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Robust dynamical invariants in 
sequential neural activity
Irene elices  , Rafael Levi  , David Arroyo  , Francisco B. Rodriguez   & pablo Varona  

By studying different sources of temporal variability in central pattern generator (CPG) circuits, 
we unveil fundamental aspects of the instantaneous balance between flexibility and robustness 
in sequential dynamics -a property that characterizes many systems that display neural rhythms. 
Our analysis of the triphasic rhythm of the pyloric CPG (Carcinus maenas) shows strong robustness 
of transient dynamics in keeping not only the activation sequences but also specific cycle-by-cycle 
temporal relationships in the form of strong linear correlations between pivotal time intervals, i.e. 
dynamical invariants. The level of variability and coordination was characterized using intrinsic time 
references and intervals in long recordings of both regular and irregular rhythms. Out of the many 
possible combinations of time intervals studied, only two cycle-by-cycle dynamical invariants were 
identified, existing even outside steady states. While executing a neural sequence, dynamical invariants 
reflect constraints to optimize functionality by shaping the actual intervals in which activity emerges 
to build the sequence. Our results indicate that such boundaries to the adaptability arise from the 
interaction between the rich dynamics of neurons and connections. We suggest that invariant temporal 
sequence relationships could be present in other networks, including those shaping sequences of 
functional brain rhythms, and underlie rhythm programming and functionality.

Robust sequences of neural activations can be found in any nervous system, from simple invertebrate circuits1–4 to 
vertebrate systems5–12. As experimental and theoretical studies show, sequence generation is a key computational 
phenomenon to encode, control and execute information in sensory, central and motor networks13–19. In many 
cases, robust sequences underlie what is usually simply viewed and termed as a rhythm. Unveiling general prin-
ciples in the generation and coordination of neural sequences, particularly in transient regimes, is an important 
step in relating neural activity to function and has potential impact in other fields such as rehabilitation technol-
ogy, robotics and control theory20–23.

Central pattern generators (CPGs) are neural circuits that produce flexible rhythmic motor patterns24,25. Their 
robust and highly coordinated neuron activation sequences arise from the combination of intrinsic cell and syn-
aptic dynamics26,27. Invertebrate CPGs are key neural circuits to understand sequence generation and coordi-
nation, as their cells and connections have been identified and mapped, like in the crustacean pyloric CPG that 
we use in this study26,28–30. Most CPGs have what is called a non-open topology31, i.e., all neurons in the CPG 
receive input from other cells in the circuit for transient closed-loop computation. An essential component of 
these sequence generator networks is reciprocal inhibition between pairs of neurons. Mutual inhibition together 
with electrical coupling and other non-reciprocal interactions31,32 underly the timing of neuron activations that 
shape each cycle25,33–35. CPGs activate muscles that produce motor rhythms and their proper function is crucial 
for animal survival.

Experimental and computational studies of CPGs traditionally examine their rhythmic output from periodic 
spiking-bursting regimes. Recordings of crustacean pyloric CPG neurons in the semi-intact network typically 
show regular sequential behavior of the circuit, see26,36. On the other hand, in vivo recordings of CPG activity dis-
play further temporal characteristics and a larger degree of irregularity than in vitro recordings36–38. Recordings 
of isolated cells show that most of them are highly irregular39–42. Rich intrinsic cell and synaptic dynamics, aris-
ing from different time scales27, enable neurons comprising the CPG to readily establish a network rhythm in 
concert26. Recent work has proposed that variability in cycle period can be controlled by synaptic feedback43,44. 
External and intrinsic factors continuously affect the system inducing transients and therefore making them an 
important element of the system functionality, which can be better observed in recordings of irregular activity 
(see Fig. 1).
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Early on, the CPG community identified the importance of phase maintenance for motor function45–47. 
Previous studies in the pyloric CPG have reported approximate maintenance of phase-frequency relationships 
when altering the rhythm speed by current injection34,48–50 or by temperature changes36,51. By quantifying average 
delays and periods and comparing across preparations, authors could show that certain elements of the rhythm 
maintain relative timing with changes in frequency36,48,49. In this context, most works discard irregular activity, as 
well as, transient changes. Information regarding variability cannot be ignored when characterizing the instan-
taneous generation and coordination of neural sequences and this information is lost under traditional average 
analyses.

Here, we address the changes in a cycle-by-cycle ongoing CPG rhythm, and argue that there is an instantane-
ous negotiation of the resultant sequence. To expose this process we included in our study irregular rhythms, i.e., 
activity that presented high variability within the same experiment. We considered both intrinsic variability in 
the preparation, and irregularity induced by ethanol. The analysis unveiled properties of the underlying robust 
dynamics controlling rhythm coordination, which remained unnoticed in regular rhythm regimes. In spite of the 
large variability seen in the experiments, we report two dynamical invariants in the form of strong linear correla-
tions between pivotal time intervals that build the sequence.

Figure 1. Examples of sequential activity produced by the pyloric CPG. The traces correspond to simultaneous 
extracellular recordings of the LVn nerve (upper trace) and intracellular recordings of PD and LP neurons in the 
intact CPG. Panel (A) An example of the characteristic regular triphasic spiking-bursting activity in this CPG 
circuit. Large spikes in the LVn trace correspond to the LP neuron. Note that LP spikes occur in antiphase with 
PD spikes and the respective IPSPs can be observed in the PD neuron trace. PY spikes can be observed in the 
extracellular recording after the LP and before the PD spikes (red boxes in the upper trace). PD and LP burst 
durations and hyperpolarization intervals are nearly constant in the recordings. Panel (B) Example of transient 
irregular spiking-bursting activity in control conditions. Note the irregular hyperpolarizations and variability in 
LP plateaus as compared to the regular trace shown in regular control conditions. Panel (C) Example of 
irregular spiking-bursting activity under ethanol (170 mM).
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Considering regular bursting activity and a dynamic-clamp protocol that altered a pyloric CPG synapse, pre-
vious work reported a dynamical invariant in which the ratio between the resulting change in average burst dura-
tion and the change in average phase lag between PD and LP neurons was tightly preserved in all preparations52. 
Here we follow this terminology, but we refer to robustly preserved instantaneous interval relationships within 
the variability of a preparation, as opposed to cross-preparation averaged phase maintenance. This term reflects 
better the transient information exchange in the circuit.

The novelty of our approach resides in the analysis of long recordings in which the variability of the activity is 
kept intact, i.e., we did not extract steady state regimes with nearly periodic activity from the recordings and/or 
average intervals among preparations as in previous studies. Rather, we characterized cycle-by-cycle variability in 
long intrinsic regular or irregular rhythm recordings and also in recordings under the effect of ethanol to search 
for intervals that sustained a robust relationship with the period and, thus, defined a dynamical invariant. Because 
our characterization of the rhythms shows that the intervals that build the sequence display distinct variability, it 
is not trivial that any of them is correlated with the period. Since connectivity is asymmetric and non-open31 and 
neurons are heterogeneous25,32–35,53, selecting an adequate time reference frame is crucial to expose dynamical 
invariants. The invariants balance flexibility and robustness of intrinsic neuron dynamics and asymmetric con-
nectivity, in a cycle-by-cycle negotiation, which produces sequential activity even during transients. We hypoth-
esize that dynamical invariants participate in the instantaneous coordination of the different muscles innervated 
by the CPG neurons, and therefore can be linked to the efficient instantaneous performance of motor activity of 
the system in different circumstances.

Beyond CPGs, dynamical invariants might be present in a wide variety of circuits throughout the nervous 
system. Frequency independent temporal ordering has been observed in different neural systems, including the 
hippocampus and the cortex54,55. The study of instantaneously preserved temporal relationships in brain rhythms 
can provide key insights regarding their functional role in the context of precise sequential information encod-
ing and execution. We argue that the insight gained from examining irregular activity transients and dynamical 
invariants in simple CPG circuits will lead to deeper understanding of robust sequential activations in functional 
brain rhythms.

Results
Characterization of time interval variability in CPG sequential activity. The pyloric CPG of the 
crustacean stomatogastric nervous system presents a characteristic rhythm with three main components in a 
robust sequence: the Lateral Pyloric (LP) neuron, a group of six to eight pyloric neurons (PY), two electrically 
coupled Pyloric Dilator (PD) neurons and the Anterior Burster (AB), also electrically coupled to the PDs24,28,56. 
Panel A in Fig. 1 shows an example of extracellular recording of the LV nerve in which these three components 
can be clearly distinguished, along with intracellular recordings from PD and LP neurons. In control conditions, 
this circuit typically produces a regular and robust rhythm with nearly constant burst durations and hyperpolar-
ization intervals (Fig. 1, Panel A).

Irregular activity can also be seen in cases of intrinsic variability in the preparation, which may be a result of 
external neural modulation, severed modulator nerves, etc. Panel B in Fig. 1 shows an example of extracellular 
(LVn) and intracellular recordings from PD and LP neurons in a stomatogastric ganglion with intrinsic variability. 
There are clear differences from the regular activity recordings shown in panel A: hyperpolarization intervals of 
both neurons are irregular and, while PD bursts remain more constant, LP presents longer plateaus and higher 
variability in burst duration. Irregularity can also be induced chemically, e.g. evoked by application of ethanol 
(Fig. 1, panel C) which is known to affect neural dynamics (see an example on rhythmic motor patterns in57). 
Pyloric rhythm under ethanol is characterized by a remarkably flexible and long PD burst duration, and varia-
bility in hyperpolarization in both neurons. At the same time, LP burst duration presents much less variability 
as compared to the PD neuron. Despite the large irregularity induced by ethanol, the sequence LP-PY-PD in the 
rhythm is still preserved. After washing or ethanol evaporation, regular activity is recovered.

The analysis of variability of CPG rhythms in all conditions was assessed by defining specific intervals with 
precise time references using the first and last spike of bursts from intracellular recordings. We chose seven inter-
vals (defined in Fig. 2): Period, LPPD delay (corresponding to PY neuron activity), LPPD interval, PD burst 
duration BDPD, LP burst duration BDLP, PDLP delay and PDLP interval, and studied variability in long record-
ings using their coefficient of variation ( σ µ= ⋅C / 100(%)v ).

Note that some of these intervals are different from those used in other pyloric CPG studies that consider as 
time reference the beginning of the PD burst. In most studies, the PD neuron burst beginning is used as the time 
reference for cycle period and delays of the other so-called follower neurons48,58,59. A considerable variability 
across individual preparations was previously observed in phase-frequency relationships when the pacemaker 
group is used as the time reference59,60. Since PD neurons have strong inertia from electrical coupling among all 
cells in the pacemaker group, the selected time reference frame is more suitable to address the balance between 
flexibility and robustness, see also49.

Figure 2 compares the average of the coefficient of variation of the considered intervals, described in the cen-
tral panel, for preparations with departing regular (left panel) and irregular (right panel) activity in control con-
ditions and under ethanol by means of box-plots. Boxes in darker color correspond to control conditions. In 
regular control preparations, the values of the Cv of the six intervals went from 4% to 15%, the highest correspond-
ing to PDLP delay and BDLP. One can observe that in control conditions variability was small but still left room 
for flexibility. In the case of intrinsic irregular activity, variability increased in all intervals except for BDPD. Under 
the influence of ethanol (lighter hue boxes), both regular and irregular preparations increased the variability in all 
intervals. In particular, BDPD (88–130%), LPPD delay (80–79%) and PDLP interval (67–84%) presented a larger 
variability while BDLP was lower (40–36%). Note that BDLP PD,  and LPPD delay together with PDLP delay build 
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the triphasic rhythm. The interquartile range of the boxes indicates the variability among preparations and, in the 
case of ethanol, it highlights the differences of its effect on the rhythm. Overall, the system showed a wide range 
of variability specific to the distinct intervals that shape the rhythm with large variability in some, such as BDPD, 
and smaller variability in others (e.g., BDLP).

Dynamical invariants. In order to identify factors shaping the CPG transient rhythm negotiation, i.e., the 
process of balancing flexibility and robustness of timings and sequence, we analyzed the cycle-by-cycle intervals 
defined above in regular and irregular rhythms. The underlying question is whether there is any property or tem-
poral relationship in the ongoing rhythm, in addition to the sequence of neuron activations, which is preserved 
under different conditions (regular rhythms, intrinsic irregularity or ethanol), i.e., a dynamical invariant.

Departing from well-defined time references at the burst beginning and end in the LP and PD neurons, we 
analyzed Period, LPPD delay, LPPD interval, PDLP delay, PDLP interval and burst durations BDPD LP,  (see 
middle panel in Fig. 2), and searched for preserved correlations between pairs of intervals, even when the rhythm 
was very irregular. We performed this analysis cycle-by-cycle in long continuous intracellular recordings. It is 
important to note that most relationships between intervals were not preserved, such as BDPD LP,  and PDLP delay 
as a function of the Period , BDLP  or LPPD interval  as a function of BDPD or BDPD LP,  as a function of the 
LPPD delay (see Table 1 columns 1–9). However, we found two relationships that presented strong linear corre-
lations in both control an ethanol conditions: the measured LPPD delay and Period and LPPD interval and 
Period (Table 1 and Supplementary Figure 1). PDLP interval presented correlation with the Period, however it 
was weaker and not consistent among preparations. Additionally, under ethanol conditions, a couple of experi-
ments also showed correlation between PD burst duration and Period (see Table 1) but it was not consistent 
through the rest of the experiments, as it was with both invariants. In these cases, the higher correlation with the 
Period can be explained in terms of the very long PD bursts duration. What is unique in the intervals participating 
in the invariants is that the correlation exists for any interval duration category and is present in every prepara-
tion, thus we defined them as dynamical invariants. These dynamical invariants consistently remained tightly 
preserved with the slope of the linear regression close to one for different preparations and under different 
conditions.

Approximate phase maintenance observed in previous studies was revealed by averaging intervals across 
preparations (see Introduction). Following the same procedure by calculating interval averages for each prepara-
tion, correlation is found between all intervals and the averaged period and even among them in control and in 
most cases in ethanol conditions (see Table 1 last column). In our cycle-by-cycle analysis, strong correlation is 
only found between LPPD interval Period[ ] and LPPD delay Period[ ].

Figure 3 depicts these two preserved relationships for 9 representative experiments in control conditions with 
their corresponding linear regression. The analysis includes both regular and intrinsically irregular rhythms 
(indicated with †). The linear regression shows that the ratio between the change from one cycle to the next in 
LPPD interval delay,  and the change in Period is constant. The strong linear correlations indicated the presence 
of these invariants despite the rhythm variability ( > .R 0 92  for LPPD interval Period[ ]). We also included the spe-

Figure 2. Definition and variability analysis of temporal intervals considered in this study to characterize the 
CPG cycle-by-cycle rhythm. Central panel: Scheme of the definition of the measured time intervals. Left and 
right panels: Boxplots of the coefficient of variation for the six measures in control conditions (darker color) and 
under the influence of ethanol (lighter hue boxes). Mean values (black dots) are displayed on top of each box. 
Left panel: Quantification of the variability in long recordings for preparations that were regular in control 
conditions (N  = 12). The coefficients of variation are small (4–15%) in control conditions. Under the influence 
of ethanol, in lighter colored boxes, there is a large increase in variability for BDPD (88%), LPPD delay (80%) and 
PDLP delay (124%) while BDLP is more restricted in variability (40%). Right panel: Intrinsically irregular 
preparations (N  = 4). One can observe an increase in variability of LPPD delay and LPPD interval due to the 
irregular hyperpolarization intervals in control conditions (see Fig. 1). After applying ethanol, there is even 
larger variability in BDPD (130%), PDLP interval (67–84%) and LPPD delay (79%) while BDLP variability 
remains more restricted (36%).
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cial case of Exp. 8 in Fig. 3 with R 0 154LPP Ddelay Period[ ]
2 = . . This low coefficient of correlation can be attributed to 

the very small variability in control conditions resulting from a remarkably fast and highly regular rhythm in this 
experiment, which hides the invariant relationship. Supplementary Video illustrates, with the help of the sonifi-
cation of the sequential activity, the presence of the invariants as the spiking-bursting activity progresses in time.

Figure 4 depicts these relationships for the same preparations illustrated in Fig. 3 under the influence of etha-
nol applied after control. Even in this condition, in which the variability of the measured intervals was very large, 
the invariants were still present. Note that now Exp. 8 yields > .R 0 92  for both invariants. Under the influence of 
ethanol, the CPG rhythm can display very long bursts (lasting in some cases over 6 seconds). During some sec-
tions of the recordings in ethanol conditions, bursts in the sequence were lost. These sections that did not contain 
the required time references were removed from the statistics, however the percentage of dismissed bursts never 
exceeded 26% of the whole recording. The presence of the invariant in ethanol suggests that variability in BDPD LP,  
and variability in LPPD delay compensate each other cycle-by-cycle to sustain the invariants in the rhythm.

One notable property of the pyloric CPG network is its asymmetric inhibitory connectivity. This connectivity 
could play a key role in explaining the compensation process that creates the invariants, so that, if key synapses 
are removed, invariants should change or even disappear. Thus, we applied picrotoxin (PTX) M5 10 7⋅ − , a glu-
tamatergic synapse blocker, which blocked the fast inhibitory synapses (see Fig. 5 panel A). Panel B in Fig. 5 
shows an example of PD and LP activity after applying PTX. One can observe the irregular shape of the LP burst-
ing activity, allowed by the low PTX concentration, the absence of LP IPSPs in the PD trace and the removal of the 
LP plateau. A comparison of the coefficient of variation in three conditions, control, PTX and PTX + EtOH, is 
shown in panel C. In control conditions, the variability was small for all measures (5–15%). After applying PTX 
there was a slight increase in Cv for all measures except for LPPD delay that reached 163%. Adding ethanol 
increased the variability even further (43–201%) with values similar to those obtained in experiments after 

Interval correlation Exp1ρ Exp2ρ Exp3ρ ρExp4 Exp5ρ Exp6ρ Exp7ρ Exp8ρ ρExp9 t-test ρ< >Exp

Control

.LPPD inter Period[ ] 0.976* 0.997* 0.997* 0.999* 0.997* 0.970* 0.981* 0.952* 0.988* 1 1.000*

LPPD delay Period[ ] 0.876* 0.939* 0.991* 0.988* 0.992* 0.715* 0.854* 0.392* 0.750* 1 0.999*

BD Period[ ]PD 0.376* 0.587* 0.341* 0.029 −0.132 0.185* 0.108* 0.442* 0.202* 0 0.931*

BD Period[ ]LP −0.170* 0.352* 0.070 0.055 0.512* 0.352* 0.147* 0.135* 0.374* 0 0.924*

BD BD[ ]PD LP −0.160* 0.293* −0.090 0.279* 0.201 0.028 0.105 0.098* 0.153* 0 0.876*

.BD LPPD inter[ ]PD 0.342* 0.562* 0.314* 0.016 −0.154 0.147* 0.067 0.366* 0.172* 0 0.930*

BD LPPD delay[ ]PD 0.354* 0.496* 0.326* −0.024 −0.185 0.129* 0.012 0.107* 0.065 0 0.927*

BD LPPD delay[ ]LP −0.592* 0.018 −0.039 −0.092 0.424* −0.366* −0.357* −0.844* −0.315* 0 0.905*

PDLP delay Period[ ] 0.509* 0.355* 0.769* 0.173* −0.417* 0.161* 0.315* −0.110* 0.098* 0 0.929*

PDLP delay BD[ ]LP −0.105* 0.072* −0.084 −0.006 −0.254 −0.185* −0.030 −0.131* −0.130* 0 0.764*

.PDLP inter Period[ ] 0.632* 0.771* 0.787* 0.172* −0.426* 0.375* 0.511* 0.809* 0.722* 1 0.977*

.PDLP inter BD[ ]LP −0.163* 0.304* −0.100* 0.068 −0.194 −0.203* 0.071 −0.043 0.064 0 0.843*

Ethanol

.LPPD inter Period[ ] 0.998* 0.676* 0.773* 0.866* 0.774* 0.894* 0.923* 0.979* 0.950* 1 0.918*

LPPD delay Period[ ] 0.997* 0.630* 0.743* 0.851* 0.756* 0.821* 0.910* 0.957* 0.913* 1 0.890*

BD Period[ ]PD 0.395* 0.707* 0.591* 0.643* 0.934* 0.366* 0.564* 0.120* 0.531* 1 0.728

BD Period[ ]LP 0.011 0.445* 0.386* 0.411* 0.155 0.376* 0.341* 0.505* 0.621* 1 0.548

BD BD[ ]PD LP 0.03 0.028 −0.039 0.151* 0.034 0.105* 0.232* −0.091* 0.169* 0 0.335

.BD LPPD inter[ ]PD 0.352* −0.011 −0.020 0.178* 0.497* 0.130* 0.204* −0.031 0.330* 0 0.417

BD LPPD delay[ ]PD 0.350* −0.027 −0.009 0.165* 0.510* 0.089* 0.186* −0.009 0.346* 0 0.380

BD LPPD delay[ ]LP −0.036 0.341* 0.241* 0.294* −0.040 0.010 0.184* 0.322* 0.391* 0 0.385

PDLP delay Period[ ] −0.053 0.318* 0.088* −0.002 −0.037 0.131* 0.347* 0.711* 0.427* 0 0.601

PDLP delay BD[ ]LP −0.062 0.134* 0.055 0.057 0.229* −0.222* 0.442* 0.306* 0.162* 0 0.112

PDLP inter Period[ ]. 0.349* 0.785* 0.647* 0.644* 0.936* 0.591* 0.592* 0.629* 0.857* 1 0.824*

.PDLP inter BD[ ]LP −0.007 0.063 −0.024 0.157* 0.042 −0.105* 0.276* 0.173* 0.292* 0 0.330

Table 1. Values of the Pearson correlation coefficient ρ obtained for the different combinations of instantaneous 
intervals considered in this study for 9 representative experiments in control and ethanol conditions (same 
preparations as in Figs 3 and 4). Other experiments show similar results. Regression analysis indicated that both 
LPPD interval and delay (bold in the table) have a strong correlation with Period consistently in all the 
experiments. PDLP interval present correlation with Period but is not consistent among preparations, and other 
measured variables are not correlated. A t-test for significance of the correlation coefficients (N  = 16) is also 
included in the table. Last column represents the Pearson correlation coefficient among interval averages 
calculated for the 16 preparations. *Slope significantly different from 0 (p 8 10 4< ⋅ − ).
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applying ethanol alone (c.f. Fig. 2) except for BDLP and LPPD delay, which showed larger variability after remov-
ing the connections from the PYs and AB with PTX.

Figure 6 shows the correlations in three experiments under three conditions: control, PTX, and PTX and 
ethanol. One can observe that the dynamical invariant LPPD delay Period[ ] was not preserved in the absence of 
fast synapses with slopes tending to 0 in all experiments, as opposed to the dynamical invariant 
LPPD interval Period[ ] that maintains a tendency similar to the corresponding control. A possible explanation for 
the preservation of this invariant is the LP burst duration variability, which manages to compensate PD variability, 
even under the effect of ethanol. More examples of the effect of PTX on the invariant correlations are provided in 
Suplementary Table 1 and Supplementary Figure 2.

The presence of both invariants LPPD interval Period[ ] and LPPD delay Period[ ] is a very robust result, 
observed in all control experiments performed (N  = 42). In the Supplementary material we also provide a script 
to quantify and display the two reported invariants in any simultaneous recording of LP and PD neurons.

time interval cycle-by-cycle analysis. A major contribution of our work is the demonstration of 
cycle-by-cycle adjustments that give rise to the invariants, which can be indirectly be seen in Figs 3, 4 and 6. Even 
though in these figures each point corresponds to one pyloric cycle, the temporal relationship between points is 
lost in this type of representation. To better illustrate the instantaneous compensations of the different intervals in 
each cycle we highlight two representative example of transient changes in an intrinsically irregular preparation 
and under the influence of ethanol, shown in Fig. 7.

Panel A in Fig. 7 shows the evolution of each interval Period, BDLP , BDPD, LPPD delay, LPPD interval, 
PDLP delay and PDLP interval for each cycle period (Exp #9 in Fig. 3). One can observe that LPPD delay and 
LPPD interval closely follow the Period despite its variability. Note that the variability in BDLP , BDPD and 
PDLP delay is much lower and unrelated to the Period. Panel B depicts all the intervals standardized so that their 
variability is presented in the same range. In this representation, the intervals that give rise to the invariants evolve 
on top of each other (see inset). However, the evolution of the intervals BDLP, BDPD and PDLP delay intertwine 
each other approximately compensating their variability among them. Panels C and D shows analogous 
cycle-by-cycle representations to A and B respectively for an illustrative experiment under the influence of etha-
nol (Exp #6 in Fig. 4). Note that when there is a really long PD burst, PDLP delay interval can be negative if there 
is a certain overlap of the PD and LP burst. Also, in these cycles, it is likely for BDPD to be proportional to the 
corresponding long Period (see Fig. 1). The intervals participating in the dynamical invariants, on the other hand, 
are correlated to the period for any interval duration category in each cycle and it is consistent in every experi-
ment. Despite the induced large variability, LPPD delay and LPPD interval closely follow the Period.

Figure 3. Presence of the two dynamical invariants in control conditions in 9 representative preparations. The 
correlation between LPPD interval and Period is shown in blue while the correlation between LPPD delay and 
Period is shown in red. Each point corresponds to one pyloric cycle of continuous recordings. Linear regressions 
are depicted for each experiment. Regression analysis showed that both LPPD interval and delay values 
increased with period. The linear dependence is indicated by R2 values displayed for each experiment in the 
corresponding panel. †Intrinsically irregular preparations. *Slope significantly different from 0 ( < ⋅ −p 8 10 4).
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Discussion
Although typically characterized by frequency and synchronization, most brain rhythms throughout the nervous 
system are built from sequential activations of groups of neurons12,17,61,62. Some of these sequences are often very 
robust and directly related to the execution of motor commands, cognitive decisions and behavioral actions. 

Figure 4. Presence of the two dynamical invariants under the influence of ethanol for the corresponding 9 
preparations displayed in Fig. 3. The correlation between the measured LPPD interval and Period is shown in 
blue while the correlation between LPPD delay and Period is shown in red. Each point corresponds to one 
pyloric cycle. Linear regressions are depicted for each experiment. Regression analysis showed that both 
LPPDinterval and delay values increased with period. The linear dependence is indicated by R2 values displayed 
for each experiment in the corresponding panel. Line in orange corresponds to the linear regression between 
LPPD interval and Period in control conditions shown in Fig. 3, and is provided to facilitate the comparison. 
*Slope significantly different from 0 (p 8 10 4< ⋅ − ).

Figure 5. Results of blocking fast inhibitory synapses with PTX. Panel (A) Scheme of the connectivity of the 
pyloric CPG after applying picrotoxin (PTX) ⋅ − M5 10 7 . Dotted lines correspond to blocked fast inhibitory 
synapses. Panel (B) Example of the spiking-bursting activity of the circuit after applying PTX. The traces 
correspond to simultaneous intracellular recordings of PD (upper trace) and LP (lower trace) neurons. Note 
that the characteristic IPSPs typical seen in the PD neuron trace are no longer present. Panel (C) Coefficient of 
variation (Cv) for the six measures in three conditions: control, first column for each measure (darkest color); 
after applying PTX ⋅ − M5 10 7  (N  = 3), middle column; after adding ethanol to the PTX dilution (N  = 3), third 
column (lightest hue boxes). The highest variability in control conditions corresponded to BDLP and 
PDLP delay (15%), while after applying PTX the highest Cv corresponded to LPPD delay with 163%, which is 
almost 14 times higher than in control. Variability in the other 5 measures also increased with PTX although 
more slightly. Adding ethanol to the PTX solution increased variability even further (43–201%).
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When generating robust sequential activations, cycle-by-cycle flexibility and fine tuning of instantaneous peri-
ods, phases and event timings can be crucial for the optimization and achievement of effective functions. In this 
paper, we have addressed this issue in a well-known experimental model where these questions can be more easily 
examined.

Most experimental and computational studies on CPGs focus their analysis on regular regimes, frequently 
discarding non-regular transient activity26,36. However, the analysis of irregular CPG rhythms, rich in transient 
dynamics and not only in steady state activity, can unveil important properties of the robust neuron and network 
dynamics underlying sequence programming and coordination. Irregular rhythms were obtained in this study by 
two means: intrinsic irregularity, and biophysical disruption with ethanol. Moderate ethanol application did not 
disrupt the anti-phase relationship between LP and PD neurons, thus the robustness of the sequence was kept, but 
evoked variable burst duration and hyperpolarization intervals. The effect of ethanol was reversible and in most 
cases the neurons returned to their original rhythm after ethanol was washed out or evaporated.

As opposed to traditional regular activity recordings, irregular rhythms caused by intrinsic factors in the 
preparation presented high variability in hyperpolarization intervals and waveforms in both LP and PD neurons. 
LP presented larger plateaus and higher variability in burst duration while PD activity remained less variable. 
Irregularity induced by ethanol, however, presented remarkably flexible and long PD burst durations, while LP 
burst duration was more restricted. Ethanol also induced variability in the hyperpolarization intervals in both 
neurons.

Our results show that the CPG tends to preserve specific cycle-by-cycle temporal relationships between neu-
rons even under extreme conditions, which points out to the circuit’s highly effective negotiating properties and 
the dynamical arrangement of the motor rhythm to balance robustness and flexibility. Using an adequate time 
reference frame and experimental conditions to expose transient dynamics, our characterization of cycle-by-cycle 
variability in CPG circuits has revealed the presence of dynamical invariants in neural sequences. Cycle-by-cycle 
analysis allowed to center the study of dynamical invariants in transient regimes, without losing the temporal 
relationship between pivotal time intervals building the sequence. Results show that LPPD delay  and 
LPPD interval closely follow the changes in Period despite the variability underlying both dynamical invariants. 
These invariants were present not only in regular control conditions but also in intrinsic irregular conditions and 
when high irregularity was induced by ethanol. In control conditions, the presence of both invariants was a very 
robust result, since they were found in all experiments performed (n = 42). One plausible explanation for the 
invariants is that the intervals, BDLP, BDPD and PDLP delay approximately compensate their variability in each 
pyloric cycle. The invariant LPPD interval Period[ ] is more precise than LPPD delay Period[ ], this is probably 

Figure 6. Comparison of the two dynamical invariants in three conditions: control, PTX and PTX + Ethanol in 
3 different preparations. The correlation between the measured LPPD interval and Period is shown in blue 
while the correlation between the LPPD delay and Period is shown in red. Each point corresponds to one 
pyloric cycle. Regression analysis showed that only LPPD intervals increased with period. The linear 
dependence is indicated by R2 values displayed for each experiment in the corresponding panel. *Slope 
significantly different from 0 (p 8 10 4< ⋅ − ). Line in orange corresponds to the linear regression between the 
measured LPPD interval and Period in the control conditions shown in the first column.
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because LPPD interval contains the added variability of both BDLP and LPPD delay. It is important to note that 
other explored relationships among CPG activity intervals did not lead to strong correlations in the form of invar-
iants. This might imply that they are not as relevant for the rhythm negotiation and, thus, have unrelated variabil-
ity to fulfill another role. Since in our experiments we only used intracellular recordings of LP and PD neurons, 
we cannot discard the presence of additional preserved relationships among other neurons. CPGs could use the 
reported invariants and other preserved relationships to program their function under distinct circumstances, 
which may underlie their remarkable context-specific autonomous adaptability and functional efficiency.

It is important to emphasize that in this work we considered different time intervals from the commonly 
analyzed latency onset and offset, which are defined using the PD neuron first spike36,48,49,59. When connectivity is 
asymmetric, the selection of the time references to define the intervals is crucial for exposing potential dynamical 
invariants. LP neuron receives less connections than other neurons in the pyloric circuit. Therefore, it has more 
flexibility to adapt and coordinate its activity with the rest of the circuit elements in a cycle-by-cycle basis, making 
this neuron a better candidate as a time reference (see also49). Also note that the two invariants observed during 
cycle-by-cycle transients are different than the approximate phase maintenance reported in previous works that 
used cross-preparations analysis, steady activity recordings, and other time references36,48,49,59. Approximate phase 
maintenance, obtained by averaging phase and periods in different preparations or in the same preparation under 
different treatments34,36,48–51,59, might reflect some aspects of the unveiled invariants, but not their presence in 

Figure 7. Cycle-by-cycle transient changes in the studied intervals. Panel (A), intervals Period, BDLP, BDPD, 
LPPD delay, LPPD interval and PDLP delay for each cycle. Note that despite the variability in period, 
LPPD delay and LPPD interval closely follow it. Panel (B) shows the intervals as in Panel A but with 
standardized duration. In this representation, the variability of all intervals are in the same range. Note that the 
standardized LPPD delay, LPPD interval and Period, which give rise to the invariants, evolve on top of each 
other while the evolution of the others intertwine. Analogous representation of the cycle-by-cycle transient 
changes under the influence of ethanol are shown in Panels (C,D). LPPD delay and LPPD interval closely track 
Period despite the induced variability. Both insets show a blow up to highlight the common evolution of the 
three intervals involved in the invariants (solid lines).
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cycle-by-cycle analysis, in particular during transients. In our analysis, averaging intervals within preparations 
(see last column in Table 1) always provided linear relationships between all intervals and the period across exper-
iments due to all sources of interval variability canceling each other. However, only the intervals participating in 
the invariants are strongly correlated to the period in a cycle-by-cycle analysis in long recordings. This means that 
the variability of these two intervals in each cycle is restricted by a linear relation and thus results in a rule for the 
coordination of the sequence.

For further analysis, PTX was used along with ethanol to study how removing fast synapses in the circuit 
affected the invariants and tilted the interacting forces of the network that negotiate timings within a robust 
sequence. We observed that the specific asymmetric connectivity of the pyloric network plays a key role in shap-
ing the invariants. After removing glutamatergic synaptic inputs by applying PTX, the correlation 
LPPD delay Period[ ] was completely gone while LPPD interval Period[ ] was still maintained. Preservation of this 
last invariant is probably due to the LP burst duration variability, which manages to compensate the PD variabil-
ity, even under the effect of ethanol.

Most neural functions are supported by neuronal oscillatory activity, often simply referred to as a rhythm61,63. 
Rhythms are recorded in specific brain circuits, such as in CPGs, or observed in recordings spanning distinct 
frequencies and anatomical regions, such as the cerebellum, the hippocampus, the basal ganglia and cortical 
areas. In most cases, brain rhythms are characterized and quantified in regard to only their frequencies and syn-
chronization properties. However, a wide variety of experimental works show that robust sequential activations of 
different neuron types participate or are recruited at different phases of the oscillations that define brain rhythms 
(e.g64–70).

Most neural rhythms, as pyloric neural oscillations, are based on inhibition as the main mechanism shap-
ing not only the rhythmic activity71, but most importantly, the sequential activation of its constituent elements. 
Inhibition based mechanisms offer specific time windows where neurons can express their excitability, balancing 
the robustness of the sequence and the flexibility to tune activation timings. The actual execution of a sequential 
neural command, e.g., in the performance of a movement, is determined not only by the serial order of individual 
participants but also by their timing. This is the case for the pyloric CPG, as most likely fine timing adaptations 
are required to optimize the function of the motor plant beyond keeping the sequence needed to move food from 
one side to the other.

The unveiling of dynamical invariants in the spatio-temporal patterns of neural activity may have an impor-
tant impact in robotics. Traditional robotic locomotion control paradigms are based on ad-hoc rules to deal with 
different scenarios (e.g. obstacle avoidance, uneven terrain, etc). The concept of dynamical invariants provides an 
alternative way to autonomously build constraints to drive behavior in all situations. In this context, a dynamical 
invariant based CPG control arising from the connectivity and rich intrinsic neuron dynamics21 can provide 
autonomous solutions to different situations informed by sensory feedback.

Beyond spiking-bursting activity and CPG function, dynamical invariants in other brain rhythms can under-
lie the creation of cyclic windows within oscillations when synaptic input can be most efficiently integrated for 
the effective execution of sequences generated in a given informational context55,66. We foresee that the study 
of specific time references and dynamical invariants in different neural systems will provide novel views on the 
functional role of brain rhythms and their constituent sequences.

Methods
Experimental design. Adult male and female shore crabs (Carcinus maenas) were purchased locally and 
maintained in a tank with 13–15 °C artificial seawater. Crabs were anesthetized by ice for 15 min before the dis-
section. The procedures followed the European Commission and Universidad Autónoma de Madrid animal treat-
ment guidelines. The stomatogastric nervous system was dissected following standard procedures and pinned in 
a Sylgard-coated dish containing Carcinus maenas saline (in mM : 433 NaCl, 12 KCl, 12 CaCl H O22 2⋅ , 20 
MgCl H O62 2⋅ , 10 HEPES, adjusted to pH 7.60 with 4 m NaOH). After desheathing the STG, neurons were iden-
tified by their membrane potential waveforms and the spikes times in the corresponding motor nerves. Membrane 
potential from neurons was recorded using 3 M KCl filled microelectrodes (50 ΩM ) and a DC amplifier (ELC-
03M, NPI Electronic, Hauptstrasse, Tamm, Germany). Extracellular recordings were made using stainless steel 
electrodes in Vaseline wells on the motor nerve and amplified with an AC amplifier neuroprobe (model 1700, 
A-M Systems, Bellevue, WA, USA). Data was acquired at 10 KHz using a A/D board (PCI-MIO-16E-4, National 
Instruments). Spike timings were obtained from intracellular recordings using Dataview (https://www.st-an-
drews.ac.uk/wjh/dataview/), first applying a FIR filter and then a threshold-crossing criterion to detect the begin-
ning of each spike. Since we used a high threshold and worked with intervals, calculated by subtracting 
consecutive time references, the error introduced by using the beginning of the spike is mostly cancel out. In each 
recording, the distribution of the spikes was used to select the time windows that defined the intra and inter burst 
intervals, and particularly the first and last spike of each burst (see Matlab scripts in Supplementary material). The 
accuracy of the scripts were carefully verified for each experiment. Preparations were exposed to concentrations 
of (170 mM) Ethanol (Panreac), added directly to the bath. Glutamatergic synaptic inputs were blocked using 

− M10 7  picrotoxin (PTX; Sigma-Aldrich). Only preparations that completed all categories of treatment were 
included for this analysis.

statistical analyses. To analyze and quantify regular and irregular recordings, we considered several inter-
val measures based on precise time references at the beginning and at the end of the bursts (see Fig. 2 middle 
panel): PD and LP burst duration BDPD LP, : intervals from the first spike to the last spike of PD and LP neuron, 
respectively; LPPD delay: interval from the last LP spike to the first PD spike; LPPD interval: interval defined 
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from the LP first spike to the PD first spike; PDLP delay: interval from the last PD spike to the first LP spike in the 
following burst; PDLP interval: interval from the first PD spike to the first LP spike in the following burst; Period
: interval from first LP spike to the next first spike in the following LP burst. We quantified these measures in long 
intracellular recordings (15 min on average). There were some extreme cases in irregular rhythms induced by 
ethanol where time references were not well defined and the corresponding activity had to be removed from the 
statistics shown below. The number of bursts that had to be dismissed in these experiments ranged from 1 to 17% 
and 0 to 27% of the total number of bursts of LP and PD neurons, respectively, in the recordings.

The coefficient of variation defined as C / 100 (%)v σ µ= ⋅  depicted in the boxplots Figs 2 and 5 was calcu-
lated as an average of the Cvi

 of each experiment in an ensemble N  specified in each plot.

C C for i N100, {1, 2, , }
(1)

v v
i

i
i

σ
µ

= 〈 〉 = ⋅ ∈ ...

The significance level α used for the null hypothesis significance test for correlations of data was adjusted 
according to the Bonferroni correction, which modifies the desired overall alpha level 0α  compensating for the 
number of hypothesis to be tested m as the following:

α
α

=
m (2)

0

In this case, the number of hypothesis is the correlations between different combination of the defined time 
intervals ( =m 12). Thus, setting 0 010α = . , the final significance level applied was α = ⋅ −8 10 4.

A t-test was also performed to tested the significance of the correlation coefficients among 16 experiments for 
each hypothesis m (see Table 1).

Standardized cycle intervals z in Fig. 7 were calculated as follows:

µ

σ
=

−
z

x
for each j cycle, , (3)j

j

where x is the interval value.
Experimental data analysis was implemented with Matlab. In the Supplementary material we provide the 

scripts to calculate the intervals defined in Fig. 2 from the spike-times, plot the invariants and produce barplots 
of the coefficient of variation. These scripts can be used for further validation in other CPG circuits and, in fact in 
any other candidate neural sequence.

Data Availability
The interval datasets that support the findings of the current study are included in this published article (and 
its Supplementary Information files).
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