specification
and the other one for pattern interaction.

With respect to DSMLs, some works encourage the use of patterns for their
construction. For instance, in [26], the authors define meta-modelling design patterns
directed to design decisions and provide a few examples. They also analyse which
type of structures defined in the meta-model give as a result common instantiation
of the concrete syntax. In this sense, three meta-modelling patterns are proposed to
represent lines and boxes, containment and several types of relationships. In [111], the
authors detect the lack of engineering processes for DSML construction, and propose
documenting DSMLs using use cases and design patterns. In [116], Spinellis defines
a set of architectural patterns for DSMLs design, like composing DSMLs through
pipelines. Altogether, in this branch of works, design patterns improve the inner

22 Background and Related Work

quality of DSMLs but are normally low-level, which entails a greater effort of the
developer.

Other papers describe the use of domain patterns to capture domain knowledge
and speed up the construction of meta-models [43, 123]. Similarly, [104] argues on the
benefits of building DSMLs by composing domain concepts. A domain concept is a
meta-model and its semantics is given as a model transformation. The authors define
some composition operators, and aim at composing the respective transformations.

2.2.3 Model Scalability and Modularity

Due to the need to process large models, some authors have proposed to split them to
facilitates different tasks. For instance, Scheidgen and collaborators [113] propose a
persistence framework called EMF-Fragments that allows automatic and transparent
fragmentation to add, edit and update EMF models. This process is executed at
runtime, with considerable performance gains. The approach has been used for the
analysis of large code repositories [112], so that code projects are parsed into a model
representation, and then analysed using OCL queries. To guide the fragmentation,
the composition references in the meta-model that are aimed at producing fragments
need to be annotated. EMF-Fragments stores fragmented models in memory, and
for persistency it primarily relies on distributed file-systems and key-value stores like
MongoDB and HBase. For traditional XMI persistence, fragmentation is currently not
reflected in the file system. For this reason, these technologies can not benefit from
traditional version control systems (like SVN or Git), since the fragmentation is not
reflected in files and folders.

Other works [69, 120] decompose models into submodels for enhancing their com-
prehensibility. For example, Kelsen and collaborators propose an algorithm to fragment
a model into submodels (actually they can build a lattice of submodels), where each
submodel is conformant to the original meta-model [69]. The algorithm considers
cardinality constraints but not general OCL constraints, and there is no tool support.
Other works use Information Retrieval (IR) algorithms to split a model based on the
relevance of its elements [120]. This research resulted in the creation of Splittr as a
tool to split models. Therefore, splitting models that belong to the same meta-model
can produce different structures. Customizable graph clustering techniques, with the
purpose of meta-model modularization, have also been proposed [121]. The techniques
are based on several clustering algorithm operations on a distance matrix. This matrix
is obtained by weighting different meta-model relations (generalization, composition,
association) according to their relevance. While the approach proposed in this thesis

2.2 Related Work 23

is applicable to existing large models, a distinctive feature is that we also generate a
modelling environment that enforces the defined modularization strategy when creating
a new model.

Other approaches are based on search techniques guided by quality criteria [41, 93].
Moody and Flitman [93] use genetic algorithms to cluster a data model into a multi-level
structure, using principles of human information processing. More recently, inspired
by the work presented in [28], Fleck and collaborators present an approach for model
modularization applicable to arbitrary modelling languages [41]. The approach is based
on mapping concrete meta-model elements to modularization concepts like “module”.
Then, a generic transformation is used to actually split the model elements into
modules based on quality criteria like cohesion and coupling. The transformation rules
are applied according to multi-criteria optimisation algorithms. The modularization
proposed in this thesis is richer, as it supports projects, packages, and nested packages,
while Fleck’s approach lacks hierarchical decomposition (modules within modules).

Other works directed to define model composition mechanisms [58, 68, 122] are
intrusive. Heidenreich et al. [58] and Struber et al. [122] present techniques for model
composition and realise the importance of modularity in models as a research topic to
minimise the effort. Strüber et. al [68] present a structured process for model-driven
distributed software development which is based on split, edit and merge models for
code generation.

Amálio et al. [3] developed a theory of model fragmentation, upon which the
practical solution of this thesis is based. The theory is based on graphs and morphisms,
and was developed using the Z formal language with the help of proof assistants. It
describes possible model organizations, based on fragments (units), clusters (packages)
and models (projects). The theory describes fragmentation devices, like proxy nodes
and cross-links, which are available in EMF; and explains model de-composition and
composition, showing correctness of the obtained model.

Instead of using fragmentation, other persistence options to handle large models
have been proposed, like Connected Data Objects (CDO) [25], Morsa [40], NeoEMF [11],
or Hawk [46]. Table 2.1 summarizes their main features. CDO is a widely used model
repository and persistence back-end. It supports different technologies for data storage
such as Hibernate [59] or Objectivity/DB [98], although the recommended one is DB
Store [30] because it supports all CDO functionalities. Another example is Morsa [40],
which makes use of a NoSQL database to provide scalable access to large models.
Morsa is integrated with EMF, and there is a prototype based on MongoDB [27] as the
database engine. On the contrary, Neo4EMF allows storing the models in graph-based

24 Background and Related Work

Tools Integrated
with EMF Back-end Technology Types of Databases

CDO [25] X
DB Store
/Hibernate/Objectivity

Graph/Object Oriented
/NoSQL databases

Morsa [40] X MongoDB NoSQL database
NeoEMF [11] X Neo4j Graph database
Hawk [46] X Neo4j/OrientDB Graph databases

Table 2.1 Summary of tools to handle large models based on databases.

back-ends and its prototype relies on using Neo4j [10]. The last tool is Hawk, which is
a model indexer that allows the efficient execution of queries.

In Table 2.1 it is noticeable that CDO provides drivers for different types of
databases. Indeed, CDO is the most mature technology to persist the models. Most
tools are compatible with EMF, which makes this framework a standard for the
development of MDE tools.

2.2.4 Frameworks to Create Graphical Editors

Environments to develop visual languages exist since the end of the 90s. There are
many tools like KOGGE [35], DOME [12], GME [82], Diagen [89], MetaEdit+ [124]
and AToM3 [81], who laid the foundations for the development of graphical modelling
environments.

The emergence of Eclipse has boosted model-driven approaches to software develop-
ment. Eclipse has made available modelling technologies and has joined efforts for the
construction of frameworks, to create visual editors. Graphical language development
tools like Tiger [14], the Graphical Modelling Framework (GMF) [52], EuGENia [76],
Spray [51], Graphiti [55], and Sirius [115] (Figure 2.8) are part of the Eclipse ecosystem.
In the following, we revise the main features of these tools.

Graphiti is a graphical modelling tool based in GEF and Draw2D [109], which
provides a Java API for coding. Graphiti requires manual programming, so building
graphical editors can be a huge effort. There are tools atop Graphiti to reduce
construction time, such as Spray [51] and Xdiagram [110]. Spray uses a textual
DSL to define the concrete syntax, reducing the lines of code needed to develop
a graphical modelling tool and avoiding the need to know the Graphiti Java API.
Similarly, Xdiagram [110] allows defining diagrammatic representations based on Eclipse
technologies. One of the most significant differences between these two tools, is that
Xdiagram is based on model interpretation, and Spray generates Graphiti code.

2.2 Related Work 25

Another graphical framework that belongs to the Eclipse ecosystem, and is based
on EMF is the Graphical Modeling Framework (GMF). In order to define the concrete
syntax of a DSML with GMF, the following models must be provided: .gmfmap, .gmf-
graph and .gmftool. The characteristics of graphic elements such as nodes and edges
are defined using the .gmfgraph model. The .gmfmap model relates the elements of
the Ecore meta-model with the graphical ones. Finally, the .gmftool model is used
to specify the palette of the editor. To facilitate the creation of these three models,
EuGENia permits annotating the meta-model elements with the expected graphical
syntax, and automatically generates a GMF editor from the annotations. EuGENia is
part of the Epsilon project supported by the University of York.

Besides the frameworks previously described we should mention Sirius [115]. This
framework was created by Obeo and Thales as a commercial tool. Since 2013, it
became part of Eclipse and began to be very popular in the MDE community [72].
The definition of concrete syntaxes in this tool is by constructing an .odesign model
that describes the shapes for nodes, the style for edges, the mappings of graphical
elements to meta-model elements, the elements in the palette, and the actions to be
performed when palette elements are selected. The .odesign model encompasses all
characteristics of the three GMF models (.gmfmap, .gmfgraph and .gmftool). Sirius is
interpreted while GMF, which needs the generation of Java code. In this PhD, we use
Sirius as the technology to create graphical modelling editors.

The development of graphical editors demands developers with experience in the
use of MDE technologies. In order to isolate developers from the complexity of the
tools, López-Fernández and collaborators [83, 84] proposed an iterative process to build
meta-models driven by examples created by domain experts using informal drawings
tools such as yEd or Dia. Starting from these examples, a meta-model and its associated
modelling environment are automatically generated. The approach was implemented
in a tool called metaBup.

Outside of the Eclipse ecosystem, we can create graphical environments using
tools like MetaEdit+ [124], OpenFlexo [57], or FlexiSketch [132]. MetaEdit+ offers
two tools to develop DSMLs: MetaEdit+Workbench to design the language and
MetaEdit+Modeler to configure the modelling tool. MetaEdit+ employs the Graph-
Object-Property-Port-Role-Relationship (GOPPRR) for the abstract syntax definition,
which is a proprietary meta-modelling language. Openflexo provides an infrastructure
for multifaceted modelling and the generation of artifacts. The resulting tools are the
Viewpoint Modeler and View Editor. For the abstract syntax definition, Openflexo
provides it own language based on XML, but it is also compatible with EMF. The

26 Background and Related Work

OpenFlexo and MetaEdit+ tools have desktop versions. FlexiSketch provides a desktop
version, but also an Android application for mobile devices implemented with the 2D
gaming framework Corona. FlexiSketch permits the creation of free-form sketches to
semi-automatically create a simple meta-model. With respect to the abstract syntax,
FlexiSketch is compatible with GOPPRR and also provides its own language based
on XML.

There are other tools like FlexiSketch, that permits the creation and edition of mod-
els from a remote location. That is the case of a prototype tool called DSL-comet [127]
to enable mobile domain-specific modelling. This tool allows also collaboration by
using the short-range communication capabilities of mobile devices like Bluetooth or
WiFi. In addition, DSL-comet supports a combined scenario in which a model can be
created using a desktop environment and then it can be used in a mobile context.

In addition to tools that allow the construction of modelling environments there
are widely used visualization tools to explore and analyse graphs. Perhaps the most
well-known is Gephi [9], which includes a force-based layout, enables the calculation
of metrics, and dynamic graph analysis. This tool aims to visualize large graphs and
according to its web page, it can handle up to 100.000 nodes and 1.000.000 edges.

None of the revised tools to develop graphical editors, are able to evaluate the
quality of the visual notations defined. In order to fill this gap, CEViNEdit [54] is a
tool that assesses the quality of graphical notations taking into account the Moody’s
principles [92]. Moody proposes nine principles to explain and predict why some visual
notations are more accurate than others, being able to evaluate and improve some
graphical notations. Using the Moody’s criteria, CEViNEdit provides some metrics
to assess whether the concrete syntax has adequate perceptual features so that the
models can be easily understood and built. This tool is based on Eugenia and provides
a tree-based editor to annotate the Ecore meta-model.

Table 2.2 summarizes the existing graphical frameworks. Many of them use Eclipse
as an IDE and Ecore to define the abstract syntax. This entails that EMF is being
widely used for the creation of modelling environments. The table is organized by the
IDE on which the tool is based and by the year in descending order.

Models are usually created monolithically and may reach millions of elements
depending on the system complexity, the domain represented or a combination of
both. The frameworks described above do not provide natively any type of modularity
mechanisms for models, and have scalability issues to show large models. Adding
modularity mechanisms to the DSMLs created with these frameworks would require
manual programming. Another shortcoming of these tools is that they do not provide

2.2 Related Work 27

any guidance or heuristic to define the concrete syntax. In this thesis, we propose
heuristics to define graphical editors and a mechanism to generate modular modelling
environments based on patterns.

Graphical
Frameworks

Base
Technology

IDE
Abstract
Syntax

Concrete
Syntax

Last
Update

AToM3 [81] Python/
Tcl/Tk

Own Python
Forms/
graphical
editors

2008

Diagen/
DiaMeta

[89] Java 2D Own Ecore
Hypergraph
grammars/
Ecore

2009

FlexiSketch [132] Corona Own XML/
GOPPRR

XML 2013

Gephi [9] OpenGL 3D Own - - 2017
OpenFlexo [57] EMF Own XML XML 2018

MetaEdit+ [124] Own Own GOPPRR
Forms /
graphical
editors

2018

Spray [51] Graphiti Eclipse Ecore Textual DSL 2013
Xdiagram [110] Graphiti Eclipse Ecore Textual DSL 2017

MetaBup [83, 84] EMF/
Stencil

Eclipse Ecore
Examples as
informal
drawings

2017

GMF [52] GEF Eclipse Ecore

Model-based
(.gmfgraph,
.gmftool

and .gmfmap)

2018

Eugenia [76] GMF Eclipse Ecore Annotations 2018

Graphiti [55] GEF
& Draw2D

Eclipse Ecore/
Java-based

Java API 2018

CEViNEdit [54] Eugenia Eclipse Ecore XMI 2018

Sirius [115] GMF
Eclipse/
Obeo
designer

Ecore Model-based
(.odesign)

2019

Table 2.2 Summary of tools to develop graphical editors.

28 Background and Related Work

2.3 Summary and Conclusions
In this chapter, we introduced the basic concepts of MDE and identified challenges
that this thesis will address in the next chapters. In addition, the existing modelling
technologies were described, with a particular attention to the frameworks for creating
graphical editors. Furthermore, we discussed approaches to the systematic development
of DSMLs and advances made regarding scalability and modularity.

In the next chapter, we will introduce patterns as a key to develop DSMLs, and
describe their types, variants and the steps to instantiate these patterns at the meta-
model level.

Chapter 3

Patterns

This thesis uses patterns to describe services for DSMLs, including both, modularity and
concrete syntax services. Therefore, this chapter describes in Section 3.1 different types
of patterns to assist in the definition of DSMLs. Next section (Section 3.2) describes
how patterns are applied and instantiated at the meta-model level. Section 3.3 presents
how to add functionality to patterns. Finally, Section 3.4 introduces the notion of
pattern variants to enable a more flexible pattern application.

3.1 Types of Patterns
The definition of a DSML encompasses several aspects [105]. The first one concerns its
abstract syntax, which should gather the primitives of the domain, realized in a high-
quality meta-model. The second aspect deals with the representation of the DSMLs,
either textually or graphically, through a concrete syntax. In the case of a graphical
syntax, aspects like layouting or zooming (e.g., through filters or hierarchical grouping)
may also be specified. Third, the DSML semantics specifies the meaning of models,
e.g., through simulation, execution, model transformation or code generation. Finally,
the editing of models of a DSML is usually performed using a dedicated modelling
environment which provides services like model persistence and model conformance
checking. One may define patterns to address all these aspects:

• Domain patterns. These patterns characterize a family of DSMLs, gathering
requirements of similar languages within a domain, and documenting their vari-
ability. For example, there may be patterns for workflow languages, expressions
(e.g., arithmetic, logical), variants of state machines, query languages, and com-
ponent/connector architectural languages. A single DSML may use several of

30 Patterns

these patterns, customized for a given need, and probably extended with other
domain-specific concepts.

• Design patterns. These lower-level patterns are concerned with the meta-
model design. Some examples include patterns describing different options to
realise tree-like structures [15], lists, containment relations [26], connectors, or
the type/instance relation [86].

• Concrete syntax patterns. They characterize families of DSMLs with similar
representation [16]. For example, graph-based languages depict concepts using
nodes and arrows; hierarchical graph languages represent in addition hierarchy;
and tabular languages use columns and rows. Moreover, some domain patterns
may attach a predefined instantiation of a concrete syntax pattern, customized for
the domain. For example, state machines may be represented with a particular
instantiation of a hierarchical graph pattern, where states are depicted as ovals
with the name (and maybe other states) inside, and transitions are shown as
arrows. Similarly, workflow languages may attach a graph pattern instance that
represents each gateway type as a rhombus with a different decoration.

• Dynamic semantics patterns. These patterns describe the participant roles
in different styles of semantics [18]: Petri-net like, variations of state machines,
event-based semantics, data-flow semantics, etc. Alternatively, the semantics
could be given by transformations into a semantic domain, or via code generation.

• Infrastructure patterns. These patterns identify services typically provided by
modelling environments, but which need to be configured for a particular DSML.
Some examples of this kind of patterns include model fragmentation strate-
gies allowing the hierarchical decomposition of large models into folders and
model fragments [48], model abstraction services to obtain a simpler view of a
model containing the subset of elements of interest [79], and different layouts for
graphical DSMLs.

Patterns can be used in two ways. First, as a means to raise the productivity,
repeatability and reliability of the meta-model construction process, by incorporating
the pattern elements (i.e., a meta-model fragment) to the DSML meta-model. Some
elements of the pattern may already exist in the meta-model, in which case, only the
missing ones are added. This usage is typical for domain and design patterns. In the
second way, patterns are a means to configure functionality for the DSML by identifying
the pattern elements (or roles) with existing meta-model elements. This is typically the

3.2 Pattern Specification 31

case for concrete syntax, dynamic semantics and infrastructure patterns. In practice,
one often has intermediate situations. Once a pattern is applied, the meta-model
elements identified or created by the pattern are “annotated” with the pattern roles.
In addition, patterns may offer services to be used together with other patterns, like a
layout pattern for certain concrete syntax pattern. To define this interaction, patterns
can publish the services they provide or require as pluggable components through
suitable interfaces.

This thesis focuses on infrastructure and concrete syntax patterns. Chapter 4 covers
the identification and description of a catalogue of modularity patterns for the creation
of scalable modelling environments for DSMLs, and Chapter 5, presents the definition
of the graphical and tabular representation pattern in order to customise concrete
syntaxes. Next section, proposes a specific approach to specify and apply patterns to
meta-models.

3.2 Pattern Specification
Our notion of pattern is meta-level independent, as patterns can be applied to models
or meta-models. For simplicity of presentation, we assume that they are applied at
the meta-model level only. In this section, the main ingredients of patterns (structure,
instantiation and application) are introduced.

The structure of a pattern is specified by a meta-model, and its elements (classes,
references, and attributes) are called roles [78]. Each role defines a cardinality interval
which governs how many times the role can occur in a pattern application. If a role
does not define a cardinality explicitly, then it is assumed to be of cardinality [1..1].
Class roles can be tagged with the stereotype abstract, in which case the class role
cannot be instantiated but is a placeholder for attribute or reference roles that get
inherited by children class roles. Since roles tagged as abstract cannot be instantiated,
they do not have any cardinality.

Class roles may have two kinds of fields1: field roles and configuration fields. On
one hand, field roles must be mapped to fields with a compatible type in the domain
meta-model, while their name can be different. Just like class roles, field roles define a
cardinality range ([1..1] by default). On the other hand, configuration fields are not
mapped but need to receive a value when the pattern is applied. Inspired by deep
characterization in multi-level modelling [6, 80], we tag the configuration fields with
“@1” (potency 1) as they receive a value when the pattern is instantiated one meta-level

1We uniformly refer to attributes and references as fields.

32 Patterns

RoleA

roleref *

RoleB
1..*

1..*

pattern

:RoleA

:roleref *
:RoleB

pattern
instantiation

:roleref *
:RoleB

domain meta-model

binding

1

2

ClassB1

b *
ClassB2 ClassA

ClassC
*

b1

*

b2

att@1: String

roleatt: String

att= “val”

:roleatt: String :roleatt: String

a2: String
a3: String

a1: String

b *

ClassC
*

b1

*

b2

a2: String
a3: String

a1: String

«RoleA»

ClassA «roleref»

«roleref»

«RoleB»

ClassB1

«roleatt»

«RoleB»

ClassB2

«roleatt»

(a) (b)

att=“val”

Fig. 3.1 (a) Example of pattern application to domain meta-model. (b) Visualization
of applied pattern.

below, while the field roles have potency 2 as they receive a value two meta-levels
below. We omit the inscription “@2” in the field roles for readability reasons.

Figure 3.1(a) exemplifies the application of a pattern (in the upper-left corner) to a
meta-model (in the upper-right corner). We use a synthetic example to better illustrate
all features of our patterns and their application, and refer to Section 4.3 for the
catalogue of proposed patterns. The example pattern has two class roles, one reference
role, one attribute role, and one configuration attribute (marked with “@1”). RoleA
and roleatt do not specify a cardinality, hence they are assumed to have [1..1] interval;
RoleB and roleref define cardinality [1..∗]. Note that field roles have two cardinalities: a
role cardinality which governs the number of instances of the role ([1..∗] for roleref),
and a field cardinality which must be compatible with the field mapped in the domain
meta-model (∗ for roleref).

The application of a pattern to a domain meta-model proceeds in two steps. First,
the language designer instantiates the pattern as a regular meta-model, respecting its
role cardinalities. Then, he/she needs to bind the elements in the pattern instance
to elements in the domain meta-model (class roles to domain classes, attribute roles
to domain attributes, and reference roles to domain references). This binding allows
structural matching, i.e., if a class role r is mapped to a domain class c, then the
field roles inside r must be bound to fields owned or inherited by c. In addition, some
patterns may define extra conditions expressed in OCL or Java to restrict the bindings
considered correct [105].

3.2 Pattern Specification 33

RoleA
1..*

pattern

roleatt: Any

:RoleA

pattern
instantiation1

:roleatt: Any

roleref

domain meta-model

ClassA b

*

ClassAny
a1: Integer

:RoleAny
*

:roleref

(a) (b)

«RoleA»

ClassA

a1: Integer «roleatt»

«RoleAny»

ClassAny
b

*«roleref»

Fig. 3.2 (a) Example of application of pattern with field roles without type. (b)
Visualization of applied pattern.

As a first step, the pattern is instantiated. In the example, the created pattern
instance contains one instance of RoleA, two instances of RoleB, and the configuration
attribute att receives the value “val”.

In a second step, the pattern instance elements are bound to elements of the
meta-model. In Figure 3.1(a), the binding (depicted as dotted arrows) maps :RoleA to
ClassA; one :RoleB to ClassB1 and the other to ClassB2; one :roleatt to a1 and the other to
a2; and the two :roleref to two references of ClassA, one owned and the other inherited.
In general, one element in the domain meta-model is allowed to receive several roles.
For example, if ClassA had a self-reference r and a String attribute a, then both :RoleA
and :RoleB could be mapped to ClassA, with :roleref mapped to r, and :roleatt to a.

Figure 3.1(b) visualizes the domain meta-model with the applied pattern. Roles
are depicted as stereotypes on the mapped class or field, and configuration fields (like
att) are shown in a box attached to the stereotyped class.

Note that a pattern definition also admits reference roles, with no target class role
and attributes with any data type. Figure 3.2(a) shows a pattern with a class role RoleA
which contains an attribute role roleatt that can be mapped to an attribute of any data
type. The figure also shows a reference role roleref that can point to any target class.

Domain meta-models can be defined instantiating one or several patterns. As the
previous examples show, if an instance of a role is mapped to a domain element, then
the element will get tagged by the role. However, if some role instance is left unmapped,
then a new element will be added to the domain meta-model playing that role. In this

34 Patterns

StateMachine

StateVertex

name : String

SimpleStateInitialState

source

transitions

0..*

Transition

name : String

states 0..*

FinalState

0..*
0..*

target

outgoing

incoming

0..10..1

State Machine Pattern

<<SimpleState>>

SimpleState

states

0..*
<<Transition>>

Edge

0..*

transitions

source

target

0..*
0..*

outgoing

incoming

<<InitialState>>

InitialState

<<instance of>>

<<StateVertex>>

Vertex

name : String

<<StateMachine>>

StateMachine

<<SimpleState>>

SimpleState

states

0..*
<<Transition>>

Edge

0..*

transitions

source

target

0..*
0..*

outgoing

incoming

<<StateVertex>>

Vertex

name : String

<<StateMachine>>

StateMachine

<<FinalState>>

FinalState

0..*

«states» «transitions»

«source»

«target»

0..*

«states» «transitions»

«source»

«target»

<<InitialState>>

InitialState

Fig. 3.3 State machine pattern and some valid instantiations.

sense, it is possible to bind existing meta-model elements to roles in the pattern, but
not every pattern role of the chosen instance will be necessarily created new in the
meta-model.

Figure 3.3 illustrates the definition of a domain pattern and its application to our
running example. Specifically, the pattern corresponds to the definition of a state
machine. In this case, the pattern is used in the WT meta-model (Figure 2.3) to
control the system behaviour, through the definition of states and transitions. The
cardinality of all roles in this pattern is 1, except the InitialState and SimpleState roles
which have cardinality [0..1]. In this sense, the variability results from the instantiation
or not of these optional roles.

The lower right and left corners of Figure 3.3 show two valid instantiations of
the state machine pattern. The lower left corner, shows a valid instantiation which
correspond to the classes that define a state machine in the WT meta-model. In this
case, all roles with cardinality 1 have been mapped and also the SimpleState class role.
The lower right corner shows a meta-model that maps all the roles of the pattern.

The pattern roles elements may contain additional constraints defined, for example,
using the OCL language. Listing 3 shows an invariant to force the Transition class to
have exactly two references. This constraint use eAllReferences which return all outgoing
references of the class.

3.3 Pattern Services 35

Service

plug

0..1

cardin.

Interface

slot

injectorconsumer

…
Filterable

aKey: Any

filter pattern

*

(a) (b) (c) (d)

rKey
fragmentation pattern

*

offered service

Hierarchical

Organization 0..5

Model
Injector

Model
Descriptor

Tabbed
Pane

Filtering

Model
Consumer

Model
Descriptor

Tabbed
Pane

EditorTab FilterConfigTab

offered service

…

graph-based
representation

Graph-based

Editing

Model
Descriptor

offered service

Fig. 3.4 (a) Schema of pattern services. (b,c,d) Services in the running example. (e)
Service composition.

1 context Transition
2 inv checkNumberOfReferences :
3 self.eAllReferences.size() = 2

Listing 3 Example of OCL constraint for the State Machine pattern.

3.3 Pattern Services
Patterns may include services contributing functionality to the environment generated
for a DSML. Figure 3.4(a) shows the general schema of a pattern service. A service
is encapsulated as a component, which may define any number of ports. Each port
declares an interface and can be of four different types: slot, plug, injector and
consumer. Services can be connected through their ports if their types and interfaces
are compatible. Regarding type compatibility, slots are compatible with plugs, and
injectors are compatible with consumers.

A slot represents a functionality “hole” in a service, to be provided by another
service that declares a plug with a compatible interface. Moreover, slots have a
cardinality which constrains the allowed number of plugs that can be connected to
them. Typically, the functionality provided by a plug needs to be deployed in the
context of a service with a compatible slot, while slots with a minimum cardinality
1 need to be connected to a compatible plug to obtain a proper behaviour. On the
other hand, an injector port is an emitter of information populated by a service. This
information can be used by a consumer port with a compatible interface. In this way,
a connection between an injector and a consumer induces a dependency injection from
the service defining the injector to the service defining the consumer.

For example, Figures 3.4(b) and (c) show two patterns that define two services
that we would like to have in the modelling environment for the running example. The

36 Patterns

first one is the fragmentation pattern that will be explained in Section 4.3.1. This
allows generating a modelling environment where models are organized hierarchically
into projects, packages and files of different types, similar to the organization of Java
software projects. The associated service has a slot named EditorTab that allows other
services to extend the environment with tabs that contribute further functionality. The
service also defines an injector which supplies to consumers a ModelDescriptor object
with information of the model unit selected in the environment.

The pattern in Figure 3.4(c) allows customizing model filters. The classes amenable
to be filtered should be bound to Filterable, while the attributes and references to be
considered in the filtering conditions should be bound to aKey and rKey, being possible
to have any number of them. The actual type of the attributes bound to aKey and
the references bound to rKey are unimportant. This pattern defines a service that is
compatible with the previous HierarchicalOrganization service: on one hand, it has a plug
named FilterConfigTab that contributes a tab to control the model filter behaviour; on
the other hand, it has a consumer port named ModelConsumer from which the service
will obtain the model unit to filter, selected in the environment.

The service in Figure 3.4(d) is associated to the concrete syntax pattern graph-based
representation which will be described in Section 5.2. This service generates an editor to
build models using the defined graphical concrete syntax. The service needs a model
descriptor, which will be provided by the HierarchicalOrganization service.

When a pattern is applied, its services become available. Most of the times, these
are realize via code generation. Hence, a generator synthesizes segments contributing
functionality to the final environment.

3.4 Patterns Variants
The cardinality of pattern roles allows their fine-grained customization for a context.
In addition, a pattern may have variants accounting for coarse-grained alternatives in
the pattern structure. For example, transitions in a state machine may be represented
as references between two states, as hyperedges connecting multiple source to multiple
target states, or with an intermediate class storing properties of the transition. Only
the latter two cases allow associating a trigger to transitions. This variability in the
pattern structure would be challenging to express with role cardinalities alone.

For this reason, we can equip patterns with a feature model [64] that defines the
coarse-grained variability of patterns. As an example, the left of Figure 3.5 shows the
feature model attached to the pattern for state machines. It defines three alternatives

3.5 Summary and Conclusions 37

State Machine

Feature Model

Hyper

edges
Unnamed

Transitions

Standard

StateMachine

StateVertex

*states

name: String

Transition

name: String

*
source

target

outgoing

incoming

*
*

Simple

State

Final

State Event

trigger 0..1
Initial

State

0..1 0..1
0..1

targets
*

optional

mandatory

alternative

Legend :

Fig. 3.5 Feature model for state machine pattern variants.

for the design of transitions (Hyperedges, Standard and Unnamed), and each alternative is
exclusive (i.e., only one can be selected at a time). Hence, transitions can be either a
class like in Figure 3.3 (variant Standard), a hyperedge, or a reference (variant Unnamed,
in which case there are no classes for the roles Transition and Event, but there is an
association starting and ending in StateVertex instead).

3.5 Summary and Conclusions
This chapter has described how patterns assist developers in the creation of new DSMLs.
The application of patterns and their variants allow the definition of a wide range
of meta-models. In this thesis, we use patterns to create meta-models, but also to
associate different services to their classes. For example, the pattern of state machines
may have associated a concrete syntax by default. Altogether, patterns not only
encourage a well-designed abstract syntax, because they also can be used in other
aspects concerning the development of DSMLs.

The next chapter presents a catalogue of modularity patterns and its associated
services to provide scalability to DSML environments.

Chapter 4

A Pattern-based Approach to
Language Modularity

This chapter presents a detailed description of the proposed patterns to define mod-
ularity services for DSMLs. Section 4.1 presents the running example and identifies
some difficulties in creating scalable environments. Section 4.2 provides an overview to
build these environments through patterns. Finally, Section 4.3 presents our catalogue
of modularity services and their associated patterns with a detailed description of each
one using our running example.

4.1 Motivation and Running Example
In this section, we introduce a motivating running example from which we elicit a
number of requirements for scalable modelling environments.

As an example, we will be using the language meta-model shown in Figure 2.3,
and described in Section 2.2.1. This meta-model allows describing two aspects of wind
turbine control systems: (i) the constituent types of system components and how they
can be connected (classes Component, Port, InPort, OutPort and Connector); and (ii) the
admissible states and state changes of those component types (classes StateMachine,
DocumentElt, Vertex, InitialState, SimpleState and Edge). In addition, the meta-model
provides classes to organize components into hierarchies of subsystems (class Subsystem),
as well as to group the state machines in each subsystem (class ControlSubsystem).

To be able to define models using the architectural language, we would like to
have a customised environment with typical modelling facilities like model editing,
conformance checking, model search, etc. Since we expect control systems to consist
of many components, the environment should be optimized to deal with large models

40 A Pattern-based Approach to Language Modularity

from the tool perspective (performance) and the user perspective (usability). Building
this environment by hand is possible but costly. Instead, using a meta-modelling-based
language development framework for its construction is faster.

As we discussed in Sections 2.2.1 and 2.2.4, examples of graphical and textual
language development frameworks include GMF [52], Sirius [115] and Xtext [13].
However, these frameworks typically yield environments for editing monolithic models,
i.e., models with all their elements included in the same file/resource. As a consequence,
these environments have performance problems when managing big models [129].
Moreover, having monolithic models is not optimal in our example, as the language
clearly identifies two different concerns (structure and behaviour) and so a mechanism
that enables their separation is desirable [33]. Additionally, the language provides
primitives (nested subsystems, control subsystems) that may be used to organize
the model content in packages according to the subsystems structure. Even though
modelling frameworks like EMF [118] permit cross-referencing elements across files,
they lack a native way to define and enforce fragmentation policies, or to organize
a model into packages (the latter is available for meta-models but not for models).
While some language frameworks like Sirius support the definition of diagram types,
they do not provide mechanisms to combine several model fragments into a unified
model, or to map parts of the model structure to the file system (like packages in Java).
Moreover, the fragmentation strategy should be intrinsic to the abstract syntax, not
tied to specific concrete syntaxes.

Once a model is fragmented, it is desirable to control which elements can be
cross-referenced from other model fragments. For example, we may wish to restrict
a Component to reference only those StateMachines located in ControlSubsystems within
the same Subsystem the Component belongs to. While it is possible to write an OCL
constraint that checks this, an advanced modelling environment would filter out all
StateMachine objects that are out of the scope. Frameworks like Xtext support scopes,
but these are tied to the concrete syntax, are normally defined in low-level programming
languages, and require deep knowledge of the framework.

Meta-models may include integrity constraints, typically specified using OCL, to
be satisfied by models. As an example, Listing 4 shows two constraints demanding
that every input port is connected to some output port, and vice versa. Constraints
are defined in the context of a class, and evaluated on every instance of the class that
is contained in a model, which is time-consuming for big models. Instead, we may take
advantage of the fragmentation of models to scope the evaluation of constraints to
smaller fragment units. In the running example, this means that whenever a component

4.2 A Pattern-based Approach to Modularity of DSMLs 41

is changed, only the ports in that component should get their constraints re-evaluated,
but not the rest of ports.

1 context InPort
2 inv inputPortConnected :
3 Connector.allInstances()→exists(c |
4 c.inPort = self and not c.outPort.oclIsUndefined())
5
6 context OutPort
7 inv outputPortConnected :
8 Connector.allInstances()→exists(c |
9 c.outPort = self and not c.inPort.oclIsUndefined())

Listing 4 OCL constraints for the WT meta-model.

Finally, searches on big models can be slow. One way to tackle this problem is the
use of model indexers and indices of relevant attributes to speed up the search [46].
However, since building an index incurs a time overhead, it should be possible to
customize the subset of attributes to be indexed (only those used in recurrent searches).

Altogether, the modelling environment for the proposed architectural language has
to fulfil the following requirements, which indeed are general requirements of scalable
modelling environments:

R1 Ability to define fragmentation strategies for models, to enforce the separation of
concerns.

R2 Ability to organize the model content hierarchically into packages or folders, to
improve usability.

R3 Ability to control the visibility of elements across fragments, and the scope of
cross-references, to manage complexity through information hiding.

R4 Ability to customize the scope of integrity constraints, to improve their validation
performance.

R5 Ability to define model indices, to improve the performance of recurrent searches.

4.2 A Pattern-based Approach to Modularity of
DSMLs

Figure 4.1 shows a scheme of our approach to the development of modelling environ-
ments with support for modularity services. The approach provides a catalogue of
modularity services expressed as meta-model patterns, which can be applied to the

42 A Pattern-based Approach to Language Modularity

Domain meta-model

modelling
language
designer

automatic
generation

fragmentation
visibility
scoping
indexing
scoped validation

Modularity services

modelling
language

users

1 Modelling environment

package

modelling project

subpackage

3 Customization of modularity services

2

Model
indexer

Fig. 4.1 Overview of our approach to build modelling environments with modularity
services.

domain meta-model for which the environment is being developed, as explained in
Chapter 3 (label 1). The modelling language designer can apply as many patterns as
required to the domain meta-model. Each pattern application produces a customization
of the corresponding service for the domain meta-model. Section 4.3 will present our
catalogue of modularity patterns, which covers services for model fragmentation, object
visibility, reference scoping, attribute indexing and scoped validation.

Technically, our modularity patterns have the form of a meta-model and can be
applied to the domain meta-model, following the process described in Section 3.2. From
this definition, a modelling environment that integrates modularity services configured
in compliance with the instantiated patterns is automatically synthesized (labels 2 and
3 in Figure 4.1). This environment features model indexers that improve the efficiency
of searches across model fragments and manage inconsistent cross-references when
fragments are moved to a different location [108]. The following section describes the
supported modularity patterns, and Chapter 6 will describe their tool support.

4.3 Catalogue of Modularity Patterns and Services
In this section, we present our catalogue of modularity services and their associated
patterns, which are illustrated using the running example.

4.3.1 Model Fragmentation

Programming languages offer techniques for dividing a program into smaller building
blocks. This helps developers to tame the system complexity, and increments the

4.3 Catalogue of Modularity Patterns and Services 43Fragmentation pattern

*
contents

<<abstract>>

IdentifiableElement

name: String
icon@1: String

Unit
extension@1: String

«abstract»

Containee

Project

«abstract»

Container

1..*

1..*

1..*
Package

0..*

«Project»

WTComponents

«Package»

Subsystem

«Package»

ControlSubsystem

«Unit»

Architecture

«Unit»

StateMachine

«contents»

«
co

n
te

n
ts

»

*
*

«contents»

*

«contents»
*

«contents»

*

(a) (b)

name: String «name»

ident: String «name»

extension=“arq”
icon=“arq.png”

mname: String «name»

extension=“sm”
icon=“sm.png”

name: String «name»

name: String «name»

icon=“ssys.png”

subsystems

su
b

sy
st

em
s

beh

ensembles states

icon=“csys.png”

icon=“prj.png”

Fig. 4.2 (a) Fragmentation pattern. (b) Applying the fragmentation pattern to the
running example.

tooling efficiency to perform tasks such as syntax and type checking, compilation and
linking.

Similarly, to scale modelling to larger systems, we propose transferring the concept
of fragmentation to DSMLs. This provides benefits in terms of model comprehensibility
and processing efficiency (see Section 7.4). Moreover, model fragments can be reused
more easily, and teams of engineers working collaboratively on a fragmented model
will potentially have fewer conflicts in version control systems than when working on a
monolithic model.

To support model fragmentation, we take inspiration from the modularity concepts
of languages like Java and its Java Development Tools (JDT) Eclipse programming
environment [62]. Eclipse JDT allows creating Java projects, and the language permits
breaking programs physically into compilation units (classes, interfaces and enumer-
ations residing in different files) which are organised into hierarchies of packages.
Projects, folders and files are located in the workspace organized into a tree structure
with projects at the top, and folders and files underneath.

We have adapted these ideas to DSMLs by defining the fragmentation pattern
shown in Figure 4.2(a). The pattern defines Project, Package and Unit as class roles.
Designers can configure which classes of a DSML will play those roles. This way, the
instances of the DSML will not be monolithic, but they will be structured into projects,
packages and units according to the given strategy.

Typically, the root class that contains directly or indirectly all other classes of
a DSML should be mapped to Project. The pattern declares a condition (omitted in
the figure) checking that all classes bound to Project are root. As a result, each time
the root class is instantiated in the generated environment, a new modelling project

44 A Pattern-based Approach to Language Modularity

(i.e., a folder that will hold all fragments of a model) is produced. To account for
meta-models that have several root classes, role Project has cardinality [1..∗]. Similarly,
when a class with role Package is instantiated, the environment creates a folder in the
file system, together with a hidden file storing the value of the class attributes and
non-containment references. Finally, instantiating a class c with Unit role results in the
creation of a file that holds instances of the classes that can be directly or indirectly
reached from c by means of containment relations.

In the pattern, all concrete class roles inherit the attribute role name to be used as
the project, folder or file name, and the configuration attribute icon to specify the icon
file to be used as a decorator in the generated environment. Units can also indicate a
file extension using the configuration attribute extension. Containers (i.e., Projects and
Packages) and Containees (i.e., Packages and Units) are related through the reference role
contents. This must be mapped to a containment reference in the DSML meta-model,
modelling the inclusion of files in folders, and these in projects.

As explained in Chapter 3, classes in the domain meta-model are allowed to play
several roles. For example, a class C can be both Package and Unit. In such a case, upon
creating a C object, the user decides whether a package or a file should be created.
Similarly, a class can be both Project and Package (which is implicit for Project classes
that have self-containment references); as well as both Project and Unit (to allow the
creation of monolithic models, if desired).

Example Figure 4.2(b) depicts the application of the fragmentation pattern to the
meta-model of Figure 2.3. The role Project is assigned to the class WTComponents.
Two types of packages are defined: Subsystem, which can recursively contain other
Subsystem packages, and ControlSubsystem. There are also two unit types: Architecture
and StateMachine. These classes will be physically persisted as files with extensions
“arq” and “sm” respectively, and may store objects of the classes contained in them. For
instance, a unit of type Architecture can hold objects of types Architecture, Component,
Connector, InPort and OutPort (see Figure 2.3). As an example, Figure 4.3(c) shows a
model organised according to the defined fragmentation strategy.

4.3.2 Reference Scoping

When a model is monolithic, its objects can refer to other objects within the same file,
according to the reference types defined in the model’s meta-model. However, when
a model is fragmented, some references may need to cross fragment boundaries. In
this context, there is the need to control the fragments a reference can reach, that

4.3 Catalogue of Modularity Patterns and Services 45

sameWS
*

ScopedClass

1..*

sameProject
*

sameRootPkg
*

samePkg *

sameUnit *

filter@1:
OCLExpression [0..1]

«Unit»

StateMachine

«ScopedClass»

Component «samePkg»

states
*

 (a)

project
wt:WTComponents

s1:Subsystem

s2:Subsystem cs2 :Control
Subsystem

package package

package

a:Architecture

file

sm2:StateMachine

file

cs1 :Control
Subsystem

package

sm1:StateMachine

file

c: Component

 (b) (c)

Fig. 4.3 (a) Scoping pattern. (b) Applying same package scope to reference Compo-
nent.states. (c) Effect of pattern application on a fragmented model.

is, its scope. This control mechanism is useful to manage the access modifiers for the
classes of a given DSML, and to reduce the set of potential candidate objects for a
given reference.

We allow customizing this information using the scoping pattern in Figure 4.3(a).
This declares a single class role ScopedClass, which should be mapped to the domain
class owning or inheriting the reference to be scoped. In its turn, this reference should
be mapped to one of the five reference roles in the pattern, which represent five different
scoping policies. The least restrictive policy is sameWS, which allows a reference to
refer to objects in the same workspace, i.e., anywhere in any project. This is the default
option for references with no scope. The sameProject policy permits referring to objects
within the same project. The policies samePkg and sameRootPkg allow referencing
objects within the same package, or that have the same root package, respectively.
Finally, sameUnit restricts a reference to the objects residing in the same file. In any
of the cases, it is possible to further constrain the scope of the reference by providing
an OCL expression to filter out additional unwanted objects.

It can be noted that since our notion of pattern supports reference roles with no
target class role, there is no need to map the latter to any domain class. Moreover, the
reference roles in the scoping pattern can be mapped multiple times to meta-model
references, but they do not impose any cardinality to those references (i.e., they do not
specify any reference cardinality).

Example Figure 4.3(b) assigns the same package scope to the reference Compo-
nent.states, and Figure 4.3(c) shows the effect of this scope on a fragmented model.
The scope allows connecting the Component object c to any StateMachine located in

46 A Pattern-based Approach to Language Modularity

Visibility

sameWS@1: OCLExpression [0..1]
sameProject@1: OCLExpression [0..1]
sameRootPkg@1: OCLExpression [0..1]
samePkg@1: OCLExpression [0..1]

1..*

(a)

project
wt:WTComponents

s1:Subsystem

s2:Subsystem cs2 :Control
Subsystem

package package

package

a:Architecture

file

sm2:StateMachine

file

cs1 :Control
Subsystem

package

sm1:StateMachine

file

c: Component
mname=“__sm1”
isPublic=true

mname=“sm2”
isPublic=true

 (b) (c)

«Unit, Visibility»

StateMachine
mname: String
isPublic: boolean

«name»

samePkg=

 self.isPublic and

 not self.mname.startsWith(“__”)

«ScopedClass»

Component «samePkg»

states
*

Fig. 4.4 (a) Visibility pattern. (b) Applying same package visibility to class StateMachine.
(c) Effect of pattern application on a fragmented model.

the container package of c (i.e., in the Subsystem s2). Therefore, c can refer to sm1 as
this is (indirectly) contained in s2, but not to sm2 because it is in a different package.
Changing the reference scope to same root package would allow connecting c to sm2.

4.3.3 Visibility

Programming languages like Java allow classes to control whether other classes can
use a particular field or method by means of access level modifiers. Similarly, we allow
model fragments to define an interface to expose only a subset of its elements to other
fragments, while hiding the rest.

By default, objects are accessible from any other fragment, but this can be con-
strained by using the pattern in Figure 4.4(a). This pattern allows defining whether
the instances of a class are visible to other fragments in the same workspace, project,
root package or package. An object is always visible within its file. The visibility is
configured by means of an OCL expression which is evaluated on every object of the
class, and only the objects satisfying the expression become visible to other fragments
in the given scope.

A class can define visibility conditions for different scopes, e.g., same project and
same package. In such a case, if the visibility conditions of several scopes are satisfied,
the more general scope is selected. For example, if the visibility conditions for both
scopes same package and same project evaluate to true, then the object is visible at
the project level; otherwise, the object is only visible at the level of the expression that
evaluates to true.

4.3 Catalogue of Modularity Patterns and Services 47

IndexedClass

index: Any

1..*

1..*

 (a) (b)

«Unit, Visibility, IndexedClass»

StateMachine
mname: String
isPublic: boolean

«name, index»

samePkg=

 self.isPublic and

 not self.mname.startsWith(“__”)

«index»

Fig. 4.5 (a) Indexing pattern. (b) Applying pattern to class StateMachine.

The visibility and scoping patterns are complementary. While scoping restricts
the content of a reference, visibility restricts the usage context of an object. If a
certain class of objects should be visible to all fragments in its package or project, then
specifying class visibility is equivalent to specifying the corresponding scope for every
cross-reference pointing to the class; however, in this case, the first option is less costly
as it is done once for the class instead of once per reference.

Example Figure 4.4(b) applies the visibility pattern to class StateMachine. The OCL
condition, which is defined for samePkg, appears in a grey box. In this way, StateMachine
objects will only be visible from other fragments in the same package when they are
public and their name does not start by a double underscore. Figure 4.4(c) shows the
effect of this pattern on a fragmented model. In the figure, the StateMachine sm1 is
not visible from other fragments in the same package because its name starts by a
double underscore; therefore, it cannot be referenced from the Component c, even if sm1
is in the reference scope. On the other hand, sm2 is not visible to Component c because
the visibility level is samePkg and sm2 is in a different package. Moreover, sm2 is not
reachable from c because the reference states has scope samePkg.

4.3.4 Indexing

To speed up the computation of common queries over models, we support the creation
of indices of objects by selected fields, backed by a model indexer. The pattern in
Figure 4.5(a) allows selecting the fields to index. It is made of the class role IndexedClass
and the field role index, both with role cardinality [1..∗]. This way, for each domain
class mapped to IndexedClass, it is possible to specify one or more fields (attributes or
references) to be used as indices. The field role defines the data type Any and no field
cardinality; this means that the indexed fields in the domain meta-model can have any
type and cardinality.

48 A Pattern-based Approach to Language Modularity

wt:WTComponents

s1:Subsystem

s2:Subsystem

a2:Architecture
file

c2: Componentn2: Connector

i2: InPort

o2: OutPort

s3:Subsystem

a3:Architecture
file

c3: Component n3: Connector

i3: InPort

o3: OutPort

s4:Subsystem

a1:Architecture
file

c1: Component n1: Connector

i1: InPort

o1: OutPort

a4:Architecture

c4: Component n4: Connector

i4: InPort

o4: OutPort

packagepackage

packagepackage

F1 F2 F3

fileF4

project

context InPort inv inputPortConnected:
Connector.allInstances()→exists(c | c.inPort = self and not c.outPort.oclIsUndefined())

Fig. 4.6 A fragmented model where a scoped constraint is to be evaluated on the InPort
i1.

Example Figure 4.5(b) applies the indexing pattern to select the attributes mname
and isPublic as indices for class StateMachine. The motivation to index these attributes
is their use in the expression samePkg specified in a previous application of the visibility
pattern. This index permits improving the retrieval of StateMachine objects [46].

4.3.5 Scoped Validation

Meta-models may define integrity constraints that are evaluated on monolithic models,
have access to all objects within the model, and need to be re-evaluated upon any
model change. However, once a model is fragmented, it is natural to incorporate the
notion of scope into the integrity constraints, so that each constraint only accesses the
objects within the defined scope, and is re-evaluated just when there is a change within
the scope. We call an integrity constraint that defines a validation scope a scoped
constraint. As we will show in Section 7.4, scoped constraints can be evaluated more
efficiently than standard constraints, as they consider a subset of model objects instead
of the whole model, and the need of re-evaluation is less frequent. Moreover, scoped
constraints decouple the constraint from the objects affected by it, while standard
constraints need to explicitly select the affected objects by means of filters in the
constraint expression.

As in the previous patterns, we consider five scopes for constraints: same unit,
same package, same root package, same project and same workspace. To illustrate
their implications, consider the fragmented model in Figure 4.6 and the constraint
inputPortConnected shown in the lower part of the same figure.

4.3 Catalogue of Modularity Patterns and Services 49

Depending on the validation scope assigned to the constraint, expression Connec-
tor.allInstances() returns a different set of objects when it is evaluated on object i1 of file
F1:

• if the scope is same unit, the result is Set{n1} because n1 is the only Connector
object within the same file as i1, even though other Connector objects exist in the
whole model.

• if the scope is same package, the result is Set{n1, n2, n3} because the three
objects are contained in the same package as i1 (s1) directly or indirectly. Instead,
evaluating the expression on i2 returns Set{n2}, as this is the only Connector within
i2’s container package s2.

• if the scope is same root package, the result is Set{n1, n2, n3} as the root package
of i1 is s1. Evaluating the expression on i2 yields the same result.

• if the scope is same project, the expression returns Set{n1, n2, n3, n4} independently
of the object where it is evaluated. If this is the only project in the workspace,
we obtain the same set of Connectors when we assign the scope same workspace
to the constraint.

Listing 5 shows the algorithm to validate scoped constraints. It considers two
scenarios: (i) the validation of all constraints within a project, which is useful, e.g.,
when a project is loaded in the workspace; (ii) the re-evaluation of constraints upon
model changes, where we efficiently restrict the re-evaluation to the subset of objects
where the constraint value may have changed. We refer to scenario (i) as full validation,
and to scenario (ii) as incremental validation.

The entry point of the algorithm is the scopedValidation method in lines 1–23. This
receives as parameters the resource r that has changed (a unit, a package or a project),
and a boolean flag full (true to execute scenario (i), and false for scenario (ii)). For each
scoped constraint in the meta-model, the method first obtains its validation context,
i.e., the instances of the constrained class where the constraint needs to be evaluated
(lines 5–14). In case of scenario (i), the constraint needs to be evaluated on all instances
of the constrained class defined in the project (line 7); in case of scenario (ii), the
instances are retrieved from the scope specified by the constraint (lines 8–14), and
this scope is computed by the methods in lines 25–56. As an example, the method
package is invoked when the constraint defines the scope same package, and it returns

50 A Pattern-based Approach to Language Modularity

1 def scopedValidation (r : Resource, full : boolean)
2 for each scoped constraint c:
3
4 −− obtain objects over which the constraint will be evaluated (context)
5 var validationContext = nil
6 if full = true and type(r) = Project then
7 validationContext = objects of type c.constrainedClass within r
8 else if c.scope = samePkg then
9 −− jump to root pkg to avoid validating c in each intermediate container pkg

10 validationContext = objects of type c.constrainedClass
11 within resource4scope (r, sameRootPkg)
12 else
13 validationContext = objects of type c.constrainedClass
14 within resource4scope (r, c.scope)
15
16 for each object o in validationContext:
17 −− obtain model fragment where the OCL expression will be evaluated (scope)
18 var validationScope = resource4scope (o.resource, c.scope)
19
20 −− validate constraint and report detected errors
21 if validationScope <> nil then
22 var result = o.validate (c.statement, validationScope)
23 if result = false then o.report (c.error)
24
25 def resource4scope (r : Resource, s : Scope) : Resource
26 var r4s = nil
27 if s = sameUnit then r4s = unit(r)
28 else if s = samePkg then r4s = package(r)
29 else if s = sameRootPkg then r4s = rootPackage(r)
30 else if s = sameProject then r4s = project(r)
31 else if s = sameWS then r4s = workspace(r)
32 loadResource(r4s)
33 return r4s
34
35 def unit (r : Resource) : Resource
36 if type(r) = Unit then return r
37 return nil
38
39 def package (r : Resource) : Resource
40 if type(r) = Package then return r
41 if type(r.container) = Package then return r.container
42 return nil
43
44 def rootPackage (r : Resource) : Resource
45 var root = r
46 while type(root.container) = Package: root = root.container
47 if type(root) = Package then return root
48 return nil
49
50 def project (r : Resource) : Resource
51 var root = r
52 while type(root) <> Project and root <> nil: root = root.container
53 return root
54
55 def workspace (r : Resource) : Resource
56 return $WORKSPACE

Listing 5 Algorithm for the validation of scoped constraints.

4.3 Catalogue of Modularity Patterns and Services 51

the received resource if it is a package, or its container if it is a unit (lines 39–42).
Before the obtained resource can be used, we make sure that all other resources that it
contains directly or indirectly are loaded as well (line 32). In practice, we use a cache
to avoid reloading previously loaded resources. The following steps in the algorithm are
the same independently of the scenario. Specifically, for each object in the validation
context, the algorithm obtains its validation scope (line 18). This is calculated similarly
to the validation context, but considering the resource that contains the object, instead
of the modified resource. Then, the algorithm validates the constraint over each object
of the validation context considering only the validation scope (line 22), and reports
an error if the validation returns false (line 23).

Please note that given a constraint c with scope sameRootPkg, the algorithm avoids
validating c recursively on each container package until reaching the root package.
Instead, it directly jumps to the root package (line 11), and then considers the
validationScope of each context object when evaluating c (line 18).

For efficiency reasons, we do not maintain all model fragments in memory, but we
load them on demand. Therefore, our algorithm needs to load and merge any model
fragment that is necessary to perform the validation. Line 32 in Listing 5 takes care of
this. In practice, we rely on EMF proxies and their lazy loading mechanism to achieve
this behavior. This way, fragments can refer to elements in other fragments by means
of proxies, and only when there is the need to access to these other fragments, we load
them and resolve the proxies. This can be seen as a kind of model merge.

This algorithm performs an efficient re-evaluation of scoped constraints upon model
changes, as constraints are evaluated only over the objects in the validation context,
which are those objects that may have been affected by the change. This kind of
incrementality is coarse-grained, in the sense that it only considers the resources that
have changed to identify the constraints to re-evaluate, but not the actual model
changes. Other approaches like [24, 37, 125] keep track of those changes as well. This
permits reducing further the set of constraints to re-evaluate, at the cost of having to
memoise the objects/fields accessed during the last evaluation of each constraint.

We support the definition of scoped constraints by means of the scoped validation
pattern in Figure 4.7(a). A scoped constraint is defined by mapping a domain class
(the context of the constraint) to the class role ConstrainedClass. Then, the configuration
fields in the pattern allow defining the constraint name (name), the OCL expression
(statement), the evaluation scope (scope), and the error message to be reported when
the objects of the constrained class violate the constraint (error).

52 A Pattern-based Approach to Language Modularity

ConstrainedClass

name@1: String
statement@1: OCLExpression
error@1: String

1..* «enum»

Scope

sameWS
sameProject
sameRootPkg
samePkg
sameUnit

scope@1

(a) (b)

«ConstrainedClass»

InPort

name=“inputPortConnected”

statement=Connector.allInstances()…

scope=samePkg

error=“The port must be connected”

Fig. 4.7 (a) Scoped validation pattern. (b) Defining a scoped constraint for class InPort.

Example Figure 4.7(b) assigns the scope samePkg to the constraint in Figure 4.6.
Now, assume file F1 in Figure 4.6 changes. Then, according to the algorithm in Listing 5,
the validationContext is the package where F1 resides (i.e., s1). Hence, the constraint is
evaluated in all InPort objects within s1 (i.e., {i1, i2, i3}) using the scope of the constraint
(same package) as validationScope. For i1, the validation scope is the package s1 where i1
is located. Hence, Connector.allInstances() yields {n1, n2, n3}. In case of i2, the constraint
is evaluated on the package that contains i2 (i.e., s2), where the only Connector is n2.
In case of i3, it is evaluated on its container package s3, where the only Connector is n3.
With this scoped validation strategy, we do not need to evaluate the constraint on i4
or consider Connector n4. If the change happened in file F4, then the constraint would
be evaluated on i4 considering only the Connector n4.

4.4 Summary and Conclusions
This chapter has first identified the requirements that scalable DSML environments have
to fulfil. Subsequently, it has proposed a pattern-based approach to facilitate building
these environments satisfying the identified requirements. Finally, five modularity
patterns were presented: Model Fragmentation, Reference Scoping, Visibility, Indexing
and Scoped Validation. The chapter used the WT meta-model as a running example
to show how to instantiate these patterns at the meta-model level.

The next chapter describes our approach to facilitate the definition of graphical
and tabular concrete syntaxes for DSMLs.

Chapter 5

Support for Graphical and Tabular
Concrete Syntax

This chapter describes our proposal to define graphical and tabular syntaxes. First,
Section 5.1 identifies missing requirements in the current technology, from which it
derives a number of desirable requirements in frameworks for the creation of graphical
modelling tools. Next, Section 5.2 proposes a platform-independent meta-model to
represent graphical syntaxes and a set of heuristics and strategies to automatically assign
a graphical syntax representation to meta-model classes and features. Subsequently,
Section 5.3 describes the meta-model to represent tabular concrete syntaxes. Finally,
Section 5.4 describes an approach to combine the graphical representation with the
model fragmentation pattern to obtain a scalable environment.

5.1 Motivation
The existing technologies for the creation of DSMLs were described in Section 2.2.4.
These technologies require highly specialized technical skills from user developers in
order to create a graphical modelling environment. The construction of new DSMLs in
any of these frameworks is an ad hoc process, lacking the ability to build on existing
knowledge coming from the construction of similar DSMLs.

While for the creation of meta-models, different researchers have identified common
structures to represent recurrent modelling solutions (e.g., design patterns), there is no
similar support to assist in the construction of graphical modelling editors.

To simplify the creation of DSMLs, we propose several heuristics to detect structures
in meta-models that are frequently used for the representation of graphical elements. In

54 Support for Graphical and Tabular Concrete Syntax

particular, this work proposes analysing the meta-model to obtain a default graphical
representation. These heuristics will be presented in Section 5.2.1.

Section 4.1 identified scalability as one of the requirements of a modelling environ-
ment. Usually, the frameworks to create graphical editors only allow the creation of
monolithic models, making it difficult to visualize them when the models become large.
To alleviate these problems, Section 5.4 proposes splitting the graphical representation
of models following the fragmentation strategies applied.

In this chapter, we will propose solutions to the following identified requirements
when creating graphical editors:

R1 Automated assistance in the detection of graphical representations and styles for
meta-model elements, to speed up development.

R2 Isolate developers from complex technical or implementation details related to
graphical frameworks, to simplify development.

R3 Ability to fragment the concrete syntax representation of models, to improve
scalability and separation of concerns.

5.2 Graphical Concrete Syntax
Our approach to the definition of graphical editors is the creation of an intermediate
meta-model to represent the graphical concrete syntaxes in a neutral form. This
meta-model is independent from the target implementation technology. This way, from
a same model of the graphical concrete syntax, a family of editors in different graphical
frameworks can be created.

Figure 5.1 shows the neutral meta-model we have developed to represent graphical
concrete syntaxes, which is called GraphicRepresentation. Graphical elements are
organized into layers (class Layer). A graphical representation has one defaultLayer where
all graphical elements belong by default, and zero or more additional layers. Layers
contain graphical elements, which can be either Node-like or Edge-like. In both cases,
they may hold a PaletteDescription with information on how the element is to be shown
in the palette. Nodes may be represented as geometrical shapes (Rectangle, Ellipse, etc.)
or images (class Figure). They can also display a label either inside or outside the
node, being possible to configure its font style (class Label). The label can be defined
using the OCLLabel or EAttributeLabel classes. The first permits the definition of labels
using an OCL expression and the latter specifies the list of node attributes that will
be displayed as the node label.

5.2 Graphical Concrete Syntax 55

GraphicRepresentation

name : EString
extension : EString

DiagramElement
PaletteDescription

iconFilepath : EString
paletteName : EString

Layer

name : EString

EdgeClassType NodeType

isAbstract : EBoolean = false

EdgeStyle

style : EString
width : EInt

EdgeReference
NodeElement

Shape

Rectangle

width : EInt
height : EInt
color : EString

Ellipse

width : EInt
height : EInt
color : EString

Diamond

size : EInt
color : EString

Figure

filePath : EString

Label

OCLLabel

ocl : EString

EAttributeLabel

 labelEAttribute : EAttribute
SpatialRelation

Containment Adjacency Overlapping

RepresentationStyle

LoopConditional Tree

LinkedList

[0..1] paletteDescription[0..*] layers [0..1] defaultLayer

[0..*] diagramElements

[0..1] edgeStyle

[0..*] edge_style
[0..*] edgeReferences

[0..1] nodeElement

[0..*] inheritsFrom

[0..1] shape

[0..*] spatialRelations

[0..1] with

[0..1] representationstyle

[0..1] label

Fig. 5.1 GraphicRepresentation meta-model.

Some nodes may need to be displayed in a relative position with respect to other
nodes in the diagram, like being adjacent to (class Adjacency) or being contained in
(class Containment) other nodes. Currently, the implementation supports the adjacency
and containment spatial relationships. Edges can specify a line style like solid, dash,
dot or dash-dot (class EdgeStyle). In addition, the containment relationship may have a
representation (class RepresentationStyle), which means that the displayed nodes within
a container will have a predefined representation style. The meta-model currently
supports 4 representation styles: LinkedList, Conditional, Tree and Loop. These styles
will be explained in detail in Section 5.2.2. Finally, we enable the reuse of graphical
properties by means of relation inheritsFrom and attribute isAbstract in class Node, so
that graphical properties defined for a node are inherited by its children nodes.

The definition of the concrete syntax requires establishing a correspondence between
the abstract syntax meta-model of the DSML and the concrete syntax meta-model in
Figure 5.1. We consider abstract syntax meta-models defined with Ecore, for which
mappings can be established according to Figure 5.2. In particular, classes in the domain
meta-model (class EClass) can be represented either as nodes (class NodeType) or as edges
(class EdgeClassType), and are referred to through the reference DiagramElementType.eClass.
In case the class is represented as an edge, it is possible to configure the references of
the class acting as source and target of the edge. Attributes in the domain meta-model

56 Support for Graphical and Tabular Concrete Syntax

DiagramElementType

NodeTypeEdgeClassType

EdgeStyle Shape

EAttributeLabelEdgeReference

EClass

abstract : EBoolean = false

EAttribute

iD : EBoolean = false
eType : EClassifier

EReference

containment : EBoolean = false
/container : EBoolean = false
eType : EClassifier

EStructuralFeature

defaultValueLiteral : EString
derived : EBoolean = false
eType : EClassifier

EClassifier

ENamedElement

name : EString

EDataType

[0..1] shape[0..1] edgeStyle

[0..1] label[0..1] edgeStyle

[0..1] eClass

[0..*] eSuperTypes

[0..*] labelEAttribute

[0..1] eReference

[0..1] eOpposite

[1..1] /eReferenceType

[0..1] eContainingClass

[0..*] eStructuralFeatures

[1..1] /eAttributeType

[0..1] source

[0..1] target

Fig. 5.2 Mapping between GraphicRepresentation meta-model and Ecore meta-model
(classes of Ecore are shaded).

(class EAttribute) can be mapped into a ELabelAttribute. References in the domain
meta-model (class EReference) can be mapped into EdgeReferences, and their concrete
syntax annotations are mapped into an EdgeStyle. In addition, the references can be
assigned as Containment or Adjacency object, respectively (not shown in Figure 5.2).
All created graphical elements are included in the default layer and receive a palette
description.

The goal of the GraphicRepresentation meta-model is to allow the definition of
concrete syntaxes. For this purpose, instances of its elements should be created and
mapped into classes, attributes and references in the domain meta-model. Figure 5.3
shows an example of how this meta-model can be instantiated. In this case, the figure
shows the instantiation of two nodes and one edge. In the event that the number of
elements to be mapped is large, the mapping process may become tedious. For that
reason, we provide heuristics in the next section, to assist in this process.

5.2.1 Heuristics

The concrete syntax of a DSML is defined by mapping the meta-model elements to the
elements of a GraphicRepresentation model. Since the definition of concrete syntaxes
has many specificities and may be tedious, sometimes inexperienced developers need
assistance to build the editor. To alleviate this problem, we have designed heuristics
that recommend a specific graphical representation for classes and features.

5.2 Graphical Concrete Syntax 57

The heuristics analyse the structure of the meta-model and suggest a default
visualization for its elements. We have devised four groups of heuristics to identify
different occurrences of structures in meta-models and one for assignment of styles:

• Root class selection heuristics: In order to define the graphical concrete syntax,
one of the classes defined in the meta-model needs to be chosen as the root
element, as this will represent the diagram canvas. The class selected as the root
element, is typically the one that contains all meta-model elements directly or
indirectly, that is, all other meta-model classes can be reachable from the root
through containment references. To select the root class in an automatic way,
two strategies have been designed based on the containment tree defined in the
meta-model. These two strategies are:

1. Contains more classes counts how many classes contain each class, and
selects the one that contains more.

2. Class with no parents suggests classes that are not contained in other classes.

• Node & edge heuristics: We select as edge-like classes those that define two
non-containment references with lower bound 0 or 1, and upper bound 1. These
two references will be mapped to the source and target of the edge representation
for the class. To determine the source and target role of the two references in
the edge, two strategies have been defined:

1. Simple direction arc strategy selects the source and target reference randomly.

2. Parameter direction arc strategy takes into account possible naming conven-
tions (e.g., source or src for the source reference).

Otherwise, if the class is not assigned an edge-like representation, then it will
be assigned a node-like representation. In order to define the node style (e.g.,
ellipse or diamond), we use additional heuristics for the graphical style definition,
which will be described later.

Figure 5.3 shows an automatic mapping example applying the heuristic explained
above. Specifically Figure 5.3(a) shows the subset of the WT meta-model defining
state machines. On one hand, classes InitialState and SimpleState are assigned a
node-like representation (Figure 5.3(b)), because they do not declare two non-
containment mono-valued references. On the other hand, class Edge defines two
non-containment references with upper bound 1. For this reason, this class gets
assigned an edge-like representation.

58 Support for Graphical and Tabular Concrete Syntax

Edge

DocumentElt
name : String
description: String

Vertex

SimpleState

InitialState

target 1

1source

(a) (b) (c)

:NodeType

isAbstract = false

:Ellipse

width =50px
height = 50px
color = black

:NodeType

isAbstract = false

:Ellipse

width =100px
height = 50px
color = blue

:EdgeClassType
:EdgeStyle

style = solid
width = 1px

Alarm

InitControl

Fig. 5.3 (a) Excerpt of WT meta-model. (b) Inferred graphical representation for
classes. (c) Visualization of a graphical representation.

DocumentElt
name : String
description: String

InitialState

Vertex

(a)

:NodeType

isAbstract = false

:ELabelAttribute

(b)

InitControl

(c)

:Ellipse

width =50px
height = 50px
color = black

Fig. 5.4 (a) Excerpt of WT meta-model. (b) Inferred labels. (c) Visualization of
graphical representation.

• Label selection heuristics: These heuristics are used to decide the attributes
that node-like or edge-like classes will display close to their representations. We
identify the following three strategies:

1. First string attribute uses the first string attribute of the class as its label.

2. Identifier of the class uses its identifier.

3. Parameter string attribute is parametrized with several input strings, and
selects the attribute whose name contains some of them.

An example of a label selection heuristic is shown in Figure 5.4. To illustrate this
heuristic we use the third strategy configured with the parameter "name". Fig-
ure 5.4(a) shows and excerpt of the WT meta-model. Figure 5.4(b) maps the name
attribute as the node label, because it matches the parameter. Figure 5.4(c)
illustrates the graphical representation that would be obtained.

5.2 Graphical Concrete Syntax 59

• Default representation of containment references: These strategies identify refer-
ences that will be displayed graphically as edges, compartments or affixes. The
defined heuristics are the following:

1. Containment references as links, all containment references will be repre-
sented as links.

2. Containment references as compartments, containment references will be
displayed as containers for the objects conformant to the type of the reference.

3. Containment references as affixed, the nodes will be placed on the border of
another element.

Figure 5.5 shows an example of graphical representation using the link strategy.
We show the classes of the WT meta-model to represent the relationship between
components and ports (Figure 5.5(a)). The ports containment reference is assigned
an edge-like representation (Figure 5.5(b)) which is visualized in Figure 5.5(c) as
edges from the objects of type component to the ports.

InPort

OutPort

Port
label : String
isPublic : Boolean

Component

name : String

ports

0..* :NodeType

isAbstract = false

:EdgeReference

(a) (b) (c)

:Rectangle

width = 50px
height = 100px

:NodeType

:NodeType

:Figure

filePath = “input.png”

:Figure

filePath = “output.png”

comp

port1

port2

Fig. 5.5 (a) Excerpt of WT meta-model. (b) Graphical representation of compositions
using the link strategy. (c) Visualization of graphical representation.

The strategy that maps elements using the containment heuristic is shown in
Figure 5.6. In this example, we use the same classes used to illustrate the link
strategy. Hence, ports are created within component objects (Figure 5.6(c)).

Finally, the affixed strategy is shown in Figure 5.7. In this case, the reference ports
is mapped as affixed. Due to this, objects of type InPort and OutPort are depicted
overlapped to the component object (Figure 5.7(c)).

• Graphical style heuristic: This heuristic assigns a style to the node and edge
representations created by the previous strategies. For example, we can depict
an identified node with a shape or an icon. In the case of links, they could be

60 Support for Graphical and Tabular Concrete Syntax

InPort

OutPort

Port
label : String
isPublic : Boolean

Component

name : String

ports

0..* :NodeType

isAbstract = false

:Containment

(a) (b) (c)

:Rectangle

width = 50px
height = 100px

:NodeType

:NodeType

:Figure

filePath = “input.png”

:Figure

filePath = “output.png”

comp

port1

port2

Fig. 5.6 (a) Excerpt of WT meta-model. (b) Graphical representation of compositions
using the containment strategy. (c) Visualization of graphical representation.

InPort

OutPort

Port
label : String
isPublic : Boolean

Component

name : String

ports

0..* :NodeType

isAbstract = false

:Overlapping

(a) (b) (c)

:Rectangle

width = 50px
height = 100px

:NodeType

:NodeType

:Figure

filePath = “input.png”

:Figure

filePath = “output.png”

compport1

port2

Fig. 5.7 (a) Excerpt of WT meta-model. (b) Graphical representation of compositions
using the affixed strategy. (c) Visualization of graphical representation.

depicted with available decorators and line styles. By default, the source arrow
of an edge is represented with no decorator and the target arrow with an input
fill closed arrow decorator. We have defined two strategies for assigning a style
to a diagram element:

1. Semiotic clarity which is one of the principles defined by Moody [92].
According to this principle, there should be a 1:1 correspondence between
classes and graphical symbols. These symbols are different as long as any of
the 8 visual variables such as colour, size and texture are different. In this
case, the generated representation must verify that each graphical style is
not equal to the others defined.

2. Random strategy, which does not verify the singularity of each symbol.

As a complement of the two strategies previously explained, another possibility
is assigning icons (instead of shapes) to node-like classes. In such a case, for

5.2 Graphical Concrete Syntax 61

each node-like class in the domain meta-model, we perform a search in an image
repository using the class name as parameter. Then, we assign the first icon
found as the representation of the node, but giving the user the possibility to
select another icon among the ones found.

The combination of all heuristics results in the creation of a default graphical
representation by making use of the meta-model information. This representation can
be later adjusted by the user if so desired.

5.2.2 Read-only Representation Style for Collections

This section proposes a set of representation styles that can be found when designing
a DSML. These representation styles are default visualizations that are attached to
a certain structure of the abstract syntax. The goal is providing a representation for
recurrent non-trivial visualizations of collections which resemble statements of general-
purpose languages, and simplifying their definition by a simple mapping between
the meta-model structure and the representation style. In total, we have identified
four styles that are: Loop, Conditional, Tree and LinkedList. These representations are
defined in the GraphicRepresentation meta-model (Figure 5.1). We will describe these
styles through examples of how the abstract syntax is mapped to obtain the desired
representation using synthetic meta-models.

An example of the LinkedList representation is shown in Figure 5.8. The syn-
thetic meta-model shown in Figure 5.8(a) contains a class A, which has a reference
with cardinality * to a class B. Classes of the synthetic meta-model are mapped to
the GraphicRepresentation model. The visualization result is shown in Figure 5.8(c),
where a list of B objects referenced by an A object is displayed as a list. We add to
this visualization an initial and final shape, which are not mapped to any class of the
meta-model. However, we can customize the visualization so that the initial and final
shapes do not appear, or only one of them is displayed.

Figure 5.9 shows the Tree representation. The synthetic meta-model shown in
Figure 5.9(a) it is the same one used to illustrate the previous style. In this case, the
resulting visualization shown in Figure 5.9(c) displays the B objects linked to the root,
which is a shape not mapped to any meta-model class. This root is depicted as a
diamond, but it can be customized to suit the user’s needs. This representation style
can be configured so that the initial and final shapes do not appear in the visualization.

The third proposed representation is Loop of which an example is shown in Fig-
ure 5.10. In this case, the synthetic meta-model contains a class A with a reference with

62 Support for Graphical and Tabular Concrete Syntax

A

B

refB 0..*

(a)

:NodeType

isAbstract = false

:Containment

:Rectangle

width = 50px
height = 100px

:LinkedList

(b) (c)

:Rectangle

width = 25px
height = 25px :B2:B1

:Figure

filePath = “init.png”

:Figure

filePath = “end.png”

:EdgeClassType
:EdgeStyle

style = solid
width = 1px

Fig. 5.8 (a) Synthetic meta-model. (b) Mapping to create a LinkedList visualization. (c)
Visualization using the LinkedList representation.

A

B

refB 0..*

(a)

:NodeType

isAbstract = false

:Containment

:Tree

:Rectangle

width = 50px
height = 100px

:B1 :B2 :B3

(b) (c)

:Figure

filePath = “init.png”

:EdgeClassType

:EdgeStyle

style = solid
width = 1px

:Figure

filePath = “end.png”

:Rectangle

width = 25px
height = 25px

:Diamond

size = 20px

Fig. 5.9 (a) Synthetic meta-model. (b) Mapping to create a Tree visualization. (c)
Visualization using the Tree representation.

cardinality [0..1] to a class B. Figure 5.10(c) shows the visualization result obtained after
the mapping shown in Figure 5.10(b). In this representation, we also add customizable
initial and final shapes.

Finally, Figure 5.11 shows the Conditional representation style. The synthetic
meta-model (Figure 5.11(a)) contains a class A with three references, each of these
references points to the same class B, and represent the if, then and else branches of a
conditional statement. Figure 5.11(c) shows the visualization result. As in the previous
representation styles, it has customizable initial and final shapes.

5.3 Tabular Concrete Syntax 63

A

B

refB 0..1

(a)

:NodeType

isAbstract = false

:Containment

:Rectangle

width = 50px
height = 100px

:Loop

(b) (c)

:B1

:Figure

filePath = “init.png”

:Figure

filePath = “end.png”:EdgeClassType

:EdgeStyle

style = solid
width = 1px

:Rectangle

width = 25px
height = 25px

Fig. 5.10 (a) Synthetic meta-model. (b) Mapping to create a Loop visualization. (c)
Visualization using the Loop representation.

A B

(a)

if

then

else

1..1

1..1

0..1

:NodeType

isAbstract = false

:Containment

:Conditional

(b) (c)

:B1

:B2 :B3

:Figure

filePath = “init.png”

:Figure

filePath = “end.png”

:Rectangle

width = 50px
height = 100px

:EdgeClassType:EdgeStyle

style = solid
width = 1px

:Rectangle

width = 25px
height = 25px

if

then else

Fig. 5.11 (a) Synthetic meta-model. (b) Mapping to create a Conditional visualization.
(c) Visualization using the Conditional representation.

5.3 Tabular Concrete Syntax
With respect to the tabular representation, our approach to instantiate the concrete
syntax is to create an intermediate meta-model that stores the corresponding data.
This same approach was used to represent graphical concrete syntaxes (though through
a different meta-model) in Section 5.2.

Figure 5.12 shows the platform independent meta-model to specify tabular concrete
syntaxes. The specification of a tabular representation consists of a selection of the
attributes that will be shown in the columns of the table as well as the references that
will be displayed in the rows. As an example, Figure 5.13 shows a mapping to create a
table of state machines objects defined within a Component. Figure 5.13(b) shows the
tabular representation model to define a table with all StateMachine objects referenced

64 Support for Graphical and Tabular Concrete Syntax

RepresentationTable

rootTable : EClass
columns : EAttribute

Row

featureReference : EReference
listEClasses : EClass

RowGroup

[0..*] rows

[0..*] rows

Fig. 5.12 Tabular representation meta-model.

by a component Figure 5.13(d) shows an example of such tabular representation for
the model shown in Figure 5.13(c).

Component

name : String
states

StateMachine
name : String
isPublic : Boolean

0..*

:RepresentationTable

:RowGroup

StateMachine.name

StateMachine1

StateMachine2

rootTable

columns

featureReference

listEClasses

comp
AlarmInitControl

ExecControl

InitControl

StateMachine1

StateMachine2

(a) (b) (c) (d)

Fig. 5.13 (a) Excerpt of WT meta-model. (b) Mapping to create a tabular visualization
of state machines. (c) Example of a model. (d) Visualization of state machines in
tabular form.

5.4 Graphical Representation of a Fragmented Model
Section 4.3.1 described a fragmentation pattern for the creation of models. By applying
this pattern, different files are created in a hierarchical structure that is mapped to the
file system, which together conform the entire model. The fragmentation mechanism
relies on the use of cross-references by which objects can refer to other objects that are
in other files. Cross-references can be containment or not. A containment reference
induces a tree, which means that the reference can contain objects (tree nodes).
Otherwise, cross-references are links between the objects in different files.

We propose transferring the hierarchical organization of models by the fragmentation
pattern, to the concrete syntax. Using this mechanism the diagrams can also be
constructed in a fragmented way. Since the objects annotated as Unit are those that
group elements in the same file, we allow creating a diagram for each of them.

5.5 Summary and Conclusions 65

Figure 5.14 shows an example of how fragmentation would be applied to graphical
editors at the level of the concrete syntax. Our running example allows creating two
types of units: State Machine or Architecture. The data of each diagram will be saved
separately (one diagram per fragment), and, the editors must allow objects to be
referenced by other object in another document. Such is the case of the reference
that is shown from the component object to HUnitControl which is a non-containment
reference.

HUnitControl

Alarm
Overload

InitControl
isPublic = false

graphical representation file graphical representation file

port1

port2

comp

Unit

Transmission:ControlSubsystem

Generator:Subsystem

Hydraulic:Subsystem

wt1:WTComponents

Fig. 5.14 Graphical representation of a fragmented model.

5.5 Summary and Conclusions
In this chapter we have described our approach to speed up the creation of graphical
and tabular representations of models. The approach is based on the creation of a
model of the concrete syntax, and its mapping to the abstract syntax meta-model.
In the case of the graphical representation, a set of heuristics assist developers in its
implementation.

In the following chapter, we describe the research tools developed atop Eclipse to
support the ideas presented in this and the previous chapters. The tools are called
EMF-Splitter and EMF-Stencil. EMF-Splitter provides dedicated wizards to instantiate
the catalogue of patterns discussed in Chapter 4 and also generates the corresponding
modelling editors. EMF-Stencil offers wizards to instantiate concrete syntaxes to
generate graphical editors and tabular representations.

Chapter 6

Tool Support

This chapter provides a description of the two Eclipse plug-ins proposed in this thesis,
called EMF-Splitter and EMF-Stencil. The first section shows an overview of DSL-tao
since both plug-ins use this tool as a front-end to instantiate the fragmentation and
graphical patterns at the meta-model level as explained in Chapters 4 and 5. On one
hand, EMF-Splitter (Section 6.2) implements the catalogue of modularity patterns,
providing dedicated wizards to instantiate the patterns, and being able to generate
modelling environments that integrate the associated modularity services. On the other
hand, EMF-Stencil (Section 6.3) implements our approach to specify the graphical and
concrete syntaxes presented in Chapter 5 and generates the corresponding graphical
editor for a specific language framework currently in Sirius.

6.1 DSL-tao
DSL-tao is a tool that permits the pattern-based creation of DSMLs, as explained
in Chapter 4. DSL-tao proposes a catalogue of patterns divided into five categories:
domain, design, concrete syntax, dynamic semantics and infrastructure patterns [105].
These patterns may include services which can contribute to the functionality of the
generated environment. This tool is available at http://www.miso.es/tools/DSLtao.
html.

DSL-tao uses Eclipse/EMF [118, 128] as implementation platform to profit from
its plugin-based architecture, which allows extending the platform to incorporate new
functionality through extension points. This simplifies the task of adding new patterns
to the system, and it is a natural deployment infrastructure for our generated DSMLs
environments, as we will show in Section 6.2.

http://www.miso.es/tools/DSLtao.html
http://www.miso.es/tools/DSLtao.html

68 Tool Support

PatternSet

Category

categories*

subcategories

*

Pattern

patterns
*

Role

minCard: int

maxCard: int

constraint: String

ClassRole

isAbstract: boolean

AttributeRole

Attribute

TypeRole
Configuration

AttributeRole

MetaModel
structure

EClass

«from Ecore»

EPackage

«from Ecore»

EAttribute

«from Ecore»

PatternInstance

type

instances

ClassRole

Instance
RoleInstance

*

definition

*

EObject

«from Ecore»

secondaries

*

type

*

*

instances

ServicePort

services*ports

*

Interface

«from Interfaces»

uses *

Fig. 6.1 Excerpt of DSL-tao’s pattern meta-model.

The tool includes an extensible catalogue of patterns. New patterns can be defined
by providing its meta-model and roles. Figure 6.1 shows an excerpt of the underlying
meta-model for pattern definition. A Pattern declares Roles, which annotate the elements
of the ecore MetaModel with the structure of the pattern. Roles can be ClassRoles if they
annotate meta-model classes, AttributeRoles if they annotate attributes, or ReferenceRoles
if hey annotate references. As explained in Section 3.2, for attributes and references, we
allow both field roles and configuration roles. Roles may define a constraint to validate
the pattern instantiation, using OCL. Patterns may have any number of PatternInstances,
which contain RoleInstances of the roles declared by the pattern. Whereas roles in
patterns point to meta-elements like EClass or EAttribute, role instances point to EObjects
in the structure of the pattern instance. In addition to their own instances, patterns
may have associated secondary instances from other patterns. For example, the user
can define a secondary pattern instance with the information on the concrete syntax
of the main pattern. Finally, patterns may define Services, which need to declare
their Ports and Interfaces.

By means of extension points, the pattern developer is allowed to extend the base
definition of a pattern to include (i.e., the meta-model and roles) pattern-specific
validations, heuristics or services (if needed):

• pattern-specific validations: The pattern developer may include extra validations,
e.g., expressed in OCL, to check whether the binding of a pattern instance to a
domain meta-model is correct. It is used only for pattern-specific validations, as
DSL-tao already performs generic correctness checkings (e.g., that if a meta-model
attribute is bound to a pattern attribute, their owner classes are bound as well).
An example of pattern-specific validation for the modularity pattern is checking

6.1 DSL-tao 69

that the class bound to role Project is root (i.e., it contains all other classes
through containment relationships, directly or indirectly).

• pattern-specific heuristics: These are heuristics that facilitate the correct instan-
tiation of a pattern. For example, the model fragmentation pattern identifies the
root class of a meta-model as the optimal binding for the Project role.

• services: The pattern semantics can be realized via services, typically through
code generation using Acceleo or any other code generation language, and it
is encapsulated as an Eclipse plugin. Code generation is needed because the
generated plugin for the modelling environment needs to be customized with
information of the pattern instance. For example, the plugin generated for the
HierarchicalOrganization service needs to enforce the desired project/package/u-
nit structure. Service dependencies are realized as plugin dependencies and
appropriate instances of extension points.

Figure 6.2 shows a screenshot of DSL-tao. The tool enables the construction of DSML
meta-models by dragging elements from a palette into the canvas (label 3). A Patterns
View (omitted in the figure) lists the patterns of the different categories. When a
pattern is selected, a wizard (labels 1 and 2) facilitates its instantiation as follows: first,
the pattern variant is selected, together with its secondary patterns (if any). In the
figure (label 1), the StateMachine pattern is to be applied, and the designer may choose
among three default visualizations (three secondary patterns). Then, the designer can
bind meta-model elements to the pattern roles by dragging the former into the latter
(label 2), and instantiate the pattern roles according to their cardinality.

Label 3 in Figure 6.2 shows the resulting meta-model. To the right (label 5), the
Applied Patterns View displays a tree containing each pattern instance and instantiated
role. Selecting a role highlights the bound meta-model element in the canvas (InitialState
in the figure). Each meta-model element shows its roles in patterns as annotations,
and the canvas itself shows the list of applied patterns in the upper-right corner.

The tool includes a Pattern Services View (label 4 in the figure), where each row
indicates a service instance, the pattern that provides the service, and if it is activable
or not. If a service is optional, the designer can activate it. A pattern is activable if all
its port dependencies are resolvable. In case a service is not activable, the view informs
of which ports are unconnected, and which patterns in the repository could resolve the
given dependency. The figure shows the Hierarchical Organization service deactivated,
which makes the Filtering and the two Graph-based editing services unavailable. Note
that the DSML designer is unaware of the different port types (slot, plug, injector,

70 Tool Support

1

2

3

4

5

Fig. 6.2 Using DSL-tao. (1, 2) Applying the StateMachine pattern. (3) Resulting
meta-model. (4) Services. (5) Applied patterns.

consumer) and the composition of services, as this is automatically performed by the
tool.

6.2 EMF-Splitter
To give support to our pattern-based approach to modularity in DSMLs, we have
implemented an Eclipse-based solution called EMF-Splitter [48, 49] freely available
at http://www.miso.es/tools/EMFSplitter.html.

Figure 6.3 shows its architecture. It relies on EMF to represent the domain meta-
models and their instances. It contains the modelling front-end DSL-tao described in
the previous section. We have extended the pattern repository provided by DSL-tao
with all modularity patterns presented in Section 4.3, and EMF-Splitter implements the
extension points in charge of generating the modelling environment once the patterns
have been applied. While EMF-Splitter complements DSL-tao, it can also be used
stand-alone.

This way, with our solution, the modelling language designer creates the domain
meta-model and applies to it the modularity patterns using DSL-tao. The pattern
applications are persisted as annotation models over the domain meta-model, which
EMF-Splitter uses to synthesize a modelling environment. This environment provides
the functionality defined by the patterns, like model creation using the defined fragmen-
tation strategy and incremental validation of scoped constraints. The environment also
provides support for working with legacy monolithic models, as it can automatically

http://www.miso.es/tools/EMFSplitter.html

6.2 EMF-Splitter 71

Concordance 1

Model
Change

Hawk 1

Model
Factory

EMF
Splitter

1

Scoped
Validation

«Input»

Modular
Environment

1

Scoping

Fragmented Model

Visibility

DSL-tao 1 «Apply Patterns»

Indexing
Pattern

Implementation

modelling language
designer

«Generates»

Domain meta-model
instantiated with

patterns

modelling
language
users

DSML workbench
Modelling environment

Fig. 6.3 Architecture of EMF-Splitter.

fragment an existing model according to the fragmentation strategy, and merge a
partitioned model into a monolithic one.

The models created or fragmented by the generated environment are distributed
in files and folders in the file system. In consequence, the integrity of a model can be
affected if a file path changes (e.g., if a fragment is moved from a folder to another
one). In order to maintain the model integrity, the generated environment integrates
an indexer for cross-references called Concordance [108] (see Figure 6.3). By default,
Concordance only indexes cross-references. In addition, the generated environment
implements its extension point ModelFactory to index containment references as well,
and its extension point ModelChange to receive notifications of model events in the
workspace.

The generated environment can be extended through Eclipse extension points, for
example, to integrate it with other tools. Based on this mechanism, our modularity
patterns for scoped validation, reference scoping, visibility and indexing generate code
that integrates Hawk [46], a scalable model indexer that improves the performance
of queries over large models. This results in more scalable environments, as we will
demonstrate in Section 7.4.4.

Figure 6.4 shows DSL-tao being used to define a modelling environment for the
running example. The domain meta-model is built in the main canvas (label 1), and the
patterns in the repository can be applied over it (Patterns View, with label 2). The repos-
itory includes patterns with services for filtering, graphical visualization and modularity,
among others. Once a pattern is applied, the meta-model elements get tagged with the

72 Tool Support

22
1

3 4

Fig. 6.4 Application of the fragmentation pattern using DSL-tao.

pattern role names (see for instance the tag @Project on class WTComponents). The
environment provides a list of applied patterns, and when one is selected, the affected
meta-model elements are highlighted in the canvas. The figure shows highlighted an
application of the fragmentation pattern, while the upper-left corner of the canvas
indicates that the Scope and Visibility patterns have been applied as well. Patterns can
be instantiated using either a generic wizard or a specific wizard contributed by the
pattern. The figure shows the wizard to instantiate the fragmentation pattern (label 3).
This wizard permits selecting the project class in the first page (label 3). The second
page (label 4) shows a table containing in the first column the meta-model classes
organized following the containment tree, taking as root class the one defined as project.
The remaining columns permit configuring the classes instantiated as package, unit or a
mix of them; the attribute that will be used as the class name or identifier; an icon to
represent the instances of the class in the generated; and the file extension for unit
classes.

With respect to the reference scoping pattern, Figure 6.5 shows the dedicated
wizard to apply this pattern and define scope rules related to the pattern as discussed
in Section 4.3.2. The wizard permits selecting the class and reference with a scope,
which can be one among the following: same unit, same package, same root package,
same project or same workspace.

6.2 EMF-Splitter 73

Fig. 6.5 Dedicated wizard for the application of reference scoping pattern.

Fig. 6.6 Dedicated wizard for the visibility pattern application.

As we discussed in Section 4.3.3, the visibility pattern is based on the fragmentation
one to define whether an object is accessible or not from other model fragments. To
facilitate the application of this pattern, EMF-Splitter provides the wizard shown in
Figure 6.6. This wizard permits selecting the class, visibility scope, and filter expression
so that only the objects that fulfil the filter become visible within the provided scope.
We have built a dedicated editor with syntax validation for the filter expression, which
can be specified using the Epsilon Object Language (EOL) [73], a variant of OCL.

The indexing pattern described in Section 4.3.4 can be used to speed up the
execution of queries over models through the definition of attribute indexes. Figure 6.7
shows the wizard developed. This wizard has a table to define different indexed
attributes, the first column is used to select the class and the second the attribute.

74 Tool Support

Fig. 6.7 Dedicated wizard for the indexing pattern application.

Figure 6.8 shows the implemented wizard for the scoped validation pattern. In the
first page of the wizard (label 1) allows selecting the name of the constraint, context
class, validation scope, and constraint statement using a dedicated editor with syntax
checking for EOL (label 2).

1
2

Fig. 6.8 Dedicated wizard for the scoped validation pattern application.

From the domain meta-model annotated with pattern instances, EMF-Splitter
can synthesize a modelling environment. DSL-tao invokes the code generators of
the services associated to the applied patterns. Figure 6.9 shows a snapshot of
the synthesized environment for the running example. With the application of the
fragmentation pattern, each model is represented as an Eclipse project (see Package
Explorer view, with label 1), where packages are mapped to folders, and units to files.
For instance, VariableSubsystem is a folder, which contains files like the VTUnit1.state,
which represents a state machine object. The model fragments in files can be edited
using a tree editor (label 2). In the next section, we will show how to improve this

6.3 EMF-Stencil 75

1 2

3

Fig. 6.9 Modelling environment synthesized for the running example.

environment, so that these editors can be graphical using the EMF-Stencil tool. The
Problems view (label 3) shows the violations of scoped constraints.

6.3 EMF-Stencil
The approach to define graphical and tabular syntaxes explained in Chapter 5 is
implemented as an Eclipse plug-in called EMF-Stencil available for download at http:
//www.miso.es/tools/EMFSplitter.html. Figure 6.10 shows the architecture of this tool,
which provides one wizard for each concrete syntax to facilitate the instantiation at the
meta-model level. As in the case of EMF-Splitter, this plug-in uses the DSL-tao tool
as a front-end, implementing its interfaces to provide the dedicated wizards, although
these wizards may be used stand-alone. EMF-Stencil is an Eclipse plug-in solution
based on EMF which implements an extension point to generate a graphical editor
realised using an existing language framework. Currently, we support Sirius as a
technology specific editor and to do this, an ATL a transformation is implemented to
obtain the .odesign model from the GraphicRepresentation one. Section 2.2.4 explained
the .odesign model is used in Sirius to represent the concrete syntax.

Figure 6.11 shows the first page of the wizard to customise the graphical editor.
In this first step, the wizard allows the modelling language designer to choose a

http://www.miso.es/tools/EMFSplitter.html
http://www.miso.es/tools/EMFSplitter.html

76 Tool Support

EMF
Stencil

1«Input»

DSL-tao 1
«Apply Patterns»

Pattern
Implementation

modelling language
designer

Domain meta-model
instantiated with

concrete syntax patterns

DSML workbench

Pixabay 1

Google
Images

1

Customise
Icon

Semiotic
Clarity

1

Random 1
Customise

Shape

«Generates»

modelling
language
users

Sirius 1
Modular Graphical

Environment

Modelling Projectmain.aird

Proxy
reference

Proxy
reference

Cross
reference

State_Machine.aird
Component.aird

State_Machine.xmi Component.xmi

Fig. 6.10 Architecture of EMF-Stencil.

combination of strategies to generate a default editor. These strategies were described
in Section 5.2.1. This wizard can produce a graphical editor to create monolithic
models or it can be combined with the model fragmentation pattern. In the latter case,
a different editor will be created for each class annotated with unit, allowing the editing
of the models with an instance of the unit class as their root. EMF-Stencil provides
the extension point CustomiseShape to define different strategies to automatically assign
a default shape to classes, which can be later refined by the language designer. We
have implemented two such strategies, called Semiotic clarity and Random. On one
hand, the Semiotic clarity is a principle within Moody’s criteria [92], which says that
the figures need to have different visual variables (e.g., colour, shape, etc.) to be
distinguishable. Hence, our strategy in this case consist in assigning to each class a
different shape, and do not allow that two classes related by a reference have the same
colour or shape. On the other hand, the Random strategy assigns the visual variables
randomly without checking if they are the same as others previously chosen.

Regarding the assignment of icons to node elements, EMF-Stencil defines the
extension point CustomiseIcon, which allows configuring the source repository from
which the generated environment will retrieve the icons. This feature to obtain icons
can be used with semiotic clarity. In this way, the nodes will be represented as
icons, instead of using shapes. The addition of an icon data source requires the URL
and the search parameters to obtain the icons list. In addition, the implementation
should download and save the images within an Eclipse project, specifically the one
that contains the meta-model. In this case, we implemented two search options:

6.3 EMF-Stencil 77

Fig. 6.11 Dedicated wizard for assigning a graphical concrete syntax. Step 1: Customize
heuristics.

Pixabay 2and Google Custom Search 3. Pixabay is a repository of free images which
provides a Rest API 4 for retrieving them. The Google Custom Search is a JSON API
with RESTFul requests that allows getting images.

As a second step, EMF-Stencil infers a concrete syntax according to the selected
heuristics and strategies, which the DSML designer can modify if desired. Figure 6.12
shows the inferred representation taking Architecture as root class. Within the Default
Layer we can see the classes that are directly or indirectly contained by the root class
(Architecture in this example). In addition, this wizard permits adding other classes
belonging to the meta-model. For example, we may add the class Subsystem (label
1) to the Default Layer. In that case, we show a warning if the class is not contained
directly or indirectly in the root class (label 2).

2https://pixabay.com/
3https://developers.google.com/custom-search/v1/overview
4https://pixabay.com/api/docs/

https://pixabay.com/
https://developers.google.com/custom-search/v1/overview
https://pixabay.com/api/docs/

78 Tool Support

1

2

Fig. 6.12 Dedicated wizard for assigning a graphical concrete syntax. Step 2: cus-
tomization of inferred concrete syntax.

Fig. 6.13 Dedicated wizard for assigning a graphical concrete syntax. Step 3: cus-
tomization of appearance of nodes and edges.

Finally, the last step is shown in Figure 6.13. This wizard page permits to update
the generated styles. For example, in the case of nodes, the DSML designer is allowed
to customise the shape, the colour and the border style. In the case of edges, there is

6.4 Summary and Conclusions 79

a list of available decorators and line styles. In addition, we implemented the dialog
(right bottom corner of Figure 6.13) to select the icons for the class Component. In
this example, we retrieve the images using the Google JSON API and implement two
search parameters, the image type (e.g., clipart, face or lineart) and the number of
images to return (label 1). The user can change the search parameters and download
new icons (label 2).

1

2

Fig. 6.14 Generated modelling environment for the WT meta-model.

A scalable modelling environment is generated from the definition of the concrete
syntax using this wizard. Figure 6.14 shows the environment in Sirius, with two editors,
one for state machines files and another for Component objects. For each sub-model
file, the graphical information is saved in a representation file defined by Sirius (with
extension .aird). Label 1 points to the VTUnit1.aird file, which saves the colours and
positions of elements, defined in file VTUnit1.xmi. Furthermore, a representation file
is created for each project which will contain cross references to all created diagrams
(label 2). These graphical editors for model edition can replace the tree-editor shown
in Figure 6.9.

6.4 Summary and Conclusions
This chapter has introduced the functionalities of our two developed Eclipse plug-ins. On
one hand, EMF-Splitter implements the language modularity catalogue providing a set
of dedicated wizards and code generators. On the other hand, EMF-Stencil implements

80 Tool Support

the heuristics defined in Chapter 5 and has a wizard to facilitate the mapping between
the meta-model elements and their graphical representation. Altogether, these two
tools facilitate the development of graphical modelling editors for DSMLs supporting
modularity services.

In the next chapter, we will evaluate our approach and show its applicability using
different case studies.

Chapter 7

Evaluation

This chapter describes the evaluation of our approach in its application to different
contexts. Section 7.1 analyses some meta-model repositories to prove the applicability
of our fragmentation pattern. Section 7.2 describes the fragmentation performance
evaluation, carried out with synthetic and realistic models. Section 7.3 compares
our fragmentation approach with third party tools. Section 7.4 evaluates the scoped
validation pattern with synthetic models and measures the performance speed-up
when we combine this pattern with a model indexer. Section 7.5 describes the case
studies in which we apply our catalogue of patterns and graphical heuristics to obtain
scalable environments. Finally, Section 7.6 shows some applications of our approach,
in combination with other research work.

7.1 Applicability of the Fragmentation Pattern
In this section, our goal is to answer the following research question:

RQ1: Is the proposed model fragmentation approach into projects, packages and units
applicable in practice?

Our approach exploits the containment relations in meta-models to customize a
fragmentation strategy. The rationale is that EMF meta-models make heavy use
of containment relations, so that models have a tree structure where each object is
contained under one parent, except the root object. Hence, a common idiom for EMF
meta-models is to have a root class containing directly or indirectly all other classes of
the meta-model. This root class plays the role of Project in our fragmentation pattern,
while Package and Unit classes require subsequent containment relations.

82 Evaluation

To have an intuition of the practical applicability of our fragmentation approach,
we have analysed the following two meta-model repositories to assess to which extent
they make use of containment relations:

• The ATL meta-model zoo5. This is a repository hosted by the AtlanMod research
team, consisting of 301 EMF meta-models created by developers with mixed
experience. Hence, the repository includes meta-models used in academia and
appearing in research papers, but also meta-models of large standards like BPMN
or BPEL.

• Meta-models of OMG standards6. The Object Management Group (OMG) is a
standardization body that produces meta-model-based standards for technologies
like UML, OCL, QVT or BPMN, among others. These meta-models were created
by professional engineers with high expertise. For our analysis, we have considered
224 meta-models of OMG standards, corresponding to those meta-models which
are in a format we can parse, and considering that some standards provide several
meta-models.

The repositories contain some very large meta-models. In the ATL zoo, the Industry
Foundation Classes (IFC) meta-model contains 699 classes, and the OMG standard
with the highest number of classes is the Robotic Interaction Service Specification
(RoIS) with 657. On the other hand, both repositories have meta-models with a small
number of classes. In the ATL zoo, 75% of meta-models have less than 38 classes,
while in the OMG, 75% have less than 63 classes.

For each meta-model, we computed its containment depth. This is the length of the
longest path of containment relations starting from the root class. We detected the
root class of each meta-model automatically as follows. For each class, we calculated
the number of classes that it contained directly or indirectly. Then, the class containing
more classes was selected as the root, and in case of tie, the class not contained by any
other was selected. If several classes had those characteristics, then the first one in the
list of possible roots was selected. The goal was to leave out as few classes as possible.

Within the analysed repositories, our algorithm did not detect a root in 7% of
meta-models because they lacked containment relations, while 58% of meta-models
had one root class. In the rest of cases, the algorithm found several roots in the same
meta-model, which justifies our decision to support multiple roots in the fragmentation
pattern.

5http://web.emn.fr/x-info/atlanmod/index.php?title=Ecore
6https://www.omg.org/spec/

http://web.emn.fr/x-info/atlanmod/index.php?title=Ecore
https://www.omg.org/spec/

7.1 Applicability of the Fragmentation Pattern 83

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

O
M
G

At
la
nM

od

O
M
G

At
la
nM

od

O
M
G

At
la
nM

od

O
M
G

At
la
nM

od

O
M
G

At
la
nM

od

O
M
G

At
la
nM

od

O
M
G

At
la
nM

od

O
M
G

At
la
nM

od

O
M
G

At
la
nM

od

0 1 2 3 4 5 6 7 >=8

Recursive Packages Non‐Recursive Packages

Depth

Fig. 7.1 Containment depth across the repositories, and distribution of packages and
recursive packages according to the depth.

Next, we heuristically assigned a fragmentation strategy to each meta-model. The
heuristic annotated the root classes as Projects; the classes with recursive containment,
or with containment depth greater than 1, as Packages; and the classes with containment
depth equal to 0 or 1 as Units. By recursive containment we mean containment relations
that can store instances of the class defining the relation, like Subsystem.subsystems in
Figure 2.3.

Figure 7.1 shows the containment depth of the meta-models in both repositories
(x axis) and the percentage of meta-models with that depth (y axis). We separate
the ATL and OMG meta-models to understand whether there are differences between
them, given the different background of their developers and the different scope of the
meta-models.

The figure shows that less than 10% of the ATL meta-models and less than 5%
of the OMG meta-models have no containment relations. In the ATL repository, 29
meta-models have no root, and 75% of them have less than 16 classes. In the OMG
repository, 9 meta-models have no root, and 75% of them have less than 29 classes.
Our fragmentation pattern cannot be applied to these meta-models as they lack a root
class.

84 Evaluation

0

20

40

60

80

100

120

140

160

180

0 1 2 3 4 5 6 7 8-27

N
u

m
b

er
 o

f
C

la
ss

es

Depth

Average of Classes (OMG Meta-models) Average of Classes (AtlanMod Meta-models)

Fig. 7.2 Meta-model size (in classes) vs containment depth.

On the contrary, the depth is greater than zero in more than 90% of the meta-models,
and our approach can be used on them. Most meta-models in both repositories have
depth 1. The ratio of recursive containment relations (leading to recursive packages)
vs. non-recursive packages increases as the containment depth increases. Interestingly,
excluding the meta-models with depth zero, the containment depth follows a power
law distribution, found in many natural and man-made phenomena [94].

Figure 7.2 depicts the correlation of containment depth (x axis) with meta-model
size expressed as the number of classes (y axis). We can see that there is a tendency
for longer containment depths in bigger meta-models in both repositories.

From this experiment, we conclude that our fragmentation approach can be applied
to most meta-models in both repositories (potentially 90% of ATL meta-models and 95%
of OMG meta-models). With regard to the fragmentation strategies that we computed
heuristically, we found that near 50% of the meta-models in both repositories contain
some Package class. Packages permit grouping model fragments and provide a modular
structure, which is one of the main objectives of our pattern. The analysis also shows
that there are two features that make a meta-model more amenable to fragmentation
using our approach: first, deep containment trees permit creating different types of
packages; second, recursive containment relations permit nested packages. Hence, our

7.2 Fragmentation Scalability 85

fragmentation is more useful on larger meta-models, as their containment depth and
ratio of recursive containment relations are higher.

Altogether, we can answer the research question RQ1 affirmatively: our frag-
mentation pattern is applicable in practice, being more beneficial for large meta-
models. The evaluation materials (e.g., meta-models, models) are available at https:
//github.com/antoniogarmendia/emfsplitter-materials.

7.1.1 Threats to Validity

The analysis considers a large number of meta-models (more than 500) including
standards, which ensures the robustness of the findings. Moreover, it takes into account
two different repositories to foster diversity of meta-models. To strengthen our results,
we plan to repeat the analysis on meta-models hosted in public code versioning systems
like Github. On the other hand, our experiment applied fragmentation strategies
automatically computed according to a set of heuristics, but these strategies may be
different from the ones that a human may have manually defined. It is future work
to perform another evaluation using fragmentation strategies manually defined by
developers.

7.2 Fragmentation Scalability
In this section, our goal is to answer the following research question:

RQ2: Which is the incurred cost of fragmentation?

We evaluate the scalability of our tools to deal with large models. For this purpose,
we present two experiments, one using synthetic models (Section 7.2.1), and the other
one using real models created by third parties (Section 7.2.2).

In all our tests, we use the following environment:

• Execution environment:

– Operating System: Windows 7 Professional Service Pack 1.

– Processor: Intel(R) Core(TM) i7-2600, 3.40GHz

– RAM: 12 GB

• Java Virtual Machine Configuration:

https://github.com/antoniogarmendia/emfsplitter-materials
https://github.com/antoniogarmendia/emfsplitter-materials

86 Evaluation

«Project»

WindPark
«Package»

WindTurbine
«Unit»

Subsystem

@Unit
SystemInput

@Unit
System
Variable

@Unit
SystemOutput

**
WTC*

CtrlUnit1
WTC

StateMonitor
……

*
* *

out1inp1

inputs

vars

…

outputs

wts

subs

wtcs

*

subsys

Fig. 7.3 Excerpt of the meta-model of one of the MONDO case studies, with fragmen-
tation strategy annotations.

– Execution environment: Java SE 1.8 (jre1.8.0_40)

– Initial memory: 512 MB

– Maximum memory: 8 GB

7.2.1 Synthetic Models

For this experiment, we generate models using an EMF random model instantiator
from the AtlanMod team7. We use a meta-model taken from a case study of the EU
project MONDO in the domain of component-based embedded systems (a variation of
the running example using throughout the thesis). Figure 7.3 shows a small excerpt
of the meta-model (the complete one has about 150 classes). A WindPark, has a set
of control parameters (inputs, outputs, variables, etc.), and organises the controllers
for the WindTurbines hierarchically. There is a large number of predefined controllers
(subclasses of WTC, just two classes are shown for illustration), each with its own set
of control parameters. For the experiment, we consider models with sizes ranging from
100 to 6 000 model elements. For each size, we generate 500 different models.

Figure 7.3 shows the roles of the desired fragmentation strategy for the wind turbine
meta-model. This way, class WindPark is the root class, and has been tagged as Project.
WindTurbines are tagged as Package, so that a folder will be created for each (nested)
wind turbine system. All control parameters (inputs, outputs, variables, etc.) are
stored in a separate file depending on their type, while the set of components of each
subsystem controller (class Subsystem) is stored in a file as well. For clarity purposes,
we did not show in the figure the roles of the references.

7http://modeling-languages.com/a-pseudo-random-instance-generator-for-emf-models/

http://modeling-languages.com/a-pseudo-random-instance-generator-for-emf-models/

7.2 Fragmentation Scalability 87

0

10

20

30

40

50

0 1000 2000 3000 4000 5000 6000

Ti
m

e
(s

ec
)

Number of elements

Average split time

Average merge time

(a) Merge and split time.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 1000 2000 3000 4000 5000 6000

N
u

m
b

e
r

o
f

e
le

m
e

n
ts

Number of elements

Number of initial objects

Number of final objects

(b) Comparison of initial and final objects.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 1000 2000 3000 4000 5000 6000

A
ve

ra
ge

 n
u

m
b

er
 o

f
fi

le
s

Number of elements

(c) Average number of files.

Fig. 7.4 Results of splitting/merging IKERLAN’s synthetic models.

88 Evaluation

Figure 7.4 shows the results of the fragmentation of the synthetic models. Figure 7.4a
shows that EMF-Splitter is able to split a model that contains 6 000 objects in less
than one minute and merge back all fragments into a monolithic model in less than
10 seconds. For splitting, the times include loading the monolithic model, performing
the fragmentation in memory, and serializing all the fragments in disk using XMI. For
merging, the times include loading all fragments from disk, performing the merging in
memory, and serializing the monolithic model back in disk in XMI format. We can
see that splitting is more time-consuming than merging, due to the computation that
needs to be performed to locate the right folder or unit each element belongs to.

In Figure 7.4b, we compare the number of initial and final objects, before and after
the fragmentation. It can be observed that there are more objects (proxy references)
after the fragmentation in order to maintain the cross-references between the different
fragments. The amount of proxies created depends on the number of files created by
the fragmentation strategy. Figure 7.4c shows the average number of files created for
each model size. In average, around 1 800 files are created for models that contain
6 000 objects. We also observe that, in average, a maximum of one or two proxy objects
are created for each model fragment. Therefore, we can conclude that the overload
caused by the splitting (in terms of increased size per fragment) is low. Moreover, it
should be stressed that fragmenting a monolithic model is a one-time operation, which
needs to be performed just once, as the fragmented model can then be used in place of
the monolithic one.

Figure 7.4a shows an increase of splitting time for models with more than 1 000
objects. This can be attributed to a combined effect of model size and number of
generated fragment files (see Figure 7.4c, where the number of files also increases
abruptly at around the same number of objects). Figure 7.5 shows the effect of
the generated number of fragment files in the average split time of all models in
the experiment, with sizes ranging from 100 to 6 000 elements. We observe a linear
increase. To better understand the effect of the number of fragments, Figure 7.6
shows the variation in split time for a set of 13 models with 6 000 elements each, but
leading to a number of fragments ranging from 800 to 2 000 files. It can be observed
that fragmenting models leading to around 800 fragments is 20 seconds faster than
fragmenting models (of the same size) leading to around 2 000 fragment files.

7.2 Fragmentation Scalability 89

0

10

20

30

40

50

0 200 400 600 800 1000 1200 1400 1600 1800

Ti
m

e(
se

c)

Average number of files

Fig. 7.5 Effect of the number of files created in split time. Average times of all models,
with sizes in the range 100 - 6 000 elements.

20

25

30

35

40

45

800 1000 1200 1400 1600 1800 2000

Ti
m

e
(s

ec
s)

Average number of files

Fig. 7.6 Effect of the number of files in split time. Average times of a set of models of
size 6 000.

90 Evaluation

«Project»

IJavaModel
«Package»

IJavaProject

«Unit»

IClassFile*
*

«Package»

BinaryPackageFragmentRoot

*

IPackageFragmentRoot

javaProjects

packageFragmentRoots * compilation
Units

classFiles

externalPackage
FragmentRoots

*

«Unit»

ICompilationUnit

«Package»

SourcePackageFragmentRoot

«Package»

IPackageFragment
*

package
Fragments

Fig. 7.7 JDTAST meta-model, with fragmentation strategy annotations.

7.2.2 Realistic Large Models

In this experiment we use realistic models from the JDTAST models of the GraBaTs’09
competition. This contest provides a case study8, which consists in representing Java
programs as models. Figure 7.7 shows the fragmentation strategy applied to the
JDTAST meta-model. In this case, the IJavaModel class is mapped to Project and the
IJavaProject class is tagged as Package. This is possible because there is a composition
relation from IJavaModel (the project) to IJavaProject, as the pattern demands by means
of relation javaProjects. Another composition relation between IJavaProject and IPackage-
FragmentRoot allows classes that inherit from the latter (BinaryPackageFragmentRoot and
SourcePackageFragmentRoot) to be tagged as Package. Additionally, the relation package-
Fragments enables IPackageFragment to be tagged as Package. Finally, both IClassFile and
ICompilationUnit are annotated as Unit.

After the application of the fragmentation pattern, we split all the models of the
GraBaTs case study, turning each one of them into an Eclipse project. As an example,
Figure 7.8 shows the generated modelling environment with an Eclipse project, named
Projectset0, created from the model set0.xmi. The project explorer shows the structure
of folders and files generated from the model, which follows the specified fragmentation
strategy. The project created from the model has similar structure to a Java project.
As can be seen, we have chosen icons for folders and units that resemble the ones used
by the Java plugin to represent packages and Java classes. However, the project is
a model conformant to the JDTAST meta-model, fragmented across the file system.
The project explorer to the left shows the hierarchical model structure, and can be
used to navigate through it. To the right, a tree editor shows the content of one
of the fragments. While the original model has about 70 000 model elements, the

8http://www.emn.fr/z-info/atlanmod/index.php/GraBaTs_2009_Case_Study.

http://www.emn.fr/z-info/atlanmod/index.php/GraBaTs _ 2009 _ Case _ Study .

7.2 Fragmentation Scalability 91

Fig. 7.8 Environment generated by EMF-Splitter for the JDTAST meta-model.

fragmentation strategy splits it into 1 800 files of much lower size (with an average of
40 elements). This allows faster loading of each fragment, and a better navigation of
the model.

Model Split time Merge time #files Avg Max # model elements
set0 1min34s 8s 1 779 40.17 1 322 71 458
set1 3min51s 38s 6 240 32.68 4 549 203 938
set2 9min5s 1min24s 6 050 345.27 50 718 2 088 890
set3 12min28s 3min20s 4 460 1 031.24 50 718 4 599 358
set4 13min28s 8min32s 5 068 980.04 50 718 4 966 846

Table 7.1 Results of splitting and merging the JDTAST models.

Table 7.1 and Figure 7.9 present the results of the experiment. The graphic shows
a comparison between split and merge times. As in the experiment of Section 7.2.1,
splitting is slower than merging. The table contains more detailed information, including
columns for the split time, merge time (merging all files of a fragmented model into
one file), generated number of files, mean and maximum number of elements of each
fragment, and total number of elements in the whole model. We can observe that the
maximum number of elements in a file is repeated for models set2, set3 and set4. The
reason is that this group of models was built by adding Java classes incrementally. For
example, set2 is formed by set1 and the addition of some Java packages.

92 Evaluation

set0 set1 set2 set3 set4

Split time 01:34 03:51 09:05 12:28 13:28

Merge time 00:08 00:38 01:24 03:20 08:32

00:00

01:26

02:53

04:19

05:46

07:12

08:38

10:05

11:31

12:58

14:24

Ti
m

e
(m

m
:s

s)

Fig. 7.9 Split/merge times over the JDTAST models.

These experiments over synthetic and realistic models answer the RQ2. Frag-
mentation is a time-consuming task, for example, models up to 2 000 000 elements,
the fragmentation time is around 9 minutes. However, model splitting is a one-time
operation, which lead us to analyse, if it brings any profit when we handle large models,
in terms of visualization, indexing or edition. Section 7.3 analyses the benefits of
fragmenting models and its compatibility with de-facto standard tools.

7.2.3 Threats to Validity

In these experiments, we have evaluated the scalability, obtaining good results for
large models when the fragmentation strategies are used. In terms of size, we see a
large reduction of size of the biggest fragment with respect to the total model size (see
Table 7.1).

The question arises whether these results are generalizable to other arbitrary meta-
models (i.e., the external validity of the experiments). Fragmentation gives good
results with meta-models that have a strong hierarchical structure, reflected by the
existence of composition references between classes. EMF meta-models tend to heavily
use composition references and it is usual to have a root class in every meta-model,
which contains directly or indirectly all other classes. For the experiments and the
running example, we used three meta-models (developed by third parties), for which
the fragmentation strategies worked well. We can also observe that meta-models for
programming languages (e.g., JDTAST) or the WT meta-model have a hierarchical

7.3 Comparison with Third Party Tools 93

structure. However, one may also find “flat” meta-models with few compositions,
for which no option but to include all model objects in the same fragment would
be available. Therefore, we cannot generalize the fragmentation results to arbitrary
meta-models, but we can see that this technique fits especially well in meta-models for
programming languages, or domains in which models are hierarchical. For example large
modelling languages, like the UML, tend to have hierarchical elements (e.g., models
are divided into diagrams and packages), which would be suitable for fragmentation
strategies. As shown in the experiment in Section 7.1, the number of flat meta-models
is low, around 7% of 525, for the analysed repositories.

7.3 Comparison with Third Party Tools
In this section, our goal is to answer the following research question:

RQ3: Is fragmentation profitable and compatible with the use of other de-facto
standard tools?

The goal is to assess the benefits that our fragmentation approach has over de-facto
standard tools. Firstly, we compare (both in terms of time to open a model and
in reduction of memory size) with the standard modelling choice within the Eclipse
ecosystem: using monolithic models with the default XMI serialization and EMF’s
default tree editor. Second, we compare with CDO, a common alternative to XMI for
model persistence. Finally, we compare with Gephi, one of the most widely used tools
for graph visualisation.

7.3.1 Fragmentation vs. Monolithic Models and EMF Tree
Editor

In this experiment, the objective is to assess the gain obtained by using a fragmentation
strategy in case that it is used in combination with the default tree model editor. This
way, we compare the time needed to open the monolithic models from the JDTAST
use case with the default model visualisation of EMF (the reflective tree editor), with
respect to open the largest model fragment produced by the fragmentation strategy.
Figure 7.10 shows the time needed by the tree editor to open the complete models
(grey columns to the left of each series). For the largest model, it needs two and a half
minutes to open.

The figure also shows the time needed to open the largest fragment in each model
(black columns to the right of each series). We detail these times also in Table 7.2

94 Evaluation

set0 set1 set2 set3 set4

EMF tree editor 00:03 00:04 00:23 01:28 02:33

EMFSplitter 00:02 00:02 00:03 0:00:03 00:03

00:00

00:17

00:35

00:52

01:09

01:26

01:44

02:01

02:18

02:36

Ti
m

e
(m

m
:s

s)

Fig. 7.10 Time required to open the model with EMF’s reflective tree editor (grey
columns to the left) and EMF-Splitter (black columns to the right).

as they are much smaller than the time needed to open the complete models. It
can be observed that for the largest model it takes less than 3 seconds, which is
more than 55 times less than the time used for the monolithic model. The largest
fragment (CompletionEngine.java) is the same for set2, set3 and set4 because (as previously
mentioned) the latter two models are extensions of set2. Hence, we can conclude that
the fragmentation strategy really makes more scalable the model visualisation using
the default tree model editor.

Model Fragment # Model Time Gain w.r.t.
elements monolithic

set0 ProblemReporter.class 1 322 1.67s 1.57x
set1 BaseConfigurationBlock.java 4 549 1.76s 2.19x
set2 CompletionEngine.java 50 718 2.65s 8.77x
set3 CompletionEngine.java 50 718 2.65s 33.36x
set4 CompletionEngine.java 50 718 2.65s 55.76x

Table 7.2 Time required (s) to open the biggest fragment model of each project with
the tree editor.

7.3 Comparison with Third Party Tools 95

set0 set1 set2 set3 set4

Split7time7(EMFSplitter) 0:01:34 0:03:51 0:09:05 0:12:28 0:13:28

Import7model7time7(CDO) 0:00:06 0:00:12 0:03:43 0:35:44 1:02:14

0:00:00

0:07:12

0:14:24

0:21:36

0:28:48

0:36:00

0:43:12

0:50:24

0:57:36

1:04:48

Ti
m

e
 (

h
h

:m
m

:s
s)

Fig. 7.11 Time required to split the models with EMF-Splitter (grey columns to the
left) and import the models into CDO (black columns to the right).

7.3.2 Fragmentation vs. Database Persistence Layer

An alternative to fragmentation is to use a more performing back-end, not based on
file storage. A widely used option is CDO [25], which is both a model repository and
a persistence framework. CDO has many drivers for persistence, usually connected
to relational databases. In order to use CDO, the meta-models need to be migrated,
and the models inserted in the back-end. Similar to fragmentation, model insertion
is a pre-requisite to use the CDO technology. Therefore, we compare model insertion
time in CDO with model fragmentation time in EMF-Splitter. As a concrete back-end,
we use DB Store, because it is the default choice for CDO. Furthermore, it has been
maintained throughout the different versions of CDO and supports all its features. For
model versioning, we use the default choice, which is branching.

In the experiment, we measure the time required for CDO to import the JDTAST
models. Importing each model was repeated three times and the result average is shown
in Figure 7.11. The figure also shows the splitting model time (see also Figure 7.9).
While model insertion in CDO is faster than fragmentation for the first three models,
fragmentation is faster for the last two models of bigger size. This suggests a better

96 Evaluation

set0 set1 set2 set3 set4

Fragmented model (CDO) 0:00:29 0:01:21 0:04:41 0:14:41 0:43:20

Monolithic model (CDO) 0:00:06 0:00:12 0:03:43 0:35:44 1:02:14

0:00:00

0:07:12

0:14:24

0:21:36

0:28:48

0:36:00

0:43:12

0:50:24

0:57:36

1:04:48

Ti
m

e
 (

h
h

:m
m

:s
s)

Fig. 7.12 Time required by CDO to import fragmented (grey columns to the left), and
monolithic models (black columns to the right).

scalability of fragmentation to handle large monolithic models. It must be stressed that
CDO optimizes the persistence of some EMF features, like object identifiers. CDO uses
counters as identifiers for newly inserted objects, which is more efficient than using
Universally Unique Identifiers (UUIDs), the scheme provided by EMF.

The figure shows that inserting large monolithic models into CDO is very costly,
and takes more than one hour for set4. Hence, a natural question is whether a pre-
processing phase of fragmentation enhances this time. That is, we may wonder whether
fragmented models are faster to insert than monolithic ones. To answer this question,
we performed another experiment comparing the performance of CDO for importing
large monolithic models and for importing the same model divided into files. For
this experiment, we use the models of JDTAST, fragmented in Section 7.2.2 using
EMF-Splitter. The operation of importing the fragmented models was repeated three
times and the average time is shown in Figure 7.12. We can see that fragmentation
reduces the import time both for the set3 and set4 models, while the overhead of file
access results in slightly higher insertion times for the three smaller models. Hence,
this experiment shows that large monolithic models take longer to process by CDO
than fragmented ones. Even though model insertion in CDO is an operation that needs
to be performed once, for set3 and set4 it pays off to fragment them first.

7.3 Comparison with Third Party Tools 97

7.3.3 Fragmentation vs. Gephi
The goal of this experiment is to compare with a graph visualisation tool outside the
Eclipse ecosystem. A typical choice would be Gephi [9, 50], a popular, open-source
tool for graph exploration and analysis. In order to make a reasonable comparison, we
converted each JDTAST model (set0, set1, set2, set3 and set4) from XMI into the
GraphML format. The experiment measures the time needed by Gephi to open those
models. In particular, we measure the time spanning since the windows of Gephi open
(i.e., since the Java Virtual Machine is started) until the graph is completely drawn in
the screen. We did such tests 10 times to obtain an average of the time we want to
measure.

We obtained the following qualitative results:

• set0 and set1 are properly opened.

• set2, set3 and set4 required more memory than the default Gephi memory for
the virtual machine. Once opened, it was impossible to work with those graphs
because Gephi got frozen very often doing internal computations. Actually, these
graphs are beyond Gephi’s announced capabilities in its web page (100 000 nodes
and 1 000 000 edges).

Table 7.3 summarises the time required to load the models in Gephi, the time
needed to split the models using EMF-Splitter, and the time needed to load the biggest
fragment using the default tree editor. Generally, splitting the models is slower than
loading them in Gephi. However, model splitting is a one-time operation, which only
needs to be performed once. Opening the model afterwards takes – in the worst case –
the time of opening the biggest fragment. Those numbers are much lower than loading
the whole model, as Table 7.3 shows. It has the additional advantage that the amount
of objects in memory is considerably lower, and hence the visualisation techniques
can be done faster. Therefore, we can conclude that fragmentation is a very useful
pre-drawing technique for tools aiming at large scale graph exploration.

Model Gephi Split time Time to load biggest fragment
set0 3s 1min34s 1.67s
set1 6s 3min51s 1.76s
set2 3min40s 9min4s 2.65s
set3 9min36s 12min27s 2.65s
set4 14min10s 13min28s 2.65s

Table 7.3 Comparison between opening a model with Gephi, splitting the model with
EMF-Splitter, and loading the biggest fragment produced.

98 Evaluation

7.3.4 Threats to validity

Splitting the model to obtain small chunks, resulted in a drastic reduction in loading
time using the default tree editor (see Figure 7.10). Moreover, fragmentation allows
the handling of large models, which is generally a useful pre-processing technique when
the model is to be visualized (as we have seen in the Gephi experiment) or inserted into
model persistence back-end (as we have seen in the CDO experiment). Overall, we can
conclude that for the experiments performed, the proposal provides good scalability,
and that fragmentation can be a good complement to other tools to handle very large
models.

Fragmenting an existing, large monolithic model can be time-consuming, as shown
in Table 7.1. However, this is a one-time operation, so the benefits increase as the
fragmented model is visualised more repeatedly. Also, please note that the fragmented
models are not read-only, and can be modified. Hence, once a monolithic model is
fragmented, there is no need to merge it back anymore.

Finally, these results investigate the efficiency of the approach, and replying posi-
tively to RQ3, but leave out the usability of the tools. An empirical study with users
would be needed to assess the usability of the approach, which is also left for future
work.

7.4 Performance of Scoped Constraints
In this section, our goal is to answer the following research question:

RQ4: Is the evaluation of scoped constraints on fragmented models more efficient
than the evaluation of standard constraints on monolithic models?

To evaluate the performance gains of our approach, next we report on four ex-
periments analysing the effects of fragmentation and scope in the execution time of
constraint validation:

1. First, we compare the validation time of standard constraints on monolithic
models (the baseline) with respect to the full validation of equivalent scoped
constraints on fragmented models.

2. Second, we investigate whether the number of fragments affects the validation
performance.

7.4 Performance of Scoped Constraints 99

3. Next, we compare the full validation of scoped constraints (i.e., on all units and
packages of a fragmented model) vs. their incremental validation (i.e., only on
the elements affected by a model change).

4. Finally, we analyse the efficiency gains when integrating the Hawk model indexer
with scoped constraint validation.

Experiment setting In all four experiments, we used the meta-model of the running
example (see Figure 2.3) and the fragmentation strategy defined in Figure 4.2. We
considered a suite of eleven EOL constraints in both standard and scoped versions. The
constraints are available in Appendix A, and Table 7.4 summarizes their characteristics.
We considered constraints with all kinds of scope (one with scope sameProject, three with
scope sameRootPkg, two with samePkg, and five with sameUnit). As a measure of their
complexity, the table includes the number of nodes in the abstract syntax tree of each
constraint expression. For example, the expression StateMachine.allInstances()→size()
<= 10 corresponding to constraint numberStateMachines has three nodes. The average
number of nodes in the constraints is 6.3, ranging from three to fifteen.

Constraint Scope Complexity (#nodes)
numberStateMachines sameProject 3
numberControlSubsystems sameRootPkg 3
numberComponents sameRootPkg 3
depthSubsystem sameRootPkg 13
connectedComponents samePkg 11
inputPortSubsystem samePkg 8
oneInitialState sameUnit 3
existsSimpleState sameUnit 3
reachableState sameUnit 5
connectedPorts sameUnit 15
initStateIsNotIsolated sameUnit 3

Table 7.4 Characteristics of scoped constraints used in the evaluation of performance.

The experiments were executed four times in a computer with Windows 10 Education
version, processor Intel(R) Core(TM) i7-3770, 3.40GHz, and Java SE 1.8 with 8GB as
initial and maximum memory. The constraints were validated on synthetic models of
increasing size (from around 20 000 objects to around 125 000 objects) created using
the EMF random instantiator from the AtlanMod team that we also used in the
previous experiments.

100 Evaluation

20111 40048 60169 80183 124449

Scoped validation in
fragmented model (mm:ss)

00:29 01:41 04:00 05:47 07:29

Standard constraint validation
in monolithic model (mm:ss)

01:59 07:17 17:25 30:06 43:51

00:00

07:12

14:24

21:36

28:48

36:00

43:12

Ti
m

e
(m

m
:s

s)

Fig. 7.13 Constraint validation times in monolithic and fragmented models.

7.4.1 Full Constraint Validation in Monolithic and Fragmented
Models

The first experiment compares the validation of standard constraints in a monolithic
model. With the validation of equivalent scoped constraints in the fragmented version
of the same model. We consider the full validation of scoped constraints, i.e., their
validation on all units and packages of the fragmented model. The objective is to
assess whether reducing the number of objects in the validation scope also reduces the
validation time.

Figure 7.13 shows the experiment results. The vertical axis shows the validation
time, and the horizontal one the size of the model in number of objects. The graphic
shows that the validation of scoped constraints is faster even for the smallest model of
20 111 objects. For the largest model, scoped validation is six times faster than standard
validation. As explained in Section 4.3.5, this happens because scoped constraints are
validated within a limited scope, and hence, less objects need to be loaded/queried.
Moreover, scoped validation is only performed on those packages/units that may
contain instances of the context class on which the scoped constraint is defined.

7.4 Performance of Scoped Constraints 101

0

8

16

24

32

40

0 1000 2000 3000 4000 5000

Ti
m

e
 (

se
cs

)

Number of Files

Fig. 7.14 Effect of the number of files on the scoped validation performance.

7.4.2 Effect of Number of Fragments on Scoped Validation
Performance

The previous experiment shows that scoped validation pays off even for medium-sized
models. However, fragmentation incurs an overhead, as each fragment requires an access
to disk to load the fragment in memory. Therefore, this second experiment analyses the
impact of the number of model fragments on the scoped validation performance. For
this experiment, we created six synthetic models of 20 000 objects, each one of them
fragmented in a different number of files ranging from 1 to 5 000. Then, we measured
the validation time of the eleven constraints used in the first experiment.

Figure 7.14 shows the results. If the number of files is low (horizontal axis), the cost
to iterate through the objects in the fragments increases (vertical axis). In the limit, if
the model is in one file, the scoped validation time is similar to the time of evaluating
the constraints in a monolithic model. Conversely, if the model is fragmented in many
files, the overhead of loading them becomes apparent and the efficiency decreases. In
this experiment, the best validation time was obtained when fragmenting the model of
20 000 objects in 200 files. This gives a ratio of 1 file for each 100 objects. However,
this ratio cannot be taken as a general guideline, as the optimal ratio may depend
on the structure and scope of the involved constraints. It is up to future work to
investigate methods to obtain optimal fragmentation sizes given a set of constraints.

102 Evaluation

20111 40048 60169 80183 124449

Incremental validation: level 2 00:06 00:19 00:42 01:02 01:13

Incremental validation: level 3 00:07 00:23 00:51 01:14 01:25

Incremental validation: level 4 00:10 00:32 01:06 01:27 01:33

Incremental validation: level 5 00:46 01:10 01:35 01:36

Full validation 00:29 01:41 04:00 05:47 07:29

00:00

01:26

02:53

04:19

05:46

07:12

Ti
m

e
(m

m
:s

s)

Fig. 7.15 Comparison of incremental and full scoped validation times.

7.4.3 Comparison of Full Validation and Incremental Valida-
tion

Section 4.3.5 presented an algorithm for incremental scoped validation that is applicable
when a localized model change occurs, optimizing the re-evaluation of constraints to
the scope of the change. Hence, in this experiment, we emulate a model change, and
then compare the incremental validation time (i.e., the re-evaluation of constraints
on the affected model elements) and the full validation time (i.e., the re-evaluation of
constraints on all model elements). The experiment considers changes on units that
are located at different containment depths, from 2 to 5. We distinguish the depth of
the changed resource because changes in resources that are deeper in the containment
tree need to re-evaluate more constraints, incurring longer validation times.

Figure 7.15 presents the results. The figure does not show data for the model with
20 111 objects at level 5, because this model has no units or packages at this level. We
can observe that the incremental validation scales better than the full one. In average,
the incremental validation time is just 1 second slower for models of 124 449 objects
than for models of 80 183 objects, while the full validation is more than 90 seconds
slower. For the biggest model, the incremental validation yields a speed-up of around
4.5x.

7.4 Performance of Scoped Constraints 103

7.4.4 Effect of a Model Indexer on Scoped Validation Perfor-
mance

Next, we evaluate the use of the Hawk model indexer to execute scoped constraints.
Although Hawk is integrated with several database technologies, we used Neo4j9 for
this experiment.

This case study led to a number of optimisations and additions to Hawk. The most
notable change was the addition of two new query scoping modes for Hawk. Hawk
already had the capability to limit the scope of a query so that Type.allInstances() would
only return the instances within a certain subset of the indexed locations and/or files.
Previously, Hawk only had one implementation for this: it would go to the type node,
and then visit each instance node while checking if it belonged to a file node within
the desired scope. For sufficiently common types, Hawk would end up visiting more
instances than necessary. Two alternative implementations of Type.allInstances() were
implemented to reduce the number of misses:

• The new file-first mode was used for validation rules spanning single files. It
iterates over the contents of the file, filtering objects by type. This is useful when
we have more instances of the type than objects in a typical fragment, which
may be the case for sufficiently large fragmented models.

• The new subtree scoping mode was used for validation rules spanning projects
or packages. The mode uses an advanced feature of Hawk called derived edges.
Derived edges are references that are precomputed according to a derivation logic
specified by the user. Derived edges are updated incrementally as new versions
of the fragments are detected.

Upon a request for Type.allInstances(), the subtree scoping mode will ensure that
Hawk precomputes “allof_Type” derived edges from each instance to all its
containers. Once this is done, answering Type.allInstances() scoped to the subtree
rooted at the x project/package only requires following the “allof_Type” edges
from x in reverse.

Figure 7.16a compares the full validation time with and without Hawk. For the
biggest model, Hawk speeds up constraint evaluation more than 2x.

Figure 7.16b makes the same comparison but for incremental validation, and
distinguishing the depth of the changed resource. As before, we generally obtained

9https://neo4j.com/

https://neo4j.com/

104 Evaluation

00:00

01:26

02:53

04:19

05:46

07:12

08:38

20111 40048 60169 80183 124449

Ti
m

e
(m

m
:s

s)

Number of Model Elements

Full scoped validation using Hawk Full scoped validation without Hawk

(a) Full validation times.

00:00

00:17

00:35

00:52

01:09

01:26

01:44

2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5 2 3 4 5

20111 40048 60169 80183 124449

Ti
m

e
(m

m
:s

s)

Incremental validation using Hawk Incremental validation without Hawk

level

#objects

(b) Incremental validation times.

shorter validation times using Hawk, peaking a speed up of around 3x for the biggest
model. However, the validation time for some of the smallest models (the deeper ones)
was slightly faster without indexing.

In view of the results obtained in the four experiments presented in this section,
we can answer RQ4 affirmatively: scoped constraint validation is more efficient than
the evaluation of equivalent non-scoped constraints on monolithic models. Model
fragmentation and scoped constraints permit the incremental validation of constraints,
which leads to speed ups of up to 4.5x. Incremental validation can be enhanced with
model indexers, obtaining an additional increase of efficiency up to 3x. The number
of files in which a model is fragmented has an effect in performance as well; for this
particular experiment, having 1 file for each 100 objects yielded optimal validation
times, though this ratio may vary for other cases.

7.5 Case Studies 105

7.4.5 Discussion and Threats to Validity

This evaluation has been performed using a meta-model that comes from an industrial
partner in a European project10. However, we slightly adapted the meta-model to
better illustrate the concepts introduced in this thesis, removing some of its complexity.
Moreover, we used synthetic models and a random instantiator in our experiments.
In consequence, the models used in the evaluation may not be fully representative of
realistic models. To mitigate the threats to the validity of our results due to this risk,
the Section 7.5.1 present a case study built over a meta-model and a set of constraints
built by a third-party.

7.5 Case Studies
This section describes a gallery of scalable environments built using the approach
proposed in this thesis. These environments were generated applying the modularity
patterns. The dedicated wizard to develop graphical editors were used for the case
studies presented in Section 7.5.2 and 7.5.3.

7.5.1 CAEX

In this section, we compare an existing meta-model-based modelling environment
developed by a third-party, with another one created by us using our approach. We
use as a case study the environment developed for Computer Aided Engineering
Exchange (CAEX), which is described in [87]. CAEX is a neutral data format, used
as a standard by the International Electrotechnical Commission (IEC) to represent
the hierarchical structure of production systems. Other IEC standards use CAEX. For
example, AutomationML uses CAEX to model plant components, including devices
and communication structures.

To create an environment for CAEX, we first applied the fragmentation pattern
to its meta-model, using as guiding principles the editor and models in the Github
repository https://github.com/amlModeling/. Figure 7.17a shows an excerpt of the
meta-model annotated with the instantiated fragmentation pattern. A CAEXFile
(project) stores the engineering data in instanceHierarchies and contains several libraries
of elements (RoleClassLib, InterfaceClassLib and SystemUnitClassLib, which are packages).
Altogether, we identified one project class, four package classes, and seven unit classes
in the meta-model.

10http://mondo-project.org

https://github.com/amlModeling/
http://mondo-project.org

106 Evaluation

«Project»

CAEXFile
fileName: String «name»

icon=“CAEXFile.gif”

«Package»

RoleClassLib
name: String «name»

icon=“RoleClassLib.gif”

*

«Unit»

RoleClass
name: String «name»

extension=“role”
icon=“RoleClass.gif”

roleClassLib
«contents»

*

«contents»

roleClass

«Package»

InterfaceClassLib
name: String «name»

icon=“InterfaceClassLib.gif”

«contents»

* interfaceClassLib

«Package»

InterfaceFamily
name: String «name»

icon=“InterfaceFamily.gif”

«contents»

interfaceClass

«Unit»

InterfaceClass
name: String
extension=“interface”
icon=“InterfaceClass.gif”*

«Unit»

ExternalInterface
name: String
extension=“external”
icon=“ExternalInterface.gif”

«name»«contents»

interfaceClass

«Unit»

InstanceHierarchy
name: String
extension=“hrchy”
icon=“InstanceHierarchy.gif”

«name»

«contents»

instanceHierarchy

*

«Package»

SystemUnitClassLib
name: String «name»

icon=“SystemUnitClassLib.gif”

«contents»

systemUnitClassLib
*

*

«Unit»

SystemUnitClass
name: String
extension=“system”
icon=“SystemUnitClass.gif”

«name»

*

«contents»
systemUnitClass

«Unit»

SystemUnitFamily
name: String «name»

extension=“sysf”
icon=“SystemUnitFamily.gif”

«Unit»

InternalElement
name: String «name»

extension=“internal”
icon=“InternalElement.gif”

(a) Excerpt of the CAEX meta-model annotated with the fragmentation strategy.

1

3

2 4

(b) Generated modelling environment.

Fig. 7.17 Building a modelling environment for CAEX.

7.5 Case Studies 107

Then, we converted the EVL [75] constraints available in the same Github repository
into EOL scoped constraints in our meta-model. The Appendix B contains the list of
scoped constraints, and Table 7.5 shows their characteristics. There is one constraint
with scope sameProject, one with scopes samePkg and sameUnit at the same time, and
seven with scope sameUnit. The average number of nodes in the constraints is 10.3,
ranging from two to seventeen.

Constraint Scope Complexity (#nodes)
superiorStandardVersionIsMandatory samePkg 3
CAEXObject samePkg,sameUnit 2
inheritanceMustPointToSUC sameUnit 5
strongConformanceSUC2IE sameUnit 15
strongConformanceIE2SUC sameUnit 15
noInheritanceForIEs sameUnit 2
processContainsProcesses sameUnit 17
resourceContainsResources sameUnit 17
productContainsProducts sameUnit 17

Table 7.5 Characteristics of scoped constraints used in the case study (CAEX).

Finally, we used EMF-Splitter to generate an environment for CAEX from the
meta-model and instantiated patterns. Figure 7.18 shows the environment. The Package
Explorer view contains a project that represents a fragmented model (label 1). One
model fragment is being edited (label 2). The Problems view lists the violated constraints
(label 3). The Hawk view shows a running instance of Hawk for EMF-Splitter (label 4).

As a next step, we compared the constraint validation performance in our envi-
ronment and the original one. For this purpose, we generated models of size 210 162,
310 222 and 410 282 objects, and then measured the time to validate the defined
constraints on them. To generate the models, we used a model generator available in
the same Github repository, slightly modified to enable the generation or larger, more
balanced models, compatible with CAEX version 3.0.

Figure 7.19 shows the time of validating the scoped constraints on the fragmented
models, considering both full validation and incremental validation with Hawk upon an
emulated model change. It also shows the validation time of the standard non-scoped
constraints on the equivalent monolithic models. Using incremental validation with
Hawk is the most efficient, as it improves in one third the validation time of standard
constraints. The incremental validation on a model with 410 282 objects takes less
than one second.

Overall, this case study shows that we could improve an existing industrial modelling
environment with model fragmentation (strengthening our positive answer to RQ1 in
Section 7.1), and improved performance of constraint evaluation (strengthening our
positive results regarding RQ4 also in Section 7.4).

108 Evaluation

1

3

2 4

Fig. 7.18 Environment generated for CAEX.

0

2000

4000

6000

8000

10000

12000

14000

210162 310222 410282

Ti
m
e
(m

s)

Incremental validation using Hawk
Full scoped validation using Hawk
Standard constraint validation in monolithic model

Fig. 7.19 Comparison of full validation, incremental validation and baseline for CAEX.

7.5 Case Studies 109

7.5.2 Henshin

This section describes the development of a modelling environment for the Henshin
tool [4]. Henshin is a tool developed in EMF to create in-place transformations. This
tool defines a transformation language with a set of rules based on the definition of
attributed graph transformations [38]. We choose Henshin as a case study, with the aim
of improving its graphical editor and provide scalability to the modelling environment.
At the moment, the Henshin editor is based on GMF and their models are created
in a monolithic way. For this purpose, we apply the fragmentation pattern to the
Henshin meta-model, and also, we use the GraphicRepresentation meta-model to define
their graphical concrete syntax.

«Project»
«Package»
«Unit»

Module

name: String «name»

extension=“henshin”
icon=“module.png”

subModules
«contents»

*

Unit

Rule

*

units

SequentialUnit

ConditionalUnit

IndependentUnit

IteratedUnitLoopUnit PriorityUnit

UnaryUnit MultiUnit

Graph

lhs

1 1

rhs

Node Edge

* *

nodes edges

source

target1

1

GraphElement
action: Action

«Enumerator»

Action

- preserve
- create
- delete
- forbid
- require

Fig. 7.20 Application of the fragmentation to the Henshin meta-model.

Figure 7.20 shows an excerpt of the abstract syntax of Henshin, with the fragmenta-
tion pattern application. Module is the root class, which plays the roles of Project, Package
and Unit. Modules created as Project or Package are used to group other Module objects.
If the module is created as a file, it will contains different types of units (e.g., LoopUnit
or SequentialUnit). The rules for graph transformations are defined using the Rule class,
which defines a left (lhs) and right (rhs) hand side graphs.

110 Evaluation

1

Fig. 7.21 Mapping Henshin meta-model elements to diagram elements.

As a further step, after the fragmentation pattern application, we use the dedicated
wizard to define the graphical concrete syntax. Figure 7.21 shows the first wizard
page. Label 1 shows the definition of a LinkedList style for the subUnits reference.
This wizard supports the definition of all read-only collections representation style
described in Section 5.2.2. For the representation of Henshin units, we use the read-only
representation style for collections. Table 7.6 shows the mapping between the styles
and Henshin units.

7.5 Case Studies 111

Henshin Unit type Representation Style
IndependentUnit Tree
ConditionalUnit Conditional
PriorityUnit &
SequentialUnit

LinkedList

IteratedUnit &
LoopUnit

Loop

Table 7.6 Mapping between Henshin Unit types and representation styles

The second page of the wizard is shown in Figure 7.22. This wizard page is used to
customize the style of the diagram elements. Label 1 shows how the diagram elements
are automatically created to represent the sequence of the referenced units. This wizard
page permits specifying the style configuration of these elements and variations thereof.
For example, the initial and final node of the representation could be removed.

1

Fig. 7.22 Customization of the style diagram elements.

With the fragmentation pattern application and the concrete syntax definition
over the Henshin meta-model, we can generate the scalable modelling environment
shown in Figure 7.23. However, this final graphical editor could not be generate in its

112 Evaluation

entirety. For this reason, some functionalities were manually added to the generated
*.odesign. Specifically, nodes with action equals to preserve are represented in the model
by creating an element in the rhs and a mirror element in the lhs. Both elements must
have the same information and for this case, the synchronization has been implemented
programmatically. With respect to edges, we added also a programmatic functionality
to infer the action type, which is usually equal to the action of the target element.

Since, the dedicated wizard does not support all Sirius features, in case of changing
the generated *.odesign, modifying the concrete syntax using EMF-Stencil, it overwrite
the manual changes. As future work, we will implement a mechanism to save automat-
ically in a file the changes made manually to the generated *.odesign. By doing this,
the *.odesign will be generated as usual by EMF-Stencil and after that, it is transform
with saved changes.

For the example shown in Figure 7.23, we use the WT meta-model and imple-
mented an a sample In-place model transformation for illustration. Label 1 shows
the createInitialState rule, which checks that all state machines have a defined initial
state, creating it if it does not exist. This rule finds a StateMachine object (node «pre-
serve»:StateMachine), verifies that it does not contain an object of type InitialState
(node «forbid»:InitialState) and if it does not contain it, then it creates it with the name
’Init’ (node «create»:InitialState). Label 2 points to the other rule called createSimpleState,
which creates an Edge object that connects the initial state element with a SimpleState
object, in case it does not exist. The createSimpleState rule should find a InitialState object
(node «preserve»:InitialState) within a StateMachine object (node «preserve»:StateMachine)
that does not contain an Edge object from an InitialState (node «preserve»:InitialState)
object to a SimpleState object (node «forbid»:SimpleState). If this condition is fulfilled,
then the transformation creates a simple state object (node «create»:SimpleState) and an
edge(node «create»CreateEdge:Edge) from the initial state object to the created simple
state.

The transformation includes a LoopUnit to apply the rules to all model objects.
Figure 7.23 (label 3) shows the defined loops for both rules above-mentioned. Finally,
we created a SequentialUnit (label 4) to apply first the rules that create the missing
initial objects, and after that, create the corresponding edges.

In this case study, we combine the fragmentation pattern and the graphical repre-
sentation definition to provide to Henshin a scalable environment with a new editor
developed in Sirius. Using this approach, the creation of interconnected modules in dif-
ferent files is allowed, which is not possible with the current environment implemented
in GMF.

7.5 Case Studies 113

1

2

3

4

Fig. 7.23 Generated Henshin modelling environment.

7.5.3 Cloud Robotics System

This section illustrates the combined use of EMF-Splitter and DSL-tao through a
case study based on the DSML presented in [134]. The DSML, called CRALA, is a
language for architecture-centric cloud robotics systems. Figure 7.24 shows DSL-tao
with the CRALA meta-model. The class CloudSystem is the root containing directly
the Configuration and the ArchitectureSpecification classes. On one hand, the Configuration
element represents the VirtualMachines with the connections of components that may
be a WebService or a ComponentClass type of object. On the other hand, the Architecture-
Specification is used for defining the robots, their sensors and the connection between
them. For this case study, we have applied the fragmentation patter contributed
by EMF-Splitter and, also we employs the Graphical Representation implemented
in EMF-Stencil. For these, the combination of both plug-ins provides the pattern
structure, the application wizard and the code generation service.

We applied a fragmentation strategy to the language, using the wizard shown in
Figure 7.25. The class CloudSubsystem is tagged as a Project and can contain a unit

114 Evaluation

DSL-tao Project

Generated Plug-ins

Catalogue
of Patterns

Fig. 7.24 CRALA meta-model in the DSL-tao environment.

of type ArchitectureSpecification. This specification is possible due to the containment
relationship that exists between these two classes. The class Configuration is tagged
as Package and can contain several units of type ConfigurationSystem. Figure 7.24 shows
these elements mapped to Project, Package and Unit.

1

2

Next

Selecting the
Project class

Selecting
Package and
Unit classes

Fig. 7.25 Fragmentation Pattern wizard contributed by EMF-Splitter.

7.6 Applications 115

Fig. 7.26 Wizard page 1 contributed by EMF-Stencil.

The instantiation of the graphical representation is made through a dedicated
wizard. Figure 7.26 shows the wizard for specifying the graphical syntax for unit Ar-
chitectureSpecification. The first page of the wizard allows selecting the elements to be
visualized, and heuristically proposes their shape (node/edge). The second page, shown
in Figure 7.27 permits customizing the appearance of elements. For this example, we
retrieve the web images using the Google JSON API, and this figure shows the ones
obtained when using: ’Robot’ as parameter, selecting a maximum of 10 images and the
retrieval of the clip-art ones.

Once the meta-model is annotated with patterns, the code generation services
provided by EMF-Splitter and EMF-Stencil can be invoked to generate an environment
where the models are fragmented and visualized according to the defined patterns.
Figure 7.28 shows the Sirius-based generated environment.

7.6 Applications
The aim of this section is to demonstrate the usefulness of our approach within others
applications. Section 7.6.1 describes the integration of EMF-Splitter with a tool
that supports visualization mechanisms for the fragmented models. Next section,
shows a third-party tool using the functionality of EMF-Stencil to generate modelling

116 Evaluation

Fig. 7.27 Wizard page 2 contributed by EMF-Stencil.

Visualization of an
Architecture Specification Unit

Visualization of a Configuration
System Unit

Fragmented
Model

Table Representation

Fig. 7.28 Graphical modelling environment generated by EMF-Splitter and EMF-
Stencil.

environments. Finally, Section 7.6.3 shows the integration of EMF-Stencil with a
mobile modelling tool.

7.6.1 Scalable Model Exploration

When working with models, it is very useful to explore them to obtain some insight
using our intuition, to analyse their different parts, or to find unusual or interesting
features. However, big models are impossible to be understandably represented in a
computer screen at once. When using the EMF framework, it is common that models
lack a dedicated graphical editor providing visualisation and exploration services. One
reason is that frequently, only a meta-model is developed, but no further effort is spent

7.6 Applications 117

to create a graphical concrete syntax. Hence, EMF models are frequently visualised
using the tree editor, which difficults their comprehensibility as this editor does not
provide facilities to visualise, search and navigate in a graph-based way. For example,
it may display two related elements at very distant places, just because they belong
to two different container objects. Instead, showing those elements closer, using a
graph-based representation, may be more intuitive in some cases. Even if a specialised
editor exists, these editors usually do not offer support for scalable exploration.

As a generic solution to this issue, SAMPLER (ScAlable Model exPLorER) [63] is
a collection of Eclipse plug-ins that implement a graph-based exploration for arbitrary
models. The framework is targeted to large models, and its key idea is not showing all
model elements at once, but displaying only a region of interest, and abstract or filter
the other elements. Then, different navigation strategies can be used to walk through
the model.

While EMF-Splitter and SAMPLER can be run separately, we integrated both tools
in a coordinated way. In particular, SAMPLER provides the possibility of opening and
visualising fragmented models, exploring the fragmented models in stages, and using
the file system structure created by EMF-Splitter (as explained in Section 6.2). We have
proposed the combination of model fragmentation and model visualisation techniques
to explore large models. Model fragmentation is performed by applying fragmentation
strategies at the meta-model level. Model exploration is done by applying different
abstraction strategies to the model, and with the availability of model exploration
techniques.

As illustration, we visualize Knowledge Discovery Meta-model (KDM) models.
KDM is a standard specification of the OMG that is widely used in software mod-
ernization projects [21]. KDM is used to represent existing software artefacts (legacy
code) in different languages (COBOL, C, Fortran, Java) in a platform independent way.
KDM models can become extremely large, as normally the whole code and additional
artefacts of a software application are included in a monolithic KDM model. Therefore,
we define a fragmentation strategy over the meta-model, so that KDM models can be
split. Figure 7.30 shows the fragmentation strategy we have designed for KDM [100].

Figure 7.30 shows a snapshot of the exploration of the KDM fragmented model
named org.eclipse.jdt.apt.core.reverse.engineering. This project was created from the KDM
Code Model of the project org.eclipse.jdt.apt.core, which is one of the plug-ins that are
part of Eclipse Java Development Tools Core (JDT Core). The left of the figure shows
the project explorer, containing the fragmented model across the file system, as created
by EMF-Splitter. The right part (labels 1 and 2) are model browsers contributed by

118 Evaluation

name: String

icon=“file://...”

extension=“invmodel”

Segment *

KDM meta-model (excerpt)

PackageCodeModel

name: String

icon=“file://...”

name: String

icon=“file://...”

InterfaceUnitInventoryModel

* ***

name: String

icon=“file://...”

Project root

:Segment

name= “eclipse.core”

Fragmented model

Package

Unit
:InventoryModel

name= “source.invmodel”

proxy-reference

:Package

name= “java”

proxy-reference

:ClassUnit

name= “BufferedWriter.class”

Unit

proxy-

reference

eclipse.core

java

source.invmodel

[Eclipse project]

[folder]

[file]

Physical deployment

BufferedWriter.class [file]

…

<<Project>>

<<name>> <<name>>

<<Package>> <<Package>>

<<name>>

<<name>>

<<Unit>>

name: String

icon=“file://...”

extension=“interface”

<<name>>

<<Unit>>

«contents»

«contents» «contents»

name: String

icon=“file://...”

extension=“class”

<<name>>

ClassUnit
<<Unit>>

«contents»

name: String

icon=“file://...”

extension=“lang”

<<name>>

LanguageUnit
<<Unit>>

«contents»

*

«contents»

Fig. 7.29 Instantiation of the pattern and application to the KDM meta-model (top).
A structured model and its physical deployment (bottom).

SAMPLER. The tab with label 1 visualises the root node of the model (node with label
1, coloured in red) and depicts a part of its structure. For example, node 6 indicates
the existence of a file with name references.invmodel, node with label 3 (name external)
and 4 (name org.eclipse.jdt.apt.core) indicate two folders. Node with label 4 is expanded,
showing its content. Please note that, because SAMPLER reads the content of the file
system, it shows in the form of nodes some hidden files created by EMF-Splitter (node
with labels 5 and 10, with name ending in xmi). These nodes can be omitted using a
filter created for this purpose.

The tab on the right (with label 2) shows the expansion of the node org.eclipse.jdt.apt.core
(a folder in the left tab). The expanded model is shown aggregated using an abstraction
called “leaves-local”, which shows a maximum of five nodes and aggregates together
several nodes within two abstract nodes. Overall, compared to Figure 7.8, SAMPLER
provides an alternative graph-based visualisation to the EMF tree editor, as well as
abstraction and exploration mechanisms.

Section 7.3.1 described the gain in time when a fragmented model is opened using
the EMF reflective tree editor. Likewise, we evaluate the combined use of EMF-Splitter
and SAMPLER using the JDTAST models. For this kind of exploration, it is not
necessary to load the entire model. Instead, only the resources associated with the
root class need to be loaded, and then, the nodes corresponding to folders and files can

7.6 Applications 119

Fig. 7.30 Visualisation of a KDM model using SAMPLER.

be expanded on demand, providing a drill down hierarchical visualisation. Therefore,
we calculated the minimum number of objects that need to be loaded to display each
object in the model. This number of objects is the sum of all objects in all fragments
existing in the path from the given object to the root.

Table 7.7 shows the results of the evaluation. The columns depict the average,
minimum and maximum number of loaded objects. Generally, the total number of
elements to load is much lower than the actual model size. For example, for set4 with
almost 4 000 000 model elements, the number of elements to load in the worst case is
54 160, which amounts to a reduction of 98.9% of the objects that need to be held in
memory. This great reduction shows the power of fragmentation for scalability.

Model Average Min Max Reduction w.r.t. tree editor
(worst case)

set0 502.26 250 1 613 97.74%
set1 719.26 34 4 800 97.65%
set2 11 590.62 61 54 141 97.4%
set3 7 859.59 83 54 163 98.82%
set4 7 550.56 89 54 169 98.9%

Table 7.7 Necessary number of loaded objects to explore the fragmented models.

The hierarchical exploration of SAMPLER uses the fragmentation produced by
EMF-Splitter, so that the content of nodes representing packages (folders) can be
displayed by double-clicking on it. For this purpose, SAMPLER needs to read such
information from the file system. Therefore, we made an assessment consisting in
computing for each folder the amount of resources (files and folders) that it contains

120 Evaluation

directly or indirectly. Table 7.8 shows the results, with the average and maximum
number of resources to show, which allows the exploration of the fragmented model.
Again, the low numbers even for the biggest model suggests a high scalability of the
combined model exploration using SAMPLER and EMF-Splitter.

Directly Contained Resources Directly/Indirectly Contained Resources
Model Average Amount of Resources Max Average Amount of Resources Max

set0 18.27 231 53.61 1 882
set1 28.98 270 85.88 6 463
set2 21.37 270 68.30 6 347
set3 12.20 157 46.86 4 858
set4 11.97 157 45.99 5 531

Table 7.8 Resources contained by the models at each hierarchical stage.

Overall, fragmentation according to a strategy may be costly (if many files need
to be produced), but it is a one-time operation. In this case, fragments become of
manageable size, and then can be visually explored. The experiments show big gains
obtained by fragmentation for the visualisation of large models (a speed up of 55 ×in
terms of time to load and a reduction of up to 98% percent in size) with respect to
using the standard EMF tree editor over monolithic models.

7.6.2 Creating Graphical Environments by Example

The construction of DSMLs is costly and highly technical. This relegates domain experts
to a rather passive role in their development and hinders a wider adoption of DSMLs. In
order to fill this gap, the thesis of Jesús J. López-Fernández [84] proposed an example-
based approach to DSML development, which permits the automatic generation of
graphical modelling environments from drawings made with informal diagramming
tools. This includes the automatic derivation of the abstract and concrete syntax of
the targeted DSML. The architecture of this solution encompasses drawing tools like
yED or Dia to draw the graphical fragments that provide usage examples of the DSML,
and two Eclipse plug-ins: metaBup [83] and EMF-Stencil (Section 6.3).

The metaBUP tool extracts the graphical information encoded in the fragments
provided by the domain experts using diagramming tools like yED. Then, metaBUP
uses the extracted graphical information to derive a concrete syntax close to the
domain expert’s conception. For this purpose, metaBUP proceeds in two steps. First,
it converts the information gathered from the fragments into a technology-neutral
representation (based on EMF-Stencil’s meta-model), and then, this representation is
translated into a technology-specific editor specification.

7.6 Applications 121

Sirius
editor model

(.odesign)

º

legend
(images)

meta-model
(.mbup)

concrete
syntax info

meta-model
(.ecore)

GraphicRepresentation

model
transf.

transf.

Example-1Example-1example-1
(.mbupf)

Example-1Example-1example-1
(.xmi)

EMF models

Example-1Example-1example-1
(.aird)

graphical models

transf.

transf.

fragments, examples

emf

2 3

1

4

SEMF- tencil

Fig. 7.31 Generating a graphical modelling editor from examples using metaBup and
EMF-Stencil.

Figure 7.31 outlines the metaBUP process to create modelling environments, where
three transformations take place: one generates the meta-model with the abstract
syntax of the DSML (label 1); another takes care of the concrete syntax by constructing
a technology-neutral model with the graphical information (label 2) from which a
modelling environment for a specific technology is synthesized (label 3); the last
transformation converts the provided fragments into models conformant to the derived
meta-model (label 4). The target meta-model in the second transformation is the
one described in Section 5.2. From the model with the graphical representation that
metaBUP generates, EMF-Stencil synthesizes automatically a modelling environment.

7.6.3 Enabling Mobile Domain-Specific Modelling

Modelling environments have been traditionally supported by desktop computers.
However, there are scenarios where devices like smartphones or tablets might be better
suited to perform a certain task. In [127] a working architecture and a prototype tool,
called DSL-comet were proposed, which enable collaborative mobile modelling and
integrate seamlessly desktop and mobile graphical modelling environments.

One of the scenarios described in that work combined a desktop client with DSL-
comet. The desktop client defines the abstract syntax of the DSML using DSL-tao
(Section 6.1). As a running example, the authors defined a meta-model of the home
networking domain, an excerpt of which is shown in the back of Figure 7.32.

The concrete syntax of the meta-model can be defined using EMF-Stencil (see
window at the front of Figure 7.32). The concrete syntax specification is described
through a model that annotates the meta-model. Both the meta-model and the concrete
syntax description can be uploaded to a server, from where they can be downloaded
by mobile and desktop clients to produce a modelling environment.

122 Evaluation

Fig. 7.32 Meta-model for the home networking domain (back). Wizard to define the
graphical representation (front).

The desktop client is based on EMF-Stencil (Section 6.3) which generates a desktop
environment in Sirius. Figure 7.33 shows a screenshot of the resulting editor for the
home networking meta-model. The view “Mobile Server View” permits downloading
models and DSL modelling environments from the server, like the one shown in the
figure.

7.7 Summary and Conclusions
In this chapter, we have evaluated different aspects of our proposal. The analysis of
meta-model repositories has confirmed the applicability of our fragmentation pattern.
Our fragmentation pattern was applied in contexts, showing good performance for
large models. We showed that the validation of scoped constraints is faster than
the evaluation of standard constraints, especially when only the affected objects are

7.7 Summary and Conclusions 123

Fig. 7.33 Screenshot of the Sirius desktop client.

re-evaluated, and when combined with attribute indexes. In addition, we used our
approach to generate modelling environments for CAEX, Henshin and CRALA. The
first case study described how we improve an existing industrial modelling environment
with our approach, particularly in terms of constraint evaluation, in which we obtained
good results. The second case study illustrated the read-only collections representation
styles. The final case study showed the functionalities of EMF-Stencil to generate a
default graphical syntax, using services for image search. Then, such syntax can be
modified according to the DSML requirements. Finally, we showed further utility of the
approach as a complement to other tools, like SAMPLER, DSL-Comet and metaBup.
This integration proved the versatility of our approach in terms of visualization and
generation of modelling environments.

Chapter 8

Conclusions and Future Work

In this thesis, we have proposed solutions to some challenges in the construction of
environments for DSMLs when adopting the MDE paradigm. This chapter, in its first
section, discusses the conclusions of this work summarizing the given solutions for each
detected challenge. The second section analyses the future research lines in order to
continue improving and applying our approach.

8.1 Conclusions
As fundamental contributions, in this thesis we propose a systematic approach to
develop scalable modelling environments for DSMLs. In Section 2.1.1, we identified
some drawbacks in the classical application of MDE that hampers its adoption in some
contexts. The models created using the MDE paradigm are usually monolithic, and
when they become large they are difficult to handle by tools. For this reason, our goal
was to provide developers with tools that help in defining ways to structure models,
facilitating distributed development through division into fragments, which improves
comprehension and enhances automated processing. In this thesis, we proposed a
fragmentation pattern which allows splitting a model into files and folders.

We introduced four more patterns (reference scoping, object visibility, field indexing,
and scoped validation) in order to enforce the separation of concerns, improve usability,
manage model complexity through information hiding, and speed up the evaluation of
constraints and model queries. These five patterns (including the fragmentation one)
contribute with modularity services to the developed modelling environments. In this
sense, we propose a systematic approach based in this catalogue, which can be used in
the creation of new environments or the migration of existing ones.

126 Conclusions and Future Work

Another issue is the high effort required for the development of graphical editors.
To ease their creation, we implemented a set of heuristics to help in the automatic
assignment of a graphical concrete syntax to meta-models. In this way, we speed up the
generation of graphical editors, because by applying the heuristics we can automatically
generate the first version of the graphical editor. Using this technique, we reduce the
need for specialized knowledge by developers. However, an empirical user study to
confirm this intuition will be the subject of future work.

These contributions have been realised in two Eclipse plug-ins, called EMF-Splitter
and EMF-Stencil to support the approach and facilitate the process. We implemented
the catalogue of patterns in EMF-Splitter. This tool provides dedicated wizards for
each pattern, to assist developers in their instantiation at the meta-model level. Using
the information provided by the instantiated patterns, this tool generates Eclipse
plug-ins that realise a scalable modelling environment. EMF-Stencil provides the
wizards for graphical and tabular concrete syntax specification. Specifically, the wizard
for graphical syntax definition has implemented heuristics and the read-only collections
representation style.

The tools have been evaluated under different angles. Specifically, we evaluated
the applicability of the fragmentation pattern by analysing meta-model repositories
built by third parties. We noted in this experiment that our fragmentation pattern
can be applicable in practice, because containment references in meta-models are
frequent. In our evaluation of model fragmentation, we found that for large models
it is generally useful to fragment them prior to their visualization or indexing with
third party tools. Regarding the visualization, either with Gephi or with the EMF
tree editor, the fragmentation provides better handling in large models and in the case
of the CDO experiment it is worthwhile to fragment first, especially big models, in
order to perform the indexing. The fragmentation is a time-consuming pre-processing
technique, but it is done only once. The gain in time is obtained in the future, since
the sub models are smaller and can be processed separately. In this way, the approach
provides good scalability to models and it is also compatible with others tools.

We introduced scoped validation in Section 4.3.5, providing an approach to execute
the constraints in a subset of model objects instead of the complete model. The
results of our evaluation demonstrated the efficiency gain with respect to the execution
of standard non-scoped constraints. Additionally, we evaluated this approach in
combination with Hawk, resulting in another improvement in the execution time
of constraints. Moreover, we performed a comparison with an existing modelling
environment for CAEX, showing that the approach could improve existing industrial

8.2 Future Work 127

modelling environments. Altogether, the application of model fragmentation could be
applicable and useful in the industrial context.

With respect of graphical editors, we choose existing modelling tools like Henshin
and CRALA, migrating their environments with the combination of EMF-Splitter and
EMF-Stencil. The new developed environments provide the creation of modularized
models, in contrast with the currently developed environments. In this way, we provided
a scalable graphical environment to visualize the different parts of a model separately.

Moreover, the developed tools were integrated with exiting ones, like SAMPLER,
DSL-comet and metaBup. This demonstrates the versatility and potential of the
developed Eclipse plug-ins.

Altogether, the presented approach proposed a systematic way of producing scalable
modelling environments for DSML. This approach is based on the use of a modularity
patterns catalogue which showed their effectiveness in different contexts.

8.2 Future Work
This thesis has opened a number of research lines, which we plan to investigate in the
future. At the technical level, we are currently developing an API to facilitate the
programmatic use of EMF-Splitter. Moreover, we plan to improve the fragmentation
service with the possibility to fragment models across non-containment references, e.g.,
based on strategies like those described in [120].

Another line of future research is developing heuristics to recommend a scope and
attribute indices for a given constraint, based on the static analysis of the constraint.
In particular, we plan to recommend a scope for an OCL constraint based on the scope
and visibility of the objects and references appearing in it. The idea is traversing the
constraint expression and, for each reference access, look at the applied patterns to
extract the scope assigned to the reference, and the visibility assigned to the reference
type, annotating the reference with the narrowest of both. When the scope of all
reference accesses has been computed in this way, the widest one would be heuristically
suggested as the scope of the constraint. We will investigate methods to recommend
optimal fragmentation granularities given a set of constraints. Finally, fragmented
models are more amenable to collaborative use – for example via version control systems
– than monolithic models, as they tend to produce fewer conflicts. Hence, we plan
to integrate our approach with version and access control systems for collaborative
modelling [31].

128 Conclusions and Future Work

Regarding patterns, one direction of future work is supporting the definition of
model management operations (e.g., transformations, code generators, constraints)
defined over patterns. Such operations would be transferred to the domain meta-
model when the binding is performed. This would be a way to reuse and combine the
operations contributed to the different patterns used in [20].

EMF-Stencil is able to generate graphical editors providing an automatically inferred
model representation. In fact, this tool can generate a set of representations for the
same abstract syntax. Based on this functionality, we would like to evaluate with users
the quality of these representations.

Regarding the engineering to implement modelling environments, we are planning
to apply this approach to other scenarios. We will find other contexts, especially
industrial ones, to prove even more the applicability of our approach. By doing this,
we will compare existing environments with the ones generated using our plug-ins, in
terms of scalability and the provided functionalities.

Chapter 9

Conclusiones y Trabajo Futuro

En esta tesis, se han propuesto soluciones a algunos desafíos en la construcción de
entornos para DSMLs, cuando se quiere adoptar el paradigma MDE. En este capítulo,
en la primera sección, se analizan las conclusiones de este trabajo, el cual resume
las soluciones para cada desafío detectado. La segunda sección analiza las líneas de
investigación futuras para continuar en la mejora y aplicación de nuestro enfoque.

9.1 Conclusiones
Como aportaciones fundamentales, en esta tesis proponemos un enfoque sistemático
para desarrollar entornos de modelado escalable para DSMLs. En la Sección 2.1.1,
identificamos algunas desventajas en la aplicación clásica de MDE que dificulta su
adopción en algunos contextos. Los modelos creados utilizando el paradigma MDE
son generalmente monolíticos, y cuando estos alcanzan un gran tamaño, se hace difícil
su manejo por las herramientas. Por este motivo, nuestro objetivo es proporcionar a
los desarrolladores herramientas que ayuden a definir modelos de manera estructurada,
facilitando el desarrollo distribuido a través de la división en fragmentos, que mejore
la comprensión y el procesamiento automatizado. En esta tesis, hemos propuesto un
patrón de fragmentación que permite dividir un modelo en ficheros y carpetas.

Además del patrón de fragmentación, hemos incorporado cuatro patrones más
(alcance de la referencia, visibilidad de objetos, indexación de campos, y validación
jerárquica) para imponer un bajo acomplamiento, mejorar la usabilidad, gestionar la
complejidad del modelo mediante la ocultación de información y acelerar la evaluación de
restricciones y consultas a modelos. Estos cinco patrones (incluido el de fragmentación)
contribuyen con servicios de modularidad a los entornos de modelado desarrollados.

130 Conclusiones y Trabajo Futuro

En este sentido, proponemos un enfoque sistemático basado en este catálogo, que se
puede utilizar en la creación de nuevos entornos o en la migración de los existentes.

Otro problema abordado, fue el gran esfuerzo que se requiere para el desarrollo de
editores gráficos. Para facilitar su creación, implementamos un conjunto de heurísticas
para ayudar en la asignación automática de una sintaxis gráfica concreta a los meta-
modelos. De esta manera, aceleramos la generación de editores gráficos, ya que,
aplicando las heurísticas podemos generar automáticamente la primera versión del editor
gráfico. Usando este enfoque, reducimos la necesidad de conocimiento especializado
por parte de los desarrolladores. Sin embargo, un estudio empírico de usuarios para
confirmar esta intuición será objeto de un trabajo futuro.

Estas contribuciones se han implementado en dos plug-ins de Eclipse, llamados
EMF-Splitter y EMF-Stencil, que dan soporte al enfoque y facilitan su proceso. Im-
plementamos el catálogo de patrones en EMF-Splitter. Esta herramienta proporciona
asistentes dedicados para la instanciación de cada patrón, para ayudar a los desarrol-
ladores en su definición a nivel de metamodelo. Utilizando la información proporcionada
por los patrones instanciados, esta herramienta genera plug-ins de Eclipse, que confor-
man un entorno de modelado escalable. EMF-Stencil proporciona los asistentes para
la especificación de la sintaxis gráfica concreta y tabular. Específicamente, el asistente
para la definición de la sintaxis gráfica ha implementado las heurísticas y los estilos de
representación de colecciones de solo lectura.

Estas herramientas han sido evaluadas teniendo en cuenta diferentes aspectos.
Específicamente, evaluamos la aplicabilidad del patrón de fragmentación mediante
el análisis de repositorios de meta-modelos construidos por terceros. Notamos en
este experimento, que nuestro patrón de fragmentación puede ser aplicable en la
práctica, porque las referencias de contención en los metamodelos son frecuentes. En
nuestra evaluación de la fragmentación de modelos, encontramos que para modelos
grandes, generalmente es útil fragmentarlos antes de su visualización o indexación con
herramientas de terceros. Con respecto a la visualización, ya sea con Gephi o con
el editor de EMF en forma de árbol, la fragmentación proporciona un mejor manejo
de modelos grandes y, en el caso del experimento con CDO, vale la pena fragmentar
primero, especialmente modelos grandes, para realizar la indexación. La fragmentación
es una técnica de pre-procesamiento que consume mucho tiempo, pero se realiza sólo
una vez. La ganancia de tiempo se obtiene en el futuro, ya que los submodelos son más
pequeños y se pueden procesar por separado. De esta manera, el enfoque proporciona
una buena escalabilidad a los modelos, y también es compatible con otras herramientas.

9.2 Trabajo Futuro 131

Presentamos en la Sección 4.3.5 un enfoque para ejecutar las restricciones en un
subconjunto de objetos del modelo en vez del modelo completo. Los resultados de
nuestra evaluación demostraron la ganancia en tiempo con respecto a la ejecución de
restricciones de manera estándar. Además, evaluamos este enfoque en combinación
con Hawk, lo que resultó en otra mejora en el tiempo de ejecución de las restricciones.
Adicionalmente, realizamos una comparación con un entorno de modelado existente
para CAEX, que muestra que el enfoque podría mejorar los entornos de modelado
industriales existentes. En general, la aplicación de la fragmentación del modelo podría
ser aplicable y útil en el contexto industrial.

Con respecto a los editores gráficos, elegimos las herramientas de modelado existentes
como Henshin y CRALA, migrando sus entornos con la combinación de EMF-Splitter
y EMF-Stencil. Los nuevos entornos desarrollados proporcionan la creación de modelos
modularizados, en contraste con los entornos desarrollados actualmente. De esta
manera, proporcionamos un entorno gráfico escalable para visualizar las diferentes
partes de un modelo por separado.

Por otra parte, los plug-ins desarrollados se integraron con herramientas existentes,
como SAMPLER, DSL-comet y metaBup. Esto demuestra la versatilidad y el potencial
de los plug-ins implementados para Eclipse.

En conjunto, el enfoque presentado ha propuesto un proceso sistemático para
producir entornos de modelado escalables para DSMLs. Este enfoque se basa en el uso
de un catálogo de patrones de modularidad que mostró su efectividad en diferentes
contextos.

9.2 Trabajo Futuro
Esta tesis ha abierto una serie de líneas de investigación, que planeamos investigar en
el futuro. A nivel técnico, actualmente estamos desarrollando una API para facilitar
el uso programático de EMF-Splitter. Además, planeamos mejorar el servicio de
fragmentación con la posibilidad de fragmentar modelos, pero que no sea a través
del uso de referencias contenedoras, sino basarnos en estrategias como las descritas
en [120].

Otra futura línea de investigación es el desarrollo de heurísticas para recomendar el
subconjunto de objetos y la indexación de atributos para una restricción dada, basado
en el análisis estático de la restricción. En particular, planeamos recomendar un alcance
para una restricción OCL basándonos en las clases y las referencias que conforman la
consulta y la visibilidad de los objetos. La idea es recorrer la expresión de restricción y,

132 Conclusiones y Trabajo Futuro

para cada acceso de referencia, identificar los patrones aplicados para extraer el alcance
asignado a la referencia y la visibilidad asignada al tipo de referencia, anotando la
referencia con el más restrictivo de ambos. Cuando el alcance de todos los accesos de
referencia se ha calculado de esta manera, el más amplio se sugiere heurísticamente como
el alcance de la restricción. Investigaremos métodos para recomendar granularidades
de fragmentación óptimas dado un conjunto de restricciones. Finalmente, los modelos
fragmentados son más susceptibles para su uso de forma colaborativa, por ejemplo a
través de sistemas de control de versiones, que los modelos monolíticos, ya que tienden
a producir menos conflictos. Por lo tanto, planeamos integrar nuestro enfoque con un
sistema de control de versiones para el modelado colaborativo [31].

Con respecto a los patrones, una línea de trabajo futuro es soportar la definición
de operaciones de gestión de modelos (por ejemplo, transformaciones, generadores de
código, restricciones) definidas sobre patrones. Dichas operaciones se transferirían al
meta-modelo de dominio cuando se realice el mapeo. Esta sería una forma de re-utilizar
y combinar las operaciones que contribuyeron con los diferentes patrones utilizados
en [20].

EMF-Stencil puede generar editores gráficos que proporcionan una representación
de modelo deducida automáticamente. De hecho, esta herramienta puede generar un
conjunto de representaciones para la misma sintaxis abstracta. Sobre la base de esta
funcionalidad, nos gustaría evaluar con los usuarios la calidad de estas representaciones.

Con respecto a la ingeniería para implementar entornos de modelado, estamos
planeando aplicar este enfoque a otros escenarios. Buscaremos otros contextos, espe-
cialmente industriales, para demostrar aún más la aplicabilidad de nuestro enfoque. Al
hacer esto, compararemos los entornos existentes con los generados utilizando nuestros
plug-ins, en términos de escalabilidad y funcionalidades proporcionadas.

References

[1] Acceleo, https://www.eclipse.org/acceleo/, (last accessed in 2019).
[2] ADM, https://www.omg.org/adm/, (last accessed in 2019).
[3] N. Amálio, J. de Lara, and E. Guerra, “Fragmenta: A theory of fragmentation

for MDE,” in 18th ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems, MoDELS 2015, IEEE, 2015, pp. 106–115.

[4] T. Arendt, E. Biermann, S. Jurack, C. Krause, and G. Taentzer, “Henshin:
Advanced Concepts and Tools for In-place EMF Model Transformations,” in
Model Driven Engineering Languages and Systems, D. C. Petriu, N. Rouquette,
and Ø. Haugen, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 121–135.

[5] ArgoUML, http://argouml.tigris.org/, (last accessed in 2019).
[6] C. Atkinson and T. Kühne, “Rearchitecting the UML infrastructure,” ACM

Trans. Model. Comput. Simul., vol. 12, no. 4, pp. 290–321, 2002.
[7] ATL, https://www.eclipse.org/atl/, (last accessed in 2019).
[8] P. Baker, S. Loh, and F. Weil, “Model-driven engineering in a large industrial

context — motorola case study,” in Model Driven Engineering Languages and
Systems, L. Briand and C. Williams, Eds., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, pp. 476–491.

[9] M. Bastian, S. Heymann, and M. Jacomy, Gephi: An open source software for
exploring and manipulating networks, 2009.

[10] J. Baton and R. Van Bruggen, Learning Neo4j 3. X - Second Edition. Packt
Publishing, 2017.

[11] A. Benelallam, A. Gómez, G. Sunyé, M. Tisi, and D. Launay, “Neo4emf, a
scalable persistence layer for EMF models,” in Modelling Foundations and Appli-
cations, J. Cabot and J. Rubin, Eds., Cham: Springer International Publishing,
2014, pp. 230–241.

[12] S. Berger, G. Grossmann, M. Stumptner, and M. Schrefl, “Metamodel-based
information integration at industrial scale,” in Model Driven Engineering Lan-
guages and Systems, Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 153–167.

[13] L. Bettini, Implementing Domain Specific Languages with Xtext and Xtend -
Second Edition, 2nd. Packt Publishing, 2016.

https://www.eclipse.org/acceleo/
https://www.omg.org/adm/
http://argouml.tigris.org/
https://www.eclipse.org/atl/

134 References

[14] E. Biermann, K. Ehrig, C. Ermel, and G. Taentzer, “Generating eclipse editor
plug-ins using tiger,” in Applications of Graph Transformations with Industrial
Relevance, A. Schürr, M. Nagl, and A. Zündorf, Eds., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 583–584.

[15] M. Blaha, Patterns of data modeling. CRC Press, 2010.
[16] P. Bottoni and A. Grau, “A suite of metamodels as a basis for a classification

of visual languages,” in Proceedings of the 2004 IEEE Symposium on Visual
Languages - Human Centric Computing, Washington, DC, USA: IEEE Computer
Society, 2004, pp. 83–90.

[17] P. Bottoni, E. Guerra, and J. de Lara, “A language-independent and formal
approach to pattern-based modelling with support for composition and analysis,”
Information & Software Technology, vol. 52, no. 8, pp. 821–844, 2010.

[18] P. Bottoni, E. Guerra, and J. de Lara, “Enforced generative patterns for the
specification of the syntax and semantics of visual languages,” J. Vis. Lang.
Comput., vol. 19, no. 4, pp. 429–455, 2008.

[19] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software Engineering
in Practice: Second Edition, 2nd. Morgan & Claypool Publishers, 2017.

[20] J.-M. Bruel, B. Combemale, E. Guerra, J.-M. Jézéquel, J. Kienzle, J. De Lara,
G. Mussbacher, E. Syriani, and H. Vangheluwe, “Model transformation reuse
across metamodels,” in International Conference on Theory and Practice of
Model Transformations, Springer, 2018, pp. 92–109.

[21] H. Brunelière, J. Cabot, J. L. C. Izquierdo, L. O. Arrieta, O. Strauß, and M.
Wimmer, “Software modernization revisited: Challenges and prospects,” IEEE
Computer, vol. 48, no. 8, pp. 76–80, 2015.

[22] H. Bruneliere, J. Cabot, F. Jouault, and F. Madiot, “Modisco: A generic and
extensible framework for model driven reverse engineering,” in Proceedings of
the IEEE/ACM international conference on Automated software engineering,
ACM, 2010, pp. 173–174.

[23] J. Cabot and M. Gogolla, “Object constraint language (OCL): A definitive
guide,” in Formal Methods for Model-Driven Engineering: 12th International
School on Formal Methods for the Design of Computer, Communication, and
Software Systems, SFM 2012, Bertinoro, Italy, June 18-23, 2012. Advanced
Lectures. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 58–90.

[24] J. Cabot and E. Teniente, “Incremental integrity checking of UML/OCL concep-
tual schemas,” Journal of Systems and Software, vol. 82, no. 9, pp. 1459–1478,
2009.

[25] CDO, https://www.eclipse.org/cdo/, (last accessed in 2019).
[26] H. Cho and J. Gray, “Design patterns for metamodels,” in Proceedings of the

Compilation of the Co-located Workshops on DSM’11, TMC’11, AGERE! 2011,
AOOPES’11, NEAT’11, & VMIL’11, ser. SPLASH ’11 Workshops, Portland,
Oregon, USA: ACM, 2011, pp. 25–32.

[27] K. Chodorow, MongoDB: The Definitive Guide, 2nd. O’Reilly Media, Inc., 2013.

https://www.eclipse.org/cdo/

References 135

[28] J. S. Cuadrado, E. Guerra, and J. de Lara, “A component model for model
transformations,” IEEE Trans. Software Eng., vol. 40, no. 11, pp. 1042–1060,
2014.

[29] K. Czarnecki and S. Helsen, “Feature-based survey of model transformation
approaches,” IBM Systems Journal, vol. 45, pp. 621–646, 2006.

[30] DB Store, https://wiki.eclipse.org/CDO/DB_Store, (last accessed in 2019).
[31] C. Debreceni, G. Bergmann, M. Búr, I. Ráth, and D. Varró, “The MONDO

collaboration framework: Secure collaborative modeling over existing version
control systems,” in Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, ser. ESEC/FSE, ACM, 2017, pp. 984–988.

[32] B. Demuth and C. Wilke, “Model and object verification by using dresden
ocl,” in Proceedings of the Russian-German Workshop Innovation Information
Technologies: Theory and Practice, Ufa, Russia, Citeseer, 2009, pp. 687–690.

[33] E. Dijkstra, On the role of scientific thought, EWD447, 1974.
[34] J. Dingel, Z. Diskin, and A. Zito, “Understanding and improving uml package

merge,” Software & Systems Modeling, vol. 7, no. 4, pp. 443–467, 2008.
[35] J. Ebert, A. Winter, P. Dahm, A. Franzke, and R. Süttenbach, “Graph based

modeling and implementation with EER/GRAL,” in 15th International Con-
ference on Conceptual Modeling — ER ’96, Berlin, Heidelberg: Springer Berlin
Heidelberg, 1996, pp. 163–178.

[36] Eclipse Modeling Project (EMF), https://www.eclipse.org/modeling/, (last
accessed in 2019).

[37] A. Egyed, K. Zeman, P. Hehenberger, and A. Demuth, “Maintaining consistency
across engineering artifacts,” IEEE Computer, vol. 51, no. 2, pp. 28–35, 2018.

[38] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer, Fundamentals of Algebraic
Graph Transformation (Monographs in Theoretical Computer Science. An EATCS
Series). Berlin, Heidelberg: Springer-Verlag, 2006.

[39] Enterprise Architect, http://sparxsystems.com/products/ea/, (last accessed in
2019).

[40] J. Espinazo-Pagán, J. S. Cuadrado, and J. G. Molina, “Morsa: A scalable
approach for persisting and accessing large models,” in Model Driven Engineer-
ing Languages and Systems, 14th International Conference, MODELS 2011,
Wellington, New Zealand, October 16-21, 2011. Proceedings, 2011, pp. 77–92.

[41] M. Fleck, J. Troya, and M. Wimmer, “Towards generic modularization transfor-
mations,” in 15th International Conference on Modularity, ACM, 2016, pp. 190–
195.

[42] M. Fowler, Domain-specific languages. Pearson Education, 2010.
[43] W. Frakes, R. Prieto, C. Fox, et al., “Dare: Domain analysis and reuse environ-

ment,” Annals of software engineering, vol. 5, no. 1, pp. 125–141, 1998.
[44] R. B. France, D. Kim, S. Ghosh, and E. Song, “A UML-based pattern spec-

ification technique,” IEEE Trans. Software Eng., vol. 30, no. 3, pp. 193–206,
2004.

https://wiki.eclipse.org/CDO/DB_Store
https://www.eclipse.org/modeling/
http://sparxsystems.com/products/ea/

136 References

[45] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-oriented Software. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1995.

[46] A. García-Domínguez, K. Barmpis, D. S. Kolovos, R. Wei, and R. F. Paige,
“Stress-testing centralised model stores,” in Modelling Foundations and Applica-
tions - 12th European Conference, ECMFA 2016, Held as Part of STAF 2016,
Vienna, Austria, July 6-7, 2016, Proceedings, 2016, pp. 48–63.

[47] J. García Molina, F. O. García Rubio, V. Pelechano, A. Vallecillo, J. M. Vara,
and C. Vicente-Chicote, Desarrollo de Software Dirigido por Modelos Conceptos,
Métodos y Herramientas. España: Ra-Ma, 2012.

[48] A. Garmendia, E. Guerra, D. S. Kolovos, and J. de Lara, “EMF splitter:
A structured approach to EMF modularity,” in XM@MoDELS, ser. CEUR,
vol. 1239, CEUR-WS.org, 2014, pp. 22–31. [Online]. Available: http://ceur-
ws.org/Vol-1239.

[49] A. Garmendia, E. Guerra, J. de Lara, A. García-Domínguez, and D. Kolovos,
“Scaling-up domain-specific modelling languages through modularity services,”
Information and Software Technology, 2019.

[50] Gephi, https://gephi.org/, (last accessed in 2019).
[51] M. Gerhart and M. Boger, “Concepts for the model-driven generation of graphi-

cal editors in eclipse by using the graphiti framework,” International Journal of
Computer Techniques, vol. 3, no. 4, 2016.

[52] GMF, https://www.eclipse.org/gmf-tooling/, (last accessed in 2019).
[53] A. Gómez, X. Mendialdua, G. Bergmann, J. Cabot, C. Debreceni, A. Gar-

mendia, D. S. Kolovos, J. de Lara, and S. Trujillo, “On the opportunities of
scalable modeling technologies: An experience report on wind turbines control
applications development,” in Modelling Foundations and Applications - 13th
European Conference, ECMFA 2017, Held as Part of STAF 2017, Marburg,
Germany, July 19-20, 2017, Proceedings, 2017, pp. 300–315.

[54] D. Granada, J. M. Vara, V. A. Bollati, and E. Marcos, “Enabling the development
of cognitive effective visual DSLs",” in Model-Driven Engineering Languages
and Systems, J. Dingel, W. Schulte, I. Ramos, S. Abrahão, and E. Insfran, Eds.,
Cham: Springer International Publishing, 2014, pp. 535–551.

[55] Graphiti, https://www.eclipse.org/graphiti/, (last accessed in 2019).
[56] T. J. Grose, G. C. Doney, and S. A. Brodsky, Mastering XMI: Java Programming

with XMI, XML and UML. New York, NY, USA: John Wiley & Sons, Inc.,
2001.

[57] C. Guychard, S. Guerin, A. Koudri, A. Beugnard, and F. Dagnat, “Conceptual
interoperability through models federation,” in Semantic Information Federation
Community Workshop, 2013.

[58] F. Heidenreich, J. Henriksson, J. Johannes, and S. Zschaler, “On language-
independent model modularisation,” T. Asp.-Oriented Soft. Dev. VI, vol. 6,
pp. 39–82, 2009.

[59] Hibernate, https://wiki.eclipse.org/CDO/Hibernate_Store, (last accessed
2019).

http://ceur-ws.org/Vol-1239
http://ceur-ws.org/Vol-1239
https://gephi.org/
https://www.eclipse.org/gmf-tooling/
https://www.eclipse.org/graphiti/
https://wiki.eclipse.org/CDO/Hibernate_Store

References 137

[60] J. Hutchinson, M. Rouncefield, and J. Whittle, “Model-driven engineering
practices in industry,” in Proceedings of the 33rd International Conference on
Software Engineering, ser. ICSE ’11, Waikiki, Honolulu, HI, USA: ACM, 2011,
pp. 633–642.

[61] IBM Rational, https://www-01.ibm.com/software/rational/uml/, (last accessed
in 2019).

[62] JDT, Java Development Tools, https://www.eclipse.org/jdt/, (last accessed in
2019).

[63] A. Jiménez-Pastor, A. Garmendia, and J. de Lara, “Scalable model explo-
ration for model-driven engineering,” Journal of Systems and Software, vol. 132,
pp. 204–225, 2017.

[64] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,
“Feature-oriented domain analysis feasibility study,” CMU-SEI, Tech. Rep., 90.

[65] G. Karsai, H. Krahn, C. Pinkernell, B. Rumpe, M. Schindler, and S. Völkel,
“Design guidelines for domain specific languages,” arXiv, 2014.

[66] L. C. Kats and E. Visser, “The spoofax language workbench: Rules for declarative
specification of languages and ides,” SIGPLAN Not., vol. 45, no. 10, pp. 444–463,
Oct. 2010, issn: 0362-1340.

[67] S. Kelly and J.-P. Tolvanen, Domain-Specific Modeling. USA: John Wiley &
Sons, Inc., 2007.

[68] P. Kelsen and Q. Ma, “A modular model composition technique,” in Fundamental
Approaches to Software Engineering, 13th International Conference, FASE 2010,
Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings, 2010,
pp. 173–187.

[69] P. Kelsen, Q. Ma, and C. Glodt, “Models within models: Taming model complex-
ity using the sub-model lattice,” in International Conference on Fundamental
Approaches to Software Engineering, FASE, ser. LNCS, vol. 6603, Springer,
2011, pp. 171–185.

[70] S. Kent, “Model driven engineering,” in Proceedings of the Third International
Conference on Integrated Formal Methods, ser. IFM, London, UK: Springer-
Verlag, 2002, pp. 286–298.

[71] A. G. Kleppe, J. Warmer, and W. Bast, MDA Explained: The Model Driven Ar-
chitecture: Practice and Promise. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 2003.

[72] D. S. Kolovos, N. D. Matragkas, I. Korkontzelos, S. Ananiadou, and R. F. Paige,
“Assessing the use of eclipse MDE technologies in open-source software projects,”
in Proceedings of the International Workshop on Open Source Software for Model
Driven Engineering co-located with ACM/IEEE 18th International Conference
on Model Driven Engineering Languages and Systems (MODELS), Ottawa,
Canada, September 29, 2015, pp. 20–29.

[73] D. S. Kolovos, R. F. Paige, and F. A. C. Polack, “The Epsilon Object Language
(EOL),” in European Conference on Model Driven Architecture-Foundations and
Applications, ECMFA, Springer Berlin Heidelberg, 2006, pp. 128–142.

https://www-01.ibm.com/software/rational/uml/
https://www.eclipse.org/jdt/

138 References

[74] D. S. Kolovos, R. F. Paige, and F. A. C. Polack, “The Epsilon Transformation
Language,” in Theory and Practice of Model Transformations, Springer Berlin
Heidelberg, 2008, pp. 46–60.

[75] D. S. Kolovos, R. F. Paige, and F. A. Polack, “Eclipse development tools for
Epsilon,” in Eclipse Summit Europe, Eclipse Modeling Symposium, vol. 20062,
2006, p. 200.

[76] D. S. Kolovos, L. M. Rose, S. B. Abid, R. F. Paige, F. A. C. Polack, and G.
Botterweck, “Taming EMF and GMF using model transformation,” in Model
Driven Engineering Languages and Systems, Springer Berlin Heidelberg, 2010,
pp. 211–225.

[77] D. S. Kolovos, L. M. Rose, N. D. Matragkas, R. F. Paige, E. Guerra, J. S.
Cuadrado, J. de Lara, I. Ráth, D. Varró, M. Tisi, and J. Cabot, “A research
roadmap towards achieving scalability in model driven engineering,” in Pro-
ceedings of the Workshop on Scalability in Model Driven Engineering, Budapest,
Hungary, June 17, 2013, 2013, p. 2.

[78] T. Kühn, S. Böhme, S. Götz, and U. Aßmann, “A combined formal model
for relational context-dependent roles,” in Proceedings of the 2015 ACM SIG-
PLAN International Conference on Software Language Engineering, SLE 2015,
Pittsburgh, PA, USA, October 25-27, 2015, 2015, pp. 113–124.

[79] J. de Lara, E. Guerra, and J. S. Cuadrado, “Reusable abstractions for modeling
languages,” Inf. Syst., vol. 38, no. 8, pp. 1128–1149, 2013.

[80] J. de Lara, E. Guerra, and J. S. Cuadrado, “When and how to use multilevel
modelling,” ACM Trans. Softw. Eng. Methodol., vol. 24, no. 2, 12:1–12:46, 2014.

[81] J. de Lara and H. Vangheluwe, “AToM3: A Tool for Multi-formalism and Meta-
modelling,” in Fundamental Approaches to Software Engineering, R.-D. Kutsche
and H. Weber, Eds., ser. Lecture Notes in Computer Science, Berlin, Heidelberg:
Springer, 2002, pp. 174–188.

[82] A. Ledeczi, M. Maroti, G. Karsai, and G. Nordstrom, “Metaprogrammable
toolkit for model-integrated computing,” in Proceedings of the IEEE Conference
on Engineering of Computer-based Systems, ser. ECBS, Nashville, Tennessee:
IEEE Computer Society, 1999, pp. 311–317.

[83] J. J. López-Fernández, J. S. Cuadrado, E. Guerra, and J. de Lara, “Example-
driven meta-model development,” Software and Systems Modeling (Springer),
vol. 14, no. 4, pp. 1323–1347, 2015.

[84] J. J. López-Fernández, A. Garmendia, E. Guerra, and J. de Lara, “An example
is worth a thousand words: Creating graphical modelling environments by
example,” Software and Systems Modeling (Springer), vol. 18, no. 2, pp. 961–
993, 2019.

[85] Magic Draw, https://www.nomagic.com/products/magicdraw, (last accessed in
2019).

[86] R. C. Martin, D. Riehle, and F. Buschmann, Pattern languages of program
design 3. Addison-Wesley, 1997.

https://www.nomagic.com/products/magicdraw

References 139

[87] T. Mayerhofer, M. Wimmer, L. Berardinelli, and R. Drath, “A model-driven
engineering workbench for CAEX supporting language customization and evo-
lution,” IEEE Trans. Industrial Informatics, vol. 14, no. 6, pp. 2770–2779,
2018.

[88] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop domain-
specific languages,” ACM Comput. Surv., vol. 37, pp. 316–, Dec. 2005.

[89] M. Minas, “Concepts and realization of a diagram editor generator based on
hypergraph transformation,” Sci. Comput. Program., vol. 44, no. 2, pp. 157–180,
Aug. 2002.

[90] Modelio, https://www.modelio.org/, (last accessed 2019).
[91] MONDO, https://http://www.mondo-project.org/, (last accessed in 2019).
[92] D. L. Moody, “The "physics" of notations: A scientific approach to designing

visual notations in software engineering,” 2010 ACM/IEEE 32nd International
Conference on Software Engineering, vol. 2, pp. 485–486, 2010.

[93] D. L. Moody and A. Flitman, “A methodology for clustering entity relationship
models - A human information processing approach,” in Conceptual Modeling
- ER’99, ser. Lecture Notes in Computer Science, vol. 1728, Springer, 1999,
pp. 114–130.

[94] M. Newman, “Power laws, Pareto distributions and Zipf’s law,” Contemporary
Physics, vol. 46, no. 5, pp. 323–351, 2005.

[95] Object Management Group (OMG), https://www.omg.org/, (last accessed in
2019).

[96] Object Management Group (OMG), Meta-Object Facility (MOF) Specification,
Version 2.5.1, OMG Document Number formal/16-11-01 (https://www.omg.
org/spec/MOF/2.5.1/), 2016.

[97] Object Management Group (OMG), XML Metadata Interchange (XMI) Specifi-
cation, Version 2.5.1, OMG Document Number formal/15-06-07 (https://www.
omg.org/spec/XMI/2.5.1/), 2015.

[98] Objectivity/DB, https://wiki.eclipse.org/CDO/Objectivity_Store, (last accessed
in 2019).

[99] OCLinEcore, https://wiki.eclipse.org/OCL/OCLinEcore, (last accessed 2019).
[100] OMG, Knowledge Discovery Meta-model specification, http://www.omg.org/spec/KDM/,

(last accessed in 2019).
[101] R. F. Paige, D. S. Kolovos, L. M. Rose, N. Drivalos, and F. A. C. Polack,

“The design of a conceptual framework and technical infrastructure for model
management language engineering,” in 14th IEEE International Conference on
Engineering of Complex Computer Systems, ICECCS, Potsdam, Germany, 2-4
June, IEEE, 2009, pp. 162–171.

[102] Papyrus, https://www.eclipse.org/papyrus/, (last accessed in 2019).
[103] D. L. Parnas, “On the criteria to be used in decomposing systems into modules,”

Commun. ACM, vol. 15, no. 12, pp. 1053–1058, Dec. 1972.

https://www.modelio.org/
https://http://www.mondo-project.org/
https://www.omg.org/
https://www.omg.org/spec/MOF/2.5.1/
https://www.omg.org/spec/MOF/2.5.1/
https://www.omg.org/spec/XMI/2.5.1/
https://www.omg.org/spec/XMI/2.5.1/
https://wiki.eclipse.org/CDO/Objectivity_Store
https://wiki.eclipse.org/OCL/OCLinEcore
https://www.eclipse.org/papyrus/

140 References

[104] L. Pedro, V. Amaral, and D. Buchs, “Foundations for a domain specific modeling
language prototyping environment: A compositional approach,” in Proc. 8th
OOPSLA ACM-SIGPLAN Workshop on Domain-Specific Modeling (DSM),
University of Jyväskylän, Oct. 2008.

[105] A. Pescador, A. Garmendia, E. Guerra, J. S. Cuadrado, and J. de Lara, “Pattern-
based development of domain-specific modelling languages,” in ACM/IEEE 18th
International Conference on Model Driven Engineering Languages and Systems
(MODELS), IEEE Computer Society, 2015, pp. 166–175.

[106] A. Pescador and J. de Lara, “Dsl-maps: From requirements to design of domain-
specific languages,” in 2016 31st IEEE/ACM International Conference on
Automated Software Engineering (ASE), IEEE, 2016, pp. 438–443.

[107] QVT, https://www.omg.org/spec/QVT/, (last accessed 2019).
[108] L. M. Rose, D. S. Kolovos, N. Drivalos, J. R. Williams, R. F. Paige, F. A. C.

Polack, and K. J. Fernandes, “Concordance: A framework for managing model
integrity,” in European Conference on Modelling Foundations and Applications,
(ECMFA), vol. 6138, Springer, 2010, pp. 245–260.

[109] D. Rubel, J. Wren, and E. Clayberg, The Eclipse Graphical Editing Framework
(GEF), 1st. Addison-Wesley Professional, 2011.

[110] A. L. Santos and E. Gomes, “Xdiagram: A declarative textual DSL for describing
diagram editors (tool demo),” in Proceedings of the 2016 ACM SIGPLAN
International Conference on Software Language Engineering, ser. SLE 2016,
Amsterdam, Netherlands: ACM, 2016, pp. 253–257.

[111] C. Schäfer, T. Kuhn, and M. Trapp, “A pattern-based approach to dsl de-
velopment,” in Proceedings of the Compilation of the Co-located Workshops
on DSM’11, TMC’11, AGERE! 2011, AOOPES’11, NEAT’11, & VMIL’11,
ser. SPLASH ’11 Workshops, Portland, Oregon, USA: ACM, 2011, pp. 39–46.

[112] M. Scheidgen and J. Fischer, “Model-based mining of source code repositories,”
in System Analysis and Modeling: Models and Reusability - 8th International
Conference, SAM 2014, ser. Lecture Notes in Computer Science, vol. 8769,
Springer, 2014, pp. 239–254.

[113] M. Scheidgen, A. Zubow, J. Fischer, and T. H. Kolbe, “Automated and trans-
parent model fragmentation for persisting large models,” in Model Driven
Engineering Languages and Systems - 15th International Conference, MODELS
2012, Innsbruck, Austria, September 30-October 5, 2012. Proceedings, 2012,
pp. 102–118.

[114] M. Seidl, M. Scholz, C. Huemer, and G. Kappel, UML Classroom: An Introduc-
tion to Object-Oriented Modeling. Springer, Heidelberg, 2012.

[115] Sirius, https://www.eclipse.org/sirius/, (last accessed in 2019).
[116] D. Spinellis, “Notable design patterns for domain-specific languages,” J. Syst.

Softw., vol. 56, no. 1, pp. 91–99, Feb. 2001.
[117] T. Stahl, M. Völter, J. Bettin, A. Haase, and S. Helsen, “Model-driven software

development: Technology, engineering, management,” John Wiley & Sons, Inc.

https://www.omg.org/spec/QVT/
https://www.eclipse.org/sirius/

References 141

[118] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse Mod-
eling Framework, 2nd Edition. Addison-Wesley Professional, 2008, See also
http://www.eclipse.org/modeling/emf/.

[119] M. Strembeck and U. Zdun, “An approach for the systematic development of
domain-specific languages,” Softw. Pract. Exper., vol. 39, no. 15, pp. 1253–1292,
Oct. 2009.

[120] D. Strüber, J. Rubin, G. Taentzer, and M. Chechik, “Splitting models using in-
formation retrieval and model crawling techniques,” in Fundamental Approaches
to Software Engineering - 17th International Conference, FASE, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS,
Grenoble, France, April 5-13, Springer, 2014, pp. 47–62.

[121] D. Strüber, M. Selter, and G. Taentzer, “Tool support for clustering large
meta-models,” in BigMDE 2013, ACM, 2013, p. 7.

[122] D. Strüber, G. Taentzer, S. Jurack, and T. Schäfer, “Towards a distributed
modeling process based on composite models,” in Fundamental Approaches to
Software Engineering - 16th International Conference, FASE, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS,
Rome, Italy, March 16-24, Springer, 2013, pp. 6–20.

[123] R. N. Taylor, W. Tracz, and L. Coglianese, “Software development using domain-
specific software architectures: Cdrl a011—a curriculum module in the sei style,”
ACM SIGSOFT Software Engineering Notes, vol. 20, no. 5, pp. 27–38, 1995.

[124] J.-P. Tolvanen and S. Kelly, “Metaedit+: Defining and using integrated domain-
specific modeling languages,” in Proceedings of the 24th ACM SIGPLAN Con-
ference Companion on Object Oriented Programming Systems Languages and
Applications, ser. OOPSLA ’09, Orlando, Florida, USA: ACM, 2009, pp. 819–
820.

[125] Z. Ujhelyi, G. Bergmann, Á. Hegedüs, Á. Horváth, B. Izsó, I. Ráth, Z. Szatmári,
and D. Varró, “Emf-incquery: An integrated development environment for live
model queries,” Sci. Comput. Program., vol. 98, pp. 80–99, 2015.

[126] UML, https://www.omg.org/spec/UML/, (last accessed in 2019).
[127] D. Vaquero-Melchor, A. Garmendia, E. Guerra, and J. de Lara, “Towards

enabling mobile domain-specific modelling,” in Proceedings of the 11th Interna-
tional Joint Conference on Software Technologies (ICSOFT 2016) - Volume 2:
ICSOFT-PT, Lisbon, Portugal, July 24 - 26, 2016., 2016, pp. 117–122.

[128] L. Vogel, Eclipse IDE. vogella.com; Third Edition (April 22), 2013.
[129] R. Wei, D. S. Kolovos, A. Garcia-Dominguez, K. Barmpis, and R. F. Paige,

“Partial loading of xmi models,” in Proceedings of the ACM/IEEE 19th In-
ternational Conference on Model Driven Engineering Languages and Systems,
ser. MODELS ’16, Saint-malo, France: ACM, 2016, pp. 329–339.

[130] J. Whittle, J. Hutchinson, and M. Rouncefield, “The state of practice in model-
driven engineering,” IEEE Software, vol. 31, no. 3, pp. 79–85, 2014.

[131] J. Whittle, J. Hutchinson, and M. Rouncefield, “The state of practice in model-
driven engineering,” IEEE software, vol. 31, no. 3, pp. 79–85, 2014.

http://www.eclipse.org/modeling/emf/
https://www.omg.org/spec/UML/

142 References

[132] D. Wüest, N. Seyff, and M. Glinz, “Flexisketch: A lightweight sketching and
metamodeling approach for end-users,” Software & Systems Modeling, vol. 18,
no. 2, pp. 1513–1541, 2019.

[133] Xtend, https://www.eclipse.org/xtend/, (last accessed in 2019).
[134] L. Zhang, Huaxi, Zhang, Z. Fang, X. Xiang, M. Huchard, and R. Zapata, “To-

wards an architecture-centric approach to manage variability of cloud robotics,”
in DSLRob: Domain-Specific Languages and models for ROBotic systems, Ham-
burg, German, 2015.

https://www.eclipse.org/xtend/

Appendix A

Scoped constraints for Wind
Turbines meta-model

This appendix contains the scoped constraints used in the experiment of Section 7.4.
For completeness, we consider constraints with all kinds of scopes: one with scope
sameProject, three with scope sameRootPkg, two with scope samePkg, and five with scope
sameUnit.

Listing 6 shows the constraint with scope sameProject, which controls the number of
state machines in the whole model.

1 context StateMachine inv numberStateMachines:
2 StateMachine.allInstances()→size() <= 10

Listing 6 Scoped constraint with scope sameProject.

Listing 7 shows the invariants with scope sameRootPkg. The first two constraints
control the maximum number of instances of ControlSubsystem and Component. The third
one validates that there are no more than 5 nested Subsystems (i.e., nested packages of
type Subsystem).

144 Scoped constraints for Wind Turbines meta-model

1 context ControlSubsystem inv numberControlSubsystems:
2 ControlSubsystem.allInstances()→size() <= 10
3
4 context Component inv numberComponents:
5 Component.allInstances()→size() <= 50
6
7 context Subsystem inv depthSubsystem:
8 self.subsystems→forAll(sub1 |
9 sub1.subsystems→forAll(sub2 |

10 sub2.subsystems→forAll(sub3 |
11 sub3.subsystems→forAll(sub4 |
12 sub4.subsystems→forAll(sub5 |
13 sub5.subsystems→size() = 0)))))

Listing 7 Scoped constraints with scope sameRootPkg.

Listing 8 shows the invariants with scope samePkg. The first one checks that every
subsystem contains a component connected with itself through references inPort and
outPort. The last one validates that each Subsystem has at least one component with an
input port.

1 context Subsystem inv connectedComponents:
2 self.ensembles→collect(connectors)→flatten()→exists(con |
3 Component.allInstances()→exists(comp |
4 comp.ports→includesAll(Set{con.inPort, con.outPort})))
5
6 context Subsystem inv inputPortSubsystem:
7 self.ensembles→collect(elements)→flatten()→exists(c |
8 c.ports→exists(p | p.oclIsTypeOf(InPort)))

Listing 8 Scoped constraints with scope samePkg.

Finally, Listing 9 shows the constraints with scope sameUnit. The first two constraints
ensure that every StateMachine has exactly one InitialState and at least one SimpleState.
The third constraint checks that every SimpleState is reachable from the InitialState.
The fourth constraint checks that every Port is connected to another one. The last
constraint ensures that each InitialState is connected to some state.

145

1 context StateMachine inv oneInitialState:
2 self.states→one(s | s.oclIsTypeOf(InitialState))
3
4 context StateMachine inv existsSimpleState:
5 self.states→exists(s | s.oclIsTypeOf(SimpleState))
6
7 context SimpleState inv reachableState:
8 self→closure(incoming.source)→exists(v | v.oclIsTypeOf(InitialState))
9

10 context Port inv connectedPorts:
11 Connector.allInstances()→exists(c |
12 (c.inPort = self and not c.outPort.oclIsUndefined()) or
13 (c.outPort = self and not c.inPort.oclIsUndefined()))
14
15 context InitialState inv initStateIsNotIsolated:
16 self.outgoing→size() >= 1

Listing 9 Scoped constraints with scope sameUnit.

Appendix B

Scoped constraints for CAEX

This appendix contains the nine scoped constraints used in the case study of Sec-
tion 7.5.1. One constraint has scope sameProject, another has scopes samePkg and
sameUnit simultaneously, and seven constraints have scope sameUnit.

Listing 10 shows the constraint with scope sameProject, which validates the version
of the AutomationML model.

1 context CAEXFile inv superiorStandardVersionIsMandatory:
2 self.superiorStandardVersion→exists(v | v = ’AutomationML 3.0’)

Listing 10 Scoped constraint with scope sameProject.

Listing 11 shows the constraint with two scopes: samePkg and sameUnit. This
happens because CAEXObject is a base class from which many other classes inherit, and
therefore, its instances can be found in packages and units. The constraint ensures
non-empty object identifiers.

1 context CAEXObject inv idIsMandatory:
2 self.iD <> null

Listing 11 Scoped constraint with scope samePkg and sameUnit.

Finally, Listing 12 shows the constraints with scope sameUnit. The first one checks
that the base class of a SystemUnitClass is a SystemUnitClass as well. The second and
third constraints validate that InternalElements with a base system unit define, for every
attribute in the base system unit, another attribute with the same name and value,
and vice versa. The fourth constraint ensures that InternalElements have no base class.
The last tree constraints ensure that if an InternalElement contains a requirement with
role class name Process, Resource or Product, then, all its internal elements must also
define a requirement with an equally named role class.

148 Scoped constraints for CAEX

1 context SystemUnitClass inv inheritanceMustPointToSUC:
2 self.baseClass <> null implies self.baseClass.oclIsTypeOf(SystemUnitClass);
3
4 context InternalElement inv strongConformanceSUC2IE:
5 self.baseSystemUnit <> null implies
6 self.baseSystemUnit.attribute→forAll(aC |
7 self.attribute→one(cI |
8 aC.name = cI.name and aC.value = cI.value));
9

10 context InternalElement inv strongConformanceIE2SUC:
11 self.baseSystemUnit <> null implies
12 self.attribute→forAll(aI |
13 self.baseSystemUnit.attribute→one(aC |
14 aC.name = aI.name and aC.value = aI.value));
15
16 context InternalElement inv noInheritanceForIEs:
17 self.baseClass = null;
18
19 context InternalElement inv processContainsProcesses:
20 self.roleRequirements.roleClass.name→exists(r | r = ’Process’) implies
21 self.internalElement→forAll(ie |
22 ie.roleRequirements.roleClass.name→exists(r | r = ’Process’));
23
24 context InternalElement inv resourceContainsResources:
25 self.roleRequirements.roleClass.name→exists(r | r = ’Resource’) implies
26 self.internalElement→forAll(ie |
27 ie.roleRequirements.roleClass.name→exists(r | r = ’Resource’));
28
29 context InternalElement inv productContainsProducts:
30 self.roleRequirements.roleClass.name→exists(r | r = ’Product’) implies
31 self.internalElement→forAll(ie |
32 ie.roleRequirements.roleClass.name→exists(r | r = ’Product’));

Listing 12 Scoped constraints with scope sameUnit.

	Abstract
	Resumen
	Table of contents
	List of figures
	List of tables
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Technical Contributions
	1.2.1 Publications

	1.3 Research Visits
	1.4 Support
	1.5 Organization

	2 Background and Related Work
	2.1 Model-Driven Engineering: Basic Concepts
	2.1.1 Challenges

	2.2 Related Work
	2.2.1 Modelling Technologies
	2.2.2 Systematic Development of Domain-Specific Modelling Languages
	2.2.3 Model Scalability and Modularity
	2.2.4 Frameworks to Create Graphical Editors

	2.3 Summary and Conclusions

	3 Patterns
	3.1 Types of Patterns
	3.2 Pattern Specification
	3.3 Pattern Services
	3.4 Patterns Variants
	3.5 Summary and Conclusions

	4 A Pattern-based Approach to Language Modularity
	4.1 Motivation and Running Example
	4.2 A Pattern-based Approach to Modularity of DSMLs
	4.3 Catalogue of Modularity Patterns and Services
	4.3.1 Model Fragmentation
	4.3.2 Reference Scoping
	4.3.3 Visibility
	4.3.4 Indexing
	4.3.5 Scoped Validation

	4.4 Summary and Conclusions

	5 Support for Graphical and Tabular Concrete Syntax
	5.1 Motivation
	5.2 Graphical Concrete Syntax
	5.2.1 Heuristics
	5.2.2 Read-only Representation Style for Collections

	5.3 Tabular Concrete Syntax
	5.4 Graphical Representation of a Fragmented Model
	5.5 Summary and Conclusions

	6 Tool Support
	6.1 DSL-tao
	6.2 EMF-Splitter
	6.3 EMF-Stencil
	6.4 Summary and Conclusions

	7 Evaluation
	7.1 Applicability of the Fragmentation Pattern
	7.1.1 Threats to Validity

	7.2 Fragmentation Scalability
	7.2.1 Synthetic Models
	7.2.2 Realistic Large Models
	7.2.3 Threats to Validity

	7.3 Comparison with Third Party Tools
	7.3.1 Fragmentation vs. Monolithic Models and EMF Tree Editor
	7.3.2 Fragmentation vs. Database Persistence Layer
	7.3.3 Fragmentation vs. Gephi
	7.3.4 Threats to validity

	7.4 Performance of Scoped Constraints
	7.4.1 Full Constraint Validation in Monolithic and Fragmented Models
	7.4.2 Effect of Number of Fragments on Scoped Validation Performance
	7.4.3 Comparison of Full Validation and Incremental Validation
	7.4.4 Effect of a Model Indexer on Scoped Validation Performance
	7.4.5 Discussion and Threats to Validity

	7.5 Case Studies
	7.5.1 CAEX
	7.5.2 Henshin
	7.5.3 Cloud Robotics System

	7.6 Applications
	7.6.1 Scalable Model Exploration
	7.6.2 Creating Graphical Environments by Example
	7.6.3 Enabling Mobile Domain-Specific Modelling

	7.7 Summary and Conclusions

	8 Conclusions and Future Work
	8.1 Conclusions
	8.2 Future Work

	9 Conclusiones y Trabajo Futuro
	9.1 Conclusiones
	9.2 Trabajo Futuro

	References
	Appendix A Scoped constraints for Wind Turbines meta-model
	Appendix B Scoped constraints for CAEX

