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Abstract 

The occurrence of harmful cyanobacterial blooms has unabated increased over the last few 

decades, posing a significant risk for public health. In this work, we investigate the feasibility of 

catalytic wet peroxide oxidation (CWPO) promoted by modified natural magnetite (Fe3O4-

R400/H2O2), as an inexpensive, simple-operation and environmentally-friendly process for the 

removal of the cyanotoxins that show the major impact on drinking water: microcystins (MC-LR 

and MC-RR), cylindrospermopsin (CYN), anatoxin-a (ATX) and saxitoxin (STX). The 

performance of the system was evaluated under ambient conditions and circumneutral pH (pH0 = 

5) using relevant cyanotoxin concentrations (100 – 500 g L-1). The nature of the cyanotoxins

determined their reactivity towards CWPO, which decreased in the following order: MC-

RR>CYN>MC-LR>>ATX>STX. In this sense, microcystins and CYN were completely removed 

in short reaction times (1 – 1.5 h) with a low catalyst concentration (0.2 g L-1) and the

stoichiometric amount of H2O2 (2 – 2.6 mg L-1), while only 60 – 80% conversion was achieved

with ATX and STX in 5 h. In these cases, an intensification of the operating conditions (1 g L-1

catalyst and up to 30 mg H2O2 L-1) was required to remove both toxins in 1 h. The impact of the

main components of freshwaters i.e. natural organic matter (NOM) and several inorganic ions 

(HCO3
-, HPO4

2-, SO4
2-) on the performance of the process was also investigated. Although the 

former led to a partial inhibition of the reaction due to HO· scavenging and catalyst coating, the 

latter did not show any remarkably effect, and the versatility of the process was finally confirmed 

in a real surface water. To further demonstrate the effectiveness of the catalytic system, the 

toxicity of both the initial cyanotoxins and the resulting CWPO effluents was measured with the 

brine shrimp Artemia salina. Remarkably, all CWPO effluents were non-toxic at the end of the 

treatment.  

Nomenclature 

ATX – Anatoxin-a 

CYN – Cylindrospermopsin 

CWPO – Catalytic Wet Peroxide Oxidation 
DWTP – Drinking Water Treatment Plant 
GAC – Granular Activated Carbon 
MC-LR – Microcystin LR
MC-RR – Microcystin RR
NOM – Natural Organic Matter
PAC – Powdered Activated Carbon
STX – Saxitoxin
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1. Introduction

Cyanobacteria are among the largest group of photosynthetic prokaryotes in Earth, being the main 

component of photoautotrophic microflora regarding total biomass and productivity (Whitton and Potts, 

2012). Cyanobacteria are naturally ubiquitous in surface water, where they play relevant ecological 

roles such as in carbon and nitrogen cycles (Whitton and Potts, 2012). Nevertheless, under certain 

environmental conditions (e.g. high temperatures, calm wind, and elevated nutrient concentrations) 

cyanobacteria may proliferate forming dense blooms especially during summer in lentic systems 

(Carmichael, 1994). The risk for these episodes has increased dramatically worldwide over the past few 

decades due to rising nutrient levels caused by the increasing use of fertilizers and detergents (Pantelić 

et al., 2013), becoming an important environmental threat. 

Cyanobacterial blooms lead to important changes in water, affecting its color, odor and taste. Apart 

from these concerns, and more importantly, such blooms can produce highly toxic compounds, called 

cyanotoxins (Carmichael, 1994). This collateral effect represents an important risk for human health and 

other ecosystem services, as it is expected that 10-95% of the recorded blooms contain cyanotoxins 

(Antoniou et al. 2005; Sivonen and Jones, 1999). Human exposure to these toxins may occur through 

ingestion of drinking-water and during recreational use of water bodies with cyanobacterial blooms (He 

et al., 2016; Stewart et al., 2006; Pantelić et al., 2013; Kumar et al., 2018). A number of episodes of 

human and animal poisoning by ingestion of cyanotoxins-bearing water have been reported since the 

late 1800s (Antoniou et al., 2005; Carmichael, 1994). So far, up to 40 cyanobacterial genera have been 

characterized as potential cyanotoxins producers (Bernard et al., 2016), with Anabaena, 

Aphanizomenon, Microcystis, Nodularia and Cylindrospermopsis being the main genera leading to 

harmful algal blooms in surface water (Pantelić et al., 2013). These toxic compounds can be grouped 

according to their health effects in humans, viz. skin irritation (dermatotoxins), cell damage (cytotoxins), 

liver damage (hepatotoxins) and nervous system affection (neurotoxins) (Antoniou et al., 2005). For 

instance, microcystins, the best-researched cyanotoxin group, are known liver toxins; anatoxin-a and 
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saxitoxins are potent neurotoxins while cylindrospermopsins promote cytoxicity and also hepatotoxicity 

and genotoxicity (Westrick et al., 2010).  

Among cyanotoxins, cylindrospermopsin (CYN) has emerged as one of the most important toxins in 

freshwater worldwide (de la Cruz et al., 2013). It is particularly persistent, being stable in a wide range 

of light, heat and pH conditions (de la Cruz et al., 2013; Wormer et al., 2008). Furthermore, CYN can be 

produced by a large number of cyanobacteria, and compared to microcystins, it can be released into the 

environment at significantly higher extracellular concentrations (de la Cruz et al., 2013; Wormer et al., 

2008). Therefore, it is one of the most broadly distributed cyanotoxin in water bodies, having been 

detected in tropical, subtropical and even in temperate areas (He et al., 2014). Although CYN is not 

currently regulated, a guideline safety value of 1 g L
-1

 has been proposed for drinking water and it has

been also included in the US EPA Contaminant Candidate List 3 (He et al., 2014; Westrick et al., 2010). 

Conventional treatment processes such as chlorination and adsorption, as well as advanced systems 

like membrane technology, ozonation or photocatalysis have been investigated for cyanotoxins removal 

(Kumar et al. 2018; Rodríguez et al., 2007). In fact, most of these treatments are currently applied in 

drinking water treatment plants (DWTPs) but their efficiency depends greatly on the kind of cyanotoxin, 

the source water characteristics as well as the operating parameters (temperature, pH, cyanotoxin level), 

which can frequently change in a DWTP (Kumar et al., 2018). Chlorination has shown to be effective 

for the removal of certain cyanotoxins such as microcystin LR (MC-LR) and CYN, but relatively high 

chlorine doses are required (>2 – 3 mg L-1) (Kumar et al., 2018; Westrick et al., 2010; Senogles et al.,

2000) and the generation of trihalomethanes as well as chlorinated by-products from cyanotoxins (e.g. 

chlorouracil and 5-chloro-cylindrospermopsin from CYN) can occur (Kumar et al., 2018; Lawton and 

Robertson, 1999; Banker et al., 2001). Furthermore, other relevant cyanotoxins such as anatoxin-a 

(ATX) and saxitoxin (STX) are resistant to chlorination (Kumar et al., 2018; Pantelić et al., 2013; 

Rodríguez et al., 2007). On the other hand, adsorption onto activated carbon (AC), which is another 

conventional technique widely used in DWTPs, allows to remove certain cyanotoxins (MCs, ATX and 

CYN)  but high carbon dosages (10 g L-1 toxin: 20-200 mgAC L-1) and long contact times (even above
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12 h) can be required depending on the kind of AC and the operating conditions (Kumar et al., 2018; 

Pantelić et al., 2013; Shi et al., 2012; Kumar et al., 2018; Ho et al., 2009; Drogui et al., 2012). With 

regard to membrane technologies, nanofiltration and reverse osmosis appear as the most effective for 

cyanotoxins removal while ultrafiltration is not a reliable treatment barrier (Neumann and Weckesser, 

1998; Coral et al., 2011; Westrick et al., 2010).  

Advanced oxidation processes (AOPs) appear as promising alternatives for the degradation of 

cyanotoxins as they can destroy organic pollutants by the action of in-situ generated hydroxyl radicals. 

So far, most AOP studies have been focused on the removal of microcystins, in particular MC-LR, as 

they occur most frequently in fresh water; CYN and ATX have been by far less investigated and very 

little work can be found for STX (Kumar et al., 2018). Ozonation is widely used in DWTPs, but it is 

usually based on the direct action of ozone, which is much less reactive than hydroxyl radicals (Kumar 

et al., 2018). For instance, high degradation of MC-LR was achieved using H2O2/O3 (>90% in 1 min) 

compared to only O3 (60% in 30 min) under the same conditions (Kumar et al., 2018; Lu et al., 2018). 

In general, the application of H2O2/O3 has proved to be effective for cyanotoxins removal. Nevertheless, 

the generation of toxic by-products is an important drawback of this treatment (Kumar et al., 2018; Lu 

et al., 2018). Photocatalysis has also proved to degrade cyanotoxins but the use of UV light, which is 

significantly more effective than solar light (e.g. CYN removal in 15 and 40 min, respectively, using 

Degussa P25 photocatalyst) (Fotiou et al., 2015), makes the process cost-intensive. Recently, the 

combination of adsorption and photocatalytic degradation by hybrid composites (CNT/TiO2) has proved 

to enhance the performance of the process (Chae et al., 2019). Nevertheless, this system requires skilled 

supervision, strict pH control and it is also highly affected by NOM, that can absorb UV light (Kumar et 

al., 2018). In this context, the application of Fenton oxidation, by far less investigated than ozonation 

and photocatalysis for the removal of cyanotoxins, represents an interesting alternative (Bandala et al., 

2004; Park et al., 2017; Gajdek et al., 2001; Zhong et al., 2009; Kim et al., 2017). This process is 

usually identified as the most cost-efficient AOP (Gadipelly et al., 2014) and has proved to warrant a 

faster cyanotoxin degradation (e.g. MC-LR and ATX) compared to ozonation and photocatalysis (Al 
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Momani, 2007; Al Momani et al., 2008). The use of solid catalysts in the so-called catalytic wet 

peroxide oxidation (CWPO) or heterogeneous Fenton allows to overcome the main limitations of the 

Fenton process viz. loss of catalyst and iron sludge generation, but scarce works can be found in the 

literature. Recently, Wang et al. (2016) investigated the application of zero-valent iron nanoparticles 

(nZVI) for MC-LR (5 mg L-1) removal under ambient conditions, obtaining 59% conversion but a long

reaction time (4 h) and H2O2 doses far above the stoichiometric were required. Nevertheless, most of the 

works using magnetic solids for the removal of cyanotoxins have been focused on their separation from 

water instead of taking advantage of the catalytic properties of iron oxides (Chen et al., 2009; Lee et al., 

2011; Hena et al., 2016).  

According to a recent review (Kumar et al., 2018), high energy consumption and operating costs, 

poorly understood kinetics and the production of harmful by-products are the main challenges that limit 

the widespread application of AOPs for the treatment of cyanotoxins. The aim of this work is to 

evaluate the feasibility of CWPO promoted by modified magnetite, as a low-cost, simple-operation and 

environmentally-friendly AOP, for the degradation of the most widespread classes of cyanotoxins 

(microcystins (MC-LR and MC-RR), CYN, ATX and STX) in raw freshwaters according to large 

monitoring studies (Loftin et al., 2016; Mantzouki et al., 2018) and that show a major impact on 

drinking water (He et al., 2016). The kinetics of the process has been investigated using relatively low 

doses of catalyst and H2O2 (mainly the stoichiometric amount for complete oxidation of toxins). The 

impact of the main components of freshwaters i.e. NOM and different inorganic ions (HCO3
-, HPO4

2-, 

SO4
2-) on the performance of the process has been investigated. As a proof of concept, the catalytic 

system has been also studied using a real surface water as reaction matrix. Finally, the toxicity of the 

target pollutants and the resulting CWPO effluents has been evaluated with the brine shrimp Artemia 

salina.   

2. Materials and methods

2.1. Chemicals 
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MC-LR (≥99%), MC-RR (≥97%), CYN (≥99%), ATX (≥99%) and STX (≥99%) were provided by 

Laboratorio CIFGA S.A. (Spain). Their molecular weights and structures are collected in Table 1. 

Hydrogen peroxide solution (30% w/w), nitric acid (65%), acetic acid (>99%), methanol (HPLC grade), 

humic acid and formic acid (>98%) were obtained from Sigma-Aldrich. Acetonitrile (HPLC grade) was 

purchased from Fluka. With the exception of MC-LR and MC-RR, the chemicals were directly used, 

without any further purification. As MCs were provided in methanol, these samples were evaporated 

and reconstituted in deionized water prior use. The magnetite mineral was supplied by Marphil S.L. 

(Spain) (ref. 50121500). CWPO runs were performed in deionized water, unless otherwise indicated. 

2.2. Magnetite modification and characterization 

The procedure followed for the preparation of Fe3O4-R400 has been previously reported (Álvarez-

Torrellas et al., 2018). Briefly, powdered magnetite mineral was reduced at H2 atmosphere (250 N mL 

min
-1

 of 25 vol. % H2 in N2) for 3 h at 400 ºC. A detailed characterization of the catalyst, including

XRD, textural properties, and magnetic measurements, can be found elsewhere (Álvarez-Torrellas et al., 

2018; Serrano et al., 2018). Summarizing, the iron content was 73% wt., the specific surface area 7 m
2

g
-1

 and the particles showed a mean size of 0.2 m. On the other hand, the solid showed a crystalline

structure and strong magnetic properties (81.5 emu g
-1

). The pHPZC was determined following a method

described in a previous work (Munoz et al., 2018).  

2.3. Typical reaction procedure 

CWPO experiments were performed at ambient conditions (25 ºC, 1 atm) in a glass batch reactor (20 

mL), equipped with a stirrer (750 rpm) and temperature control. Unless otherwise indicated, the initial 

concentration of cyanotoxins was fixed at 500 g L
-1

, the amount of H2O2 at the stoichiometric dose for

the complete oxidation of the target pollutants (Table 1), the catalyst concentration at 0.2 g L
-1

 and the

initial pH was adjusted to 5.0 with nitric acid.  
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Another set of experiments was carried out with CYN to evaluate the effect of humic acid and 

several inorganic ions on the performance of the process, as well as to evaluate the effect of water 

matrix composition using a real surface water.  

Blank experiments in the absence of catalyst were carried out with all the cyanotoxins tested in this 

work, and negligible conversion (<5%) of these substances was observed. On the other hand, possible 

adsorption of cyanotoxins onto the catalyst was discarded as observed in the tests performed in the 

absence of H2O2. All the experiments were performed in triplicate, being the standard deviation lower 

than 5%.  

2.4. Analytical methods 

The evolution of the CWPO experiments was followed by periodically withdrawing liquid samples 

from the reactor, which were immediately analyzed. The catalyst was previously separated using a 

magnet. MC-LR, MC-RR, CYN and ATX were analyzed by high performance liquid chromatography, 

HPLC-UV (Shimadzu, mod. Prominence-i, LC-2030C LT) using a diode array detector (SPD-M30A). 

An Eclipse Plus C18 5 m column (15 cm length, 4.6 mm diameter) (Agilent) was used as stationary 

phase while the mobile phases were varied depending on the cyanotoxin analyzed. In all cases, the 

temperature of the column was fixed at 35 ºC and the mobile phase flow rate at 0.8 mL min
-1

. The

analyses were carried out at 239 nm for both MC-LR and MC-RR while CYN and ATX were measured 

at 261 and 228 nm, respectively. A mixture of 37/63, 30/70% (v/v) of acetonitrile and acetic acid 

aqueous solution (75 mM) was used for the analyses of MC-LR and MC-RR, respectively. The 

quantification of CYN was performed using 2.5% methanol and 0.1% trifuloroacetic acid in water (v/v) 

as mobile phase whereas that of ATX was accomplished with a mixture 0.2/99.8% (v/v) of acetonitrile 

and acetic acid aqueous solution (3.75 mM). The quantification of STX was performed by HPLC-MS 

(HPLC-1200, 6410 TQ Agilent). In this case, the column ACE Excel 3 (C18-Amida, 15 cm length, 4.6 

mm diameter, 5 m particle size) was used. The analyses were performed using a mixture 50/50% (v/v) 

of water (0.1% formic acid) and acetonitrile (0.1% formic acid) as mobile phase. External mass 
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calibration for the positive ESI mode was conducted prior to analysis in the mass range of m/z 180 – 

1000. 

The concentration of H2O2 and dissolved iron were measured by colorimetry with a UV 2100 

Shimadzu UV-VIS spectrophotometer using the titanium sulfate (Eisenberg, 1943) and the o-

phenantroline (Sandell, 1959) methods, respectively. Short-chain organic acids were quantified by ionic 

chromatography (Metrohm 790 IC). A 3.2 mM Na2CO3 aqueous solution was used as mobile phase and 

a Metrosep A sup 5-250 column (25 cm length, 4 mm internal diameter, 5 m particle size) as stationary 

phase. The real surface water was analyzed by a total organic carbon (TOC) analyzer (Shimadzu TOC 

VSCH). 

2.5. Toxicity study 

Artemia salina has been used as model organism to assess the toxicity of the initial cyanotoxin 

solutions as well as the resulting CWPO effluents. This is a simple, inexpensive and reliable short-term 

routine test (Vanhaecke et al., 1981). The procedure followed is based on previous works (Barahona and 

Sánchez-Fortún, 1999; Ozkan et al., 2016; Vanhaecke et al., 1981). Artemia salina cysts (1.0 g) were 

incubated in glass bottles containing 0.5 L synthetic seawater at 30 ºC under continuous aeration and 

illumination. Under these conditions, the cysts hatched within approximately 24 h. The artificial 

seawater was prepared by dissolving 35 g of synthetic sea salt (Marinium®) in 1 L of deionized water,

stirring for 24 h with aeration and filtering through cellulose filter.  

The standard conditions used to determine the acute toxicity were: 30 ºC, salinity (35 g L-1), pH 7

and darkness. The tests consisted of 4 concentrations of each cyanotoxin and one control which 

contained the seawater medium alone. Test solutions were previously adjusted to the same salinity of 

the stock brine shrimp media (35 g L-1) by addition of concentrated salt solution. The vials containing

20 organisms in 2 mL of sample (cyanotoxin solution or CWPO effluent) were placed in an incubator 

for a period of 24h under the abovementioned standard conditions. There were three replicates of each 
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test concentration. Nauplii were considered dead if no movement was observed during 10 s of 

observation. The lethal concentration (LC50) was used to determine the toxicity of the samples. It is 

defined as the lethal concentration of the compound (g L-1) that kills 50% of the A. salina nauplii

within 24, 48 or 72 h. 

3. Results and discussion

3.1. Cyanotoxins degradation by CWPO 

The first set of experiments was focused on evaluating the versatility of CWPO for the treatment of 

the group of cyanotoxins (MC-LR, MC-RR, CYN, ATX and STX). They were performed with a low 

catalyst concentration (0.2 g L-1) and the stoichiometric amount of H2O2 for the complete oxidation of

the target pollutants (2.0 – 3.0 mg L-1), under ambient conditions and circumneutral pH (pH0 = 5). The

evolution of cyanotoxins upon CWPO is shown in Fig. 1. As observed, two main groups of cyanotoxins 

can be distinguished. The first one, including MC-LR, MC-RR and CYN, was much more reactive 

towards CWPO than the second one (ATX and STX). In this sense, while MC-LR, MC-RR and CYN 

were removed above 90% in 1 – 2 h reaction time, less than 50% was achieved with the ATX and STX. 

In fact, the removal yield of ATX and STX after 5 h was still around 80% and 60%, respectively. The 

experimental data was successfully described by a pseudo-first order kinetic equation. The resulting 

apparent rate constant values are collected in Table 2, confirming that cyanotoxins reactivity towards 

CWPO decreases in the following order: MC-RR>CYN>MC-LR>>ATX>STX. 

The obtained results can be explained by the different nature of cyanotoxins. As can be seen in 

Table 1, their physicochemical properties vary significantly in terms of molecular size and structure. 

Among microcystins, MC-RR was more reactive than MC-LR under the operating conditions tested in 

this work. This could be attributed to the different amino acids present in these MC variants. MC-LR 

shows the amino acids leucine (L) and arginine (R) while MC-RR has two R amino acids. The reported 

second-order rate constants of these amino acids with hydroxyl radicals (generated by UV/H2O2) were 

1.7 x 109 and 3.5 x 109 M-1 s-1 (He et al., 2015) for L and R, respectively, which explains that MC-RR 
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can be removed faster than MC-LR. This order of reactivity is also consistent with a previous work 

where the removal of four variants of microcystins by UV/H2O2 was investigated (He et al., 2015). In 

fact, it is well-known that amino substituents are quite reactive towards HO· attack (Anbar et al., 1966), 

and while leucine only presents one amino group, arginine contains four. Apart from microcystins, CYN 

also showed to be quite reactive towards CWPO. This cyanotoxin contains a number of functional 

groups such as uracil ring, sulfate and guanidine. The uracil group is the most susceptible to oxidation 

(de la Cruz et al., 2013), as it includes two quinone groups, species readily attacked by HO· (Pignatello 

et al., 2006). On the other hand, the presence of a sulfate functional group in the CYN molecule must be 

also taken into account as it is also highly reactive towards hydroxyl radicals (Anbar et al., 1966). ATX, 

the smallest cyanotoxin among those tested, is a bicyclic secondary amine with two functional groups 

slightly susceptible to oxidation, the amine and ,-unsaturated ketone. In fairly good agreement with 

the results obtained in the current work, Onstad et al. (2007) also found that MC-LR and CYN showed 

similar reactivity towards hydroxyl radical oxidation while the removal rate for ATX was one order of 

magnitude slower. Finally, STX only presents two guanidine functional groups susceptible to oxidation 

(de la Cruz et al., 2013), being the most refractory cyanotoxin under the operating conditions tested in 

this work. 

The obtained results can be favorably compared with those previously reported in the literature. The 

catalytic system H2O2/Fe3O4-R400 has proved to be effective for the removal of a wide range of 

cyanotoxins even operating under relatively gentle conditions. For instance, Wang et al. (2016) reached 

only 59% removal of MC-LR (5 mg L-1) after almost 4 h reaction time using zero-valent iron (0.6 g L-1) 

and a dose of H2O2 far above the stoichiometric amount (224 mg L-1). The pseudo-first order kinetic 

constant value obtained was 0.024 L min-1 gcat
-1 while the one obtained in this work (considering that a 

catalyst concentration of 0.2 g L-1 was used) is almost five times higher (0.11 L min-1 gcat
-1). Up to 30 

mg L-1 H2O2 and a UV dose of 1285 mJ cm-2 were required to achieve an ATX (600 g L-1) conversion 

above 85% (Afzal et al., 2010). Apart from the relatively fast removal of the cyanotoxins, it must be 

noted that only traces of oxalic, acetic and formic acids were identified in the final CWPO effluents. 
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As our results indicated a significantly less efficiency of the CWPO process with ATX and STX, a 

new set of experiments was carried out under more severe conditions viz. increasing the concentration of 

catalyst (1 g L-1) and H2O2 (up to 10 times the stoichiometric amount: 30 and 24 mg L-1, for ATX and

STX, respectively). The results obtained are shown in Fig. 2. As observed, the increase of catalyst and 

H2O2 concentrations allowed to completely degrade the cyanotoxins in significantly shorter reaction 

times. In particular, the use of 10 times the stoichiometric amount of H2O2 and 1 g L-1 of catalyst

allowed to reach similar rate constant values to those previously obtained with microcystins and CYN 

(8.90 x 10-2 and 5.93 x 10-2 min-1 for ATX and STX, respectively), being the cyanotoxins eliminated in

1 – 1.5 h reaction time.  

With regard to the catalyst stability, it should be noted that dissolved iron concentration was below 

0.5 mg L-1 in all cases, which represents 0.3% wt. of the initial iron concentration in the solid.

3.2. Effect of organic matter on CWPO performance 

Natural organic matter is ubiquitous in the aquatic environment and thus, it is usually present in the 

source waters of DWTPs, affecting significantly the efficiency of their treatments (Kumar et al., 2018). 

NOM can consume chlorine leading to the formation of trihalomethanes upon chlorination treatment, 

saturate AC in adsorption systems or cause fouling of the membranes in separation processes (Kumar et 

al., 2018). It has been also demonstrated that NOM has a negative impact on AOPs performance, mainly 

through HO· scavenging, preference adsorption onto the active sites of the catalyst or light absorption 

(Kumar et al., 2018; Karci et al., 2018; Wang et al., 2016; Park et al., 2017; Pignatello et al., 2006). 

Nevertheless, it must be also noted that the occurrence of NOM can also present a positive effect, 

mostly in homogenous Fenton process, as it can provide a better availability of Fe
2+

/Fe
3+

 due to the

formation of iron complexes, facilitating electron transfer (Pignatello et al., 2006). In this work, the 

impact of NOM on the degradation of CYN was investigated using deionized water fortified with humic 

acid, a major component of NOM, within the typical concentration values of organic matter in natural 

waters (1 – 10 mg L
-1

) (Park et al., 2017; He et al., 2010). As can be seen in Fig. 3a, the presence of
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NOM in the reaction matrix partially hindered the degradation of CYN, leading to a decrease on the 

apparent rate constant values (Table 3). Up to 2.5-fold decrease was observed with the highest 

concentration of NOM tested (10 mg L
-1

). Nevertheless, almost complete conversion of CYN was

achieved regardless of the concentration of NOM after 2 h reaction time. On the other hand, the stability 

of the catalyst was not affected by the presence of NOM, reaching dissolved iron concentration values 

below 0.5 mg L
-1

.

These results are consistent with those recently reported by Park et al. (2017) and Wang et al. (2016) 

in homogeneous and heterogeneous Fenton oxidation of MC-LR, respectively, and can be mainly 

attributed to HO· scavenging as well as the coating of magnetite particles by humic acid. At pH 5, the 

surface of the catalyst is positively charged (pHPZC ~ 7.5) while humic acids are negatively charged 

(average pKa ~ 4.0 (Fukushima et al., 1996) and thus, they are electrostatically attracted to the surface 

of the catalyst. All in all, it must be noted that the efficiency of the catalytic system was not strongly 

reduced when compared with other AOPs (Zhang et al., 2014; Al Momani et al., 2008). Al Momani et 

al. (2008) observed a strong decrease in the ozonation of CYN, from 90% removal to 50% and 30% in 

the presence of 2 and 10 mg L
-1

 NOM, respectively. In the same line, up to 95% decrease on the

reaction rate was found upon CYN degradation by photocatalysis with polymorphic titanium dioxide 

(Zhang et al., 2014). In the latter, apart from the scavenging effect, the inhibition of the reaction was 

also attributed to the role of NOM as UV-Vis blocker.  

3.3. Effect of inorganic ions on CWPO performance 

Apart from considering the effect of organic matter on CWPO performance, the influence of several 

inorganic anions commonly occurring in natural waters (HCO3
-
, HPO4

2-
 and SO4

2-
) was also evaluated. 

The effect of these anions on the degradation of CYN upon CWPO at a concentration of 3 mg L
-1

(World Health Organization, 2004; Wang et al., 2016) can be seen in Fig. 3b (see Fig. S1 of the 

Supplementary Material for the experimental data obtained within the concentration range of 3 – 50 mg 

L
-1

 with sulfate and bicarbonate). As observed, the presence of the anions had no significant influence
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on CYN removal rate, being the cyanotoxin eliminated in 90 min regardless of the water matrix 

composition tested. The resulting rate constants showed a slight influence of the anions on the kinetics 

of the process (Table 3). Remarkably, only bicarbonate led to some decline in the oxidation rate of CYN 

while phosphate and mainly sulfate promoted it. On the other hand, it should be highlighted that none of 

the anions tested led to a higher leaching of iron from the solid compared with the results showed in 

previous sections. It is well-known that bicarbonate and carbonate anions are potent HO· scavengers 

and that they can also lead to an inefficient decomposition of H2O2, yielding HOO· which shows a 

lower oxidation potential and less reactivity than HO·, according to the following reactions (Beltrán et 

al., 1998): 

HO· + HCO3
-
  CO3

-
· + H2O (1) 

CO3
-
· + H2O2   HCO3

- 
+ O2

-
· + H

+
  HCO3

-
 + HOO· (2) 

In fact, the experiment carried out with a higher concentration of HCO3
-
 (50 mg L

-1
) led to an 

inefficient consumption of H2O2 and thus, the complete conversion of CYN was not achieved (see Fig. 

S1 of the Supplementary Material for experimental data). Karci et al. (2018) also observed a partial 

inhibition in the degradation of CYN upon photo-Fenton reaction in the presence of carbonate anions. 

Nevertheless, the effect of the anion on the performance of the process was significantly higher than that 

obtained in the current work. The rate constant was reduced around 77% when the concentration of 

NaHCO3 was adjusted to 3 mg L
-1

 (total alkalinity = 1.8 mg CaCO3 L
−1

) while only a 9% decrease was

observed in the presence of 3 mg L
-1

 HCO3
-
 with the H2O2/Fe3O4-R400 catalytic system.

According to previous works (Ratanatamskul et al., 2010; Pignatello et al., 2006), sulfate and 

phosphate ions can inhibit the homogeneous Fenton reaction due to their interaction with ferrous and 

ferric ions (Ratanatamskul et al., 2010; Pignatello et al., 2006). This fact allows to explain why the 

effect of these anions at low concentrations was not negative on the removal of CYN although it must 

be noted that a slight inhibition was observed at the highest concentration of sulfate tested (50 mg L
-1

)

(see Fig. S1 of the Supplementary Material for the experimental data obtained within the concentration 

range of 3 – 50 mg L
-1

 with sulfate). These results are in agreement with those achieved in the Fenton
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oxidation of 4-chlorophenol in the presence of different inorganic anions, where the kinetic constants 

were found to decrease in the following order: ClO4
-
 ~ NO3

-
 > SO4

2-
 > Cl- >> HPO4

2-
 > HCO3

-

(Lipczynska-Kochany et al., 1995). It must be also noted that, the effect of sulfate and mainly phosphate 

has proved to decrease the efficiency of the oxidation in different works, they were carried out using 

significantly higher anion concentrations than the typical found in natural waters (Lipczynska-Kochany 

et al., 1995; Pignatello et al., 2006).  

3.4. Operation in real surface water 

As a proof of concept, the potential application of the catalytic system H2O2/Fe3O4-R400 was finally 

evaluated using a real surface water ([TOC] = 2.7 mg L-1, [IC (inorganic carbon content)] = 14.9 mg L-1; 

[SO4
2-] = 11.2 mg L-1; [PO4

3-] = 0.1 mg L-1; [Cl-] = 14.1 mg L-1; conductivity = 200 S cm-1) spiked 

with CYN. In this case, the effect of the initial concentration of the cyanotoxin was examined within the 377 

representative range of 100 to 500 g L-1. The obtained results are depicted in Fig. 4 and the resulting

rate constants are summarized in Table 3. A marked decay on the oxidation rate of CYN was observed 

compared with the results obtained in deionized water (Fig. 1). CYN conversion was around 90% after 6 

h of treatment while only 1.5 h were enough to achieve its complete degradation in deionized water, 

which means a 6.6–fold decrease of the rate constant. According to the results showed in the previous 

sections, this decrease could be related to the presence of bicarbonate and also NOM in the real surface 

water while sulfate, phosphate and chloride would be of minor importance given their low concentration 

and poor HO· scavenging effects. Nevertheless, it must be noted that complete conversion of the 

cyanotoxin was achieved in 3 h reaction time with a more representative concentration of the target 

pollutant (100 g L-1). Furthermore, it must be noted the low concentration of catalyst used in this case

(0.2 g L-1). In fact, less than 60 min reaction time were required to achieve the complete conversion of

CYN at a concentration around one order of magnitude higher than the commonly found in real water 

reservoirs (100 g L-1) with 1 g L-1 catalyst load.
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3.5. Toxicity study 

The toxicity of the cyanotoxins as well as the CWPO effluents was analyzed using the brine shrimp 

Artemia salina. This organism filters a large amount of water per hour and thus, it faces a higher risk of 

exposure to pollutants compared to other aquatic species, being recognized as an outstanding model 

organism for toxicity testing (Zhu et al., 2017; Ozkan et al., 2016; Rajabi et al., 2015). Table 4 collects 

the toxicity values obtained for each of the cyanotoxins studied (parent compounds) in terms of lethal 

concentration (LC50, mg L-1) using 24-old nauplii at different exposure times (24, 48 and 72 h). Clearly,

CYN was the most toxic cyanotoxin followed by MC-LR and MC-RR. In the case of ATX and STX, the 

toxicity was significantly lower and LC50 values could only be calculated at 72 h exposure time. The 

obtained results obtained are consistent with those previously reported for MC-LR and CYN (Metcalf et 

al., 2002; Cornish et al., 2000). Nevertheless, it must be noted that these results cannot be directly 

extrapolated to the toxicological effects produced by the tested cyanotoxins in humans. For instance, 

pure CYN has an LD50 in mice (intraperitoneal) of 200 µg kg-1 (Ohtani et al., 1992), though LD50 values

in mice vary depending on the exposure time. The LD50 of CYN in mice (intraperitoneal) is lower than 

that reported for ATX (250 µg kg-1) and MC-RR (50 µg kg-1) but higher than that of MC-LR (50 µg kg-

1) or STX (10 µg kg-1) (Sivonen and Jones, 1999; Pearson et al., 2016). All in all, CYN poisoning can

cause liver, kidney, thymus and heart damage in mammals (Terao et al., 1994; Wiegand et al., 2005). 

Particularly in humans, CYN has shown hepatotoxic, general cytotoxic, and neurotoxic effects and is 

considered a potential carcinogen (Pearson et al., 2016). 

The mortality promoted by the initial target solutions (1000 g L-1) and the final CWPO effluents

([Cyanotoxin]0 = 1000 g L-1; [H2O2]0 = 4 mg L-1; [Fe3O4-R400] = 0.5 g L-1; T =  25 ºC; pH0 = 5) after

72 h exposure was also evaluated. In line with the calculated LC50 values, the mortality values promoted 

by the cyanotoxins were quite low (10% – 15%) with the exception of CYN (82%). Remarkably, all 

CWPO effluents were non-toxic at the end of the experiments, which is consistent with their complete 

elimination as well as with the fact that short-chain organic acids were the last end-products identified 
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(traces of oxalic, acetic and formic). The evolution of toxicity along the treatment was investigated 

using CYN as target pollutant given its high toxicity. In this case, the mortality caused by the samples 

extracted from the reactor after 72 h exposure was followed. As can be seen in Fig. 5, the toxicity 

decreased progressively along reaction, consistent with the removal of CYN, obtaining a non-toxic 

effluent (mortality < 2%) in 1 h reaction time. These results can be favorably compared with those 

previously reported in the literature for AOPs, where the formation of higher toxicity products along 

reaction and, in some cases, even still present in the final effluents has been observed (Kumar et al., 

2018).  

4. Conclusions

The inexpensive and environmentally-friendly catalytic system Fe3O4-R400/H2O2 has proved to be 

effective for the removal of a representative group of cyanotoxins from water. Notably, they were 

completely eliminated along the treatment under ambient conditions and circumneutral pH although 

their nature clearly determined the oxidation rate, which was found to decrease in the following order: 

MC-RR>CYN>MC-LR>>ATX>STX. In this sense, while only 0.2 g L-1 catalyst and the stoichiometric

amount of H2O2 (2 – 2.6 mg L-1) allowed to remove completely the most reactive cyanotoxins (MC-RR,

MC-LR and CYN) in 1 – 1.5 h, up to 1 g L-1 catalyst and 30 mg L-1 H2O2 were necessary to totally

oxidize the most refractory cyanotoxins (ATX and STX) within the same reaction time. Remarkably, the 

versatility of the process was demonstrated using relevant reaction matrix compositions and a real 

surface water. The effect of NOM and several inorganic ions (HCO3
-, HPO4

2-, SO4
2-) was investigated, 

proving that only the former can lead to a partial inhibition of the reaction. Finally, the capability of 

CWPO to completely eliminate not only the cyanotoxins but also their associated toxicity risk was 

proved with the brine shrimp Artemia salina. These results demonstrate the potential of the Fe3O4-

R400/H2O2 system for the effective and fast removal of cyanotoxins in drinking water treatment, and 

open the door for further research in this field, especially with the least investigated cyanotoxins (ATX 

and STX) and also with real bloom samples containing not only cyanotoxins but also cyanobacterial 
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cells. Further research on the scale-up of the process in continuous flow operation should be also 

explored.  
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Table and Figure captions 

Table 1. Cyanotoxins investigated and theoretical stoichiometry for their oxidation. 

Table 2. Values of the pseudo-first order rate constants of disappearance of the cyanotoxins tested. 

Table 3. Values of the pseudo-first order rate constants of CYN disappearance under different 

conditions.  

Table 4. Toxicity values (LC50) of the cyanotoxins.   

Fig. 1. Time-course of the cyanotoxins upon CWPO ([cyanotoxin]0 = 500 g L-1; [H2O2]0 =

stoichiometric amount (2 – 3 mg L-1); [Fe3O4-R400] = 0.2 g L-1; T = 25 ºC; pH0 = 5). Experimental

(symbols) and model fit (solid lines). 

Fig. 2. Time-course of ATX and STX upon CWPO at different H2O2 doses (solid symbols: 5 times the 

stoichiometric amount (12 – 15 mg L-1) and open symbols: 10 times the stoichiometric amount (24 – 30

mg L-1)) ([cyanotoxin]0 = 500 g L-1; [Fe3O4-R400] = 1 g L-1; T = 25 ºC; pH0 = 5). Experimental

(symbols) and model fit (solid lines). 
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Fig. 3. a) Effect of the concentration of humic acids (a) and inorganic ions (3 mg L-1) (b) on the

degradation of CYN upon CWPO ([CYN]0 = 500 g L-1; [H2O2]0 = 2 mg L-1; [Fe3O4-R400] = 0.2 g L-1; 

T =  25 ºC; pH0 = 5). Experimental (symbols) and model fit (solid lines). 

Fig. 4. Time-course of CYN upon CWPO in real surface water at different catalyst concentrations 

([H2O2]0 = 2 mg L-1; T = 25 ºC; pH0 = 5). Experimental (symbols) and model fit (solid lines).

Fig. 5. Evolution of Artemia salina mortality upon CWPO of CYN ([CYN]0 = 1000 g L-1; [H2O2]0 = 4

mg L-1; [Fe3O4-R400] = 0.5 g L-1; T =  25 ºC; pH0 = 5).
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Table 1 

* Theoretical stoichiometric dose of H2O2 for the complete oxidation of cyanotoxins (initial concentration = 500 g L-1).

Toxic effect 

in humans 

Cyanotoxin Structural formula Reaction H2O2 

(mg L
-1

)* 

Hepatotoxins Microcystin-LR (MC-LR) 
(995.2 g mol-1) 

O

CH3CH3CH3

H
N

CH3

O
HO O

N
O

CH3O

H
N

CH2

H
N

N
H

O

NH

HN NH2

O
OHO

N
H

O

CH3

H3C

H
N

O

H3C

CH3

C49H74N10O12 + 148 H2O2  49 CO2 + 
180 H2O + 10 HNO3 

2.5 

Microcystin-RR (MC-RR) 
(1038.2 g mol-1) 

OCH3

CH3 CH3

HN

H3C
O

COOH

N

O

CH3

CH2

O

NH

NH

O

H
N

H
N

CH3

COOH

HN

HN NH2

O

HN

H
N NH2

NH

OH3C

C49H75N13O12 + 156 H2O2  49 CO2 + 
187 H2O + 13 HNO3 

2.6 

Neurotoxins Anatoxin-a (ATX) 
(165.2 g mol-1) CH3

O
H
N

C10H15NO + 29 H2O2  10 CO2 + 36 
H2O + HNO3 

3.0 

Saxitoxin (STX) 
(299.3 g mol-1) 

H2N

O

O

N

HN

N

H
N

HN

NH2

OH

OH

C10H17N7O4 + 42 H2O2  10 CO2 + 47 
H2O + 7 HNO3 

2.4 

Cytotoxin Cylindrospermopsin (CYN) 
(415.4 g mol-1) 

H H
OH

N NH

O

NH+

H3C
H

SO O-

O

HN NH

O

O

C15H21N5O7S + 49 H2O2   15 CO2 + 
56 H2O + 5 HNO3 + H2SO4 

2.0 
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Table 2 

Cyanotoxin k x 10
2
 (min

-1
) r

2
 

MC-LR 2.29 0.99 

MC-RR 6.01 0.99 

ATX 0.64 0.99 

STX 0.31 0.99 

CYN 4.45 0.99 
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Table 3 

CYN initial  

concentration  

(g L
-1

)

Catalyst 

(g L
-1

) 

H2O2 

(mg L
-

1
) 

Reaction 

matrix 

Humic acid 

(mg L
-1

) 

Inorganic ions 

(mg L
-1

) 

k x 10
2 

(min
-1

) 

r
2
 

500 0.2 2 Deionized 

water 

0 -- 4.45 0.99 

1 2.86 0.99 

10 1.82 0.98 

-- HCO3
- (3 mg L-

1) 

4.08 0.99 

HPO4
2- (3 mg L-

1) 

4.72 0.99 

SO4
2- (3 mg L-1) 6.50 0.99 

500 0.2 2 Real 

surface 

water 

(not 

additionally 

added) 

(not additionally 

added) 

1.01 0.99 

100 1.21 0.99 

1.0 6.45 0.99 
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Table 4 

Cyanotoxin LC50 (mg L
-1

)

24 h 48 h 72 h 

MC-LR 3.3 1.8 0.9 

MC-RR 9.2 5.7 1.4 

ATX ND* ND* 5.2 

STX ND* ND* 4.3 

CYN 1.1 0.5 0.3 

ND*: non-detected, LC50 > 10000 g L-1 (mortality<15% at all the concentrations tested).

Table 4
Click here to download Table: Table 4.docx

This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

http://ees.elsevier.com/wr/download.aspx?id=1931935&guid=07d49550-0dfa-476b-b8c9-16baa82bb95e&scheme=1


Figure 1 revised 

0 60 120 180 240 300
0

100

200

300

400

500
MC-LR
MC-RR
ATX
STX
CYN

co
nc

en
tra

tio
n 

(
g 

L-1
)

reaction time (min)

Figure 1 Revised

This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/



Figure 2 

0 60 120 180 240 300 360
0

100

200

300

400

500
 ATX
 STX

co
nc

en
tra

tio
n 

(
g 

L-1
)

reaction time (min)

Figure 2 Revised

This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
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