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Biometric Presentation Attack Detection:
Beyond the Visible Spectrum

Ruben Tolosana™', Marta Gomez-Barrero

Abstract— The increased need for unattended authentication in
multiple scenarios has motivated a wide deployment of biometric
systems in the last few years. This has in turn led to the
disclosure of security concerns specifically related to biometric
systems. Among them, presentation attacks (PAs, i.e., attempts
to log into the system with a fake biometric characteristic or
presentation attack instrument) pose a severe threat to the
security of the system: any person could eventually fabricate
or order a gummy finger or face mask to impersonate someone
else. In this context, we present a novel fingerprint presentation
attack detection (PAD) scheme based on i) a new capture device
able to acquire images within the short wave infrared (SWIR)
spectrum, and ii) an in-depth analysis of several state-of-the-
art techniques based on both handcrafted and deep learning
features. The approach is evaluated on a database comprising
over 4700 samples, stemming from 562 different subjects and
35 different presentation attack instrument (PAI) species. The
results show the soundness of the proposed approach with a
detection equal error rate (D-EER) as low as 1.35% even in a
realistic scenario where five different PAI species are considered
only for testing purposes (i.e., unknown attacks).

Index Terms— Biometrics, presentation attack detection, deep
learning, CNN, SWIR, fingerprint.

I. INTRODUCTION

HERE is an increasing demand in the current society for

automatic and reliable authentication of individuals in a
wide number of scenarios. To address this need, biometric
recognition systems based on the individuals’ biological (e.g.,
iris or fingerprint) or behavioural (e.g., signature or voice)
characteristics have been consolidated as a reliable paradigm
in the last decades. Their advantages over traditional authen-
tication methods (e.g., no need to carry tokens or memorise
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passwords, they are harder to circumvent and provide at the
same time a stronger link between the subject and the action or
event), have allowed a wide deployment of biometric systems,
including large-scale national and international initiatives such
as the Unique ID program of the Indian government [1] or the
Smart Border project of the European Comission [2].

In spite of their numerous advantages, biometric sys-
tems are vulnerable to external attacks as any other
security-related technology. Among all possible attack points
defined in [3]-[5], the biometric capture device is probably the
most exposed one: an eventual attacker requires no knowledge
about the inner operating of the system in order to break the
system. Instead, one can simply present the capture device
with a presentation attack instrument (PAI), such as a gummy
finger or a fingerprint overlay, in order to interfere with its
intended behaviour. The main goal might be to impersonate
someone else (i.e., active impostor) or to avoid being recog-
nised (i.e., identity concealer). These attacks are known in the
ISO/IEC 30107 [5] as presentation attacks (PASs).

Given the severe security threat posed by such PAs,
the development of automatic techniques which are able to
distinguish between bona fide (i.e., real or live) presentations
and access attempts carried out by means of PAIs has become
of the utmost importance [6], [7]. Referred to as presentation
attack detection (PAD) methods, research in this area has been
recently funded by several international projects like the Euro-
pean Tabula Rasa [8] and BEAT [9], or the more recent US
ODIN research program [10]. Together with the organisation
of the LivDet — liveness detection competition series on iris
and fingerprint [11], [12], where the number of participants
has been increasing year after year (up to 17 algorithms sub-
mitted in 2017), these initiatives have fostered a considerable
number of publications on PAD for different biometric char-
acteristics, including iris [13], fingerprint [14], [15], face [16],
or handwritten signature [17].

The initial approaches to PAD were based on the so-called
handcrafted features, such as texture descriptors or motion
analysis [6], [18]. However, deep learning (DL) has become
a thriving topic in the last years [19]-[21], and biometric
recognition in general, and PAD in particular, are not an
exception. DL allows systems to learn from experience and
understand the world in terms of a hierarchy of simpler units,
thereby enabling significant advances in complex domains.
The main reasons to understand its high deployment lie on
the increasing amount of available data and the evolution of
graphical processing units (GPU), which in turn allows the
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successful training of deep architectures. However, the belief
that DL schemes can be only used in tasks with massive
amounts of available data has changed in the last years
thanks to the combination of both pre-trained models and
transfer learning techniques. These consist in network models
which are first trained for a given task with large available
databases, including any kind of images and not only those
expected for the problem at hand. These pre-trained models
are subsequently retrained (a.k.a. fine-tuned, adapted) for a
different task for which data are usually scarce [22], [23].

All the aforementioned advances have allowed the
deployment of DL architectures in many different fields,
including biometric recognition [24], [25]. More specifically,
convolutional neural networks (CNNs) and deep belief net-
works (DBNs) have been used for fingerprint PAD purposes,
based either on the complete fingerprint samples [26]-[28] or
on a patch-wise manner [29]-[31].

As it will be described in more detail in Sect. III, DL based
PAD approaches have boosted the performance over common
PAD benchmarks from the LivDet competitions, achieving
detection rates over 90%. Such high accuracy rates indicate the
valuable contributions of the existing approaches. However,
the LivDet databases comprise altogether up to 11 different
materials for the fabrication of PAIs, even though the choice
for the attacker is much wider based on commercial prod-
ucts readily available even online. As a consequence, other
databases, comprising a larger number of materials for the
fabrication of the PAIs, should be explored. Very few studies
have considered this issue, including a database comprising
over twelve different PAI species in [31], and 21 materials
in [32]. We address this issue with the acquisition of a
database including 35 different PAI species, within the US
ODIN research program [10].

In addition, there is one question that remains mostly unan-
swered in the literature: Once a deep neural network is trained
on a large number of PAI species, will future unknown attacks
also be detected? Some previous studies have evaluated this
challenging scenario using handcrafted feature approaches.
In [33], the authors evaluated this scenario using standard
databases taken from LivDet 2009 competition. The results
achieved showed a high degradation of the system performance
when unknown attacks were presented to the system. In [34],
the authors designed a scheme for automatic adaptation of
PAD systems in order to detect novel unknown attacks. The
experiments conducted on the LivDet 2011 database suggested
that up to 46% improvement can be achieved considering
their proposed adaptive approach. Later on, the same authors
proposed in [35] the use of Weibull-calibrated SVM (W-
SVM) algorithm in order to improve the detection of unknown
attacks. The experiments conducted over LivDet 2011 data-
base achieved up to 44% improvement. Another interesting
evaluation was carried out in [36]. In that work the authors
compared the performance of supervised and semi-supervised
approaches that rely solely on the bona fide samples. The
results obtained remarked the true vulnerability of the bio-
metric systems. Finally, novel PAI species were considered
in [32], noting that the error rates were multiplied by a factor
of six when unknown PAI species were tested, with respect
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to the detection accuracy reached on known attacks. This
challenging scenario has also been studied in other biomet-
ric characteristics such as face [37] and iris [38]. Therefore,
we can conclude that additional research efforts are needed in
this area. To further tackle these issues, some researchers have
considered other sources of information different from tradi-
tional capture devices [13], [15]. More specifically, the use
of multi-spectral near infrared (NIR) technologies has been
studied for face [39], [40] and fingerprint [41], [42].

In this new context, a recent trend for both biometric PAD
and face recognition enhancement is based on skin detection.
On the one hand, non-skin materials (e.g., a mask or a scarf)
can be masked for recognition purposes. On the other hand,
such materials can be considered a PA attempt. This will be
the fundamental idea followed in this article: PAD is regarded
as the problem of discriminating skin vs. non-skin materials.
In order to overcome one of the main challenges of skin
detection, namely, the plurality of different skin colours [43],
we choose the short wave infrared (SWIR) band as a promising
information source. It has been proved that human skin shows
characteristic remission properties for multi-spectral SWIR
wavelengths, which are independent of the capture subject’s
age, gender or skin type [44]. In fact, several approaches
have been proposed for face recognition in the infrared
domain [45], [46]. In particular, for surveillance purposes,
the SWIR range has been analysed by several research groups,
either as solely source of information or in combination with
visible light images [47]-[49]. The advantages of SWIR are
mostly its robustness in challenging environmental conditions
(e.g., with fog or at night time). In addition, the benefits of
multi-spectral hand based recognition within the SWIR bands
were studied in [50], outperforming state-of-the-art recogni-
tion approaches.

For the particular task of PAD, the characteristic remission
properties of the human skin observed in the multi-spectral
SWIR band were exploited in [40] for facial PAD, achieving
a 99% detection accuracy. A similar approach was analysed
in [51] over a small fingerprint database, comprising 60 sam-
ples. It was shown that the method was able to detect all
12 PAIs except for one. In addition, a preliminary DL approach
based on a pre-trained CNN model was tested on the same
database in [52], achieving perfect detection rates over the
small preliminary database.

Keeping these thoughts in mind, the main contributions
of this work compared with the state-of-the-art can be sum-
marised as follows:

o« We present a novel fingerprint PAD scheme based on
i) a new capture device able to acquire images within the
SWIR spectrum, and ii) an in-depth analysis of several
state-of-the-art techniques based on both handcrafted and
deep learning features. A final fusion of both handcrafted
and deep learning features is carried out for completeness,
as depicted in Fig. 1.

« We study multiple state-of-the-art CNN architectures for
fingerprint PAD purposes. Both networks trained from
scratch (i.e., a residual network [53]) and also pre-trained
models (i.e., MobileNet [54] and VGGI19 [55]) are
analysed. In addition, two different approaches are
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Fig. 1.

General diagram of the proposed PAD method. On the left, the capture device acquires the samples at four different wavelengths within the SWIR

spectrum. On the right, several software approaches have been proposed, namely: i) Three different state-of-the-art CNN architectures have been tested as
an end-to-end solution, ii) the features output by the CNN models have been used to feed an SVM, iii) handcrafted features (i.e., spectral signatures) have
been extracted, and iv) a final fusion of the aforementioned algorithms has been evaluated for completeness.

considered: i) using the CNNs as an end-to-end solution,
and ii) utilising the CNNs as a feature extractor and
carrying out classification with support vector machines
(SVMs).

o« We evaluate our proposed PAD approach on a large
database comprising over 4700 samples, stemming
from 562 different subjects and 35 different PAls.
We include a benchmark of deep learning approaches
with high-performing handcrafted features [51]. Our pro-
posed approach has achieved a final 1.35% detection
equal error rate (D-EER), outperforming the state-of-the-
art.

o« We also evaluate the robustness of our proposed PAD
approach against new PAIs not used during the devel-
opment of the system (i.e., unknown attacks). Our final
fused system is able to correctly detect all unknown
attacks, proving its high generalisation capacity to new
PAI species that can appear in the future.

o We review the state-of-the-art on fingerprint PAD based
on either i) non-conventional sensors, or ii) conventional
sensors in combination with deep learning approaches.

Finally, it should be noted that, being a skin detection based
method, the proposed PAD technique can be applied not only
to fingerprints but also to other biometric characteristics, such
as the face, the hand, or the periocular regions.

The rest of the article is organised as follows. Sect. II
presents the main terms which will be used in the remainder of
the article. Related works on fingerprint PAD are summarised
in Sect. III. Sects. IV and Sect. V describe the proposed
approach. The evaluation framework is presented in Sect. VI,
and the results discussed in Sect. VII. Final conclusions are
drawn in Sect. VIIL

II. DEFINITIONS

In the following, we include the main definitions
stated within the ISO/IEC 30107-3 standard on biometric

presentation attack detection - part 3: testing and
reporting [56], which will be used throughout the article:

Bona fide presentation: “interaction of the biometric cap-
ture subject and the biometric data capture subsystem in the
fashion intended by the policy of the biometric system”. That
is, a normal or genuine presentation.

Presentation attack (PA): “presentation to the biometric
data capture subsystem with the goal of interfering with the
operation of the biometric system”. That is, an attack carried
out on the capture device to either conceal your identity or
impersonate someone else.

Presentation attack instrument (PAI): “biometric charac-
teristic or object used in a presentation attack”. For instance,
a silicone 3D mask or an ecoflex fingerprint overlay.

PAI species: “class of presentation attack instruments
created using a common production method and based on
different biometric characteristics”.

In order to evaluate the vulnerabilities of biometric systems
to PAs, the following metrics should be used:

Attack Presentation Classification Error Rate (APCER):
“proportion of attack presentations using the same PAI species
incorrectly classified as bona fide presentations in a specific
scenario”.

Bona fide Presentation Classification Error Rate
(BPCER): “proportion of bona fide presentations incorrectly
classified as presentation attacks in a specific scenario”.

Derived from the aforementioned metrics, the detection
equal error rate (D-ERR) is defined as the error rate at the
operating point where APCER = BPCER.

III. RELATED WORKS

In this section we summarise the key works on fingerprint
PAD for both non-conventional optical or capacitive sensors
(see Sect. III-A and Table I) and conventional sensors in
combination with DL approaches (see Sect. I1I-B and Table II).
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TABLE I
SUMMARY OF THE MOST RELEVANT METHODOLOGIES FOR FINGERPRINT PAD BASED ON NON-CONVENTIONAL SENSORS

Year Spectrum Ref. Description Performance Database (# PAls)
APCER = 0.9% Unavailable DB
2008 430 — 630 nm [57] Wavelet transform BPCER = 05% (49)
400 — 1630 nm  [58] Spectroscopic properties - Unaval(l(z;?le DB
2011 OCT [42] j ] Unavailable DB
400 — 850 nm )
[51] Multi-spectral signatures APCER = 5.7% Unavailable DB
1200 — 1550 nm BPCER = 0.0% (12)
. APCER = 0.0% Unavailable DB
2018 [52] Pre-trained VGG19 model BPCER = 0.0% (12)
. APCER = 10.97%  Self-acquired DB
1310 nm (LSCI) [59] Texture descriptors BPCER = 0.84% 32)
Finger vein . . APCER = 10% Self-acquired DB
2019 940 nm [60] Pyramid Local Binary Patterns (PLBP) BPCER ~ 1% 32)
APCER =~ 2%  Self-acquired DB
1200 - 1550 nm Proposed Approach BPCER = 0.2% 35)

For further details on fingerprint PAD, the reader is referred
o [14], [15].

It should be noted that, in addition to the metrics defined
in Sect. II, two different metrics are used in the LivDet
competitions [11], [12]. The Average Classification Error
Rate (ACER) is defined as the average of the APCER and
the BPCER for a pre-defined decision threshold o:

ACER (5) = APCER (0) —;— BPCER (9) )

It should be noted that averaging APCER and BPCER has
been deprecated in ISO/IEC 30107-3. The ACER is reported
here for the only purpose to relate our results to the LivDet
competition, where ACER has been used.

The detection accuracy (Acc.) refers to the rate of correctly
classified bona fide and PAs at 6 = 0.5:

Acc (0) = -1 (1 — APCER (0)) - {# PA samples}

# samples

+ (1 — BPCER (0)) - {# BF samples} ] 2)

These metrics will be used in Table II where needed.

A. Non-Conventional Fingerprint Sensors

To the best of our knowledge, the pioneering work on fin-
gerprint multi-spectral PAD with non-conventional capacitive
or optical sensors was carried out by Rowe ef al. in [57]. The
presented, and now widely used Lumidigm sensor, captures
multi-spectral images in four different wavelengths (i.e., 430,
530, and 630 nm, as well as white light). In their work,
the authors studied the PAD capabilities of the combined
images using absolute magnitudes of the responses of each
image to dual-tree complex wavelets. In a self-acquired data-
base including 49 PAI species, they obtained an APCER
of 0.9% for a BPCER of 0.5%. Even if these results are
remarkable, the PAD methods used are not described and not
many details about the acquired database or the experimental

protocol are available. Therefore, it is difficult to establish a
fair benchmark.

Three years later, Hengfoss et al. analysed extensively the
spectroscopic properties of living against the cadaver fingers
using four wavelengths between 400 nm and 1630 nm [58].
However, no PAIs were analysed in their work. Later that year,
Chang et al. studied in [42] the complex properties of the
skin, which differentiate it from PAIs, using optical coherence
tomography (OCT) and nine different wavelengths between
400 nm and 850 nm. A single volunteer provided the bona
fide and PA samples, and not many details about the algorithms
used were reported.

More recently, in 2018, some preliminary PAD studies were
carried out in [51], [52] on a small database, comprising a
total of 60 samples and 12 different PAI species, which was
acquired at University of South California within the BATL
project [61]. Gomez-Barrero et al. extracted multi-spectral
signatures from four different wavelengths in SWIR spectrum,
achieving an APCER = 5.7% and a BPCER = 0%. In this
case, all classification errors stem from a single PAI made with
orange playdoh. In a subsequent work on the same database,
Tolosana et al. used a pre-trained VGG19 CNN model [55]
for PAD purposes. In this case, all 60 samples were correctly
classified (i.e., APCER = BPCER = 0%).

Keilbach et al. also analysed in [59] the PAD capabilities
of laser speckle contrast images (LSCI) over a larger data-
base, also acquired within the BATL project and comprising
32 PAIs and more than 750 samples. In this case, several
descriptors were extracted from the LSCI sequences, including
the well-known local binary patterns (LBP) or the histogram
of oriented gradients (HOG). The final cascaded score level
fusion yielded an APCER = 10.97% for a BPCER = 0.84%.

Finally, Kolberg et al. studied in [60] the feasibility of
detecting fingerprint PAs with finger vein images over the
same database analysed in [59]. To that end, texture informa-
tion was acquired at different resolution levels using Gaussian
pyramids and LBP (PLBP). Combining the information of up
to 16 levels with SVMs, an APCER ~ 10% can be achieved
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TABLE 11
SUMMARY OF THE MOST RELEVANT METHODOLOGIES FOR FINGERPRINT PAD BASED ON CONVENTIONAL SENSORS AND DL

Category Year Ref. Description Performance Database (# PAls)
2015 [62] CNN optimisation Acc. = 98.97% LIVD(e;)ZOB
[26] Pre-trained CNNs ACER = 2.90% LivDet 2009-13
Full Sample (Best: VGG) . (8)
2016 [28] DBN with RBMs 1 - ACER = 97.10% LWD?;)%B
(63] Pre-trained CNNs and Siamese networks APCER = 4.3% LivDet 2011-13
(Best: GoogLeNet) BPCER = 2.5% ®)
ROI 2017 [64] CNNs + ROI and PCA optimization ACER = 4.57% (2011) LivDet 2011-13
and SVM classification ACER = 7.25% (2013) ®)
. . ACER = 0.88% (2011) LivDet 2011-13
2015 [65] DCNN (CiFarl10-Net + FingerNet) ACER = 0.90% (2013) ®)
2016  [66] CNN trained from scraich ACER = 3.42% LivDet 2009
(Identix, 3)
Contrast enhancement ATVS FP
[27] + Ad hoc CNN ACER = 0.20% @)
[30] Deep Boltzmann Machine Acc. = 85.96% LIVDF;)ZOB
Patch-wise 2017
[29] Pre-trained AlexNet ACER = 4.63% (2011) LivDet 2011-13
+ Data augmentation and log-likelihood ~ACER = 1.90% (2013) ®)
[67] Deep triplet embedding ACER = 1.74% LlVDe‘(g)Ow'”
(31] Pre-trained MobileNet ACER = 0.96% LivDet 2011-15 (11)
2018 + Minutiae patches ACER = 2.00% Own DB (12)
(68] Fully CNN (Squef:zeNet) ACER = 143% LivDet 2011-15
+ Data augmentation (11)
Deep Fusion 2017 [69] Texture based features ACER ~1.70% LivDet 2009-13

and DNN fusion

(®)

for a BPCER =~ 1%, thereby showing the main limitation
of these studies: both LSCI and finger vein samples acquire
information below the skin and are thus unable to detect thin
transparent overlays.

B. Deep Learning for Conventional Sensors

The DL based fingerprint PAD approaches proposed in the
literature can be widely classified depending on the input
of the networks into: i) using the full samples as input to
the network, ii) cropping the region of interest (ROI) and
feeding it to the network, and iii) extracting patches from the
ROI as input. Moreover, iv) some articles use the network
for feature level fusion of handcrafted descriptors. In the
following, we summarise the main studies of each category.

1) Full Samples: To the best of our knowledge, the first
work on fingerprint PAD based on deep learning algorithms
was presented in 2015 by Menotti et al. [62]. The authors
proposed two different CNN optimisation approaches for the
particular purpose of PAD. On the one hand, the architecture
was optimised with feedforward convolutional operations and
hyperparameter optimisation. On the other hand, the inner
weights of the network were optimised via back-propagation.
Both techniques were tested on iris, face and fingerprint
benchmarks, thus proving the generalisation capabilities of the
proposal. Their best fingerprint results achieved an average
detection accuracy, Acc., across the four fingerprint sensors
of LivDet 2013 of 98.97%.

A year later, three different approaches were proposed.
Nogueira et al. [26] tested three different CNNs, namely:
i) the pre-trained VGG [55], ii) the pre-trained Alexnet [70],
and 7ii) a CNN with randomly initialised weights and trained
from scratch. They compared the ACER obtained with the
networks over the LivDet 2009, 2011 and 2013 databases
to a classical state-of-the-art algorithm based on LBP. In the
evaluation, the best detection performance was achieved using
a VGG pre-trained model and data augmentation (average
ACER = 2.9%), with a clear improvement with respect to
LBP (average ACER = 9.6%). It should also be noted that the
ACER decreased between 25% and 50% (relative decrease) for
all three networks tested when data augmentation was used.

Then, Kim et al. analysed the use of deep belief net-
works based on superimposed restricted Boltzmann machines
(RBMs) [28]. The global network was trained in a two-stage
manner with layer-wise greedy training and fine-tuning with
labelled inputs. On LivDet 2013, they achieved a detection
accuracy Acc. of 97.10%, noting again the considerable
improvement achieved with data augmentation.

Finally, Marasco et al. explored in [63] two different
pre-trained CNNGs: i) CaffeNet [70], and ii) GoogLeNet [71].
The performance of such networks was compared with a
Siamese network, which optimised a metric distance to yield
high bona fide - PA distances and low bona fide - bona fide
distances. In a thorough evaluation on LivDet 2011 and 2013,
a detection accuracy over 96% was achieved for GoogLeNet,
closely followed by the other networks. The authors showed
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an accuracy decrease when dealing with either unknown attack
Or @ Cross-sensor scenario.

2) ROI: In 2017, Yuan et al. followed a different approach
to optimise the performance of CNN models [64]. First, only
the ROI was fed to the network. Then, principal component
analysis (PCA) was introduced for each convolutional and
pooling operation in order to discard non-relevant informa-
tion. Finally, the output was classified with SVMs. This
way, no data augmentation was required to achieve a 4.57%
ACER over LivDet 2013, thereby outperforming other existing
approaches.

3) Patch-Wise: In 2015, a different two-step approach was
proposed by Wang et al. [65]. First, the ROI of the fingerprint
was segmented. Then, two deep CNNs (DCCNs) were used
in a patch-wise manner: /) the CiFarl0-Net [72], and ii) the
self-developed Finger-Net, yielding an ACER under 1% over
LivDet 2011 and 2013.

In 2016, Park et al. extracted random patches from the
fingerprint samples and trained a CNN from scratch in [66],
achieving an ACER = 3.4% over the Identix subset of LivDet
2009.

In 2017, Jang et al. proposed contrast enhancement and
block-wise processing of the fingerprint to improve the state-
of-the-art results achieved with DL [27]. The blocks were then
combined with a majority voting rule. They also designed a
CNN from scratch inspired in the VGG19 model, and eval-
uated the proposed approach over the ATVS fake fingerprint
DB [73]. An ACER of 0.2% was reported.

Souza et al. analysed again in [30] the use of Boltzmann
machines, this time in a patch-wise manner and using a
majority voting rule. In particular, they used deep Boltzmann
machines (DBMs), which can learn more complex and internal
representations from a small number of labelled samples. The
accuracy obtained over LivDet 2013 was 85.96%.

Following this patch-wise trend, Toosi et al. tested in [29]
the accuracy of AlexNet with data augmentation. For classifi-
cation, the scores were calibrated using log-likelihood ratios.
The average ACER on LivDet 2011 and 2013 is 3.26%.

Similarly, Pala et al. tested the feasibility of using deep
triplet embedding for PAD purposes [67]. In contrast to
Siamese networks, this method requires no enrolment data-
base, since the triplets are selected from patches within the
input sample. Over LivDet 2009 to 2013, an ACER of 1.74%
was reported. The robustness to unknown attacks was also
evaluated on LivDet 2013, achieving ACERs much lower than
other approaches (e.g., 0.7% vs. 1.4% for Siamese networks
for the modasil PAIs).

In 2018, Chugh er al. presented in [31] a different way
to extract fingerprint patches: around the minutiae. The idea
behind this patch computation is the fact that PAIs can present
spurious minutiae, which can be surrounded by a distinct
texture. Therefore, these patches were fed to the MobileNet
pre-trained network [54]. The detection performance was eval-
uated on LivDet 2011 to 2015, achieving a remarkable ACER
of 0.96% on average. However, the ACER increased to 2.0%
for a self-acquired database, comprising a larger number of
PAIs (12).
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Fig. 2. Finger sensor diagram. Left: a diagram of the inner components:
two different sensors for the SWIR images and the visible (VIS) light images,
and the corresponding LEDs. Right: Original sample and the corresponding
ROI for a bona fide at 1200 nm.

In the same year, Park et al. developed in [68] a fully CNN
based on the Fire module of SqueezeNet [74]. They analysed
different patch sizes and compared the common voting method
to an optimal thresholding approach, which yielded a better
performance: an ACER of 1.43% over LivDet 2011 to 2015.

4) Deep Fusion: Toosi et al. proposed in [69] a completely
different approach to use DL for fingerprint PAD. Instead
of using deep networks for feature extraction, ten differ-
ent handcrafted descriptors, including the well-known local
phase quantization (LPQ), binary statistical features (BSIF)
or scale invariant feature transform (SIFT) were fed to a
self-developed deep network (Spidernet) for final fusion and
classification. The performance was compared with classical
fusion approaches such as SVMs and AdaBoost, achieving
ACERs around 1.6-1.8% for LivDet 2009 to 2013.

IV. PRESENTATION ATTACK DETECTION
METHODOLOGY: HARDWARE

The finger SWIR capture device used in the present work
was developed within the BATL project [61] in cooperation
with our project partners. A general diagram of its inner
components is included in Fig. 2 (a). As it may be observed,
the camera and lens are placed inside a closed box, which
includes an open slot on the top, about 30 cm away from
the cameras. When the finger is placed there, all ambient
light is blocked and therefore only the desired wavelengths
are considered during the acquisition. In particular, we have
used a Hamamatsu G11097-0606S InGaAs area image sen-
sor, which captures 64 x 64 px images, with a 25 mm
fixed focal length lens optimised for wavelengths within
900 — 1700 nm. More specifically, the following SWIR
wavelengths are selected for PAD purposes: 41 = 1200 nm,
A2 = 1300 nm, A3 = 1450 nm, and A4 = 1550 nm. These are
similar to the wavelengths considered in [40] for the skin vs.
non-skin facial classification.

An example of the acquired images for a bona fide sample
is shown in Fig. 2 (b) for the 1200 nm wavelength. As it may
be observed, before applying any PAD algorithm, the region of
interest (ROI) (i.e., the central finger-slot region corresponding
to the open slot where the finger is placed) needs to be
extracted from the background. Given that the finger is always
placed over the fixed open slot, and the camera does not
move, a simple fixed size cropping can be applied. The ROI
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SWIR Samples RGB Image
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a) Bona Fide: Sample 1
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b) Bona Fide: Sample 2

M

c) PAI: Playdoh Finger (Yellow)

e

(d) PAI: Overlay (Monster Latex)

o

(e) PAI: Overlay (Glue)

Fig. 3. Examples of bona fides and PAs acquired by the SWIR sensor and
the RGB image created for the input of the deep neural network systems (see
Eq. 6).

corresponding to Fig. 2 (b) with a size of 18 x58 px is depicted
in Fig. 2 (¢).

Finally, the four wavelength samples acquired from two
bona fides Fig. 3 (a, b), and three PAIs Fig. 3 (c to e) fabricated
with different materials are included in Fig. 3. As it may
be observed, the playdoh finger shows some similarities with
respect to the bona fide presentations (i.e., a similar change of
intensity across wavelengths), which will make the PAD task
harder. However, the change trend is completely different for
the other two PAIs, thereby making it easier to discriminate
them from bona fide presentations.

In addition to the SWIR images captured by the device, fin-
gerprint verification can be carried out with contactless finger
photos acquired in the visible spectrum with a 1.3 MP camera
and a 35 mm VIS-NIR lens, which are placed next to the
SWIR sensor within the closed box (see Fig. 2 (a)). As shown
in [60], commercial off-the-shelf systems can extract minutiae
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correctly from these samples, thereby granting compatibility
with conventional fingerprint sensors.

V. PRESENTATION ATTACK DETECTION
METHODOLOGY: SOFTWARE

This section describes the state-of-the-art software methods
proposed in order to detect fingerprint PAs, as summarised
in Fig. 1. Two different approaches are studied: i) handcrafted
features, and ii) deep learning features. For both approaches,
the information provided by the sensor described in Sect. IV
is used as input.

In general, it should be noted that each individual score
s; generated by the individual PAD algorithms needs to be
transformed into a single range to allow the final fusion and
a fair benchmark. In compliance with the ISO/IEC 30107-
2 standard on biometric presentation aattack detection — Part
2: data formats [75], we define s; € [0, 100], where low values
close to 0 will represent bona fide presentations and high
values close to 100 will denote presentation attacks.

A. Handcrafted Features

As it was firstly proposed in [51], this method builds
upon the raw spectral signatures of the pixels across all
four acquired wavelengths, in order to capture the different
properties attributed to skin (i.e., bona fide presentation) and
non-skin (i.e., PAI) materials. In particular, for each pixel
(x, ), the SWIR sensor provides the raw spectral signature ss
as follows:

SN (6, y)) 3)

where i, (x, y) represents the intensity value of the pixel for
the n-th wavelength 4,. In our particular case study, N = 4.
However, this original representation of the sensor is vulner-
able to illumination changes. Even if they have been minimised
in the sensor due to only having the finger slot open to the
outer world, thinner fingers for instance can let some tiny
amounts of light through. In addition, since our final goal is
to capture the distinct trends across the different wavelengths
shown in Fig. 3, only the differences among wavelengths will
be used as our set of handcrafted features. Therefore, for each
pixel, the final normalised difference feature vector d (x, y) is

computed as follows:
d(x,y) ={dlia, ip] (x, Y)}1<a<p<n “)
. la (x,y) —ip (x,y)
dlia, ip] (x,y) = - . ®)
¢ la(xay)+lb(x9y)
with —1 < d [iy4, ip] (x, y) < L. In other words, the normalised
differences among all possible wavelength combinations are
computed. For our case study with N = 4, a total number
of six differences are calculated per pixel. Finally, these
normalised difference feature vectors d (x, y) will be used to
classify skin vs. non-skin pixels using am SVM.

The procedure described so far performs a pixel-wise classi-
fication. Hence, the final score sgs returned by the PAD method
will be the proportion of non-skin pixels of the sample ROI
in a range of 0 to 100.

ss(x,y):{i1 (x,y),...
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B. Deep Learning Features

CNNs have been one of the most successful deep neural net-
work architectures in the last years. Some of their key design
principles were drawn from the findings of the Neurophysiol-
ogists Nobel Prize awardees David Hubel and Torsten Wiesel
in the field of human vision [19]. Traditional (a.k.a. plain)
CNN based systems are mainly composed of convolutional and
pooling layers. The former extracts patterns from the images
through the application of several convolutions in parallel to
local regions of the images. These convolutional operations are
carried out by different kernels that are adapted by the learning
algorithm, assigning a different weight to each pixel of the
local region of the image depending on the type of patterns to
be extracted. Therefore, each kernel of one convolutional layer
is focused on extracting different patterns, such as horizontal
or vertical edges, over image patches whose size is determined
by the dimension of the layer. The output of these operations
produces a set of linear activations (a.k.a. feature map), which
serve as input to nonlinear activations, such as the rectified
linear activation function (ReLU). Finally, it is common to use
pooling layers to make the representation invariant to small
translations of the input. The pooling function replaces the
output of the network at a certain region with a statistical
summary of the nearby outputs, and facilitates the learning
convergence. For instance, the max-pooling function selects
the maximum value of the region.

As it was summarised in Fig. 1, in this study we explore
the potential of deep learning features in comparison to
handcrafted features by means of two different strategies:
i) using CNNs as an end-to-end approach (i.e., for both
feature extraction and classification), and ii) using CNNs as
feature extractors in combination with SVMs for classifica-
tion. In addition, two different training scenarios have been
analysed, namely: i) training CNN models from scratch, and
ii) adapting CNN pre-trained models.

For the input of the networks, and in order to consider the
information provided by the four wavelengths captured by the
sensor, we need to build a single RGB image. To that end,
each dimension or channel of the RGB space will comprise
information stemming from different SWIR wavelengths or
combinations thereof. To maximise the discriminative power
of the input images, we analysed which wavelengths pro-
vided a higher inter-class (i.e., between bona fide and PA
presentations) and a lower intra-class (i.e., within the bona
fide presentation samples) variation in terms of the heatmaps
of the differences between samples. That is, to estimate the
inter-class variability we computed the pixel wise difference
of bona fide and PA samples, and for the intra-class variability,
the differences between bona fide samples. The former should
have high intensity values and the latter low values. After
an exhaustive analysis of the different possible combinations,
we defined the three dimensions as follows:

image (R, G’ B) = (|i/l4 - ill |; |il4 - i/lzl» |i/l4 - iﬂ3|) (6)

Fig. 3 shows examples of bona fides and PAIs acquired by
the SWIR sensor and the RGB image created following Eq. 6.
Finally, RGB images are resized to the corresponding input
size of the pre-trained networks using the nearest-neighbour
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interpolation. All strategies have been implemented under
the Keras framework using Tensorflow as back-end, with
a NVIDIA GeForce GTX 1080 GPU. Adam optimizer is
considered with a learning rate value of 0.0001 and a loss
function based on binary cross-entropy. We now describe the
details of each deep learning strategy studied in this work.

1) Training CNN Models From Scratch: The first approach
is focused on training residual CNNs [53] from scratch. These
networks have outperformed traditional (a.k.a. plain) net-
works in many different datasets such as ImageNet
2012 [76], CIFAR-10 [77], PASCAL VOC 2007/2012 [78]
and COCO [79] for both image classification and object
detection tasks. The peculiarity of this network is the insertion
of shortcut connections every few stacked layers, converting
the plain network into its residual version. The residual
connections allow the use of deeper neural network archi-
tectures and at the same time decrease their training time
significantly [53], [80].

Our proposed residual CNN is depicted in Fig. 4 (left).
Batch normalization (BN) is applied right after each con-
volution and before the activation as described in [81]. All
activation functions are based on ReLU except from the
Sigmoid activation used in the last fully-connected layer,
which provides output values between O and 1. This value
is finally multiplied by 100 in order to obtain scores between
0 and 100.

2) Adapting Pre-Trained CNN Models: The second
approach evaluates the potential of state-of-the-art pre-trained
models for fingerprint PAD. In order to adapt the pre-trained
models to our task, we replace and retrain the classifier (i.e.,
the fully-connected layers), and adapt the weights of the last
convolutional layers to the fingerprint PAD task. The reason
for adapting only the last convolutional layers lies on the
fact that the first layers of the CNN extract more general
features related to directional edges and colours, whereas the
last layers of the network are in charge of extracting more
abstract features related to the specific task. We propose to use
both MobileNet and VGG19 network architectures pre-trained
using the ImageNet database [54], [55]. This database con-
tains more than one million images from 1000 different
classes, thereby allowing the extraction of very robust features
in the first layers [76].

Fig. 4 (middle) shows the architecture of our adapted
MobileNet network. This architecture has been modified
compared to the original version by removing some of the
last convolutional layers in order to reduce the complexity
of the features extracted. Furthermore, the fully-connected
layers designed for the ImageNet classification task have been
also removed. This network is based on depthwise separable
convolutions, which factorise a standard convolution into: i)
a depthwise convolution, and ii) a 1 x 1 convolution called
pointwise convolution. Therefore, the depthwise convolution
applies a single filter to each input channel, and the pointwise
convolution subsequently applies a 1 x 1 convolution to com-
bine the outputs of the depthwise convolution [54]. Downsam-
pling is directly applied by the convolutional layers that have
a stride of 2 (represented by /2 in the convolutional layers of
Fig. 4). This network architecture allows to reduce both model
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3x3 Depthwise Conv, /2

[ 1x1 Cony, 128 | [[1x1 Cony, 128 | 3x3 Conv, 512
3x3 Cony, 512
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1x1 Cony, 512

[ 3x3 Cony, 512 |

Avg Pool Avg Pool Max Pool, /2
Fc 256, ReLU
Fc 1, Sigmoid Fc 1, Sigmoid Fc 1, Sigmoid
Fig. 4. Proposed network architectures. Left: the residual CNN trained

from scratch using only the SWIR fingerprint database (319,937 parameters).
Midadle: the pre-trained MobileNet-based model (815,809 parameters). Right:
the pre-trained VGG19-based model (20,155,969 parameters). Both middle
and right networks are adapted using transfer learning techniques over the
last white-background layers.

size and training/testing times, thus being a good solution for
mobile and embedded vision applications. It has been tested
in different datasets such as ImageNet [76], PlaNet [82], and
COCO [79] with state-of-the-art results.

Finally, Fig. 4 (right) shows the architecture of the adapted
VGG19 network [55]. This architecture has also been modi-
fied replacing the last 3 fully-connected layers with 2 fully-
connected layers (with a final sigmoid activation). This
network architecture belongs to the family of traditional
or plain networks and appeared before the residual and
MobileNet configurations. Despite of that, and due to its
simplicity, it is one of the most popular network architectures
nowadays, providing very good results in many different
competitions.

3) Using CNNs as Feature Extractors: In addition to the
end-to-end approaches described in Sect. V-B.1 and V-B.2,
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we also analyse the potential of adapting and using all the
aforementioned CNNs (i.e., the residual CNN trained from
scratch, and the adapted MobileNet and VGG19 models) as
feature extractors. For this strategy, we consider the same
network architectures described in Fig. 4, but removing the
last fully-connected layers in order to use only the features
provided by the last convolutional layer (after the Average
or Max pool layers, respectively). Then, these features are
transformed to the range [0, 1] and subsequently used to train
an SVM for final classification purposes.

C. Fused Approach

Finally, we analyse to which extent the proposed algo-
rithms complement each other to enhance the final fingerprint
PAD decisions. To that end, the algorithms are fused with a
weighted sum of the individual PAD scores as follows:

s=0—-a)-s1+a-s 7

where 51,52 with 1,2 € {ss, res, mob, VGG} represent the
individual scores output by the approaches described above, o
the fusion weight value selected using the validation dataset,
and s the final fusion score.

VI. EXPERIMENTAL FRAMEWORK

A. Database

The database considered in the experimental evaluation was
acquired within the BATL research project [61] in collabora-
tion with our partners at the Univiersity of South California
(USC). The project is financed by IARPA ODIN program [10].
Data were collected in two different stages and comprise both
bona fide and PA samples. Note that the project sponsor
IARPA has indicated that they will make the SWIR finger
database available in the near future such that research results
presented in this article can be reproduced.

For the bona fide samples, a total of 163 subjects partic-
ipated during the first stage. For each of them, all 5 fingers
of the right hand were captured. For the second stage, there
were a total of 399 subjects. Index, middle and ring fingers of
both hands were captured from each subject. It is important to
highlight that people from different gender, ethnicity, and age
were considered during the acquisition in order to evaluate the
systems and algorithms in realistic conditions.

For the PA samples, the selection of the PAI fabrica-
tion materials was based on the requirements of IARPA
ODIN program evaluation, covering the most challenging
PAIs [14], [15]. There are a total of 35 different PAI species,
which can be further categorised into eight main groups,
namely: dragon skin, latex, overlay, playdoh, printed fin-
gers, silicone, silly putty and wax. All details are included
in Table III. It should be noted that each material combination
specified in Table III is unique, and thus constitutes a different
PAI species.

Finally, all captured samples were manually reviewed in
order to remove all samples with operational errors (e.g.,
finger movement) or hardware failures, ending up with a total
of 4,290 and 443 bona fide and PA samples, respectively.
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TABLE III

PAI SPECIES INCLUDED IN THE EXPERIMENTAL WORK OF THIS STUDY.
PAI SPECIES USED ONLY FOR TESTING AND NOT FOR TRAINING
(I.E., UNKNOWN ATTACKS) HAVE BEEN UNDERLINED

PAI Group PAI Species

Dragon Skin  Finger, conductive, conductive nanotips white, graphite

Latex Finger

Overlay Conductive silicone, monster latex, glue, silicone, urethane, wax, dragon skin
Playdoh Black, blue, green, orange, pink, purple, red, teal, yellow

Printed 2D photograph/matte paper, 3D normal/Ag paint,

Silicone Barepaint coating, finger flesh/yellow, graphite, normal, coating

Silly Putty Glow in the dark, normal, metallic

Wax Finger

B. Experimental Protocol

The main goal behind the experimental protocol design is to
analyse and prove the soundness of our proposed fingerprint
PAD approach in a realistic scenario. Therefore, the database
described in the previos section is split into non-overlapping
training, validation, and test datasets following the same
procedure considered in previous studies [53], [55]. All details
are shown in Table IV. In order to provide a fair comparison
among the approaches described in Sect. V, the same partitions
will be used in all experiments.

For the development of our proposed fingerprint PAD meth-
ods, both training and validation datasets are used in order
to train the weights of the systems and select the optimal
network architectures. For the training dataset, we consider
a total of 130 samples for each class (i.e., bona fide and PA),
whereas for the validation dataset the number of samples is
reduced to 90 per class. It is important to highlight that we
consider the same number of samples per class during the
development of the systems in order to avoid bias towards
one class.

For the final evaluation, the test dataset comprises the
remaining bona fide (4070) and PA (223) samples not used
during the development of the systems, thereby allowing a
fair performance analysis.

Moreover, it is important to remark that the test dataset
includes 5 unknown PAI species, which were not considered
during the development stage (i.e., they are not present either
in the train or in the validation datasets). This way, we can also
evaluate the robustness of our proposed methods to unknown
attacks, thereby modelling realistic scenarios. These unknown
attacks are underlined in Table III.

Based on these partitions, three different sets of experiments
are carried out:

A. Exp. 1 - Handcrafted features: first, the performance of
the handcrafted features described in Sect. V-A is evaluated.

B. Exp. 2 - Deep learning features: then, we evaluate
the performance of each deep learning approach described
in Sect. V-B (i.e., end-to-end and feature-extraction + SVM
classification, CNNs trained from scratch and transfer learn-
ing), and establish a fair benchmark by following the same
experimental protocol.

C. Exp. 3 - Fused system: in the last set of experiments,
the score level fusion (see Sect. V-C) of the aforementioned
systems will be evaluated in order to determine the best
performing configuration and assess the complementarity of
the individual algorithms.
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TABLE IV
PARTITION OF TRAINING, VALIDATION AND TEST DATASETS

# Samples # PA Samples # BF Samples
Training set 260 130 130
Validation set 180 90 90
Test set 4293 223 4070

VII. EXPERIMENTAL RESULTS

A. Exp. 1 - Handcrafted Features

Fig. 5a shows the DET curves of each of the individual
methods proposed in this study. As it may be observed,
the spectral signature pixel-wise approach has achieved a
12.61% D-EER. Compared with the results first reported
in [51] (APCER = 5.6% and BPCER = 0%), there is a
clear decrease in the detection performance. This is due to the
preliminary character of the first study, over a small database
comprising only 60 samples and 12 different PAI species.
In this work, the more thorough evaluation unveils the main
drawbacks of the approach: it is not possible to get an APCER
< 2%, and for APCER =~ 5%, the BPCER is over 20% (i.e.,
the system is not convenient any more).

B. Exp. 2 - Deep Learning Features

Deep learning strategies have considerably improved the
results achieved using handcrafted features (see Fig. 5a for
a comparison). In general, the features extracted by the neural
network models provide a higher discriminative power and
generalisation to new samples (note that during the devel-
opment of the systems, all strategies were able to achieve
loss values very close to zero for both training and val-
idation datasets). This is due to the fact that, in contrast
to the handcrafted features, not only the pixel-wise differ-
ences accross wavelengths are taken into account, but also:
i) global information from the complete images, and ii) fur-
ther non-linear transformations of these differences (i.e., RGB
images constructed following Eq. 6) through the convolutional
layers of the networks (see Fig. 4).

For the case of training end-to-end residual CNN models
from scratch, the best result obtained is a 2.25% D-EER. This
result outperforms the handcrafted feature approach by an 82%
relative improvement. Furthermore, low APCERs below 1%
can be achieved for BPCERs below 8%, thereby overcoming
the main drawback of the handcrafted feature approach. Sim-
ilarly, for high convenient systems with BPCERs under 1%,
the APCER ranges between 4% and 15%. These facts highlight
the potential of incorporating residual connections to plain
CNNs, being able to easily train neural network models
without the necessity of having thousands of labelled images
for each class, but only 130 (see Table IV).

Very good results have been also obtained for the use
of pre-trained CNN models. In particular, the proposed
MobileNet- and VGG19-based models have obtained state-
of-the-art results with final values of 1.80% and 1.35%
D-EER, respectively. These error rates have further improved
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Fig. 5. Performance evaluation of: (a) All individual systems, (b) fusion of handcrafted features and end-to-end deep learning approaches (MobileNet and

VGG19), and (c) fusion of end-to-end deep learning approaches (ResNet, MobileNet, and VGG19).

the ones obtained using handcrafted features, achieving an
average relative improvement of 86% and 89%, respectively.

In addition, it is important to note that, even though an
improvement at the D-EER operating point is achieved using
these pre-trained models in combination with transfer learn-
ing techniques, this does not hold for all operating points.
If we take a closer look at Fig. 5a, we can observe that for
low BPCERs (i.e., high convenience), the best performing
approach is the residual CNN trained from scratch. On the
contrary, the lowest BPCER for an APCER < 2% (i.e.,
high security) is achieved by the VGG19 pre-trained model.
However, it should be noted that the VGG19 based system
cannot reach BPCERs under 1%, which can be done using
the pre-trained MobileNet model. Therefore, depending on
the final application, some CNN approaches might be more
suitable than others.

For completeness, we also analyse the potential of using
CNNs as feature extractors in combination with SVM classi-
fiers. This way, we can also analyse the improvement achieved
using deep learning features compared to the handcrafted
features, which were also classified using SVMs. The per-
formance in terms of APCER and BPCER is summarised
in Table V (note that a single binary decision in terms of
the thresholded distance is considered for the SVMs trained
on the CNN features). As it may be observed, the operating
points are always contained within the DET curves reported
in Fig. 5a, which means that no further improvement has
been achieved using the SVM for classification with respect
to the last fully-connected sigmoid activation layer of the
end-to-end CNNs. Therefore, these results further confirm
the advantages of the learned features with respect to the
handcrafted approach. Thus, in the remaining experiments
only the end-to-end CNNs will be considered.

All these results show the potential of using CNNs in
combination with SWIR images for fingerprint PAD purposes,
and the robustness of the features extracted. Fig. 6 shows some
examples of the features extracted in the first convolutional
layer (64 filters) of the VGG19-based model for bona fide and
PA samples. In general, very different features are extracted
for bona fide and PA samples. This fact can be easily observed

TABLE V
PERFORMANCE EVALUATION OF THE DEEP LEARNING FEATURE
EXTRACTORS IN COMBINATION WITH THE SVM CLASSIFIERS

BPCER (%) APCER (%)

Residual CNN 3.37 1.35
MobileNet-Based Model 5.33 0.45
VGG19-Based Model 1.89 0.90

when considering overlays based on monster latex and glue,
Fig. 6 (d) and (e), respectively. However, for other materials
such as the yellow playdoh, the features extracted by the net-
work are more similar to the bona fide samples (Fig. 6 (a) vs.
Fig. 6 (c)), indicating the difficulty of the task.

C. Exp. 2 - Deep Learning: Robustness to Unknown Attacks

Finally, we have also studied the robustness and generalisa-
tion capacity of the deep learning methods to new PAIs (a.k.a.
unknown attacks). In order to do that, 30 samples acquired
from 5 out of the 35 total PAIs available in the database
(see Table II) were considered only for testing the systems
(i.e., none of those PAI species where included in the training
and validation datasets). The reason behind this particular PAI
selection is twofold. On the one hand, we choose one PAI
species from each PAI category of Table III, to increase the
variability also in the unknown attacks. On the other hand,
we select the PAI species with the smallest number of samples
available, in order to maximise the number of training samples
and hence the detection performance.

In general, very good results have been achieved for all
methods. At the D-EER operating point, only one sample from
a yellow playdoh finger has been misclassified by the residual
CNN and MobileNet-based models, whereas for the case of
using the VGG19-based model, all 30 samples stemming
from the unknown attacks have been correctly classified. This
proves the robustness of the proposed PAD approach against
unknown attacks that may appear in the future.
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(e) PAI: Overlay (Glue)

Fig. 6. Examples of the features extracted in the first convolutional layer (64 filters) of the VGG19-based model from the samples depicted in Fig. 3.

D. Exp. 3 - Fused Systems

In order to further enhance the results achieved by individual
methods, and analyse to which degree the systems complement
each other, we study in this last set of experiments the fusion of
multiple systems at score level. In all cases, the performance is
optimised using the validation dataset in terms of the D-EER
for values of a € [0, 1] (see Eq. 7), where this a weight
corresponds to the second system referred to in the legend.

First, the fusion of handcrafted and deep learning features is
evaluated in Fig. 5b. Only the MobileNet and VGG19 on are
depicted, since no improvement was achieved for the fusion of
the residual network and the spectral signatures with respect
to the individual CNN. As it could be expected given the high
performance gap between the spectral signatures and the deep
learning counterparts, the score level fusion yields a minimum
improvement with respect to the CNNs only in two cases: i)
for either low BPCER < 0.5% or low APCER < 0.5% for the
MobileNet approach (dashed yellow vs solid green curves),
and for ii) BPCER < 1% for the VGG19 network (dashed
purple vs solid light blue curves).

Afterwards, the three CNN approaches have been fused in
a two-by-two basis (the fusion of all three systems showed
no further improvement), and the best performing fusions
are depicted in Fig. 5c. As it may be observed, no further
improvements have been achieved for the operating point
around the D-EER. However, for APCER < 0.5%, the cor-
responding BPCER values for the fused systems (solid lines)
are significantly lower than those of the individual networks
(dashed lines): close to 2% for the fusions with VGG19 instead
of between 5% and 15% (i.e., close to a 90% relative improve-
ment). That yields convenient systems (i.e., low BPCER) even
for highly secure (i.e., very low APCER) scenarios. On the
other hand, for low BPCER < 1%, the best APCER (< 10%)
is achieved for either the residual CNN alone (dashed orange)
or its fusion with the VGG19 (solid dark blue). Taking a
closer look at the individual PAD scores, we can see that
both networks complement each other. Lastly, if we compare

Figs. 5b and 5c, we observe a superior performance in the
latter case, thereby further supporting the fact that CNNs can
perform better than the baseline handcrafted fusion in this task.

All in all, we can conclude that a remarkable performance
can be achieved for fingerprint PAD using SWIR images
and the fusion of two CNN models: a residual CNN trained
from scratch and a pre-trained VGG19 CNN. We now com-
pare our proposed approach with i) non-conventional sensors
(Table I), and ii) conventional sensors in combination with
deep learning approaches (Table II). Note that most algorithms
and experimental conditions vary between the listed works,
e.g., the database and PAI species considered for training
and testing. Therefore, Tables I and II should be mainly
interpreted in general terms to compare how different scenarios
of use based on conventional and non-conventional sensors,
as well as machine learning algorithms, are able to detect
PAs. Our proposed fingerprint PAD system has achieved a
final 1.35% D-EER. Furthermore, other operating points yield
a BPCER of 2% for APCER < 0.5%, and an APCER ~
7% for BPCER = 0.1%. These results have outperformed the
most similar and recent studies based on conventional sensors
with deep learning approaches (Table II) even when increasing
the variety of PAIs (35). In [31], the authors achieved a
final 2.00% ACER over an own-acquired database composed
of 12 PAIs. The selection of the PAIs was also based on the
requirements of IJARPA ODIN program, allowing therefore
a fair comparison with the results achieved in the present
study. In [68], the authors achieved a final 1.43% ACER
on LivDet 2011-15 composed of 11 PAIs. Our proposed
fingerprint PAD system has also outperformed in large margins
our preliminary handcrafted feature approaches evaluated on
similar conditions [59], [60]. Finally, it is important to analyse
the challenging unknown attack scenario. Different approaches
have been proposed in the last years [35], [36], all of them vul-
nerable against unknown attacks. Our proposed fused system
has been able to correctly detect all unknown attacks, proving
its high generalisation capacity to new PAIs that can appear
in the future.
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VIII. CONCLUSION

In this article we have presented a fingerprint PAD scheme
based on i) a new capture device for the acquisition of finger
samples in the SWIR spectrum, and ii) state-of-the-art deep
learning techniques. An in depth analysis of several networks,
either trained from scratch or using transfer learning over
pre-trained models, and either as end-to-end solutions or as
feature extractors in combination with SVMs for classification,
has revealed the soundness of the proposed approach.

Three different CNN architectures have been tested: a resid-
ual CNN trained from scratch [53], [80], and the adaptation
of the final layers of the VGG19 [55] and the MobileNet [54]
pre-trained models. In addition, the performance of the pro-
posed DL approaches has been benchmarked against the only
handcrafted approach for fingerprint PAD based on SWIR
images available in the literature [51]. The performance of
all the individual algorithms has been tested over a data-
base comprising more than 4700 samples, stemming from
562 different subjects and 35 different PAI species. Further-
more, several score level fusion schemes have been evaluated.
The experimental protocol was designed to simulate a real
life scenario: only 260 samples were used for training, and
30 samples acquired from 5 PAI species were excluded from
the development stage and considered only for testing (i.e.,
unkown attack scenario).

In the aforementioned conditions, the best performance was
reached for the fusion of two end-to-end CNNs: the residual
CNN trained from scratch and the adapted VGG19 pre-trained
model. A D-EER of 1.35% was obtained. Moreover, this
system can be used for different applications. First, if high
user convenience is preferred, an APCER around 7% can be
achieved for a BPCER of 0.1% (i.e., only 1 in 1000 bona fide
samples will be rejected). Also, for highly secure scenarios,
a BPCER of 2% can be achieved for any APCER under
0.5%. These results clearly outperform those achieved with
the handcrafted features, which yielded a D-EER over 12%
and had trouble reaching APCERs under 2%.

We may thus conclude, that the use of SWIR images in
combination with state-of-the-art CNNs offers a reliable and
efficient solution to the threat posed by presentation attacks.
However, the development of new countermeasures usually
brings the corresponding development of new attacks, in this
case, new PAI species. To tackle them, we plan to fuse the
techniques developed in this work, which analyse the surface
of the finger within the SWIR spectrum, with other approaches
analysing bona fide properties below the skin [59], [60].
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