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Abstract 

In all organisms, complex protein-protein interactions (PPI) networks control major 

biological functions yet studying their structural features presents a major analytical 

challenge. In plants, leucine-rich-repeat receptor kinases (LRR-RKs) are key in sensing 

and transmitting non-self as well as self-signals from the cell surface. As such, LRR-RKs 

have both developmental and immune functions that allow plants to make the most of their 

environments. In the model organism in plant molecular biology, Arabidopsis thaliana, 

most LRR-RKs are still represented by biochemically and genetically uncharacterized 

receptors. To fix this an LRR-based Cell Surface Interaction (CSILRR) network was 

obtained in 2018, a protein-protein interaction network of the extracellular domain of 170 

LRR-RKs that contains 567 bidirectional interactions. Several network analyses have been 

performed with CSILRR. However, these analyses have so far not considered the spatial and 

temporal expression of its proteins. Neither has it been characterized in detail the role of 

the extracellular domain (ECD) size in the network structure. Because of that, the objective 

of the present work is to continue with more in depth analyses with the CSILRR network. 

This would provide important insights that will facilitate LRR-RKs function 

characterization. 

 

The first aim of this work is to test out the fit of the CSILRR network to a scale-free 

topology. To accomplish that, the degree distribution of the CSILRR network was compared 

with the degree distribution of the known network models of scale-free and random. 

Additionally, three network attack algorithms were implemented and applied to these two 

network models and the CSILRR network to compare their behavior. However, since the 

CSILRR interaction data comes from an in vitro screening, there is no direct evidence 

whether its protein-protein interactions occur inside the plant cells. To gain insight on how 

the network composition changes depending on the transcriptional regulation, the 

interaction data of the CSILRR was integrated with 4 different RNA-Seq datasets related 

with the network biological functions. To automatize this task a Python script was written. 

Furthermore, it was evaluated the role of the LRR-RKs in the network structure depending 

on the size of their extracellular domain (large or small). For that, centrality parameters 

were measured, and size-targeted attacks performed. Finally, gene regulatory information 

was integrated into the CSILRR to classify the different network proteins according to the 

function of the transcription factors that regulate its expression. 

 

The results were that CSILRR fits a power law degree distribution and approximates a scale-

free topology. Moreover, CSILRR displays high resistance to random attacks and reduced 

resistance to hub/bottleneck-directed attacks, similarly to scale-free network model. Also, 

the integration of CSILRR interaction data and RNA-Seq data suggests that the 

transcriptional regulation of the network is more relevant for developmental programs than 

for defense responses. Another result was that the LRR-RKs with a small ECD size have a 

major role in the maintenance of the CSILRR integrity. Lastly, it was hypothesized that the 

integration of CSILRR interaction data with predicted gene regulatory networks could shed 

light upon the functioning of growth-immunity signaling crosstalk. 
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Abstract in Spanish 

 

En todos los organismos, complejas redes de interacción proteína-proteína (PPI) controlan 

funciones biológicas de gran relevancia. Sin embargo, estudiar sus características 

estructurales aún presenta un gran desafío analítico. En las plantas, los receptores quinasas 

con repeticiones ricas en leucina (LRR-RK) son clave en la detección y transmisión de 

señales endógenas y exógenas en la superficie celular. Como tal, los LRR-RK tienen 

funciones de desarrollo e inmunes que permiten a las plantas aprovechar al máximo sus 

entornos. En el organismo modelo en biología molecular de plantas, Arabidopsis thaliana, 

la mayoría de los LRR-RK todavía están representados por receptores bioquímica y 

genéticamente no caracterizados. Para solucionar esto, se obtuvo una red de interacción de 

superficie celular basada en LRR (CSILRR) en 2018, una red de interacción proteína-

proteína del dominio extracelular de 170 LRR-RK, que contiene 567 interacciones 

bidireccionales. Se han realizado varios análisis de red con CSILRR. Sin embargo, estos 

análisis hasta ahora no han considerado la expresión espacial y temporal de sus proteínas. 

Tampoco se ha caracterizado en detalle el papel del tamaño del dominio extracelular 

(ECD) en la estructura de la red. Por eso, el objetivo del presente trabajo es continuar con 

análisis más profundos de la red CSILRR. Esto proporcionaría información importante que 

facilitará la caracterización de la función de los LRR-RK. 

 

El primer objetivo de este trabajo es comprobar el ajuste de la red CSILRR a una topología 

de libre escala. Para lograr eso, la distribución de grado de la red CSILRR se comparó con la 

distribución de grado de los modelos de red ya conocidos de libre escala y aleatorio. 

Además, se implementaron tres algoritmos de ataque de red y se aplicaron a estos dos 

modelos de red y a la red CSILRR para comparar su comportamiento. Sin embargo, dado 

que los datos de interacción CSILRR provienen de un cribado in vitro, no hay evidencia 

directa de si sus interacciones proteína-proteína ocurren dentro de las células de la planta. 

Para obtener información sobre cómo cambia la composición de la red en función de la 

regulación transcripcional, los datos de interacción del CSILRR se integraron con 4 

conjuntos de datos de RNA-Seq diferentes relacionados con las funciones biológicas de la 

red. Para automatizar esta tarea, se escribió un script de Python. Además, se evaluó el 

papel de los LRR-RK en la estructura de la red dependiendo del tamaño de su dominio 

extracelular (grande o pequeño). Para ello, se midieron diferentes parámetros de 

centralidad y se realizaron ataques de tamaño específico. Finalmente, información sobre la 

regulación de genes se integró en el CSILRR para clasificar las diferentes proteínas de la red 

de acuerdo con la función de los factores de transcripción que regulan su expresión. 

 

Los resultados fueron que la distribución de grado de CSILRR se ajusta a una ley potencial y 

se aproxima a una topología de libre escala. Además, CSILRR muestra una alta resistencia a 

ataques aleatorios y una resistencia reducida a ataques dirigidos a nodos concentradores / 

cuellos de botella, similar al modelo de red de libre escala. Asimismo, la integración de 

datos de interacción de CSILRR y datos de RNA-Seq sugiere que la regulación 

transcripcional de la red es más relevante para programas de desarrollo que para respuestas 

de defensa. Otro resultado fue que los LRR-RK con un tamaño ECD pequeño tienen un 

papel importante en el mantenimiento de la integridad de CSILRR. Por último, se planteó la 

hipótesis de que la integración de los datos de interacción de CSILRR con redes reguladoras 

de genes predichas podría arrojar luz sobre el funcionamiento de la diafonía entre la 

señalización por inmunidad y el crecimiento. 
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1 Introduction 

 

1.1 Network Biology: approaches and applications 

 

Networks have been used to describe interactions between entities in a wide array of 

different research areas, without biology being an exception1. Despite the success of 

research of individual cellular components and their function, only in rare cases a discrete 

biological function can be attributed to an individual molecule. Instead, most biological 

characteristics arise from complex interactions between the extensive cell constituents, 

such as proteins, nucleic acids and small molecules. This is where the Network Biology 

comes into play as a Systems Biology integrative approach to help understand the cell’s 

internal organization and evolution2. 

 

The development of high-throughput data-collection techniques (genomics, 

transcriptomics, proteomics and semi-automated screens) has allowed to get snapshots of 

the status of the cell’s components at any given time and how the interact with each other.  

From them, enough information can be extracted to create experimental interaction webs 

of different nature, like protein-protein interaction (PPI), metabolic, signaling and 

transcription regulatory networks. These four are the main network types in molecular 

biology, but for the purpose of this work we will only discuss in further detail the protein-

protein interaction networks2,3. 

 

In PPI networks, the nodes are proteins, and two nodes are connected by a undirected edge 

if the two proteins bind3. Because of the nature of this relationship between the nodes 

(proteins), the links do not have an assigned direction, but a mutual binding relationship: if 

protein A binds to protein B, then protein B also binds to protein A2. The extraction of 

structural and topological features from a PPI could potentially provide information on 

individual nodes and edges, distinct modules, and the entire network. Some of these 

features include degree, the number of connections of a node; betweenness, the fraction of 

the shortest paths that pass through a node; and eigenvector, a measure of the influence of 

a node in a network4. However, to get a complete overview of the network organization 

and in which manner their elements are arranged, the different networks are classified 

according to their fit into certain mathematical models, such as random networks or scale-

free networks2 (figure 1A). 

 

An important finding in the field of Network Biology was that most networks within the 

cell approximate a scale-free topology5. A network is considered scale-free if the degree 

distribution follows a power-law. This means that the degree of its nodes is highly non-

uniform: most of its nodes have only a few connections, and only a few nodes have many 

connections (also called hubs). They are called scale-free because of the absence of a 

typical node in the network that could be used to characterize the rest. In scale-free 

networks, the probability that a node has k neighbors follows P(k) ~ k-γ, where γ is the 

degree exponent. This degree exponent ranges between 2 and 32,3. Scale-free networks are 

frequently discussed regarding network assembly mechanisms, particularly in the context 

of preferential attachment, in which the probability that a node gains a connection is 

proportional to its current degree k. Although preferential attachment is the most known 
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mechanism that produces scale-free networks, there are other mechanisms that can also 

produce them6. 

 

Another network model relevant in Network Biology is the random networks. The degree 

distribution of this type follows a Poisson distribution. In this case, there will be many 

nodes with a mean degree value, while nodes with extreme degree values (very high and 

very low) will be less represented2. 
 

1.2 Plant Leucine-Rich Repeat Receptor Kinases (LRR-RKs) 

 

Plant growth and development are regulated by endogenous growth regulators, as well as 

by both beneficial and detrimental environmental cues. Hormonal, environmental, or 

pathogenic signals are mostly perceived by membrane-localized receptors that transduce 

those signals inside plant cells to activate genetic programs that regulate growth, 

development, and defense responses7. Among all of them, the receptor kinases (RK) 

constitute one of the largest gene families in the plant kingdom8. The whole family of RK 

consists of over 600 members and represents nearly 2.5% of protein coding sequences in 

the Arabidopsis thaliana (hereafter Arabidopsis) genome9. Upon ligand binding there is a 

dimerization or oligomerization of the RKs with either themselves or with a co-receptor. 

This leads to the activation of intracellular kinase domains (KD) which initiate downstream 

signaling transduction.10 Protein kinases are a group of enzymes that move a phosphate 

group onto proteins, in a process called phosphorylation. This functions as an on/off switch 

for many cellular processes11. 

 

Based on the extracellular domain structure, plant RKs can be categorized into 14 

subfamilies.12 The leucine-rich repeat receptor kinase (LRR-RK) family of membrane 

integral receptors contains more than 200 members in Arabidopsis and is considered to be 

the largest family of plant receptor kinases.13 The LRR-RKs are composed of three 

domains: an extracellular domain (ECD) containing tandem repetitions of a consensus 

sequence (enriched in residues of the hydrophobic amino acid leucine), a single 

membrane-spanning domain and an intracellular kinase domain (figure 1B). This kinase 

domain phosphorylates or self-phosphorylates the hydroxyl groups of serine or threonine 

on the proteins that start the signaling process.10,14 

 

Regarding the extracellular domain of the LRR-RKs, many have been structurally 

characterized. This showed that LRR ectodomains or extracellular domains mostly 

function as a platform for ligand perception or either as co-receptor association. Based on 

the length of these ectodomains structure, plant LRR-RKs can be classified in two groups: 

the LRR-RKs with a large ectodomain and LRR-RKs with a small ectodomain10. 

Furthermore, it has been proposed in numerous studies that the ECD size of an LRR-RK 

could be used to predict whether they function as receptors or co-receptors15. 

 

In 2019 Xi et al. used this concept to classify the 225 members of the LRR-RKs. It was 

observed a bimodal distribution of the ECDs lengths with one maximum at 250 amino 

acids and another maximum at 550 amino acids. Based on this distribution, they defined 

the LRR-RKs with ECD length up to 400 amino acids as small, being putative co-

receptors. ECDs with more than 400 amino acids were classified as large, which means 

putative ligand-recognition receptors15. 
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LRR-RKs can mainly be grouped into either regulating plant growth and development or 

being involved in plant immunity and defense. Therefore, they are key proteins that 

regulate the interaction of the plant with the environment to secure its adaptability. 

However, most of them are still uncharacterized. In Arabidopsis only less than 20 RKs 

have a biochemically defined ligand and only less than 50 RKs have a genetically defined 

function15,16. Due the size of the LRR-RKs gene family (more than 200), a reductionist 

approach of trying to characterize the receptors individually is not practical. Consequently, 

the integrative approach that network biology offers is needed to understand more in depth 

this important but largely unknown group of genes.   

 

1.3 LRR-based Cell Surface Interaction (CSILRR) network 

 

In 2018 Smakowska et al.17 published an extracellular network of Arabidopsis LRR-RKs 

termed LRR-based Cell Surface Interaction (CSILRR) network. It was implemented an 

extracellular protein-protein interaction assay previously stablished in an all-by-all screen 

of 200 formerly cloned LRR-RK ECDs. Given that the Arabidopsis genome encodes 225 

LRR-RKs, it was tested the extracellular LRRs interaction space to a totality of 79%. The 

result was a PPI network that contained 170 proteins and 567 bidirectional interactions 

(figure 1C). It is important to note that only a 26.4% of the interactions tested passed the 

extremely stringent statistical cut-off for the network construction. This is the reason not 

all the 200 LRRs tested are included in the network17. 

 

In 2018 also Ahmed et al.4 used this same network to discover pathogen contact points in 

host protein-protein interactomes. By computing network centrality parameters and 

integrating it with phenotypic data, it was possible to predict preferential targets of 

pathogen effectors. Effectors are pathogen proteins that are translocated inside the plant 

cells during infection to alter the cellular machinery in favor of the pathogen4. These 

predictions were also confirmed experimentally. All of this allowed to conclude that nodes 

with increased connectivity that are located closer to the network core are the preferred 

targets of pathogen attack. This result contrast with the centrality-lethality rule that states 

that high degree (hubs) and high betweenness (bottlenecks) nodes in a biological network 

are likely to be encoded by essential genes4. 

 

1.4 Motivation and Objectives 
 

Since the CSILRR network was obtained through experimental in vitro assays, there is no 

direct evidence of whether these interactions occur inside the plant cells. There are many 

different layers of regulation inside the cell that condition two proteins being able to 

interact. The first one is the possibility of physical interaction, which has already been 

elucidated. The other ones are determined by transcriptional, translational, post-

translational regulation and subcellular localization. The latter determines if the two 

proteins that are to interact find themselves in the same cellular organelle. However, given 

that all the proteins in the network are assumed to be extracellular membrane proteins, the 

subcellular localization should not be considered. 

 

Nevertheless, there are other layers of regulation that influence the composition of the 

network inside the cell. This regulation layers affect the network spatially and temporally. 

This means that the network composition changes between the tissues of the plant, even 
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between cell types, but it also changes according to the different developmental stages of 

the plant. Another factor that can influence the network are the environmental conditions. 

Two plants with identical genetic composition could be regulating the network differently 

if they are in despair habitats. 

 

In this work, the regulation layer to unveil in the transcription regulation. One of the main 

and most used techniques in profiling transcriptomes in biology is the RNA sequencing 

(RNA-Seq; ribonucleic acid sequencing). RNA sequencing is the application of any next-

generation sequencing technique to profile all the present RNA in a biological sample at 

any moment18. One of the most studied RNA types is the messenger RNA (mRNA). It is 

the intermediary molecule between a gene and a protein. This way, profiling the mRNA in 

a sample gives direct evidence of the genes that are being expressed. 

 

Under these assumptions, one of the main aims of the present work is to unveil how the 

transcriptional regulation layer affects the composition and structure of the CSILRR network 

in different plant tissues and experimental conditions using publicly available 

transcriptomics datasets. For this, a computational python-based tool has been developed 

in order to automatize the integration of PPI data and RNA-Seq18 data. Other objectives of 

the work are the comparison of the CSILRR network with other known network models 

relevant in Network Biology to determine its fit into a scale-free network model, the 

analysis of the differential function of the LRR-RKs ECDs size inside the network, and an 

integration of gene regulation data with the PPI data already available. 

 

B CA

 

Figure 1. Network models, CSILRR and LRR-RKs structure. (A) Examples of a random network 

model, a scale-free network model and their respective typical degree distribution shapes, adapted from 

Barabási and Oltvai 20042 (B) Representation of the tridimensional structure of an LRR receptor kinase. In 

red there is a large extracellular domain, in yellow a small extracellular domain and in gray the intracellular 

kinase domain. (C) Representation of the CSILRR network with Cytoscape19. 
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2 Methods 

 

2.1 Datasets and databases 
 

The protein-protein interaction data was obtained from Smakowska et al. 201817 

supplementary data table 2 as an edge list. The RNA-Seq datasets were obtained from the 

Gene Expression Omnibus (GEO) of the National Center for Biotechnology Information 

(NCBI) with the following accession numbers: GSE90075 (P. syringae dataset), 

GSE63603 (flg22 dataset), GSE79709 (root dataset) and GSE38612 (organs dataset)20–23 

(figure 2). The expression values in the four datasets were in Fragments Per Kilobase 

Million (FPKM) and were not modified for the purpose of this work. FPKM is a variation 

from RPKM (Reads Per Kilobase Million)24. FPKM is a normalized estimation of the gene 

expression based on RNA-Seq data. They are computed from the number of 

fragments/reads that mapped a specific gene, considering the gene length and the 

sequencing depth.  

Root

Leave

Silique

Flower

vs.

flg22

Pseudomonas 
syringae

Mock Induced immunity

A

B

C

 

Figure 2. Datasets used in this work. (A) Schematic representation of the different Arabidopsis thaliana 

organs of which its transcriptome profiling composes the organs data set. (B) Schematic representation of the 

six root cell types used for the root datasets, adapted from Kawakatsu 201622. (C) Scheme representing the 

two immunity-related datasets, in which mock plants and plants treated with the bacterial elicitor flg22 and 

with the plant pathogen Pseudomonas syringae to activate an effector triggered immunity (ETI) response. 

2.2 Calculation of network parameters and network visualization 

 

The parameter computation of all the networks in the work was done using the Python 

package NetworkX 2.525. For the heatmaps and the Principal Component Analysis (PCA)26 
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plots a set of 18 network parameters were computed. In the appendix 1 table there are all 

the parameters, the functions used for its computation and a brief explanation of its 

meaning. The software Cytoscape 3.7.2 was used for the visualization of the networks19. 

 

2.3 Statistical analyses 

 

For the statistical comparison of the resistance-damage value in the network attacks and 

the small/large centrality parameters it was used a one-sided non-parametric Mann-

Whitney U test27 given the distribution of the samples. For the small/large targeted attacks 

it was used a Welch T-test28. To test the goodness of the fit of CSILRR to a power-law 

distribution it was used a two-sided Kolmogorov–Smirnov (KS) test29. All these test were 

done using the Python 3.7 libraries Scipy and powerlaw30,31.  

 

2.4 Generation of scale-free and random networks 

 

The degree distribution of one hundred scale-free networks and one hundred random 

networks was computed using the NetworkX functions 

networkx.barabasi_albert_graph(169, 3) and network.gnm_random_graph(169, 567). Then 

these one hundred-degree distributions were averaged and plotted along with the degree 

distribution of the CSILRR network. 

 

2.5 Attack algorithms implementation 

 

The three attack algorithms were implemented in Python from the pseudocode published in 

Aguirre et al. 200232. In table 1 there is a summary of how the three attack algorithms 

work. For the random attacks to all networks and the degree/minimum path attacks to the 

scale-free and random networks, the functions were iterated 100 times to reduce the 

variance in the results. It is important to note that in the case of the small/large targeted 

attacks the algorithms were slightly modified. Instead of receiving as an input all the 

network nodes as potential objects to be disabled, they are first filtered according to their 

size, so only the nodes of one type can be deleted by the algorithm. In the appendix 2 can 

be found the python attack functions implemented for this work. 

Table 1. Network attack strategies used in this work. 

Random attack algorithm Degree attack algorithm Minimum path attack 

algorithm 

Nodes are targeted and 

deleted from the network in 

a random manner. 

Nodes are targeted and 

deleted from the network 

according to their number of 

connections. 

Nodes are targeted and 

deleted from the network 

according to the number of 

shortest paths in which 

they are. 
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2.6 Automatization of the integration of PPI data with RNA-Seq 
data 

 

For the automatization of the integration of PPI data and RNA-Seq data it was 

implemented a Python 3.7 script. The script file and a tutorial can be found in 

https://github.com/nicomaper/intransnet . For information on how to use the program see 

the tutorial in the previous link. For further information on the characteristics of the 

program see chapter Results 3.3 and figure 5. 

 

2.7 Cut-off expression value computation 

 

Technical noise is unavoidable in RNA-Seq experiments and it must be quantified in order 

to avoid mistaking it for genuine differences in biological expression levels33. Thus, 

determining a cut-off expression value to discriminate genes that have an FPKM higher 

than 0 due to technical noise is key for the integration of RNA-Seq data with PPI data. To 

implement this concept into the tool developed during this work, there is a cut-off FPKM 

value that can be given in the form of a numerical value or automatically computed. For 

the automatic computation the whole RNA-Seq dataset must be provided. 

 

Considering that in an RNA-Seq experiment data there is technical noise, a bimodal 

distribution of the logarithmic FPKM expression values should be expected34. If this is the 

case, the cut-off value that would discriminate the technical noise from the actual 

expressed genes would be in between of the two normal distributions. To find such value 

from a whole RNA-Seq data it was implemented in Python a function that uses Gaussian 

Mixture Model clustering algorithm from the scikitlearn module to differentiate the two 

normal distributions35. After assigning each expression value to a cluster, the function 

takes the maximal and the minimum number of the first and second cluster respectively 

and computes the exponential of the mean. This number is used as cut-off value to 

categorize which genes are considered expressed, and therefore, kept in the network, and 

which ones are noise and then eliminated from the network. In the appendix 3 there is the 

Python implemented function for the cut-off computation from an RNA-Seq whole dataset. 

 

2.8 PPI integration with GRN 

 

The TF2Network software was used to predict the transcription factor (TF) regulators of 

CSILRR network proteins. This tool exploits the large volume of TF binding information 

and allows the prediction of gene regulatory networks (GNR) by identifying potential 

regulators for a set of functionally related genes36. In this case that list of genes were the 

LRR-RKs that shape the CSILRR network. 

 

Once TF2Network was run with the genes that encode the network proteins, the results 

returned were filtered by their q-value and the functional annotation of the TF. First, the 

three TF with the lowest q-value that had been functionally annotated as involved in plant 

development. Then, the three TF with the lowest q-value and immunity-related 

annotations. This gene regulatory information was integrated into the CSILRR network. This 

way, the nodes or proteins in the network were classified the three different groups: 

https://github.com/nicomaper/intransnet
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proteins regulated only by development-related TFs, proteins regulated only by immunity-

related TFs, and proteins regulated by both types of TFs. 
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3 Results 

 

3.1 CSILRR fits a power-law degree distribution but is not scale-
free 

 

To gain more insight into the characteristics of the CSILRR network, it was made a 

comparison with other known network models relevant in Network Biology: random 

networks and scale-free networks. Since this network topologies are mainly defined by 

their degree distribution, the averaged degree distribution of 100 random networks and 100 

scale-free random networks was compared with the degree distribution of CSILRR. As 

expected, the random network has a normal distribution while the scale-free network has a 

power-law degree distribution. As observed in figure 3, the CSILRR network has a heavy-

tailed distribution which could approximate a power-law. 

 

Then a linear regression was fit to the obtained degree distributions in a logarithmic scale. 

The scale-free network model has an R-squared of -0.93 with an associated p-value less 

than 0.001. In the case of the CSILRR network the R-squared is -0.92 and the associated p-

value is as well less than 0.001. This proves that, similarly to scale-free networks, CSILRR 

possesses many nodes with low degree and few nodes with high degree. However, to 

verify whether it is a scale-free network, first it needs to be determined whether a power-

law distribution fits the CSILRR degree distribution and to determine the value of the γ 

parameter in such model, which should be between 2 and 3. With a Kolmogorov-Smirnov 

test the CSILRR degree distribution was compared with a fitted power-law distribution. The 

test yielded a p-value of less than 0.001. This indicates that the CSILRR distribution fits well 

a power-law distribution. However, the computed value of γ for such model is 3.32. This 

means that the γ value, one strong requirement to consider a network scale-free6, fails to be 

fulfilled.  

 

3.2 CSILRR displays high tolerance to random attacks and 
reduced tolerance to hub/bottleneck-directed attacks, 
similarly to random scale-free network models. 

 

To study and compare further the behavior of the CSILRR network and the other two models 

(scale-free and random), three different algorithms were implemented to perform 

attacks. A network attack is a set of network objects (in this case, nodes, but could also be 

edges) which are disabled or deleted from the network. Its purpose is to produce damage in 

terms of connectivity32. For the attacks performed in this work, the damage has been 

defined as the order (number of nodes) in the largest connected component (LCC) after the 

attack32. Therefore, the resistance of a network to an attack is the proportion of initial 

nodes that the LCC has after the attack. The cost of an attack has been defined as the 

number of objects (nodes) that the algorithm disables, the proportion of total nodes in the 

network that the algorithm deletes. In table 1 there are summarized the three different 

algorithms that were implemented. Each of them targets nodes in a different manner, either 

randomly, according to their degree or to the number of minimum paths that cross them. 
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In response to the random attacks, the three networks behave similarly. In all the cases, the 

resistance to the network attack seems to be proportionate with the cost of the attack. Also, 

there were not significant differences when comparing the product resistance-cost of the 

random attacks to the three different networks. 

 

A B

C

 

Figure 3. Degree distribution and linear regression of CSILRR, scale-free and random network 

models. (A) Degree distribution of the three networks used in this work. For the random and scale-free 

models, the degree distribution is the average of 100 random versions of each. (B) Degree distribution in a 

logarithmic scale. (C) Linear regression of the logarithmic degree distribution of the three networks. The 

associated p-values are 7.012*10-11 for CSILRR, 5.4*10-10 for scale-free and 0.79 for the random network. 

However, when the hubs (i.e. the nodes with higher degree) of the network are directly 

targeted, there is an important change in the behavior of all the networks, especially in the 

case of the scale-free network model and the CSILRR network. For the CSILRR network, 

when deleted approximately a 35% of the nodes with most degree, the network has been 

completely disconnected and disabled. In this case, the scale-free network model and the 

CSILRR network display a higher sensitivity to the degree targeted attacks than the random 

network model, which seems to be more resilient. For this case there were significant 

differences between the product damage-cost of the CSILRR network and scale-free 

network with the random network. 
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The results are very similar when the bottlenecks of the networks are targeted. When the 

algorithm targets the nodes that are in the higher number of minimum paths, the damage to 

the connectiveness of the network is higher, especially for the CSILRR network. The results 

for the statistical differences are the same in this case as for the degree attacks. 

 

Random Attack

Degree Attack

Minimum Path Attack

B

C

A

 
Figure 4. Network attacks. (A) Random attack on CSILRR network and on scale-free and random 

network models. The results presented correspond to the average of 100 attacks. The three networks present 

the same resilient behavior to random attacks. There is a direct relationship between the cost of the attack and 

the decrease in the resistance. (B) Degree attacks on the same previously mentioned networks. In this case 

the decrease in the resistance is larger since the nodes with a higher degree are being targeted. The decrease 

in the resistance is more dramatic for the CSILRR and the scale-free network than for the random network due 

to its lack of a structural bias. (C) Minimum path attack strategy, in which the nodes that are in largest 

number of shortest paths are targeted. The decrease is the resistance is similar for the CSILRR and the scale-

free network, which denotes similarity in their topologies. 
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3.3 Development of a computational tool to integrate PPI data 
with RNA-Seq data. 

 

To automatize the integration of PPI data and RNA-Seq data, a command line-based 

Python script was written. In the figure 5 there is a scheme of the functioning of the 

program, as well as their input arguments and its outputs. The objective of this tool is to 

simplify the network deleting the nodes that have expression values below a cut-off and are 

considered not expressed under certain experimental conditions or tissues/cell types. This 

way, for each RNA-Seq dataset new networks will be generated that lack the nodes of the 

proteins which genes are not being expressed. 

 

The first main input argument is a PPI network in the form of an edge list. The second is a 

data frame with the expression values of the network protein’s genes for a set of 

experimental conditions/tissues/cell types from an RNA-Seq experiment. The third input 

argument is a cut-off expression value either given in the form of a single number, or that 

can be computed automatically by providing the expression values of the whole RNA-Seq 

experiment. Both ways of providing the cut-off value are mutually exclusive but at least 

one of them mandatory. The purpose of the cut-off expression value is to determine what 

genes are really expressed and which ones have an expression value due to the technical 

noise. For further information on the cut-off value computation see chapter Methods 2.7. 

 

Once provided the three mandatory input arguments, the program computes a network for 

each sample. Then a set of 18 network topology parameters are computed that are later 

used for statistical comparison, for principal component analysis26 and for data 

visualization. 

 

 

Figure 5. Scheme of the functioning of the script to integrate PPI and RNA-Seq data. The 

Python script implemented for the integration of PPI data with RNA-Seq data takes as input arguments: the 

network as an edge list, a data frame with the mRNA expression values in FPKM of the genes in the network 

and a cut-off expression value in the form of a number. The cut-off value can also be computed if the whole 

RNA-Seq data frame is provided. The main output of the program are the edge lists of the new networks 

generated by eliminating the nodes in the original network that do not pass the cut-off. Also, some plots are 

generated for visualization of the data. 
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3.4 Integration of CSILRR interaction data and RNA-Seq data 
suggests that the transcriptional regulation of the network is 
more relevant for developmental programs than for defense 
responses. 

 

LRR-RKs can mainly be grouped into either regulating plant growth and development or 

being involved in plant immunity and defense15. Because of this, the Python script was 

tested with two development-related and two immunity-related RNA-Seq datasets. One of 

the developmental datasets makes a transcriptome profile of four Arabidopsis organs: root, 

leaf, flower and silique23, while the other is from different Arabidopsis root cell types22. 

The immunity datasets are the transcriptome profiling of the Arabidopsis ecotype 

Columbia-0 that has been treated either with the plant pathogen Pseudomonas syringae20 

or with the bacterial peptide flg2221. In both treatments it is expected that the plant 

responds triggering an immune response37. 

 

Flower CSI-
LRR

Root CSI-LRRSilique CSI-
LRR

Leaf CSI-LRR

Epidermis CSI-LRR Columella CSI-LRRStelle CSI-LRR Endodermis CSI-
LRR

Cortex CSI-LRR

Col-0 mock Col-0 flg22 Col-0 mock Col-0 P. syringae

 

Figure 6. Networks generated during this work. Networks generated from the integration of the PPI 

data from CSILRR and the RNA-Seq data sets mentioned in the Methods section. The node size is relative to 

the expression of the gene that encodes the protein in each data set. It is noticeable just from the network 

representation that the networks integrated the immunity datasets are more complex than the ones that come 

from developmental datasets. The visualization software was Cytoscape19. 

In figure 6 there are the generated networks for each dataset. As mentioned previously, 

from the generated networks a set of 18 network parameters were computed. To this data 

frame of new networks and their as sociated parameter values was applied an algorithm of 
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dimensionality reduction of principal component analysis26. The purpose of this was to 

find the parameters that contained the largest amount of variability and make the results 

visualizable in two dimensions. The results of this are in figure 7. 

 

For the first developmental dataset of Arabidopsis organs, the networks have been 

surprisingly reduced in order and size (appendix 4) compared to the original. This suggest 

a tight transcriptional control of the CSILRR network in these tissues. Especially in silique, 

the network with the least order and that has been disconnected (figure 6). Furthermore, 

when looking at the percentage of expressed genes for this dataset, despite that the values 

are about homogeneous, the silique network has a reduced number of nodes (appendix 5). 

It is also noticeable that in the leaf network there is an articulation point (and edge that 

being removed would disconnect the network), which affects parameters related with 

network distance (appendix 4). From the PCA plot it can be deduced that while the flower 

and the root are the organs with the most similar networks, the silique is the most divergent 

from all the others. 

 

A B

C D

 

Figure 7. Principal component analysis plots. 18 network parameters for each network were 

computed, from which a PCA was performed. (A) PCA for the organs data set. While the Flower and Root 

network are the most similar ones among them and with the original network, the Silique network seems to 

be the most different one. (B) PCA for the root data set. In this case the networks seem to be more similar 

between them, probably because all the networks are from cell types from the same tissue. (C) PCA for the 

P. syringae data set. (D) PCA for the flg22 data set. In both (C) and (D) the networks are highly similar 

between them and have are more similar with the original network than in the developmental PCAs. 

For the second developmental dataset of RNA-Seq from root cell-types, it can be seen in 

the PCA plot a higher similarity between the networks, probably because they all belong to 

the same organ. The most similar networks seem to be endodermis and stelle, two neighbor 

tissues, while the epidermis and the cortex, also neighbor tissues, seem to be more related. 

According to the heatmap in the appendix 4 and figure 6B, the most dissimilar network is 



15 

 

the one from columella, the most distinct tissue from all the others due to its especial 

functions in gravity perception38. 

 

For the immunity datasets, in both cases there is not much difference between the mock 

and the immunity-induced networks. The amount of variance in the principal components 

is 96.1% for the P. syringae dataset and 91.5% for the flg22 dataset, and yet they seem to 

be remarkably close to each other. From the heatmaps in the appendix 4 it is observed a 

high similarity between the two generated networks parameters. 

 

These results suggest, on one hand, that the transcriptional regulation of the network genes 

under conditions where the immunity is triggered is not very relevant for the network 

composition. This makes sense given the rapidity and urgency of the innate immunity, 

which would require faster and finer mechanisms such as post translational modifications, 

rather than transcriptional regulation. On the other hand, when it comes to transcriptional 

regulation of the network in developmental programs, the networks show significant 

differences, suggesting than in this case, it would play a key role for organ differentiation. 

 

3.5 ECDs with a small size have a major role in the maintenance 
of the CSILRR integrity. 

 

For the characterization of the functionality of the proteins in the network according to 

their size, the first approach was to compute different centrality parameters according to 

the size label of each node. This showed that the proteins in the network that have a small 

ECD, despite of being the minority, are hubs and bottlenecks in a higher proportion than 

proteins that have a large ECD (102 large nodes vs. 70 small nodes). In the all five 

centrality parameters computed (degree, betweenness, clustering coefficient, eigenvector 

centrality and load centrality) there were significant differences between the values of the 

small and the large nodes. The nodes with a small ECD displayed a higher average value in 

the parameters computed. 

 

 

Figure 8. Centrality parameters for small and large nodes in CSILRR. Mean values of degree, 

betweenness, clustering coefficient, eigenvector centrality and load centrality for the small and large nodes in 

the CSILRR network. The statistical test applied was a one-sided Whitney-Mann U test. In all cases it was 

considered a statistical significance given that all the p-values are below 0.001. 
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To study these differences further, the next step was to perform size-targeted attacks on the 

CSILRR network. This means, that the three implemented attack algorithms mentioned 

previously were used in the network, but they were modified in order to target only nodes 

of one type: either small or large. The result from this was that with the three attack 

algorithms, the resistance of the network to the attacks was lower when the small nodes 

were targeted. Also, in the three attack types, there were significant differences from the 

product of the resistance and the cost when the small nodes are targeted than when are the 

large. These results strongly suggest that the small nodes play a differential and key role 

inside the network when it comes to maintenance and flow of information. 

 

Random Attack

Degree Attack

Minimum Path Attack

B

C

A

 

Figure 9. Small and large targeted attacks on the CSILRR network. (A) Random targeted attack to 

either small or large nodes. This corresponds to the mean of 100 attacks. The network has a less resistance 

when the small nodes are targeted randomly, which shows their importance in the connectivity of CSILRR. (B) 

and (C) are the degree attack and minimum path attack targeted attacks. Again, the resistance of the network 

is more affected when only the small nodes are targeted. 
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The k-core of a network is a subnetwork that contains the nodes with a degree k or more 

that are connected. The CSILRR max k-core is the 10-core and it contains an observed 

frequency of 0.65 small nodes, and a 0.35 frequency of large nodes. This data contrasts 

with the expected frequency of each node type, which is 0.4 for the small nodes and 0.6 for 

the large nodes. This provides one final piece of evidence that the proteins that have a 

small ECD in the network have a more important role for the connectivity of the network. 

 

Large ECDSmall ECD
 

 Figure 10. 10-core of CSILRR and small/large node composition.  

Table 2. Expected and observed frequencies of the small and large ECD nodes in CSILRR 

 Small ECD Large ECD 

Expected frequency in max 

k-core 

0.4 0.6 

Observed frequency in max 

k-core 

0.65 0.35 

 

3.6 Integration of CSILRR data with predicted GRN could shed 
light upon the functioning of growth-immunity signaling 
crosstalk. 

 

To understand in more detail how the CSILRR network works and what the function of its 

constituents is, the final part of the present work is to integrate gene regulatory data into 

the CSILRR network. For this, the known interaction data was combined with predicted data 

of the transcription factors that regulate protein network genes. The predicted data for this 

gene regulatory network was obtained using the tool TF2Network. This program takes 

experimental transcription factors binding site and differential expression data and predicts 

what are the main transcription factors that regulate a set of genes36. That is, in this case, 

all the protein network genes. 

 

Since the LRR-RK can be mainly grouped into either regulating plant growth and 

development or being involved in plant immunity and defense15, the list of transcription 
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factors returned by TF2Network were categorized on being immunity or development 

related. This tool provides the functional annotation of the input and the predicted TFs, 

which facilitated the categorization. For simplification purposes, only the three 

transcription factors with the lowest q-value for each group were selected. The selected 

immunity-related transcription factors were WRKY33, WRKY50 and WRKY51. The 

WRKY transcription factor family has been well characterized as being involved in 

defense response in plants39. The selected development related transcription factors were  

ZFP5, ZFP8 and RBE40,41. 

 

The result of the integration of PPI data and GRN data allowed to determine three different 

groups inside the CSILRR network. On one hand, there is a group of nodes or proteins that 

are regulated only by the development-related transcription factors and other group only 

regulated by the immunity-related transcription factors. On the other hand, there is a 

numerous group of nodes inside the network that are regulated, at least, by one 

transcription factor of each group. From the biological point of view, this is a very 

interesting group inside the network. In this group there could be candidates responsible 

for the integration of environmental signals that determine the plants decision of whether 

to defend against a potential pathogen or to continue with the growth and development42. 

 

Immunity 
controlled

Development 
controlled

Development
/immunity 
crosstalk?

 

Figure 11. Integration of CSILRR interaction data with gene regulatory network data from 

TF2Network predictions. The transcription factors returned by TF2Network as regulatory of the CSILRR 

network proteins were categorized according to their functional annotation in two groups: immunity-related 

and development-related. Thus, the proteins they regulated inside the network were clustered according to the 

function of the TF that regulates them. This gave three cluster: proteins immunity controlled, proteins 

developmentally controlled, and proteins controlled by both processes. It was speculated that these proteins 

could be involved somehow in the crosstalk growth-defense. 
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4 Discussion and conclusions 

 

The massive progress that the high-throughput technologies are experimenting along with 

the improvements in robust statistical and analytical tools have allowed a huge 

development in the field of Systems Biology in the recent years43. The traditional 

reductionist approach in molecular biology has generated a vast amount of knowledge but 

it fails to understand the large-scale interactions of the individual components within 

cellular and environmental contexts5. 

 

Network Biology seeks to lessen those limitations of the reductionist approach by 

implementing an integrative or holistic approach view of the genes, proteins and 

metabolites. The graph framework of considering cell constituents as interacting elements 

can be exploited to comprehend more deeply how cellular systems work and to make 

predictions for experimental validation. An example of this is the use of Network Biology 

to predict pathogen contact points in plant PPI networks that were experimentally 

validated4. Other cases are when the centrality of a host-pathogen interactome was 

associated with pathogen fitness during infection or when the structural robustness of 

mammalian TFs networks revealed plasticity across development43,44. In this occasion the 

CSILRR has been analyzed more in depth. The aim was to understand better the functioning 

of the large family of plant receptors LRR-RKs. They are key in the integration of 

environmental signals to help the plants adapt better to the habitats they find themselves 

in17. 

 

In the present work the CSILRR network is further analyzed and compared with other 

known network models in biology like the scale-free network and the random network. 

From this it was determined that the CSILRR degree distribution fits a power-law 

distribution, but it cannot be considered strictly a scale-free network, since the value of its 

γ parameter is not between 2 and 3. However, it could be said that the CSILRR 

approximates an scale-free network model, as it is common in many biological networks3. 

However, it is yet to determine whether this power-law degree distribution of nodes is due 

to a bias in the technologies currently used to determine in vitro protein-protein 

interactions, like the yeast two-hybrid or the affinity purification along with the mass 

spectrometry4. However, despite the experimental procedure to obtain a biological 

network, many large-scale interactomes and PPI networks display scale-free properties. 

The evolutionary origin of the scale-free networks in biology is still unknown, but it has 

been hypothesized that the growth and preferential attachment is probably rooted in gene 

duplication. Genes that have been duplicated produce the same proteins and therefore share 

interacting partners2. 

 

Regarding the different network attacks performed on CSILRR and on scale-free and 

random models, the results show that the three of them are resistant to random attacks. In 

the case of the random networks they tend to be very resilient to different attacks 

strategies. This is because they do not have any structural bias that the attack algorithm can 

take advantage of to dismantle the network. For the three attack algorithms the CSILRR 

network displayed a behavior very similar as the scale-free network. This is because of the 

power-law distribution of their degree. Only a minor proportion of its nodes have a large 

degree, therefore a large importance. The chances that a random attack disables the 
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important nodes are lower than for nodes with a low degree. This provides more evidence 

that the CSILRR approximates a scale-free network model. 

 

The integration of PPI data with RNA-Seq expression data is expected to provide more 

information about the dynamical behavior of a network in vivo. In this work a Python 

script was implemented to tackle such task with the CSILRR network. Two types of datasets 

were used to test the script related with the functions associated with the network: 

development and immunity10. The results showed that for developmental datasets the 

changes in the network were more dramatic than when immunity-related datasets were 

used. This suggests that the layer of transcriptional regulation that controls the network 

composition is more relevant for developmental programs than for immunity responses. 

From a biological perspective, on one hand, makes sense that the transcriptional control in 

differentiated tissues and organs is tighter than for transient and rapid responses, like the 

immune response in plants triggered by effectors. It is important to notice that the disease 

in plants is an exception rather than the rule. On the other hand, severe expression changes 

of the network genes have been reported in Arabidopsis after treatment with flg22, the 

bacterial immunity elicitor21. 

 

It is also relevant to consider that the choice of a cut-off expression value is a difficult task 

to handle, especially in cases where the genes under study have low expression values, like 

the Arabidopsis LRR-RK. Finally, in this work it has only been studied how the 

transcriptional regulation affects the network, while there are many other types of 

regulation that also affect the network composition and dynamics, like the post-

translational modifications. Especially phosphorylation is relevant in modulating the 

protein activity and protein-protein network interactions, hence the network composition45. 

 

LRR-RKs have previously been classified according the number of LRR in their 

extracellular domain as either small or large. Despite most of the small LRR-RKs function 

as co-receptors and the large LRR-RKs as ligand receptors, there are cases in which this 

rule does not hold15. Results in this work showed that small and large proteins in the 

network have statistical differences in key centrality parameters like degree, betweenness, 

clustering, eigenvector centrality and load centrality. Furthermore, their elimination from 

the network cause differential effects in terms of connectivity. This strongly suggests that 

they play different functional roles inside the network. Whether this differential role is 

related somehow to their function as ligand receptors or co-receptors would yet to be 

clarified. However, it would make sense that proteins that act as co-receptors have a wider 

number of interactions and are more flexible than proteins than bind a single ligand and are 

related to a single signaling pathway.  

  

Networks in biology often include only one type of nodes: genes, proteins or metabolites. 

However, the integration of different kind of networks into only one could provide more 

information about both separately and together. In this work information provided by the 

software TF2Network was integrated with the PPI data from CSILRR. This allowed to 

classify some of the network nodes into being regulated by immunity-related, 

development-related transcription factors, or both. In Arabidopsis and other plant species it 

has been well characterized the negative feedback that exists between growth and defense. 

The immune response in plants, and in all organisms in general, are very expensive in 

terms of energy and resources. Because of that, when a plant is being infected by a 

pathogen, it stops growing and developing. In contrast, when the plant is inverting energy 

and resources in development, the immune response gets weakened42. However, the 
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molecular mechanism of this decision has not been completely elucidated. Using this kind 

of approach potential receptors involved in the immunity/development crosstalk could be 

identified. This would provide a deeper understanding about the molecular mechanism 

responsible for this biological phenomenon. 

 

In summary, the results presented in this work are another example of the applications of a 

systems biology integrative approach to biological data. It has been determined that despite 

fitting a power-law degree distribution, the CSILRR network does not strictly fit a scale-free 

network model. However, this network displays high tolerance to random attacks and 

reduced tolerance to hub/bottleneck-directed attacks, similarly to random scale-free 

network models. After studying its basic characteristics, the integration of interaction data 

with RNA-Seq data revealed that the transcriptional regulation of the network could be 

more relevant for developmental programs than for defense responses. Additionally, it has 

been found that LRR-RKs ECDs with a small size have a major role in the maintenance of 

the CSILRR network integrity. Finally, it was hypothesized that the integration of CSILRR 

data with predicted GRN could shed light upon the functioning of growth-immunity 

signaling crosstalk. 
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Appendix 1: parameters table 

Parameter Computation Meaning 

Degree centrality Mean of all values returned by 

networkx.degree_centrality 

For a node number of neighbors or 

connections. Therefore, is the average value for 

all the nodes in the network. 

Closeness centrality Mean of all values returned by 

networkx.closeness_centrality 

For a node, measure of centrality in a network, 

calculated as the reciprocal of the sum of the 

length of the shortest paths between the node 

and all other nodes in the network. Therefore, 

is the average value for all the nodes in the 

network. 

Betweenness 

centrality 

Mean of all values returned by 

networkx.betweenness_centrality 

Proportion of the shortest paths that pass 

through a node. Therefore, is the average value 

for all the nodes in the network. 

Average clustering Mean of all values returned by 

networkx.clustering 

For a node, proportion of connections its 

neighbors have among them in comparison to 

all the possible ones.  How close its neighbors 

are to be a clique (complete graph). Average of 

all the node sin the graph. 

Average eigenvector 

centrality 

Mean of all values returned by 

networkx.eigenvectorcentrality 

Measure of the influence of a node in a 

network. 

Clique number networkx.graph_clique_number Number of subgraphs that are complete (all its 

nodes are connected with each other) 

Average shortest 

path length 

networkx.average_shortest_path_length Average number of steps along the shortest 

paths for all possible pairs of network nodes. 

Maximum k-core Maximum value of 

networkx.core_number after removing 

self-loop edges from the network. 

Maximal connected subgraph 

Node with highest 

degree 

Maximum value returned by 

networkx.Graph.degree 

Degree of the node with the largest number of 

neighbors. 

Node with highest 

betweenness 

Maximum value returned by 

networkx.betweenness_centrality 

Betweenness of the node that is in the largest 

proportion of shortest paths. 

Network order Number of element in object returned by 

networkx.Graph.nodes 

Number of nodes in the network. 

Network size Number of element in object returned by 

networkx.Graph.edges 

Number of edges (connections) in the network. 

Betweenness-degree 

R2 

scipy.Stats.linregress(degree, 

betweenness).rvalue 

Reflects if the nodes that tend to be hubs also 

tend to be bottlenecks. 

Degree distribution 

R2 

scipy.Stats.linregress(degree 

distribution).rvalue 

Reflects information about the topology of the 

network 

Average eccentricity Mean of all values returned by 

networkx.eccentrivity  

It is defined as the maximum distance of one 

vertex from another vertex. In this case the 

average of all the nodes. 

Network radius networkx.radius The minimum eccentricity in a network 

Network diameter networkx.diameter The maximum eccentricity in a network 

Network density networkx.density The density is 0 for a graph without edges and 

1 for a complete graph 

Table A 1. Network parameters computed in this work to compare the networks.  
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Appendix 2: attacks functions code 

1. def random_attack(G, m):   
2.        
3.     '''''  
4.     This function takes as input a NetworkX graph object and an integer m. Return

s a graph  
5.     that has been attacked in m number of nodes randomly.   
6.     '''   
7.        
8.     assert len(G.nodes) >= m, "m cannot be higher than the number of nodes in the

 graph"   
9.        
10.     j = 1   
11.     while j <= m:   
12.         node = sample(list(G.nodes), 1)   
13.         G.remove_node(node[0])   
14.         j += 1   
15.            
16.     return G   

 

1. def degree_attack(G, m):   
2.        
3.     '''''  
4.     This function takes as input a NetworkX graph object and an integer m. Return

s a graph  
5.     that has been attacked in m number of nodes based on degree  
6.     '''   
7.        
8.     assert len(G.nodes) >= m, "m cannot be higher than the number of nodes in the

 graph"   
9.        
10.     j = 1   
11.     while j <= m:   
12.         node = sorted(G.degree, key = lambda x: x[1], reverse = True)[0][0]   
13.         G.remove_node(node)   
14.         j += 1   
15.            
16.     return G   

 

1. def minpath_attack(G, m):   
2.        
3.     '''''  
4.     This function takes as input a NetworkX graph object and an integer m. Return

s a graph  
5.     that has been attacked in m number of nodes based on the proportion of shorte

st paths that cross them  
6.     '''   
7.        
8.     assert len(G.nodes) >= m, "m cannot be higher than the number of nodes in the

 graph"   
9.        
10.     j = 1   
11.     while j <= m:   
12.         load_cent = nx.load_centrality(G)   
13.         node = max(load_cent, key = load_cent.get)   
14.         G.remove_node(node)   
15.         j += 1   
16.            
17.     return G   
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1. def random_attack_size(G, m, att):   
2.        
3.     '''''  
4.     This function takes as input a NetworkX graph object with an attribute called

  
5.     'size' which values are either 'small' or 'large'. Also takes an integer m an

d  
6.     the value of the attribute you want to filter. The function returns a graph  
7.     that has been attacked in an m number of small or large nodes randomly  
8.     '''   
9.        
10.     nodes = [x for x,y in G.nodes(data=True) if y['size'] == att]   
11.            
12.     assert len(nodes) >= m, "m cannot be higher than the number of nodes with the

 given attribute"   
13.        
14.     j = 1   
15.     while j <= m:   
16.         node = sample(nodes, 1)   
17.         G.remove_node(node[0])   
18.         nodes.remove(node[0])   
19.         j += 1   
20.            
21.     return G   

 

1. def degree_attack_size(G, m, att):   
2.        
3.     '''''  
4.     This function takes as input a NetworkX graph object with an attribute called

  
5.     'size' which values are either 'small' or 'large'. Also takes an integer m an

d  
6.     the value of the attribute you want to filter. The function returns a graph  
7.     that has been attacked in an m number of small or large nodes based on their 

degree  
8.     '''   
9.        
10.     nodes = [x for x,y in G.nodes(data=True) if y['size'] == att]   
11.            
12.     assert len(nodes) >= m, "m cannot be higher than the number of nodes with the

 given attribute"   
13.        
14.     j = 1   
15.     while j <= m:   
16.         node = sorted(G.degree(nodes), key = lambda x: x[1], reverse = True)[0][0

]   
17.         G.remove_node(node)   
18.         j += 1   
19.            
20.     return G   
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1. def minpath_attack_size(G, m, att):   
2.        
3.     '''''  
4.     This function takes as input a NetworkX graph object with an attribute called

  
5.     'size' which values are either 'small' or 'large'. Also takes an integer m an

d  
6.     the value of the attribute you want to filter. The function returns a graph  
7.     that has been attacked in an m number of small or large nodes based  
8.     on the proportion of shortest paths that cross them  
9.     '''   
10.     nodes = [x for x,y in G.nodes(data=True) if y['size'] == att]   
11.            
12.     assert len(nodes) >= m, "m cannot be higher than the number of nodes in the g

raph"   
13.        
14.     j = 1   
15.     while j <= m:   
16.            
17.         load_cent = nx.load_centrality(G)   
18.            
19.         new = {k: load_cent[k] for k in nodes}   
20.            
21.         node = max(new, key = new.get)   
22.         G.remove_node(node)   
23.         nodes.remove(node)   
24.         j += 1   
25.            
26.     return G   
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Appendix 3: cut-off value computation code 

1. def cutoff_comp(df):   
2.        
3.     '''''  
4.     This function takes as input argument a data frame with the count matrix  
5.     from a RNA-Seq experiment, that contains the expression values in FPKM.  
6.       
7.     It returns a cut-off expression value between technical noise and  
8.     expressed genes.  
9.     '''   
10.        
11.     df_log = np.log1p(df)   
12.        
13.     L = []   
14.        
15.     for i in range(len(df_log.columns)):   
16.    
17.         data = np.array(df_log.iloc[:, i]).reshape(-1, 1)   
18.         gmm = GMM(n_components = 2, covariance_type = 'tied', random_state = 0).f

it(data)   
19.         labels_gmm = gmm.predict(data)   
20.         norm1 = data[labels_gmm == 0]   
21.         norm2 = data[labels_gmm == 1]   
22.         L.append(np.mean([max(norm1)[0], min(norm2)[0]]))   
23.            
24.     return np.expm1(np.mean(L)) 



30 

 

Appendix 4: heatmaps 

 
Figure 1A. Heatmaps of the parameter values for the networks used in this work. The 18 

network parameters computed for each network in the work are represented with a heatmap. The figures were 

generated using the hierarchical clustering method of the function seaborn.clustermap. (A) Heatmap for the 

organs dataset. (B) Heatmap for the root dataset. (C) Heatmap for the P. syringae dataset. (D) Heatmap for 

the flg22 dataset. The colors represent the z-score of the parameters along the rows. Orange color indicates 

that the parameters value is larger, while purple indicates that the value is lower. To the heatmap were 

additionally added two random networks. ran1_net corresponds to the averaged values of all the parameters 

of 100 random networks with the size and order of CSILRR. ran2_net is the same, but the order and size are 

the mean of the generated networks from the Python script in chapter Results 3.3. 

A B

C D
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Appendix 5: expressed genes table from organs data set 

Table A 2. Table with the percentage of expressed genes in each organ from the organs 

dataset and the order of the graph of each organ. 

Tissue Not 

expressed 

Expressed 

genes 

% of expressed 

genes 

Graph 

order 

Leave 21138 13150 38.35% 40 

Root 19746 14542 42.41% 65 

Flower 18904 15384 44.86% 55 

Silique 20219 14069 41.03% 33 

 


