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Abstract 
 

In the last decades, advanced imaging techniques have improved our ability to 

analyze biological systems at the nanoscale, enabling the observation of structural and 

molecular components. Different imaging tools are specialized in the characterization of 

a specific aspect of the sample and, when they are combined, complementary 

information is obtained providing a more comprehensive understanding of the system. 

This thesis focuses on the application of (super-resolution) fluorescence microscopy in 

combination with atomic force microscopy (AFM) for revealing specific chemical 

information in a high-resolution topography map. Particularly, correlative microscopy is 

applied to the characterization of amyloid fibers, which are misfolded protein 

aggregates with interest in nanomaterials research and biomedicine. This manuscript is 

organized in seven chapters. Chapter 1 introduces the imaging techniques used in the 

thesis. It also gives a general overview on amyloid fibers, their application as hybrid 

materials, their importance in biomedicine for being involved in different diseases, and 

the phototherapeutic approaches available to treat them. In Chapter 2, the general 

materials and methods used during the thesis are explained. Chapter 3 provides a 

detailed discussion about technical aspects of correlative super-resolution fluorescence 

microscopy and AFM such as sample preparation, data analysis and image alignment. 

Furthermore, the advantage of using AFM as a “ground truth” to evaluate different 

aspects of super-resolution techniques, such as labeling or image reconstruction, is 

highlighted. In Chapter 4, the methodology developed in Chapter 3 is applied to evaluate 

the functionalization of amyloid fibers with quantum dots or organic fluorophores. Thus, 

correlative microscopy is presented as a useful technique for characterizing luminescent 

hybrid materials at the nanoscale.  

In the context of biomedicine, amyloid aggregates are important for being involved 

in different diseases (e.g. Alzheimer or Parkinson). Photochemical strategies to degrade 

amyloid structures are becoming an interesting alternative. In this thesis, a thioflavin T 

(ThT) derivative (ROS-ThT), which is able to target pathogenic aggregates in the presence 

of functional proteins, is used to study photodamage effects on amyloid fibers. In 

addition to fluorescence, this photocatalyst or photosensitizer produces singlet oxygen 
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upon blue light exposure, affecting amyloid structures through oxidation. The purpose 

of Chapter 5 is to select a useful amyloid model to evaluate photodamage at the 

nanoscale, and therefore different fibers were produced, fibrillated and characterized. 

In Chapter 6, the selected amyloid model is used to study photodamage induced by ROS-

ThT at the single-fiber level through imaging techniques, and complemented by classical 

biochemical assays. These experiments highlight that the combination of fluorescence 

microscopy and AFM is useful to probe the heterogeneity of amyloid material and to 

disentangle the complex dependence between photocatalyst binding/activity and fiber 

morphology and/or composition. The aim of Chapter 7 is to provide coherence and 

perspective to the main results of the thesis, as well as an outlook on how advanced 

microscopy methods may impact the study of amyloids in different fields of research. 
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Resumen 
 

En las últimas décadas, las técnicas de imagen avanzada han mejorado nuestra 

capacidad de analizar sistemas biológicos a la nanoescala permitiéndonos observar sus 

componentes estructurales y moleculares. Estas técnicas están especializadas en la 

caracterización de un aspecto específico de la muestra y, cuando se combinan, se 

obtiene información complementaria, lo que proporciona una comprensión más 

completa del sistema. Esta tesis se centra en la aplicación de la microscopía de 

fluorescencia de súper resolución en combinación con la microscopía de fuerza atómica 

(AFM) para mostrar información química específica de la muestra sobre su mapa 

topográfico de alta resolución. En particular, la microscopía correlativa se aplica a la 

caracterización de las fibras amiloides, que son agregados de proteínas con interés en la 

investigación de nanomateriales y biomedicina. Este manuscrito está organizado en 

siete capítulos. El Capítulo 1 presenta las técnicas de imagen utilizadas en la tesis. 

También ofrece una visión general de las fibras amiloides, su aplicación como materiales 

híbridos, su importancia en la biomedicina por estar asociadas a diferentes 

enfermedades y las estrategias fototerapéuticas disponibles para tratarlas. En el 

Capítulo 2, se explican los materiales y métodos generales utilizados durante la tesis. El 

Capítulo 3 proporciona una discusión detallada sobre los aspectos técnicos de la 

microscopía correlativa de AFM y de fluorescencia de súper resolución, como la 

preparación de muestras, análisis de datos y alineación de imágenes. Además, se 

destaca la ventaja de utilizar las imágenes de AFM como referencia para analizar 

diferentes aspectos de las técnicas de súper-resolución, como el marcaje o la 

reconstrucción de imágenes. En el Capítulo 4, la metodología desarrollada en el Capítulo 

3 se aplica para evaluar la funcionalización de las fibras amiloides con puntos cuánticos 

o fluoróforos orgánicos. De esta manera, se presenta la microscopía correlativa como 

una técnica de gran utilidad para caracterizar materiales híbridos luminiscentes a la 

nanoescala. 

En el contexto de la biomedicina, los agregados amiloides son importantes por estar 

implicados en el desarrollo de diferentes enfermedades (por ejemplo, Alzheimer o 

Parkinson). La utilización de estrategias fotoquímicas para degradar las estructuras 



Resumen      

4 

amiloides se están convirtiendo en una alternativa prometedora. Para esta tesis, se usó 

un derivado de tioflavina T (ThT) denominado ROS-ThT, que es capaz de degradar los 

agregados tóxicos en presencia de proteínas funcionales, para estudiar los efectos del 

daño fotoquímico producido en las fibras amiloides. Además de la fluorescencia, este 

fotocatalizador o fotosensibilizador produce oxígeno singlete tras la exposición a la luz 

azul, lo que provoca la oxidación de las estructuras amiloides. El propósito del capítulo 

5 es seleccionar un modelo amiloide útil para evaluar el daño fotoquímico producido 

por el fotocatalizador a la nanoescala. Para ello, se produjeron, fibrilaron y 

caracterizaron diferentes fibras. En el capítulo 6, el modelo amiloide seleccionado se usa 

para estudiar el daño fotoquímico inducido por ROS-ThT a través de su caracterización 

a nivel de fibra individual con técnicas de imagen, y es complementado por ensayos 

bioquímicos clásicos. En estos experimentos, la combinación de AFM y microscopía de 

fluorescencia es útil para analizar la heterogeneidad del material amiloide y estudiar la 

dependencia de la unión / actividad del fotocatalizador y la morfología y / o composición 

de la fibra. El objetivo del capítulo 7 es proporcionar coherencia y perspectiva a los 

principales resultados de la tesis, así como una reflexión sobre cómo los métodos de 

microscopía avanzada pueden contribuir al estudio de los agregados amiloides en 

diferentes campos de investigación. 
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Preface 
 

A significant part of our brain is dedicated to visual processing. Our eyes are detectors 

that have been evolving during millions of years to sense the world that surrounds us, 

and our brain has been perfectioned to process and interpret the arriving images in 

order to understand it 1, 2. Our eye’s resolution limit is ~40 microns (around the diameter 

of a hair) and was the limit of visual exploration during a long period of time. It was not 

until 17th century that Robert Hook and Anton van Leeuwenhoek discovered through 

their microscopes a microscale living world of cells and bacteria, extending the limits of 

human understanding.3, 4 In the late 19th century, the improvement of optical 

microscopes reached its limit in resolution of ~250 nm due to the diffraction of light.4 

Along the 20th century different techniques with non-optical principles were developed, 

making accessible the visualization of the biological world at the nanoscale and bringing 

structural knowledge of biological particles. For example, in 1938 the first virus was 

observed using electron microscopy (EM).5 In 1952, the famous photo 51 was obtained 

through X-ray crystallography, which revealed a diffraction pattern of the helical nature 

of the DNA double helix.6 This technique, together with Nuclear Magnetic Resonance 

(NMR) some years later, opened the door to the discovery of protein structures, 

becoming essential in structural biology.7 In 1986, AFM was invented,8 and although it 

does not compete in resolution with EM, it allows nanoscale imaging in near to 

physiological conditions, nanomanipulation of biological structures and additionally 

provides valuable information about their mechanical properties.9 After decades of 

diffraction limited optical microscopy, this barrier was finally overcome firstly by the 

scanning near-field optical microscope (SNOM)10 in the 80s and later, in the 2000s, 

through far-field microscopy by super-resolution fluorescence microscopy methods,11, 

12 bringing optical microscopy into the nanoscale. Figure 1 shows different scale objects 

and the techniques required to resolve them. 

http://www.imagethink.net/imagethink-2/true-or-false-vision-rules-the-brain/


Preface                                                                                                                               

6 

 

Figure 1. Scale comparison of different size objects and the required imaging techniques to 

resolve them. 

Fundamental biological processes occur in the range of nano- to micrometers, such 

as protein folding, and errors at this level could result in macroscale effects, such as 

disease. For example, this is the case of amyloids, a type of misfolded protein 

aggregates, known for producing toxic effects in different neurodegenerative diseases 

(i.e. Parkinson’s and Alzheimer’s disease). On the other hand, these protein structures 

have exceptional features, like mechanical resistance and functionalization versatility, 

and are being exploited for a variety of purposes such as the development of new 

biomaterials.13, 14 Thus, a deeper understanding of these protein structures has potential 

applications in several research areas.  

This thesis is focused on the development of advanced imaging techniques that 

combine fluorescence and AFM to provide complementary information at the micro-

nanoscale range. Moreover, the thesis explores the application of these methods to 

study different aspects of amyloid structures that are relevant in the development of 

novel materials as well as in biomedicine.  
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1. Introduction 

1.1. Nanoscopy 

Optical microscopes are systems of lenses that provide a magnified image of an 

object. However, their resolution is limited by diffraction, which is produced by the 

interaction of the optical system with light. This causes a loss of information in the 

localization of a point source, which is detected as an intensity distribution known as 

point spread function (PSF). When the PSF is projected onto a two-dimensional surface, 

it shows a circular pattern known as Airy disk (figure 1.1.a). As a result, an infinitely small 

emitting point is observed as a ~250 nm diameter spot, and our ability to differentiate 

two close points depends on the distance between their Airy pattern (figure 1.1.b). Thus, 

the resolution of an optical microscope is defined by the minimum distance required to 

distinguish two emitting points. As described by Abbe’s equation (figure 1.1.c), the 

resolution depends on the wavelength (λ) and the numerical aperture (NA), which is 

defined by the refractive index (n) and the angle of light collection (Ѳ), with a limit of 

about 200-300 nm.15, 16 To improve the resolution of the microscope, NA should increase 

or λ decrease. As a result, some microscopes were developed to use smaller 

wavelengths than visible light, like the electron beam used for EM.17 An example of this 

effect is shown in figure 1.1.d and e, in which a fluorescence image (d) of mitochondria 

in a COS-7 cell section that expresses a fluorescent protein-tagged cytochrome-C, is 

compared with an EM image (e).12 In the EM image, structural details that are hidden in 

the fluorescence image, are revealed. While EM allows better resolution, it is not 

compatible with living cell conditions since imaging is usually performed under 

vacuum.17  
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Figure 1.1. Airy pattern and the diffraction limit for optical imaging. a) Airy pattern of an 

emitting object. b) Two objects can be resolvable if there is enough distance between them to 

differentiate each Airy pattern. c) Abbe’s equation. d) and e) correspond, respectively, to 

fluorescence and EM images of a COS-7 cell section that expresses a fluorescent protein in the 

cytochrome-C of mitochondria. f) shows an overlay of both images. Images a-c were adapted 

from18 and d-f from.12 

 

In the last years, different approaches in optical microscopy have overcome the 

diffraction limit enabling nanoscale imaging and non-invasiveness. In 2014 the Nobel 

Prize in Chemistry19 was awarded to Eric Betzig,12, 20 William Moerner21, 22 and Stefan 

Hell11, 23 by the development of super-resolution microscopy techniques. As explained 

below, these methods rely on the use of specific photophysical properties of 

fluorophores as a fundamental component of the imaging strategy. 

The imaging methods that overcome the optical limit of diffraction are named as 

“nanoscopy”. In the context of this thesis, we include AFM in this group of techniques, 

since it also provides nanoscale information. These methods can be combined for 

obtaining complementary information of complex systems at the nanoscale, as shown 

in the following chapters (figure 1.2). 
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Figure 1.2. AFM and fluorescence microscopy systems. a) AFM provides a topographical map 

of the sample and fluorescence microscopy (b) produces an image of specifically labelled 

molecules. 

 

1.1.1. Super-resolution fluorescence microscopy  

Fluorescence microscopy is widely used in biology because it is a non-invasive 

technique that can be used in physiological conditions. It is based on the detection of 

fluorescent molecules (fluorophores) attached to a molecule or structure of interest 

within the sample. The fluorophore acts as a reporter that provides contrast in the 

image. It is able to absorb light energy and, as a consequence, emit light with lower 

energy (longer wavelength). Thus, in a standard fluorescence microscope a light beam 

(e.g. a laser) is used to excite the fluorophores and the objective lens focuses the emitted 

fluorescence from the sample to a detector (e.g. a camera) (figure 1.2.b). Although it is 

extensively used in biology, its images are limited in resolution by the diffraction limit, 

as mentioned above.  

The strategies for optically imaging below the diffraction limit are based in near-field 

or far-field strategies. In NSOM, the illumination and the sample are at subwavelength 

distance. The fluorophores are excited with an evanescent wave, which decays very 

sharply as function of the distance limiting the observation to the sample surface.24 In 

contrast, in far-field techniques the distance between the light source and the sample is 

greater than the wavelength and different approaches can be used to achieve super-
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resolution. One strategy focuses on reducing the size of the PSF, for example in 

stimulated emission depletion (STED) microscopy25 or structured-illumination 

microscopy (SIM)26 among others. Another approach is based on single-molecule 

localization microscopy (SMLM), which relies on locating single molecules that 

stochastically switch between “off” and “on” fluorescence states, for instance (direct) 

stochastic optical reconstruction microscopy ((d)STORM, STORM)27, 28 or photoactivated 

localization microscopy (PALM).12 This thesis deals with SMLM, which stands out for the 

simplicity of the hardware in comparison with other methods. It allows a relatively easy, 

wide-field implementation that increases one order of magnitude the resolution of 

standard fluorescent microscopy.29 

Sub-diffraction resolution in SMLM is obtained using special fluorophores and specific 

computational algorithms. During acquisition, the fluorescence signal of the 

fluorophores in the sample is temporary separated by switching OFF most of the 

fluorophores and switching ON just a few of them. If the density of emitting 

fluorophores is sufficiently low, the spacing between them would be higher than the 

diffraction limit allowing a precise localization of each activated molecule. Thus, a sparse 

subset of fluorophores is activated at different times and hundreds to thousands of 

frames are recorded. The registered PSFs in every frame are fitted to a Gaussian function 

in order to identify the center of the signal and its precise location through 

computational algorithms. The final image is reconstructed by stacking the localized 

single molecules in each individual frame (figure 1.3). Essential requirements for proper 

SMLM imaging are: enough signal-to-noise ratio from the emission of an individual 

fluorophore (and thus high localization precision to determine its position) and higher 

labelling density than in standard fluorescence, since the average spacing of the labels 

must be shorter than half of the desired resolution (Nyquist-Shannon criterion for 

sampling). Acquisition times for SMLM imaging are generally 1 to 5 minutes, therefore 

it is best suited for imaging static structures.29, 30  

A key parameter is the choice of the fluorophore employed for SMLM. There is a wide 

variety, from fluorescent proteins to small molecule fluorescent dyes. Proteins are 

genetically encoded and can be expressed fused to a protein of interest, thus they do 
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not suffer from nonspecific binding. On the other hand, fluorescent small molecules 

typically possess higher brightness, photostability, and photon yields.31  

 

Figure 1.3. SMLM image reconstruction workflow. This figure shows HeLa cell chromosomes 

labelled with an organic fluorophore (Yo-Pro-1) and imaged in switching buffer (see 3.2.2. 

SMLM imaging). Thousands of frames are recorded, and the average image of them is used as 

standard fluorescence reference. For obtaining the sub-diffraction image, stochastic 

photoswitching is induced and individual fluorophores are localized. The PSF of each 

fluorescence signals is fitted to a Gaussian Function and the localized single molecules are 

stacked, resulting in the super-resolution image. 

 

1.1.2. AFM 

AFM is based on the principles of scanning tunneling microscopy and was invented 

by Binning, Quote and Gerber,8 who were awarded the Nobel Prize in Physics in 1986. 

This technique is based on the use of a sharp stylus as a probe to scan the surface of the 

sample, producing a topographical map. This probe is known as the AFM tip and it bends 

upon the contact with the sample surface. A laser is reflected from the tip to a 

photodiode and acts as a detector of the tip bending. A piezoelectric tube is used to 

control the movement of the tip over the sample, adjusting its movement in Z to the 
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topography of the sample through a feedback loop from the photodiode signal (figure 

1.2.a).32 The key of the success of this technique applied to biology is that it is able to 

image the sample surface at the nanoscale in physiological conditions.  

 In addition, AFM is a very versatile tool that can be used for measuring different 

physical properties. For instance, AFM is able to measure mechanical properties using 

the tip to apply forces to the sample. The tip is approached and retracted from the 

sample while applying a force upon contact, which produces as a result a force–distance 

curve. From these measurements it is possible to quantify height, surface forces, 

mechanical deformation, elasticity or adhesion forces. Some imaging modes allow 

acquiring mechanical information while imaging the sample.33, 34 Remarkably, AFM can 

be applied to study force spectroscopy at the single-molecule level. This technique relies 

on using the AFM tip to pull a single molecule until its stability is surpassed.35 These 

studies provide information on protein folding and unfolding mechanisms36 or 

molecular recognition events.37, 38 Other properties, such as distribution of electric 

charge on a surface (electrostatic force microscopy) or magnetic forces (magnetic force 

microscopy), can be also measured with a tip covered with the appropriate material.39 

AFM can also be used to manipulate or dissect biological structures such us cells40 or 

chromosomes,41 nanoindenting virus42, 43 or picking up proteins from the membrane.44 

 

1.1.3. Correlative nanoscopy 

Correlative microscopy is the integration of one or more microscopy techniques for 

gaining complementary information of the same sample area. Each technique provides 

information about a specific aspect of the sample, and when they are combined, a more 

comprehensive understanding of the system can be achieved.  

Light microscopy is the main technique used in correlative approaches due to its 

widespread availability, the possibility to image large sample areas using aqueous 

environments or the high specificity detecting fluorescently labelled molecules.45 It has 

been successfully combined with EM, referred as correlative light and electron 

microscopy (CLEM) as shown in the example of figure 1.1.d, e and f.12, 46-49 It allows to 

specifically localize a molecule of interest in a high resolution structural image provided 
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by EM. Other powerful correlative approach is the combination of light microscopy with 

AFM, which works well in air or in liquid without special sample treatment and allows 

acquiring nanometer scale images of biological systems.50 Thus, their combination 

allows a specific localization of a fluorescent molecule of interest in the topography map. 

This strategy has been used for example to monitor vesicle exocytosis with fluorescence 

in combination with AFM to detect membrane changes on the surface of epithelial 

cells.51 Another example is imaging by AFM the effect of antimicrobial peptides on a 

bacterial membrane simultaneously with a live/death fluorescent indicator.52 

Additionally to topographic images, AFM can be exploited for its nanomanipulation 

capabilities in combination with fluorescence, for example to study virus mechanical 

properties and monitor the DNA release with fluorescence53 or to inject fluorescent 

particles in single cells using AFM and monitoring them by fluorescence microscopy.54  

The development of super-resolution techniques has now extended optical imaging 

to a range of about tens of nm, approaching the resolution of EM and AFM, and 

providing a more meaningful correlation with a much higher degree of structural 

detail.12, 55-57 This type of experiment could help to understand complex biological 

processes, such as virus budding, monitoring cell membrane changes by AFM and 

fluorescently detecting the proteins of the cell recruited by the virus.58 Labelling of 

structures like the cytoskeleton in live cells and monitoring cell surfaces by AFM are 

helping to understand the interplay between cell structure and migration processes.55, 

59, 60 Furthermore, nanomanipulation can be used for cell nano-surgery61, 62 and 

monitored with super-resolution microscopy. An alternative application of correlative 

AFM and super-resolution microscopy is the identification of artefacts in the latter due 

to poor labelling, photobleaching, or image reconstruction issues. Thus, the AFM image 

can be used as “ground truth” to validate and improve novel super-resolution 

methods.57, 63, 64 On the other hand, another layer of information has been achieved by 

combining super-resolution fluorescence for precisely localize the cell organelle of 

interest, EM for obtaining high resolution structural information and AFM for measuring 

its mechanical properties.65 

However, correlative microscopy is challenging, and specific protocols need to be 

developed before using it to its full potential, as discussed in Chapter 3. 
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1. 2. Amyloid aggregates  

Every function in a living cell depends on the proper folding of its proteins. The DNA 

code determines the amino acid sequence and, as a result of the interaction between 

amino acids, the protein acquires its secondary structure. Different types of secondary 

structures are classified as ordered, like -helix and -stands, or low ordered like 

random coils. Their spatial organization constitutes the tertiary structure of the protein 

and determines its function. In some cases, multiple polypeptide chains or subunits 

associate to form a macromolecular protein, which constitutes its quaternary 

structure.66 Erratic folding of the proteins is associated with diseased conditions as for 

example the formation of amyloid fibers, which is involved in the development of 

diabetes type 2 or neurodegenerative conditions. 

Amyloid fibers are protein structures predominantly formed by cross--stands, which 

are β-sheet motifs where the hydrogen bonding among β-strands runs parallel to the 

long fibril axis. Amyloid formation is triggered by a change of the native structure of a 

protein. It applies to both, globular proteins and intrinsically disordered proteins (IDP), 

which differ in their native structure. IDPs are typically unstructured and have different 

folding state depending on their environmental conditions. These are prone to form 

amyloid fibers without major conformational changes.67 In contrast, globular proteins 

are formed by stable native structures and generally require a previous step of 

unfolding, and in some cases also protein truncation or fragmentation, which can be 

triggered by diverse conditions, such as low pH, high temperature or denaturing 

agents.68 In the fiber formation process, a lag phase can be observed when an unfolded, 

partially unfolded protein or broken peptide from the original protein, starts to change 

its structure and forms aggregation-prone species called oligomers. This is followed by 

the elongation phase, in which the oligomers form and promote the growth of β-sheet 

stacks through hydrogen bonding interactions, producing protofibrils. These structures 

interact forming mature fibers and arriving to a plateau indicating that the 

concentration of fibers is stabilized.69 Additionally, protofibrils and fibers can break and 

turn into a seed for new fiber formation (figure 1.4).68, 70  
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In addition to their biomedical relevance, which will be discussed in more detail in 

section 1.2.2, amyloid structures are exceptional for their mechanical strength, stability 

and functionalization possibilities.71 These features lead to a growing interest in amyloid 

fibers for their potential applications as non-conventional materials,72 as elaborated 

below. 

 

 

Figure 1.4. Amyloid formation process. Unfolded or partially unfolded peptides suffer a 

structural change becoming an oligomer and promoting the formation of β-sheet structures 

(lag phase). β-sheet stacks begin fiber formation (elongation phase) until it arrives to a plateau. 

Formed fibers can break and promote fiber formation. Image modified from the literature.70 

 

1.2.1. Amyloid fibers as hybrid materials 

Amyloid aggregates were initially associated to disease (see below), but actually they 

are versatile structures that fulfil a wide range of roles in nature.13, 14 For example, some 

bacteria, such as Pseudomonas aeruginosa or Escherichia coli, use amyloid aggregates 

as a functional coating for biofilm formation.73, 74 In fungus, amyloid structures are used 

to transmit hereditary information75-78 allowing fast environmental adaptation, such as 

regulating the nitrogen catabolism depending on the availability of nutrients.76 Another 

example is the arrangement of peptide hormones into amyloid structures to regulate 

their release in humans.79  
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Amyloid fibers typically consist on linear nanostructures with unique mechanical 

strength and stability, which raise the interest of amyloid fibers as a new biomaterial for 

different technological applications. Diverse fields are benefiting from their application 

ranging from biomedicine, as scaffold for cell growth80, 81 or hybrid composites for bone‐

mimetic materials,82 to solar energy conversion,83 biosensors71, 84 or materials with 

strong underwater adhesion.85 Figure 1.5 summarizes some of the functions of amyloid 

as natural and artificial materials. 

 

 

Figure 1.5. Roadmap of different amyloid functions as natural and artificial materials. Image 

reproduced from.13 

 

Research in the field of new nanomaterials has focused its attention on amyloid fibers 

as nanoscale templates to fabricate 1D inorganic structures.86 The protein amino acid 

sequence can be used as anchoring point to functionalize amyloid fibers.87, 88 This is a 

huge advantage over other similar structures, such as carbon nanotubes, where the 

functionality of the surface remains a challenge.71 An interesting application is the 

combination of amyloid fibers with nanoparticles forming hybrid nanomaterials with 

https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201505961#adma201505961-fig-0001
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extraordinary properties such as conductivity, magnetism, or complex optical responses. 

13, 89-92 For example, amyloid fibrils interfaced with metal nanoparticles and quantum 

dots (QDs) have been used to create an environmentally responsive biofilm-based 

electrical switch 93 and a glucose biosensor platform.71 Hybrid nanomaterials are 

therefore increasingly finding applications in different fields such as biomedicine, 

electronics, biosensing, and imaging.71, 94, 95 

Hybrid nanomaterials is an emerging field and a deeper understanding of their 

structure and composition is required in order to create more complex functional 

materials.68 An important challenge in the development of hybrid nanomaterials is 

achieving a reliable control over their functionalization.71 Due to the hybrid nature of 

these structures, correlative approaches are particularly well suited as characterization 

tools for helping to develop these promising nanomaterials.57, 86  

 

1.2.2. Amyloid related diseases 

Amyloid deposits have been found to be involved in near to 50 pathologies to date.96 

In most of the systems, they are excreted from cells and accumulated in deposits in the 

extracellular space.97 The precursor proteins are very heterogenous in terms of 

sequence or native structure. Some examples of amyloid proteins related to diseases 

are α-synuclein (α-syn) in Parkinson’s or amyloid-β (Aβ) peptides in Alzheimer’s. In 

physiological conditions these proteins are IDPs that play different roles, adapting to the 

changing cell environment and becoming folded only under specific circumstances.98 

The causes of the disease’s onset remain unclear, but they are related to mutations in 

the precursor,99, 100 increases in peptide processing to aggregation-prone species101 or 

protein accumulation.102 Furthermore, the protein aggregation rate can be favored by 

the presence of metals103 or small molecules, such as cholesterol104, 105 or 

polysaccharides106 in the environment, or by cell dysfunction, like chaperones failing to 

regulate cell proteostasis.107, 108 It is under debate which is the main toxic component of 

the amyloid diseases: oligomers or mature fibers. Generally, fibers have shown limited 

toxicity compared to the oligomeric intermediates.109 However, the role of fiber 

aggregates should not be underestimated since it may be important in the progression 

and propagation of the disease. These amyloid aggregates are able to interact with the 
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cell membrane and sequestrate important molecules for cell homeostasis, but 

additionally, they may act as reservoir of oligomers since fiber breakage fragments could 

act as seed for new fiber formation.96 

Recently, cryo-EM and NMR studies have been able to solve some amyloid fiber 

structures such as α-syn110, 111 or the most frequent Aβ peptides.112-114 Solved molecular 

structures reveal polymorphic organization, thus one precursor can give rise to different 

molecular organization113, 114 resulting in diverse fiber morphologies.115, 116 This 

polymorphism may explain the different phenotypes and levels of toxicity observed in 

amyloid diseases.115-119  

 

1.2.2.1. Phototherapeutic strategies for amyloid-related diseases 

Amyloid-related diseases are associated with high level of mortality worldwide, being 

Alzheimer’s and Parkinson’s the main causes of dementia. However, at this moment 

only symptomatic treatment is being applied, becoming a priority to develop new 

strategies and discover other targets to find an effective treatment.120, 121 Fibers and 

oligomers are the main targets of drug candidates, which directly promote their 

elimination,122, 123 inhibit aggregation124, 125 or reduce precursor protein 

accumulation.126 Another strategy is to recover the membrane cholesterol 

homeostasis,127, 128 disturb the amyloid-membrane interaction129, 130 or target the ion 

channels on lipid membranes caused by amyloid fibers accumulation.131, 132 A new 

approach is to design activators or inhibitors of specific chaperones since they have been 

found to confer neuroprotection in various neurodegenerative diseases122, 133 or to use 

engineered chaperones with the ability to dissolve fibers.134, 135 For these targets, small 

molecules, peptides, and antibodies have been designed but without clinical success to 

the date.120, 136 

Recently, photochemical tools for blocking amyloid aggregation have been explored 

as another therapeutic alternative. These strategies rely on organic dyes, inorganic 

complexes or nanostructures as photo-oxygenation catalysts (hereafter photocatalysts), 

i.e. compounds that are able to photosensitize reactive oxygen species (ROS), typically 

singlet oxygen. Similar strategies, based on photodynamic therapy, have proven to be 
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successful for cancer treatment targeting malignant cells.137 In the case of amyloid 

related diseases, a range of photocatalysts or photosensitizers such as porphyrins, 

flavins, rose Bengal, methylene blue, etc138-141 have shown to produce amyloid 

aggregate disruption. However, the main limitation of this approach is the lack of 

selectivity of the produced photodamage: pathogenic aggregates as well as functional 

forms are all susceptible to photo-oxygenation. To address this issue, switchable 

photocatalysts have been developed, i.e. compounds that preferentially associate to 

higher order amyloid aggregates (cross-β-sheet structures) and only produce singlet 

oxygen in this case, dramatically reducing the damage on functional forms.142-144 Figure 

1.6 shows the typical mechanism of a switchable photocatalysts, in which it binds 

specifically the oligomers or fibers but not to the native protein. Upon irradiation, the 

photocatalyst is only activated if bound to its target producing amyloid structure 

solubilization.  

 

Figure 1.6. Oxygenation mechanism of switchable photocatalysts. The photocatalyst targets 

the cross-β-sheet structure of amyloid aggregates, both oligomers and fibers. Upon light 

irradiation it becomes fluorescent and produces ROS oxygenating susceptible amino acids and 

solubilizing the amyloid aggregates. This image is reproduced from.143 
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1.3. Thesis motivation 

Amyloid fibers are widely studied in biomedicine for being involved in different 

pathological processes but, additionally, their particular features such as mechanical 

resistance or functionalization possibilities make them interesting in other fields like 

materials science. In spite of the extensive research, little is known about their structure, 

formation mechanism or interaction with other molecules. These structures have been 

widely studied using bulk techniques, but these methods are not able to address the 

complexity and heterogeneity of amyloid aggregates. A more advanced approach is to 

apply nanoscale microscopy techniques that are able to provide information at the 

single-fiber level. This thesis focuses on the characterization of amyloid fibers through a 

combination of AFM and (super-resolution) fluorescence microscopy to unravel novel 

information that would have remained masked using traditional techniques.  

The combination of these two techniques, which are based on very different 

principles, is not straightforward. For this reason, this thesis has an important 

component of technical development and optimization of sample preparation 

procedures. It is necessary to find a compromise between the requirements and 

limitations of each technique. These technical challenges have been overcome in this 

thesis, allowing the study of functionalized amyloid fibers as hybrid biomaterials, as well 

as the mechanistic understanding of amyloid fiber disassembly in the context of novel 

phototherapeutic strategies.  
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1.4. Objectives 

The aim of the thesis is the application of AFM and (super-resolution) fluorescence 

microscopy for the characterization of amyloid fibers in the context of different fields, 

from new material research to biomedicine. To increase the power of these single-

molecule techniques correlative approaches were applied. 

The objectives of this thesis are: 

1) Development of protocols for applying correlative AFM and (super-resolution) 

fluorescence microscopy to amyloid fibers labelled with different fluorophores. 

 

2) To obtain relations between topography and dye location/activity in amyloid 

fibers. 

 
3) Select an appropriate amyloid fibrillar model to study photodamage by AFM. 

 
4) Understand the nanoscale effect of amyloid phototherapeutic strategies using a 

combination of biochemical techniques and nanoscale imaging.  
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2. General materials and methods 
 

2.1. Correlative AFM and fluorescence microscopy system 

Experiments were performed using an adaptation of a commercially available 

platform that integrates an AFM (Nanowizard II, JPK Instruments) mounted on top of an 

inverted optical microscope (Nikon Eclipse Ti-U) (figure 2.1). This system is placed on an 

active vibration isolation table (Thorlabs). It has been adapted for SMLM measurements 

by adding an electron-multiplying charge-coupled device (EMCCD) camera (iXon Ultra 

897, Andor Technology). Additionally, light excitation source of the commercial setup 

was replaced by different lasers.64 

AFM and fluorescence microscopy/SMLM imaging and analyses was performed 

independently, and later Fiji145 software was used for image alignment as discussed in 

detail in Chapter 3. 

 

Figure 2.1. Correlative AFM/SMLM in situ. a) correlative AFM/SMLM setup. b) alignment of the 

images is achieved by optically imaging the AFM cantilever. Image is adapted from.50 

 

AFM measurements were performed in dynamic mode using HQ:NSC35/Cr‐AuBS 

cantilevers (MikroMasch) of 5-40 N m−1 force constant and 150-325 KHz resonance 
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frequency under dry conditions. It was performed on cleaved mica or in glass if it was 

used for correlative microscopy. Generally, for AFM measurements, a large image (~ 

35x35 µm2) was taken for selecting a region of interest and later some smaller areas 

from 10x10 µm2 to 500x500 nm2 were imaged. Typically, images of 5x5–10x10 µm2 with 

512x512 pixels were used for image comparison during photodamage experiments 

(Chapter 6). Image processing was performed using Gwyddion.146 Basic treatment was 

applied to every image data: plane subtraction, flatten base and rows alignment.  

For fluorescence microscopy, a 488 nm laser (Luxx, Omicron) was used as excitation 

light source. It was expanded, collimated, and focused onto the back focal plane of the 

objective (TIRF, 60x, 1.49 NA, oil immersion, Nikon). Emission light was selected through 

a dichroic mirror (z488rdc, Chroma Technology) and different filters that were adapted 

depending on the fluorophore requirements: HQ500 LP (Chroma Technology), 660/52 

(Semrock), 525/50 filter (Semrock). Additional lenses provide a final magnification of 

219x, equivalent to a pixel size of 72 nm. In some experiments, SMLM blinking was 

induced by adding switching buffer (see 3.2.2. SMLM imaging) containing phosphate‐

buffered saline (PBS) (pH 7.4, Sigma) with an oxygen scavenger [0.5 mg mL−1 glucose 

oxidase (Sigma), 40 µg mL−1 catalase (Sigma), and 10 % w/v glucose (Fischer Scientific)]. 

Image processing was performed using Localizer147 software for particle identification 

and localization, and image reconstruction of the localized coordinates. 

 

2.2. Electron microscopy 

EM imaging was performed by the Electron Microscopy Facility of the National Center 

for Biotechnology (CNB-CSIC) (Madrid, Spain) in a Jeol JEM 1011 transmission electron 

microscope at 100 kV with a Gatan Erlangshen ES1000w camera. Samples were 

adsorbed on carbon coated grids and negatively stained with 2% uranyl acetate.  

 

2.3. UV-VIS Absorption Spectroscopy 

Absorption spectra were recorded on a Cary 50 UV-vis spectrophotometer in a 1 cm 

pathlength quartz cuvette.  
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2.4. Fluorescence Spectroscopy 

Fluorescence spectra were acquired using a Fluoromax4 spectrofluorometer (Horiba) 

in a 1 cm pathlength quartz cuvette. 

 

2.5. Circular Dichroism  

Circular Dichroism (CD) spectroscopy was performed on a JASCO J-815 

spectropolarimeter using a quartz cuvette with a pathlength of 1 mm.  
 

2.6. MALDI-TOF  

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry 

(MALDI-TOF) experiments were performed at the Proteomics Facility of the CNB-CSIC in 

an ABI 4800 MALDI TOF/TOF mass spectrometer (Applied Biosystems). Sinapic acid (SPA) 

or DHAP (2',4',-Dihydroxyacetophenone) was used as matrix and it is specified in each 

case. 

 

2.7. Sample preparation  

Samples used in Chapter 3 and 4 were kindly provided by our collaborators in the 

group of Dr. Natividad Galvez from the University of Granada. Amyloid fiber preparation 

used for Chapter 5 and 6 are explained in section 5.3.  

 

2.7.1. Sample deposition for imaging experiments 

For AFM experiments samples were incubated on cleaved mica during 5 min, washed 

with MQ water (x3) and dried with nitrogen. The same deposition conditions were 

applied for fluorescence and correlative imaging but using a glass coverslip surface and 

incubating for 10 min. Previously, glass coverslips were cleaned by 15 min of sonication 

in different solutions: spectroscopic grade acetone, alkaline detergent (Hellmanex), and 

ultrapure water. Finally, they were dried with nitrogen. 

For improving samples adhesion, functionalization of the surface (mica or glass) with 

polylysine (PLL) was performed when required. Thus, 100 µl of 0.1% w/v of PLL (Sigma-
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Aldrich) were deposited on the surface during 10 min, washed with MQ water and dried 

with nitrogen. After that, samples were incubated for 10 min, washed and dried as 

explained. 

 

2.7.2. Fiber purification for bulk experiments 

For MALDI-TOF and CD experiments, it is important to avoid signal contribution from 

free peptides not forming fibers. Thus, the sample was filtered through Amicon ultra-

0.5 mL centrifugal filters (Merk, UFC5100) of 100 kDa cutoff in a microcentrifuge. Filters 

were equilibrated with sample solvent by centrifugation for 15 min at 1000 g. After that, 

500 μl of a solution of 1:2 of fiber stock diluted in the solvent of interest were added to 

the filter and centrifuged for 30 min at 1000 g and 4oC two times. Soft centrifugation 

was required to avoid fiber breakage. Protein concentration of the filtrate and retentate 

was measured using a NanoDrop Lite Spectrophotometer (VWR). After a second 

filtration, the absorbance in the filtrate was near to 0, suggesting that free peptides were 

removed. 
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3. Methodology development for correlative 
SMLM and AFM 

 

Adapted from: 

Bondia P., Casado S. and Flors C. (2017) Correlative Super-Resolution Fluorescence Imaging and 

Atomic Force Microscopy for the Characterization of Biological Samples. In: Erfle H. (eds) Super-

Resolution Microscopy. Methods in Molecular Biology, vol 1663, p 105-113. Humana Press, New 

York, NY. 

Bondia, P., Jurado, R., Casado, S., Domínguez‐Vera, J. M., Gálvez, N., and Flors, C. (2017). Hybrid 
nanoscopy of hybrid nanomaterials. Small, 13(17), 1603784. 

 

3.1. Introduction 

Recent advances in imaging tools have greatly improved our ability to analyze the 

structure and molecular components of a wide range of biological systems at the 

nanoscale. High resolution imaging can be performed with a handful of techniques, each 

of them revealing particular features of the sample. A more comprehensive picture of a 

biological system can be achieved by combining the information provided by 

complementary imaging methods. However, it is challenging to combine two different 

techniques since sample protocols preparation are sometimes incompatible or sample 

can be damage during handling or measurements. These issues become especially 

important when the resolution of the combined techniques is at the nanoscale. In 

addition, protocols for image alignment need to be developed for obtaining precision at 

this resolution range.45 

The purpose of this chapter is to describe a detailed protocol to combine super-

resolution fluorescence microscopy based on SMLM coupled in situ with AFM. Specific 

requirements for the optimal combination of both techniques in terms of sample and 

substrate preparation, instrumentation, vibration isolation, and image alignment are 

discussed. Generally, correlative AFM and SMLM experiments are performed 

sequentially, rather than simultaneously, which simplifies the procedure and is 

adequate for most applications. To illustrate this, a correlative imaging experiment, in 

which BLG fibers are labelled with the organic fluorophore Alexa488 or QD655 is 
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described. These examples are used in this chapter to explain and compare the different 

experimental strategies in detail, but the scientific significance of the results will be 

discussed in Chapter 4 in the context of new hybrid nanomaterials research. Alternative 

procedures for other types of samples are also explained in this chapter.  

 
 

3.2. Experimental considerations 

Several issues need to be considered before applying correlative microscopy to our 
sample.  

 

3.2.1. Surface 

Choosing a surface for correlative microscopy can be challenging since AFM requires 

a flat and smooth substrate and SMLM good optical properties for efficient photon 

detection and precise localization of the fluorophores. Glass or quartz are usually 

preferred for super-resolution microscopy; however, they have a higher average 

roughness than mica (0.5 nm for glass148 or quartz149 vs 0.05 nm for mica148). For small 

objects such as stretched DNA, which has a height of 2 nm, glass is not flat enough for 

AFM imaging, and therefore the use mica is recommended. Although mica has poor 

optical properties (light absorption and birefringence) their impact can be minimized if 

a very thin layer is used, providing a good compromise for correlative microscopy.64, 148 

For larger structures such as the protein fibers discussed here and in references57, 150 or 

cells55, 60, glass is suitable for AFM. The use of thicker glass coverslips (#2 instead of the 

more common #1.5 used in SMLM) reduces fluctuations on the sample induced by the 

tip scanning. A common problem for AFM imaging in liquid environment is that the 

sample is easily detached from the surface. Functionalization of the surface can improve 

adsorption, typically by electrostatic interaction and a wide variety of options can be 

found in the literature. A common method is to coat the surface with PLL, whose positive 

charge is advantageous for adhesion of negatively charged structures such as bare DNA 

or cells,55, 64 which are able to grow on the PLL functionalized glass.151 Another possibility 

is to functionalize with cross-linking groups such as 3-aminopropyltriethoxysilane 

(APTES) which protonates at neutral pH.55 However, surface functionalization could 
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affect the native structure of the molecules of interest, and it may decrease the flatness 

and optical properties of the surface. 
 

3.2.2. SMLM imaging 

A critical factor for obtaining a proper SMLM image is the fluorophore choice. A wide 

variety of switching fluorophores are commercially available but they may have different 

photoswitching requirements. Organic fluorophores typically need a “switching buffer”, 

in which an oxygen scavenger system formed by glucose oxidase and catalase consumes 

the glucose added to the solution in the presence of oxygen. This reaction creates a 

situation of hypoxia which increases the triplet lifetime of the fluorophore by preventing 

oxygen-based reactions and maximixing the chance of photoinduced (redox) reactions 

with the final component of the switching buffer, a primary thiol compound such as β-

mercaptoetanol or cysteamine (typically ~ 50 mM).27 For this reason, BLG-Alexa488 

experiments were performed in the presence of an oxygen scavenger system. However, 

the switching buffer did not contain a thiol compound since thiols were observed to 

induce breakage of BLG fibers57 and blinking of Alexa488 has been reported not to 

improve by the thiol addion.152  

 Other labels, such as QDs, intrinsically produce emission fluctuations upon 

irradiation. These fluorescence fluctuations allow separating in time the emission of 

each QD and to use various super-resolution imaging schemes to reconstruct QDs 

distribution with a spatial resolution below the diffraction limit of light.153-158 However 

the fact that their blinking properties are heterogeneous within a population and occur 

in a wide range of time scales typically deteriorates the quality of the super-resolution 

images.156 

It is worth considering that if the AFM instrument uses a red detection laser, the 

fluorophore should be carefully selected since it could bleach during AFM imaging. This 

problem has been described for example for Alexa647.55 A possible solution to avoid 

undesired fluorophore excitation is using an AFM instrument equipped with infrared 

laser, for example the system used in this thesis uses an 859 nm laser. As an alternative, 



3. Methodology development for correlative SMLM and AFM                                                                                                                                 

   
 

36 

SMLM could be performed before AFM, although it could be detrimental to AFM 

imaging (see 3.2.5. Order of measurement).  

3.2.3. AFM imaging 

Different AFM measuring modes are available. Briefly, contact mode is based on 

measuring changes in topography while the tip of the cantilever remains in contact with 

the sample.8 In this mode, the sample experiences high lateral forces that could produce 

damage. For biological samples, softer methods such as dynamic or jumping mode 

should be applied. For imaging BLG-Alexa488 and BLG-QD655 dynamic mode was used, 

in which the cantilever tip oscillates near its resonance frequency (generally about 200–

400 kHz) lightly tapping the surface.159 Jumping mode, which achieves a careful control 

of the forces applied to the sample by bringing the tip in and out of contact, would also 

be suitable.160 It is critical to select a proper cantilever that should be adapted for each 

measurement depending on the sample, measuring medium and imaging mode. In 

general terms, softer cantilevers are usually used in contact mode, with spring constants 

usually lower than 0.5 N/m. In dynamic mode, stiffer cantilevers with a spring constant 

near 10 N/m are more stable for measuring in air. For jumping mode, soft cantilevers 

would be recommended to avoid damage of the sample during acquisition.161 

AFM can be performed in dry conditions or in liquid environment. Measurement in 

air is more convenient since the sample has better adhesion to the surface and the 

cantilever tuning is simpler. However, to address biological questions, measurements 

near to physiological environment provide more relevant conclusions since drying of 

biological samples could modify their structure.162 For both examples discussed here, 

BLG-Alexa488 and BLG-QD655, it was not required to measure AFM in liquid, therefore 

it was performed in air for simplicity. See section 3.2.5. Order of measurement for more 

details. 

 

3.2.4. Vibration problems 

Vibration could be a critical problem as it blurs the AFM image. In addition to an active 

vibration isolation table, other issues need to be considered when the AFM and the 
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optical microscope are integrated on the same system. For example, it is helpful to 

slightly retract the objective during AFM scanning to reduce coupled vibration. The 

EMCCD camera should be off to avoid fan vibration, or if simultaneous measurement is 

required, a water-cooling system is recommended. The lasers used for SMLM should 

have a heat sink instead of a fan (or the fan should be turned off during AFM imaging). 

Acoustic noise, air flow (like air conditioning), and large variations in room temperature 

should be avoided. Vibrations could be minimized by placing the instrument inside an 

acoustic isolation box, and additional isolation of the AFM by holding it on a mechanical 

support without contacting the microscope body could be helpful.55 

 

3.2.5. Order of measurement 

The order of imaging can be modified and must be carefully evaluated for each 

correlative experiment. Generally, it is advisable to perform AFM before SMLM imaging 

since the switching buffer components (especially enzymes) could interact with the AFM 

tip and be adsorbed on the sample surface. Additionally, some structures like actin 

become damaged by laser exposure during SMLM image acquisition, and therefore AFM 

must be performed in advance, although with low peak forces to avoid mechanical 

damage of the sample.55 If for some reason SMLM has to be performed first, exhaustive 

washing should be done before AFM. However, this very probably leads to sample 

disturbance.55, 150, 163  

Before correlative measurement, it is advisable to select a region of interest using 

standard fluorescence microscopy. It should be performed using minimum laser 

intensity to avoid photobleaching. 

For correlative microscopy characterization of BLG-Alexa488 and BLG-QD655, 

imaging was performed as follows:  

In both cases, the region of interest was previously selected by standard fluorescence 

microscopy in air at low laser power. For BLG-Alexa488, AFM imaging was performed in 

air, followed by the addition of the switching buffer (with great care not to move the 

sample) and SMLM acquisition at high laser power. On the other hand, BLG-QD655 does 

not require the addition of buffer to induce blinking and therefore the order of 
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measurement is less critical. In the BLG-QD655 experiments reported here, it was 

advantageous to perform a preliminary evaluation of the QD blinking in the selected 

area, since on/off distribution is difficult to predict, as previously explained. If the 

blinking dynamics were satisfactory, a SMLM dataset was acquired. Afterwards, the 

objective was slightly retracted and AFM imaging was performed.57  

 

3.3. Data analysis 

3.3.1. SMLM and AFM 

Raw images from both techniques should be processed and analyzed following the 

same procedures as with the individual techniques. A wide range of software tools are 

available either open-source or commercially. For the examples reported here, 

Localizer147 and Gwyddion146 and were chosen to perform standard analyses of SMLM 

and AFM images, respectively.  

For SMLM analysis, PSF width and threshold sensitivity values should be adjusted for 

each experiment for optimal image segmentation, determining which signal is 

considered as a fluorescent emitter. Lower threshold sensitivity results in higher recall 

rates, increasing the localization density but maybe blurring some structural details due 

to the larger localization uncertainty. In contrast, restrictive conditions allow more 

precise particle localization but may hide part of the fluorophores.64 Comparison of the 

SMLM with the AFM image helps finding the best analysis parameters to obtain a 

balance between spatial resolution and localization density.64 For example, lower 

fluorescent intensity was detected for BLG-Alexa488 than for BLG-QD, requiring less 

restrictive conditions for image segmentation. In contrast, more restrictive values were 

used for QD image reconstruction but carefully selected in an iterative process explained 

below (figure 3.1 and section 3.3.3. Correlative image inspection). 

In correlative approaches, vibration problems discussed previously may introduce 

noise in the AFM images, which could be reduced by removing noise frequencies 

through Fast Fourier Transform (FFT) filter.164  
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3.3.2. Image alignment  

A critical step for correlative microscopy is image alignment or registration. In our 

integrated system, AFM and SMLM images are localized in the same region of interest 

since they are performed in situ (figure 2.1). For imaging the same region, the AFM tip 

is located through observation in the optical image. Then, both images can be aligned 

by using recognizable features of the samples, which was the procedure applied for BLG-

Alexa488 imaging and to preliminary align BLG-QD655 images (see below). For a more 

accurate alignment, software such as DirectOverlay™ (JPK) can be used. This software 

uses a set of 25 known positions of the cantilever to calibrate the optical image at each 

point in relation to the AFM lateral piezo coordinates. This allows automatic image 

registration and distortion correction.56 However, other methods are necessary if higher 

precision is required. Fiduciary markers, such as nano-patterned slides with gold 

fiduciary features fabricated by electron beam lithography, give contrast in topographic 

and optical images and can be used as references to obtain an accurate overlay.150, 163, 

165 Similarly, fluorescent nanoparticles facilitate the identification of the same region by 

both techniques and can be used to determine image overlay.57, 148, 166, 167 This strategy 

was followed for fine alignment of BLG-QD655 correlative images, in which the detached 

QDs on the surface were used as fiduciary markers since they are fluorescent particles 

with ~ 8 nm in height. Using Fiji software,145 corresponding QDs were located in both 

images and used as a reference to calculate a correction matrix achieving image overlay 

at the nanoscale (figure 3.1).  

 

3.3.3. Correlative image inspection  

One possible application of correlative imaging is the comparison of different image 

reconstruction parameters in SMLM, using the AFM image as “ground truth”.64 As it was 

previously explained, although QD emits high fluorescence signal, blinking 

heterogeneity decreases the localization precision of the signal. For that reason, analysis 

parameters in Localizer were tuned using AFM image as a reference, increasing the 

accuracy of QD signal localization and avoiding the introduction of artefacts (figure 3.1).  
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Figure 3.1. High precision image alignment workflow. A data set of ~800 frames was processed 

to obtain a preliminary super-resolution image. Then, it was aligned with the AFM image using 

detached QDs on the surface as fiduciary markers (not shown in the image). SMLM analysis 

parameters were tuned using the AFM image as a reference to obtain an optimal 

reconstructed super-resolution image. 

 

3.4. Conclusion 

This chapter explains in detail the experimental considerations to plan a correlative 

SMLM and AFM experiment. The challenge of using two different techniques in situ and 

the need of compromises that accommodate the requirements of each of them are 

discussed. Careful analysis of several aspects of sample preparation, setup and image 

analysis are key for acquiring high quality data to evaluate the functionalization of BLG 

with different fluorescent molecules. These experiments provide valuable information 

in the context of hybrid material development as described in Chapter 4. Moreover, it 

establishes the basis to perform future correlative SMLM and AFM microscopy 

experiments of amyloid fibers and other biological samples. 
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4. Application of correlative microscopy for 
hybrid materials  

 

Adapted from: 

Bondia, P., Jurado, R., Casado, S., Domínguez‐Vera, J. M., Gálvez, N., and Flors, C. (2017). Hybrid 
nanoscopy of hybrid nanomaterials. Small, 13(17), 1603784. 

 

Jurado, R., Castello, F., Bondia, P., Casado, S., Flors, C., Cuesta, R., Domínguez-Vera, J.M., Orte, 
A. and Gálvez, N. (2016). Apoferritin fibers: a new template for 1D fluorescent hybrid 
nanostructures. Nanoscale, 8(18), pp.9648-9656. 

 
4.1. Introduction 

The use of proteins and peptides to drive the assembly of novel bioinorganic 

structures is a strategy that has been harnessed by nanotechnology in order to confer 

these assemblies with new physical properties.94, 168 Proteins are versatile building 

blocks that provide a simple route to control the template of 0D–3D structures. Amyloid-

like fibers, either natural or synthetic, and self-assembling peptides have shown 

excellent properties as templates for the production of 1D inorganic nanostructures and 

are emerging as an important class of functional materials.13, 72, 169, 170 

As a result of the hybrid nature of these materials, the combination of 

complementary techniques for their characterization at the nanoscale is valuable to gain 

a comprehensive picture of their structure and function, with the aim of optimizing their 

design. Here we show that correlative AFM and SMLM is a useful tool to obtain 

complementary information about protein fibrils functionalized with organic 

fluorophores and quantum dots, the latter as an example of 1D nanoparticle arrays. For 

this chapter, we applied correlative microscopy for the characterization of hybrid 

materials formed by BLG functionalized with Alexa488 and QDs (QD655 and/or QD525) 

using Lys amino acid as anchor point.57, 86  

BLG fibers show interesting structural features such as helical twisting with 

characteristic periodic fluctuations in their height that can be quantitatively studied by 

AFM.171 On the other hand, SMLM can provide information about the spatial distribution 

of the fluorescent labels attached to the fibrils. Our study shows that this hybrid 
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nanoscopy technique is particularly well suited to study the structure and labelling of 

these fibers at the nanoscale, which is key in their development as building blocks for 

functional materials.13 Moreover, we achieve correlative AFM and two-color super-

resolution fluorescence imaging of these hybrid materials. This is the first time that the 

latter study has been performed and represents an important step forward in the 

characterization of multifunctionalized hybrid materials. 

 

4.2. Results and discussion 

4.2.1. Characterization of BLG functionalized with Alexa488 

Functionalized BLG samples described in this chapter were provided by our 

collaborators in the group of Dr. Natividad Galvez from the University of Granada. BLG 

was functionalized with Alexa488, which is an intensely fluorescent dye able to produce 

photoblinking.152 The dye is a succinimidyl ester derivative able to form amide bonds 

with the amine group of the proteins and generating conjugates with high 

photostability.86  

Standard fluorescence microscopy in correlation with AFM was applied to confirm 

proper functionalization of the fibers. Correlative microscopy shows that BLG can be 

readily functionalized with Alexa488 after amyloid-like fiber formation to yield 

fluorescent fibers that appear homogeneously fluorescent at the spatial resolution 

provided by standard fluorescence microscopy (figure 4.1).86 
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Figure 4.1. Correlative AFM and standard fluorescence imaging of BLG-Alexa488. a) Topographic 

image (left) is compared with fluorescence image (right) confirming fluorophore attachment to the 

fiber. b) is the zoom of the squared area in a). Image adapted from.86 

 

However, to gain information about the labelling quality at the nanoscale higher 

spatial resolution in optical microscopy was required, and correlative AFM and SMLM 

was applied. Figure 4.2 shows standard fluorescence images, super-resolution images, 

and AFM images of the same area of BLG-Alexa488 fibers deposited on glass. At the 

zoom level of the images, standard fluorescence microscopy hardly gives any 

information. In contrast, the super-resolution image shows clear features, which 

correspond very well to those of AFM. The correlative nature of these experiments 

allows to discriminate between “real” localizations in the super-resolution image and 

spurious ones that are related, e.g., to nonspecific binding, as seen in figure 4.2. 

Importantly, the super-resolution image reveals labelling heterogeneity at the 
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nanoscale, which can be gauged from the comparison with the corresponding AFM 

image. 

 

 

Figure 4.2. Correlative standard fluorescence imaging, SMLM and AFM of fibers BLG-Alexa488. 

Standard fluorescence imaging (left), super‐resolution imaging (center), and AFM (right) of BLG 

fibers showing heterogeneous labelling with Alexa488 at the nanoscale. For SMLM imaging 

4000 frames of 100 ms were collected using a 488 nm laser with an intensity of ~0.5 kW cm−2. 

The false color scale in the central panel indicates relative fluorophore localization density. 

 

4.2.2. Characterization of BLG functionalized with QD 

In addition, BLG fibers functionalized with carboxyl-coated CdSe QD (QD655) by 

crosslinking, were imaged with the hybrid setup. Figure 4.3 shows an AFM image in 

which the QDs are clearly observed attached to the fiber. The labelling density is not 

homogeneous along the fiber, with some sections where the QDs seem to overlap, while 

others are not functionalized. The height of the QDs is about 8 nm and that of the fiber 

is slightly above 3 nm. The latter value is consistent with a single BLG fibril as opposed 

to a twisted multistranded fibril.171 
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Figure 4.3. Correlative AFM and SMLM of BLG-QD655. a) AFM image (left) and topography 

profile (right) of a BLG fiber functionalized with QD655. b) Overlay of AFM image and super‐

resolution images reconstructed from three different data sets of the same fiber in (a). Each 

data set is built up from about 800 frames of 100 ms per frame using a 488 nm laser with an 

intensity of ~0.8 kW cm−2.57 

 

This data show QDs separated by subdiffraction distances, and that most, if not all, 

of the QDs in this particular sample emit at some point during the acquisition time. While 

data in figure 4.3.b alone do not allow to extract reliable statistics, previous work has 

estimated a significant dark fraction of QDs.172, 173 However, more recent measurements 

in which the observation times for individual QDs were much longer (in the order of 
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minutes, similar to the total integration time of our three data sets) showed only a small 

nonemitting fraction (about 15%).174 We have indeed observed a small fraction of dark 

QDs in other samples (figure 4.5).  

In addition to the super‐resolution reconstructed image and topography, information 

about blinking dynamics on a fast timescale (100 ms in this case) can be overlaid by color 

coding the appearance of localization events (figure 4.4),147 showing QD heterogeneous 

blinking at different time scales.156 

 

Figure 4.4. Relative localization density and raw localization data of BLG-QD655. Super-

resolution images (top) and raw localization data (bottom) obtained from three different data 

sets of a BLG fiber functionalized with QD655 (same as Figure 4.3). The false color scale in the 

super-resolution image indicates relative localization density and in the raw localization data 

the color code indicates frame number. 

 

4.2.3. Multicolor correlative microscopy 

In order to challenge the capabilities of our hybrid setup, a more complex sample in 

which BLG was functionalized with both QD655 and QD525 was studied.  
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The multicolor fluorescent sample was then imaged with the correlative SMLM/AFM. 

First, the topography image reveals relevant structural information about the protein 

fibers (figure 4.5.a). The height of BLG fibers can be directly related to the number of 

twisted filaments that compose the fiber,171 i.e., heights of about 4, 6, and 8 nm 

correspond to two, three, and four filaments, respectively, per fiber. Filament twisting 

induces periodic fluctuations in height along the fiber,171 which are also observed in one 

section with a period of 40 nm, consistent with a fiber composed by two filaments. To 

obtain information about the properties of the attached QDs, a super‐resolution 

reconstructed image in two colors can be overlaid with the AFM image and clearly allows 

the identification of QDs emitting in their respective colors as well as those nonemitting, 

which would not be possible with the individual techniques. This is the first time that 

correlated topography and multicolor super‐resolution imaging is achieved. This hybrid 

nanoscopy technique has great potential to study multifunctional hybrid materials,71, 89, 

175 especially since nanocrystals are characterized by the presence of a significant dark 

fraction population. In addition, features such as fibril twisting are extremely challenging 

to study by super‐resolution fluorescence imaging and relatively simpler with AFM. 

 

 

Figure 4.5. Correlative AFM and two-color SMLM of BLG fibers labelled with QD525 and 

QD655. a) AFM image and topographic profiles of the functionalized fibers. The red numbers in 

Profiles 1 and 2 correspond to the number of filaments that compose the fiber as expected 

from the height values.171 The periodicity observed in Profile 3 is consistent with a fiber 

composed by two filaments. b) Correlative AFM and two‐color super‐resolution image. SMLM 

was built up from one data set for each QD of ~ 1000 frames of 100 ms per frame using a 488 

nm laser with an intensity of ~ 0.8 kW cm−2. The arrows highlight examples of nonemitting 

QDs. 
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4.3. Conclusion 

Hybrid nanoscopy combining AFM and super‐resolution imaging provides valuable 

complementary information about the structure and properties of luminescent hybrid 

nanomaterials. This is exemplified in this work with amyloid‐like fibers functionalized 

with organic fluorophores, as well as with 1D arrays of QDs templated by these fibers. 

While the topography image allowed determining the number of filaments that 

composed the fiber, the super‐resolution image (in one or two colors) allowed the 

identification of emissive and nonemissive QDs. This combined insight would not be 

possible with the individual techniques. 

Other nanomaterials such as luminescent nanoparticle arrays or chains would also 

benefit from this correlative technique,175, 176 especially multicolor fluorescent 

nanosystems where different nanoparticles emit in different colors or are combined 

with organic fluorophores.89, 175 Moreover, super‐resolution imaging in combination 

with the nanomanipulation capabilities of AFM61, 177 offers great promise to understand 

potential relations between optical and mechanical properties at the nanoscale in hybrid 

nanomaterials. The novel insight gained with these techniques can drive the design of 

improved luminescent nanomaterials for bioimaging, biosensing, and many other 

different applications. 
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Part of these experiments were performed in department of Medicinal Chemistry at the 

University of Tokyo in the laboratory of Prof. Motomu Kanai and Dr. Youhei Sohma  
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5. Fibrillar amyloids as models for photodamage 
experiments 

 

5.1. Introduction 

Although amyloid fibers share common core features (i.e. cross‐β sheet pattern), 

there are significant differences in their molecular conformations, resulting in highly 

polymorphic structures.115, 116 As groundwork for Chapter 6, which deals with 

photochemical strategies to damage amyloid aggregates, the aim of this chapter is to 

explore different morphologies of amyloid fibers in order to select the most convenient 

models to study fiber photodamage (i.e. rupture) at the nanoscale by AFM. To that end, 

the work described here was focused on finding long and isolated fibers easily visualized 

by AFM. To select a proper model, different amyloid fibers were evaluated: α-syn and 

Aβ, for being involved in neurodegenerative diseases,178, 179 and some variations thereof 

which form alternatives morphologies as explained below. Also, BLG was considered for 

its well-known amyloid structure.171 

Another important consideration is that the photodamage experiments in Chapter 6 

rely on the production of ROS for damaging the amyloid fibers.142, 143 Thus, the presence 

in the protein sequence of amino acids susceptible to oxidation such as His or Met 

among others could be important for the extent of photodamage.143, 180 

 

5.2. Fibrillar model candidates for photodamage experiments  

5.2.1. α-syn, ΔH1 and ΔN 

α-Syn is an IDP formed by 140-residues that is expressed extensively in neurons.181 

Its function remains unclear, but it is able to interact with fatty acids and many 

different proteins involved in diverse functions like vesicle trafficking or 

neurotransmitter release.182 It is the main component of the proteinaceous deposits 

involved in neurological diseases such as Parkinson, multiple system atrophy and 

dementia with Lewy bodies.183 Different causes, like mutations or overexpression of 
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α-syn, promote oligomerization and amyloid fiber formation inducing neuron 

death.184  

α-Syn is divided it three different regions: an amphiphilic, basic N-terminal region, 

a central hydrophobic region (non-Aβ component; NAC) which is responsible for β-

sheet structure and the fibrillation process, and a very negatively charged, 

unstructured C-terminal region184, 185 (figure 5.1). α-Syn truncated derivates without 

the N-terminal region are also found to form amyloid fibers and have an important 

role as a seed for new aggregates.186, 187 Two N-terminal truncated mutants were 

observed by our collaborator Dr. Begoña Sot (IMDEA Nanoscience) to form long and 

isolated fibers (figure 5.5 a, b and c), thus they were  evaluated as possible candidates 

for photodamage studies. Mutations involved a deletion in the N-terminal region of 1-

37 and 1-63 amino acids for ΔH1 and ΔN mutants, respectively, as shown in figure 5.1.184 

It should be noted that some of the amino acids susceptible to oxidation are deleted 

in ΔN in comparison with ΔH1, which could be helpful to analyze the influence of 

specific amino acids in photodamage143, 180 (see Chapter 6). 

 

 

Figure 5.1. Amino acid sequence of α-syn and mutants ΔH1 and ΔN. The blue, yellow and 

purple colors indicate the different regions of the proteins (N-terminal, NAC and C-terminal, 

respectively). The grey sequence indicates the deleted part of the mutants and the amino 

acids susceptible to oxidation are highlighted in red. 
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5.2.2. Aβs: Aβ 1-42, Aβ lactam 1-40 and Aβ lactam 1-40 SO 

Aβ is a 38- to 43- amino acid peptide generated after enzymatic cleavage of the 

Amyloid Precursor Protein (APP). Although its physiological function is unclear, Aβ would 

play an important role in brain development, memory and synaptic plasticity.188-190 Aβ 

is normally produced in healthy individuals, but under certain circumstances, this 

molecule aggregates forming an accumulation of extracellular senile plaques, which  are 

involved in Alzheimer’s disease progression.191 Isoforms Aβ 1-40 and Aβ 1-42 peptide 

are the most common forms of Aβ found in both diseased and normal human brains.192 

Although polymorphism in the formed fibers has been observed,113 generally, Aβ 1-40 

forms longer and thinner fibers than Aβ 1-42,193 being more appropriate as a model fiber 

for photodamage experiments. To further increase fiber homogeneity and to obtain 

more reproducible results, the Aβ 1-40 peptides used in this study contain a lactam 

bridge formed between Asp23 and Lys28, mimicking the salt bridge formed on the non-

modified structures (figure 5.2). This strategy accelerates fibrogenesis since salt bridge 

formation entails a kinetic barrier to fibril formation. Importantly, the lactam bridge 

(D23/K28) reduces the number of resulting fibrillated structures, since it limits the 

possible conformations of Aβ 1-40.194 

Additionally, a variant of Aβ 1-40 lactam that contains a sulfoxide (SO) modification 

in the Met 35 was synthetized to evaluate its morphology. This modification has been 

detected in a proportion of Aβ1-40 peptides in patients’ amyloid plaques.195, 196 

Therefore, exploring photodamage effects on fibers containing SO modification could 

have biomedical interest.  
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Figure 5.2. Amino acid sequence of the Aβ peptides and structural model for Aβ 1-40 lactam 

(D23/K28) peptide in the fibril conformation. The highlighted amino acids are susceptible of 

photo-oxidation. The Aβ 1-40 structural model represents the disordered N-terminal segment 

(blue), two β-strand segments (residues 10-22 and 30-40 in green), and the bent segment 

(residues 23-29) containing the lactam bond. Structural model obtained from.194 

 

5.2.3. BLG 

BLG protein is the major component of the whey of milk197 and is able to form 

amyloid aggregates under specific incubation conditions, finding applications in very 

different fields. Commonly, BLG has been used in the food industry to control texturing 

properties, such as stabilization of foams or gelation processes,198 but also, in 

biomedicine199 as a model to study amyloid structure and fibrillation process or even for 

new nanotechnological applications such as hybrid materials (see Chapter 4).57 BLG is a 

globular protein that forms dimers in physiological conditions, but modifies its structure 

under environmental changes of concentration, temperature, pH, or the presence of 

salts, forming different morphologies such as fibers,199 multistranded ribbons,200 
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spherulites201 or spherical particles.202 Particularly, as the purpose of this chapter is to 

obtain long and isolated fibers, the conditions required consisted in incubating at low 

pH, in absence of salts and high temperatures. These conditions promote protein 

cleavage due to an acid hydrolysis reaction forming peptides that are able to interact 

and assemble into fibers.203, 204 The resulted amyloid structures were considered as an 

interesting model candidate for photodamage experiments since features of height and 

periodicity provide information about the number of filaments forming the fibers (see 

4.2.3. Multicolor correlative microscopy).171 

Importantly, the peptides involved in fiber formation contain some residues 

susceptible of photo-oxidation (figure 5.3).180 However, it should be pointed out that 

variations in the fiber peptide composition have been reported depending on the 

fibrillation time used to form these structures (see 5.3.3. BLG fibers).205 

 

Figure 5.3. BLG protein sequence. Amino acids that are not involved on fiber formation are 

strikethrough in the sequence.203 Amino acids susceptible of photo-oxidation are highlighted in 

red.180 

 

5.3. Materials and methods  

5.3.1. Production of α-syn, ΔH1 and ΔN fibers 

The plasmid containing the sequence of -syn was provided by Dr. Begoña Sot. 

Protein α-syn was expressed in E. coli BL21 and purified as described in the literature.184, 

206 Bacteria were transformed with pT7.7 plasmid containing the protein sequence and 

grown in LB (Lysogeny broth medium) (Broth Miller) in the presence of ampicillin (100 

mg/ml, Fisher Chemical). Protein expression was induced with IPTG (Isopropyl β-D-1-

thiogalactopyranoside), cultured at 37°C for four hours and harvested by centrifugation. 
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The cell pellet was resuspended in 10 mM Tris–HCl (pH 8.0) (2-Amino-2-(hydroxymethyl) 

propane-1,3-diol, VWR), 1 mM EDTA (Ethylenediaminetetraacetic acid, Fisher 

BioReagents), 1 mM of protease inhibitor PMSF (phenylmethylsulfonyl fluoride), and 

lysed by sonication. It was centrifuged (10000 rpm, 60 min, 4 °C) in a FX6100 rotor 

(Beckman Coulter). The recovered supernatant was heated (20 min) at 90°C in a 

thermoblock (Fisher Scientific), and centrifuged at 13500 rpm 20 min 4°C in a 

microcentrifuge. The supernatant was collected, precipitated with 60% ammonium 

sulphate (PubChem) (3 h, 4 °C) and centrifuged again as before. The pellet was 

resuspended in 25 mM Tris–HCl (pH 8.0) and loaded onto a 5 ml HiTrap Q-Sepharose 

column using fast protein liquid chromatography (ÄKTAFPLC, GE Healthcare). The 

protein was eluted with a 0 to 600 mM NaCl (VWR, 7647-14-5) gradient and fractions 

containing the protein were concentrated by ultrafiltration and loaded onto a Superdex-

200 16/60 chromatography column, previously equilibrated with 25 mM Tris–HCl (pH 

7.5). The eluted protein was concentrated and stored at −80 °C. ΔH1 and ΔN proteins 

were kindly provided by Dr. Begoña Sot and were produced using a similar protocol. 

Protein concentrations were estimated from absorbance at 280 nm with an extinction 

coefficient of 5960 M−1·cm−1 for α-syn, 4470  M−1·cm−1 for ΔN and 5960 M−1·cm−1 for 

ΔH1. Fiber formation was promoted by incubating 70 μM α-syn or 400 μM of ΔH1 and 

ΔN in 25 mM Tris pH 7.4, 5 mM MgCl2 (AppliChem), 150 mM NaCl (AppliChem), 5 mM 

KCl (AppliChem,) and 0.01% SDS (Sodium dodecyl sulfate, AppliChem) at 37 oC and 800 

rpm of shaking in a Thermoshaker (VWR, Thermal Shake lite) during 24-36h. Buffers pH 

was adjusted to the required values using NaOH (VWR Chemicals) or HCl (Millipore 

Sigma) 

 

5.3.2. Production of Aβ fibers: Aβ 1-42, Aβ lactam 1-40 and Aβ lactam 1-40 SO 

Aβ 1-42 and Aβ 1-40 lactam were kindly provided by our collaborators Prof. Kanai 

and Dr. Somha (University of Tokyo). Aβ 1-40 lactam SO was synthesized using solid 

phase peptide synthesis (SPPS) during a 5-week visit at their laboratory. The intense 

aggregation of Aβ peptides commonly hinders their synthesis and purification process. 

To circumvent this issue, the O-Acyl Isopeptide method was applied,207, 208 which 

involves the use of an ester bond between Gly25 and Ser26 in acid pH as an Aβ 
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precursor. The O-acyl Isopeptide is then converted to Aβ via the O-to-N acyl 

rearrangement, under physiological conditions (figure 5.4). 

 

Figure 5.4. O-Acyl Isopeptide method. Aβ aggregation is inhibited by the introduction of an 

ester bond between Gly25 and Ser26 in acid pH. When the peptide is diluted in physiological 

pH occurs the O-to-N acyl rearrangement and the Aβ is reconstituted and able to aggregate. 

This figure was modified from.208 

 

The synthesis of Aβ lactam 1-40 SO was carried out similarly to protocol described 

in209 from the C-terminus to the N-terminus. SPPS was performed using amino acids 

coupled with different protecting groups, which are helpful to avoid undesired reactions 

such as fluorenylmethyloxycarbonyl (Fmoc), tert-butyloxycarbonyl (Boc), 

allyloxycarbonyl (aloc) and allyl. It was performed on a 0.1 mmol scale using Fmoc-Val-

2-TrtA-PEG resin (tritylcarboxamidomethyl (TrtA) polyethylene glycol (PEG) resin). The 

resin was washed with dimethylformamide (DMF) (×5), and later the amino acid was 

deprotected by removing the Fmoc group using 20% piperidine/DMF (v/v) (1 min × 1 

and 10 min × 1), followed by washing with DMF (×10). The peptide chains were 

assembled by sequential coupling of Fmoc-amino acids in DMF in the presence of N,N′-

diisopropylcarbodiimide (DIC) and 1-hydroxybenzotriazole (HOBt) during 1 h at RT. This 

cycle was repeated for every amino acid. The added Met in position 35 contained a 

sulfoxide group. 

https://www.sciencedirect.com/topics/medicine-and-dentistry/n-n-dimethylformamide
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For obtaining O-Acyl Isopeptide, Boc-Ser (Fmoc-Gly)-OH was added at position 26.  

Protecting groups were normally removed and the peptide was washed with CH2Cl2 (×5). 

After, it was subjected to coupling with the next amino acid during 3h.  

For lactam bond formation, Fmoc-Lys(Aloc)-OH was introduced at position 28. When 

Fmoc-Asp(Allyl)-OH was introduced at position 23, the formation of the lactam bond 

was induced by removing the Aloc and allyl protecting groups with Pd(PPh3)4 (23.1 mg, 

0.020 mmol) and PhSiH3 (0.147 mL, 1.2 mmol) in CH2Cl2 under Argon atmosphere 

overnight. After washing with CH2Cl2 (×10) and DMF (×10), lactam formation was carried 

out using HATU ((1-[Bis (dimethylamino) methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 

3-oxid hexafluorophosphate, Hexafluorophosphate Azabenzotriazole Tetramethyl 

Uronium) )(190 mg, 0.500 mmol), HOAt (1-Hydroxy-7-azabenzotriazole) (13.6 mg, 

0.100 mmol), and N-methylmorpholine (54.9 µL, 0.500 mmol) in DMF (4 mL) during 4h. 

After that, the elongation of the peptide chain continued until the end following the 

coupling and deprotection cycle previously explained.  

When the Aβ peptide was synthetized, the peptide-resin was washed with MeOH (×5) 

and dried for 2 h in vacuum. The peptides were cleaved from the resins with TFA 

(trifluoroacetic acid) in the presence of triisopropylsilane and MQ water (95:2.5:2.5 

[v/v]) for 90 min RT. The resin was removed through filtration, the solution was 

concentrated in vacuum, and precipitated with ether. The resulting precipitate was 

collected by filtration, dissolved with 0.1% aqueous TFA/ACN (1:1), and lyophilized for 

at least 12 h to obtain the crude peptide. It was purified by preparative reversed-phase 

HPLC (High Performance Liquid Chromatography) with 0.1% aqueous TFA/ACN 

(acetonitrile) system as an eluent, immediately frozen using liquid nitrogen, and 

lyophilized for at least 24 h. MALDI-TOF analysis show a main peak of 4329 Da as 

expected.  

 

-Aβs stock preparation and fibrillization 

To prepare the stock solution, Aβ amyloid peptide was dissolved in 0.1% aqueous TFA 

and the solution was treated with ultracentrifugation (100000 rpm) at 4 °C for 3 h on an 

ultracentrifuge OptimaTM TLX (Beckman Coulter, Inc., Brea, CA) with a TLA100 or 

https://www.sciencedirect.com/topics/chemistry/protecting-group
https://www.sciencedirect.com/topics/medicine-and-dentistry/lactam
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/hatu
https://www.sciencedirect.com/topics/medicine-and-dentistry/reversed-phase-high-performance-liquid-chromatography
https://www.sciencedirect.com/topics/medicine-and-dentistry/reversed-phase-high-performance-liquid-chromatography
https://www.sciencedirect.com/topics/chemistry/eluent
https://www.sciencedirect.com/topics/chemistry/nitrogen
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/ultracentrifugation
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TLA120.2 rotor (Beckman Coulter, Inc.). The upper three-quarters fraction of the 

solution were collected. Protein concentration were estimated by absorbance at 280 nm 

with a molar extinction coefficient of 1490 M-1 cm-1. The collected supernatant was 

diluted to obtain 200 µM stock solutions and kept at −80 °C until use.  

For fiber formation, Aβ amyloid was unfrozen and buffer exchanged to 0.1 M HEPES 

(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, VWR) buffer containing 0.1 M NaCl 

(pH 7.4). The sample was centrifuged at 8000 rpm 30 min (x2) at 4 °C using Amicon Ultra 

0.5 mL filters with a 3 kDa cutoff. After, it was incubated at 37 °C, without shaking during 

24 h for Aβ 1–42, 90 min for Aβ 1-40 lactam and 6 h for Aβ 1-40 lactam SO using a 

concentration of 40 µM. 

 

5.3.3. Preparation of BLG fibers  

Two different methods were compared for obtaining BLG fibers. In both protocols, 

BLG protein was purchased from Sigma-Aldrich and was dissolved in MQ pH 2. MQ water 

pH was lowered using HCl 1M. Protein absorbance was measured before fibrillation 

using an extinction coefficient of 17600 M−1 cm−1 at 280 nm. 

Method 1: 

A solution of 10 mg/ml of BLG was prepared. To remove non-dissolved aggregates 

the sample was centrifuged at 13000 rpm during 90 min in a microcentrifuge, and the 

supernatant was filtered (0.22 µm filter GE Healthcare). To eliminate the salts remaining 

from the BLG stock, the sample was washed with MQ pH2 using Amicon® Ultra 4 mL 

Centrifugal Filters of 10 kDa cutoff. Centrifugation was performed at 4000 rpm 

(Beckman coulter allegra x-15r with rotor SX4750A) during 10 min at 4oC (3x times). The 

sample was aliquoted to ~350 µM of BLG and stored at -80oC. 

For fibrillation, 1 ml of the prepared BLG solution was placed on a 1.5 ml tube and 

incubated during 24-36 h at 90oC with constant agitation of 800 rpm in a Thermoshaker 

(Thermal Shake lite, VWR). This protocol was modified from.210 
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Method 2:  

A solution of 20 mg/ml of BLG was prepared. To completely solubilize the sample, it 

was agitated at 4oC during 1h. Salts from the BLG stock were removed by dialyzing the 

sample for 3 days against MQ pH2 using a Spectra-Por membrane with a cutoff of 6-8 

kDa. After that, 4 ml of 750 µM of BLG were placed on a glass container and stirred using 

a magnet at 80-90oC during 4h. This protocol was based on.199
 

 

5.4. Results and discussion 

5.4.1. AFM characterization of α-syn, ΔH1 and ΔN fibers 

Fibers formed by α-syn, ΔH1 and ΔN were studied by AFM and TEM imaging. As 

shown in figure 5.5.a and d, fibers formed by α-syn are short and tend to aggregate. In 

contrast, mutants ΔH1 and ΔN form longer and isolated fibers becoming a valuable 

model for photodamage experiments (figure 5.5. b-e and c-f respectively). Differences 

were also appreciated between both mutants, having ΔN fibers lower heights (2-6 nm) 

(ΔH1 fibers 2-10 nm) and more homogeneous structures than ΔH1. 

 

Figure 5.5. Morphological comparison of α-syn, ΔH1 and ΔN fibers by TEM (top) and AFM 

(bottom) imaging. a) and d) show α-syn fibers, b) and e) ΔH1 fibers and c) and f) ΔN fibers. TEM 

images were kindly provided by Dr. Begoña Sot. AFM samples were prepared in PBS and 

deposited on mica-PLL. 
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5.4.2. AFM characterization of Aβ1-42, Aβ 1-40 lactam and Aβ 1-40 lactam SO 

The fiber morphologies obtained from the different Aβ peptides were compared by 

AFM imaging. Figure 5.6.a shows that Aβ1-42 peptide forms short fibers and 

heterogeneous aggregates covered with proteinaceous material. On the other hand, in 

figure 5.6. b and c is observed that Aβ 1-40 lactam and Aβ 1-40 lactam SO are able to 

form isolated and homogenous fibers with lengths from hundreds of nanometers to 1-

2 µm. Therefore, Aβ 1-40 lactam and Aβ 1-40 lactam SO are potential models for photo-

oxidation experiments, and Aβ1-42 was discarded. 

 

Figure 5.6. AFM characterization of Aβ peptides. a) Aβ 1-42, b) Aβ 1-40 lactam and c) Aβ 1-40 

lactam SO. Fibers in 0.1 M HEPES buffer containing 0.1 M NaCl were directly deposited on 

mica. 

 

5.4.3. AFM and MALDI-TOF characterization of BLG fibers 

BLG fiber morphology is highly affected by the fibrillization conditions. Thus, fibers 

produced by two different methods were compared by AFM (figure 5.7.a and b) and 

MALDI-TOF MS (figure 5.8). AFM characterization shows very similar structures formed 

by long (3-10 µm) and isolated fibers that display the typical periodicity of BLG helical 

morphologies (also detected by TEM in figure 5.7.c.).171 On the other hand, MALDI-TOF 

analysis provides information about the peptide composition of the fibers. Figure 5.8 

shows the MS spectra of the fragmented peptides from 2000-6500 Da for each method 

and the correspondent assigned amino acid sequence based in literature.203 MS spectra 

show that fibers formed by method 2 contain more peptide variability than by method 

1. For example, peptide 1 is only present in fibers formed by method 2. This is relevant 

for our subsequent studies in Chapter 6 because  peptide 1 contains two His residues, 
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which is a major target for photo-oxidation.143 For this reason, fibers formed by method 

2 were selected as a amyloid model for photodamage studies. 

Solvent changes (pH and ionic strength) after fiber formation also produced 

differences in the morphology of the fibers,211 thus fibers diluted in MQ pH2 or PBS were 

compared through AFM and TEM. As observed in figure 5.7.d and e, PBS produces fiber 

interaction, and it is no longer possible to differentiate features such as fiber periodicity. 

The TEM image (figure 5.7. e) suggests that some proteinaceous material is covering the 

fibers. Therefore, MQ at pH 2 was selected as a solvent for BLG photodamage 

experiments. 

 

 

Figure 5.7. Comparison of different BLG fiber conditions. Images a) and b) show AFM 

measurements of BLG in pH2 in mica produced by method 1 or method 2 respectively. In c) 

BLG fibers in pH2 were imaged by TEM. d) shows AFM images of BLG fibers diluted in PBS on a 

mica-PLL substrate and the same sample imaged by TEM (e). 
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Figure 5.8. MALDI-TOF MS comparison of fibers obtained by method 1 and 2. a) MALDI-TOF 

spectra of BLG peptides. Numbered peaks are assigned to a peptide fragment in table b). 

  

5.5. Conclusion 

Different amyloid morphologies were explored by AFM and TEM imaging with the 

purpose of selecting the most suitable model to study photodamage. Long and isolated 

structures were successfully obtained with H1 and N mutants of -syn, Aβ 1-40 

lactam, Aβ 1-40 lactam SO and BLG fibers diluted in MQ pH2. For the next chapter, BLG 

was chosen as a first model for photodamage experiments for its structure, the presence 

of amino acids susceptible to oxidation, and simplicity of fiber preparation. 
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Light-induced damage in amyloid 
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6. Light-induced damage in amyloid fibers: from 
bulk to single fiber characterization  

 

Adapted from: 

Bondia, P., Torra, J., Tone, C., Sawazaki, T., del Valle, A., Sot, B., Nonell, S., Kanai, M., Sohma, Y. 
and Flors, C. A nanoscale view of amyloid photodynamic damage (in preparation). 

 

6.1. Introduction 

The misfolding and aggregation of proteins into amyloid fibers is generally toxic and 

is involved in many different disorders. Recently, photochemical tools based on ROS 

photosensitizers or photocatalysts to disrupt amyloid aggregates have been 

developed.138-141 Since peptide and protein aggregation is generally driven by 

intermolecular hydrophobic interactions, the working hypothesis is that oxygenation 

renders the monomer and/or early aggregate seeds more hydrophilic and stable in their 

hydrated state, and disrupts the aggregates in non-toxic and non-amyloid prone 

forms.212-218 A promising strategy relies in the use of switchable photocatalysts, which 

stand out for their selectivity recognizing cross-β-sheet structures and only producing 

singlet oxygen when bound, reducing the damage of off-target molecules (figure 1.6).143 

Several families of compounds have been developed so far with structural modifications 

that include the introduction of a heavy atom to enhance intersystem crossing to the 

triplet state and singlet oxygen formation, improved solubilization and red-shifting of 

their absorption spectra by tuning electron donor and acceptor capabilities.142-144 In all 

cases, the mechanism for selective photo-oxidation involves the enhancement of the 

excited-state lifetime, and in turn improved singlet oxygen production, upon binding to 

cross-β-sheet structures due to rotational restriction of the bond between electron 

donor and acceptor (figure 6.1.b). 

While switchable photocatalysts are promising as potential phototherapeutic 

compounds for amyloid-related diseases, preliminary experiments in cells and mice 

suggest that there is scope to improve the efficiency of photo-oxygenation as well as 

their selectivity to aggregates.142, 144 By using a combination of biochemical techniques 

and nanoscale imaging methods, this chapter addresses several issues related to the 
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interaction between photocatalyst and amyloids and shows that photo-oxygenation at 

the molecular level leads to dramatic changes that can be visualized at the nanoscale by 

AFM. Although the methodology reported here is generally applicable to any 

(switchable) photocatalyst, for these experiments a ThT derivative (ROS-ThT, figure 

6.1.a) is used, which in addition to fluorescence produces ROS and has been shown to 

selectively photo-oxygenate a range of amyloid proteins upon blue light irradiation.143 

As model amyloid system, BLG fibers were selected since their topography potentially 

favors the observation of rupture events in AFM experiments (see Chapter 5).  

 

Figure 6.1. Molecular structure of ThT and ROS-ThT (a) and Jablonski diagram (b). The latter 

shows that when ROS-ThT is excited, different relaxation pathways are plausible. If it is bound 

to the amyloid fibers it would produce either fluorescence or ROS species and if it is in solution 

it would deactivate to the ground state by the free rotation of the molecule. Figure modified 

from.143 

 

6.2. Materials and methods 

6.2.1. Dyes 

ThT was purchased from Sigma-Aldrich, dissolved in MQ at a concentration of 8 mM 

and stored at -20 oC. Before experiments, ThT was thawed and diluted to 20 μM in MQ. 

Once the stock was thawed it was kept in the fridge during short periods of time (~1 

week). ROS-ThT was synthesized as previously described by the group of Prof. Motomu 

Kanai.143 The solid compound was stored at -20 oC, and a few mg were dissolved in the 

experimental solvent just before measurements. Concentration of ThT and ROS-ThT 
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solutions was determined by absorbance using extinction coefficients of 23800 M−1·cm−1 

at 412 nm219 and 23500 M−1·cm−1 at 456 nm, respectively. 

 

6.2.2. Bulk irradiation experiments: MALDI-TOF, CD and AFM 

BLG fibers were filtered to avoid the signal contribution from the monomer or free 

peptides in bulk experiments (see 2.7.2. Fiber purification for bulk experiments) and 

diluted in D2O. ROS-ThT was added to an aliquot of the BLG dilution. Part of the sample 

was deposited on a well in a 96 multiwell plate (Sigma-Aldrich) and irradiated during 1 

h using a LED (Thorlabs, M420L2) of 420 nm at 70 mW/cm2, and other part was kept in 

the dark. An aliquot of BLG fibers was irradiated in the same conditions but without 

ROS-ThT. Each condition was measured by MALDI-TOF MS, CD and AFM as described 

in Chapter 2.  

 

6.2.3. Nanoscale photodamage experiments  

For the nanoscale photodamage irradiation experiments, BLG fibers in MQ pH2 were 

deposited on mica and measured by AFM obtaining a reference image. The surface was 

covered by ROS-ThT in MQ at pH 2 and incubated in the dark for 5 minutes before 

irradiation with a 420 nm LED at 70 mW/cm2 for 15 min. After the sample was dried, 

AFM imaging of the previously measured area was performed again. As a control, the 

same experiment was repeated using ThT instead of ROS-ThT, in absence of ROS-ThT 

and incubating the sample in the presence of the photocatalyst for 15 min in dark. 

 

6.3. Results and discussion 

6.3.1. Absorption and fluorescence spectroscopy 

The absorption spectra of ThT and ROS-ThT at the same concentration (20 μM) are 

shown, with maximum peaks at 412 nm and 456 nm, respectively (figure 6.2.a). In the 

presence of fibers an increase of absorbance was observed for ThT but not for ROS-ThT, 

which is in agreement with previously reported absorption spectra.143 Both spectra 

intersect at 435 nm, which was used as excitation wavelength in fluorescence 
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spectroscopy experiments (figure 6.2.b), so that fluorescence intensity of both 

molecules in the presence of BLG fibers can be compared.  

Fluorescence enhancement of ThT220, 221 and ROS-ThT143 is produced when biding to 

the cross-β-sheet motif characteristic of amyloid structures. ROS-ThT recognition of the 

cross β-sheet motif has been previously observed for other amyloid aggregates, such as 

Aβ and α-syn, and it is confirmed here for BLG fibers (figure 6.2.b). As expected, very 

low fluorescence signal was detected in the presence of BLG monomer since the native 

protein is not recognized by the photocatalyst (figure 6.2.b). Previous studies indicate 

that amyloid affinity of ROS-ThT is higher than of ThT,143 which should enhance the ROS-

ThT signal. In contrast, when compared fluorescence intensity of ThT and ROS-ThT in the 

presence of BLG fibers, fluorescence is lower in the latter. This result is consistent with 

the presence of an alternative relaxation pathway (i.e. triplet state and ROS production) 

(figure 6.1.b). 

 

Figure 6.2. Absorption (a) and fluorescence (b) spectra of ThT and ROS-ThT with BLG fibers. 

Spectra were measured from a solution of 20 μM of ThT or of ROS-ThT in absence and 

presence of 60 μM of BLG fibers in MQ pH2. Fluorescence spectra were also performed in the 

presence BLG monomer showing no signal increase. Samples were excited at 435 nm. 

 

6.3.2. ROS-ThT binding at the single-fiber level: correlative AFM and fluorescence 
microscopy 

In our group, fluorescence decay kinetics of ROS-ThT was studied in bulk samples by 

time-resolved fluorescence spectroscopy, showing at least two binding modes 

contributing to the signal decay,222 similarly to previously observed for ThT.219, 221, 223-225 
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Given the binding complexity as well as the heterogeneity of the amyloid aggregate 

population, correlative fluorescence microscopy and AFM was performed to study 

fluorescence enhancement of ROS-ThT at the single-fiber level.     

 

Figure 6.3. Correlative AFM and fluorescence microscopy of BLG fibers labelled with ROS-ThT. 

a) overlaid images; b) fluorescence image; c) AFM image. Boxes labelled 1-4 correspond to 

fibers of different thickness and fluorescent behaviour (see text). For these images 20 µl of ~30 

nM of filtered BLG fibers labelled with 30 nM of ROS-ThT in MQ were dried on a glass 

coverslip. Fluorescence imaging was performed using a 488 nm laser with an intensity of 46 

W/cm2. 

 

The overlaid fluorescence and AFM image in figure 6.3.a shows heterogeneous 

staining of BLG fibers by ROS-ThT, as observed in similar systems.63, 226, 227 A deeper 

analysis of the high resolution AFM image suggests a morphology-dependent binding, 

or fluorescence enhancement, of ROS-ThT to BLG (figure 6.3.c). The thinnest BLG fibers, 

which correspond to boxes labeled as “1”, are non-fluorescent, while thicker fibers and 

fiber aggregates (labeled as “4”) can be readily observed in the fluorescence image. An 

intermediate situation occurs in intermediate-height fibers, which are emissive in some 

cases (labeled as “3”), and non-emissive in others (“2”).    

The binding mechanism of ThT to amyloids is complex and controversial219-221, 224 

although it is thought to involve at least a tight binding mode that forces a highly 

fluorescent ThT geometry via hydrophobic interactions, and a main and weaker 

electrostatic binding mode with a low fluorescence yield.223 Our finding that more ROS-

ThT fluorescence can be observed in thicker, more intertwined, fibers (type “4”) could 

be explained, at least partially, by a recent report that highlights the importance of 

hydrophobic pockets located at the junction between protofilaments in the binding of 
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ThT.228 Specifically for heat-denatured BLG, whose aggregates are formed by different 

peptides after fragmentation of the full-length protein, it has been shown that subtle 

differences in structure and/or composition lead to different ThT staining.204 While it is 

not possible to clearly distinguish fibers “2” and “3” from the AFM topography in figure 

6.3, the correlative fluorescence data does show differential ThT fluorescence, 

suggesting that they are formed by different types of BLG peptide fragments and/or 

morphologies. These experiments highlight that studies at the single-fiber level using 

correlative AFM and fluorescence microscopy are a useful tool to probe the 

heterogeneity of amyloid material and to disentangle the complex dependence between 

fluorophore binding and fiber morphology and/or composition.57 

 

6.3.3. Photo-oxidation of amyloid fibers using bulk techniques: MALDI-TOF and CD 

Classical biochemical techniques such as MALDI-TOF MS and CD are commonly used 

to characterize global photo-oxidation effects,143, 229 and we applied these techniques to 

further characterize photo-oxidation of BLG fibers by ROS-ThT. For these experiments 

D2O was used as a solvent since it enhances singlet oxygen lifetime compared to H2O,230 

a strategy to increase the observed oxidation effects.  

Previous studies using MALDI-TOF have identified the effects of singlet oxygen 

photosensitized by ThT derivatives on residues of Aβ1-42 that are particularly 

susceptible to photo-oxidation.143, 229 We have performed similar studies on BLG that 

confirm photo-oxidation of several residues (figure 6.4). MS spectra were recorded from 

2000 Da to 20000 Da since a BLG monomer is 18400 Da, but most of the peaks were 

found under 9000 Da, corresponding with the different fragmented peptides forming 

the fibers. The amino acid sequences were assigned to the detected MS peaks based on 

previous literature.203 Photo-oxidation was observed as an increase of 16 Da resulted 

from oxygen addition to the peptide and it was only detected in the mass range shown 

in figure 6.4. BLG (a) and BLG irradiated in the presence of ROS-ThT (d) are compared, 

and oxygenation was detected in at least two peptides labeled as “1” and “2”, with a 

clear change in the shape of the peaks. To further resolve the mass of oxygenated 

peptides, MS was also recorded using a DHAP matrix, which provides better resolution 
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in this mass range (see red inset in figure 6.4.d). In this spectrum up to five oxidations 

were detected for peptide 1 and four for peptide 2. MS experiments using this 

photocatalyst on other amyloid aggregates show that His residues are the major 

oxidation site, as well as Met residues to a minor extend.143 Peptides corresponding to 

peaks 1 and 2 in figure 6.4.a indeed contain these amino acids, and therefore are the 

most probable target of the detected oxygenation. For peptide 1, the observed 

oxidations are consistent with the addition of two oxygens to each His residue and one 

to Met. 231  Peptide 2 shows up to 4 oxygenation sites that likely corresponds to amino 

acids susceptible to oxidation such as Met, Tyr or Trp .180, 231 

AFM imaging was performed on the same samples analyzed by MALDI-TOF. 

Interestingly, after irradiating in the presence of ROS-ThT lower concentration of fibers 

was found, which is consistent with part of the fibers being disaggregated due to 

oxidation. Moreover, controls in which fibers were irradiated in absence of ROS-ThT or 

not irradiated in the presence of ROS-ThT were performed and neither oxygenation nor 

AFM fibers changes were detected (figure 6.4.b and c). 

Previous literature has reported that amyloid photo-oxidation affects the secondary 

structure of the amyloid aggregates reducing the -sheet content.140, 232 Therefore, CD 

was performed to evaluate the effect of photo-oxidation due to ROS-ThT over the 

secondary structure of BLG fibers. Figure 6.4.e shows the CD spectra of BLG fibers, which 

exhibit negative peak at 218 nm typical from a -sheet-rich secondary structure. When 

BLG fibers were irradiated in the presence of ROS-ThT an decrease in the signal at 218 

nm is detected, which suggests that the oxidation of the protein is inducing changes in 

the BLG fiber secondary structure.  
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Figure 6.4. Bulk analysis of BLG fibers photo-oxidation produced by ROS-ThT. Images a-d show 

MALDI-TOF spectra in SPA matrix of 60 µM BLG fibers diluted in D2O using different conditions 

and the AFM image of the same. a) BLG fibers. The peptide sequences assigned to the peaks 1 

and 2 are indicated on the top-right with the amino acids most susceptible to oxidation 

highlighted in red. b) BLG fibers after 1h of irradiation (420 nm LED and 70 mW/cm2), c) BLG 

with ROS-ThT (20 µM) incubated in dark and d) BLG with 20 µM ROS-ThT and 1h irradiation. 

The red inset shows a MALDI-TOF spectrum using a DHAP matrix to obtain higher resolution of 

peak 1 and 2. Red dots indicate the number of oxidation sites of the peak. e) shows the CD 

spectra of the same samples. 

 

6.3.4. Nanoscale imaging of amyloid photodynamic damage 

Singlet oxygen-mediated damage to susceptible residues is known to propagate by 

radical processes to neighboring sites, potentially leading to aggregate disassembly, or 

even protein fragmentation.233 Therefore, AFM was applied to ascertain if photo-

oxidation by singlet oxygen at the molecular level would bring about nanoscale 

morphological changes that could be imaged at the single-fiber level. 

While AFM has been routinely used to visualize photosensitized inhibition of amyloid 

aggregation from bulk samples, here the same sample area is compared before and after 

irradiation in order to observe potential changes at the single-fiber level (see 6.2.3. 

Nanoscale photodamage experiments). Figures 6.5.a and b show high-resolution AFM 

topography images of BLG fibers before and after irradiation in the presence of ROS-ThT 

on mica. Several fiber rupture events can be clearly observed after irradiation. Control 

experiments were also performed, in which the sample was subjected to the same 

preparation procedure (incubation time, washing, etc.) but ThT was used instead of ROS-

ThT (figure 6.5.c and d), with no irradiation (figure 6.5.e and f), or without ROS-ThT 

(figures 6.5.g and h), showing no observable changes. 

Interestingly, rupture occurred mostly in BLG fibers above a certain size (about 4-5 

nm at their peak, green arrows in figure 6.5. b), although, not in every fiber (yellow 

arrows). Less damage could be observed in the thinnest fibers (red arrows). This is 

consistent with the weaker interaction of ROS-ThT with the latter, as revealed from 

correlative fluorescence/AFM images in figure 6.3 and discussed above. While the 

absolute values of fiber heights cannot be directly compared between experiments on 
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glass (figure 6.3) and mica (figure 6.5) due to their different surface roughness, there is 

a clear trend that suggests that ROS-ThT has stronger binding, and in turn photo-

catalytic activity, on thicker BLG aggregates.  

As explained in Chapter 5, by AFM it is possible to observe fiber periodicity typical of 

BLG helical conformation. Height and periodicity patterns allow as to distinguish 

different fiber polymorphism. If similar height fiber are compared, in some of them the 

periodicity it is not clearly distinguished (green arrows). Intriguingly, fibers with clear 

periodicity (yellow arrows) seem to be more resilient to photodamage, as judged by 

comparing figures 6.5.a and b. This could be explained by a difference in binding of ROS-

ThT, as observed in figure 6.3 for intermediate-height fibers.  
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Figure 6.5. Nanoscale imaging of BLG fibers photodamage produced by ROS-ThT. AFM 

topographic images before (a) and after (b) irradiation (LED 420 nm, 15 min, 70 mW/cm2) of 

BLG fibers in the presence of ROS-ThT 20 M. Green arrows point to examples of rupture 

events and yellow arrows mark similar peak height but non-damaged. Same experiment before 

(c) and after (d) irradiation was performed using ThT. Control experiment before (e) and after 

(f) irradiation with no ROS-ThT. Control before (g) and after incubation with ROS-ThT for 15 

min in dark (h). 

 

Recently, in our group this methodology has been extended to other fibers such as 

α-syn mutants ΔH1 and ΔN proving to be a useful methodology to study different 

systems.222 Interestingly, differential behavior was observed, ΔH1 was completely 

broken while ΔN was resistant to photodamage. This mutant lacks His50, which is an 

important target of oxidation suggesting breakage sequence dependence. In a near 

future, Aβ 1-40 and Aβ 1-40 SO are also going to be tested in order to address how fibers 

formed with the SO modification are affected by photodamage in comparison with the 

non-modified variant. Additionally, more specific and efficient photocatalysts with lower 

cell cytotoxic are being developed and nanoscale imaging of photodamage on amyloid 

fibers is expected to contribute to evaluate these new photocatalysis as part of the 

development process before in vivo studies. 

 

6.4. Conclusion 

A combination of bulk and advanced nanoscale imaging techniques has been used to 

study the complex binding to amyloids of a switchable photocatalyst (ROS-ThT), as well 

as its consequences upon irradiation. Bulk studies show that photodamage produces 

oxygenation of the amyloid fibers and, consequently, its β-sheet content is reduced and 

part of the fibers are disaggregated. Moreover, heterogeneity in ROS-ThT binding and 

breakage was detected by single-fiber imaging. Correlative AFM and fluorescence 

microscopy reveal topography-dependent binding of the dye to BLG fibers, which may 

also explain the difference in its response to photodamage, as assessed by AFM with in 

situ irradiation. Overall, our results help to unravel some of the complexity associated 

to highly heterogeneous populations and contribute to the development of improved 

phototherapeutics strategies for amyloid-related disorders.    
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7. General discussion and outlook 
 

This thesis is focused on the application of imaging techniques and their correlative 

combination for the characterization of amyloid aggregates with interest in new 

materials and biomedicine research. The benefit of combining imaging techniques to 

achieve a more complete picture of the system is emphasized, obtaining complementary 

information about different features of the same sample. Additionally, correlative AFM 

and fluorescence microscopy was combined with bulk techniques to obtain a deeper 

understanding of the samples. The purpose of this chapter is to shortly discuss the 

current limitations, alternative experiments and future perspectives of the presented 

results. 

7.1. Advanced correlative and single-fiber microscopy methods 

During this thesis, correlative microscopy was successfully applied to analyze amyloid 

fibers in the context of new materials research and nanomedicine. These studies are an 

example of how combined techniques provide a better understanding of the sample, 

which cannot be obtained using the same techniques in an independent manner. 

Moreover, AFM topographical imaging in combination with SMLM was shown to be a 

helpful tool to learn about labelling quality and avoid analysis artefacts, proving to be a 

suitable strategy to validate SMLM methods. Alternatively, AFM could be adapted to 

perform different measurements providing another view of the sample such as peak-

force maps for studying nanomechanical properties of different amyloids, 

polymorphisms or species formed along the fibrilization pathway.234-236 Other valuable 

information for new materials research that could be obtained is surface potential237 or 

magnetic maps.34, 238  

Correlative microscopy has been also applied for studying ROS-ThT binding to 

amyloid fibers, but in this case, fluorescence imaging was limited by diffraction and the 

resolution gap is limiting the correlation of specific fluorescence signal locations with 

individual topographical features. While the fluorescent properties of ROS-ThT are not 

ideal for super-resolution fluorescence microscopy, imaging of ROS-ThT by SMLM and 

other techniques is being explored in the group, similarly to previously obtained SMLM 
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using ThT.239, 240 While fluorescence imaging of BLG is challenging due to low 

fluorescence signal, other amyloid fibers, such as α-syn or its mutants ΔN or ΔH1, which 

show higher fluorescence  are more promising, and preliminary SMLM images have been 

obtained (figure 7.1). The final goal of this study is to achieve correlative AFM and SMLM 

in combination with nanoscale photodamage experiments to analyze in depth the 

relationship between topography, photocatalyst binding and photodamage. On the 

other hand, these studies are focusing in one part of the picture, but other factors could 

be involved in ROS-ThT amyloid binding, and different single-fiber studies can provide 

helpful complementary information. For example, it would be interesting to use AFM 

for measuring the surface potential of amyloid fibers, which is critically dependent on 

its structural conformation241 and some studies consider charge an important factor in 

some binding modes of ThT to the fibers.219, 225 Other interesting experiment is using tip-

enhanced Raman spectroscopy (TERS). In reported experiments,242 heterogeneity on the 

BLG fibers surface β-sheet content was detected within the same fiber and in 

comparison with different fiber morphologies. Also, the compared structures display 

distinct amino acids at the surface. These heterogeneities that are not detected by AFM-

fluorescence microscopy may explain that similar structures on AFM shown differential 

ROS-ThT binding and/or breakage. 

 

 

Figure 7.1. SMLM of ROS-ThT bound to α-syn amyloid aggregates. Imaging is performed on PLL 

glass coverslip using 60 μM of ROS-ThT in switching buffer (see 3.2.2. SMLM imaging). a) 

Standard fluorescence imaging. b) SMLM, white arrows point to structural details hidden in the 

diffraction limited image (a). 
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Although the thesis has focused on the combination of AFM with (super-resolution) 

fluoresce microscopy, during last years a wide variety of correlative systems are being 

developed extending our possibilities to perform multiparametric analysis on complex 

systems. For example, (super-resolution) fluorescence microscopy can be combined 

with different spectroscopic techniques for obtaining additional chemical information,45 

such as Fourier transform infrared (FTIR), which reveals the chemistry of an entire 

sample243 or with MS systems, like imaging secondary ion mass spectrometry (SIMS), for 

mass-based identification of isotopes or molecules.244 Alternatively, other high-

resolution imaging techniques such as an EM or AFM can be combined with another 

instrument that provides information about the chemical composition of the sample, 

like MS systems245-248 or an attached confocal Raman microscope249, which can 

additionally be combined with an energy dispersive X-ray spectroscopy (EDXS) enabling 

elemental analysis.250 AFM can be also used for obtaining nanomechanical information 

and its combination with infrared nanospectroscopy provides structural information, 

which is valuable for studying molecular changes in amyloid during the aggregation 

pathway 235, 236.  

Apart from correlative techniques, the application of different single-molecule 

methods is broadening our understanding of amyloid structures by providing a view of 

individual events commonly hidden under bulk approaches. For example, AFM, in its 

force spectroscopy mode, is used to compare the mechanical stability of different IDPs 

in the monomeric form. It shows correlation between the propensity to develop a 

neurodegenerative disease and conformational polymorphism, in which some of the 

detected species present high mechanical resistance and are suggested as the amyloid 

aggregation precursors. Also, a reduction in the high mechanical resistant structures in 

the presence of an amyloid inhibitor has been observed.251 A recently developed 

technique for single-molecule studies is the thermophoretic trap, which is promising for 

amyloid studies since it allows the observation of single fibril growth or fibril breakage 

in solution. Therefore, no immobilization is required reducing possible interferences on 

the protein structures.252 The integration of the information provided by the different 

strategies is critical for elucidating mechanism formation steps, the events that drives 
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the change of a native functional protein to an aggregation-prone specie or what 

determines amyloid toxicity. 107, 253 

 

7.2. Studying the complexity of amyloid in biomedicine and materials 

Amyloid fibers are formed by the β-sheet motif, which can be assembled into a 

variety of polymorphic structures adding complexity to these systems. To molecularly 

understand the implications of this morphological diversity, resolving the atomic 

structures of the fibers is required.254 In the case of BLG fibers, the atomic structure is 

not solved but it would provide valuable information to interpret the results obtained 

during this thesis. For BLG fibers application as new material (explained in Chapter 4), it 

may explain the heterogeneous labelling observed at the nanoscale as a dependence of 

the surface amino acid exposure. Furthermore, it may help to clarify the interaction of 

these fibers with other molecules such as ThT and ROS-ThT. In fibers formed by Aβ 1-40, 

the molecular structure has shown different morphologies and structural dependent 

binding of ThT has been predicted,228 thus, polymorphism may explain the 

heterogeneous binding of ROS-ThT to BLG fibers. 

The complexity of amyloid structures is challenging our capabilities to treat amyloid 

related diseases, and phototherapy has risen as an alternative to commonly used 

therapies. AFM nanoscale photodamage  characterization tries to provide another tool 

to evaluate the effects of photocatalyst at the single-fiber level to analyze differential 

response of individual fibers, as part of the photocatalyst development process. 

Particularly, ROS-ThT produces ROS and fluorescence, which has been useful for 

analyzing photocatalyst binding at the single-fiber level (see Chapter 6) and is valuable 

for theranostic applications (combination of therapeutic drugs and diagnostic imaging 

agents).255 Unfortunately, ROS-ThT has been tested in cells and proved to be toxic.143 

Other promising photocatalyst have been developed by our collaborators142 that have 

shown to reduce the amount of amyloid aggregates in vivo. However, improved 

compounds with higher oxygenation yield are needed.144 Thus, new photosensitizers are 

being synthetized and feedback from advanced nanoscopy should offer a roadmap for 

developing an optimal catalyst. 
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An important limitation of phototherapy is that light irradiation in the brain is 

required for the treatment of neurological diseases with photocatalysis, which implies 

surgical procedures. A possible solution may come hand-in-hand with optogenetics 

developments such as brain injectable optoelectronics.143, 256 Alternatively, 

photocatalysts may be suitable for treating peripheral amyloid diseases. Moreover, it 

has been suggested that there in a flux between the brain aggregates and peripheral 

areas,257 or even that some amyloid aggregates are generated at peripheral areas and 

propagate into the brain.258, 259 This implies that deficits in the amyloid clearance of the 

peripheral system might also contribute to neurological diseases becoming a 

therapeutic target.257 Consequently, the traditionally monotherapies based on the 

concept “one target, one treatment” ignores the complexity of amyloid diseases and 

might be more effective combining brain and peripheral treatments.260 

To sum up, strategies that study amyloid aggregates from an individual fiber 

perspective are key to understand its heterogeneity and implications of its diverse 

polymorphism. These strategies are required for unravelling the mechanism of its 

formation, its phenotypical effect in diseases or new treatment approaches. 

Furthermore, a deep understanding of these enigmatic structures will allow us to 

develop innovative applications in diverse fields such as materials research. 
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General conclusions 
 

In this thesis, single-fiber imaging methods based on AFM or correlative AFM and 

(super-resolution) fluorescence microscopy have been developed and applied to the 

characterization of amyloid fibers with applications in very different fields, from new 

materials to biomedicine. These techniques allowed to extract multiparametric 

information from individual fibers providing a more advanced approach than traditional 

bulk techniques. The conclusions extracted from this thesis are: 

 

1) Correlative microscopy is a helpful strategy to validate super-resolution 

fluorescence microscopy methods. The experiments performed in this thesis 

show how the combination of AFM used as a “ground truth” can be critical for 

SMLM optimization of the reconstruction image, evaluation of the labelling 

quality and image interpretation. 

 

2) Correlative SMLM and AFM imaging has been successfully applied to evaluate the 

functionalization of BLG fibers with organic fluorophores and QDs, showing 

heterogeneous labeling at the nanoscale. These results prove that correlative 

microscopy is useful tool for characterizing luminescent nanomaterials providing 

valuable information about its structure and functionalization, which is relevant 

for new material development. 

 

3) Different amyloid aggregates with wide morphological diversity were explored 

for selecting suitable models for AFM photodamage studies. Long and isolated 

fibers were desirable, and BLG, ΔN, ΔH1, Aβ 1-40 and Aβ 1-40 SO are identified as 

suitable models.  Particularly BLG shows topographical periodicity related to its 

structural conformation, and is used as a first model for developing nanoscale 

photodamage imaging methodology.  
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4) Correlative fluorescence microscopy and AFM is a useful technique for studying 

binding of ROS-ThT at the single-fiber level. These experiments reveal complex 

binding of ROS-ThT and suggest a possible dependence with the fiber structural 

polymorphism.  

 
5) Photodamage experiments show the effects of photo-oxidation produced by 

ROS-ThT on amyloid fibers at the nanoscale by AFM, revealing a complex 

dependency of photo-oxidation with structure. These experiments provide a 

novel way to visualize the effect of photosensitizers or photocatalysts at the 

nanoscale, and are relevant to improve phototherapeutic strategies for amyloid-

related disorders.
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Conclusiones generales 
  

En esta tesis, se han desarrollado métodos de imagen basados en AFM, microscopía 

de fluorescencia (o súper resolución) y correlación entre ellas, para la caracterización de 

fibras individuales con aplicación en campos muy diferentes, desde los nuevos 

materiales hasta la biomedicina. Estas técnicas permitieron extraer información 

multiparamétrica de fibras individuales proporcionando una estrategia más avanzada 

que las técnicas bioquímicas tradicionales. Las conclusiones extraídas de esta tesis son: 

 

1) La microscopía correlativa es una estrategia útil para validar los métodos de 

microscopía de fluorescencia de súper resolución. Los experimentos realizados 

en esta tesis muestran cómo la utilización de las imágenes de AFM como 

referencia puede ser crítica tanto para la optimización de la reconstrucción de la 

imagen de súper resolución y su interpretación como para la evaluación de la 

calidad del marcaje de la muestra. 

 

2) La microscopía correlativa de AFM y de súper resolución se ha aplicado con éxito 

para evaluar la funcionalización de las fibras de BLG con fluoróforos orgánicos y 

QDs que muestran un marcaje heterogéneo a la nanoescala. Estos resultados 

demuestran que la microscopía correlativa es una herramienta útil para 

caracterizar nanomateriales luminiscentes proporcionando información valiosa 

sobre su estructura y funcionalización, lo cual es relevante para el desarrollo de 

nuevos materiales. 

 

3) Se exploraron diferentes agregados amiloides con amplia diversidad morfológica 

para seleccionar los modelos más adecuados para estudiar por AFM el daño 

fotoquímico a la nanoescala. Se identificaron BLG, ΔN, ΔH1, Aβ 1-40 y Aβ 1-40 

SO, como modelos apropiados por formar fibras largas y aisladas. 

Particularmente BLG muestra una periodicidad topográfica relacionada con su 

conformación estructural, y se utilizó como primer modelo para desarrollar la 

metodología de caracterización de daño fotodinámico a escala nanométrica. 
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4) La microscopía correlativa de AFM y fluorescencia es una técnica útil para 

estudiar la unión de ROS-ThT a nivel de fibra individual. Estos experimentos 

muestran la complejidad de la unión de ROS-ThT a las fibras y sugieren una 

posible dependencia con el polimorfismo de la fibra. 

 

5) Los experimentos de daño fotoquímico muestran por AFM los efectos de la foto-

oxidación producida por ROS-ThT sobre las fibras amiloides a la nanoescala, 

revelando una dependencia compleja entre la fotooxidación y la estructura. 

Estos experimentos proporcionan una forma novedosa de visualizar el efecto de 

los fotosensibilizadores a la nanoescala y son relevantes para mejorar las 

estrategias fototerapéuticas para los trastornos amiloides. 
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