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In a number of scientific fields, researchers need to assess whether a variable has

changed between two time points. Average-based change statistics (ABC) such as

Cohen’s d or Hays’ ω2 evaluate the change in the distributions’ center, whereas

Individual-based change statistics (IBC) such as the Standardized Individual Difference

or the Reliable Change Index evaluate whether each case in the sample experienced

a reliable change. Through an extensive simulation study we show that, contrary to

what previous studies have speculated, ABC and IBC statistics are closely related. The

relation can be assumed to be linear, and was found regardless of sample size, pre-post

correlation, and shape of the scores’ distribution, both in single group designs and in

experimental designs with a control group. We encourage other researchers to use IBC

statistics to evaluate their effect sizes because: (a) they allow the identification of cases

that changed reliably; (b) they facilitate the interpretation and communication of results;

and (c) they provide a straightforward evaluation of the magnitude of empirical effects

while avoiding the problems of arbitrary general cutoffs.

Keywords: individual reliable change, effect size estimation, assessment of change, Reliable Change Index (RCI),

pre-post change

The evaluation of change is a key goal in all sciences. In psychological, education, and medical
sciences, there is a long tradition of using effect size measures both to quantify the amount of
change experienced by a group across several time points, and for comparing such change in
multiple groups (Cohen, 1988; Richardson, 1996; Fritz et al., 2012; Grissom and Kim, 2012; Kelley
and Preacher, 2012; Pek and Flora, 2018). This paper examines the assessment of change through
individuals’ responses to standardized tests. Specifically, we focus on situations in which the same
variable is measured at two time points in all the individuals in the sample (i.e., Pre-post research
designs).

Pre-post designs are often used when an intervention is applied between the two time
points. Whether the observed change can be attributed to the intervention or not depends on a
number of factors, including whether (a) a control group exists; (b) the study is experimental,
quasi-experimental or observational; (c) relevant covariates and cofounds have been adequately
controlled (Fisher, 1935; Rubin, 1974; Shadish et al., 2002; Pearl, 2009; Mayer et al., 2016).

Very often, researchers want to cause a change with their interventions. Some examples are: (a)
A school teacher applying a visual-spatial training program to children of ages 10–12 would want
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them to increase their ability (c.f. Lowrie et al., 2017); (b)
Numerous programs for cognitive training are intended to
increase working memory capacity—and, ultimately, general
cognitive ability—in their participants (c.f. Jaeggi et al.,
2008); (c) Interventions with teenagers with autism spectrum
disorders typically aim at improving their interpersonal and
communication skills, among others; (d) Interventions in clinical
psychology typically are intended to change the clients’ behavior
so they can adapt better to their environment and increase
their quality of life (e.g., gain social skills, control their anger
or anxiety, improve their depressive symptoms, or avoid their
maladaptive behaviors, among others; c.f. Muroff et al., 2014); (e)
A pharmacological treatment for obesity will be successful if the
patients reduce their weight (c.f. Pi-Sunyer et al., 2015)1.

In a pre-post research design, some criterion is needed to
determine large or small change. Here we focus on distribution
based methods (i.e., there is no external information or clinical
referents, other than the test scores; Lydick and Epstein, 1993;
Crosby et al., 2003; Revicki et al., 2008). These methods
attempt to identify the smallest change that cannot be explained
by sampling random fluctuations or by measurement error
(Jacobson and Truax, 1991; Crosby et al., 2003; Bauer et al.,
2004). This amount of change is usually called statistically reliable,
minimally detectable or just reliable change (Maassen, 2000;
Beaton et al., 2001; de Vet et al., 2006).

To detect a reliable change, two approaches can be adopted.
We termed them the average-based change approach (ABC) and
the individual-based change approach (IBC). The aim of ABC is
to evaluate whether a group, as a whole, experienced a reliable
change. In turn, the goal of IBC is to identify specific individuals
who showed change. To assess ABC, researchers often use a
statistic that describes the center of the distributions (often, the
pre and post means), by using null hypothesis tests and effect
size measures (c.f., Cohen, 1988; Fritz et al., 2012; Grissom and
Kim, 2012; Pek and Flora, 2018). To assess IBC, researchers
may use various indices that can be grouped under the name
of reliable change indices. Some of these indices are based on
standardization of pre-post differences, others on the standard
error of measurement, and yet others on linear regression
predictions (Crosby et al., 2003; Ferrer and Pardo, 2014).

The goal of this paper is twofold. First, we want to investigate
the relation between ABC and IBC statistics, and to describe
such a relation in mathematical terms. We show that, contrary
to what other previous studies have speculated, both approaches
are strongly related. Second, we attempt to draw researchers’
attention to a set of tools derived from individual-based statistics.
These are simple tools that can provide help in a variety
of research contexts. We show how they can be used for
intuitive interpretation and communication of research results,
and how they can replace arbitrary cutoffs (e.g., Cohen, 1988)
commonly used for deciding when an effect is “small” or
“large.”

1In some cases, interventions aim at decelerating or stopping changes that are

already happening: i.e., an intervention for the elderly aiming at stopping or

reducing the speed of decline of some cognitive function. In such situations, “no

change” is evidence of treatment success.

ARE THE AVERAGE-BASED AND THE
INDIVIDUAL-BASED APPROACHES
RELATED?

Many studies have argued that the information provided by these
two approaches is different. Below are some examples:

“Statistical methods based on the General(ized) Linear Model

(. . . ) have optimal power when individuals behave identically

(. . . ). When there exists genuine, idiosyncratic variations in the

effect of a factor, (. . . ) the effect of a factor can be significant

for every individual (. . . ) while Student and Fisher tests yield a

probability close to one if the population average is small enough”

(Vindras et al., 2012, p. 2).

“Statistically significant change at the group level may not be

significant at the individual level (. . . ). Mean changes for a group

may be the result of few individuals with relatively large changes,

or numerous individuals with relatively small changes” (Schmitt

and Di Fabio, 2004, pp. 1008–1009).

Similar ideas can be found in other studies (e.g., Ottenbacher
et al., 1988; Testa, 2000). Accordingly, it appears that average
and individual approaches focus on different aspects of change,
inasmuch as knowing that the center of the scores distribution
changed provides no information about which particular
individuals changed. Indeed, the change in the distribution center
and the percentage of individual changes are calculated in very
different ways.2

However, it is not evident whether these two approaches
are completely independent. Rather, it is reasonable to think
that the larger the displacement of distribution center, the
higher the percentage of reliable individual changes. In fact, the
higher the mean of the pre-post differences, the more likely
it is that a pre-post difference exceeds a certain cutoff. For
example, if the pre-post differences distribution is normal, the
probability associated with each cutoff is known. If the mean
of the differences equals zero, the probability of finding cases
above 1.645 standard deviations equals 0.05. If the mean of the
differences is 0.5 standard deviations above zero, the probability
of finding cases above 1.645 standard deviations equals 0.13, etc.
However, these probabilities are unknown when the pre-post
differences distribution is non-normal, which is the usual case in
applied contexts.

One study showed that the pre-post effect size observed
(i.e., the magnitude of change in distribution center) is the
main determinant of the percentage of individuals showing
pre-post change (Norman et al., 2001). This simulation study
revealed that the relation between effect size and percentage
of change is approximately linear for effect sizes below one,
with normal andmoderately skewed distributions, and regardless
of the cutoff to detect a change. Therefore, at least under
certain conditions, the mean change can yield some information

2In computing the distribution center all cases are used, each one of them

contributing its proportional share of change; in computing the percentage of

changes only cases above a given cutoff are involved and, moreover, all of them

equally weighted regardless of their change.
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about the percentage of individual changes. A later study using
empirical data found consistent results (Lemieux et al., 2007).
However, these papers did not report any mathematical function
to estimate the percentage of changes based on the change in the
distribution center, nor did they report the fit that such a function
may achieve, which would be useful to assess the quality of its
estimations.

The scarcity of studies on this topic and the lack of sound
conclusions suggest that more research is needed to understand
the relation between the change in the distribution center and the
percentage of individual changes.

THE PRESENT STUDY

Our first goal in this article was to investigate the relation between
ABC and IBC statistics, and to mathematically describe that
relation. Specifically, we sought to: (a) investigate whether ABC
and IBC are related; (b) if so, identify its shape, a mathematical
function that best represents it, and the goodness of fit of
such function; and (c) determine what conditions affect the
nature of the relation. For this, we conducted a simulation
study corresponding to two of the most common designs in the
behavioral and social sciences: a “pre-post design” and a “control
group pre-post design.” To our knowledge, this is the first study
applying individual change indices to a pre-post design with a
control group. Importantly, we studied this relation in scenarios
with both normal and non-normal distributions.

Our second goal was to promote the use of individual-based
statistics as a simple and useful tool for addressing important
research questions. Based on our simulation results, we show that
such statistics can be used to interpret research results and make
decisions in applied settings.

METHODS

We simulated data for two scenarios in which the same variable
is measured at two time points (e.g., before and after the
intervention) for each individual within a group of participants.
We generated two different pre-post research designs: with and
without a control group.

Including a single group design is important because: (a) this
is a common scenario in applied contexts; and (b) all indices
describing the percentage of individual changes were developed
for settings with a single treated group (Payne and Jones, 1957;
Jacobson and Truax, 1991; Crawford et al., 1998; Hageman and
Arrindell, 1999; Wyrwich et al., 1999). On the other hand, it
is well known that including a control group—ideally, with
random assignment—provides stronger evidence for attributing
the change to the treatment (Shadish et al., 2002; Feingold, 2009).

Simulation Conditions
To define the simulation conditions, wemanipulated four criteria
(for a summary, see Table 1):

a. Effect size in the experimental/treatment group
(δexp = µdif.exp/σdif.exp). We computed the effect size
as the standardized mean of the pre-post differences
(Cohen, 1988; see the discussion and Appendix 1 in

Supplementary Data Sheet 2 for considerations about using
a different standardizer). We chose 13 effect sizes ranging
from 0 to 3.6 with 0.3 point increases (e.g., an effect size
of 0.6 indicates that the mean of the pre-post differences
µdif.exp is 0.6 times the standard deviation of the individual
pre-post differences σdif.exp). The rationale for choosing
this wide range of effects, from a null effect to an extremely
large one, was to allow the percentage of individual changes
to comprise its full range (0–100%). In our analyses we
assumed that the mean scores increased over time. To
calculate the differences, we subtracted pre-test score from
the post-test score. Consequently, because we generated
positive effects in our simulation, we used right one-tailed
tests.

In the single group pre-post design, we generated data
for the treatment group only. In the control group pre-post
design, we added data for a control group with no expected
pre-post mean differences, (i.e., δctrl = 0). The values for the
rest of simulation criteria were the same for the control and
treatment groups in every conditions (see below).

Importantly, this value was the mean effect size in the
population. Centered on this mean, a random distribution
of individual changes was created, and each case within
the sample experienced a different amount of change. The
variance of this distribution depended on the pre-post
correlation (see point c below). Figure 1 depicts the pre, post
and change scores for one sample.

b. Sample size of each group (n). We chose three sample sizes
(25, 50, and 100) to simulate what is usually considered small,
medium, and large sample sizes in clinical work (Crawford
and Howell, 1998). In the control group design, both groups
had the same sample size.

c. Pre-post correlation (ρpre−post): 0.5, 0.7, and 0.9. We chose
these values to simulate a range of common correlations in
applied settings (Pedhazur and Schmelkin, 1991; Nunnally
and Bernstein, 1994. Note that correlations <0.5 are very
uncommon in repeated measures settings). We used the
Pearson’s correlation coefficient. In the control group design,
both groups were expected to have the same correlation
value. With σpre = σpost = 1, these three values lead
to a standard deviation of the differences (σdif) of 1,
0.775, and 0.447 respectively—i.e., higher pre-post correlation
entails lower variance of the differences (See Appendix 3 in
Supplementary Data Sheet 2 for a discussion on the effect of
measurement error).

d. Shape of the pre and post distributions. Given that moderate
and severe deviations from normality are often found in
applied contexts (Micceri, 1989; Blanca et al., 2013), we
simulated seven different conditions by modifying the degree
of skewness (g1) and kurtosis (g2): (1) extreme negative
skewness: g1 = −3, g2 = 18; (2) moderate negative skewness:
g1 =−2, g2 = 9; (3) mild negative skewness: g1 =−1, g2 = 2;
(4) normality: g1 = 0, g2 = 0; (5) mild positive skewness:
g1 = 1, g2 = 2; (6) moderate positive skewness: g1 = 2, g2 = 9;
and (7) extreme positive skewness: g1 = 3, g2 = 18. Note that
the kurtosis is partially conditioned by the skewness. Less than
5% of real data is expected to have more extreme distributions
(Blanca et al., 2013). In the control group design, both groups
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TABLE 1 | Summary of simulation conditions and computed statistics.

Single group design Control group design

SIMULATION CONDITIONS

Effect size in the experimental

group

δexp = µdif.exp/σdif.exp = {0 to 3.6}

in 0.3 steps

δexp = µdif.exp / σdif.exp = {0 to 3.6}

in steps of 0.3

δctr = µdif.ctr / σdif.ctr = 0

Sample size nexp = {25, 50, 100} nexp = nctr = {25, 50, 100}

Pre-post correlation ρpre−post,exp = {0.5,0.7,0.9} ρpre−post,exp = ρpre−post,ctr = {0.5,0.7,0.9}

Shape of the pre and post

distributions (equal for pre and

post and for both groups)

Skew: −3 −2 −1 0 1 2 3

Kurt: 18 9 2 0 2 9 18

Average-based change statistic d = (Mpost-Mpre)/Sdif ω̂2 =
glAB(FAB−1)

glAB(FAB−1)+N

Individual-based statistic (based

on SID or RCI)

Percentage of reliable improvements Pnet =
(
P+exp − P−exp

)
−

(
P+ctr − P−ctr

)

FIGURE 1 | Pre, post and difference scores for one sample of n = 100, with δexp = 1.2, ρpre−post = 0.7, and normal distribution. Note that the amount of change is

different for every individual.

were expected to have the same shape for the pre- and post-
distributions.

Simulation Procedure
By combining the four criteria described above we generated
13 × 3 × 3 × 7 = 819 different conditions for the simulation.
For each of these conditions, we generated 500 samples (409,500
samples in total). This was done separately for the simple pre-post
design (one experimental group per sample) and for the control
group pre-post design (one experimental and one control group
per sample). We used MatLab 2011a to perform the simulation.
The code is available in the Supplementary Data Sheet 1.

In the single group design, we first generated a matrix
X1 = (X1

∗, Y1
∗) containing n pairs of scores in two non-

correlated variables. Scores were generated by using Pearson’s
distribution system. Both variables had the same mean, standard
deviation, skewness, and kurtosis. The mean was always fixed
to zero and the standard deviation was fixed to one. Skewness
and kurtosis were systematically modified according to g1 and g2
values explained previously.X and Y were generated randomly to

ensure that the post score may be the same, higher, much higher,
lower or much lower than their corresponding pre-score, as is
typically the case in real data.

Second, we fixed the correlation value between variables
in X1 by applying the Cholesky covariance decomposition of
correlation matrix R corresponding to the chosen correlation
value (ρpre−post). The resulting matrix M1 = (X1, Y1) contained
two variables (X1 = pre; Y1 = post) with skewness, kurtosis
and ρXY (or ρpre−post) values similar to the specified ones.
This transformation ensured that the post-scores were not
independent of the pre-scores, as is also the case in real data. Note
that, although simulating the difference scores would be simpler
and faster than simulating pre and post scores, it would make it
impossible to study the effect of the pre-post correlation.

In the last step we modified Y1 to adapt it to the desired
mean value in each condition. For this purpose, we added the
standard deviation of pre-post differences, multiplied by the
corresponding value of δexp, to each individual Y1 value.

In the control group design, the procedure was identical
except for two changes: (a) instead of only one matrix in
each replication, we generated a pair of independent matrices
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X1 = (X1
∗, Y1

∗) and X2 = (X2
∗, Y2

∗) for simulating the scores
of the experimental (X1) and control (X2) groups; and (b) we
modified Y1 in the experimental matrix only to adapt it to the
desired mean value in each condition (whereas the mean for Y2

was not changed for the control group).
Importantly, this procedure ensured that every case

experienced a different amount of change. Figure 1 depicts
pre-, post- and difference scores for one sample of n = 100, with
δexp = 1.2, ρpre−post = 0.7, and normal distribution.

Data Analysis
In the single group pre-post design, we computed the empirical
group or average change for each sample by calculating the
difference between the post- and the pre-test means, and dividing
such difference by the standard deviation of the differences,

d = (Mpost −Mpre)/Sdif (1)

In this paper we use d to refer to the result of applying
Equation 1. See the discussion and Appendix 1 in
Supplementary Data Sheet 2 for a discussion on a different
computation of the standardized mean difference.

In the control group pre-post design, we quantified the
average change by using the ω2 statistic associated with the
interaction between the between-subjects factor A (group) and
the within-subjects factor B (pre- and post-test). The net change
is captured by comparing the pre-post change in the experimental
group with the pre-post change in the control group (Hays, 1988;
Kirk, 2013). For our design, ω2 can be estimated as

ω2
=

glAB (FAB − 1)

glAB (FAB − 1) + N
,

were FAB is the interaction F statistic, glAB are the interaction
degrees of freedom, and N is the total number of scores in the
design (adding both groups).

To identify which individual scores showed a reliable
change (i.e., which cases fell above a certain cutoff after being
standardized) and then calculate the percentage of individual
changes for each sample, we decided to use two individual change
indices. We chose two indices that have shown lowest false
negative rates (see Ferrer and Pardo, 2014).

a. Standardized individual difference (SID; Payne and Jones,
1957). The standardized score resulting from dividing the
individual pre-post difference (Di) by the standard deviation
of these differences (Sdif), as

SID = Di/Sdif.

This standardization was proposed to assess the degree of
discrepancy between two scores (Payne and Jones, 1957). If the
distribution of pre-post difference is normal, 95% of SID will
fall between± 1.96 values, and 90% between± 1.645 values.

b. Reliable Change Index (RCI; Jacobson et al., 1984, 1999;
Jacobson and Truax, 1991). This is probably the most popular
individual change index. It is based on the standard error of
measurement. Of the several available versions, we used one

in which the equality of pre- and post-test variances is not
assumed (see Christensen and Mendoza, 1986; Jacobson and
Truax, 1991; Maassen, 2004). This version is specified as:

RCI =
Di√(

Spre
√
1− Rpre-post

)2
+

(
Spost

√
1− Rpre-post

)2 .

Using this index, the lower false positive rate is achieved when
reliability is estimated from the pre-post correlation (Rpre−post)
(Ferrer and Pardo, 2014).

These two indices were computed for each individual case in
all the simulated samples. We considered an individual change
to be reliable when its corresponding SID or RCI was higher
than 1.96 (two-tailed test) or 1.645 (one-tailed test) points. In
the single group pre-post design, we applied one cutoff of 1.645.
In the control group pre-post design we performed two-tailed
tests (cutoffs of −1.96 and 1.96) for all conditions because
the procedure is intended to compare the effectiveness of two
different treatments in real scenarios. Hence, it is important to
take into consideration the proportion of worsened cases, not
only the improved ones.

In the single group design, we computed the percentage of
reliable improvements for each sample. In the control group
design, we computed the proportion of both worsened (P−) and
improved (P+) cases in each group within the samples, and
then subtracted the result for the control group (ctrl) from this
same result in the experimental group (exp). This procedure
yielded a net percentage of positive changes attributable to
treatment3(Pnet):

Pnet =
(
P+exp − P−exp

)
−

(
P+ctr − P−ctr

)
(2)

Then we examined the relation between the change estimated
with ABC statistics and the change estimated using IBC statistics
by fitting several regression functions.

Finally, with each empirical effect size and percentage of
individual changes (500 pairs of values for each condition in the
simulation, i.e., a pair by sample), we obtained: (a) a scatterplot
to inspect the underlying relation between the two statistics, and
(b) several different regression functions to quantify the extent to
which the change in the distribution center is predictive of the
percentage of individual changes. This was done separately for
each research design.

RESULTS

For brevity of presentation, we report here the most
representative results. For all conditions in both designs,
the properties of the generated samples corresponded to those

3Norman et al. (2001), inspired on Guyatt et al. (1998), proposed an alternative

correctedmethod for computing Pnet:

Pnet =
(
P+exp − P−exp

)
−

(
P+
ctrl

− P−
ctrl

)
− P−exp × P+

ctrl
− P+exp × P−

ctrl

Since the results obtained with this equation and with [2] and are nearly identical,

here we will only inform about the results obtained with [2].
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FIGURE 2 | Relation between average-based change (horizontal axis) and individual-based change (vertical axis). Top row (A) shows the data for the simple group

pre-post design. Bottom row (B) shows the data for the pre-post design with a control group. Data based on SID with n = 100 and ρpre−post = 0.7. Sk, skewness;

Kr, Kurtosis.

imposed in the simulation. We report the results regarding
SID only; those based on the RCI are similar. Results from all
conditions and based on the RCI are available upon request.

SINGLE GROUP PRE-POST DESIGN

To examine the relation between ABC and IBC, we first plotted
the effect size measured by d (average-based change) against
the percentage of individual changes (individual-based change).
Figure 2 (top row) shows scatterplots based on SID index, for
n= 100 and ρpre−post = 0.7. Each of the points in these scatterplot
depicts one of the simulated samples (i.e., 13 effect sizes × 500
simulated samples = 6,500 points per scatterplot). The patterns
with ρpre−post = 0.5 and ρpre−post = 0.9 were similar. We report
here the conditions with the largest sample size to illustrate the
shape of the relation with greater clarity. The same pattern is
observed for n = 25 and n = 50, but with higher variability. In
other words, any particular d value corresponds to the samemean
percentage of changes, but a smaller sample size leads to more
scattered points due to higher sampling error.

To quantify the relations detected in Figure 2, we estimated
four different regression functions: linear, quadratic, cubic, and
logistic. In every case, d (average-based effect size) was used as the
independent variable and the percentage of changes (individual-
based effect size) as the dependent variable.

Table 2 reports the coefficient of determination (R2) for the
four functions, for n = 25. Because the dispersion in the various
scatterplots decreases as sample size increases, these R2 values
were the lowest of all values. Nevertheless, even with n = 25,
three of the four functions provided an excellent fit. First, the
linear function achieves R2 values around 0.90 in negatively

skewed distributions and above 0.90 values in the remaining
distributions, reaching 0.96. With n= 50 and n= 100, R2 ranges
between 0.91 and 0.98; the lowest values are observed in the
conditions with more extreme skewness. Second, the quadratic
function achieves R2 values similar to the linear function,
although slightly higher in negative skewness conditions. Third,
the cubic function yields R2 values between 0.96 and 0.98,
although at the cost of introducing more complexity. Fourth, the
logistic function yields the lowest values, between 0.68 and 0.78.

Three of the four adjusted functions offered a very good fit
to the data. Moreover, they offered very similar predictions. For
example, with n = 25, ρpre−post = 0.70, and δexp = 1, the
predicted value (the estimated percentage of changes) is 30.7%
for the linear function, 31.7% for the quadratic function, and
26.9% for the cubic function. Of these, the linear function is the
most parsimonious, especially for applied settings (Bentler and
Mooijaart, 1989; Maxwell and Delaney, 2004; Steele and Douglas,
2006). Table 3 reports the coefficients from the linear function.
These coefficients can be used to estimate the percentage of
individual changes from the effect size d. Given that the value of
the former can range from −100 to 100, the constant coefficient
B0 is fairly close to zero in every case (with absolute values
ranging from 0.09 to 2.50, and standard errors <0.27; p > 0.05
in all cases), and the slope coefficient B1 is close to 30 (28.75 to
30.86, with standard error < 0.12). Results with other conditions
were similar in all regards.

Results from the linear function indicate that: (a) when effect
size is zero, the expected percentage of changes (computed using
SID) ranges between 0 and 3%, and (b) for each extra point of
effect size, the expected percentage of changes rises by 30 points.
Because prediction is done using percentages, values below zero
and above 100 must be replaced by their respective limits.
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PRE-POST DESIGN WITH CONTROL
GROUP

Figure 2 (bottom row) shows the relation between ω̂2 (average-
based effect size measure) and the net percentage of changes
(individual-based effect size measure). The latter was calculated
from SID (n = 100 and ρpre−post = 0.7). Each of the points in
these scatterplot depicts one of the simulated samples comprising

TABLE 2 | R2 of linear, quadratic, cubic and logistic functions for the single group

design.

Distribution ρpre-post Linear Quadratic Cubic Logistic

Sk = −3, Kr = 18 0.5 0.919 0.938 0.965 0.695

0.7 0.909 0.937 0.961 0.676

0.9 0.897 0.940 0.956 0.681

Sk = −2, Kr = 9 0.5 0.937 0.951 0.974 0.701

0.7 0.934 0.954 0.972 0.683

0.9 0.928 0.955 0.971 0.679

Sk = −1, Kr = 2 0.5 0.951 0.960 0.979 0.705

0.7 0.951 0.962 0.979 0.687

0.9 0.946 0.962 0.977 0.679

Sk = 0, Kr = 0 0.5 0.962 0.965 0.982 0.723

0.7 0.963 0.965 0.982 0.724

0.9 0.962 0.964 0.982 0.722

Sk = 1, Kr = 2 0.5 0.956 0.956 0.979 0.740

0.7 0.957 0.957 0.981 0.751

0.9 0.955 0.956 0.980 0.756

Sk = 2, Kr = 9 0.5 0.943 0.943 0.975 0.752

0.7 0.944 0.944 0.976 0.756

0.9 0.939 0.942 0.973 0.770

Sk = 3, Kr = 18 0.5 0.927 0.927 0.969 0.757

0.7 0.923 0.925 0.967 0.764

0.9 0.915 0.921 0.960 0.779

Mean value 0.939 0.949 0.973 0.723

Min. value 0.897 0.921 0.956 0.676

Max. value 0.963 0.965 0.982 0.779

n = 25; Independent variable: d; Dependent variable: percentage of changes based on

SID; Sk, skewness; Kr, kurtosis.

one control and one experimental group. As in the top row, we
report the results for the conditions with the largest sample size.
The smaller sample sizes yielded the same pattern yet with higher
variability. Patterns with the other ρpre−post values were similar.

To quantify the relation observed in the bottom row of
Figure 2, we estimated four different regression functions: linear,
quadratic, cubic and logistic. In every case, ω̂2 was used separately
as the independent variable, and the net percentage of individual
changes served as the dependent variable. The four functions
were estimated for each of the conditions simulated. Table 4
reports the coefficient of determination (R2) for these four
functions. These results are based on net percentage of individual
changes calculated with SID index and n= 25. Because dispersion
from the various scatterplots decreases as sample size increases,
R2 values from Table 4 were lower than those achieved with
n= 50 and n= 100.

Overall, the four functions achieved a very good fit. The R2

values were higher when the distributions approached normality.
The quadratic and cubic functions achieved a slightly better fit
than the linear function, but only with negative skewness; the
logistic and linear functions achieved similar fit. As in the single
group design, the linear function was deemed preferable because
it is the most parsimonious, with only minimal loss of fit.

InTable 5 (analogous toTable 3 in the single group design) we
report the coefficients from the linear function with n= 25. These
coefficients allow estimating the net percentage of individual
changes from the effect size measures. The intercept (B0) ranges
from−0.04 to approximately 6, with a mean of 2.41 and standard
errors ranging between 0.19 and 0.33. The slope (B1) ranges
from 140 to 165, with a mean of 153 and standard errors
ranging between 0.53 and 0.91. As an example, if we consider
the results for the normal distributions, these coefficients indicate
that for a null effect size (ω̂2 = 0), the linear function yields an
estimated net percentage of changes of approximately 2.5%. For
each additional 0.10 points of ω̂2, the net percentage of changes
increases in approximately 15 points (as we are predicting
percentages, values beyond zero, and 100 must be replaced
by their respective limits). Note that the changes in pre-post
correlation do not substantially alter the coefficients B0 and B1
in Table 5. Similar results were found with the other sample
sizes.

TABLE 3 | Coefficients (and standard errors) for the lineal regression model in the single group design.

ρpre-post = 0.5 ρpre-post = 0.7 ρpre-post = 0.9

B0 B1 B0 B1 B0 B1

Sk = −3, Kr = 18 −0.01 (0.24) 30.08 (0.11) 0.48 (0.25) 29.89 (0.12) 1.30 (0.27) 29.69 (0.12)

Sk = −2, Kr = 9 1.11 (0.20) 29.43 (0.09) 1.09 (0.21) 29.51 (0.10) 1.57 (0.22) 29.33 (0.10)

Sk = −1, Kr = 2 1.65 (0.18) 29.07 (0.08) 1.76 (0.18) 29.05 (0.08) 2.15 (0.18) 28.92 (0.09)

Sk = 0, Kr = 0 1.88 (0.15) 28.82 (0.07) 1.89 (0.15) 28.83 (0.07) 1.84 (0.15) 28.89 (0.07)

Sk = 1, Kr = 2 0.42 (0.17) 29.43 (0.08) 0.44 (0.16) 29.46 (0.08) 0.30 (0.17) 29.49 (0.08)

Sk = 2, Kr = 9 −0.49 (0.19) 29.93 (0.09) −1.02 (0.19) 30.11 (0.09) −1.12 (0.20) 30.12 (0.09)

Sk = 3, Kr = 18 −1.69 (0.22) 30.52 (0.11) −2.45 (0.23) 30.78 (0.11) −2.34 (0.24) 30.68 (0.12)

n = 25; independent variable: d, dependent variable: percentage of changes based on SID. Sk, skewness; Kr, kurtosis.
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TABLE 4 | R2 of linear, quadratic, cubic and logistic functions for the n = 25

conditions of the control group pre-post design.

Distribution ρpre-post Linear Quadratic Cubic Logistic

Sk = −3 Kr = 18 0.5 0.857 0.881 0.885 0.858

0.7 0.857 0.887 0.890 0.858

0.9 0.841 0.886 0.888 0.843

Sk = −2Kr = 9 0.5 0.894 0.907 0.911 0.894

0.7 0.891 0.912 0.915 0.892

0.9 0.887 0.917 0.920 0.888

Sk = −1Kr = 2 0.5 0.916 0.924 0.926 0.916

0.7 0.916 0.927 0.929 0.916

0.9 0.916 0.931 0.933 0.917

Sk = 0Kr = 0 0.5 0.926 0.929 0.930 0.926

0.7 0.928 0.930 0.931 0.927

0.9 0.924 0.926 0.928 0.924

Sk = 1Kr = 2 0.5 0.906 0.906 0.908 0.905

0.7 0.902 0.902 0.903 0.901

0.9 0.898 0.898 0.900 0.898

Sk = 2Kr = 9 0.5 0.866 0.867 0.868 0.867

0.7 0.865 0.865 0.867 0.865

0.9 0.841 0.841 0.843 0.842

Sk = 3Kr = 18 0.5 0.824 0.825 0.827 0.825

0.7 0.815 0.816 0.817 0.816

0.9 0.785 0.786 0.787 0.785

Mean value 0.879 0.889 0.891 0.879

Min. value 0.785 0.786 0.787 0.785

Max. value 0.928 0.931 0.933 0.917

Independent variable: ω̂2. Dependent variable: net percentage of individual changes

based on SID. Sk, skewness; kr, Kurtosis.

DISCUSSION

Our first goal in this paper was to determine whether ABC
(quantified by d in the single group design or by ω̂2 in the
control group design) is related to IBC (quantified as the
percentage of individual changes, or net percentage in the
control group design). Our simulations indicate that percentage
of changes is related to average-based effect size. In all
conditions, and for both designs, the results show that, as
average-based effect size increases, so does the percentage of
changes.

Within this general goal, we aimed at finding a mathematical
function to capture the relation between effect size and
percentage of changes. In both designs, the adjusted linear,
quadratic and cubic functions showed excellent fit. The logistic
function showed good fit in the single group design, and
excellent fit in the control group design. Among them, the linear
model was the most parsimonious and easiest to interpret, and
hence was preferred (Bentler and Mooijaart, 1989; Maxwell and
Delaney, 2004; Steele and Douglas, 2006). It showed excellent fit
in all conditions even in the least favorable simulated scenarios
(n = 25): the R2 values ranged from 0.90 to 0.96 in the single
group design (Table 2) and from 0.79 to 0.93 in the control group
design (Table 4).

Finally, we wanted to identify conditions in which the ABC
and IBC are related. Our results indicate that such a relation
was present in all simulated conditions and for both designs,
regardless of the pre and post distributions skewness, and of the
pre-post correlation. The fit (R2) of the linear regression function
slightly varied from 0.96, in the most favorable conditions, to
0.90 (single group design), and 0.79 (control group design) in the
most adverse. As sample size increases, so does fit: with n = 100,
R2 reached 0.98 in the most favorable conditions, and was never
below 0.87 in the most adverse.

A very important finding from our study was that, for both
designs, the slope of the regression line was approximately the
same in all simulated conditions. In the single group design
(with d as predictor and the percentage of changes as dependent
variable), the slope value was around 30 (ranging from 29 to 31).
This indicates that, for each added point to the effect size, the
function’s estimation of the percentage of changes increased by
30 points. In other words, a 0.10-point increase in d (pre-post
differences metric) was associated with a 3-point increase in the
percentage of individual changes4.

In the control group design (with ω̂2 as predictor and the
net percentage of changes as the dependent variable), the slope
value was around 153 points, ranging from 140 to 165. Because
the values of ω̂2 range from 0 to 1, expressing it this way is
more useful: for each 0.10 added points to the effect size, the
linear function estimate for the percentage of individual changes
increases in 15.3 points (ranging from 14 to 16.5).

Relevance of the Present Findings
Some important implications are worth noting: (a) The ABC and
IBC statistics are nearly equivalent; and (b) Cutoffs commonly
used for deciding when an effect is small, medium or large should
be replaced with more informative indices. Below, we expand on
these ideas and offer two recommendations based on them.

The ABC and IBC Statistics Are Nearly Equivalent
With two exceptions (Norman et al., 2001; Lemieux et al., 2007),
papers on this topic agree on the following idea: researchers will
arrive to different conclusions about a treatment’s effectiveness
depending on whether they assess it at the individual or at
the group level (e.g., Ottenbacher et al., 1988; Testa, 2000;
Schmitt and Di Fabio, 2004; Vindras et al., 2012). Our results
indicate that this idea is incorrect. Across all of our simulation
conditions, ABC and IBC statistics were so closely related that
can be considered as different expressions of nearly the same
information. This is to be expected, indeed, when variability of
pre- and post-test scores is the same. Because increases in effect
size lead to increases in the center of the pre-post differences

4For a correct interpretation of these results, it should be noted that if theY variable

ranges from zero to 100 (as percentage of changes does) and the X-Y relation is

perfect, the Y slope value equals 100 divided by the X range. In our case, if the

relationship between X (effect size) and Y (percentage of changes) were perfect,

the slope of the regression line will be equal to 100/3.6= 27.8. The slopes found in

this study ranged from 29 to 31 because the studied relationships were not perfect.

This only means that, in order to find the correct slope, it is important to take into

consideration a range of X values which allows working with all possible values of

Y. Our results show that the chosen range of effect size values allowed us to study

the complete range of percentages of individual changes
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TABLE 5 | Coefficients (and standard errors) for the lineal regression model in the design with a control group.

ρpre-post = 0.5 ρpre-post = 0.7 ρpre-post = 0.9

B0 B1 B0 B1 B0 B1

Sk = −3, Kr = 18 3.51 (0.29) 162.9 (0.82) 4.18 (0.29) 164.7 (0.83) 5.92 (0.31) 164.9 (0.89)

Sk = −2, Kr = 9 3.02 (0.24) 160.3 (0.69) 3.95 (0.25) 162.0 (0.70) 5.18 (0.25) 162.5 (0.72)

Sk = −1, Kr = 2 3.49 (0.21) 156.7 (0.59) 3.74 (0.21) 157.5 (0.59) 4.50 (0.21) 158.2 (0.59)

Sk = 0, Kr = 0 2.35 (0.19) 152.2 (0.53) 2.56 (0.19) 151.7 (0.53) 2.54 (0.19) 151.8 (0.54)

Sk = 1, Kr = 2 1.07 (0.21) 149.8 (0.60) 0.86 (0.22) 147.6 (0.61) 0.37 (0.22) 146.6 (0.61)

Sk = 2, Kr = 9 0.96 (0.26) 148.8 (0.73) 0.33 (0.26) 146.2 (0.72) −0.03 (0.28) 143.4 (0.77)

Sk = 3, Kr = 18 0.95 (0.30) 147.6 (0.84) 0.63 (0.31) 144.1 (0.85) 0.43 (0.33) 139.7 (0.91)

n = 25; independent variable: ω̂2; dependent variable: net percentage of individual changes based on SID. Sk, skewness; Kr, kurtosis.

distribution, the number of cases on the right side of any chosen
cutoff will also increase.

Based on this finding, we offer our first recommendation:

When evaluating the change in a group, if only one pre- and one
post- measures are available, a logical sequence of analytic steps
is as following: (a) assess individual changes through SID or RCI,
(b) aggregate the individual results into a percentage of reliable
individual changes (or net percentage, if more than one group
is analyzed), and, (c) report this individual-based statistics along
with classical average-based effect size estimations such as d or
ω̂2.

This procedure has several advantages over just reporting
the ABC statistics. First, it allows researchers to make decisions
about each particular case. This is a common concern in
applied settings, and the individual-based methods discussed
here provide a straightforward tool for addressing it (Sijtsma,
2012). The usefulness and convenience of these indices have
been discussed elsewhere (Jacobson and Truax, 1991; Maassen,
2000; Ferrer and Pardo, 2014). Second, an effect size expressed
as a percentage is easier to understand and it enhances the
communication of results, especially among researchers without
a strong statistical background. For example, in a randomized
controlled trial, stating that the effect size was ω̂2 = 0.20 is less
clear than stating that the observed net percentage of individual
changes was 33%.

Recent recommendations advocate that effect size estimates
should directly address the research question which motivated
their estimation, and should be intuitively accessible so that they
facilitate the constructive scrutiny of results (Pek and Flora,
2018). We argue that, when used for effect size interpretation,
individual-based statistics accomplish both aims. Based on this,
and in line with previous work (e.g., Ogles et al., 2001;Wise, 2004;
Lambert and Ogles, 2009; Speelman andMcGann, 2013; de Beurs
et al., 2016; Fisher et al., 2018), we encourage other researchers
to include individual-based statistics in their methodological
toolbox and to use them to report their results.

Another finding worth highlighting is that, because the
intercept and slope coefficients were very similar across
conditions, it is easy to compute an approximate percentage
(or net percentage) of reliable individual changes even without
having access to the raw data. For example, if a researcher wants
to express an already published effect size as a percentage of

changes, the only needed step is to introduce the estimate into the
linear regression equation proposed in our results. For example,
in a single group pre-post study with d = 0.9 with normally
distributed scores, and based on Table 3:

Percentage of changes≈B0 + B1×d = 1.9+ 29×0.9≈28% (3)

In a control group pre-post study with ω̂2 = 0.4, with normally
distributed scores, pre-post correlation of r = 0.7, and based on
Table 5:

Net percentage of changes≈B0 + B1×ω̂2
= 2.6+ 152×0.4≈63%

(4)
When d or ω̂2 are not available in the published report, it
is easy to compute them from other effect sizes estimates
(see Appendix 1 in Supplementary Data Sheet 2 for
examples of these computations, and see Appendix 2 in
Supplementary Data Sheet 2 for an application to data from
one published paper). The specific intercept and slope values can
be selected according to the empirical skewness and kurtosis (see
Tables 3, 5). But even if coefficients from a wrong condition are
selected, the estimate of the (net) percentage of changes will be
close to the real value.

Based on previous research (Blanca et al., 2013), less than
5% of real datasets have more extreme distributions than the
ones simulated here. Consequently, our simple linear regression
models can be applied in most real situations to estimate the
approximate percentage of individuals who experienced change,
when only average-based change indicators are available. Of
course, when possible, computing the actual empirical value is
preferable.

Cutoffs Commonly Used for Deciding When an Effect

Is Small, Medium or Large Should be Replaced With

More Informative Indices
In many contexts, it is frequent to use cutoffs to interpret the
magnitude of an effect. The cutoffs proposed by Cohen (1988)
are arguably the most popular. When considering these cutoffs
for identifying small, medium and large effect sizes, we find that,
in our simulated single group pre-post scenarios, a small effect
(d= 0.2) corresponds to 8% of changes, a medium effect (d= 0.5)
corresponds to 17%, and a large effect (d = 0.8) corresponds to
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26%. Similar guidelines have been proposed for control group
pre-post designs (e.g., Kirk, 2013). According to our results, the
proposed ω̂2 values for declaring a small, moderate, and large
effect size (0.01, 0.06, and 0.14) would lead to 4, 12, and 24% of
net percentage of changes, respectively. In both designs, the idea
that a so-called large effect size leads to just 24–26% of changes
(or net changes) does not seem reasonable.

Based on our findings, we recommend that arbitrary cutoffs
for evaluating the magnitude of effect estimates should not be
used. We are not proposing a new set of cutoffs; rather, we
propose to stop using them altogether. Indeed, other authors
have suggested this idea before (e.g., Hill et al., 2008; Pek
and Flora, 2018), but researchers still use arbitrary guidelines
and cutoffs because they are useful for making sense of
their findings. Particularly in clinical, educational, and other
substantive domains, applied practitioners need to know the
meaning of values such as d= 0.6, r = 0.4, η̂2 = 0.4, or ω̂2= 0.35.
Arbitrary cutoffs are appealing as easy rules of thumb, despite
their many disadvantages.

Our second recommendation is to use individual-based
statistics as a simple tool for interpreting the magnitude of
empirical effects. We illustrate this idea with a simple example.
Suppose a researcher wants to assess the effectiveness of a new
treatment for the pathological fear of darkness. A sample of 100
patients with this fear is gathered and randomly assigned to two
groups (treatment group, receiving the new intervention, and
control group, receiving no intervention). After finishing the
program, the researcher obtains an average-based effect size of
ω̂2 = 0.26 for the interaction between group and occasion of
measurement. Instead of declaring that the effect is “large” (Kirk,
2013), the researcher also computes a net percentage of changes
(based on Table 5),

Net percentage of changes≈B0+B1×ω̂2
= 2.6+152×0.26≈42%.

Using the individual-based statistic and substantive knowledge
on the disorder, he decides to discard the new intervention in
favor of the traditional one, because they usually achieve much
higher rates of success. Now, suppose that a different researcher
wants to assess the effectiveness of a new treatment for autism in
10- year old children. She applies the new intervention using the
exact same sample size and research design, and finds the same
effect sizes estimates. In the context of an intervention to treat
autism spectrum disorders, she can arguably claim that the effect
is “very large” (indeed, she can claim the Nobel Prize).

In both cases, the researchers can easily decide whether
ω̂2 = 0.26 means a “small” or a “large” effect based on: (a) the
individual-based statistic; and (b) their theoretical knowledge
on the substantive domain. The individual-based statistics help
interpreting the meaning of the effect size estimation but,
unlike arbitrary “general guidelines,” do not force researchers
to interpret them invariantly across different domains. By
using them, applied practitioners can easily understand and
communicate the meaning of any value of the percentage of
changes in the context of their particular field.

Theoretical and Methodological
Considerations, and Future Directions
In our analyses we used the standard deviation of the pre-
post differences (σdif) as the standardizer of our single-group
ABC statistic, but other standardizers are also available. For
example, one common procedure is to use the standard deviation
of the pre- scores (σpre). The choice of the standardizer is
related to the ability of the effect size measure to deal with pre-
post dependency. Using σdif allows taking into account such
dependency because σdif is partially dependent on the pre-post
correlation, but there is no consensus on the correct procedure,
and different authors advocate for different solutions (Gibbons
et al., 1993; Dunlap et al., 1996; Morris and DeShon, 2002; Ahn
et al., 2012).

A full discussion of the implications of using different
standardizers is beyond the scope of this study, and we refer the
reader to the aforementioned literature. However, it is important
to note that using σpre as the standardizer for d will affect the
relation between the ABC and IBC statistics. Specifically, the B1
coefficient in Equation 3, which captures the regression slope,
will have higher values for higher levels of pre-post correlation.
In other words, although the relation can be considered linear
regardless of the standardizer chosen, the slope of such linear
function will differ depending on the pre-post correlation if σpre
is used. In contrast, it will remain constant if σdif is chosen. See
Appendix 1 in Supplementary Data Sheet 2 for a more detailed
description and some examples.

In a different vein, some caution is warranted when
interpreting IBC statistics. For example, suppose that a researcher
assesses the change in academic achievement from a given grade
to the next in a single school group, and she finds an effect size of
d = 0.3. With normally distributed scores, and according to our
Equation 3,

Percentage of changes≈B0 + B1×d = 1.9+ 29×0.3≈11%

This value does not imply that 89% of the students did not
learn. Instead, it indicates that, given the observed variability
in the pre-post differences, only 11% of such improvements
could be identified as reliable. The same mean difference (say,
for example, 10 IQ points) combined with a lower value of
σdif would lead to a higher value of both d and the percentage
of changes. Note that this “attenuation problem” affects both
the ABC and IBC statistics. Other factors such as measurement
error also attenuate the value of both types of statistics (see
the Appendix 3 in Supplementary Data Sheet 2). However, IBC
statistics should always be interpreted in the context of a
particular research domain, and it is reasonable to think that
measurement error, “natural” variability in the differences (σdif),
and other attenuating factors, will remain fairly constant across
studies from the same domain—particularly if they use the
same measurement instrument. If more than two measurement
occasions are available, other statistical tools can be used to
assess individual change (e.g., Estrada et al., 2018). These tools
are particularly useful for examining developmental and learning
processes, and can incorporate measurement error.
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In our simulated scenarios, both groups were expected
to have scores with the same distributional shape and
dispersion in the pre- and post- evaluations—i.e., only
the center of the distribution was expected to change. Of
course, the distribution shape and variability can also change
between both assessments, for example, as a result of an
intervention. It is unclear whether our findings apply to such
scenarios, and future research should address this important
point.

CONCLUSION

In this paper we show that individual- and average-based
statistics for measuring change are closely related, regardless
of sample size, pre-post correlation, and shape of the scores’
distribution. To our knowledge, this is the first study applying
individual reliable change indices to an experimental design. Our
findings are relevant for a range of scientific disciplines
including education, psychology, medical and physical
therapy. We encourage other researchers to use individual
change indices and individual-based statistics. Their main
advantages are: (a) they allow determining which individual
cases changed reliably; (b) they facilitate the interpretation
and communication of results; and (c) they provide a
straightforward evaluation of the magnitude of empirical

effects while avoiding the problems of arbitrary general
cutoffs.
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