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Abstract

The ultrafast movement of electrons is a driving force of chemical reactions,

making it a highly desirable avenue for study. This thesis studies such move-

ments, making use of pump-probe methods such as attosecond transient ab-

sorption spectroscopy (ATAS) and reconstruction of attosecond beatings by

interference of two-photon transitions (RABITT), in complex atomic systems.

The main approach used to solve the time-dependent Schrödinger equation

(TDSE) was exact, attosecond, full-electron, ab-initio calculations.

Firstly, helium was probed above the second ionisation threshold, where

several ionisation channels are open, using accurate ab-initio calculations. Here,

the ATAS method was employed to predict beatings between the autoionising

3snp1P o resonances and nearby 1Se and 1De states. More surprisingly, two-

photon beatings between the doubly-excited 3s3p state and the 1P o continuum

were also observed, demonstrating control of the correlated, two-electron, multi-

channel wave packet.

Secondly, two studies of neon were carried out below the second ionisation

threshold. The first makes use of ATAS calculations to probe beatings between

the autoionising neon states. Using a two-colour, mixed extreme-ultraviolet

(XUV) near-infrared (NIR) pump, one-photon beatings between the 2s−13p1P o

and the nearby 2s−13s1Se and 2s−13d1De resonances are observed. Further, one-

and two-photon beatings between the autoionising 2s−13`, ` ∈ {0,1} and the 1P o

continuum are predicted.

The second uses the RABITT method to probe the atomic phase in the
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vicinity of multiple resonances. This is far from trivial, and interferometric

methods have until now been restricted to simpler energy-regions, due to the

difficulty of accurately describing the electron correlation associated with the

more complex case, making accurate ab-initio calculations needed to guide

experiments unavailable. Despite the complex energy-dependence of the phase

when several resonances are present, presented results from experiment and ab-

initio theory are in excellent agreement. Further, using a simple extension of the

Fano model for resonant continua, the contributions of the different involved

resonances are disentangled. Such simple models are highly desirable in more

advanced systems, where accurate ab-initio calculations are inaccessible.

The ab-initio results of both neon studies were carried out using the newly

developed XCHEM methodology, which is thus further validated by the excel-

lent agreement with presented experiments and previous studies.

Finally, a RABITT study of argon in the vicinity of the 3s−1n` resonances was

performed. Angularly resolved, experimental results are presented, showing

the anisotropy of the atomic phase in smooth continua as well as the vicinity of

resonances. Due to the complexity of the system, no ab-initio results are present.

Instead, simpler interferometric models are used to successfully explain the

anisotropic behaviour of the phase.
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Resumen

El movimiento ultrarrápido de electrones es la fuerza motriz de las reacciones

quı́micas, por lo cual su estudio resulta muy atractivo. Esta tesis se dedica al

estudio de ese tipo de movimientos, utilizando métodos de bombeo y sonda,

como espectroscopı́a de absorción transitoria de attosegundos (ATAS) y recon-

strucción de ”beatings” de attosegundo por interferencia de transiciones de

dos fotones (RABITT), en átomos complejos. El método principal utilizado

para resolver de la ecuación de Schrödinger dependiente del tiempo fue la

propagación exacta (ab-initio) considerando todos los electrones.

En primer lugar, se investigó el átomo de helio por encima del segundo um-

bral de ionización, donde existen varios canales de ionización. Aquı́, el método

de ATAS se empleó para predecir beatings entre las resonancias 3snp1P o y esta-

dos 1Se y 1De cercanos. Sorprendentemente, también se observaron beatings

de dos fotones, lo cual muestra control del paquete de ondas correlacionado

multicanal de dos electrones.

En segundo lugar, dos estudios por debajo del segundo umbral de ionización

del neón se llevaron a cabo. El primero utiliza cálculos de ATAS para investigar

los beatings entre estados autoionizantes de neón. Utilizando un bombeo de dos

colores, radiación ultravioleta extrema (XUV) mezclada con radiación infrarrojo

cercano (NIR), es posible observar beatings entre la resonancia del 2s−13p1P o y

las 2s−13s1Se y 2s−13d1De. Además, se predicen beatings de uno y dos fotones

entre las resonancias autoionizantes 2s−13`, ` ∈ {0,1} y el continuo 1P o.
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El segundo usa el método de RABITT para estudiar la fase atómica en las cer-

canı́as de las resonancias múltiples. Hasta ahora, los métodos interferométricos

han estado restringidos a regiones de energı́a de hasta una resonancia, a causa

de las dificultades en llevar a cabo propagaciones exactas (ab-initio), las cuales

dependen de la correlación electrónica para describir bien los experimentos.

A pesar de la complejidad de la dependencia de la energı́a con la fase, debido

a la presencia de varias resonancias, los resultados teóricos obtenidos comparan

muy bien con los resultados experimentales presentados. Además, usando una

extensión del modelo de Fano para continuos resonantes, las contribuciones

de las distintas resonancias se han podido resolver. Modelos más simples son

necesarios en sistemas más avanzados, donde cálculos ab-initio son inaccesibles.

Los resultados ab-initio presentados en ambos estudios se realizaron con el

método XCHEM recientemente propuesto, dando ası́ validez al método.

Finalmente, se realizó un estudio RABITT cerca de las resonancias 3s−1n` del

argón. Se presentan experimentos mostrando la dependencia angular de la fase

atómica, tanto en continuos suaves como en las cercanı́as de resonancias. Debido

a la complejidad del sistema, no se presentan resultados ab-initio. En cambio,

mediante modelos interferométricos se ha podido explicar el comportamiento

anisótropo de la fase.





Abbreviations

APT Attosecond pulse train

AT Autler-Townes

ATAS Attosecond transient absorption spectroscopy

CAP Complex absorption potential

CAS Complete active space

DES Doubly excited states

FWHM Full width at half maximum

GABS Combined Gaussian–B-spline

HF Hartree-Fock

HH High harmonic

HHG High harmonic generation

IR Infrared

NIR Near Infrared

PAD Photoelectron angular distribution

PES Photoelectron spectrum

PI Parent ion

QCP Quantum Chemistry Package

RABITT Reconstruction of atomic beatings by interference of two-

photon transitions

SAE Single Active Electron
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SB Sideband

SCF Self Consistent Field

TDPT Time-dependent perturbation theory

TDSE Time-dependent Schrödinger equation

TISE Time-independent Schrödinger equation

VIS Visible

XUV Extreme ultraviolet
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Chapter 1
Introduction

The nature of chemical reactions is largely governed by the motions of bound

electrons, making an increased understanding of electron movement in the

proper time-scale a highly desirable objective. The movement – referred to as

ultrafast – of atomic valence electrons tends to occur in the order of magnitude

of attoseconds or a few femtoseconds. Such phenomena can be studied by

employing what is known as the pump-probe approach: This approach makes

use of two separate laser pulses to interact with the studied system: A high-

energy, often extreme ultraviolet (XUV), pulse, referred to as a pump pulse, is

used to ionise an atomic system. A second pulse, known as a probe or control

pulse, can subsequently be used to extract information about the state of the

excited atom. By varying the delay between the two pulses, a time-dependent

view of the atom emerges.

These methods have only recently been extended to the domain of attosec-

ond physics, creating a great demand for theory. As it is not yet possible to

experimentally extract relevant information without the proper guidance of

theory, theory and experiment have to be developed in parallel.

Of the three main attosecond pump-probe methods, in this thesis, two

are considered: Attosecond transient absorption spectroscopy (ATAS) and re-

construction of attosecond beatings by interference of two-photon transitions
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CHAPTER 1. INTRODUCTION

(RABITT). Both proven themselves capable tools for obtaining information not

available outside the field of attosecond science. Furthermore, compared to

the third, streaking, both ATAS and RABITT are more wildly used and are

associated with a larger amount of available experimental literature data.

ATAS is an extension of transient absorption spectroscopy (TAS), where the

probe pulse is introduced in order to modify the absorption spectrum. Although

its femtosecond analogy has been in use for over 50 years, it is only recently

(Goulielmakis et al. 2010) pump-probe TAS has been extended to the attosecond

domain. ATAS is able to track time-resolve electron dynamics and reconstruct

electron wave packets, and RABITT enabling measurements of photoemission

delays in the order of hundreds of attoseconds.

RABITT was originally (Agostini et al. 2004; Paul et al. 2001) proposed to

study the pulses generated by high-harmonic generation (HHG) (Ferray et al.

1988; McPherson et al. 1987), by focusing on smooth, featureless continua.

Once the characteristics of one such pulse is known, however it can instead be

used to study more complex atomic and molecular regions. With that, RABITT

has enabled measurements of photoemission delays in the order of hundreds of

attoseconds.

For atoms more complex than hydrogen, the electron movement is a many-

body problem, and theoretically impossible to describe exactly. Instead approx-

imative methods need to be employed. Unfortunately, simpler methods, such as

the Hartree (1935)-Fock (1930) (HF) self-consistent field (SCF) approach or the

single-active electron (SAE) approximation, which reduce the problem by only

considering a single electron at a time, fail to accurately account for the much

more intertwined electron-electron interaction – what is known as electron-

correlation (Hättig et al. 2011). For this reason, more elaborate descriptions are

necessary in order to accurately model these systems.

This thesis considers the theory behind the ultrafast movement of elec-

trons in three complex atoms: helium, neon, and argon. These systems are

modeled using accurate, full-electron, ab-initio pump-probe calculations; their

description enabled through approaches such as a K-matrix (Argenti et al. 2006;
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Lindroth et al. 2012) B-spline (Argenti et al. Unpublished) method and the

XCHEM (Marante et al. 2014, 2017a,b) method. Although the systems consid-

ered here are all noble gas atoms, and can thus hardly be considered reactive, the

underlying theory may well be extended to more reactive atomic and molecular

systems.

The underlying document is structured as follows: Part I, to which the

present chapter pertains, make up the introduction. It also contains chapter 2,

in which a basic description of quantum physics, and the interaction between

light and atoms, is given. In part II, the main bulk of the theory is described.

It consists of three chapters. Firstly, chapter 3 contains information on the

specific experimental, attosecond pump-probe methods employed, on the nu-

merical ab-initio propagation used to simulate them, and on how observables

are extracted from the system. Secondly, chapter 4 contains information on

the bases used during ab-initio propagations. Thirdly and lastly, chapter 5

describes an extension of the Fano (1961) model to two-photon transitions, used

to extract information about atomic systems without the need for expensive

ab-initio calculations. In part III, the results are given, divided into one chapter

for each studied atomic system. Chapter 6 considers helium, chapter 7 neon,

and chapter 8 argon. Part IV consists of chapters 9 and 10, which, in English

and Spanish respectively, contain a summary of the conclusions of this work.

Finally, three appendices are included, located in part V. In appendix A, atomic

units are discussed; in appendix B, time-dependent perturbation theory (TDPT)

is described; and in appendix C the split accuracy and time complexity of the

ab-initio propagation operator is treated.

Throughout this thesis, Hartree (1928) atomic units (au) will be used unless

otherwise stated. These are defined by setting the reduced Plank constant ~, the

electron massme the elemental charge e, and the Coulomb constant 1
4πε0

(where

ε0 is the vacuum permittivity) equal to one (~ =me = e = 4πε0 = 1). This unit

system is convenient, as it greatly simplifies many relevant formulas. Several

atomic unit conversion factors are given in appendix A.
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Chapter 2
Light-Matter Interaction

One of the fundamental concepts that distinguishes quantum mechanics from

its classical forerunner, is that it does away with the concept of determinism.

According to quantum mechanics, the outcome of an experiment can never

be predicted with certainty, but only as a probability distribution. Instead of

a particle having a fixed position, energy, and location, these quantities may

be distributed over several values, their probability being described as a wave-

function distribution. Each such quantity a which can be measured – each

observable – is associated with a linear operator Â. This operator can be used

to extract the expectation value of the quantity as

aexp =
〈
Â
〉
≡

〈
Ψ

∣∣∣Â
∣∣∣Ψ

〉
, (2.1)

for a particle in a state
∣∣∣Ψ

〉
, which has been denoted using Dirac’s (1939) bra-

ket notation: In this notation, a state may be described by a ket
∣∣∣Ψ

〉
, which is

analogous to a column vector in linear algebra. Similarly, and analogously to a

row-vector, the bra
〈
Ψ

∣∣∣ is the Hermitian transpose of
∣∣∣Ψ

〉
. Bra-ket notation is

going to be used throughout this thesis. Once a measurement of the observable

a has been carried out, the result will be an eigenvalue of the associated operator

Â, with the state function collapsing to the corresponding eigenstate.
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CHAPTER 2. LIGHT-MATTER INTERACTION

Unlike particles in Newtonian mechanics, the movement of quantum me-

chanical waves are described by the time-dependent Schrödinger (1926) equa-

tion (TDSE),

i
∂
∂t

∣∣∣ψ (t)
〉

= Ĥ (r, t)
∣∣∣ψ (t)

〉
, (2.2)

which considers the evolution in time t, of a state
∣∣∣ψ (t)

〉
; where r is the position

and the Hamiltonian operator Ĥ is the sum

Ĥ = T̂ + V̂ (2.3)

of the kinetic energy operator T̂ , and the potential energy operator V̂ . Equation

2.2 can be solved by defining the time-evolution operator

Û (r; t1, t0) = T̂o
{

exp
[
−i

∫ t1

t0

dt Ĥ (r, t)
]}

(2.4)

between the times t0 and t1, where the time-ordering operator T̂o works on the

expression within the brackets.

For a single particle, the kinetic energy operator T̂ can be written as

T̂ =
1
2
p̂2, (2.5)

where p̂ is the momentum operator. The operator p̂ may be written in terms of

the gradient operator ∇̂ =
(
∂x,∂y ,∂z

)ᵀ
as p̂ = −i∇̂. The potential energy operator

V̂ , on the other hand, can be described as a time and space-dependent scalar

operator.

For a time-independent Hamiltonian Ĥ, the Hamiltonian eigenfunctions

ψ (r, t) can be written as standing waves

∣∣∣ψ (t)
〉

=
∣∣∣ψ

〉
exp(−iεt) (2.6)

of energy ε, by separating the time-dependent component from the functions

8



∣∣∣ψ
〉
, which also are Hamiltonian eigenfunctions. This allows equation 2.2 to be

simplified to the eigenvalue problem

ε
∣∣∣ψ (t)

〉
= Ĥ (r, t)

∣∣∣ψ (t)
〉
, (2.7)

known as the time-independent Schrödinger equation (TISE). This mirrors the

classical relation ε = εkin + εpot, according to which the total energy can be seen

as the sum of the kinetic (εkin) and the potential (εpot) energy.

In particular, this thesis consider atomic systems – systems consisting of a

single nucleus surrounded by several electrons. The simplest atomic system,

hydrogen, is described by the Hamiltonian

Ĥ0 =
1
2
p̂2 − 1

‖r̂‖ (2.8)

in the inertial reference frame of the atomic core, positioned at the origin.

The second term – the potential energy – considers the Coulomb attraction

between the core and the electron. This is a potential well, to which Hamiltonian

eigenfunctions with negative energies can be considered bound.

The bound eigenfunctions can be divided, by the projection
〈
r
∣∣∣ψn`m

〉
onto

the position eigenstates
∣∣∣r
〉
, as

〈
r
∣∣∣ψn`m

〉
= Rn` (r)Ym` (r̂) , (2.9)

into a radial component Rn` (r) (where r = ‖r‖) from the core, and an angular

component Ym` (r̂) (where r̂ = r/r), known as a spherical harmonic. They are

defined by three integer quantum numbers: The principal quantum number

n, the angular momentum `, and the magnetic quantum number m. These are

restricted by n ≥ 1, 0 ≤ ` < n, and |m| ≤ `. The associated eigenenergies depend

as

εn = − 13.6
1
n2 eV (2.10)

on n. An energy series εn ∝ −1/n2 is known as a Rydberg series.

9



CHAPTER 2. LIGHT-MATTER INTERACTION

Turning to larger atomic systems, the case is not as simple. For an atom with

the atomic number Z, the Hamiltonian may be written as

Ĥ0 = −
∑

i

1
2
p̂2
i −

∑

i

Z∥∥∥ĵri
∥∥∥

+
∑

i, j>i

1∥∥∥r̂i − r̂j
∥∥∥
, (2.11)

where p̂i and r̂i are the ith electron momentum and position operator, and

the third term has been introduced to account for electron-electron repulsion.

When more than one electron is present, the TISE has no exact solution, and a

numerical approach must be employed.

A state ket
∣∣∣Ψ (t)

〉
is expressible as a linear combination

∣∣∣Ψ (t)
〉

=
∑

i

ci (t)
∣∣∣ψi

〉
(2.12)

of Hamiltonian eigenstates. If the Hamiltonian is time-independent, the con-

stants ci (t) vary as ci (t) = ci (0) exp(−iεit). When considering interaction be-

tween an atom and an external, time-dependent light field; it is therefore

convenient to describe the system using the eigenfunctions of the static, atomic

Hamiltonian Ĥ0, writing the total Hamiltonian as the sum

Ĥ (t) = Ĥ0 + ĤI (t) (2.13)

of Ĥ0 and a time-dependent interaction component ĤI (t). The interaction with

the electric field can be modeled using the minimal-coupling Hamiltonian

Ĥ (t) =
∑

i

1
2
[
p̂i +αA (r̂i , t)

]2 − Φ (r̂i , t) + V̂atom (r̂i) , (2.14)

where V̂atom (r̂) is the atomic potential, α is the fine-structure constant, and the

field is defined by the vector potential A (r, t) and the scalar potential Φ (r, t).

10



The electric field can be written as

E (r, t) = − ∂A (r, t)
∂t

− ∇Φ (r, t) (2.15)

in terms of A (r, t) and Φ (r̂, t). As in the case for the global state phase, neither

A (r, t) nor Φ (r̂, t) are physical observables. Indeed, the Schrödinger equation is

invariant under the gauge transformation



A (r, t) → A (r, t) + ∇χ (r, t)
∂
∂t
χ

Φ (r, t) → Φ (r, t) − 1
c
∂
∂t
χ (r, t) ,

Ψ (r, t) → Ψ (r, t) exp(−iχ (r, t))
∂
∂t
χ

(2.16a)

(2.16b)

(2.16c)

where the scalar function χ (r, t) has been introduced and c is the speed of light.

One useful gauge is the Coulomb gauge, defined by setting ∇ ·A (r, t) = 0 and

Φ (r, t) = 0. In this gauge, A (r, t) and ∇ commute – that is, the commutator[
Â, B̂

]
= ÂB̂ − B̂Â equals the null operator ([A (r, t) ,∇] = ∅̂). For this reason, the

expression

ĤI (t) =
∑

i

−iαA (r̂i , t) · p̂i +
2α2

2
A2 (r̂i , t) (2.17)

is valid for the interaction Hamiltonian. In order to further simplify this

expression, presently consider the external field. The total field can be written

as a linear combination of linearly polarised, monochromatic fields. Each such

monochromatic field of wavelength λ and frequency ω can be written as

A (r, t) = A0 cos
( n̂ · r
λ
−ωt +φ

)
, (2.18)

where the vector A0 is orthogonal to the direction n̂ of the polarization. When

considering wavelengths λ sufficiently large compared to the studied system,

the spacial dependence of this equation can be disregarded, or, rather, incorpo-

rated into the constant phase φ. This is known as the dipole approximation.

11
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For comparison, the shortest wavelengths considered here are in the order of

magnitude of 300 au – several hundred times larger than the Bohr radius a0

(the average distance between the core and the electron in a hydrogen atom).

Two more gauges may now be considered. Firstly, the Göppert-Mayer trans-

formation, defined by χ (t) = −d̂ ·A (t), where d̂ =
∑
i r̂i , allows for transforma-

tion into the length gauge. In this gauge, the interaction Hamiltonian may be

simplified to the expression

ĤLI = E (t) · d̂, (2.19)

where d̂ is known as the length-gauge dipole operator. Throughout this thesis,

however, the velocity gauge is used. It has the interaction Hamiltonian

ĤVI = αA (t) · P̂ , (2.20)

where P̂ is the velocity-gauge dipole operator, and can be arrived at through the

gauge transformation χ (t) = Ne
2

∫ t
−∞ dt

′A2 (t′), where the sum over the electrons

is carried out by multiplication of the total number Ne of electrons.

This thesis only considers only linearly polarised light. Taking the ẑ axis to

be the polarisation direction, equation 2.20 can be further simplified as

ĤVI = αA (t) P̂ , (2.21)

by defining P̂ = P̂ · ẑ and A (t) = A (t) · ẑ. The state may now, as suggested in

equation 2.12, be described as a linear combination

∣∣∣Ψ (t)
〉

=
∑

i

ci(t)
∣∣∣ψi

〉
exp(−iεit) (2.22)

of Hamiltonian eigenstates
∣∣∣ψi

〉
, with corresponding eigenenergies εi . The

values ci (t) remain constant unless an external field is present, redistributing

the state population. It is these basic process which are examined by the time-

resolved studies discussed in this work.
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Chapter 3
Ab-Initio Theory

The focus of this work lies on the study of time-dependent electron dynamics in

atoms, induced by linearly polarised ultrashort light. Time-dependent electron

dynamics, generally referred to as ultrafast phenomena, take place on time-

scales on the order of several attoseconds or a few femtoseconds.

Resolving spectra on such time-scales is not without complications. One

problem which arises stems from what is known as the Heisenberg uncertainty

principle. Although also applicable to other observables, for time- and energy-

operators it can be written as

σε · σt ≥ 1
2

(3.1)

where σε is the uncertainty (here defined as the variance) in the energy determi-

nation, and σt is that of the time before the system decays, at which point it can

be measured (Svanberg 1991).

This imposes strict limitations on the maximum possible resolutions of

energy and time. As an illustrative example, demanding a resolution corre-

sponding to an energy-uncertainty as low as σε = 7 · 10−3 au – one tenth of the

energy-distance between the 2s−23s3p and 2s−23s4p resonances in Helium, a

region studied with significantly higher energy resolution as part of this thesis

(in Petersson et al. [2017]) – would impose a minimum time uncertainty of
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CHAPTER 3. AB-INITIO THEORY

σt ≈ 1730as, an uncertainty more than twenty times the time-resolution used in

said study!

How, then, can such a precision be achieved? The answer to this question

lies in the pump-probe nature of the methods employed in this work. Using

two independent laser pulses, it is not so much the time, t, which is measured,

but rather the time-delay, τ , between said pulses, which is varied to probe time-

dependent dynamics, overriding the constraint imposed by the Heisenberg

uncertainty principle. (Pollard et al. 1992).

When considering, say, a two-photon absorption process (one photon associ-

ated with each pulse), it is not the exact time between the two absorption events

that is measured. The times when these events occur are not known – only their

time probability distributions, determined by the respective temporal profiles

of the pulses. It is thus the entire probability-distributions that are shifted with

τ , which can be done with arbitrary precision.

This chapter is dedicated to the theory behind these methods, and the phe-

nomena they probe. Two pump-probe methods are considered: The first, known

as attosecond transient absorption spectroscopy (ATAS), is described in section

3.1, and the second, reconstruction of attosecond beatings by interference of

two-photon transitions, in section 3.2. These phenomena were theoretically

modelled, using accurate, full-electron, numerical ab-initio propagations. The

theory behind those propagations is discussed in section 3.3 (although the de-

tails behind the basis employed during propagation are given in chapter 4).

Finally, section 3.4 complements this discussion by describing how observables

can be extracted from the ab-initio propagation.
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3.1 Attosecond Transient Absorption Spectroscopy

The first probing technique utilised in this thesis is what is known as attosecond

transient absorption spectroscopy (ATAS). ATAS was initially used by Gouliel-

makis et al. (2010) to monitor the ultrafast dynamics involved in the coherent

interference of valance-holes in krypton. It has since been used to monitor

dynamics resulting from processes such as superpositions of singly excited

states in helium (S. Chen et al. 2012, 2013a,b; Chini et al. 2014; Herrmann et al.

2013), and in neon (Beck et al. 2014; Ding et al. 2016; Wang et al. 2013), of

doubly excited states in helium (Argenti et al. 2015; Ott et al. 2014), the buildup

of Fano (1961) profiles in helium (Kaldun et al. 2016), and hole alignment in

neon (Heinrich-Josties et al. 2014). Through this, it has established itself as

a trusted tool for monitoring ultrafast atomic as well as molecular processes

(Argenti et al. 2015; Beck et al. 2014; Goulielmakis et al. 2010; Ott et al. 2014).

The general concept of ATAS becomes evident when considering the pump-

probe setup, illustrated in figure 3.1. The system under observation is excited by

what is typically a short, weak, extreme ultraviolet (XUV), pulse (shown in blue

in figure 3.1), intended to populate the studied energy-range of the spectrum. A

second probe pulse is then used to probe the dynamics of the excited spectrum.

By varying the time-delay, τ , between the pulses, the time-evolution of the

populated-spectrum, and the corresponding dynamics, can be studied.This

t

E (t)

τ

Figure 3.1: An illustration of the electric field E (t) of the high-energy pump (blue) and the low-
energy probe (fully drawn red) used in ATAS as a function of time t. The time delay of the probe
with regards to the pump, τ , is varied to resolve the resulting data in time. To study one-photon
beatings, a weak, low-energy field (red, dashed) can be added to the pump.
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CHAPTER 3. AB-INITIO THEORY

thesis considers the case of an infrared (IR) or visible (VIS) probe (shown in

fully drawn red in figure 3.1), stronger than the XUV, but too weak to further

drain the ground state.

It should be noted that, using a weak XUV pump as described above, only

states which are dipole-connected to the ground state are populated. Although

states which are not dipole connected to the ground state may be involved in

the dynamics probed by the probe pulse, the time-dependent behaviour of such

states is not observed. If such processes are to be studied, however, a low-energy

component (shown in dashed red in figure 3.1) can be added to the pump (Ding

et al. 2016). This component redistributes the population over the excited states

– including those not connected to the ground state via one-photon transitions.

In this manner, the field-free evolution of such states over the interval between

the pump and the probe also becomes relevant. This is already a common

practice in femtosecond pump-probe spectroscopy (Petersson et al. 2017).

This work considers both the case where the pump does (see chapter 7.1),

and does not (see chapter 6.1), include a low-frequency component.

3.1.1 The Transient Absorption Spectrum

In ATAS, the transient absorption spectrum (TAS) is observed. In order to

understand the significance of the TAS, and how it can be extracted, consider a

beam of light passing through a target medium, along the x−axis. Assuming

that the target concentration is uniform, the proportion of light absorbed per

unit of length will be constant. That is, when passing through a small interval

∂x, the relation
∂I (ω;x)
I (ω;x)

= −c (ω)∂x, (3.2)

where I (ω;x) is the intensity of the field at frequency ω after having penetrated

a distance of x into the medium, and c (ω) is the absorbance per length, holds.

This relation is known as the Beer-Lambert law (Svanberg 1991). Dividing c (ω)

with the number of atoms per unit of length, n, gives an effective atomic cross
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3.1. ATTOSECOND TRANSIENT ABSORPTION SPECTROSCOPY

section

σ (ω) =
c (ω)
n

, (3.3)

allowing equation 3.2 to be rewritten as

∂I (ω;x)
I (ω;x)

= −σ (ω)n∂x. (3.4)

Solving equation 3.4 gives

I (ω;x) = I (ω;0) exp[−σ (ω)nx] , (3.5)

or, equivalently,

σ (ω) = − 1
nx

ln
[
I (ω;x)
I (ω;0)

]
. (3.6)

Using tilde to denote the Fourier transform; the first order Taylor-expansion of

equation 3.6 gives

σ (ω) =
1
nx

I (ω;0)− I (ω;x)
I (ω;0)

=
1
nx

∥∥∥Ẽ (ω;0)
∥∥∥2 −

∥∥∥Ẽ (ω;x)
∥∥∥2

∥∥∥Ẽ (ω;0)
∥∥∥2 , (3.7)

where E (t;x) is the electric field, and the relation I (ω) =
∥∥∥Ẽ (ω)

∥∥∥2
between the

intensity and the norm of the electric field has been used. It is the cross-section

σ (ω) which is taken as the TAS-spectrum.
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In order to derive an expression for σ (ω), consider Maxwell’s equations,

written as

∇ ·D = 0
1
c

(3.8a)

∇ · B = 0
1
c

(3.8b)

∇× E = −1
c
∂
∂t
B (3.8c)

∇×H =
1
c
∂
∂t
D (3.8d)

in vacuum (where the current-density is zero and no free charges are present),

where ∇ is the gradient vector operator, D is the electric displacement, B is the

magnetic field, and H is the magnetizing field. Assuming the magnetisation

can be neglected, the relations

D = E + 4πP (3.9a)
,H = B (3.9b)

where P is the polarisation, follow directly from the definitions of D and H .

Equations 3.8a, 3.8c, 3.8d, 3.9a, and 3.9b, along with the property

∇× (∇× v) = ∇ (∇ · v)−∇2v (3.10)

of the cross product, valid for any arbitrary vector v, allows the equation

∂2

∂t2
D = 4πc2∇ (∇ · P ) + c2∇2E (3.11)

to be derived. Together with the second time derivative of equation 3.9a, this

gives the expression

(
∇2 − 1

c2
∂2

∂t2

)
E =

4π
c2

∂2

∂t2
P − 4π∇ (∇ · P ) (3.12)
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for the wave-propagation.

Additional simplifications of this expression can be made by considering the

limitations of the problem studied in this thesis. Firstly, only linearly polarised

light – traveling in a predetermined direction here taken as convention to be

the x̂ axis – is considered, allowing for the simplification

E (t;x) = E (t;x) ẑ (3.13)

to be made, splitting the electric field into the normalised z-axis vector ẑ and a

scalar quantity E (t;x).

Further, the systems treated using this method are helium and neon – both

noble gases having an isotropic ground-state. For this reason, the polarisation

P (t) = 0 prior to the arrival of the field. Thus, the only polarisation present will

be in the direction of the field, and writing an expression for P analogous to

equation 3.13 it can be seen that

P = P (t;x) ẑ⇒ ∇ · P = 0. (3.14)

With this in mind, equation 3.12 can be rewritten as

(
∂2

∂x2 −
1
c2
∂2

∂t2

)
E (t;x) =

4π
c2

∂2

∂t2
P (t;x) (3.15)

in the direction of the field.

Using the expressions

E (t;x) =
1√
2π

∫ ∞

0
dωẼ (ω;x)exp[iω (t − x/c)] + c.c. (3.16)

and

P (t;x) =
1√
2π

∫ ∞

0
dωP̃ (ω;x)exp[iω (t − x/c)] + c.c. (3.17)
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of the Fourier-transform, where c.c. denotes the complex conjugate, the fre-

quency distribution of equation 3.15,

(
∂2

∂x2 − 2i
ω
c
∂
∂x

)
Ẽ (ω;x) = −4π

ω2

c2 P̃ (ω;x) , (3.18)

can be derived (Santra et al. 2011).

A third and final limitation must now be introduced. In this work, it is

the atom itself, rather than a thick cluster or solid of atoms, that is studied.

Thus, the case of a thin, rather than a thick, medium is considered, and the

field can be considered as varying slowly during one wavelength, allowing the

second-order x-derivative in equation 3.18 to be neglected. This allows the

further simplification

∂
∂x
Ẽ (ω;x) = −2πi

ω
c
P̃ (ω;x) , (3.19)

to be made. Due to the diluted nature of the observed medium, the polari-

sation P̃ (ω;x) ≈ P̃ (ω) can be approximated as constant, allowing the linear

approximation

Ẽ (ω;x) = Ẽ (ω;0)− 2πi
ω
c
P̃ (ω) x, (3.20)

to be made. Inserting this in equation 3.7 gives

σ (ω) = −1
n

4πω
c

Im
{
P̃ (ω)
Ẽ (ω)

}
. (3.21)

Since the polarisation corresponds to the total dipole moment, d̃ (ω), of the n

atoms considered, the further simplification

σ (ω) = −4πω
c

Im
{
d̃ (ω)
Ẽ (ω)

}
, (3.22)

can be made. This formula can be directly used to calculate the atomic spectrum

(Argenti et al. 2015).
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It is possible, however, to further simplify this expression in the velocity

gauge. In order to do so, consider the relation

∂
∂t

〈
Â
〉

= i
〈[
Ĥ (t) ,Â

]〉
, (3.23)

where Ĥ (t) is the total Hamiltonian, is valid for any given time-independent

operator Â (Ohlén 2005). In the velocity gauge, the Hamiltonian can be written

as

Ĥ (t) = Ĥ0 +αA (t) · P̂ , (3.24)

where Ĥ0 is the field-free atomic potential, α is the fine-structure constant, and

the vectors A (t) and P̂ =
∑Ne
i=1 P̂ i contains in all directions, respectively, the

field vector potential and the electron canonical moment operator for all Ne
electrons. The total dipole momentum operator vector, d̂ =

∑Ne
i=1 r̂i , contains

the position vector operators r̂i for all electrons. Thus, in the velocity gauge,

equation 3.23 gives

∂
∂t

〈
d̂
〉

= i
〈[
Ĥ0 +αA (t) · P̂ , d̂

]〉
=

〈
− P̂

〉
+
〈
−αNeA (t)

〉
. (3.25)

Hence, it can be seen that the dipole moment, written as

∂
∂t
d (t) = −p (t)−αNeA (t) (3.26)

in the direction of the field, can be divided into two components – one corre-

sponding to the electron canonical momentum and the other to the external

field. The corresponding frequency-domain expression is

d̃ (ω) =
i
ω
p̃ (ω) +

iαNe
ω

Ã (ω) . (3.27)

This can, together with the relation

Ẽ (ω) = −i ω
c
Ã (ω) , (3.28)

23



CHAPTER 3. AB-INITIO THEORY

be inserted into equation 3.22. As the fraction corresponding to the external-

field component to the dipole is real, the expression

σ (ω) =
4π
ω

Im
{
p̃ (ω)

Ã (ω)

}
(3.29)

is arrived at. This is the expression which has been used to extract the TAS in

this work.

A numerical treatment of the TAS can be found in section 3.4.1. One point

from that section which bears repeating here, is that only the dipole response

with the ground state is significant enough to be visible in the TAS. For this

reason, only states which are dipole-coupled with the ground state are directly

observed1.

By varying the delay τ between the pulses, a time-resolved TAS σ (ωr ;τ)

can be defined. To provide an illustrative example, parts of such a spectrum,

for the case described in chapter 7.1, is shown in figures 3.2a and 3.2c. The

system considered is neon. For the energy ranges discussed herein, a 2p valence

electron can either be excited to ionise said atom, or either one 2s or two 2p

electrons can be excited to give rise to an autoionising resonance (Barreau et al.

2019). This gives rise to a continuum containing several features.

In this case, neon is studied with a mixed XUV-NIR (near infrared) pump

and an NIR probe of frequency ωNIR = 0.05879 au. The corresponding spectrum

when no probe pulse is used is denoted as σ0 (ωr ) below.

3.1.2 The Bidimensional Spectrum

In order to further study the ATAS spectrum, it is also useful to consider the

changes to σ (ωr , τ) with τ in the frequency-, rather than the time-, domain.

1In all communications making up part of this thesis which makes use of ATAS, the ground state
is of symmetry 1Se . In such cases, only 1P o states are directly visible.
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Figure 3.2: The natural logarithm of part of the TAS ln{σ (ωr , τ) } ((a) and (c)) and the bidimensional
spectrum ln{ σ̃ (ωr ,ωτ ) } ((b) and (d)) discussed in chapter 7.1 Two energy ranges are displayed,
one near the 2s−13p (labeled 3p) resonance ((c) and (d)) and one at lower energies where one-
and two-photon beatings (illustrated to the right with arrows) with the 2s−13s (labeled 3s) and
2s−13p resonances respectively can be found ((a) and (b)). The time-delays are divided into three
time-delay intervals using the markers τα and τβ The nearby 2p−23s3p resonance was excluded

from the calculations, providing a clear view of the 2s−13p resonance.

This is done via the Fourier transform

σ̃ (ωr ,ωτ ) =
∫
dτ

[
σ (ωr , τ)− σ0 (ωr )

] e−iωττ√
2π

(3.30)

of the TAS. Here the background component σ0 (ωr ) has been removed. To un-

derstand why, consider that when integrating over τ ∈ (−∞,∞), this component

corresponds to a Dirac delta function σ0 (ωr )δ0 (ωτ ); and that when for numeri-

cal reasons integrating over a finite interval τ ∈ (−τmin, τmax), it corresponds to

the Fourier transform σ0 (ωr )F
{
θ (τ − τmin)−θ (τ + τmax)

}
of a plateau, where

θ (x) is the Heaviside step function. In the former case, the contribution of

σ0 (ωr ) is trivial; in the latter, it is unphysical. The Fourier transform in equa-

tion 3.30 is here referred to as the bidimensional spectrum. For the same system

and energy ranges as figures 3.2a and 3.2c, can be found in figures 3.2b and
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3.2d.

As the XUV pump is weak, the frequency-distribution of the dipole response

can be written as

d̃ (ωr ) =
∫
dωe χ (ωr ,ωe) ẼXUV (ωe) , (3.31)

where ẼXUV is the XUV-component of the field, χ (ωr ,ωe) is the electric suscep-

tibility of the dressed atom, and ωe is used to denote the excitation energy

(Argenti et al. 2015). From this, it can be seen that the non-diagonal compo-

nent χnd (ωr ,ωe) of χ (ωr ,ωe) relates (Argenti et al. 2015) to the bidimensional

spectrum as

σ̃ (ωr ,ωτ ) =
(2π)3/2ωr

ic

[
χnd (ωr ,ωr −ωτ )−χnd (ωr ,ωr +ωτ )

]
, (3.32)

where c is the speed of light, the diagonal component having already been

removed with the removal of σ0 (ωr ) in equation 3.30.

3.1.3 Features of the ATAS Spectrum

The time-delay domain of the TAS can be divided into three different intervals:

Using the notation in figure 3.2, these are τ−I = (−∞, τα], τ0
I =

(
τα , τβ

)
, and

τ+
I =

[
τβ ,∞

)
. The regions are selected so that the probe and the XUV component

of the pump significantly overlap for τ ∈ τ0
I .

Large, Negative Time-Delays

Consider first the case of τ ∈ τ−I . This region is characterised by the probe

arriving before the pump without the two overlapping. Assuming the probe

is too weak to not significantly drain the ground state, it will not have any

significant effect. Because of this, the relation

τ ∈ τ−I ⇒ σ (ω;τ) = σ0 (ω) (3.33)

is valid in said region.
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Near-Zero Time-Delays

Next, there is the time interval above dubbed τ0
I . In this region, the atomic

system is dressed during excitation.

One phenomenon in particular which was observed as part of this thesis

(in Petersson et al. [2017], discussed in chatper 6.1) in this region is the the

special case of the Stark effect known as Autler-Townes (1955) (AT) splittings.

Although the phenomenon is not clearly visible in figure 3.2, it has previously

been observed during ATAS (Argenti et al. 2017; Wu et al. 2016).

AT splittings corresponds to a splitting of the resonance response energy,

resulting from the transition between two resonances by a strong (IR, in the case

of ATAS) field. This can be illustrated with a very simple model, by considering a

two-level system, with two eigenstates,
∣∣∣ψα

〉
and

∣∣∣ψβ
〉
, with complex populations

cα and cβ , their energies ωα and ωβ being separated by an energy ωαβ (Wu

et al. 2016): Ignoring sub-cycle interactions (what is known as the rotating

wave approximation), the time-dependent Schrödinger equation (TDSE) can be

written as
∂
∂t



cα
cβ


 =




0 Ω(t;τ)
2 exp(i∆t)

Ω(t;τ)
2 exp(−i∆t) 0






cα
cβ


 , (3.34)

where ∆ = ωIR −ωαβ is the detuning and, denoting the total dipole operator d̂

and the dressing IR field EIR (t;τ),

Ω (t;τ) = EIR (t;τ)
〈
ψα

∣∣∣d̂
∣∣∣ψβ

〉
(3.35)

is known as the Rabi-frequency. Approximating the field as constant (with

a constant Rabi-frequency Ω0 = Ω (t;τ)), this can be solved for cα , giving the

result

cα (t) ∝ Ω̃−∆
2Ω̃

exp
(
−i Ω̃+∆

2 t
)

+
Ω̃+∆

2Ω̃
exp

(
−i Ω̃−∆2 t

), (3.36)
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where Ω̃ =
√
Ω2

0 +∆2.

Thus, the population of
∣∣∣ψα

〉
is modified by the IR as

cα exp(−iωαt)→ Ω̃−∆
2Ω̃

cα exp
[
−i

(
ωα − Ω̃+∆

2

)
t
]

+
Ω̃+∆

2Ω̃
cα exp

[
−i

(
ωα + Ω̃−∆

2

)
t
], (3.37)

splitting the undressed energy eigenvalue into two distinct dressed energy

components.

Large, Positive Time-Delays

Finally, consider the interval of τ ∈ τ+
I , where the probe arrives after the pump

without overlapping. The structure of this region can be divided into two main

features (Ding et al. 2016). Firstly, there are the near-vertical, densely packed

fringes, which are visible both in figure 3.2a and in figure 3.2c. Secondly, there

are the hyperbolic fringes in figure 3.2c, slowly converging towards the nearby

3p resonance as τ increases.

Induced Attosecond Beatings The cause of the near-vertical fringes can be

understood by considering the paths in the right side of figure 3.3: At the time

t = 0, the 1P o spectrum – notably near the energies ε3p and εF of the 2s−13p

resonance and a final state
∣∣∣ψF

〉
– is populated using the XUV component of

the pump. The system is then allowed to propagate freely until the arrival of

the probe. During this time the phase difference between the states oscillates

with a frequency of
∣∣∣εF − ε3p

∣∣∣. When the probe arrives, population is transferred

from the resonance to
∣∣∣ψF

〉
via two-photon stimulated emission, interfering

either constructively or destructively depending on the relative phases of the

population. This causes beatings of frequency
∣∣∣εF − ε3p

∣∣∣ ≈ 2ωIR as τ changes.

These beatings are the cause of the local maximum at ωτ ≈ 2ωIR in figure 3.2b.
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Figure 3.3: To the left schematic illustration of the autoionising continuum, including the 2s−13s
and 2s−13p resonances (labeled as 3s and 3p in the figure), below the second threshold of Neon, is
shown. Approximate one- and two-photon beatings (illustrated with arrows to the right) induced
between the 2s−13p state and lower states using an IR of frequency ωIR = 0.057117 au are shown
with black arrows. The righthand figure show different paths excited electron population can follow
over time during ATAS. The pump is centered at t = 0, and the probe at t = τ . Dashed paths are
only significantly populated if the pump contains a low-energy component.

Due to selection rules, however, only beatings with an even number k of

probe photons can be seen when the pump only populates the L = 1 spectrum.

The dashed arrows in the aforementioned figure show paths which are signif-

icantly populated by adding a low-frequency component to the pump. This

populates the 2s−13s state. At the time of the arrival of the probe, part of

this population is transferred to
∣∣∣ψF

〉
and the 2s−13p resonance via one-photon

absorption or stimulated emission. Analogously to the case mentioned above,

this causes beatings of frequency |εF − ε3s | ≈ ωIR. These beatings are visible in

figures 3.2b (around ωτ = ωIR) and 3.2d (slightly above ωτ = ωIR for ωr = ε3p
2),

in the studied energy ranges.

2A peak is also present at ωτ slightly below ωIR. This is due to the one-photon coupling with the
higher 2−13d-state, as discussed in chapter 7.1.
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To generalise the discussion above, the k−photon beating with a given reso-

nance of energy εres can be written as

ωbeat = |ωr − εres| ≈ kωIR, (3.38)

at the response energy ωr .

Thus, the frequency of the beatings decreases with the energy-distance to

the relevant resonance. This can be seen in figures 3.2b and 3.2d: For all the

beatings discussed above, an associated local maxima can be found, following a

path where ωτ decreases linearly with |ωr − εres|. The same beatings are visible

in σ̃ (ωr ;ωτ ) for negative values of ωτ , at ωτ = −|ωr − εres|.
The above reasoning assumes that the energy eigenstates are unperturbed by

the external field. However, due to the dressing by the field, the state energies

may experience a Stark (1913a,b) shift during the population transfers. The

strength of such shifts can be measured by observing the deviation in ωτ of

the localised σ̃ (ωr ;ωτ )-maxima, from what would be predicted by the above

discussion. (Argenti et al. 2015; Freeman et al. 1978, 1987, 1991; Ott et al. 2013;

Petersson et al. 2017)

The Buildup of Fano Profiles The second feature to be treated is that of the

hyperbolic fringes converging towards the 2s−13p state in figure 3.2c. Such

fringes are not unique to that resonance, but rather a general trait of resonances

populated during ATAS (Argenti et al. 2015; Cheng et al. 2016; Ding et al.

2016).

The cause of such fringes is easily understood with the help of figure 3.4. Fig-

ure 3.4a shows the (approximate, see figure text) population of the
∣∣∣2s−13p

〉
state

for different values of τ (and for no probe), and figure 3.4b the corresponding

spectrum near the 2s−13p−resonance to the given time-delay.

First, consider the case when no pulse is used. This is shown in black. At

times t ≈ 0, the mixed XUV-IR pump populates the
∣∣∣2s−13p

〉
state. After the

30



3.1. ATTOSECOND TRANSIENT ABSORPTION SPECTROSCOPY

0 τA τB τC 3000
10−6

10−4

10−2

t [au]

1.665 ε3p 1.6725

0.2

0.4

0.6

0.8

ωr [au]

∣∣∣∣
〈
2s−13p

∣∣∣Ψ (t)
〉∣∣∣∣ σ̃ (ωr ;τ) [au]

∣∣∣∣
〈
2s−13p

∣∣∣Ψ (t)
〉∣∣∣∣
2

(a) (b)

No IR
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Figure 3.4: An illustration of the mechanism behind the slowly varying fringes present in ATAS
spectra. In (a), the population of the

∣∣∣2s−13p
〉

state is shown for different time-delays (as well as for
no probe); in (b) the corresponding spectra are shown. The time-delays considered are: In pink,
τA = 750 au; in red, τB = 1500 au; and in maroon, τC = 2250 au. The very thick, black line uses
no probe. Note that the

∣∣∣2s−13p
〉

state is mixed with the continuum background in the (imperfect)
basis used for these propagations. Therefore the projection in (a) is only a projection on to part of∣∣∣2s−13p

〉
– the rest of

∣∣∣2s−13p
〉

is distributed over nearby, supposed continuum states.

end of the pump, the population decreases exponentially as

∣∣∣∣
〈

2s−13p
∣∣∣Ψ (t)

〉∣∣∣∣ =
∣∣∣c3p

∣∣∣exp
(
− Γ3p

2
t

)
(3.39)

where c3p defines the complex population of the resonance after the end of the

pump, and Γ3p is the width of the 2s−13p resonance (Ott et al. 2013, 2014). As∣∣∣Ψ (t)
〉

evolves in time, the time profile p (t) of the dipole moment emerges, and

with it, the corresponding spectral profile p̃ (ω). From this, the spectrum can

be derived via equation 3.29. As can be seen in figure 3.4b, the spectral profile

which emerges is that of the well-known Fano (1961) profile, resulting from the

interference between the resonance and the smooth background.
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What, then, is the effect of the probe? Defining a quantity ∆, defined as the

minimal width for which the relation

{∀t ∈R : EIR (t;τ) , 0 } ⊆
(
τ − ∆

2 , τ + ∆
2

)
(3.40)

holds for the temporal IR probe profile EIR (t;τ) (at least approximately), it

becomes clear that the probe only acts on the system for a limited time. Prior

to, as well following, this time interval, the population decays exponentially as

described in equation 3.39. With this in mind, equation 3.39 can be generalised

to the case where a probe is used as

∣∣∣∣
〈

2s−13p
∣∣∣Ψ (t)

〉∣∣∣∣ =



∣∣∣c3p

∣∣∣exp
(
− Γ3p

2
t

)
, t − τ ≤ −∆

2

Θ (t;τ) , |t − τ | < ∆

2
,

∣∣∣c′3p
∣∣∣exp

(
− Γ3p

2
t

)
, t − τ ≥ ∆

2

(3.41a)

(3.41b)

(3.41c)

where Θ (t;τ) corresponds to the complex behaviour of the 2s−13p population

during the dressing of the atom, and c′3p is a complex constant analogous to c3p.

Thus, it can be seen that the evolution of the population in equation 3.39

is modified sharply by the dressing of the atom. This is visible for several

time-delays, τA = 750 au, τB = 1500 au, and τC = 2250 au, in figure 3.4a. This

variation to the resonance population (as well as nearby continuum states) also

causes a modification to p (t), and thereby a corresponding modification to p̃ (ω)

and σ (t0;τ). Such distortion of populations near resonance energies are the

cause of the nearby, converging, hyperbolic fringes (Argenti et al. 2015).

Consider now the influence of the time-delay on the distortion of the res-

onances. It is immediately obvious that the time-evolution of the system con-

verges towards the field-free case as τ increases. Thus, the limit

lim
τ→∞σ (ω;τ)→ σ0 (ω) (3.42)
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holds. This follows necessarily from equation 3.41, irrespectively of circum-

stances relating to the contingent nature of Θ (t;τ). This is the cause of the

hyperbolic fringes converging towards their corresponding resonance energy.

Figure 3.4b illustrates this trend well. As the time-delay is increased, the reso-

nance profile – originally completely obscured – is slowly restored. This can be

interpreted as ATAS allowing monitoring of the resonance Fano profile buildup

(Kaldun et al. 2016).

In figure 3.2c, it is clear that the hyperbolic fringes have a significantly

lower frequency (along the τ-axis) than the near-vertical ones. As the energy

approaches that of the resonances, the frequency decreases even further, with

the limit of zero when ωr = ε3p. That is, as the fringes approach the resonance,

they become parallel to the τ axis. This can be seen for ωτ ≈ 0 in 3.2d, where

local maxima can be found for both ωr < ε3p and ωr > ε3p. As ωr approaches

ε3p, these maxima approach zero.
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3.2 Reconstruction of Attosecond Beatings by Interfer-
ence of Two-Photon Transitions

The second technique considered in this thesis is the interferometric technique

known as reconstruction of attosecond beatings by interference of two-photon

transitions (RABITT).

In smooth, excited continua, RABITT has proven to be efficient in probing

photo-emission delays, both angularly integrated (Schultze et al. 2010) and

resolved (Cirelli et al. 2018; Heuser et al. 2016). Although this is not possible

close to resonances (Argenti et al. 2017; Sabbar et al. 2015), it can still be used

to probe transition amplitudes and spectral phases in resonant regions (Busto

et al. 2018; Gruson et al. 2016; Kotur et al. 2016).

Although the complex dynamics involved in RABITT largely limits it to the

study of simpler continua, it has not only been successfully used to study atomic

(Cattaneo et al. 2016; Guénot et al. 2014; Palatchi et al. 2014; Swoboda et al.

2010) dynamics, but also molecular (Caillat et al. 2011; Cattaneo et al. 2018;

Haessler et al. 2009; Huppert et al. 2016), solid (Cavalieri et al. 2007; Neppl

et al. 2015; Swoboda et al. 2010; Tao et al. 2016), and fine-structure (Jordan et al.

2017) ones. The great utility of RABITT has given rise to significant amounts of

theoretical work, with the aim of forging an underlying theoretical framework

(Dahlström et al. 2012b; Feist et al. 2014; Kheifets 2013; Moore et al. 2011;

Pazourek et al. 2015).

RABITT was originally proposed to validate the method for extreme ul-

traviolet (XUV) pulse generation known as high harmonic generation (HHG)

(Agostini et al. 2004; Paul et al. 2001), and uses an extreme ultraviolet attosec-

ond pulse train (XUV-APT) generated via HHG as a pump. Thus, in order to

understand RABITT, it is convenient to first briefly comment on the nature of

HHG.

HHG, developed by Ferray et al. (1988) and McPherson et al. (1987), involves

using a strong, low-energy field to populate high energy states of an electron
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system (here taken to be atomic). As the system returns to its ground state, it

emits high frequency light.

The most common model used to simplify and describe the dynamics un-

derlying HHG is known as the three-step model (developed by Corkum [1993],

Krause et al. [1992], and Schafer et al. [1993]), and is illustrated in figure 3.5.

As the name suggests, the three-step model divides the HHG process into three

separate steps.

The first step, known as ”tunnelling” (shown in figure 3.5a), consists of the

atomic potential being modified by the IR-interaction potential to the extent

that the electron may free itself from the atomic potential via tunneling.

During the second step, called ”propagation” (shown in figure 3.5b), the

electron is accelerated in the IR field, gaining energy. As the IR field changes

sign (every half-cycle), the electron is accelerated back towards the atomic core.

The final step of ”recombination” (shown in figure 3.5c) consists of the

excited population returning to the ground state, and, in doing so, emitting

high-frequency light.

Although higher energies are possible in a non-classical view; assuming that

the electron follows a classical path during the propagation step, it can reach

a maximum energy around Ip + 3.2Up (Agostini et al. 2004; Lewenstein et al.

1994), where Ip is the atomic ionisation potential and the ponderomotive energy

Up =
IHHG

IR

4ω2
IR

, (3.43)

is the cycle-averaged kinetic energy of a free electron in the driving IR field of

frequency ωIR and intensity IHHG
IR (Gapanov et al. 1958).

It immediately becomes clear from the three-step model that the process

of generating high-frequency is repeated (alternatingly spatially inverted in

the direction of the IR) once every half-cycle of the dressing IR. This allows the
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(a) IR (b) IR (c)

ωXUV

Figure 3.5: An illustration of the Three-step model, used to provide a simple explanation of the
mechanism behind HHG. (a) Tunneling: The electron tunnels out of the field-distorted atomic
potential. (b) Propagation: The electron gains energy from the IR field. (c) Recombination: The
electron, brought back to the atomic core, falls back into a bound state, and emits an XUV photon.
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Figure 3.6: An illustration of a typical external field used during RABITT. In (a), the XUV-APT
pump (blue) is shown along with the IR probe (red) – shifted by a time-delay τ – during one period
τ of the IR field. In (b), the overtones of the driving IR (dashed red) composing the XUV-APT are
shown (blue). In both (a) and (b) the IR fields have been normalised to be comparable to the XUV
fields. Different paths available via absorption of one XUV photon (blue) and either emission or
absorption of one IR photon (red) are shown in (c). These paths allows the population of states
corresponding to the spectral profile shown in (d), where the blue peaks may be populated using
only an XUV-APT photon, while the red, dotted ones also require an IR photon.
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vector potential of the generated high-energy field to be written on the form

AXUV (t) = AAPT
0 (t)

∞∑

i=−∞
(−1)i f

(
t − iπ

ωIR

)
, (3.44)

where AAPT
0 (t) is the slow-varying APT-envelope, and f (t) the single-pulse

envelope (Jiménez-Galán et al. 2013). This can be seen in figure 3.6a, where one

such APT is shown in blue.

Presently consider the same problem from a second perspective: As the

electron gains energy in the field, it does so by absorbing quanta of energy from

the field (Schafer et al. 1993). For an approximately monochromatic driving IR,

these photonic energies are equal to the central IR frequency, ωIR. Consequently,

the distance in energy between the ground state and the distributed excited

population corresponds to the (high) harmonics (HH) of the IR. Due to selection

rules, each absorption of a photon corresponds to a change in total angular

momentum of L→ L± 1, and only the absorption of an odd number of photons

can result in a total change in L of ±1. Because of this, and because of selection

rules during the emission of the XUV (as the atom returns to the ground state),

only the odd harmonics are emitted (Ben-Tal et al. 1993).

Equation 3.44 can be rewritten (Jiménez-Galán et al. 2013) as

AXUV (t) =

√
8
π
ωIRA

APT
0 (t)

∑

j ∈N\2N

∣∣∣f̃ (j ωIR)
∣∣∣cos

(
j ωIRt +φj

)
, (3.45)

where φj is the spectral phase of the jth harmonic, and only odd values j are

included, to reflect the division of the field into its spectral components. The

division of the APT of figure 3.6a is shown in figure 3.6b in the temporal domain

and in figure 3.6d in the spectral domain.

The figure illustrates how, due to only odd frequencies being included (and

assuming φj ≈ 0), all harmonics interfere constructively once every half-cycle of

the field, and are antisymmetric every half cycle. This reflects the picture of the

field as a being composed of a train of attosecond pulses, every other spatially
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inverted, emerging from the three-step model.

Using a many-cycle XUV-APT taking the general form discussed up until

now as a pump (which is the case of RABITT, even if it is not directly gener-

ated using HHG), only odd harmonics of the driving IR can be reached. In

RABITT, however, a secondary component – an IR probe with the same central

frequency as that used during HHG XUV-APT generation, with a time-delay τ –

is introduced. It can be written as

AIR (t;τ) = AIR
0 (t − τ)cos[ωIR (t − τ)] , (3.46)

where AIR
0 (t) is the pulse envelope. Here, the IR phase has been neglected –

or, rather, it is incorporated in ωIRτ . This is an approximation due to AIR
0 (t)

envelope also depending on τ , but is a reasonable one, as the exact position of

the long, overlapping pulse envelopes can be neglected during RABITT.

This is shown in figure 3.6a. Using this component, it is also possible to

populate the even harmonics, known as sidebands (SB), using one pump- and

one probe photon, as illustrated in figures 3.6c and 3.6d. Such sidebands are

observed during RABITT.

Consider now the intensity of the 2nth sideband, SB2n. Assuming both the

harmonic below (HH2n−1) and the one above (HH2n+1) SB2n are significantly

populated, population is transferred to the sideband via both harmonics. Once

the harmonics are populated by the XUV-APT, the populations of HH2n+1 and

HH2n−1 oscillate with frequencies separated by their energy-separation of 2ωIR.

When the IR probe populates SB2n (a process which can be delayed by varying τ),

the two paths interfere. Denoting the amplitude of the population transferred

to SB2n from HH2n−1 and HH2n+1 as A−2n and A+
2n, the intensity of SB2n can be

written as

I2n (τ) =
∣∣∣A−2n (τ) +A+

2n (τ)
∣∣∣2

=
∣∣∣A−2n

∣∣∣2 +
∣∣∣A+

2n

∣∣∣2 + 2
∣∣∣A−2nA+

2n

∣∣∣cos(2ωIRτ +∆φ2n)
, (3.47)
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Figure 3.7: An illustration of the RABITT spectrum. In (a), the pump APT-XUV used to excite
the system (neon) is shown. Together with an IR probe corresponding to its base frequency of
ωIR = 0.026179 au and time delay τ , it gives rise to the spectrum shown in (b). A cross section of
the spectrum for τ = 120 au (indicated with a dashed line in figure (b)) can be seen in shown in
figure (c). It has been separated by total angular momentum L, into 1P o (blue) and 1Se and 1De

(red). In (d), the cross section of SB60 is shown, integrated over an energy range of 0.01 au (shown
in figure (b) with dotted lines).

where the last term corresponds to the interference between the paths (Gruson

et al. 2016), and the sideband phase ∆φ2n is discussed in detail in section 3.2.1.

These beatings are clearly visible in figure 3.7b, which shows a representative

neon RABITT spectrum between HH57 and HH63; populated by the XUV-APT

shown in figure 3.7a. As the IR is shifted in time, the intensity of the sidebands

oscillate in an approximately sinusoidal pattern. This is also visible in the cross

section of SB60 in figure 3.7d.

It has already been mentioned that the sidebands are populated through

population transfer from the harmonics. Because of this, the population of the

corresponding harmonics is also drained. This gives, as is visible in figure 3.7b,
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a sinusoidal pattern also for the harmonic, although one shifted by a phase of π

so that the harmonic maxima coincide with the sideband minima.

One last, important point is illustrated by figure 3.7: Due to selection rules,

the sidebands – ionised via a two-photon process – do not have a dipole beating

with the ground state. This is visible in subfigure 3.7c, where a cross section

of the spectrum has been divided by total momentum. The sidebands are

entirely restricted to the 1Se and 1De symmetries, the ground state of neon

being of symmetry 1Se. For this reason, RABITT sidebands are not visible

using transient absorption spectroscopy (TAS), which can only directly monitor

states with a dipole connection to the ground state (see section 3.4.1 for more

details); making it a non-viable method for extracting RABITT spectra. Instead,

photo-electron spectroscopy (PES) can be used (Jiménez-Galán et al. 2013), a

method described in more detail in section 3.4.2. It is this method which has

been used to extract the RABITT spectrum in the present work.

3.2.1 The Sideband Phase

The RABITT process as it has been described above can be divided into three

steps. First, at a time tXUV, an XUV pump photon is absorbed, populating an

intermediate harmonic state of energy εi (and corresponding frequency ωi).

Secondly, it is allowed to evolved freely, until absorbing a second photon, at a

time tIR. This absorption is the third step, populating the sideband using an IR

probe photon, delayed by a time τ .

The two-photon behaviour is captured by second order perturbation3 by the

interaction Hamiltonian, expressed in the velocity gauge as

ĤI (t) = α [AIR (t;τ) +AXUV (t)] P̂ , (3.48)

where α is the fine structure constant, AXUV (t) and AIR (t;τ) are the vector po-

tentials of the XUV pump and the IR probe, respectively, and P̂ is the dipole

3Time-dependent perturbation theory (TDPT) is described in more detail in appendix B.
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operator. In the velocity gauge, this gives the transition amplitude

A2n = −i
∫ ∫

dtIR dtXUV AIR (tIR;τ) AXUV (tXUV)

×
〈
SB2n

∣∣∣αP̂ Ĝ+ (tIR − tXUV) αP̂
∣∣∣ψ0

〉
exp(−i [ω2n −ω0] t)

(3.49)

between the ground state
∣∣∣ψ0

〉
of frequency ω0, and a final sideband state∣∣∣SB2n

〉
of frequency ω2n (Jiménez-Galán et al. 2016), where the operator

Ĝ+ (t) =


−i exp

(
−iĤ0t

)
, t ≥ 0

0 , t < 0
(3.50)

is known as the retarded Green function and corresponds to both the sequen-

tiality of the processes and the propagation with the field-free, atomic potential

Ĥ0 between the absorption of the two photons.

In equation 3.49, only paths corresponding to absorption of an XUV pho-

ton, followed by absorption or emission by an IR photon is included – paths

corresponding to absorption or emission of two IR or XUV photons have been

excluded, as have paths which entails the IR photon being emitted or absorbed

before that of the XUV.

In the frequency domain, equation 3.49 can be written as

A2n =
∫
dεi ÃIR (ω2n −ωi ;τ) ÃXUV (ωi −ω0)M(2)

2n (εi) , (3.51)

where ω2n is the frequency corresponding to the energy of SB2n, ω0 that corre-

sponding to the ground state frequency, and

M(2)
2n (εi) =

〈
SB2n

∣∣∣αP̂ ˜̂G+ (εi) αP̂
∣∣∣ψ0

〉
(3.52)
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is the two-photon matrix element corresponding to transitions from the ground

state to SB2n, using the Fourier transform

˜̂G+ (ε) = F
{
Ĝ+ (t)

}
=

1

ε − Ĥ0 + i0+
, (3.53)

of the retarded Green function. Restricting the integral in equation 3.51 to only

considered paths via the nearby harmonics, the corresponding amplitudes

A±2n =
∫

HH2n±1

dεi ÃIR (ω2n −ωi ;τ) ÃXUV (ωi −ω0) M(2)
2n (εi) , (3.54)

are derived.

Consider now the interference term of equation 3.47. It can be rewritten

explicitly as

A−2nA+
2n +A−2nA+

2n = 2
∣∣∣A−2nA+

2n

∣∣∣cos
(
arg

{A+
2n

}− arg
{A−2n

})
. (3.55)

Thus, the frequency and phase of the beatings depend on the phase-difference

between the paths. This can be further evaluated by considering A±2n.

In order to do so, each harmonic phase is approximated as independent of

energy, allowing for the approximation

ÃIR =
∣∣∣ÃIR

∣∣∣ exp(iωIRτ) (3.56a)

Ã2n±1 =
∣∣∣Ã2n±1

∣∣∣ exp(−iφ2n±1) (3.56b)

to be made, ignoring the negative-frequency components. The sideband inten-

sity can now be rewritten as

I2n =
∣∣∣∣Ã2n−1ÃIRM−2n + Ã2n+1ÃIRM+

2n

∣∣∣∣ , (3.57)
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and the transition amplitudes as

A±2n = exp(∓iωIRτ) × exp(−iφ2n±1) × M±2n, (3.58)

where

M±2n =
∫

HH2n±1

dωi
∣∣∣ÃIR (ω2n −ωi ;0) ÃXUV (ωi −ω0)

∣∣∣M(2)
2n (εi) (3.59)

is the two-photon matrix element corresponding to all different paths from the

ground state to SB2n via HH2n±1. The phase

φAt
2n±1 = −arg

{
M±2n

}
, (3.60)

of the matrix element is known as the atomic phase. As is explored in chapter 5,

the matrix elementsM±2n can be described via approximate models, in order to

analytically calculate the atomic phase.

The interference term can now be written as

A−2nA+
2n +A−2nA+

2n = 2
∣∣∣A−2nA2n

∣∣∣cos
(
2ωIRτ +∆φAPT

2n +∆φAt
2n

)
, (3.61)

where the quantities

∆φAPT
2n = φ2n+1 − φ2n−1 (3.62a)

∆φAt
2n = φAt

2n+1 − φAt
2n−1 (3.62b)

are known, respectively, as the spectral phase difference (or attochirp) and the

atomic phase difference. As discussed in more detail in chapter 5, the atomic

phase varies not only with energy, but also with emission angle (Cirelli et al.

2018; Hammond et al. 2016). This is caused by interference of final symmetries

with different angular distributions (Argenti et al. 2017; Heuser et al. 2016).

Here an important digression needs to be made: the definitions introduced

in equation 3.62 are not universal. Indeed, several different definitions are used,
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including ones relying on inverting the order of the harmonics in equation

3.62 (i.e. ∆φAPT
2n = φ2n−1 −φ2n+1 and ∆φAt

2n = φAt
2n−1 −φAt

2n+1 [Barreau et al. 2019])

and inverting the sign of the time delay τ (the sideband beating oscillating

as cos[2ωIRτ −∆φAPT
2n −∆φAt

2n] [Cirelli et al. 2018]). Importantly, the convention
introduced here will be used consistently throughout this thesis. This is true even

when discussing those RABITT studies composing part of this thesis which in

the original communication uses a separate convention (i.e., all of them).

The convention in equation 3.62 was selected to satisfy three criteria. The

first is to avoid minus signs between the phases in equation 3.61; the second

is to keep the spectral phase in equation 3.45 positive; and the third is to keep

the definitions of ∆φAPT
2n and ∆φAt

2n consistent, both being defined as the upper

harmonic component minus that of the lower harmonic.

Emission Time Delays

As already has been noted, for the slowly varying, many-cycle pulse envelopes

used during RABITT, a pulse time-delay is approximately equivalent to a phase

shift in the time-domain. In this spirit, the interference term of equation 3.47

can be rewritten as

A−2nA+
2n +A−2nA+

2n = 2
∣∣∣A−2nA2n

∣∣∣cos(2ωIR [τ − τ2n]) , (3.63)

by introducing (Locher et al. 2015; Lucchini et al. 2015) a photo-emission delay

τ2n = −∆φ2n

2ωIR

. (3.64)

With the two components of ∆φ2n defined in equation 3.62, this time-delay can

be divided into two components: The attochirp time-delay component,

τAPT
2n = −∆φ

APT
2n

2ωIR

, (3.65)
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which depends on the APT; and the atomic one,

τAt
2n = −∆φ

At
2n

2ωIR

, (3.66)

which depends on the transition matrix elements.

As shown by Dahlström et al. (2013), if the intermediate wave packet is

asymptotic, the atomic time-delay can further be divided into two components

by considering the two-photon matrix element. The phase of said matrix

element, corresponding to an intermediate continuum of angular momentum

`I, can be written as

arg
{
M±,`I

2n

}
=
π
2

(2− `I) +φ2n,±
cc + η2n±1 + arg

{
Ym0
`F

(
Ω̂F

)}
, (3.67)

where φ2n,±
cc arises from the IR-induced continuum-continuum transition in the

vicinity of a Coulomb potential; η2n±1 is the scattering phase of the intermediate

state; and Ym0
`F

(
Ω̂F

)
is the spherical harmonic, associated with the magnetic

quantum number m0 of the initial (ground) state and the angular momentum

`F of the final state, in the direction Ω̂F of the final state electron. Complying

with the definition of M±2n in equation 3.59, all quantities in equation 3.67

should be considered as corresponding to the path integrated in energy over

the intermediate harmonic.

The atomic time delay is proportional to the phase-difference between the

upper and lower harmonic paths to the sideband. Thus, when computing said

delay, the only non-vanishing components present in equation 3.67 are those

that differ between the two paths, giving the equation

τAt
2n =

φ2n,+
cc −φ2n,−

cc

2ωIR

+
η2n+1 − η2n−1

2ωIR

, (3.68)

allowing the further division of τAt
2n into two distinct components. (Dahlström

et al. 2012a, 2013)
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η

τη

Figure 3.8: An illustration of the scattering phase and the associated Wigner time-delay. An
incoming plane wave function (red), scattered of a localised potential, will have its phase modified
(blue) by a scattering phase η. For a wave-packet, shown above in the same colors, this corresponds
to a time-delay τη .

The first component,

τcc
2n =

φ2n,+
cc −φ2n,−

cc

2ωIR

, (3.69)

is the measurement-induced continuum-continuum delay. The second term,

τ
η
2n =

η2n+1 − η2n−1

2ωIR

, (3.70)

originates in the energy-variance of the scattering phase of the intermediate

resonance.

In order to further comment on τ
η
2n, it may be useful to consider a related

phenomenon – that of electron-scattering. An incoming electron wave of energy

ε, scattering of a localised potential, experiences a phase-shift equal to the

(scattering-channel dependent) scattering-phase η (ε). This is illustrated for

a plane-wave in figure 3.8. As shown by Eisenbud, Smith (1960) and Wigner

(1955), this incurs a scattering- (or Wigner) time delay

τη (ε) = 2
∂η

∂ε
(3.71)
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of the scattered particle, visualised for a wave-packet in figure 3.8. This time-

delay corresponds to the retardation of the electron caused by the interaction

with the potential. Such a delay can be negative (in the case of a negative,

accelerating potential), but due to sequentiality of the processes, the constraint

τη ≥ − v
2a

(3.72)

is imposed on τη for the case of a particle of speed v by a localised potential

with an effective radius a (Wigner 1955). To rephrase this constraint, it is not

possible for the particle to leave the localised potential before entering it.

This can be directly compared to equation 3.70, with the limit

lim
ωIR→0

τ
η
2n→

1
2
τη (ε2n) , (3.73)

holding for the sideband energy ε2n (and infinitely narrow harmonics). Indeed,

photoionisation is often referred to as a half-scattering problem. Consequently,

τ
η
2n is considered an effective Wigner time delay (Dahlström et al. 2013; Pa-

zourek et al. 2015).

Two more observations pertinent to the time-delay are worth considering.

Firstly, equation 3.67 considers the case of one intermediate scattering contin-

uum. If several intermediate continua are involved, the total contribution of

the different continua shoud be considered.

Secondly, equation 3.67 is based on the assumption of the intermediate state

being asymptotic. This is not necessarily the case, one counter-example being

in the presence of intermediate resonances. This can introduce an additional

component to the effective Wigner time-delay, sufficiently negative to violate the

constraint in equation 3.72, making the interpretation as a Wigner time-delay

highly questionable (Argenti et al. 2017; Sabbar et al. 2015).
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3.3 Ab-Initio Propagations

A core component of this work is the theoretical study of time-dependent

phenomena. Several studies forming part of this thesis utilise accurate, full-

electron ab-initio numerical propagations to provide theoretical predictions

of the unfolding of such phenomena. In this context, ab-initio refers to time-

propagations of a system initially located in the ground state.

All such propagation were carried out in a finite box in the velocity gauge,

using PETSc libraries (Balay et al. 1997, 2014). The Krylov method described

below, utilised in the ab-initio propagations of Petersson et al. (2017), was

implemented using LAPACK libraries (Anderson et al. 1999). This section

outlines the details of the numerical methods employed to this end.

The propagator is constructed from the time-dependent Schrödinger equa-

tion (TDSE),

i
∂
∂t

∣∣∣Ψ (t)
〉

= Ĥ (t)
∣∣∣Ψ (t)

〉
, (3.74)

where
∣∣∣Ψ (t)

〉
is the state ket, and Ĥ (t) the Hamiltonian, both at time t. The

solution to this equation can be written as

∣∣∣Ψ (t + dt)
〉
≈ exp

[
−i dt Ĥ (t)

] ∣∣∣Ψ (t)
〉
, (3.75)

for sufficiently small step sizes dt. From this, an infinitesimal time propagation

operator

Û (t;dt) = exp
[
−i dtĤ (t)

]
, (3.76)

can be defined.

In order to further study the time propagation operator Û (t;dt), consider the

Hamiltonian, Ĥ (t), itself. A more complete treatment of the basis can be found

in chapter 4. Here, it will suffice to briefly describe the different components

making up the Hamiltonian.
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The first component, denoted Ĥ0, is the time-independent Hamiltonian

corresponding to the kinetic energy and atomic potential. It is the basis of

size N of the orthonormal eigenkets of this operator,
∣∣∣ψi

〉
, i ∈ {0, 1, . . . ,N − 1},

with corresponding eigenenergies εi and eigenfrequencies ωi , in which the

propagation is performed.

Secondly, a component corresponding to the interaction with the field is

included. Using the dipole approximation in the velocity gauge, this component

can be written as αA (t) P̂ ; where α is the fine structure constant, A (t) the field

vector potential, and P̂ the dipole in the direction of the field.

As the propagations take place in a finite box, some boundary conditions

need to be enforced for a maximum radius Rmax. As such boundary conditions

are unphysical, they may cause equally unphysical reflections. For this rea-

son, the third and final component of the Hamiltonian, a complex absorption

potential (CAP) V̂CAP, is introduced. This potential is designed to absorb the

state population near the boundary of the box, to avoid the aforementioned

unphysical reflections.

Dividing Ĥ (t) into its different components, it can be written as

Ĥ (t) = Ĥ0 +αA (t) P̂ + V̂CAP, (3.77)

at a given time t. Inserting equation 3.77 into equation 3.76 results in the step

operator

Û (t;dt) ≈ exp
(
−i dt

[
Ĥ0 +αA (t) P̂ + V̂CAP

])
. (3.78)

For two operators Â and B̂, the relation eÂ+B̂ = eÂeB̂ , which holds for scalar

exponents, is generally only satisfied if Â and B̂ commute. However, the
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midpoint, split operator approximation

Û (t;dt) ≈ exp


− i dt V̂CAP


 (3.79a)

× exp


− i

dt
2
Ĥ0


 (3.79b)

× exp


− i dtA

(
t +

dt
2

)
P̂

 (3.79c)

× exp


− i

dt
2
Ĥ0


 (3.79d)

can be made, allowing the propagation to be done sequentially for each operator.

If V̂CAP = ∅̂ equals the null operator, the splitting is a second order approximation

and is known as a Strang (1968) splitting. The splitting with the V̂CAP operator,

on the other hand, is a first order approximation. However, as the purpose of the

CAP is to pragmatically counter reflections in the region of the box boundaries,

rather than to accurately represent the complex electron dynamics close to the

core (where V̂CAP = ∅̂), this is of lesser importance. The order of the respective

splittings can be derived at using Taylor expansions, as is show in section C.1.

Precision of approximation methods aside, the philosophy behind equation

3.79 can be described as follows: Since the field-interaction operator is the only

time-dependent component of the propagation, it is computed in the middle of

the time step – first half the field-free propagation is performed, then, before

the other half is performed, the field-interaction step operator is applied. At

the end of each time step, the CAP cleans up the population found near the box

border.

The time step operator has thus been defined using three main components.

The first, corresponding to equation 3.79a, is the CAP, which is introduced to

prevent reflections. Secondly there is the field-free component, divided into

equations 3.79b and 3.79d, which each correspond to half of the propagation
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using the atomic- and box potential. Finally, shown in equation 3.79c is the

driven component, corresponding to the interaction with the field. More infor-

mation about each part of the time-step operator, listed in the order to which

they are applied to
∣∣∣Ψ (t)

〉
, can be found in sections 3.3.1 to 3.3.3.

3.3.1 Field-Free Propagation

The first component of the propagator to be considered is the one corresponding

to the box potential – here dubbed the field-free component. Having already

been introduced in equations 3.79b and 3.79d, this time-independent compo-

nent of the propagator is written as

ÛFF (dt) = exp
(
− i dt Ĥ0

)
. (3.80)

Inserting the identity operator Î into the Maclaurin expansion of ÛFF (dt) in the

basis of Ĥ0 eigenstates gives the expression

ÛFF (dt) Î
∣∣∣Ψ (t)

〉
=
N−1∑

j=0

∞∑

k=0

(−i dt)k
k!

Ĥk0
∣∣∣ψj

〉〈
ψj

∣∣∣Ψ (t)
〉

=
N−1∑

j=0

∞∑

k=0

(−i dt)k
k!

ωkj
∣∣∣ψj

〉〈
ψj

∣∣∣Ψ (t)
〉

=
N−1∑

j=0

exp
(
− i dtωj

) ∣∣∣ψj
〉〈
ψj

∣∣∣Ψ (t)
〉

. (3.81)

Since the ab-initio calculations are performed in the eigenbasis of Ĥ0 of

size N , spanned by the orthonormal eigenkets
∣∣∣ψi

〉
with the corresponding

eigenfrequencies ωi ; it becomes clear that ÛFF (dt) can be applied ket-wise, via

multiplication of a set of N scalars exp
(
−i dtωj

)
, where j ∈ {0,1, . . . ,N − 1}. The

time complexity of this method is treated in appendix C.2.1.
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3.3.2 Field-Driven Propagation

Presently consider the field-interaction operator

ÛI (t;dt) = exp
[
−i dtαA

(
t +

dt
2

)
P̂
]
, (3.82)

shown above in equation 3.79c. There are two reasons why propagation using

this operator is more complex than the field-free propagation. Firstly, the expo-

nent of the propagator is dependent on the field. This means that the operator

needs to be recalculated every time the field strength changes. Secondly, since

the propagation is not carried out in the basis of P̂ , it cannot be performed for

ÛI (t;dt) in the same, simple eigvalue-wise manner as for ÛFF (dt).

Below, two methods for solving this problem are presented, one using a

Krylov method approximation and the other using an exact solution. The re-

spective time complexities of both these methods are considered and compared

in appendix C.2.2.

Using a Krylov Method

The first method used in this thesis (Petersson et al. 2017) to calculate the

field-driven propagation employs what is known as a Krylov method (Saad

1992). In order to apply ÛI (t;dt) to
∣∣∣Ψ (t)

〉
, an orthonormal set of kets



∣∣∣ξi
〉

=
1
Ni

∣∣∣Ψ (t)
〉 i−1∑

i=0

, i = 0

∣∣∣ξi
〉

=
1
Ni

(∣∣∣ξ ′i
〉
−

i−1∑

j=0

∣∣∣ξj
〉〈
ξj

∣∣∣ξ ′i
〉)
, i > 0

(3.83a)

(3.83b)
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is defined, where Ni are normalisation constants and the non-orthonormal help

kets ∣∣∣ξ ′i
〉

= −i dtαA
(
t +

dt
2

)
P̂

∣∣∣ξi−1

〉
(3.84)

are used. The subspace spanned by the first n of the kets defined in equation

3.83, Kn, is known as the Krylov subspace of order n. It should be noted that

∀j ∈ {0,1, . . . ,n− 1} :
[
−i dtαA

(
t +

dt
2

)
P̂
]j ∣∣∣Ψ (t)

〉
∈ Kn, (3.85)

follows from the definition of the Kn.

Using the Maclaurin expansion

exp
[
−i dtαA

(
t +

dt
2

)
P̂
]

=
∞∑

j=0

[
−i dtαA

(
t + dt

2

)]j

j!
P̂ j , (3.86)

it becomes clear from equation 3.85 that
∣∣∣Ψ (t)

〉
and ÛI (t;dt)

∣∣∣Ψ (t)
〉

are both

contained within K∞. The result of the application of the propagator on the

state vector can therefore be represented entirely as a linear combination of

Krylov vectors. Further more, it also becomes clear that the approximative nth

partial sum of the Maclaurin expansion,

exp
[
−i dtαA

(
t +

dt
2

)
P̂
]
≈

n∑

j=0

[
−i dtαA

(
t + dt

2

)]j

j!
P̂ j , (3.87)

is contained within Kn+1. This approximation can be rewritten as

ÛnI (t;dt) =
n−1∑

i=0

n−1∑

j=0

∣∣∣ξi
〉〈
ξi

∣∣∣ ÛI (t;dt)
∣∣∣ξj

〉〈
ξj

∣∣∣ (3.88)

by inserting the minimal identity operator in Kn on both sides of ÛI (t;dt). Ap-

plying ÛnI (t;dt) to
∣∣∣Ψ (t)

〉
and using

〈
ξi

∣∣∣Ψ (t)
〉

= δi,0, where δi,j is the Kronecker
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delta, gives

ÛnI (t;dt)
∣∣∣Ψ (t)

〉
=
n−1∑

j=0

∣∣∣ξj
〉〈
ξj

∣∣∣ÛI (t;dt)
∣∣∣ξ0

〉
. (3.89)

The exponent of ÛI (t;dt) is easily projected onto Kn. Indeed, the relation

〈
ξj

∣∣∣ − i dtαA
(
t + dt

2

)
P̂

∣∣∣ξi
〉

=



〈
ξj

∣∣∣ξ ′i
〉
, j ≤ i

Ni+1 , j = i + 1

0 , j > i + 1

(3.90a)

(3.90b)

(3.90c)

of the relevant operator elements follows directly from equations 3.83 and 3.84!

With this in mind, it is possible to efficiently (depending on the order n of Kn)

build and diagonalise the operator

− i dtαA
(
t +

dt
2

)
P̂ ≈

n−1∑

i=0

λnt,i
∣∣∣αnt,i

〉〈
αnt,i

∣∣∣ (3.91)

into eigenvalues λnt,i and eigenkets
∣∣∣αnt,i

〉
in the Krylov subspace of order n at

time t. Equation 3.89 can then be rewritten as

ÛnI (t;dt)
∣∣∣Ψ (t)

〉
=
n−1∑

i=0

n−1∑

j=0

eλnt,j
∣∣∣ξi

〉〈
ξi

∣∣∣αnt,j
〉〈
αnt,j

∣∣∣ξ0

〉
, (3.92)

which is the form of the equation used during the numerical calculations.

Convergence of the Krylov Subspace The accuracy of the above described

method is highly dependent on the number of terms included in the Maclaurin

expansion 3.87, and therefore also on the order n of Kn. This means that the

accuracy of the method increases with n, giving an incentive to increase the

order of the Kn. But this is not the only factor in play – the computational

cost must also be considered. Indeed, the very purpose of employing a Krylov
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method is to avoid diagonalising, at each time step, the exponent of ÛI (t;dt)

in too large a basis. It is also important to limit the number of Krylov vectors

created; this since their creation, and projecting the exponent of ÛI (t;dt) onto

the space they span, requires computational time. Because of this, two criteria,

to be discussed below, for the convergence of theKn were defined. The subspace

Kn is considered as having converged after one or both of these criteria are

fulfilled.

Discussion of the first convergence test should be prefaced by the note that

the Krylov subspace of size n has converged completely when Kn = Kn+1. In

this limit,
∣∣∣ξn

〉
, used to define Kn+1 ∩K⊥n , tends towards the null ket

∣∣∣0
〉
. The

equivalent limit of Nn is Nn→ 0. At this point, further increasing the size of

the Krylov space is redundant.

Indeed, choosing dt correctly, a larger Krylov space would not yield a signifi-

cant improvement in precision, even for small, non-zero values of Nn. Choosing

dt so that the relation

∀j :

∣∣∣∣∣∣−i dtαA
(
t +

dt
2

)
λj

∣∣∣∣∣∣ � 1, (3.93)

where λj , j ∈ {0, 1, . . . , N − 1} are the eigenvalues of P̂ , is valid for the exponent

of ÛI (t;dt); the effect of each extra term included in the Krylov expansion is

significantly smaller than that of the last. Thus, if Nn is very small, increasing

the order of the Krylov space will scarcely improve accuracy.

The first convergence criterion is defined accordingly:

The Krylov space Kn is considered to have converged if

Nn < e
1
lim, (3.94)

where the real, positive e1
lim ≈ 0 is the limit below whichNn is approximated

as 0.

The second convergence criterion is arrived at from the opposite perspective –
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instead of being based on the part of the Maclaurin expansion yet to be added,

the part already calculated is considered.

It has already been commented upon that for sufficiently small values of

dt (or, equivalently, sufficiently small exponents of ÛI (t;dt)), increasing the

order of Kn will only provide a correction of much smaller magnitude than the

changes to
∣∣∣Ψ (t)

〉
that can already be performed in Kn.

Therefore, if
∣∣∣Ψ (t)

〉
remains essentially unchanged after applying the nth

partial sum of the Maclaurin expansion, it can be assumed that further expand-

ing Kn will have little to no effect. This is the basis for the second convergence

criterion:

Denote the change to
∣∣∣Ψ (t)

〉
due application of ÛnI (t;dt) as

∣∣∣δΨ n (t)
〉

=
[
ÛnI (t;dt) − Î

]∣∣∣Ψ (t)
〉
. (3.95)

The Krylov space Kn is considered to have converged if the norm of∣∣∣δΨ n (t)
〉

fulfills the relation

〈
δΨ n (t)

∣∣∣δΨ n (t)
〉
< e2

lim, (3.96)

for a real, positive threshold e2
lim ≈ 0.

Finally, it should be mentioned that a maximum dimension nmax is imposed. If

Knmax fulfills neither of the aforementioned criteria, the method is considered

as not having converged, and returns an error4.

Exact Solution

The major complication with the laser-interaction component of the propagation

results from P̂ not being diagonal in the basis used for propagation. Because

of this, the exponent of ÛI (t;dt), −i dtαA
(
t + dt

2

)
P̂ , needs to be diagonalised

4For all studies discussed in this thesis, nmax = 21, and e1lim = e2lim = 10−20. Orders n > 7 of Kn
were seldom used.
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prior to applying the propagation operator. However, since the only non-scalar

component of said exponent is P̂ , its eigenbasis is the same as that of P̂ . In light

of this, the Krylov-method described above is cast in a rather absurd light – its

purpose is simply to diagonalise the time-independent operator P̂ in a different

basis at each time step.

Such a diagonalisation, even in the comparatively large eigenbasis of Ĥ0

(used for propagation), could instead be performed prior to performing the

propagations. Thus, by writing P̂ using its orthonormal eigenkets
∣∣∣αi

〉
and

corresponding eigenvalues λi ,

P̂ =
M−1∑

i=0

λi
∣∣∣αi

〉〈
αi

∣∣∣, (3.97)

where M is the size of the eigenbasis of P̂ , a second solution emerges. Using this

form, and the orthonormality of the eigenkets
∣∣∣αi

〉
, the Maclaurin expansion of

the propagation operator can be expanded as

ÛI (t;dt)−Î =




∞∑

j=0

[
−i dtαA

(
t + dt

2

)]j

j!
P̂ j


− Î

=
M−1∑

k=0

∞∑

j=1

[
−i dtαA

(
t + dt

2

)]j

j!
λ
j
k

(∣∣∣αk
〉〈
αk

∣∣∣
)j

=
M−1∑

k=0

∣∣∣αk
〉{

exp
[
−i dtαA

(
t +

dt
2

)
λk

]
−1

}〈
αk

∣∣∣

, (3.98)

where Î is the identity operator. This gives an expression analogous to equation

3.81, and the propagator can be rewritten as

ÛI (t;dt) = Î +
M−1∑

j=0

∣∣∣αj
〉{

exp
[
−i dtαA

(
t +

dt
2

)
λj

]
− 1

}〈
αj

∣∣∣. (3.99)
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This means that, after diagonalising P̂ , the state ket can be projected onto the

basis of P̂ , propagated via ket-wise multiplication of a set of M time-dependent

scalars, and then be projected back.

3.3.3 Complex Absorption Potential

After an electron breaks free of the atomic potential, its wave function will

diffuse away from the atom indefinitely. In practice, however, it is impossible to

simulate an infinite system, and thus it is necessary to limit the radial basis.

Since only the dynamics of the electrons in the atom are of interest, the basis

is restricted to a box defined by a maximum distance from the origin. This does

however present a problem, as the box boundaries, here introduced using the

Dirichlet boundary condition

〈
r = Rmax

∣∣∣Ψ (dt)
〉

= 0, (3.100)

for the distance r to the nucleus can cause unphysical reflections. To avoid this,

a Complex Absorption Potential (CAP) V̂CAP is introduced, corresponding to a

time-independent propagation operator

ÛCAP (dt) = exp
(
−i dt V̂CAP

)
, (3.101)

according to equation 3.79a, in order to absorb the wave function near the

border of the box, consequently minimising reflections. In this work V̂CAP is

structured as

V̂CAP =
∑

α,i

∞∫

0

dri v (ri)
∣∣∣α,ri

〉〈
α,ri

∣∣∣, (3.102)
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where ri is the distance r of the ith active electron from the core, and α is the

scattering channel. The function v (r) is chosen as

v (r) =


0, r ≤ RCAP

cCAP (r −RCAP)2 , r > RCAP

, (3.103)

and contains two adjustable coefficients, a radius RCAP and complex constant

cCAP, which are equal for all electrons.With this value of v (r), V̂CAP corresponds

to a quadratic, spherically symmetric potential starting at r = Rmax. It fulfills

the criterion of continuity of v (r) and ∂
∂r v (r) in order avoid causing unphysical

reflections.

In order to further study the CAP, consider the eigenkets
∣∣∣ψQi

〉
, with the

corresponding eigenenergies εQ
i and eigenfrequencies ωQ

i , of what is known as

the quenched Hamiltonian, ĤQ, defined as

ĤQ = Ĥ0 + V̂CAP. (3.104)

Since Ĥ0, being a Hamiltonian operator, is Hermitian, its eigenvalues are real,

along with any expectation value
〈
Ĥ0

〉
. However, since V̂CAP is not a physical

potential, but rather a theoretical construct designed to minimise numerical

artifacts, it does not need to obey such rules. This allows for the possibility of

non-real eigenenergies of ĤQ. Defining the real, non-negative scalar

ρCAP
i =

∑

α

∑

j

∞∫

RCAP

drj
(
rj −RCAP

)2 ∣∣∣∣
〈
α,rj

∣∣∣ψQi
〉∣∣∣∣

2
, (3.105)
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describing the overlap between the CAP and
∣∣∣ψQi

〉
; the imaginary part of εQ

i can

be calculated as
Im

{
εQ
i

}
= Im

{〈
ψQi

∣∣∣ĤQ
∣∣∣ψQi

〉}

= Im
{〈
ψQi

∣∣∣V̂CAP

∣∣∣ψQi
〉}

= Im
{
cCAP

}
ρCAP
i

, (3.106)

which only has an imaginary contribution if cCAP does.

The norm of given eigenket of ĤQ is modified by a factor

√√√√√√
∣∣∣∣
〈
ψQi

∣∣∣Û †CAP (dt) ÛCAP (dt)
∣∣∣ψQi

〉∣∣∣∣
∣∣∣∣
〈
ψQi

∣∣∣ψQi
〉∣∣∣∣

= exp
(
dt Im

{
cCAP

}
ρCAP
i

)
(3.107)

with each application of ÛCAP (dt). Selecting Im {cCAP} < 0, it can thus be seen

that ÛCAP (dt) gradually drains the states which overlap the CAP.

The eigenvalues of ĤQ for one case where Im {cCAP} < 0 are shown in figure

3.9. Electrons in bound states and autoionising resonances are mainly restricted

to positions near the atomic core. Because of this they barely overlap with the

CAP, and the perturbation of these states due to V̂CAP is minimal. This is visible

in figure 3.9, where for these states, located below each ionisation threshold, the

imaginary part of εQ
i is zero for the bound states and small for the autoionizing

resonances.

This can also be conceptualized as follows: The complex part of the CAP

represents the possibility of one or more electrons5 leaving the studied system.

This is easily understood when considering that the CAP causes the disappear-

ance of electrons approaching the box boundary, rather than allowing them

to be reflected back. As shown by equation 3.107, the rate of disappearance

is proportional to the imaginary part of the energy eigenvalue. As a bound

electron never may leave the atom, the negative part of their corresponding

5In this thesis, only one-electron ionisation is considered.
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Figure 3.9: The location of the energy eigenvalues of the quenched Hamiltonian of helium in the
complex plane, for the basis used in (Petersson et al. 2017); where Rmax = 1200, and the CAP

coefficients are RCAP = 1000, and cCAP = − (1 + 5i)× 10−4. The energies of the groundstate,
∣∣∣ψQ0

〉
, and

the first and second thresholds, N = 1 and N = 2, have been marked.

quenched energy eigenvalues should be zero. Autoionising states, however,

decay into the continuum, having a lifetime inversely proportional to their

widths Γ (Ott et al. 2013, 2014), and thus have a negative component – albeit

one small enough to barely be noticeable in figure 3.9.

Now consider the continuum states. After each ionisation threshold, several

series of such states are present, each corresponding to a scattering channel.

These have a significant imaginary component to their energy, increasing with

the electron energy. Using the same conceptualisation as used for the bound

and autoionising states, the imaginary part is proportional to the speed at

which the electron leaves the system. For a free electron, this view implies the

proportionality

Im
{
εQ

}
∝ ve =

√
2εQ

kin (3.108)

between the imaginary part of the electron energy εQ and speed ve; with ve also

61



CHAPTER 3. AB-INITIO THEORY

−100 0 100 200 300 400 500 600
-1.0

0.0

1.0
t0 t1 t2

t [au]

〈 P̂
〉 [a

rb
.u

.]

-1.0

〈 P̂
( t
)〉 [a

rb
.u

.]

Figure 3.10: An illustrative example of the effect of the CAP, exemplified by its effects on the dipole
expectation value

〈
P̂
〉

as a function of time. A short, weak XUV pulse centered at time t = t0 excites

Neon from the ground state in a small box of Rmax = 150. In red, the evolution of
〈
P̂
〉

for the case
when no CAP is used is shown; whereas in blue, the corresponding data is shown for the case of
when a CAP defined by RCAP = 100 and cCAP = − (1 + 5i)× 10−4. As the system evolves, reflections
are visible at times near t = t1 and t = t2 when no filter is used.

implicitly the square root of the electron kinetic energy εQ
kin. Since the εQ

kin is

the energy of the electron above the threshold, Im {εQ} ∝
〈
V̂CAP

〉
will increase

with the energy. This is also illustrated in figure 3.9.

A real component can also be introduced to cCAP to further adjust the po-

tential. Adding a negative real part of cCAP, as is the case in figure 3.9, will for

distances above Rmax from the core create a negative potential, increasing in

magnitude as the distance from the core increases. This will accelerate, away

from the core, electrons appearing at these radii, further preventing reflections.

The effects of the filters are illustrated in figure 3.10, where the effects of

the CAP on the evolution of the dipole expectation value are shown. After

the system is excited, the part of the electron wave function which is found in

autoionising and continuum states travels away from the atomic nucleus. After

reaching the box boundary, it is either absorbed by the CAP or reflected back.
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These reflections cause the discrepancy between the two curves emerging at

times around t = t1. After each time it has been reflected back and passes the

nucleus, the wave function is once again reflected by the boundary. This is the

cause of the periodicity of the reflections shown in figure 3.10.

In this thesis ÛCAP (dt) is implemented in a manner analogous to the exact

solution to the driven part of the TDSE, shown in equation 3.99. The derivation

of said equation need not be repeated here; instead, it suffices to repeat that by

diagonalising V̂CAP in the basis of Ĥ0 as

V̂CAP =
K−1∑

i=0

ξi
∣∣∣χi

〉〈
χi

∣∣∣, (3.109)

to get its K eigenkets
∣∣∣χi

〉
and corresponding eigenvalues ξi , it is possible to

write the CAP propagation operator as

ÛCAP (dt) = Î +
K−1∑

j=0

∣∣∣χj
〉{

exp
(
− i dt ξj

)
− 1

}〈
χj

∣∣∣. (3.110)

Like for the case of ÛI (t;dt), the state ket can be projected onto the basis of

V̂CAP, then propagated via ket-wise multiplication by a series of K scalars, before

being projected back. One difference that does exist is that the relevant scalars

are not time-dependent, and need not be recalculated every time step. The time

complexity of the application of ÛCAP (dt) is treated in appendix C.2.3.
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3.4 Extracting Observables

This thesis treats electron dynamics in atomic systems. Section 3.3 outlines

the numerical ab-initio methodology by which such dynamics are described in

this work. By itself, however, such calculations give only an incomplete picture

of the experimental procedure – after the dynamics have been allowed to run

their course, there is a need to extract information regarding them. In this work,

this is done using two methods: The first method used, transient absorption

spectroscopy (TAS), consists in observing the light emitted by the excited atomic

system due to dipole-beatings; and the second, photo-electron spectroscopy

(PES), in observing the distribution of electrons leaving the atomic system.

A complication with TAS, is that it is only capable, as shown in section 3.4.1,

of observing states dipole-coupled to the ground state (only 1P o states for the

cases studied in this work). Although this restriction can be seen as a serious

limitation, it also provides a clearer view of the states which indeed are visible,

by removing features that might otherwise clutter the spectrum. (Petersson

et al. 2017)

Conversely, a drawback of PES is that large, charged particles may experience

strong distortions prior to reaching the detector (Kaldun et al. 2014), which is

not the case for light. For this reason, TAS is capable of achieving a significantly

higher resolution than PES (Eppink et al. 1997; Ullrich et al. 2003a). As shown

in section 3.4.2, during numerical calculations a low Hamiltonian eigenvalue

density also puts constraint on the PES resolution.

3.4.1 The Transient Absorption Spectrum

As derived in section 3.1.1, the TAS can be expressed by the equation

σ (ω) =
4π
ω

Im
{
p̃ (ω)

Ã (ω)

}
(3.111)
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in the velocity gauge. Since the frequency-distribution Ã (ω) is known (the

external field being input data for the ab-initio propagation), the only non-

trivial quantity in equation 3.29 is the Fourier transform p̃ (ω) of the (electron)

dipole moment p (t).

Calculation of the Electron Momentum

In order to evaluate p̃ (ω), p (t) is split as

p (t) = p− (t) + p+ (t) (3.112)

into a short-ranged component p− (t) and a long ranged component p+ (t). As

illustrated in figure 3.11a, they are separated as

p− (t) = p (t)
[
1−Φ

(
t − tΦ
τΦ

)]
(3.113a)

p+ (t) = p (t) Φ

(
t − tΦ
τΦ

)
(3.113b)

by a smooth step function Φ (t). The step function position and width are

defined, respectively, by the quantities tΦ and τΦ . Since the Fourier transform

is linear, it can be applied individually to p− (t) and p+ (t), before adding the

two quantities to get

p̃ (ω) = p̃− (ω) + p̃+ (ω) . (3.114)

This is illustrated in figure 3.11b, where the contributions of p̃− (ω) and p̃+ (ω) to

p̃ (ω) are shown. From the same figure, it is clear that the shape of the spectrum

background mainly is determined by the short-ranged component, whereas the

sharper spectral features are mainly restricted to the long-ranged one. This

is reasonable, as such features are associated with the long-lived autoionising

resonances.

In order to evaluate p̃ (ω), the two components p̃− (ω) and p̃+ (ω) may now

be considered individually.
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Figure 3.11: An illustration of the separation of the electron momentum (of Helium ionised by
an extreme ultraviolet attosecond pulse) into a short-ranged (in red) and a long-ranged (in blue)
component, both in (a) the temporal and (b) spectral plane. In (a), the step function used to
distinguish between the two is shown in green. The sum of the spectral distribution of the two
contributions is shown in (b) in black.
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Evaluation of the Short-Ranged Component As this work treats ab-initio

propagations from the energy ground state, and no energy-eigenstate has a

dipole beating with itself, the electron momentum is zero at the initial time T0

of the ab-initio calculations prior to the system being affected by the electric

field. Selecting tΦ and τΦ so that the approximation

1−Φ
(
T1 − tΦ
τΦ

)
≈ 0 (3.115)

can be made at the final simulation time T1, the relation

{
∀t ∈R : p− (t) , 0

}
⊆

(
T0 , T1

)
(3.116)

holds. Bearing this in mind, the Fourier transform

p̃− (ω) =
∫ T1

T0

dt

[
1 − Φ

(
t − tΦ
τΦ

)]
p (t) (3.117)

can be used to numerically calculate the spectral profile p̃− (ω) of p− (t).

Evaluation of the Long-Ranged Component With no external field present,

the state ket will evolve freely in the eigenstates
∣∣∣ψQj

〉
of the field-free, quenched

Hamiltonian, with corresponding eigenfrequencies ωQ
i . The quenched Hamil-

tonian (discussed in more detail in section 3.3.3) corresponds to the atomic

potential, modified by a potential component which takes the finite lifetimes

of the non-bound states into account by adding an imaginary component to

ωQ
i . The evolution of the state ket

∣∣∣Ψ (t)
〉
, from a time t0 after the field has

terminated, can be written as

∣∣∣Ψ (t)
〉

=
∑

j

cj (t0) exp
(
−iωQ

j [t − t0]
) ∣∣∣ψQj

〉
, (3.118)

where the complex projection amplitudes

cj (t) =
〈
ψQj (t)

∣∣∣Ψ (t)
〉

(3.119)
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give the population distribution at a time t after the cessation of the field.

The expectation value p (t) of the electron dipole operator can, after the field

has terminated, be written as

p (t) =
∑

j,k

〈
Ψ (t)

∣∣∣ψQj
〉〈
ψQj

∣∣∣P̂
∣∣∣ψQk

〉〈
ψQk

∣∣∣Ψ (t)
〉

=
∑

j,k

cj (t0)Pjkck (t0) exp
(
− i ωQ

kj [t − t0]
), (3.120)

where

Pjk =
〈
ψQj

∣∣∣P̂
∣∣∣ψQk

〉
, (3.121)

are the matrix elements of P̂ corresponding to the beating between them, and

the quantity

ωQ
kj =ωQ

k −ωQ
j (3.122)

has been introduced.

The long-ranged component of p (t) can now be rewritten as

p+ (t) = Φ

(
t − tΦ
τΦ

) ∑

j,k

cj (t0)Pjkck (t0) exp
(
− i ωQ

kj [t − tΦ ]
)
. (3.123)

Selecting the step function

Φ (t) =
1√
2π

∫ t

−∞
dt′ exp

(
−t′2

)
, (3.124)

it is possible to evaluate the Fourier transform of p+ (t) analytically. Doing so,

after selecting t0 = tΦ and denoting ci (tΦ ) = cΦi , gives the result

p̃+ (t) =
exp(−iωtΦ )√

2πi

∑

j,k

cΦj Pjkc
Φ
k

exp
(
− [ω+ωQ

kj ]
2τ2

Φ /2
)

ω+ωQ
kj

, (3.125)

which can be used to evaluate the frequency-distribution of the long-ranged
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component of the linear electron momentum. As this is done via addition of

all the elements of the matrix Pij , the calculation is of time-complexity O
(
N2

)
,

where N is the size of the (quenched) basis. However, unless the external field is

capable of significantly draining the ground state (which is not a case considered

in this thesis), this can be significantly improved upon. This is because the non-

ground state population magnitudes, |ci | , i , 0, are significantly smaller than the

ground state population magnitude |c0|. Therefore, the components of equation

3.125 not corresponding to to beatings with the ground state can be disregarded,

decreasing the time-complexity of the problem to O
(
2N

1P o
)

= O
(
N

1P o
)
, where

N
1P o is the number of states of symmetry 1P o.

From this line of reasoning, the final expression,

p̃+ (ω) =
exp(−iωtΦ )√

2πi

∑

{ j :P0j,0}
cΦ0P0jc

Φ
j

exp
(
− [ω+ωQ

j0]2τ2
Φ /2

)

ω+ωQ
j0

+cΦj Pj0c
Φ
0

exp
(
− [ω+ωQ

0j ]
2τ2

Φ /2
)

ω+ωQ
0j

, (3.126)

of the electron momentum, can be arrived at. It now becomes clear that only

states with a dipole-beating with the ground state can be monitored (Petersson

et al. 2017).

Lastly, it may be interesting to add that, while the change to the energy

eigenvalues due to the quenching of the Hamiltonian provides only a slight

correction to p̃− (ω) (assuming sufficiently short simulation times), it is abso-

lutely vital for p̃+ (ω). This is because the excited electron distribution requires

time to reach the complex absorption potential (CAP). By properly selecting

tΦ and τΦ , the CAP is not even required during the propagation. However,

disregarding the CAP during the calculation of p+ (ω) is not possible. Doing so

would give the non-bound states an unphysical spectral distribution, equal to

that of a Dirac delta function (that is, they would have an infinite lifetime and

an associated [Ott et al. 2013, 2014] infinitesimal spectral width).
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3.4.2 The Photoelectron Spectrum
Unlike the TAS, which considers the light emitted by an atom, the PES registers

the distribution of electrons leaving the atomic system, decaying into ionisa-

tion scattering channels. This process is not emulated by the box Hamiltonian

eigenstates (which, due to Dirichlet boundary conditions, does not allow elec-

trons to leave the atomic system). However, an approximation of the channel

PES-distribution can be extracted directly by projection onto the Hamiltonian

eigenstate, as these approximately correspond to scattering channels (Argenti

et al. 2013a). This gives the expression

P αLL (εe) =
∣∣∣∣
〈
ψLαL εe

∣∣∣Ψ (t)
〉∣∣∣∣

2
(3.127)

for the population P αLL , denoting electron energy εe, the total angular mo-

mentum L, and the scattering channel index αL, and where
∣∣∣ψLαL ε

〉
is the

corresponding, unbound, Hamiltonian eigenket.
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.]

Figure 3.12: An illustration of the different (pseudo-) channels of the PES of neon above the
first ionisation threshold. The three figures correspond to the 1Se, 1P o and 1De symmetries.
The respective symmetries include one, two, and four channels each. Each channel has been
(quadratically) interpolated (in red and blue) between the Hamiltonian eigenstates (shown as black
dots).
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To get the total population PL (ε) for a given L−value, or that, P (ε), for all L

values, it is possible to sum over the relevant channels as

P (ε) =
∑

L

PL (ε) , PL (ε) =
∑

αL

P αLL (ε) . (3.128)

The different components of a RABITT-like spectrum is shown in figure

3.12. From the figure, it becomes immediately clear that, since the spectrum

has been interpolated, the Hamiltonian eigenstate-density is a limiting factor

for the energy resolution. Because of this, the size of the basis may need to

be increased when resolution is lacking, creating a potential conflict between

increasing resolution on the one hand, and minimising computational time and

memory on the other.

Angularly Resolved Photoelectron Spectra

Presently consider the problem of resolving the PES not only energetically,

but also angularly. This can be done by through projection onto the detector

eigenstates
∣∣∣ψ(−)
α;εΩ̂e

〉
of well defined energy ε and emission angle Ω̂e (Marante

et al. 2014). These states
∣∣∣ψ(−)
α;εΩ̂e

〉
of a channel α may be expressed employing a

partial wave expansion

∣∣∣ψ(−)
α;εΩ̂e

〉
=

∑

LM
`eme

CLM`eme ,`PImPI

∣∣∣ψ(−),L
α;ε`eme

〉
× Yme`e

(
Ω̂e

)
× exp

[
−i

(
σ`e −

`eπ
2

)]
(3.129)

into the energy eigenstates
∣∣∣ψ(−),L
α;ε`eme

〉
which fulfill incoming boundary conditions

(Garcı́a 1992); where Yme`e

(
Ω̂e

)
is the spherical harmonic associated with the

electron angular momentum `e with projection me, σ`e is the Coulomb phase

shift (Dill 1976), L is the total angular momentum with projection M, and

CLM`eme ,`PImPI
are Clebsch-Gordan coefficients. The angularly differentiated cross

section may now be calculated as an incoherent sum

P
(
ε,Ω̂e

)
=

∑

α

∣∣∣∣
〈
ψ

(−)
α;εΩ̂e

∣∣∣Ψ (t)
〉∣∣∣∣

2
(3.130)

over the unresolved channels α.
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Chapter 4
Ab-Initio Bases

In chapter 3.3, a methodology for solving the multi-photon time-dependent

Schrödinger equation (TDSE) is described. This is achieved by propagation

in the basis of the eigenstates of the atomic Hamiltonian Ĥ0. Therefore, it

presupposes that the time-independent Schrödinger equation (TISE) already

has been solved.

Under the electrostatic approximation, the multi-electron atomic Hamilto-

nian operator can be written as

Ĥ0 = −
∑

i

1
2
∇̂2
i −

∑

i

Z∥∥∥ĵri
∥∥∥

+
∑

i, j>i

1∥∥∥r̂i − r̂j
∥∥∥

(4.1)

where Z is the nuclear charge, ∇̂i is the ith electron gradient operator, r̂i is the

corresponding position operator, and the nucleus is located at the origin. The

three sums in equation 4.1 correspond, respectively, to (i) the electron kinetic

energy, (ii) the Coulomb nuclear-electron interaction potential, and (iii) the

Coulomb electron-electron interaction potential.

For non hydrogen-like systems (i.e. systems containing Ne ≥ 2 electrons), no

exact solution exists to this problem. Instead, approximative methods need to be

employed. One first step to create such an approximation is to only consider one
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electron simultaneously, which can be done through the single-active electron

(SAE) or the more advanced Hartree (1935)-Fock (1930) (HF) method. The HF

method uses a single Slater (1929) determinant to describe the system wave

function – the simplest way to to describe an antisymmetric many-particle

wave function. This allows the ith electron wave function to be described as an

eigenfunction of the Fock-operator

F̂i = − 1
2
∇̂2
i +

Z

‖r̂i‖
+ V̂MF

i (4.2)

where V̂MF
i is a mean-field potential operator which describes the electron-

electron interaction.

Unfortunately, the HF method is not necessarily adequate when describing

multi-electron systems; as it (through the mean-field approximation) disregards

the tendency of electrons to avoid coinciding with each other, and it dismisses

the possibility of more than one Slater determinant being needed. Such effects

are known as electron correlation (Hättig et al. 2011), and are vital when

describing multi-particle atomic and molecular systems.

Because of the importance of electron correlation, atomic models need to go

beyond HF and SAE approximations. This chapter outlines the methodologies

utilised for creating the matrix elements necessary to describe the system during

ab-initio propagations. Two separate methodologies were employed. In section

4.1, the basis used when describing helium is discussed. In section 4.2, a

summary of the XCHEM basis – here used for ab-initio propagations in neon –

is given.
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4.1 The B-Spline Helium Basis

The first basis to be discussed in this chapter was used to describe the single-

ionisation region of helium, as described in chapter 6. The program uses a

numerical close-coupling (CC) basis to describe the single-ionisation process,

while electron correlation is accounted for using a set of localised channel

eigenstates (LC). These states are described as a linear combination of B-splines –

compact support functions well adapted to describe bound as well as continuum

states (Bachau et al. 2001).

The methodology discussed herein has already proven itself capable of

describing helium in a non-B-spline basis (Argenti et al. 2013b), and has also

been extended to more complex atoms (Argenti et al. 2006). Separately from

the study discussed in the results section of this thesis; a time-dependent

implementation of the helium basis discussed in this section has previously

been used to recreate attosecond transient absorption spectroscopy of doubly

excited states (Argenti et al. 2012), as well as to study reconstruction and control

of doubly-excited wave packets (Ott et al. 2012), in helium.

The information discussed herein is to be published by Argenti et al. (Un-

published), and is printed here with permission.

4.1.1 The Helium Eigenfunctions

In the present methodology, the helium atomic states are expanded in two dis-

tinct sets of basis functions: The long ranged asymptotic behaviour is described

by a set
{ ∣∣∣CCφΓ

αi

〉}
of CC channel functions, defined by a channel α and an index

i; while the short-ranged correlated behaviour is described by a set
{ ∣∣∣ LCφΓ

i

〉}
of

LCs with index i. The symmetry label Γ = (Π,S,Σ,L,M) contains the parity Π,

the total spin S with projection Σ, and the total angular momentum L with the

projection M.
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Here, the quantity xi ≡ (ri ,ζi) will be defined for the ith electron as contain-

ing its position r (defined by a direction r̂ and distance r from the core) and

spin ζ. Using the index PI for the bound, parent ion (PI), electron and e for the

excited electron, the CC functions can be written as

CCφΓ
αi (xPI,xe) = ΘSΣ (ζPI,ζe)× Â

{
RNPI`PI

(rPI)×
u`α i (re)

re
×YLM`PI`e

(r̂PI, r̂e)
}

(4.3)

for the case when the PI electron has the principal quantum number NPI, by

splitting the wave function into components corresponding to the radial, angu-

lar, spin dependency of the state: The radial part is defined by a bound radial

hydrogen eigenfunction Rn` (r) and the arbitrary reduced radial component

ui (r) of the excited electron. The angular part consists of a bipolar spherical

harmonic

YLM`1`2
(r̂1, r̂2) =

∑

m1m2

CLM`1m1,`2m2
Ym1
`1

(r̂1)Ym2
`2

(r̂2) , (4.4)

where Ymi`i
(r̂i) is a spherical harmonic and CLM`1m1,`2m2

the Clebsch–Gordan coeffi-

cient. The spin component is defined by the two-electron spin function

ΘSΣ (ζ1,ζ2) =
∑

σ1=±1/2
σ2=±1/2

CSΣ1/2σ1,1/2σ2

2χσ1
(ζ1) 2χσ2

(ζ2) , (4.5)

where 2χσ (ζ) is the one-electron spin function. Finally, Â is the antisymmetrizer,

working on the expression within the brackets.

Unfortunately, the CC function defined in equation 4.3 does not give rise to a

complete two-electron basis, as it is incapable of of reproducing the sharp spatial

modulation caused by electron coalescence. For this reason, a complementary

LC basis

LCφΓ
αi (x1,x2) = Ni ΘSΣ (ζ1,ζ2)× Â

{
ϕn1`1

(r1)ϕn2`2
(r2)

r1r2
×YLM`1`2

(r̂1, r̂2)
}

(4.6)

is introduced, normalised by the constants Ni , where the reduced radial orbits
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ϕnl (r) are confined to a radius where both electrons have significant probability

density.

The Γ electron wave function
∣∣∣φΓ

〉
can now be written as a linear combination

∣∣∣φΓ
〉

=
∑

αi

cΓαi
∣∣∣CCφΓ

αi

〉
+

∑

j

bΓj
∣∣∣ LCφΓ

i

〉
(4.7)

of the CC and LC basis functions.

4.1.2 The B-Spline Basis

When constructing the basis, the reduced radial electron components present

in equations 4.3 and 4.6 are here described as a linear combination of B-Splines.

B-Splines are a set of compact functions which has proven itself well suited to

represent bound, Rydberg, as well as continuum molecular and atomic orbitals

orbitals (Bachau et al. 2001).

B-splines are real functions which belongs to the class C∞ of infinitely

differentiable functions on all points except a predefined set {ξi} of nodes, here

assumed to be ordered as ξi+1 ≥ ξi . Using these nodes, the B-splines of order k

can be defined recursively as

Bki (r) =



θξi(r) ·θξi+1
(−r) , k = 1

(r − ξi) ·Bk−1
i (r)

ξi+k−1 − ξi
− (r − ξi+k) ·Bk−1

i+1 (r)
ξi+k − ξi+1

, k > 1

(4.8a)

(4.8b)

where the Heaviside step function θr0 (r) = θ (r − r0) is used to define the first

order B-spline as a plateau. The result of this equation can be seen in figure 4.1,

which show B-splines of the lower orders k ∈ {1,2,3,4,5}.
The set {ξi} can be defined as to give rise to intervals of zero length – that

is, containing values of i for which ξi = ξi+1. When j nodes coincide, i.e.

ξi = ξi+1 = · · · = ξi+j−1, the k − jth derivative may be discontinuous at r = ξi .
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k = 1
k = 2
k = 3
k = 4
k = 5

ξi ξi+1 ξi+2 ξi+3 ξi+4 ξi+5
x

Bki (x)

Bki (x)

Figure 4.1: The difference between B-Splines of different order k. As can be seen, increasing k
makes for smoother, broader B-spline functions.

Otherwise, only the k − 1th derivative is. In order to ensure that the B-splines

assume finite values at the boundaries of the studied continuum, the end nodes

need to be k times degenerate.

From equation 4.8, it becomes clear that a given B-spline Bki (r) only is non-

zero only in the interval of r ∈ (ξi ,ξi+k). Thus, the B-spline have a banded

representation, contributing to making algorithms solving linear systems in this

basis numerically stable. The value of k must be chosen with this in mind: De-

spite the capability of B-splines of describing high-order functions improving

with k; increasing the value of k will also increase the B-spline overlap, increas-

ing the degree to which the error when solving the linear equation propagates

through the system.

The present basis is constructed using two distinct B-spline bases: one for

the localised and one for the continuum orbitals. The localised basis is used

to describe both PI and localised channel states. It is defined using a set
{
ξL
i

}

of nodes which increase linearly with r until reaching a radius comparable

to the size of the largest, most energetic PI considered (usually in the order

of tens of Bohr radii). The continuum B-spline basis node set
{
ξC
i

}
contains

both the localised (that is,
{
ξL
i

}
(

{
ξC
i

}
) and a set of equidistant nodes (generally

of the order of 0.5 au) reaching the box-boundary. Enforcing the condition

of
{
ξC
i

}
(

{
ξL
i

}
makes the localised B-spline space an exact subspace of the

continuum B-spline space, which preserves the numerical stability of the basis
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(Argenti et al. 2006).

It should be noted that the reduced radial components ϕn` (r) need to fulfill

the regularity condition

lim
r→0

ϕn` (r)→ 0 (4.9)

at the origin. This is explicitly satisfied by eliminating the first ` + 1 B-splines,

as

ϕn` (r) =
∑

i>`+1

cn`;iB
k
i (r) , (4.10)

for angular momenta ` ≤ 4.

The PI radial orbitals present in equation 4.3 are computed by diagonalising

the hydrogenic singly-ionised helium (i.e. He+) Hamiltonian. The PIs with a

principal quantum number NPI and angular momentum `PI can then be coupled

to orbitals from the continuum B-spline space orthogonal to those PI orbitals

with lower principal quantum number n < NPI and those with n = NPI and

` < `PI, in order to avoid redundancies. The localised channel are composed

of self-consistent-field (SCF) orbitals that diagonalise an effective one-particle

Hartree-Fock (HF) Hamiltonian, describing the 1s2 ground state of helium

with the addition of a single positive charge potential working on the space

orthogonal to the 1s orbital. Further avoiding redundancies – this time between

the CC and LC channels – and allowing the hydrogenic and SCF orbital to be

treated separately, the CC projection operator

CCP̂ Γ =
∑

αi

∣∣∣CCφΓ
αi

〉〈
CCφΓ

αi

∣∣∣ (4.11)

of the space spanned by the CC channels is diagonalised in the LC basis. States

whose eigenvalues equals 1 (to within a certain precision) are removed from

the LC basis, being already represented in the CC one. This gives rise to a

conditioned LC (CLC) space, linearly independent from the CC space.
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4.1.3 Diagonalising the Hamiltonian

With the above reasoning in mind, the diagonalisation of the Hamiltonian

will now be discussed. It is carried out in two separate parts – firstly, the

diagonalisation of the bound states will be discussed; secondly, that of the

non-bound ones.

Bound Energy Eigenstate

In order to calculate the bound energy eigenstates, the basis

∣∣∣φΓ
b,i

〉
=

{ ∣∣∣CLCφΓ
j

〉}
∪

⋃

α

{∣∣∣CCφ
Γ
αk

〉}
(4.12)

is defined, comprised of the CLC states
∣∣∣CLCφΓ

i

〉
and the CC functions

∣∣∣CCφ
Γ
αi

〉

which have had the last B-spline eliminated (enforcing Dirichlet boundary

conditions). In this basis, the Hamiltonian can be diagonalised as

Ĥ0

∣∣∣ψΓ
b,i

〉
= εΓb,i

∣∣∣ψΓ
b,i

〉
(4.13)

to give the bound energy eigenvalues εΓb,i and associated eigenkets
∣∣∣ψΓ
b,i

〉
of index

i.

Non-Bound Eigenstates Eigenstate and the K-Matrix Method

Although many methods capable of solving the present multi-channel problem

within the close-coupling ansatz (Carette et al. 2013; Nikolopoulos et al. 2001;

Zatsarinny et al. 2013) exist (a comprehensive list of which can be found in

[Argenti et al. 2013a]), the basis discussed herein is computed using the K-

matrix method. The K-matrix method is discussed in more detail in (Argenti

et al. 2006; Lindroth et al. 2012), but will here be explained briefly.

As a first step, the Hamiltonian is diagonalised in the subspace of CC states∣∣∣CCφ
Γ
αi

〉
independently for each channel α. This eigenvalue problem can be
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written as

Ĥ0

∣∣∣ PWCφΓ
αi

〉
= εΓPWC,i

∣∣∣ PWCφΓ
αi

〉
, (4.14)

and gives rise to the normalised so-called partial-wave channel (PWC) functions∣∣∣ PWCφΓ
αi

〉
of energy εΓPWC,i .

Below the channel threshold, the energies εΓPWC,i correspond to an approxi-

mate discrete Rydberg series converging towards the threshold; while above,

they consist of continuum energies in the α channel. The below-threshold states

correspond to a fixed ` electron bound by a PI in a given state. The above-

threshold states are stationary states in which asymptotically free electrons

scatter elastically of a PI in a given state, giving rise to a probability amplitude

which vanishes at the box boundary. Compared to a regular Coulomb function

with the same angular momentum and asymptotic energy, it exhibits a channel

phase shift δαi .

Using these states along with the CLC ones a scattering Hamiltonian ĤΓ
SC

can now be defined as

ĤΓ
SC =

∑

α

∫∑
i
dεΓi ε

Γ
i

∣∣∣φΓ
αεi

〉〈
φΓ
αεi

∣∣∣, (4.15)

where the states
∣∣∣φΓ
αε

〉
of energy εΓi include both CLC and PWC states. Under

the realistic assumption that the elastic channels are asymptotically decoupled,

the scattering Hamiltonian ĤΓ
SC is approximately equal to the atomic Hamil-

tonian Ĥ0 at large distances r from the nucleus. The effect of V̂ Γ = Ĥ0 − ĤΓ
SC

can thus be seen as a short-ranged perturbation, and the Hamiltonian multi-

channel scattering-eigenstates can be calculated as a solutions to the Lippmann-

Schwinger equation (LSE)

∣∣∣ψPΓ ,αε
〉

=
∣∣∣φΓ
αε

〉
+

P
ε − ĤΓ

SC

V̂ Γ
∣∣∣ψPΓ ,αε

〉
(4.16)
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where β is restricted to channels open at the energy ε. Inserting equation 4.15

into the LSE gives the results

∣∣∣ψPΓ ,αε
〉

=
∣∣∣φΓ
αε

〉
+

∑

β

∫∑
dε′

∣∣∣φΓ
αε′

〉 P
ε − ε′K

βε′
αε (4.17)

where Kβε
′

Γ ,αε =
〈
φΓ
βε′

∣∣∣V̂ Γ
∣∣∣ψPΓ ,αε

〉
are the matrix elements of the off-shell reaction

matrix K, which varies smoothly with the upper energy index ε.

Enforcing the condition of
∣∣∣ψPΓ ,αε

〉
being a Ĥ0 eigenfunction, a condition

which can be written as

〈
φΓ
βε′

∣∣∣ε − Ĥ0

∣∣∣ψPΓ ,αε
〉

= 0, ∀β,ε′ (4.18)

equation 4.17 can be solved. This is is done by solving the system

Kγε”
Γ ,αε −

∑

β

∫∑
dε′ Vγε”

Γ ,βε′ (ε)
P

ε′ − ε”
Kγε”
Γ ,αε = Vγε”

Γ ,αε (ε) (4.19)

of integral equations for K, where the continuum-continuum matrix elements

Vβε′
Γ ,αε(ε”) =

〈
βε′

∣∣∣ε”− Ĥ0

∣∣∣αε
〉

(4.20)

and Kβε
′

Γ ,αε are interpolated along their discretised energy indices. The scattering

states of a given spherical symmetry fulfilling incoming boundary conditions

may now be obtained as a sum

∣∣∣ψ−Γ ,αε
〉

=
∑

β

∣∣∣ψPΓ ,βε
〉 1

1− iπKβεΓ ,αε
exp

[
−i

(
σ`α + δα +

π`α
2

)]
, (4.21)

where `α is the excited electron angular momentum, σ`α the associated Coulomb

phaseshift, and δα the channel phase shift.
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4.2 The XCHEM Basis

Ab-initio modelling of the time-dependent behaviour of the attosecond pro-

cesses discussed in this thesis requires accurate treatment of both the short-

ranged structure of the studied atom, and the long-ranged ionisation continuum.

Well established and sophisticated quantum chemistry packages (QCPs) – such

as MOLCAS (Aquilante et al. 2016) and MOLPRO (Werner et al. 2012) – capable

of describing bound atomic and molecular states are already commercially

available. Such QCPs, however, are ill suited for describing the long-ranged

electron continuum.

This is the central focus of the XCHEM (Marante et al. 2014, 2017a,b)

approach. By combining sophisticated QCP implementations with a B-spline

scattering basis, it allows the accurate treatment of single-ionisation processes in

many-electron molecules and atoms. As part of this thesis, the studies discussed

in chapter 7 were carried out using a time-dependent implementation of the

XCHEM methodology. Below, a summary of the concept of XCHEM, as described

by Marante et al. (2014, 2017a,b), is presented.

4.2.1 The Atomic Basis

In the XCHEM approach, several distinct radial ranges are considered. The

total scattering wave function of energy ε in the α continuum is written as a

linear combination

∣∣∣Ψ −αε
〉

=
∑

i

ci,αε
∣∣∣Ni

〉
+
∑

β

∑

i

cβi,αε
∣∣∣Υ βi

〉
(4.22)

of close-ranged states
∣∣∣Ni

〉
, describing the case when allNe electrons constrained

within a radius R0; and extended-channel functions
∣∣∣Υ βi

〉
which consider the

case when one (here assumed to be the last, Neth) electron is at a position
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rNe > R0. They can be written as a product

Υ αi ({xi}) = Nαi Â Υα
(
r1,r2, . . . ,rNe−1, r̂Ne ,ζNe

)
× ϕi

(
rNe

)
, (4.23)

between the asymptotically decoupled wave functions Υα and the free electron

radial wave function ϕi ; where Â is the antisymmetriser, and xi contain the

position ri (of magnitude ri and direction r̂i) and spin ζi of the ith electron.

The functions Υα are obtained by coupling the antisymmetrised parent

ion (PI) wave functions 2SPI+1ΦΣPI
(of total spin SPI with projection ΣPI), to

the emitted electron spin function 2χσ
(
ζNe

)
(where σNe is the electron spin

projection), while factorising the emitted electron (with direction r̂Ne ) spherical

harmonics Y
`Ne
mNe

(
r̂Ne

)
(where `Ne is the emitted electron angular momentum

with projection mNe ). This coupling can be written as

Υα
(
r1,r2, . . . ,rNe−1, r̂Ne ,ζNe

)
=2S+1

[
Φ ⊗ 2χ

(
ζNe

)]
Σ
×Y `NemNe

(
r̂Ne

)
, (4.24)

where S is the total spin with projection Σ.

The PI wave functions, as well as the localised bound states, can all be well

described by the QCPs. These make use of a Gaussian basis set in order to model

the inner structure of a molecule (or atom, as is the case considered here). While

Gaussian functions are apt for such a purpose, they have the disadvantage

of quickly vanishing at large radii. This problem is solved in the XCHEM

approach by utilising a combined Gaussian–B-spline (GABS) basis. Using a

GABS basis, the short-ranged dynamics are described using QCP Gaussian

functions, while the scattering states are described using B-splines; allowing the

use of the highly advanced QCP molecular descriptions, while circumnavigating

the shortcomings associated with a Gaussian basis.

84



4.2. THE XCHEM BASIS

4.2.2 The GABS Hybrid Basis

The XCHEM approach employs three distinct sets of functions in order to

construct its basis: (i) a localised Gaussian basis
{ ∣∣∣LGi

〉}
, (ii) a diffuse, even

tempered, monocentric Gaussian basis
{ ∣∣∣MGi

〉}
, and (iii) a monocentric B-spline

scattering basis
{ ∣∣∣Bi

〉}
. The localised basis

{ ∣∣∣LGi
〉}

is calculated by QCPs. For

molecular systems,
{ ∣∣∣LGi

〉}
is a polycentric basis centered at the atomic cores,

while for the atomic systems discussed herein it is monocentric. It is the

monocentric component
{ ∣∣∣MGi

〉}
∪

{ ∣∣∣Bj
〉}

which constitutes the GABS basis

(Marante et al. 2014).

The radial GABS basis is illustrated in figure 4.2. The B-splines begin at

r = R0. This region of r ∈ [0,R0] the QCP basis can be found along with the

monocentric Gaussian functions. A second radius, R1, has been marked in the

figure. Beyond this point, at r ∈ [R1,∞), the Gaussian basis can be approximated

as zero, and only the B-spline scattering basis is present. Between these points,

for r ∈ (R0,R1), both monocentric bases overlap, bridging the gap between the

QCP and scattering functions.

GABS Basis Functions

As already mentioned, the GABS basis is composed of one B-spline and one

Gaussian basis set. The concept and advantages of B-splines is already discussed

in section 4.1.2, and need not be discussed in detail here. Hence, only the

monocentric Gaussian basis functions remain to be discussed.

Their radial component can be written on the form

MG`mKα (r) = NαK
gαK (r)
r

, (4.25)

where several new indices and functions have been introduced: The radial

distribution is defined by the function
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Figure 4.2: The radial GABS basis functions
∣∣∣φi

〉
. In red, the Gaussian functions

∣∣∣φ
〉
∈
{ ∣∣∣LGj

〉}
are

shown, while the B-splines
∣∣∣φi

〉
∈
{ ∣∣∣Bi

〉}
are shown in blue. The distance r from the nucleus can be

divided into three sections, by R0 = 7 au and R1 = 50 au: For r < R0, no B-Splines are present, while
the Gaussian functions are vanishingly small for r > R1. At r ∈ [R0,R1], the diffuse monocentric

Gaussian functions
{ ∣∣∣MGi

〉}
overlap the B-Splines

{ ∣∣∣Bi
〉}

.

gαK (r) = rK+1 exp
(
−αr2

)
, (4.26)

defined by the variables α and K . The exponents α make up a discrete set

α ∈ {α1,α2, . . . ,αNα }, created from the geometric series

αn = α1β
n−1, n ∈ {0, 1, . . . ,Nα} (4.27)

derived from two constants α1 and β. Only values K ∈ {`, ` + 2, ` + 4, . . . } of K

are considered, where the restriction of K ≥ ` ensures regularity at the origin.

Finally, the basis set is normalised as

∫ ∞

0
dr N2

αK g
2
αK (r) = 1, (4.28)

by using the constants NαK .

Presently consider the case of combining the Gaussian and B-spline bases.

Both Gaussian and B-splines are well-conditioned basis sets. Combining the

two, however, may give rise to linear dependencies. For this purpose, the
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{ ∣∣∣Gi
〉}

=
{ ∣∣∣LGi

〉}
∪

{ ∣∣∣MGj
〉}

projection operator

P̂G =
∑

i

∣∣∣Gi
〉〈
Gi

∣∣∣ (4.29)

is diagonalised in the B-spline basis. States with an eigenvalue of 1 (to a certain

precision) are then removed from the B-spline basis. From the remaining basis

functions, the GABS basis can now be formed as
{ ∣∣∣χi

〉}
=

{ ∣∣∣Gj
〉}
∪
{ ∣∣∣Bk

〉}
. In order

to ensure that the basis function is zero at the boundary, the last B-spline can be

removed from
{ ∣∣∣χi

〉}
. The resulting basis will be denoted as

{ ∣∣∣χi
〉}

. Projection

onto this basis enforces Dirichlet boundary conditions.

4.2.3 Diagonalising the Hamiltonian

Diagonalising the atomic Hamiltonian Ĥ0 in
{ ∣∣∣χi

〉}
is an adequate method for

calculating the bound Rydberg states, which are constrained near the atomic

core far from the box boundary. The same, however, can not be said for the free

electron states – in the infinite potential well described by
{ ∣∣∣χi

〉}
, only a discrete

number of the continuous set of free-electron eigenenergies will be represented.

Writing the Hamiltonian eigenstates of energy ε on the form

∣∣∣ψαε
〉

=
∑

i=1

cαε,i
∣∣∣χi

〉
+ bαε

∣∣∣BNB
〉
, (4.30)

all eigenstates can be considered. The ones for which bε , 0 are solutions to the

equation 〈
χi

∣∣∣ε − Ĥ0

∣∣∣ψαε
〉

= 0, ∀i. (4.31)

These solutions can be written as a function

∣∣∣ψαε
〉

= bαε


Î +

∑

i,j

∣∣∣χi
〉〈
χi

∣∣∣ 1

ε − Ĥ0

∣∣∣χj
〉〈
χj

∣∣∣
(
Ĥ0 − ε

)


∣∣∣BNB

〉
, (4.32)

where the value of bαε functions as an effective normalisation constant.
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Chapter 5
Simple Interferometric Models

As part of this work, the method of reconstruction of attosecond beatings by

interference of two-photon transitions (RABITT), described in detail in chapter

3.2, has been used to study atomic systems. More specifically, it has been used

to extract what is known as the atomic phase.

RABITT can accurately be described using time-dependent ab-initio propa-

gations. In more complex systems, where these are unavailable, simpler models

can instead be used. This was the case with argon, discussed in chapter 8.1,

which was treated prior to the XCHEM methodology (explained in chapter 4.2)

was ready to be used for ab-initio calculations. Even when ab-initio treatments

of the system are available, however, such models may be highly useful for

providing physical insight.

RABITT is a pump-probe experiment which employs an extreme ultraviolet

(XUV) pump consisting of the odd high harmonics (HH) of the infrared (IR)

probe. Together, one XUV and one IR pump is used to reach the even harmonics,

known as sidebands (SB). The interference between the paths via the upper and

lower harmonics oscillate with the pump-probe time-delay. This oscillation is

shifted by the atomic phase difference, written as

∆φAt
2n = φAt

2n+1 −φAt
2n−1 (5.1)
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for the 2nth sideband, where φAt
2n±1 is the atomic phases of SB2n corresponding

to the path via HH2n±1. It was defined in equation 3.60 as

φAt
2n±1 = −arg

{
M±2n

}
, (5.2)

whereM±2n is the two-photon matrix elementM(2)
2n (εi) from the ground state of

energy ε0 to sideband SB2n of energy ε2n, averaged over harmonic HH2n±1 as

M±2n =
∫

HH2n±1

dεi
∣∣∣F̃IR (ε2n − εi) F̃XUV (εi − ε0)

∣∣∣M(2)
2n (εi) , (5.3)

where F̃XUV (ω) and F̃IR (ω) are the spectral profiles of the XUV and IR fields,

respectively.

Hence, knowing the dipole matrix elements, the atomic phases can also be

calculated. A simple model dedicated to this purpose, based on the Fano (1961)

model of resonant continua, was developed by Jiménez-Galán et al. (2016). It

models the Hamiltonian

Ĥ (t) = Ĥ0 +F (t) Ô, (5.4)

by using second-order time-dependent perturbation theory (TDPT) (described

in appendix B), considering the perturbation of the field-free Hamiltonian Ĥ0 by

the time-dependent interaction component F (t) Ô, where Ô is the appropriate

dipole operator in the direction of the field F (t). In chapter 3.2 the velocity

gauge expression Ô = αP̂ of the interaction component is used, where α is the

fine structure constant and P̂ the velocity gauge dipole.

The aforementioned model was employed as part of several RABITT studies

making up part of this thesis. Below, it is discussed in greater detail. Section

5.1 shows how the two-photon matrix elements can be calculated using TDPT,

while section 5.2 outlines the dependence of the atomic phase on photoelectron

emission angle.
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5.1 Calculation of the Matrix Elements

The two-photon matrix element between an initial state
∣∣∣ψ0

〉
and a final state∣∣∣ψF

〉
via an intermediate energy εi can, using TDPT, be written on the general

form

M(2)
F (εi) =

〈
ψF

∣∣∣ Ô ˜̂G+ (εi) Ô
∣∣∣ψ0

〉
, (5.5)

where
˜̂G+ (ε) =

1

ε − Ĥ0 + i0+
, (5.6)

is the frequency distribution of the retarded Green function. Expanding this

function in energy eigenstates allows equation 5.5 to be rewritten as

M(2)
F (εi) =

∫∑
I
dεI

OF
I OI

0
εi − εI + i0+ , (5.7)

where OI
0 is the one-photon matrix element connecting the ground state to

an intermediate state
∣∣∣ψI

〉
with energy εI, which in turn is connected to the

final state by the matrix element OF
I . States not contained in the intermediate

continua need not be considered in the expansion, as their contribution becomes

zero due to dipole connection rules.

Here, a note regarding the intermediate states
∣∣∣ψI

〉
should be made. By

Jiménez-Galán et al. (2016), the matrix element is divided into two distinct

components – one corresponding to the transition via unbound state and one to

that via bound resonances. In this work, only energies far above the ionisation

threshold are treated. Due to this restriction, only intermediate unbound and

autoionising states will be considered.
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5.1.1 Transition Amplitudes Between Featureless Continua

In order to further explore the above matrix element, it is convenient to begin by

considering the simple case when both the intermediate and the final states are

featureless continua
∣∣∣αε

〉
, defined by their energy ε and the set α of non-energy

quantum numbers. The two-photon matrix element to the final state
∣∣∣αFεF

〉
via

the intermediate state
∣∣∣αIεI

〉
can be written as

M(2)
F,αI

(εi) =
∫
dεI

OαFεF
αIεI OαIεI

0
εi − εI + i0+ , (5.8)

where OαIεI
0 and OαFεF

αIεI are equivalent to OI
0 and OF

I .

Regarding OαFεF
αIεI , it should be noted that the dipole transition matrix ele-

ments between free-electron states are near zero unless the states are degenerate.

This becomes clear when considering the case of plane waves, as these are eigen-

states of the dipole operator. By the same token, the dipole elements between

the pure continuum states
∣∣∣αε

〉
considered here are nearly diagonal – although

not fully so, as they are affected by the atomic potential.

With this in mind, an integral

OαF
αI

(εF) =

εF+∆∫

εF−∆
dεI

〈
αFεF

∣∣∣O
∣∣∣αIεI

〉
, (5.9)

can be defined for a small quantity ∆, in order to enable the approximation

〈
αFεF

∣∣∣O
∣∣∣αIεI

〉
≈ OαF

αI
(εF)δ (εF − εI) , (5.10)

where δ (x) is the Dirac delta. Now, the equation 5.8 can be approximated as

M(2)
F,αI

(εi) ≈
OαF
αI

(εF) OεFαI
0

εi − εF + i0+ . (5.11)

The case of non-ground state resonant states remains to be considered.
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5.1.2 Fano Formalism and Resonant Transition Amplitudes

In order to expand the above formulation to the case of non-ground state

resonances, a simple version of the Fano (1961) approach will be employed. In

order to do so, presently consider the case of a resonance
∣∣∣n
〉

of energy εn in a

pure energy continuum
∣∣∣αε

〉
with eigenenergies ε, where the index α contains

non-energy quantum numbers commuting with Ĥ0. With this notation, the

system

εn =
〈
n

∣∣∣Ĥ0

∣∣∣ n
〉

(5.12a)

α
nVnε =

〈
n

∣∣∣Ĥ0

∣∣∣αε
〉

=
〈
αε

∣∣∣Ĥ0

∣∣∣ n
〉

= α
nV εn (5.12b)

ε =
〈
αε

∣∣∣Ĥ0

∣∣∣αε
〉

(5.12c)

of equations can be introduced, by defining the new transition matrix elements
α
nVnε = α

nV εn .

Using this notation, two more quantities are defined. The first, ∆n (ε), is an

energy shift of the resonance
∣∣∣n
〉
. It can be expressed as

∆n (ε) = P
∫
dε′

∣∣∣αnV ε′n
∣∣∣2

ε − ε′ . (5.13)

where P signifies the principal part of the integral. The second is the resonance

width Γn (ε), calculated as

Γn (ε) = 2π |αnV εn |2 . (5.14)

Assuming α
nV εn can be considered as independent of energy, these can be approx-

imated as constant. For convenience, several new quantities will be defined as
α
nVn = α

nVn = α
nV εnn ≈ α

nV εn , ∆n = ∆n (εn) ≈ ∆n (ε) and Γn = Γn (εn) ≈ Γn (ε).
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Deploying this notation, the continuum eigenstates of Ĥ0 can be written as

∣∣∣ψnαε
〉

=
∣∣∣αε

〉
+
(∣∣∣n

〉
+
∫
dε′

∣∣∣αε′
〉 α

nVn
ε − ε′ + i0+

)
α
nVn
ε − ε̃n

, (5.15)

normalised as
〈
ψnαε

∣∣∣ψnαε′
〉

= δ (ε − ε′), where the complex energy

ε̃n = εn +∆n − i Γn2 (5.16)

has been shifted by ∆n and has a pole in the negative imaginary plane at iΓn/2.

Equation 5.15 can further be reformulated by dividing it into a pure continuum

component
∣∣∣αε

〉
, and a resonance-tainted component

∣∣∣ñε
〉

=
∣∣∣n
〉

+ P
∫
dε′

∣∣∣αε′
〉 α
nVn
ε − ε′ , (5.17)

This allows the eigenstate to be rewritten as

∣∣∣ψnαε
〉

=
εn (ε)
εn (ε) + i

∣∣∣αε
〉

+
1

παnVn
1

εn (ε) + i

∣∣∣ñε
〉
. (5.18)

where

εn (ε) = 2
ε − εn −∆n

Γn
(5.19)

is known as the reduced energy variable.

Presently consider a resonant state
∣∣∣m

〉
dipole-connected to the continuum∣∣∣αε

〉
in which

∣∣∣ψnαε
〉

is located (i.e. ∀ε : Oαεm , 0 in the relevant region). From

equation 5.18, the transition operator element from
∣∣∣m

〉
to

∣∣∣ψnαε
〉

can be deter-

mined as following the well-known behaviour

Oαnεm =
εn (ε) + qαñεm

εn (ε)− i O
αε
m , (5.20)
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where

qαñεm =
1

παnVn

〈
ñε

∣∣∣Ô
∣∣∣m

〉
〈
αε

∣∣∣Ô
∣∣∣m

〉 (5.21)

is the associated Fano profile parameter, approximated as constant in the region

of interest. The energy index can be removed by defining qαñm = qαñεnm ≈ qαñεm , in

order to follow the convention laid out for Γn and ∆n.

With this background as a foundation, further extensions ofM(2)
F,αI

(εi) may

be constructed. These extensions will be divided into three cases. Firstly, the

case of intermediate resonances will be considered. Secondly, the case of final

resonances will be treated. Finally, the case when both intermediate and final

resonances are present will be briefly discussed.

The Case of an Intermediate Resonance

When an intermediate resonance is present, the transition amplitude from

the ground state to the intermediate continuum is readily given by equation

5.20. As such, only the matrix elements between excited states remain to be

calculated.

First consider the transition from the ground state to the intermediate

continuum. Analogously to equation 5.20, it can be written as

OαInIεI
0 =

〈
ψnI
αIεI

∣∣∣Ô
∣∣∣ψ0

〉
=
εnI

(εI) + qαIñI
0

εnI
(εI)− i

OαIεI
0 . (5.22)

With this concluded, the element OαFεF
αInIεI , corresponding to the transition be-

tween excited states, remains to be treated.

This matrix element can be further divided into three distinct components:

One pure continuum component, one resonance-tainted component, and one

resonant component. These correspond to the three kets shown in the right-

hand side of equation 5.15.

The pure continuum transition has already been calculated in equation

5.10, and need not be treated again here. As such, the first component to be
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considered is the tainted continuum component. It can be calculated as

∫
dε′I

〈
αFεF

∣∣∣Ô
∣∣∣αIε

′
I

〉

εI − ε′I + i0+

∣∣∣αI
n VnI

∣∣∣2

εi − ε̃nI

=
1
π

1
εnI

(εI) + i

OαF
αI

εI − εF + i0+ , (5.23)

by assuming that the approximation of OαF
αI
≈ OαF

αI
(εF) as energy-independent

can be made. Lastly, the resonant component should be considered. It can be

written as 〈
αFεF

∣∣∣Ô
∣∣∣nI

〉 αI
n VnI

n

εI − ε̃n
=

1

παI
n VnI

1
εnI

(εI) + i
OαF
nI . (5.24)

Together, this gives the form

OαFεF
αInIεI = δ (εF − εI)OαF

αI
+

1
π

1
εnI

(εI) + i




1
εI − εF + i0+ +

OαF
nI

αI
n VnnIO

αF
αI


O

αF
αI

(5.25)

of the matrix element. It may be noted that the quantity

γαFεF
αInIεI =

(
εI − εF

) OαF
nI

αI
n VnnIO

αF
αI

(5.26)

describes the relative strength of the two paths to the final continuum via the

intermediate resonant state – the direct path and that via the tainted continuum.

The calculated matrix element can now be inserted into the equation

M(2)
F,αInI

(εi) =
∫
dεI

OαFεF
αInIεIOαInIεI

0
εi − εI + i0+ , (5.27)

to, after integration, give the two-photon matrix element. The delta-component

of the integral can be computed directly; whereas the remaining part, having

a pole in the lower part of the complex plane, can be evaluated via a contour

integral encompassing the negative half of the imaginary plane. In order to do

this, the dipole matrix elements Oαεn connecting the resonances to pure continua

are approximated as constant, removing the energy index as Oαn ≈ Oαεn . This
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gives the final expression

M(2)
F,αI

(εi) =
εnI

(εi) + qαIñI
0

(
1−γαFεF

αInIεi

)
+ iγαFεF

αInIεi

εnI
(εi) + i

OαF
αI
OαI

0

εi − εF

(5.28)

of the matrix element.

Presently consider the transition from the intermediate to the final state. The

transition from the intermediate autoionising resonance implies two electron

transitions (one electron returning to the core, with the other being ejected into

the continuum), while the continuum-continuum transition implies only one.

As such, γαFεF
αInIεI may be assumed to be small. Approximating γαFεF

αInIεI as zero, the

matrix element simplifies to

M(2)
F,αI

(εi) =
εnI

(εi) + qαIñI
0

εnI
(εi) + i

OαF
αI
OαI

0

εi − εF

. (5.29)

This assumption is throughout the studies composing this thesis.

The Case of a Final Resonance

The matrix elements for the case of a final resonance can be computed in a

manner largely analogous to those computed above for the case corresponding

to an intermediate resonance.

As for the case of intermediate resonances, the matrix element between the

ground state and the intermediate continuum will be considered first. As no

intermediate resonance is present, the slow-varying quantity OαI
0 will be used.

Now consider the matrix element between the excited states. As for the case

of an intermediate resonance, the various components of the transition between

excited states can be considered separately. The pure continuum-continuum

component is identical to that of the aforementioned case, and can be derived

from equation 5.10. The other components are not.

Now consider the tainted continuum component. Performing, like for with

the case of an intermediate resonance, the approximation OαF
αI
≈ OαF

αI
(εF), it can
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be written as

∫
dε′F

〈
αFε
′
F

∣∣∣Ô
∣∣∣αIεI

〉

εF − ε′F + i0−

∣∣∣αI
n VnI

n

∣∣∣2

εI − ε̃∗nF

=
1
π

1
εnF

(εF)− i
OαF
αI

εI − εF − i0−
, (5.30)

which leaves the resonant component. It can be calculated as

〈
nF

∣∣∣Ô
∣∣∣αIεI

〉 αF
n VnF

ε − ε̃∗nF

=
1

παF
n VnF

n

1
εnF

(εF)− iO
nF
αI . (5.31)

These equations can now be combined to get the expression

OαFnFεF
αIεI = δ (εF − εI)OαF

αI
+

1
π

1
εnF

(εF)− i




1
εI − εF − i0+ +

OnF
αI

αF
n VnF

n OαF
αI


O

αF
αI

(5.32)

for the matrix element of the second photon. Analogously to γαFεF
αInIεI , the quantity

γαFnFεF
αIεI =

(
εI − εF

) OnF
αF

αI
n VnF

n OαF
αI

(5.33)

describes the relative strength of the ionisation path corresponding to the final

resonance versus that corresponding to the tainted continuum.

The two-photon matrix element can now be calculated. This is done in a

similar way as was done when considering an intermediate resonance: The

delta function is integral is evaluated directly, while the non-delta function

is integrated using a closed integral containing the upper half of the complex

plane, during which Oαεn ≈ Oαn is approximated as constant. This gives the form

M(2)
F,αI

(εi) =
εnF

(εi) + i
(
1 +γαFnFεF

αIεi

)

εnF
(εi)− i

OαF
αI
OαI

0

εi − εF

(5.34)
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of the matrix element. Approximating, again, γαFnFεF
αIεI = 0, the simpler form

M(2)
F,αI

(εi) =
εnF

(εF) + i
εnF

(εF)− i
OαF
αI
OαI

0

εi − εF

(5.35)

of the matrix element is obtained.

Combining Final and Intermediate Resonances

The case when both intermediate and final resonances are present will now

be briefly considered. This case introduces several new components, present

in the derivations of neither equation 5.28 nor 5.34, to the matrix element.

These are as follows: the coupling between the tainted continua components,

the connections between the excited resonances, and the respective resonance

couplings to the continuum tainted by the opposite excited resonance. On top of

this, the intermediate resonance needs to be taken into account when calculating

the one-photon matrix element between the ground- and intermediate state,

unlike what was done in the derivation of equation 5.34.

This case is relevant to neither of the studies, respectively discussed in

chapter 7.2 and chapter 8.1, discussed as part of this thesis which used the

models discussed in this chapter. As such, this case need not be treated in

detail here. The full formulation is given by equation 68 in Jiménez-Galán et al.

(2016).

However, as noted in Barreau et al. (2019), the single-resonance matrix

element can be extended to the case of multiple non-overlapping resonances

by addition of the non-background components associated with the different

resonances. Thus, the equations presented here should be sufficient to model

the case when each resonance may be considered independenlty

99



5.2 Angularly Resolved Atomic Phases

As a consequence of interactions between final scattering continua, the atomic

phase may vary with the emitted electron direction (Cirelli et al. 2018; Heuser

et al. 2016). In this work, the anisotropic behaviour of the atomic phase is

studied for the case when a linearly polarised field ionises a noble-gas atom.

Due to symmetry, the only variation present will be with the direction of the

inclination θ with regards to the field. Thus, no resolution with regards to the

corresponding azimuth ϕ is required, and the angularly resolved intensity of

sideband (SB) 2n can be calculated as the incoherent sum

I2n (θ) =
∑

mF

∣∣∣A−2n,mF
(θ,ϕ) +A+

2n,mF
(θ,ϕ)

∣∣∣2 , (5.36)

of angularly resolved transition amplitudes A±2n,mF
(θ,ϕ) corresponding to a

final of electron magnetic quantum number mF.

The amplitudes A±2n,mF
(θ,ϕ) can be calculated by integrating the angularly

resolved, two-photon matrix element M(2)
2n,mF

(εi ;θ,ϕ) with a given mF over

different intermediate energies εi . Said matrix element can be calculated using

a coherent sum

M(2)
2n,mF

(εi ;θ,ϕ) =
∑

`F
M(2)

2n,lF,mF
(εi)×YmF

`F
(θ,ϕ) , (5.37)

over different final electron angular momenta `F (Cirelli et al. 2018).

The systems treated here using the RABITT method are noble gases with

the outer shell configuration ns2np6, n ∈ {2,3}, leading to emitted electrons

of symmetry p and f . Further, since only linearly polarised light is used, the

relation mPI = −mF between the parent ion (PI) magnetic quantum number mPI

and mF. Since the PI below the second ionisation threshold has a configuration

ns2np5, mF can be restricted to mF ∈ {−1,0,1}.
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5.2. ANGULARLY RESOLVED ATOMIC PHASES

Expanding the squares of the sum in equation 5.36 gives the expression

I2n (θ) =
∑

mF

∣∣∣A−2n,mF
(θ,ϕ)

∣∣∣2 +
∣∣∣A+

2n,mF
(θ,ϕ)

∣∣∣2 +
∣∣∣A−2n,mF

(θ,ϕ)A+
2n,mF

(θ,ϕ)
∣∣∣cos

(
2ωIRτ +∆φAt

2n,mF

) (5.38)

of the sideband amplitude, where ωIR is the IR frequency, and τ the pump-

probe delay, and ∆φAt
2n,PI is the channel-specific atomic phase. As can be seen

in equation 5.37, the cases of mPI = ±1 are identical. Remembering that only

mF ∈ {−1,0,1} needs to be treated, the equation

∆φAt
2n

(
Ω̂

)
= arctan

2
∣∣∣A−2n,1A+

2n,1

∣∣∣sin
(
∆φAt

2n,1

)
+
∣∣∣A−2n,0A+

2n,0

∣∣∣sin
(
∆φAt

2n,0

)

2
∣∣∣A−2n,1A+

2n,1

∣∣∣cos
(
∆φAt

2n,1

)
+
∣∣∣A−2n,0A+

2n,0

∣∣∣cos
(
∆φAt

2n,0

) ,

(5.39)

can be used to calculate the angularly dependent expression of ∆φAt
2n (Cirelli

et al. 2018).
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Chapter 6
Helium

Helium is first atomic system treated in this work. More precisely, the regions

above the second ionisation threshold are considered. The chapter describes

the study published as Petersson et al. (2017), discussed in section 6.1.

The ab-initio results presented in this chapter were derived by solving the

time-dependent Schrödinger equation (TDSE) in the helium basis described

in chapter 4.1; according to the methodology described in chapter 3.3, the

associated Krylov method being used to solve the interaction component of the

Hamiltonian. The propagations were performed in a box of 1200 au, containing

a complex absorption potential (CAP) starting at a radius of RCAP = 1000 au,

with a filter coefficient of cCAP = − (1 + 5i)× 10−4 au. Further, only total angular

momenta of L ≤ 2 were considered, excluding processes involving symmetries

above 1De.

As it is the first noble gas, containing two protons and electrons, below,

doubly excited (DES) autoionising states will be mainly described on the form

of n`n′`′, where n and n′ are the principal quantum numbers, and ` and `′

are the electron angular momenta, of the two electrons. A more complete

classification of DESs can be found in Feagin et al. (1986), Herrick et al. (1980),

Herrick et al. (1975), Lin (1984, 1986), and Tanner et al. (2000).

105



6.1 ATAS Above the N = 2 Threshold

The first and only study treated in this chapter used attosecond transient absorp-

tion spectroscopy (ATAS) to study helium above the second (N = 2) ionisation

threshold. It was published in Physical Review A as Petersson et al. (2017).

The doubly excited states (DES) of the sp+
2,n

1P o series below the N = 2

threshold of helium have previously been investigated via ATAS, using an

extreme ultraviolet (XUV) pump and a visible (VIS) probe (Argenti et al. 2015;

Ott et al. 2014). This revealed Autler-Townes (AT) splittings of the 2s2p1P o

state, the lowest autoionising 1P o state, due to coupling with the 2s2p1Se state;

as well as continuous inversions of the Fano profiles of higher sp+
2,n

1P o, states

as the intensity of the dressing VIS increases.

So far, ATAS studies of electric coherence in helium have been restricted

to regions below the N = 2 threshold, where the only parent ion possible after

ionisation is the cationic ground state He+ (1s). The present study seeks to apply

the method to the autoionising region above the N = 2 threshold, where, apart

from He+ (1s), ionisation leads to the excited parent ions He+ (2s) and He+ (2p).

In doing so, it extends the study of resonant features in transient absorption

spectra (TAS) from the single channel to the multichannel case, which is a more

common case in complex systems.

The studied system is shown in figure 6.1. As a pump, a weak attosec-

ond XUV pulse is employed. It has a central frequency of ωXUV = 2.5 au, a

spectral full width at half maximum (FWHM) of 0.18 au, and an intensity of

IXUV = 1e11 W
cm2 . The probe is comprised of a moderately intensive femtosecond

infrared (IR) pulse, with a central frequency of ωIR = 0.057117 au (correspond-

ing to a wavelength of 798 nm), a spectral FWHM of 0.025 au, and an intensity

of IIR = 4e12 W
cm2 . The laser parameters employed here are similar to those

utilised in the aforementioned experiment by Argenti et al. (2015) and Ott

et al. (2014). The time delay between the pump and the probe was varied, by

increments of 84 as, from −10 fs to 20 fs.
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Figure 6.1: A schematic illustration of the studied energy region of helium. In blue and red,
autoionising resonances of the 1Se , 1P o , and 1De symmetries are shown (Burgers et al. 1995; M.-K.
Chen 1997; Rost et al. 1997). The N = 2 threshold is shown as a dashed line. Additionally, the 1P o

non-resonant continuum located two IR photons below the 3s3p spectrum is shown with diagonal
stripes. The excited 1P o spectrum is ionised by an XUV probe with the frequency distribution
shown to the left. It has a frequency of ωXUV = 2.5 au and a FWHM of 0.18 au. Transitions nearly
resonant with the frequency of ωIR = 0.057115 au of the IR (with a FWHM of 0.025 au) are shown
with arrows. It should be noted that the resonance labels used here (Martı́n et al. 1991) are only
approximate. The figure is republished with modifications from Fig. 1 in Petersson et al. (2017).

Compared to the single-channel case, the resonances observed above the

N = 2 threshold are broader and less bright, as would be predicted by dipole-

transition propensity rules of two-electron atoms (Rost et al. 1997). Even so,

in the results presented here, IR-induced, single-photon beatings between the

3s4p1P o DES and the resonant 3`3`′1Se and 1De states are observed. These

beatings are illustrated in figure 6.1. Also illustrated in figure 6.1 are the two-

photon beatings between the 3snp1P o, n = 3,4 DESs and the 1P o continuum

just above the N = 2 threshold, leading to the formation of a multichannel,

correlated two-electron wave packet. Both effects strongly distort the 3snp Fano

profiles, which vary with the time delay. As such, they demonstrate control of

the multichannel resonant profiles in the same way as has been demonstrated

by Argenti et al. (2015) and Ott et al. (2014) for the single-channel case.

107



CHAPTER 6. HELIUM
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Figure 6.2: The cross section σ0 (εr ), as a function of the response energy εr , in the studied region
of helium. In blue, the calculated spectrum is shown. For comparison, similar data from the
available literature is shown. In dashed red, the results from a comparable, theoretical spectrum,
calculated by Moccia et al. (1991), is shown; and, with circles, an experimental spectrum published
by Menzel et al. (1996), renormalised. This figure is here republished with modifications from Fig.
2 in Petersson et al. (2017).

6.1.1 The Cross Section

In order to validate the quality of the basis in the relevant energy region above

the N = 2 threshold, the field-free spectrum σ0 (ωr ) was calculated and com-

pared to available experimental (Menzel et al. 1996), and theoretical (Moccia

et al. 1991), data. The result of this can be found in figure 6.2. As can be seen,

up to around 2.65 au, the results presented here are in excellent agreement

especially with the theoretical reference results. In particular, the Fano profiles

approximately corresponding to the 3s3p and 3s4p members of the dominant

series of DES are clearly visible1.

1It may be noted, however, that, due to static correlation, DESs can not be modeled exactly using
independent-particle single-configuration representations.
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6.1.2 The Attosecond Transient Absorption Spectrum

The calculated attosecond transient absorption spectrum σ (εr , τ) is shown as a

function of the response energy εr and the pump-probe time delay τ in figure

6.3. Negative time delays correspond to the IR probe arriving prior to the pump.

Due to the low frequency and intensity of the probe, the system remains

unaffected until the arrival of the XUV, so that, when the probe arrives before

the pump, σ (ωr , τ) = σ0 (ωr ). The features visible in this region are thus eas-

ily mapped onto figure 6.2. The main features are the bright 3snp, n = 3,4

DESs. Removing this background, the time-dependent features of the spectrum

become even more lucid, as seen in figure 6.4.

When τ increases, the pulses start to overlap. As this happens, the 3s3p 1P o

resonance experience AT splittings due to coupling with the higher energy

3s4s 1Se and 3d2 1De dark states. This is especially clear in figure 6.4, after

removing the background, where there is a clear broadening of the 3s3p res-

onance for delays of τ ≈ 0. Similar features were found, even for quite low

intensities, below the N = 2 threshold by Argenti et al. (2015), due to couplings

between the 2p2 1Se state and 2p+
2,n

1P o states. For the lowest such state, 2s2p,

this is visible at even lower intensities. Due to the higher density of dark states,

the splittings presented in this work are more involved than those found below

the N = 2 threshold.

For positive values of τ , when the probe arrives after the pump, two main

features, both typical of the ATAS spectrum (Ding et al. 2016) are visible.

Firstly, there is the transversal hyperbolic fringes slowly converging towards

nearby resonances. This is most clearly visible for the 3s3p and 3s4p resonances.

These result from the sharp modulation in population experienced by the states

due to the probe. As the time delay increases, the time-evolution of the dipole

converges to the field-free case, and, with it, so does the spectrum. Thus, it can

be seen that these fringes trends towards the resonances with an increase in τ .
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Figure 6.3: The ATAS spectrum above the N = 2 threshold of helium. The abscissa shows the
response energy εr and the ordinate shows the time delay τ of the probe. This figure is here
republished with modifications from Fig. 3 in Petersson et al. (2017).
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Figure 6.4: The ATAS spectrum above theN = 2 threshold of helium, with the background removed.
The abscissa shows the response energy εr and the ordinate shows the time delay τ of the probe.
Save for the removal of the time-independent component, this figure is identical to figure 6.3.
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Another well-known feature of the ATAS spectrum also present is the

densely packed transversal fringes visible in figure 6.3. These arise from in-

terference between direct ionisation by one XUV photon and the resonantly

enhanced excitation by one XUV photon and subsequent absorption or emission

of several IR photons via intermediate states. For the case of a k IR photon

exchange after excitation to an intermediate resonance 3snp of energy ε3snp,

these fringes have an frequency of
∣∣∣εr − ε3snp

∣∣∣ ≈ kωIR at the response energy

εr . These beatings can be further studied by considering the bidimensional

spectrum.
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Figure 6.5: In (a), the natural logarithm ln |σ̃ (εr , εe − εr )| of the bidimensional spectrum above the
N = 2 threshold of helium is shown. The abscissa shows the response energy εr , and the ordinate
shows the excitation energy εe. The diagonal, dashed lines are separated by ωIR. Maxima near
these lines correspond to the number indicated by their respective labels of absorbed (positive) and
emitted (negative) photons. Both (b) and (c) show similar plots for artificial cases. In (b), the 1Se

(excluding the ground state) has been artificially removed during propagation. In (c), the same has
been done to the 1De spectrum. This figure is here republished with modifications from Fig. 4 in
Petersson et al. (2017).
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6.1.3 The Bidimensional Spectrum

Figure 6.5a shows the logarithm of the absolute value of the bidimensional

spectrum, σ̃ (εr , εe − εr ), where εe is the excitation energy. Prior to applying the

fast Fourier transform to σ (ωr , τ), the spectrum was switched off with a smooth

step function at high τ . Although this limits the resolution of the spectrum

along the εe axis, the main features remain visible.

The dashed lines in the figure indicate a net exchange of an integer number

of IR photons. On the εr = εe diagonal, corresponding to a net absorption of

zero IR photons, both the 3s3p and the 3s4p states are seen.

At the lines indicating a net exchange of one IR photon, beatings at the

response energy of the 3s4p 1P o state can be observed. These peaks are visibly

shifted away from the dashed lines, indicating a Stark shift. Such beatings

are only possible if both the states involved are populated by the pump (i.e.,

dipole connected to the ground state) as well as dipole connected to each other.

Although these criteria are, on the surface, contradictory, it is possible for the

dressed states to be modified by the field to take on a component of a different

symmetry (as an example, Argenti et al. [2015] observed the 2p2 1Se state

taking on a 1P o component). Thus, these beatings have several possible origins.

They may be due to beatings between (i) the 3s4p state and lower 1Se and 1De

states, (ii) the 3s3p state and higher 1Se and 1De states, or (iii) beatings between

the dressed 3s3p and 3s4p states; or a combination thereof. Several of these

potential beatings are indicated with arrows in figure 6.1.

Turning to the lines in figure 6.5 indicating a net exchange of two IR photons,

several more features are visible. Here, beatings between the 3s3p 1P o and

3s4p 1P o states, with the 1P o continuum of lower energy (of ωe ≈ 2.45 au and

ωe ≈ 2.52 au, respectively). These beatings also leave a mark by populating

the nonresonant continuum, contributing to a maximum at ωr ≈ ωe for low

energies.

To gain deeper insight into these beatings, consider figures 6.5b and 6.5c.
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These are analogous to figure 6.5a, but with the 1Se symmetry (in 6.5b) and 1De

symmetry (in 6.5c), respectively, artificially removed during the propagations.

Although these calculations are not physical, they can be used to determine

to what extent the beatings observed in figure 6.5a are due to the 1Se and 1P e

states.

After removal of the 1Se states, the main difference from the physical case is

the decrease of the one-photon beatings visible at a response energy of εr ≈ ε3s4p.

The same is not seen when the 1De states are excluded, confirming that the

majority of the one-photon beating occur with states of the 1Se, rather than the
1De, symmetry.

All other structures discussed above are even more pronounced in both

figure 6.5b and figure 6.5c than in figure 6.5a. This shows that both the 1Se and

the 1De symmetries are significantly involved in all these features.

6.1.4 Conclusions

In the present study, ATAS has been used to examine helium above the N = 2

threshold, where several ionisation channels are open. By using an XUV pump

and an IR probe, with parameters similar to those employed by Argenti et al.

(2015) and Ott et al. (2014), it is possible to induce sizable resonant one-photon

transitions between the 3s4p 1P o state and lower 3`2 1Se and 3`2 1De states.

Furthermore, two-photon beatings between the 3s3p 1P o and 3s4p 1P o states

and the lower 1P o continuum were observed, leading to the formation of a

multichannel two-electron correlated wave packet. Thus, like for resonances

lying below the N = 2 threshold, it is possible to control the multichannel

two-electron correlated wave packet.

Multichannel ionisation continua are the rule, rather than the exception,

in most atoms and molecules. The results discussed here, however, show that

the additional complications brought by the opening of additional continua

should not pose major challenges. The only feature observed here, which so far

has not been observed for the single-channel case, is the two-photon beatings
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between autoionising resonances and the pure continuum. One limitation that

was observed here, however, is that some features may not be unambiguously

attributed to specific processes, but may rather have multiple causes. Such

features could be further studied by adding an IR component to the pump,

which is a standard practice in femtosecond pump-probe spectroscopy and was

implemented for the case of neon, as part of in another study discussed in this

work, namely the study discussed in chapter 7.1.
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Chapter 7
Neon

The second atom treated in this thesis is neon, which has been analyzed using

accurate ab-initio calculations. This was done between the first and second

ionisation thresholds. Neon, being the second noble gas, has the full 2s22p6

valence shell configuration. In the studied energy region, this leads to several

autoionising resonances. Specifically, the 2s12p6n`- and 2s22p43s3p-resonances

are relevant to the discussion below1.

The propagations introduced in this chapter were carried out in an XCHEM

combined Gaussian B-spline (GABS) basis – the XCHEM approach being able

to accurately describe electron correlation in the ionisation continuum of many-

electron systems.

The basis used was designed to include 1Se, 1P o, 1De, and 1Fo symmetries.

Continuum states including four different parent ions (PI) were considered.

These PI correspond to the electron configurations 1s22s12p6 and 1s22s22p5,

which were augmented by an additional electron to create neutral states. The PI

wave functions were calculated through a state average CAS(7,14) calculation

1It should be mentioned that the 2s22p43s3p resonance was not included in the ab-initio
calculations presented below. This is because the N electron basis is built by augmenting the N − 1
electron parent ion (PI) states (with 2s22p5 and 2s2p6 configurations) with the excited electron.
This will be discussed in the context of the individual studies below, when it appears to be relevant
for the presented results.
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(i.e. a complete active space 7 electrons distributed between 14 orbitals) which

included all configurations, subject to spin and symmetry restrictions, for seven

electrons distributed over the 2s, 2p, 3s, 3p, 3d and 4s orbitals, with the 1s

orbital always being doubly occupied. The PI orbitals were represented by a

standard cc-pVQZ (Dunning 1989) basis of localised Gaussian functions. The

monocentric Gaussian functions were built from an even-tempered sequence of

22 exponents. The XCHEM methodology is described in more detail in section

4.2.

In section 7.1, neon is studied using attosecond transient absorption spec-

troscopy (ATAS). Although not yet published, it is currently the subject of a

manuscript that is being prepared. In section 7.2, reconstruction of attosecond

beatings by interference of two-photon transitions (RABITT) is used to study

neon below the second ionisation threshold, showing the possibility of extend-

ing the method to multi-resonance regions. This study was originally published

as Barreau et al. (2019).
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The first neon study making up part of this thesis employs attosecond transient

absorption spectroscopy (ATAS) to probe energies above the first ionisation

threshold. In order to study beatings with states not dipole-connected to the

ground state, a combined extreme ultraviolet (XUV) near-infrared (NIR) pump

is used. This method was previously used by Ding et al. (2016), who used

experiment and R-matrix ab-initio calculations to study one-photon beatings

between the 2s−13p1P o with nearby 1Se and 1De resonances. In this study, a

similar theoretical setup is employed to further study the same autoionising

region, in order to test the validity of the XCHEM approach. It is currently the

subject of a manuscript that is being prepared.

A schematic illustration of the studied system can be found in figure 7.1.

Several 2s−1n` resonances (below referred to as n`), visible in the figure, are

relevant to the discussion below. The 2p−23s3p resonance was not included in

the calculations, and will not be visible in the data presented below.

The laser parameters used are similar to those used by Ding et al. (2016): The

XUV has a central frequency of ωXUV = 1.71 au and a spectral full width at half

maximum (FWHM) of 0.22 au. The NIR has a frequency of ωNIR = 0.0588 au,

and a spectral FWHM of 0.02 au, corresponding to a temporal FWHM of 7.3 fs.

The intensity of the NIR probe is 2 · 1012 W2

cm2 , while the NIR pump intensity

used is 2 · 1011 W2

cm2 . The time-delay τ was varied between −20 fs and 60 fs.

Like what was observed by Ding et al. (2016), the ATAS spectrum showed

one-photon beatings between the 3p1P o resonance and the nearby 3s1Se and

3d1De resonances. Further, both one- and two-photon beatings between the

nonresonant 1P o continuum and nearby resonances are observed.

While Ding et al. (2016) used a combination of experiment and R-matrix

calculations to carry out their study, here, the ab-intio calculations presented

here made use of an XCHEM basis. The XCHEM methodology is described in

more detail in chapter 4.2. Here, a basis of 600 au was used, with B-splines
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Figure 7.1: A schematic illustration of the studied autoionising neon resonances. In blue and red,
the autoionising resonances of the 1Se , 1P o , and 1De symmetries are shown. The given values are
extracted from the XCHEM basis used during propagation. The 2p−23s3p resonance, which was
not included in the XCHEM calculations, is marked with a dashed line. It is taken from Schulz
et al. (1996), and shifted to align the XCHEM and reference 2s−13p resonance positions. The
area marked with diagonal stripes exhibit one- and two-photon beatings. The black arrows show
relevant near-resonant NIR transitions. Although the NIR frequency is ωNIR = 0.058 au, the arrows
connected to the 3p resonance are designed to correspond to the beatings in figure 7.4.

of order k = 7 and a node separation of 2 au starting at 7 au, following the

specifications described in the beginning of this chapter. Further, a complex

absorption potential (CAP) starting at RCAP = 400 au with a filter coefficient of

cCAP = −4i · 10−4 au was used.

7.1.1 The Cross Section

As a validation of the basis used in this work, the field-free spectrum calculated

with an XUV pump is shown in figure 7.2, together with experimental literature

results. In both cases, the background shape is comparable. Further, the Fano

profiles corresponding to the np series of resonances is clearly well represented.
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Figure 7.2: The neon spectrum. In red, the cross section calculated using only the XUV component
of the pump is shown as a function of the response frequency ωr . In blue, the corresponding value
using the full XUV-NIR pump is shown. For comparison, the black circles show experimental
literature values (Ding et al. 2016), measured using a comparable XUV pump. These have been
normalised in order to be comparable to the presented XCHEM data. The calculated data has been
shifted by 5.5e − 3 au to approximately align the 3p resonances.

The main difference between the calculated XCHEM data and experiment is the

3s3p resonance, which is missing in the data calculated here. As noted in the

introduction, this is due to the corresponding PI not being included.

Figure 7.2 also shows the corresponding spectrum when using the combined

XUV-NIR pump. While the NIR component somewhat obscures the Fano

profiles, the general shape of the spectrum is kept consistent. As the main

purpose of the low-frequency pump component is to populate the 1Se and 1De

symmetries, this is what would be desired and expected.

7.1.2 The Attosecond Transient Absorption Spectrum

In figure 7.3, the ATAS spectrum σ (ωr , τ) is shown. With the exception of the

missing 3s3p resonance, the same features discussed by Ding et al. (2016) can
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Figure 7.3: The neon ATAS spectrum. The lower panel shows the results of the ab-initio, XCHEM
calculations. The upper panel shows literature reference data from R-matrix calculations (Ding et al.
2016). The abscissa shows the response frequency ωr , while the ordinate shows the pump-probe
time delay τ . The 1P o 2s−1np series of resonances is visible, and 2s−1np, n ∈ {3,4,5} resonances
have been labeled.
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be seen:

For significant negative time-delays τ , the NIR control pulse arrives before

the pump. Due to the low probe intensity, it is incapable of exciting the atom,

leading to a τ-independent spectrum.

At significant positive delays, two main features, characteristic of ATAS

spectra, are present: Firstly, near the resonances, hyperbolic, slow-varying

fringes (corresponding to the buildup of the Fano resonance profiles) can be

seen. This is most clearly visible for the 3p and 4p resonances. Secondly,

throughout the figure, rapid hyperbolic fringes can be seen. These fringes are

indicative of interference between the population ionised directly by the probe

and that which has, after excitation by the probe, absorbed or emitted a non-

zero net amount of probe photons. For a net absorption of k photons, resonantly

enhanced by a resonance n` located at a position εn` , such a beating, appearing

at a response frequency of ωr , will have a frequency of ωτ = |ωr − εn` | ≈ kωNIR.

In order to further study these beatings, the bidimensional spectrum will be

studied.

7.1.3 The Bidimensional Spectrum

Figure 7.4 shows the logarithm of the bidimensional spectrum. Here, at large

time-delays, the spectrum was cut off before applying the fast Fourier transform.

The dashed, horizontal lines in the figure correspond to a net exchange of an

even number of probe photons. With these lines in mind, the features present

at the response energy of ωr ≈ 1.55 au are worth considering. Here, two distinct

beatings with the continuum can be seen, both enhanced by dotted lines.

Firstly, a two-photon beating resonantly enhanced by the 3p state is present.

As is shown in figure 7.1, this beating may well be resonantly enhanced by the

3s resonance. Secondly, a weaker, one-photon beating with the 3s resonance

is visible. For the version of ATAS which employs a weak XUV probe, which

was employed in chapter 6.1, no such beating would be present. In the present
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Figure 7.4: The bidimensional spectrum σ̃ (ωe ,ωτ ). The lower panel shows the natural logarithm
of the results of the ab-initio, XCHEM calculations. The upper panel shows literature reference
data from R-matrix calculations (Ding et al. 2016). The abscissa shows the response frequency
ωr , and the ordinate the Fourier frequency ωτ . Several 1P onp resonances are directly observed
and marked, while the 1Se3s and 1De3d states, also marked, are indirectly observed through
their interactions with 1P o symmetry states. The horizontal, dashed lines correspond to one- and
two-photon beatings. The diagonal, dotted lines have been added to enunciate several one-photon
beatings 3p 1P o state and nearby 1Se and 1De states, as well as one- and two-photon beatings
between the 3s 1Se and 3p 1P o states and the 1P o continuum.
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work, however, a mixed XUV-NIR pump is employed, allowing the probe to

populate the 1Se and 1De continua, giving rise to one-photon beatings.

Further more, in agreement with what was observed by Ding et al. (2016),

two local maxima indicating one-photon beatings are present at response ener-

gies ωr ≈ ε3p near the 3p resonance. As can be seen in figure 7.1, these features

are attributable to beatings with the 3s and 3d states, in correspondence to

what was concluded by Ding et al. (2016). In figure 7.4, these beatings are

emphasised with dotted lines.

7.1.4 Conclusions

To conclude, in the current study, the well-established ATAS method has been

used to study neon above the first ionisation threshold. Using a mixed XUV-

NIR pump, beatings with states not dipole-connected to the ground state are

observed. This allowed beatings between the 3p1P o resonances and the 3s1Se

and 3d1De resonances, similarly to what was observed by Ding et al. (2016). By

extending the observed region to lower energies, resonantly enhanced both one-

and two-photon beatings with the continuum were observed.

The results presented here show excellent agreement with previous experi-

ment and theory (Ding et al. 2016), and thereby further serves to validate the

XCHEM methodology.
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7.2 RABITT in the Vicinity of Multiple Resonances

The next study to be discussed herein pertains to the extension of interfero-

metric measurements – in particular reconstruction of attosecond beatings by

interference of two-photon transitions (RABITT) – to energy regions which

include multiple resonances. The study was originally published in Physical

Review Letters as Barreau et al. (2019).

Although, as noted in chapter 3.2, RABITT has been very successful in

measuring the spectral atomic phases in systems such as molecules and solids,

as well as atoms; these studies have so far been restricted to energy-regions

containing one or no resonances. Corresponding conditions are easily met

in simpler systems, like helium (Gruson et al. 2016), as well as by carefully

choosing studied energy ranges in more complex atoms, like argon (Kotur et al.

2016).

In many-electron systems, though, this is the exception rather than the rule,

as their resonances tend to be more tightly packed. For these atoms, perform-

ing accurate, full-electron, time-dependent theoretical calculations would be

needed to guide experiment. Such calculations, however, are extremely difficult

to carry out, as they require the accurate treatment of electron correlation in

the populated continuum.

For these cases, where more accurate calculations are unavailable, simpler

models, capable of filling their role, disentangling the contributions of the

different states, are highly desirable.

In the present study, RABITT is used to study the autoionising region of neon

below the second ionisation threshold, where several autoionising resonances

are present, using both accurate attosecond interferometric experiments and

ab-initio full-electron time-dependent calculations. In addition to this, a simple

model, based on the theory presented in chapter 5, has been used to successfully

disentangle the contributions of distinct resonances.
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Figure 7.5: A schematic view of the neon region, including relevant resonance energies, studied
using RABITT. The abscissa shows the state symmetry while the ordinate gives the excitation
frequency ω, where . The harmonics, HH61, HH63, and HH65, are populated using a single XUV-
APT pump photon, shown in blue; after which that population is transferred to sidebands SB62 to
SB64 with an IR photon. The harmonic and sideband positions were varied over the areas shown in
gray, by varying the driving IR frequency. This figure is here republished with modifications from
Fig. 2 in Barreau et al. (2019).

A schematic illustration of the studied region can be seen in figure 7.5.

The infrared (IR) probe frequency was varied between ωIR = 0.0262 au and

ωIR = 0.0268 au, corresponding to wavelengths of around λIR = 1700 nm. In

total, 16 driving frequencies were used in the experiment and 33 in the theory.

In the experiment, for each delay 104 laser shots were averaged. It is the

harmonics of this IR frequency that make up the extreme ultraviolet (XUV)

attosecond pulse-train (XUV-APT) which was used as the RABITT pump. The

IR probe intensity was selected as IIR ≈ 2 · 1010 W
cm2 .

Two sidebands (SBs) are considered during this study – namely SB62, and

SB64. These are populated by the nearby high harmonics (HHs) HH61, HH63,

and HH65. As the IR frequency is shifted, so are the associated harmonics

and sidebands. As is illustrated in figure 7.5, as the energy is shifted, several
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resonances become involved in the two-photon transitions. While SB62 will be

affected mainly by the 3p resonance, SB64 is affected by several resonances –

namely the 3p, 4p, and 4s ones. The experimental positions of these resonances

are shown in figure 7.5, as well as being referenced below, and are, along with

the corresponding resonance widths, taken from Schulz et al. (1996) in the case

of the 1P o symmetry and from Min et al. (2008) in the case of the 1Se and 1De

symmetries.

Given a time-delay τ , the 2nth RABITT sidebands are populated by inter-

ference between A−2n (τ) and A+
2n (τ) – the populations transferred via the lower

and upper harmonic, respectively. For each driving frequency, the sideband

signal was, after integration over an energy range 0.01 au, fitted to the equation,

equivalent to equation 3.47,

I2n (τ) =
∣∣∣A−2n

∣∣∣2 +
∣∣∣A+

2n

∣∣∣2 +
∣∣∣A−2nA+

2n

∣∣∣cos(2ωIRτ +∆φ2n) , (7.1)

where ∆φ2n = ∆φAPT
2n +∆φAt

2n contains both the phase ∆φAPT
2n related to the APT

attochirp and the atomic phase difference ∆φAt
2n. Thus, in order to derive ∆φAt

2n,

∆φAPT
2n needs to be calculated and subtracted. For the ab-initio theory, this was

done by designing the pulses so that ∆φAPT
2n = 0. For the experiment, it was

obtained from a linear fit of the phases of the oscillations of the non-resonant

sidebands as a function of energy (Mairesse et al. 2003). The calculated value,

18 as
eV , is fairly independent of the driving IR frequency and is in very good

agreement with calculations of the recombination time for the short trajectories

using Lewenstein’s (1994) model.

The physical system was theoretically described solving the time-dependent

Schrödinger equation (TDSE) according to the methodology described in chap-

ter 3.3, with the exact solution employed for the interaction component. The

propagation basis was described using the XCHEM approach, discussed in

chapter 4.2, according to the specifications laid out in the introduction to this

chapter. The XCHEM B-splines were chosen to be of order k = 7, with a node

separation of 0.8 au, and were restricted to radii between 7 au and 2000 au. The
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resonance positions calculated by XCHEM are not identical to those obtained

through literature. To compensate for this, all theoretical results presented

below have been shifted upwards in energy by 4.6 · 10−3 au. This value has

been chosen to make the theoretical and experimental 3p resonance positions

coincide.

The experimental study was performed on The Ohio State University at-

tosecond beamline, where a 1 kHz repetition rate Ti:sapphire laser (SpitFire) of

12 mJ energy was used to pump an optical parameter amplifier (HE-TOPAS).

The 1.5 mJ 60 fs idler pulses were split into two arms at the entrance of a Mach-

Zehnder interferometer with an 8 mm-diameter silver holed mirror. For the

high-harmonic generation (HHG), the outer part (of intensity I ≈ 1.1 ·1014 W
cm2 )

was focused into a CO2 (carbon dioxide) gas jet with a lens of focal length

f = 500 mm. The remaining IR is spatially filtered by an iris. The generated

XUV-APT was focused with a toroidal gold mirror in a neon gas jet in the in-

teraction region of a 1 m long magnetic bottle electron spectrometer (MBES).

The inner part of the beam is delayed by propagating in a glass wedge on a

piezoelectric translation and recombined with the XUV-APT on a 6mm diameter

silver holed mirror. Both beams were spatially and temporally overlapped in

the source region of the MBES to induce two-colour two-photon ionisation.

Finally, a simple model has been used to describe the variation of the atomic

phase difference for both SB62 and SB64, making it possible to disentangle

the phase contributions from the involved autoionising states, which in turn

allows for the extraction of information about individual resonances directly

from experiment. The model was developed according to theory described in

more detail in chapter 5. Such models are vital to interpreting interferometric

experiments in more complex systems, where accurate ab-initio calculations

are unavailable.
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Figure 7.6: A sample RABITT PES P , for a selected IR frequency of ωIR ≈ 2.65 · 10−2 au, corre-
sponding to a wavelength of λIR ≈ 1718 nm. Two spectra are shown – in the upper panel, the
experimental spectrum can be seen, whereas the middle panel contains the theoretical spectrum.
The bottom panel contains – divided by the symmetry L into L = 1 (in blue) and L ∈ {0,2} (in red) –
a cross section PL of the theoretical spectrum for a time delay of τ = 2.5 au. Lastly, several relevant
resonances have been marked. They are colour coded in the same manner as PL – according to
their symmetry. The time-delay τ is for both RABITT spectra shown on the corresponding ordinate,
whereas for all figures the abscissa gives both the photoelectron energy εe and the energy distance
εe + Ip to the ground state, where Ip is the ionisation potential. The illustrated region is chosen to
contain both studied sidebands and their respective neighbouring harmonics.
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7.2.1 The Photoelectron Spectrum

A representative RABITT photoelectron spectrum (PES) can be seen in figure

7.6, for a driving IR energy of ωIR ≈ 2.65 · 10−2 au. All such spectra were

extracted as functions of the photoelectron energy εe and time delay τ between

the pulses. The spectrum is shown both for the theoretical and experimental

case. From comparing the two, it can be concluded that the two spectra are

quite similar, as both theory and experiment display comparable harmonic and

sideband positions, as well as oscillatory frequency.

Figure 7.6 also contains the PES for a time delay of τ = 2.5 au. It is divided

by symmetry, showing in blue the 1P o symmetry, and in red the 1Se and 1De

symmetries. Since the ground state of neon belongs to the 1Se symmetry; one

would predict the harmonics, populated by a one-photon process, to be located

in the 1P o; while the sidebands, being the result of two-photon processes, to

be contained within the 1Se and 1De symmetries. As can be seen in the lower

panel of figure 7.6, this is exactly what is found in the present calculations.

One final note should be made in regards to figure 7.6. The maximum

delay between the pulses shown for the experimental value is 13.8 fs, while

the corresponding value for the theoretical data is closer to 5.44 fs. This is

due to higher time delays not being considered in the theoretical calculations,

as instead of including filters in the propagations, the total propagation time

was restricted so that the propagation was stopped before reflections could be

seen. This also required a shorter pulse length to be employed – one of 12 fs, as

opposed to the experimental one of 60 fs.

A second comparison between theory and experiment can be found in figure

7.7. It shows the XUV-APT photoelectron yield of HH63 as a function of energy,

integrated over an energy range 0.01au. Along with the experimental and

ab-initio data, the figure also shows the result of first order time-dependent

perturbation theory (TDPT)2. It was calculated by integration of the transition

2TDPT is described in appendix B.
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Figure 7.7: The one-photon photoelectron yield of HH63, near the 3p resonance, as a function of
the photoelectron energy εe , integrated in energy over a width of 0.01au. The experimental results
are marked with black dots, while the theoretical ones are shown by the fully drawn, black line. The
dashed red line has been calculated using first order perturbation theory. The respective spectra
have been normalised to be comparable.

amplitude from the ground state
∣∣∣ψ0

〉
with energy ε0 over final states

∣∣∣ψLαLε
〉

of

energy ε, belonging to the scattering channel αL of total angular momentum L,

as a sum

P (εe) =
∑

α1

∫∑εe+δ/2

εe−δ/2
dε

∣∣∣ÃXUV (ε − ε0)
∣∣∣
∣∣∣∣
〈
ψ1α1ε

∣∣∣αP̂
∣∣∣ψ0

〉∣∣∣∣
2
, (7.2)

over 1P o (i.e. L = 1) states, where ÃXUV is the frequency distribution of the XUV

vector potential, δ = 0.01 au is the integration width, α is the fine structure

constant, and P̂ is the dipole operator. The values of the operator P̂ were

identical to those used during propagation.

All three data sets in figure 7.7 display a smooth Fano (1961) profile as they

pass over the 3p resonance. In this figure as well, excellent agreement between

the theory and experiment can be seen.
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Figure 7.8: The RABITT atomic phase difference ∆φAt
2n of (a) SB62 and (b) SB64, extracted both

from experiment (black dots) and ab-initio theory (continuous black line), shown as functions of
the photoelectron energy εe . The result of two implementations of the simple model discussed in
chapter 5 is also shown: one considering only the 3p resonance (in dashed red) and one, only shown
for SB64, considering both the 3p and the 4p resonance (in dotted blue).

7.2.2 Extracted Phases

Presently consider anew the atomic phase, written as ∆φAt
2n for the SB2n. Figure

7.8 shows the energy-variance of both ∆φAt
62 (in figure 7.8a) and ∆φAt

64 (in figure

7.8b) for experiment as well as for ab-initio theory. For both sidebands, the

agreement between theory and experiment is excellent.

The results obtained here are much less pronounced than those obtained in

previous studies of helium (Gruson et al. 2016) and argon (Kotur et al. 2016).

This can be attributed to the spectral width of the involved resonances – the 3p

resonance having the largest width of Γ3p ≈ 5.9 · 10−4 au – being significantly

smaller than both the harmonic width (≈ 1.1 ·10−2 au) and the MBES resolution

(≈ 9.2 · 10−3 au). It may be noted that, due to the narrow harmonic width, the

phase variance could not be extracted via Rainbow RABITT.

In figure 7.8a, it is observed that, as the energy approaches ε3p, ∆φAt
62 de-

creases by 0.15 rad, before once again increasing to its initial value. What, then,
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causes this behaviour? Since the atomic phase (as defined in chapter 3.2.1)

corresponds to the phase difference between the two-photon matrix elements

averaged over the lower and upper harmonic, respectively; this question can be

answered by considering said matrix elements. It is thus convenient to consider

the model for two-photon matrix elements discussed in chapter 5.1.

For SB62, no resonances need be taken into account when considering in-

termediate energies close to the energy ε61 of HH61; and only one, 3p, when

considering those close to the energy ε63 of HH63. These special cases are re-

spectively described by equations 5.11 and 5.29. Thus, denoting the matrix

element to the SB2n via an intermediate energy εi asM(2)
2n (εi), and removing

the slow-varying background, the matrix elements to SB62 can be written as

M(2)
62 (εi) ∝



1 , εi ≈ ε61

ε3p (εi) + q3p

ε3p (εi) + i
, εi ≈ ε63

(7.3a)

(7.3b)

in the relevant regions, where

εn (ε) = 2
ε − εn
Γn

(7.4)

is the reduced energy variable of a resonance n with position εn and width Γn,

and qn is the corresponding Fano profile parameter. Integration over HH63

gives the expression

∆φAt
62 (εe) = −arg

∫

HH63

dεi
∣∣∣ÃIR(εe − εi) ÃXUV(εi − ε0)

∣∣∣
ε3p (εi) + q3p

ε3p (εi) + i
(7.5)

for the atomic phase of SB62, where ε0 is the ground state energy and ÃIR the

frequency-distribution of the IR probe vector potential. The result of this

equation is shown as a dashed red line in figure 7.8a, where it can be seen to
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accurately predict the variation of SB62 in the studied energy region.

Turn now to SB64, where the case is quite different. As can be seen in

figure 7.8b, as εe increases, ∆φAt
64 first increases by 0.1 rad, before decreasing

by 0.2 rad, and finally returning to its original value. This behaviour is both

significantly more complex than and qualitatively different from that of SB62.

Had the only relevant resonance been that found in the shared harmonic (3p in

this case), as was the case in Gruson et al. (2016) and Kotur et al. (2016), ∆φAt
64

would have been an approximate mirror image of ∆φAt
62. This behaviour follows

directly from the definition of the ∆φAt
2n, and the model-predicted behaviour of

∆φAt
64 considering only the 3p resonance is shown as a dashed red line in figure

7.8b. It is capable of accurately model the general behaviour of ∆φAt
64 only for

εe < 0.92 au.

Hence, it can be concluded that more resonances are relevant in describing

the behaviour of ∆φAt
64. In order to avoid having to use an overly complex

expression for the model, it is convenient to restrict the problem to the case

when only one resonance element is considered in either harmonic path.

Since, for the lower values of εe considered, the qualitatively correct be-

haviour of ∆φAt
64 can be predicted considering only the 3p resonance, this is

the only resonance to be considered when calculating M(2)
64 (εi) for εi ≈ ε63.

Assuming that the same approximation can be made with the 4p resonance

for the upper harmonic and, analogously to the case ofM(2)
62 (εi), removing the

background from equation 5.29 gives the expressions

M(2)
64 (εi) ∝



ε3p (εi) + q3p

ε3p (εi) + i
, εi ≈ ε63

ε4p (εi) + q4p

ε4p (εi) + i
, εi ≈ ε65

(7.6a)

(7.6b)
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forM(2)
64 (εi). From this, the atomic phase can be calculated as

∆φAt
64 (εe) = arg

∫

HH63

dεi
∣∣∣ÃIR (εe − εi) ÃXUV (εi − ε0)

∣∣∣
ε3p (εi) + q3p

ε3p (εi) + i

− arg
∫

HH65

dεi
∣∣∣ÃIR (εe − εi) ÃXUV (εi − ε0)

∣∣∣
ε4p (εi) + q4p

ε4p (εi) + i

. (7.7)

This behaviour is illustrated with a blue dotted line in figure 7.8b. Unlike the

red dashed line, it correctly predicts the qualitative behaviour of ∆φAt
64. Thus it

can be seen that the behaviour of ∆φAt
64 can be explained by considering only the

3p and 4p resonances. Further discrepancies between the model and ab-initio

results can most likely be attributed to contributions from the 4s resonance.

The idea that the main contributions to the phase characteristic derives from

the 3p and 4p resonances is further bolstered by figure 7.9, which compares the

above presented XCHEM and experimental results with non-physical XCHEM

calculations where a significant part of the involved resonances have been

artificially removed. In figures 7.9a and 7.9c, it can be seen that removing both

the 3p and the 4p resonance causes significant changes to the sideband phase,

unlike what is seen when removing the 4s resonance, shown in figure 7.9b.

Indeed – removing the 4s gives almost the same behaviour for the phase as in

SB62!

7.2.3 Conclusions

In the present study, RABITT has been used to determine the spectral phases

of neon using XUV-IR attosecond interferometric experiments as well as full-

electron ab-initio calculations. This was done in energy regions where several

resonances are present, resulting in a complex energy-dependence of the atomic

phase. The experimental and theoretical results show excellent agreement,

validating the XCHEM methodology used to describe the electron correlation
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Figure 7.9: In black, the RABITT atomic phase difference ∆φAt
64 of SB64 is shown for experiment

(black dots) and XCHEM theory (continuous black line), identically to figure 7.8b. In green, the
corresponding result is shown for artificial XCHEM calculations, where the majority contribution
of the (a) 2s−13p, (b) 2s−14s, and (c) 2s−13p resonance, respectively, has been removed. As the
resonances were mixed with the continuum, they could not be cleanly removed, and significant
components of all resonances remain in all figures. Thus, this should be seen only as a qualitative,
not a quantitative picture of resonance influences.

in the studied ionisation continuum. As this is a common scenario in many-

electron systems, the development of theory such as XCHEM – capable of

describing these systems – is vital.

Further, in systems where ab-initio theory is unavailable, simpler models

are needed to interpret and guide experiments. Despite the complex behaviour

of the atomic phase observed, here one such model has been used to accu-

rately describe and disentangle the contributions of the autoionising resonances

involved.

This work opens the way to the reconstruction of resonant electronic wave

packets coherently produced by two-photon ionisations in multi-resonance

atomic regions. Thereby it extends the range of applicability of reconstruction

methods to more complex cases than those previously available.
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Chapter 8
Argon

The third and final atomic system discussed in this work is argon. As it was

treated before the XCHEM approach, discussed in chapter 4.2, was prepared for

accurate ab-initio propagations, no ab-initio calculations are presented in this

chapter. Instead, the study presented in chapter 8.1 uses the interferometric

models discussed in chapter 5 to study the anisotropy of the atomic time-delay

in argon.

The valence shell of argon has the configuration 3s23p6. Below the second

(N = 2) threshold, the ionisation channels 3s23p5 with parent ion orientation

mPI ∈ {−1,0,1} are open, and the autoionising 3s3p5n` are relevant, where n

and ` respectively denote the excited electron principal quantum number and

angular momentum.
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8.1 Anisotropic Time Delays Near a Resonance

Recent multicolour photoelectron momentum measurements have been used

to extract angularly resolved phases and amplitudes of ionising electron wave

packets (Laurent et al. 2012; Villeneuve et al. 2017). One study of photoemission

delays in helium (Heuser et al. 2016) showed almost no angular dependence,

except at large angles relative to the laser polarisation axis. While one-photon

ionisation in helium only opens one ionisation continuum, the study employed

a multicolour reconstruction of interference between two-photon transitions

(RABITT) scheme, resulting in multiple final state symmetries. The observed

anisotropy was therefore attributed to phase differences between final interfer-

ing quantum states.

The present study considers the effects of correlation effects on the angu-

larly resolved atomic time delay. This is done using extreme-ultraviolet (XUV)

infrared (IR) pump-probe RABITT measurements of the region of argon contain-

ing the 3s−1n` (below denoted n`) series of autoionising resonances. Measured

photoelectron angular distributions (PADs) obtained by two-photon absorp-

tion are in excellent agreement with previous, static, synchrotron data. The

presented results show that the photoemission delays vary strongly with the

emission angle, which is caused by interference between ionisation channels of

distinct angular momenta. At resonance energies, the relative strength of these

channels varies sharply, causing strong variations in the angular and energy

dependence of measured ionisation delay. The study was originally published

in Nature Communications as Cirelli et al. (2018).

The data presented herein was obtained in two distinct experiments, one

carried out at the Swiss Federal Institute of Technology in Zurich (ETH) and

one at Lund University. In both experiments, a Ti:Sapphire laser was used to

generate infrared pulses with an approximate 30 fs duration and an optimal

center wavelength of λIR = 780 nm, corresponding to a frequency of ωIR =

5.84 · 10−2 au. The Lund experiment also allowed the wavelength to be tuned
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8.1. ANISOTROPIC TIME DELAYS NEAR A RESONANCE

up to λIR = 794 nm, corresponding to a frequency of ωIR = 5.74 · 10−2 au.

The IR beam was split into two beams of distinct intensity. The weaker

part had an intensity of 3 · 1011 W
cm2 , low enough to be approximated in the

weak-field limit, and was used as a probe. The more intense part was focused

into an argon gas target for the purpose of high-harmonic generation (HHG),

resulting in an extreme ultraviolet attosecond pulse train (XUV-APT) with

central frequency 1.286 au and spectral envelope full width at half-maximum

(FWHM) of 0.441 au, composed of the high harmonics (HH) of the IR. After the

HHG, the IR component is removed using an aluminium filter, resulting in a

pure XUV pulse.

Both interferometer arms were stabilised during the experiment in order

to minimise sources of systematic errors and ensure the stability of the delay

in the attosecond range. After recombination, the IR and XUV-APT propagate

collinearly onto a toroidal mirror which focuses them onto an argon gas jet

inside an electron spectrometer.

In the ETH setup, the spectrometer contains a reaction microscope detector

(Ullrich et al. 2003b), which allows for the retrieval of the full 3D momentum

vector in coincidence for each emitted electron over the full 4π solid angle.

The Lund experiment used a velocity-map imaging (VMI) detector (Ep-

pink et al. 1997) to measure the projection of the electron distribution onto

a photo-sensitive detector. This technique is well adapted to the geometry of

the interaction, when the XUV and IR are chosen to have a common polari-

sation axis, perpendicular to the detector axis. The 3D electron momentum

distributions are obtained by inversion of the 2D projections using the pBasex

algorithm (Garcia et al. 2004).

Each ETH value presented is measured using 15 independent datasets, while

10 were obtained in the Lund experiment. Error bars indicate the standard

deviation.

Figure 8.1 show measured XUV-APT one-photon spectra from the ETH

(in red) and the Lund (in blue) experiments. The spectra span the n` series

of autoionising resonances. More specifically, HH17 is resonant with the 4p
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Figure 8.1: The spectral distributions of the Lund (blue) and ETH (red) experimental RABITT
pump fields. Several 3s−1n` resonances below the second threshold have been marked with black,
vertical dashed (3s−14s) and continuous (3s−1np) lines. The corresponding parent ion (PI) has
a valence configuration of 3s3p6, and the threshold is marked with a thick black line. For both
experiments, HH17 is resonant with one of the resonances marked in green – 4p (at 0.978 au) for
ETH and 5p (at 1.029 au) for Lund. The abscissa shows the XUV photon energy ωXUV and the
ordinate the photon probability distribution Pλ. This figure is here republished with modifications
from Fig. 1 in Cirelli et al. (2018).

resonance in the Lund experiment and with the 5p in the ETH experiment.

Below, the influence of these resonances will be discussed.

The two-colour photoelectron spectrum measured by the ETH setup is

shown in figure 8.2. In figure 8.2a, the distribution of photoelectrons by emis-

sion energy εe is shown.

In RABITT, the atomic emission delay τAt
2n of the 2nth sideband can be

calculated as

τAt
2n = −φ

At
2n+1 −φAt

2n−1
2ωIR

, (8.1)
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Figure 8.2: RABITT spectra obtained using the ETH experimental setup. The photoelectron count
P is shown resolved (a) by photoelectron energy εe , (b) by both εe and time delay τ , and (c) by both
εe and emission angle θ. This figure is here republished with modifications from Fig. 2 in Cirelli
et al. (2018).

where φAt
2n±1 – the atomic phase – is the argument of the two-photon matrix

element averaged over the paths via HH2n±1.

The interference of the two paths to the 2nth sideband (SB) SB2n can be

studied to measure τAt
2n. This is done by fitting the sideband pump-probe

time-delay (τ) oscillation to the equation, equivalent to equation 3.47,

I2n (τ) =
∣∣∣A−2n

∣∣∣2 +
∣∣∣A+

2n

∣∣∣2 +
∣∣∣A−2nA+

2n

∣∣∣cos
(
2ωIR

[
τ − τAt

2n − τATP
2n

])
, (8.2)

where τATP
2n is the delay associated with the attosecond pulse train (APT) har-

monic attochirp and A±2n is the amplitude of the transition via HH2n±1. The

oscillations predicted by equation 8.2 can be seen for the sidebands in figure

8.2b, where the photoelectron spectrum is resolved by τ .

In this section, the angular dependence of τAt
2n is studied. As such, the

photoelectron spectrum is resolved not only by energy and pump-probe delay,

but also by the emission angle θ. Figure 8.2c shows the spectrum resolved by
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Figure 8.3: Angular photoelectron distributions and βi parameters. In (a) and (b) the photoelectron
angular distributions (PADs) of electrons corresponding to ETH reaction microscope measurements
of HH17 and SB16 energies, respectively, are illustrated with red dots. The solid green lines
correspond to the fit of the sinusoidal HH and SB oscillations, multiplied by sin(θ) to account for
the detector geometry. In (c) and (d), βi parameters are shown , resolved by photoelectron (εe) as
well as the excitation energy (εn for the nth harmonic or sideband) and εe), are shown; measured in
the ETH (red) and Lund (blue) experiments, as well as taken from synchrotron data (black dots)
taken from (Southworth et al. 1986). In (c), β2 is shown for the harmonics, whereas in (d) β2
(solid lines) and β4 (dashed lines) is given for the sidebands. This figure is here republished with
modifications from Fig. 3 in Cirelli et al. (2018).

angle and energy.

8.1.1 Delay-Integrated Asymmetry Parameters

Denoting the inclination with respect to the direction of the field θ and the

corresponding azimuth ϕ, the differential solid angle has the expression dΩ =

sin(θ)dθdϕ. This allows the angularly resolved photoelectron spectrum to be
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written as a function ∂P
∂Ω . It can be expanded as

∂P
∂Ω

=
P

4π

[
1 +

∑2`max

i=1
βiPi(cos(θ))

]
(8.3)

into a series of Legendre polynomials Pi of order i with corresponding coeffi-

cients βi , where `max is the maximum electron angular momentum considered

(Laurent et al. 2012). As the photoelectron can be expected to be symmetric

around the axis of the linearly polarised field, the βi parameters can be assumed

to be zero for odd values of i.

The even βi parameters can be determined from the PES. Figures 8.3a and

8.3b show the PADs obtained from integration of the PES over an energy width

of ∼ 2.6 · 10−2 au. The green lines show the fit of the distributions (equation 8.3

being multiplied by sin(θ) to compensate for the factor in the solid angle).

The fitted βi coefficients are also shown in figure 8.3 – in 8.3c for the one-

electron case (extracted from the harmonics) and in 8.3d for the two-electron

case (extracted from the sidebands). For the one-photon case, only β2 is shown,

whereas both β2 and β4 are shown for the two-photon case. Both the ETH (red)

and Lund (blue) data compares well to previous synchrotron results taken from

Southworth et al. (1986), validating the results of the present study.

For both cases (the one-photon case in figure 8.3c and the two-photon case

in figure 8.3d) the 4p resonance strongly influences the β2 parameter. This can

be seen by observing HH17 and SB16 in the Lund experiment. The β2 variation

of SB16 is larger than that of HH17, and may be enhanced by the 4s resonance.

The effect on β2 of the 5p resonance, on the other hand, is only weakly observed,

resulting in a small shift of SB16 in the ETH experiment.

It should be noted that the large HH and IR bandwidths may obscure the

effect of the resonances. The 4p resonance width of 2.94 au being significantly

larger than the 1.05 au width of the 5p resonance (Berrah et al. 1996) would

explain the difference between the relative strength of the effect caused by the

two resonances.
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Figure 8.4: The time-dependent behaviour of the β2 parameters. In 8.4a, the dependence of β2
on the time-delay τ is shown for HH17 (yellow), SB14 (green), SB16 (purple), SB18 (blue), and
SB22 (black); as extracted from the Lund experiment. In 8.4b, the dependence of the β2 oscillatory
amplitude on energy is given for both the harmonics (yellow) and sidebands (blue). This figure is
here republished with modifications from Fig. 4 in Cirelli et al. (2018).

8.1.2 Delay-Resolved Asymmetry Parameters

Although the pump-probe methods discussed here provide lower energy res-

olution than the above presented synchrotron data (Southworth et al. 1986),

they have the advantage of being able to provide time-resolved information. In

figure 8.4a, the time-dependent behaviour of β2 is shown, as a function of the

pump-probe time-delay τ . Both the sideband and harmonic β2 parameters os-

cillate with the time-delay, both with the same frequency of 2ωIR, although with

opposite phase – it being the case in RABITT that sideband maxima coincide

with harmonic minima and vice versa. Although the data presented is from the

Lund experiment, similar behaviour was observed in the ETH experiment.

The amplitude of the beatings as a function of energy can be seen in figure

8.4b. The sideband β2 oscillation amplitude decreases with energy, while the
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corresponding parameter for the harmonics remains approximately constant.

8.1.3 Angularly Resolved Atomic Delays

Figure 8.5 shows the dependence of the atomic time delay on the emission

angle θ – both for the case of SB14 (in figure 8.5a), involving no resonances;

and for that of SB16 (in figure 8.5b), where the upper harmonic contains the

intermediate 5p resonance. According to the method discussed by Heuser et al.

(2016), the atomic time delay is derived by filtering detected photoelectrons at

different emission angles θ. For each value of θ, the sideband population was

integrated over a small energy interval of ∼ 2.6 · 10−2 au and fitted to equation

8.2 in order to obtain τ2n. Thereafter, τAPT
2n was subtracted in order to calculate

τAt
2n. The delay was calculated relative to a reference calculated for angles up to

30◦ – an range considered large enough to avoid large errors in the reference

phase.

The green lines in figure 8.5 are based on the model discussed in chapter 5.

Their angular dependence is calculated according to equation 5.39, as

∆φAt
2n

(
Ω̂

)
= arctan

2
∣∣∣A−2n,1A+

2n,1

∣∣∣sin
(
∆φ2n,1

)
+
∣∣∣A−2n,0A+

2n,0

∣∣∣sin
(
∆φ2n,0

)

2
∣∣∣A−2n,1A+

2n,1

∣∣∣cos
(
∆φ2n,1

)
+
∣∣∣A−2n,0A+

2n,0

∣∣∣cos
(
∆φ2n,0

) , (8.4)

where A±2n,mF
and ∆φ2n,mF

are the angularly dependent partial transition ampli-

tudes A±2n and transition phases ∆φ2n, restricted by the final electron magnetic

quantum number mF. In calculating A±2n,mF
, the pulse envelopes were assumed

to be Gaussian.

As no resonances are present in the case of SB14, the matrix element to the

final state of energy εF and magnetic quantum number mF, via an intermediate

energy εi , is calculated as

M(2)
F,mF

(εi) ≈
∑

αI

OmF
αI

(εF) OεFαI
0

εi − εF + i0+ (8.5)
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Figure 8.5: The angularly resolved emission delays τAt
2n for (a) SB14 and (b) SB16, relative to those

with an emission angle of θ ∈ [0◦,30◦]. The delays are extracted from ETH (red, λIR = 789 nm) and,
in (a), Lund (blue, λIR = 789 nm) data. The error bars indicate the standard deviation, obtained
using a series of independent measurements. The green lines show the calculated delays calculated
using the theory described in chapter 5. Unlike the dashed lines, which treats the intermediate and
final states as smooth continua the solid one takes the 5p resonance into account. This figure is here
republished with modifications from Fig. 5 in Cirelli et al. (2018).

by taking all intermediate continua αI into account. The one-photon matrix ele-

ments OεIαI
0 and OmF

αI
(εF) were calculated using a random phase approximation

with exchange (RPAE), excluding resonant contributions (Dahlström et al. 2014,

2012b).

In the case of SB16, the intermediate 5p resonance is present in HH17. As

such, the upper-harmonic matrix element transversing the intermediate scat-

tering continua containing 5p resonance was calculated according to equation

5.29, giving the expression

M(2)
F,αI

(εi) =
ε5p (εi) + q5p

ε5p (εi) + i

OmF
αI
OαI

0

εi − εF

, (8.6)
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where the 5p Fano profile parameter q5p, along with the 5p resonance position

ε5p and width Γ5p, used for calculating the reduced energy variable

ε5p (ε) = 2
ε − ε5p

Γ5p
, (8.7)

was derived using a multiconfigurational Hartree-Fock (MCHF) approach

(Carette et al. 2013).

For both sidebands, τAt
2n becomes more and more negative as θ increases.

This same tendency was observed by Heuser et al. (2016) for the case of helium.

The model accurately reproduces the experimental data. The dependence of

τAt
2n on θ is much greater for SB14 than SB16. Removing the 5p resonance in

the model, the θ-dependence of τAt
2n decreases, as indicated by the dashed line.

Hence the resonance is needed to quantitatively describe the behaviour of the

delay.

8.1.4 Angularly and Spectrally Resolved Atomic Delays

In figure 8.6, the values of τAt
2n are presented not only resolved by angle, but

also by energy. Analogously to figure 8.5, both the cases of SB14 (in figure 8.6a)

and SB16 (in figure 8.6b) are considered. The data emanates from the Lund

experiment, where λIR was varied from 780 nm to 794 nm, corresponding to

a change in ωIR between 5.84 · 10−2 au and 5.74 · 10−2 au. The energy range

was chosen to have HH17 traversing the 4p resonance, allowing it to affect SB16.

Here, a different normalisation than that used for 8.5 is applied: Each wave-

length is normalised independently with respect to the angularly integrated

delays obtained by analysing SB14 and SB22, similarly to the procedure used by

Kotur et al. (2016).

The two sidebands display qualitatively different behaviour. In 8.6a, SB14

can be seen to vary only slowly with energy, while, like in figure 8.5, becoming

more and more negative as the emission angle increases.
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Figure 8.6: The emission delays of (a) SB14 and (b) SB16, measured as part of the Lund experiment,
resolved by energy by varying the IR frequency ωIR. In (b), the 3s−14p resonance is marked, albeit
shifted by a factor 16/17 to account for it appearing in HH17. The error bars represent the standard
deviation, obtained using a series of independent measurements. The ordinate shows both the
electron emission energy εe and the excitation energy ε2n of the 2nth harmonic. This figure is here
republished with modifications from Fig. 6 in Cirelli et al. (2018).

The behaviour of SB16 is significantly more complex. As the energy passes

over the 4p resonance, a sharp variation of the delay is observed, which would

be expected due to the rapid phase shift characteristic of a Fano profile (Carette

et al. 2013). The small magnitude of the shift as compared to that reported by

Kotur et al. (2016) may be explained by the resonance being obscured due to

the large bandwidth of the pulses utilised in the present study.

Interestingly, the angular dependence of the emission delay is here seen

to vary strongly with energy in the vicinity of a resonance. The illustrated

emission angle curves all appear to cross paths at sideband energies around

ε16 = 0.926 au. This behaviour is discussed in more detail below.
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8.1.5 Ionisation Paths and Angle-Dependent Atomic Delays

In order to provide a qualitative explanation of the angularly resolved data in

the vicinity of a single intermediate resonance presented above (in figure 8.6b), a

model based on simple arguments will presently be considered. The anisotropic

delay of the emitted electron is theoretically calculated by averaging the angle-

resolved RABITT probability over parent ion (PI) orientations (mPI ∈ {−1,0,1}
between the first and second threshold of argon). For the present discussion,

however, it suffices to consider the case of mPI = 0.

Figure 8.7a and 8.7b show, respectively, the amplitude and argument of the

one-photon matrix elementM`IεI
from the 3p (ground) state to the continuum

of angular momenta `I ∈ {0,2} and energies εI in the vicinity of the 4p resonance.

The data has been obtained from a multiconfiguration Hartree-Fock (MCHF)

calculation, taken from Carette et al. (2013).

Far from the 4p resonance, the dεI channel is dominant with a factor ∼
5 in amplitude. Only in the neighbourhood of the 4p resonance can it be

seen to decrease in amplitude sufficiently for sεI channel to dominate. As the

different scattering channels have different angular distributions, the coherent

interference of the two channels changes will affect the geometric properties of

the emitted photoelectron. The total one-photon matrix element can thus be

written as
M(1) (εI,θ) ∝ M(1)

0 (εI) × Y 0
0 (θ)

− M(1)
2 (εI) × Y 0

2 (θ)
(8.8)

for a given θ and εI, where Ym` (θ) is the spherical harmonic associated with the

angular momentum ` and magnetic quantum number m.

Figure 8.7c showsM(1) for several values of θ. At small (θ ∈ {0◦,40◦}) and

large (θ = 70◦) values of θ, the phase follows the same trend of the d symmetry,

while in-between (θ = 55◦) it follows that of the s symmetry. This can be

understood when considering that θ = 55◦ is close to ”the magic angle” of

θ ≈ 54.7◦, for which Y 0
2 (θ) is zero (illustrated by the subfigure insert). Near the
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Figure 8.7: Amplitudes and phases for the one- and two-photon transition matrix elements from
the 3s−14p state, respectively denotedM(1) andM(2), calculated using a simple model. In (a) and

(b), the (a) amplitude and (b) argument of the partial one-photon matrix elementM(1)
`I

from the 3p
state to the intermediate state of angular momentum `I and energy εI are shown. Both potential
angular momenta are considered, s (`I = 0) in blue and d (`I = 2) in red. In (c), the phase of the same
matrix element, unresolved by symmetry, is shown for several values of the emission angle θ. In
(d), the corresponding phases of the two-photon matrix element are shown. In both (c) and (d), the
angular distributions for several relevant spherical harmonics Ym` (θ) are shown. The abscissa of all
figures shows the energy ε17 of HH17, which traverses the 4p resonance as shown by the dotted
lines. This figure is here republished with modifications from Fig. 7 in Cirelli et al. (2018).

150



8.1. ANISOTROPIC TIME DELAYS NEAR A RESONANCE

resonance, at HH17 energy ε17 ≈ 0.978 au, the amplitude ofM(1)
2 is very small.

For this reason,M(1) approachesM(1)
0 and the angular dependence disappears.

As can be seen in figure 8.7c, this causes the curves for the different angles to

cross, similarly to what was observed in figure 8.6b.

This study aims to determine the angular dependence of atomic photoe-

mission delays using the RABITT technique. RABITT, however, considers

two-photon matrix elements, corresponding to a different symmetry than the

one-photon ones which have been treated in this section so far. Three different

combinations of intermediate (`I) and final (`F) angular momenta are possible:

(`I, `F) ∈ {(0,1) , (2,1) , (2,3)}. With this in mind, the two-photon matrix element

can be written as a sum of the partial matrix elementsM(2)
`F,`I

(εI) as

M(2) (εF,θ) ∝M(2)
3,2 (εI)Y

0
3 (θ) +

[
M(2)

1,2 (εI) − M(2)
1,0 (εI)

]
Y 0

1 (θ) , (8.9)

analogously to equation 8.8. As the atomic phase φAt
2n±1 is defined as the argu-

ment of the two-photon matrix element (averaged over the intermediate states,

i.e. over HH2n±1), the angular dependence ofM(2) (εF,θ) also implies an angular

dependence of φAt
2n±1(εF,θ).

In order to further investigate this matrix element, it is convenient to first

treat the simple, non-resonant case. The atomic phase φAt
2n = φcc

2n +φ
η
2n can be

divided into two components – one (φ
η
2n) corresponding to the scattering phase

of the intermediate state and one (φcc
2n) to the IR continuum-continuum transi-

tion. The scattering phase varies only slowly with energy when no resonance

is present (Marante et al. 2017b), causing the emission and absorption path

components to cancel each other out. Hence, φcc
2n is dominant.

The upper (φcc,+
2n ) and lower (φcc,−

2n ) components of φcc
2n can be estimated

using Wentzel-Kramers-Brillouin (WKB) wavefunctions (Heuser et al. 2016).

Within this approximation, the continuum-continuum phases are independent

of angular momentum and (approximately) of energy (i.e. φcc,−
2n ≈ −φcc,+

2n , where

the sign difference results from the difference of absorption versus emission).

This causes φAt
2n to completely lack angular dependence.
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Figure 8.8: Theoretical continuum-continuum phases φcc for argon for absorption (red) and
emission (blue) of an IR photon, calculated using two-photon matrix elements. The curves are
shown both for the p (solid) and the f (dashed) symmetry, as well along the polarisation axis ẑ of
the field (dotted). This figure is here republished with modifications from Supplementary Figure 1
in Cirelli et al. (2018).

The WKB approximation works well for high kinetic energy. This is shown

in figure 8.8, as it contains the channel-resolved continuum-continuum phases

of argon. They were calculated by subtracting the one-photon matrix element

phases from the two-photon ones (the matrix elements being calculated ac-

cording to the theory described in Dahlström et al. [2014]). The figure shows

remarkable agreement with previous exact hydrogen calculations (Dahlström

et al. 2013), as the magnitudes of the absorption phase (φcc,−
2n ) are slightly larger

than those of the emission one (φcc,+
2n ), and

∣∣∣φcc,±
2n

∣∣∣ decrease slightly with final

angular momentum close to the threshold.

Presently consider the case of a single intermediate resonance, which can

be exemplified by (ignoring the 4s resonance) SB16, as HH17 overlaps the 4p

resonance. Neglecting the angular dependence of the continuum-continuum

component of the atomic phase, the phase φAt,−
16 of the path via HH15 can be

used as a reference phase.
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By further assuming that the two-photon matrix element is proportional

to the one-photon one (i.e. that ∀`F :M(2)
`F,`I
∝M(1)

`I
), the two-photon ionisation

phases have been calculated, and are shown in figure 8.7d. For the two-photon

case, the angle follows the pattern of the d symmetry, apart for at θ = 40◦, where

Y 0
3 goes to zero.

Separating it from the case of the one-photon phase presented in figure 8.7c,

the two-photon phase is very different to that of the s channel (the red curve in

figure 8.7b) for θ = 40◦. Instead, it is comprised by the sumM(2)
3,2(εI) +M(2)

1,2(εI)

of the terms associated with the Y 0
1 term in equation 8.9. Like in the one-

photon case, the phases cross at the resonance energy, when the intermediate d

transition goes to zero.

Although this model is not capable of explaining the complex behaviour of

the experimental data, that is not its purpose. Rather, it illustrates the principle

by which interference between ionisation via different symmetries influences

the angular dependence of the photoemission delays.

8.1.6 Conclusions

In the present study, two-colour XUV-IR RABITT measurements have been

used to extract time-dependent as well as angularly and energetically resolved

atomic delays in argon. The XUV spectra were chosen to populate the energy

region containing the 3s−1n` series of autoionising resonances. The 3s−14p

and 3s−15p resonances in particular can be seen to have a clear effect on the

measured atomic delays. The 3s−14p resonance was also, along with the 3s−14s

one, observed to have an impact on the anisotropy parameters of the measured

spectrum. This is not the case for the 3s−15p resonance, which is significantly

narrower than the 3s−14p one.

Further, the results presented demonstrate the sharp phase-distortions char-

acteristic of resonant continua; which, as discussed in chapter 3.2.1, prevent

the interpretation of the atomic delay as a Wigner delay. In the present study,

these distortions are shown to vary with the photoelectron emission angle. This
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anisotropic behaviour can be modeled by using a simple model based on an ex-

tension of Fano formalism for resonant continuum to two-photon transitions. In

the context of this model, the resonances may be artificially removed, showing

that they serve to greatly increase the delay anisotropy.

The angular dependence of the phenomena studied here can be explained

as being the result of the coherent interference between several open ionisation

channels. Such variations are enhanced near the resonances, where the matrix

elements associated with the different channels undergo sharp changes.
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Chapter 9
Conclusions

This thesis considers the time-dependent, attosecond electron dynamics of

atomic systems. Such dynamics are a highly important avenue of study, as

electron movement is a driving force in chemical reactions. In order to study

such dynamics, a pump-probe approach can be employed – by exposing a

system to two distinct laser pulses, separated in time by a variable delay, time-

dependent phenomena may be probed. In particular, two pump-probe methods

were considered as part of this thesis.

The first method employed is what is known as attosecond transient absorp-

tion spectroscopy (ATAS), which conventionally uses a short extreme ultraviolet

(XUV) pump and a low-frequency, few-femtosecond probe. A well established

method, with an analogous femtosecond counterpart, ATAS is capable of track-

ing time-resolve electron dynamics and reconstruct electronic wave packets.

ATAS has previously been used to study helium below the second ionisation

threshold (Argenti et al. 2015; Ott et al. 2014). This was done using accurate,

full-electron, ab-initio pump-probe calculations, implemented using a B-spline

basis. Here, a similar theoretical study – using similar pulse parameters and

the same basis – was undertaken to probe the same atom above the second

threshold, where several ionisation channels are open.
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With these pulse parameters, it was possible to induce resonant one-photon

transitions between the 3s4p 1P o resonance and lower 3`2 1Se and 3`2 1De

states, where ` is the angular momentum. Further, two-photon beatings be-

tween the 3s4p 1P o and 3s4p 1P o resonances and the lower 1P o continuum

were observed, showing the formation of a probe-induced, multichannel, two-

electron correlated wave packet. Similarly to was observed to be the case below

the second ionisation threshold, it is thus possible to control the multichannel,

two-electron correlated wave packet.

Further, it can be concluded that the opening of additional ionisation chan-

nels should pose no major challenge compared to the single-channel case. The

only features qualitatively different from what was observed below the second

threshold were two-photon beatings between autoionising resonances and the

nonresonant continuum. One complication that was observed, however, is the

difficulty of unambiguously attributing certain features to specific processes.

This may be solved by the addition of a low-frequency component to the pump.

A second atomic system studied using ATAS as part of this thesis is neon. In

this case, a two-colour pump was indeed used, the XUV being overlaid with a

near infrared (NIR) field of the same frequency as the control pulse. This gave

rise to one-photon beatings between the 2s−13p 1P o autoionising resonance and

the nearby 2s−13s 1Se and 2s−13d 1De states.

The study was undertaken using accurate, full-electron, ab-initio pump-

probe calculations, with a basis created through the newly developed XCHEM

methodology. A previous study (Ding et al. 2016) used a mix of experiment and

R-matrix theory to carry out a study with similar laser parameters, observing

the same one-photon beatings. The agreement between previous literature

data and the current study can be taken as providing validation to the XCHEM

methodology.

The results presented here also show signs of one- and two-photon beatings

between the 1P o continuum and higher resonances, like what was observed

for helium. More specifically, the one-photon beatings were enhanced by the

2s−13s 1Se resonance, and the two-photon ones by the 2s−13p 1P o resonance.
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These were not observed in the reference study, which looked only at higher

energies.

The second pump-probe method considered herein is reconstruction of

attosecond beatings by interference of two-photon transitions (RABITT); which

uses a train of extreme ultraviolet attosecond pulses (XUV-APT) as a pump,

consisting of the odd harmonics of a low-frequency probe, in order to consider

the interference between different ionisation paths. It is capable of obtaining

photoemission delays of the order of hundreds of attoseconds.

Using the aforementioned time-dependent XCHEM implementation, a RA-

BITT study of neon was also undertaken as part of this thesis. This was done

in multi-resonance energy-regions of neon, resulting in a complex energy-

dependence of the measured phases. Both experimental and theoretical results

have been presented, showing excellent agreement, and further validating the

XCHEM methodology.

Multi-resonance regions have previously not been available to RABITT, due

to the difficulty of accurately modeling the associated electron correlation,

which would be needed for an accurate theoretical description, necessary to

guide experiment. This study thus opens the way for reconstruction of resonant

electronic wave-packets coherently produced by two-photon ionisation in such

regions, extending the applicability of reconstruction methods such as RABITT.

In order to further understand the contributions of the different states,

a simple model, based on an extension of the Fano description of resonant

continua to two-photon transitions, was employed. Despite its simplicity, it

was capable of accurately predicting the behaviour of the measured spectral

phases, and thereby disentangling the contributions of the different involved

resonances. Such models are even more useful when more accurate ab-initio

calculations are unavailable.

Such was the case for the final study presented in this thesis, which con-

sidered the angularly and energetically resolved emission delays in argon near

the 3s−1n` series of resonances using RABITT. Both the 3s−15p and, especially

strongly, the 3s−14p resonances were seen to have a clear effect on the measured
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atomic delays, and their angular dependence. The 3s−14p resonance was also,

along with the 3s−14s one, observed to have an impact on the anisotropy param-

eters of the measured spectrum. This was not the case for the 3s−15p resonance,

which is significantly narrower than the 3s−14p one.

Although the phase varies slowly with energy in smooth continua, it under-

goes dramatic changes when a resonance is introduced. These distortions are

shown to vary with the photoelectron emission angle.

The model discussed above in the context of neon also here manages to

predict the behaviour of the emission delays. In the context of this model,

the resonances may be artificially removed, showing that they serve to greatly

increase the delay anisotropy.

The observed angular dependence of the emission delays can be explained as

the result of the coherent interference between several open ionisation channels.

Such variations are enhanced near the resonances, where the matrix elements

associated with the different channels undergo sharp changes.
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Esta tesis trata de las dinámicas electrónicas de attosegundo de sistemas atómicos.

Como el movimiento de electrones es la fuerza motriz de las reacciones quı́micas,

el estudio de este tipo de dinámicas resulta muy atractivo. Para estudiar este

tipo de dinámicas, se pueden utilizar métodos de bombeo y sonda; considerando

dos pulsos de láser distintos, separados en el tiempo con un retraso variable,

permitiendo la investigación de fenómenos dependientes del tiempo. En esta

tesis, dos métodos de bombeo y sonda en particular se han empleado.

El primer método empleado se conoce como espectroscopı́a de absorción

transitoria de attosegundos (ATAS), y como norma general usa un pulso de

bombeo corto de radiación ultravioleta extrema (XUV) y una sonda de baja

frecuencia y de algunos femtosegundos. Un método sólidamente establecido,

con un equivalente análogo en la fı́sica de femtosegundos, ATAS es capaz de

rastrear dinámicas electrónicas resueltas en el tiempo y reconstruir paquetes de

ondas electrónicos.

ATAS ya ha sido usado para estudiar el helio por debajo del segundo umbral

de ionización (Argenti et al. 2015; Ott et al. 2014). Esto se hizo usando cálculos

ab-initio precisos, considerando todos los electrones y utilizando una base de

B-splines. Aquı́ un estudio teórico semejante – usando semejantes parámetros
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de pulso y la misma base – se realizó para investigar el mismo átomo por encima

del segundo umbral de ionización, done existen varios canales de ionización.

Con susodichos parámetros de pulso, fue posible provocar ”beatings” de

un fotón entre la resonancia 3s4p 1P o y estados 3`2 1Se y 3`2 1De más bajas,

donde ` denota el momento angular. Además, se observaron beatings entre las

resonancias 3s4p 1P o y 3s4p 1P o y el continuo 1P o más bajo, lo cual muestra la

formación de un paquete correlacionado multicanal de ondas de dos electrones

inducido por la sonda. Tal como fue observado debajo del segundo umbral de

ionización, es posible controlar el paquete correlacionado multicanal de ondas

de dos electrones.

Además, se puede concluir que la presencia de canales de ionización adi-

cionales no van a suponer ningún problema en comparación con el caso de

un único canal abierto. La única caracterı́stica espectral que cualitativamente

separa los dos casos es la presencia de beatings de dos fotones entre estados

autoionizantes y el continuo suave. Una complicación observada, sin embargo,

es la dificultad de atribuir de modo inequı́voco ciertos rasgos espectrales a

procesos especificos. Este problema puede ser resuelto con la adición de un

componente de baja frecuencia al pulso de bombeo.

El segundo átomo que ha sido investigado usando ATAS en esta tesis es neón.

En este caso, un pulso de bombeo de dos colores sı́ fue utilizado – esté fue era

mezclado con un pulso infrarrojo cercano (NIR) de la misma frecuencia que

la sonda. Esto causó beatings de un fotón entre la resonancia autoionizante

2s−13p 1P o y los estados cercanos de 2s−13s 1Se y 2s−13d 1De.

El estudio se llevó al cabo usando cálculos ab-initio exactos considerando

todos los electrones, con un base generado usando el método recientemente

propuesto de XCHEM. En otro estudio (Ding et al. 2016) con parámetros de láser

parecidos ya se observaron los mismos beatings, mediante experimentación y

calculaciones de matriz R. Todos los rasgos espectrales mencionados en aquel

estudio también se observaron aquı́. La buena concordancia con el estudio de

referencia otorga validez al método de XCHEM.

Los resultados presentados aquı́ también muestran signos de beatings de
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uno y dos fotones entre el continuo 1P o y resonancias más altas, como lo que

fue observado en el helio. Más especı́ficamente, los beatings de un fotón se

amplificaron por la resonancia 2s−13s 1Se, y los de dos fotones por la resonancia

2s−13p 1P o. Estos beatings no fueron observados en el estudio referencia, que

solo consideraba energı́as más altas.

El segundo método de bombeo y sonda considerado aquı́ es reconstrucción

de ”beatings” de attosegundo por interferencia de transiciones de dos fotones

(RABITT); que utiliza como bombeo un tren de pulsos de radiación ultravioleta

extrema (XUV-APT), que contiene armónicas impares de la sonda, para con-

siderar la interferencia entre distintos trayectorias de ionización. Es capaz de

obtener retrasos de la fotoemisión con una precisión de cientos de attosegundos.

Utilizando la antes mencionada implementación dependiente del tiempo

de XCHEM, un estudio de RABITT se ha llevado a cabo como parte de esta

tesis. El estudio se realizó en las cercanı́as de resonancias múltiples, por lo cual

habı́a una dependencia compleja de la energı́a con la las fases obtenidas. Tanto

resultados experimentales como teóricos se han presentado. Los resultados

teóricos comparan muy bien con las experimentales, dando ası́ validez al método

de XCHEM.

Hasta ahora, los métodos interferométricos han estado restringidos a re-

giones de energı́ıa de hasta una resonancia, a causa de las dificultades en

describir la correlación electrónica, lo cual serı́a necesario para una descripción

teórica fiel que se pueda usar para guiar a los experimentos. Por consigu-

iente, este estudio abre el camino para la reconstrucción de paquetes de ondas

electrónicas producidos por ionización de dos fotones en regiones semejantes,

extendiendo la aplicabilidad de métodos de reconstrucción como el RABITT.

Para entender la contribución de las distintas resonancias involucradas,

se empleó un modelo sencillo basado en una extensión de la descripción de

Fano del continuo resonante a transiciones de dos fotones. A pesar de su

simplicidad, fue capaz de predecir con precisión la dependencia energética

de la fase, por lo cual, también fue capaz de resolver las contribuciones de las

distintas resonancias involucradas. Tal tipo de modelos son aun más útiles
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cuando cálculos ab-initio más precisos no son posibles.

Un ejemplo de eso se puede encontrar en el ultimo estudio presente en esta

tesis, que uso RABITT para considerar la dependencia angular y energética de

retrasos de emisión en argón cerca a la serie 3s−1n` de estados autoionizantes.

Tanto la resonancia 3s−15p como, aún más fuertemente, la 3s−14p afectan con-

siderablemente los retrasos y sus dependencias angulares. Se observó que la

resonancia 3s−14p, junto con la 3s−14s, tienen un efecto en los parámetros de

anisotropı́a del espectro. Lo mismo no se observó con la resonancia 3s−15p, que

es considerablemente más estrecha que la 3s−14p.

A pesar de que la fase varı́a lentamente en continuos suaves, depende fuerte-

mente de la energı́a en las cercanı́as de una resonancia. Estas distorsiones varı́an

mucho con el angulo de emisión.

El modelo, mencionado anteriormente, que se empleó en el contexto del

neón también aquı́ es capaz de predecir el comportamiento de los retrasos de

emisión. En el contexto de este modelo, es posible artificialmente quitar las

resonancias, mostrando que aumentan significativamente la anisotropı́a del

retraso.

La dependencia angular observada en los retrasos de emisión se puede

explicar como el resultado de la interferencia coherente entre varios canales

abiertos de ionización. Ese tipo de variaciónes se amplifican cerca se las reso-

nancias, donde los elementos de matriz asociados con los distintos canales están

sujetos a cambios fuertes.
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Appendix A
Atomic Units

Throughout this communication Hartree (1928) atomic units are used unless

otherwise stated. Atomic units may be defined by setting ~ =me = e = 4πε0 = 1,

where ~ is the reduced Planck constant, me the electron mass, e the elementary

charge, and ε0 the vacuum permittivity. In this appendix, several relevant

atomic unit conversion factors are given:

Quantity Conversion

Energy Eh = 1au = mee
4

(4πε0~)2 = 4.360×10−18 J

Length a0 = 1au = 4πε0~
2

mee2 = 5.292×10−11 m

Time 1au = ~

Eh
= 2.419×10−17 s

Velocity 1au = a0
~/Eh

= 2.188× 106 m
s

Mass 1au = me = 9.109×10−31 kg

Electric potential 1au = Eh
e = 2.721× 101 V

Electric field 1au = Eh
ea0

= 5.142× 1011 V
m

Dipole moment 1au = ea0 = 8.478×10−30 C ·m
Intensity 1au = ε0cEh

2(ea0)2 = 3.509× 1016 W
cm2
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Appendix B
Time-Dependent Perturbation Theory

At several points in this thesis, low-order, time-dependent perturbation theory

(TDPT) is used to consider the case when the field-free, time-independent,

atomic Hamiltonian, Ĥ0, is perturbed by a weak, time-dependent potential V̂ (t).

Thus, the Hamiltonian can be written on the form

Ĥ (t) = Ĥ0 + V̂ (t) . (B.1)

In order to explain the concept of TDPT in more detail, the time-dependent

Schrödinger equation (TDSE) first should be considered. Througout this work it

has been defined, in what is known as the Schrödinger representation (denoted

here with subscript S), as

i
∂
∂t

∣∣∣ψ (t)
〉

S
= ĤS (t)

∣∣∣ψ (t)
〉

S
(B.2)

by applying the Hamiltonian operator ĤS (t) to a given ket
∣∣∣ψ (t)

〉
S
. When no

external field is present, the ket evolves as

∣∣∣ψ (t)
〉

S
= exp

(
−iĤ0t

) ∣∣∣ψ (0)
〉

S
. (B.3)
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With this in mind, the transformation

∣∣∣ψ (t)
〉

D
= exp

(
iĤ0t

) ∣∣∣ψ (t)
〉

S
, (B.4)

to what is known as the Dirac (or interaction) representation (denoted with

subscript D), is made. From the definition of the Dirac representation, it

follows that as long as V̂ (t) = 0, the state kets remain constant over time. The

corresponding operator-transformation,

ÂD (t) = exp
(
iĤ0t

)
× ÂS (t) × exp

(
−iĤ0t

)
, (B.5)

compensates, keeping the time-dependence of observables consistent between

the two representations.

It should be noted that the operator Ĥ0, since it commutes with exp
(
iĤ0t

)
,

is identical in both representations. This can easily be understood by expanding

the Taylor series of exp
(
iĤ0t

)
. For this reason, no subscript is used for Ĥ0.

Combining equations B.1 and B.4, it can be seen from the derivation

i
∂
∂t

∣∣∣ψ
〉

D
=i
∂
∂t

[
exp

(
iĤ0t

) ∣∣∣ψ
〉

S

]

=− Ĥ0 exp
(
iĤ0t

) ∣∣∣ψ
〉

S
+ exp

(
iĤ0t

) [
Ĥ0 + V̂S

] ∣∣∣ψ
〉

S

=exp
(
iĤ0t

)
V̂S exp

(
−iĤ0t

) ∣∣∣ψ
〉

D

(B.6)

that the Schrödinger-like equation

i
∂
∂t

∣∣∣ψ (t)
〉

D
= V̂D

∣∣∣ψ (t)
〉

D
(B.7)

describes time-evolution in the Dirac representation (Sakurai et al. 2011). Alter-

natively, the same equation can be rewritten as

i
∂
∂t
ÛD (t, t0)

∣∣∣ψ (t0)
〉

D
= V̂D (t) ÛD (t, t0)

∣∣∣ψ (t0)
〉

D
, (B.8)
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where ÛD (t, t0) is the (Dirac representation) time evolution operator between

two times t0 and t. Since this relation is independent of the initial ket
∣∣∣ψ (t0)

〉
D

and time t0, it is equivalent to

i
∂
∂t
ÛD (t, t0) = V̂D (t) ÛD (t, t0) . (B.9)

Together with the initial condition ÛD (t0, t0) = Î , where Î is the identity

operator, (that is, if no time passes, no change occurs to the system) equation

B.9 can be integrated between two times t0 and t1 as

ÛD (t1, t0) = Î − i
∫ t1

t0

dt V̂D (t) ÛD (t, t0) . (B.10)

This can recursively be expanded into a series of terms Û (n)
D (t1, t0) (Cohen-

Tannoudji et al. 1998), as

ÛD (t1, t0) =
∞∑

n=0

Û (n)
D (t1, t0) , (B.11)

which is known as a Dyson series. The individual terms can be written as

Û (n)
D (t1, t0) = (−i)n

∫

t1≥τn≥...τ2≥τ1≥t0
dτn . . . dτ2dτ1 V̂I (τn)× · · · × V̂I (τ2)× V̂I (τ1) (B.12)

in the Dirac representation. The nth term correpsonds to a total of n applications

of V̂I (t) to an initial ket
∣∣∣ψ (t0)

〉
. If V̂I (t) is sufficently weak, each iterative

application incures a decrease in magnitude, and only a few terms need to be

included. This is analogous to the case of a Taylor series. In the Schrödinger
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representation,

Û (n)
S (t1, t0) = (−i)n

∫

t1≥tn≥···≥t2≥t1≥t0
dtn . . . dt2dt1 exp

(
− idt[ t1 − τn]Ĥ0

)
× V̂S (τn)

. . .

× exp
(
− idt[τ3 − τ2]Ĥ0

)
× V̂S (τ2)

× exp
(
− idt[τ2 − τ1]Ĥ0

)
× V̂S (τ1)

× exp
(
− idt[τ1 − t0]Ĥ0

)

(B.13)

is the equivalent expression.

In order to gain an intuitive understanding of equation B.13, it may be useful

to consider the case of an atomic potential, Ĥ0, perturbed by an external electric

field. For this case, multiplication with V̂S (t) corresponds to absorption of one

photon. In equation B.13 it can be seen that, by applying Û (n)
S (t1, t0), the state

ket first evolves freely from time t0 to τ1, absorbs a photon at time τ1, then again

evolves freely until time τ2, at which point it absorbs a second photon. This

process continues until time t1, where a total of n photons have been absorbed.

Via integration, it considers all (sequential) values of τi , i ∈ {1, . . . ,n}. Thus, it

can be seen that the nth term in the series corresponds to the n−photon process.
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Appendix C
Numerical Accuracy and Efficiency

The ab-initio propagations utilised in this work rely on a split time-propagation

operator

Û (t;dt) ≈ exp


− i dt V̂CAP


 (C.1a)

× exp


− i

dt
2
Ĥ0


 (C.1b)

× exp


− i dtA

(
t +

dt
2

)
P̂

 (C.1c)

× exp


− i

dt
2
Ĥ0


 (C.1d)

initially defined in equation 3.79 for a time step length dt. This operator takes

into account the field-free propagation by the atomic Hamiltonian Ĥ0, the prop-

agation driven by the vector potential A(t) (which include the dipole operator P̂
and the fine-structure constant α in the exponent), and the propagation using

the Complex Absorption Potential (CAP) V̂CAP. This appendix deals with the

accuracy of the operator splitting, as well as the time complexity of the split

operator components.
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C.1 Accuracy of the Operator Split

For a set of scalars x and y, the exponent ex+y may be split into separate compo-

nents according to the formula ex+y = exey . For two operators X̂ and Ŷ , however,

the relation eX̂+Ŷ = eX̂ eŶ holds if and only if X̂ and Ŷ commute. Thus, the

operator splitting given in equation C.1 holds only approximately.

This can be seen by considering the Taylor expansion. For the exponential

of an operator X̂ , the Taylor expansion reads

exp
[
X̂
]

=
∞∑

i=0

1
i!
X̂ i . (C.2)

Comparing the Taylor expansions of the two expressions eX̂+Ŷ and eX̂ eŶ , it can

be seen that

exp
[
X̂ + Ŷ

]
= Î +

(
X̂ + Ŷ

)
+
X̂ 2 + X̂ Ŷ + Ŷ X̂ + Ŷ2

2
+ . . . (C.3a)

, Î +
(
X̂ + Ŷ

)
+
X̂ 2 + 2X̂ Ŷ + Ŷ2

2
+ . . . . (C.3b)

= exp
[
X̂
]
× exp

[
Ŷ
]

(C.3c)

In fact, two expressions only coincide up to the first-order term, unless X̂ and

Ŷ commute, in which case X̂ Ŷ + Ŷ X̂ = 2X̂ Ŷ .
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C.1. ACCURACY OF THE OPERATOR SPLIT

C.1.1 The Strang Splitting

As a initial step, in order to understand the splitting of the operator, consider

the operator split which divides the field-free and the field-driven operator,

corresponding to equations C.1b–C.1d. It is known as a Strang (1968) splitting,

and can be written as

exp
[
X̂ + Ŷ

]
−→ exp

[
1
2 X̂

]
× exp

[
Ŷ
]
× exp

[
1
2 X̂

]
(C.4)

by introducing the shorthand expressions

X̂ = −idt Ĥ0 (C.5a)

Ŷ = −i dtA
(
t +

dt
2

)
P̂ (C.5b)

for the relevant exponents. Looking at the split Taylor expansion,

exp
[

1
2 X̂

]
× exp

[
Ŷ
]
× exp

[
1
2 X̂

]
=
∞∑

i=0

1
i!

( X̂
2

)i
·
∞∑

j=0

1
i!
Ŷ j ·

∞∑

k=0

1
i!

( X̂
2

)k

= Î +
(
X̂ + Ŷ

)
+
X̂ 2 + X̂ Ŷ + Ŷ X̂ + Ŷ2

2

+
1
6

[
X̂ 3 + 3

4 X̂ 2Ŷ + 3
2 X̂ Ŷ X̂ + 3

4 Ŷ X̂ 2

+ 3
2 X̂ Ŷ2 + 3

2 Ŷ2X̂ + Ŷ3
]

+ . . .

, (C.6)

and comparing it with equation C.3a, it can be seen that the second-order term

now is correct. The third-order term, however, which for exp
[
X̂ + Ŷ

]
can be

calculated as 1
6

[
X̂ 3 + 3X̂ 2Ŷ + 3X̂ Ŷ2 + Ŷ3

]
, is correct if and only if – again – X̂

and Ŷ commute. Hence, the Strang splitting is a second order splitting.
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C.1.2 Addition of the CAP

Presently consider the introduction of the Complex Absorption Potential (CAP),

Ẑ = −i dt V̂CAP, (C.7)

in equation C.1a. After the introduction of this component, the splitting can be

written as

exp
[
X̂ + Ŷ + Ẑ

]
−→ exp

[
Ẑ
]
× exp

[
1
2 X̂

]
× exp

[
Ŷ
]
× exp

[
1
2 X̂

]
, (C.8)

which implies multiplication by Ẑ only from the left.

From the Taylor expansion

exp
[
X̂ + Ŷ + Ẑ

]
= Î +

(
X̂ + Ŷ + Ẑ

)
+

1
2

[
X̂ 2 + X̂ Ŷ + Ŷ X̂ + X̂ Ẑ + ẐX̂+

Ŷ2 + Ŷ Ẑ + ẐŶ + Ẑ2
]

+ . . .
(C.9)

of the non-split operator, it can be seen that the second-order term contains

multiplications by Ẑ from the right. Hence, unless the CAP commutes with

both Ĥ0 and P̂ , its introduction implies a lowering of the splitting to the first

order.
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C.2 Time Complexity

Numerically, the effect on the time step operator Û (t;dt) in equation C.1 on the

state ket
∣∣∣Ψ

〉
, is treated via the application of a time step matrix U(t;dt) on the

state vector

Ψ =




c0

c1

c2

...




, (C.10)

given in the basis of size N of the atomic Hamiltonian matrix H0. Here, the time

complexity of the application of the different parts, defined by the splitting in

equation C.1, of U(t;dt) is investigated.

C.2.1 Field-Free Propagation

Initially consider the field-free propagation, discussed in chapter 3.3.1, corre-

sponding to equations C.1b and C.1d. Since the propagation takes place in the

eigenbasis of the N ×N matrix H0, the field-free propagator can be written as

the diagonal matrix

exp


− i

dt
2
Ĥ0


 =




e−i
dt
2 ω0 0 0

0 e−i
dt
2 ω1 0 · · ·

0 0 e−i
dt
2 ω2

...
. . .




. (C.11)
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Since this matrix is diagonal, it can be applied to Ψ via the state-wise multipli-

cation

exp


− i

dt
2

H0







c0

c1

c2

...




=




exp
(
−i dt2 ω0

)
c0

exp
(
−i dt2 ω1

)
c1

exp
(
−i dt2 ω2

)
c2

...




. (C.12)

This is an operation with time complexity of O (N ).

C.2.2 Field-Driven Propagation

Presently consider the application of the field-driven propagation operator,

given in equation C.1c. It is discussed in more detail in chapter 3.3.2. This

requires projection into the eigenbasis of the dipole matrix P.

Using a Krylov Method

Using the Krylov method, with a Krylov space of size n, requires the calculation

of a set {ξi , i ∈ {0, . . .n− 1}} of Krylov vectors, each of which is associated with a

help vector ξ′i .
Using the i −1th Krylov vector ξi−1, the ith help vector ξ′i may be computed

as

ξ′i = −i dtα P ξi−1 (C.13)

according to equation 3.84, by multiplication of the matrix P and subsequent

multiplication by the constant −i dtα. The matrix multiplication is of order

O
(
N2

)
, while the scalar multiplication is of order O (N ), for a total time com-

plexity of, for a total O
(
N2 +N

)
= O

(
N2

)
.
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C.2. TIME COMPLEXITY

The ith Krylov vector may now be calculated as

ξi =
1
Ni


ξ
′
i −

i−1∑

j

ξj
〈
ξj ,ξ

′
i

〉

 (C.14)

where Ni is a normalisation constant and
〈
x,y

〉
denotes the hermitian inner

product of x and y. Here, the maximum order of the operations used (the scalar

product, the hermitian inner product, vector subtraction, scalar multiplication,

calculation of the norm) is O (N ). Thus, each addition of an extra Krylov vector

is an operation of total time complexity O
(
N2 +N

)
= O

(
N2

)
.

After the Krylov space is calculated, it is used to diagonalise P, which is

implemented using the LAPACK (Anderson et al. 1999) ZHEEV routine for

hermitian matrices. Although matrix diagonalisation is a heavy process, as

it takes place in a limited space of size n � N , its contribution to the time

complexity may be disregarded.

For a maximum Krylov space of size nmax, the Krylov method is thus of

order O
(
nmax ×N2

)
.

Exact Solution

The exact implementation of the driven propagation involves projection into the

eigenbasis of the dipole matrix P. If P has M eigenvectors, this requires N ×M
operations, as does the reverse projection. Analogously to the field-free case,

the propagation in the basis of P is of order O (M). This gives a time-complexity

of O (M ·N )

This is lower than for the Krylov method, especially asM ≤N . For reference,

diagonalising the P matrix calculated by XCHEM for neon has consistently

given the approximate relation M ≈ 2
3N .
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C.2.3 Complex Absorption Potential

Finally, consider the Complex Absorption Potential (CAP) V̂CAP, discussed in de-

tail in chapter 3.3.3. It is treated analogously to the exact solution of the driven

propagation: Denoting the order of V̂CAP K , projecting into the eigenbasis of

V̂CAP and back are both operations of order O (K ·N ). Once in the eigenspace, the

propagation itself is of order O (K ·N ). As in the case of the driven propagation,

this gives a time complexity of order O (K ·N ).
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Argenti, C. L Arnold, R. Feifel, F. Martı́n, M. Gisselbrecht, A. L’Huillier,

and P. Salières (2018). “Time-frequency representation of autoionization

dynamics in helium”. In: Journal of Physics B: Atomic, Molecular and Optical
Physics 51.4, p. 044002.

Caillat, J., A. Maquet, S. Haessler, B. Fabre, T. Ruchon, P. Salières, Y. Mairesse,

and R. Taı̈eb (Mar. 2011). “Attosecond Resolved Electron Release in Two-

Color Near-Threshold Photoionization of N2”. In: Phys. Rev. Lett. 106

(9), p. 093002. doi: 10.1103/PhysRevLett.106.093002. url: https:

//link.aps.org/doi/10.1103/PhysRevLett.106.093002.

Carette, T., J. Dahlström, L. Argenti, and E. Lindroth (Jan. 2013). “The Multi-

Configurational Hartree-Fock close-coupling ansatz: application to Argon

photoionization cross section and delays”. In: Physical Review A 87. doi:

10.1103/PhysRevA.87.023420.

Cattaneo, L., J. Vos, M. Lucchini, L. Gallmann, C. Cirelli, and U. Keller (Dec.

2016). “Comparison of attosecond streaking and RABBITT”. In: Opt. Ex-
press 24.25, pp. 29060–29076. doi: 10.1364/OE.24.029060. url: http:

//www.opticsexpress.org/abstract.cfm?URI=oe-24-25-29060.

Cattaneo, L., J. Vos, R. Y. Bello, A. Palacios, S. Heuser, L. Pedrelli, M. Lucchini,

C. Cirelli, F. Martı́n, and U. Keller (2018). “Attosecond coupled electron

and nuclear dynamics in dissociative ionization of H2”. In: Nature Physics
14.7, pp. 733–738. issn: 1745-2481. doi: 10.1038/s41567-018-0103-2.

url: https://doi.org/10.1038/s41567-018-0103-2.

Cavalieri, A. L., N. Müller, T. Uphues, V. S. Yakovlev, A. Baltuska, B. Horvath, B.
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Heuser, S., Á. Jiménez Galán, C. Cirelli, C. Marante, M. Sabbar, R. Boge, M. Luc-

chini, L. Gallmann, I. Ivanov, A. S. Kheifets, J. M. Dahlström, E. Lindroth,

L. Argenti, F. Martı́n, and U. Keller (Dec. 2016). “Angular dependence of

photoemission time delay in helium”. In: Phys. Rev. A 94 (6), p. 063409.

doi: 10.1103/PhysRevA.94.063409. url: https://link.aps.org/doi/1

0.1103/PhysRevA.94.063409.

Huppert, M., I. Jordan, D. Baykusheva, A. von Conta, and H. J. Wörner (Aug.

2016). “Attosecond Delays in Molecular Photoionization”. In: Phys. Rev.
Lett. 117 (9), p. 093001. doi: 10.1103/PhysRevLett.117.093001. url:

https://link.aps.org/doi/10.1103/PhysRevLett.117.093001.

Jiménez-Galán, Á., L. Argenti, and F. Martı́n (2013). “The soft-photon approxi-

mation in infrared-laser-assisted atomic ionization by extreme-ultraviolet

attosecond-pulse trains”. In: New Journal of Physics 15.11, p. 113009.
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