
 

 

 

 
 Repositorio Institucional de la Universidad Autónoma de Madrid 

https://repositorio.uam.es 

 

 Esta es la versión de autor del artículo publicado en: 
 This is an author produced version of a paper published in: 

 

 British Journal of Pharmacology   (2020): 19 June 

 

 DOI: https://doi.org/10.1111/bph.15166 

Copyright: © 2020 The British Pharmacological Society 

 

 El acceso a la versión del editor puede requerir la suscripción del recurso  

Access to the published version may require subscription 

https://repositorio.uam.es/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7184373/
https://doi.org/
https://doi.org/


 

This article has been accepted for publication and undergone full peer review but has not been 
through the copyediting, typesetting, pagination and proofreading process which may lead to 
differences between this version and the Version of Record. Please cite this article as doi: 
10.1111/bph.15166 

 
This article is protected by copyright. All rights reserved. 

Statins: Could an old friend help the fight against COVID-19?  

 

Raul R. Rodrigues-Diez1,2, Antonio Tejera-Muñoz1,2, Laura Marquez-Exposito1,2, Sandra 

Rayego-Mateos2,3, Laura Santos Sanchez1,2, Vanessa Marchant1,2, Lucía Tejedor Santamaria1,2, 

Adrian M. Ramos2,4, Alberto Ortiz2,4, Jesus Egido5, Marta Ruiz-Ortega1,2. 

 

1 Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación Instituto 

de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, 

Spain.  

2 Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain. 

3 GE-06 Pathophysiology of Renal and Vascular Damage laboratory. Maimonides Biomedical 

Research Institute of Cordoba (IMIBIC), University of Cordoba, 14004 Cordoba, Spain. 

4 Laboratory of Nephrology and Hypertension, Fundación Instituto de Investigación Sanitaria-

Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain. 

5 Renal, Vascular and Diabetes Research Laboratory, Fundación Instituto de Investigación Sanitaria-

Fundación Jiménez Díaz.Universidad Autónoma. 28040 Madrid, Spain; 

Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM). 

28029 Madrid, Spain 

 

 

Correspondence:  

Marta Ruiz-Ortega; Mruizo@fjd.es 

Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Fundación 

Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 

Avda. Reyes Católicos, 2, 28040 Madrid, Spain 

 

 

 

 

 

 

 



 

 
This article is protected by copyright. All rights reserved. 

Abstract  

COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2) has overwhelmed Healthcare Systems requiring the rapid development of 

treatments, at least, to reduce COVID-19 severity. Drug repurposing offers a fast track. Here, 

we discuss the potential beneficial effects of statins in COVID-19 patients based on evidence 

that they may target virus receptors, replication, degradation and downstream responses in 

infected cells, addressing both basic research and epidemiological information. Briefly, statins 

could act modulating virus entry, acting on the SARS-CoV-2 receptors, ACE2 and CD147, 

and/or lipid rafts engagement. Statins, by inducing autophagy activation, could regulate virus 

replication or degradation, exerting protective effects. The well-known anti-inflammatory 

properties of statins, by blocking several molecular mechanisms, including NF-κB and NLRP3 

inflammasome, could limit the “cytokine storm” in severe COVID-19 patients which is linked 

to fatal outcome. Finally, statin moderation of coagulation response activation may also 

contribute to improve COVID-19 outcomes.  
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Introduction 

 

Coronavirus (CoVs) are enveloped viruses from the order of Nidovirales that have a 

positive sense, single-stranded RNA genome (+ssRNA)(Schoeman and Fielding, 2019). 

Although primarily these viruses affect mammals and birds, the last decades have witnessed 

outbreaks of human infection, a process known as zoonosis(Schoeman and Fielding, 2019). In 

2003, a zoonotic infection causing a severe acute respiratory syndrome (SARS) was reported 

in Guangdong province (China). Its cause was a novel virus, SARS-CoV-1(Singhal, 2020). 

Nine years later, another zoonosis called Middle-East respiratory syndrome (MERS) induced 

by the MERS-CoV was first identified in Saudi Arabia(Singhal, 2020), and more recently, by 

the end of 2019, again a coronavirus zoonosis inducing SARS was described for the first time 

in the city of Wuhan (China)(Singhal, 2020). This new SARS-CoV-2 induces a new disease 

called COVID-19. The recent events related to COVID-19 enhance the need of knowing what 

the virus is, where it comes from and how it can be defeated. Its high mortality rate and ease 

of transmission make SARS-CoV-2 one of the most important targets of research in recent 

years, forcing the scientific and medical community to undertake fast measures to understand 

the virus behavior. Currently, there is no effective, approved therapy for CoV infections, only 

palliative treatment of the symptoms and supportive care. In this point, background from 

SARS-CoV-1, MERS-CoV or other coronaviruses becomes important. Since the first outbreak 

of SARS, many studies have addressed the virus structure and the molecular basis of its 

interaction with the host. Developing a vaccine or an effective new antiviral treatment against 

an unknown virus needs many experimental studies, clinical trials and, what is more important 

in a critical situation, enough time to develop them. For this reason, in recent decades, several 

authors have pointed out the importance of drug repurposing, identifying already available 

drugs that may be used to treat future viral infections in order to be prepared for the next 

worldwide plague(Fedson, 2006; Phadke and Saunik, 2020). Unfortunately, now is “the day” 

and it is necessary to identify existing drugs that can be repurposed to help COVID-19 patients 

until an effective vaccine can be developed. Currently, there are more than 850 clinical trials 

using pharmacological interventions to treat COVID-19 (U.S. National Library of Medicine., 

2020).  

The HMG-CoA reductase inhibitors, usually known as statins, are a group of drugs 

commonly used to lower serum cholesterol by reducing its liver synthesis (Liao and Laufs, 

2005; Rodrigues Diez et al., 2010). Besides its well-known lipid-lowering effects, statins have 

been postulated to possess pleiotropic beneficial actions by regulating numerous biological 

https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=639
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pathways implicated in antioxidant, anti-inflammatory or anti-tumor cellular responses(Liao 

and Laufs, 2005). The pleiotropic effects of statins have been mainly demonstrated in cell 

cultures and experimental models but in humans is sometimes difficult to dissociate them from 

the statins hypolipemic effects(Oesterle et al., 2017). However, the anti-inflammatory non-lipid 

effects of statins have been confirmed in a wide range of clinical trials including the 

AFCAPS/TexCAPS or the JUPITER trials where statins lowered the acute inflammatory 

marker C reactive protein (CRP) independently of low-density lipoprotein (LDL) 

reduction(Ridker et al., 2001, 2008; Hansson, 2005). Additionally, the JUPITER clinical trial 

showed that rosuvastatin treatment might modestly reduce the incidence of pneumonia in 

healthy adults with low LDL cholesterol (below 130 mg/dL) and a high-sensitivity CRP level 

≥2.0 mg/dL(Novack et al., 2012). These results support the hypothesis that statins can modulate 

other cellular responses independent of their main lipid lowering action. Since their discovery, 

statins have been proposed as therapeutic agents in different diseases including infections such 

as influenza virus or MERS-CoV(Fedson, 2006; Phadke and Saunik, 2020). Here, we describe 

different mechanisms through which statins could be potentially helpful in the fight against 

COVID-19. 

 

SARS-CoV-2 infection entry pathways: the importance of ACE2 and CD147 

receptors 

 

CoVs genome encodes four major structural proteins: the spike protein, the 

nucleocapsid protein, the membrane protein and the envelope protein(Schoeman and Fielding, 

2019). Recent studies have suggested that some CoVs do not require the full ensemble of the 

four proteins to form a complete infectious virion(Schoeman and Fielding, 2019) (Figure 1). 

Among them, the spike glycoprotein (SP) is known to be essential for virus binding to the host 

cells during the infection process(Shen et al., 2007). SP is a transmembrane protein that 

contains protrusions which confers their specificity for some host cell receptors. It is composed 

by two subunits: 1) S1, which contains the receptor binding domain (RBD) responsible for 

recognizing the cell surface receptors, and 2) S2, which is necessary for membrane fusion(Du 

et al., 2009). Several host cell receptors bind to S1 and help some coronaviruses to invade cells, 

such us dipeptidyl peptidase-4 (DPP4)(Raj et al., 2013), aminopeptidase N (APN)(Reguera et 

al., 2012), carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5)(Chan et 

al., 2016), or the angiotensin-converting enzyme 2 (ACE2)(Lan et al., 2020).  

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2718
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3114
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3121
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3117&familyId=1034&familyType=OTHER
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=3116&familyId=1034&familyType=OTHER
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1612
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1560&familyId=737&familyType=ENZYME
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2836
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1614
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ACE2 is one of the best characterized receptors. It binds to the S1 domain and its 

relevant role in SARS-CoV-1-induced lung injury has been well established(Kuba et al., 2005). 

ACE2 is a component of the renin angiotensin system (RAS). This enzyme degrades 

Angiotensin II (Ang II), the effector RAS peptide, to Ang (1-7). Ang II regulates blood pressure 

and contributes to the pathogenesis of many cardiovascular diseases(Ruiz-Ortega et al., 2001). 

Drugs that block Ang II, including angiotensin converting enzyme inhibitors (ACEi) and/or 

angiotensin II receptor blockers (ARB), are currently used to treat many cardiovascular 

diseases, including hypertension and diabetes, two of the most prevalent COVID-19 

comorbidities and clearly associated to the risk of admission to Intensive Care Unit, invasive 

ventilation, or death(Guan et al., 2020). RAS blockers may induce tissue ACE2 

overexpression(Ferrario et al., 2005), and therefore their vascular beneficial effects, besides 

targeting Ang II actions, could be due to ACE2/Ang(1-7) vasoprotective effects. Importantly, 

experimental studies have demonstrated that ACE2 overexpression allowed SARS-CoV-2 

infection(Zhang et al., 2020a). Based on this potential ACE2 activation, an early hypothesis 

stated that RAS blockers could be detrimental in COVID-19 and therefore, treatments with 

ACEi or ARB should be stopped (Fang et al., 2020). However, other studies and key scientific 

societies have argued that there is no empirical basis for this hypothesis and that stopping RAS 

blockade could be unfavorable(AlGhatrif et al., 2020; European Society of Hypertension, 

2020; Zhang et al., 2020b). Nevertheless, the discussion on RAS blockers and COVID-19 is 

beyond the scope of the present review and future research is warranted to clarify this topic.  

Although ACE2 is especially abundant in the heart and kidneys(Kuba et al., 2005) 

where it plays a major role in blood pressure control(Crackower et al., 2002), it is also present 

in other tissues, including lungs(Kuba et al., 2005). For this reason, modulating tissue ACE2 

levels could lead to unwanted and fatal results. For instance, in lung diseases, an impaired 

ACE2 expression increased vascular permeability and lung edema, and did activate the RAS 

contributing to further lung injury progression(Imai et al., 2005). All these possible negative 

effects suggest that ACE2 suppression in COVID-19 should be carefully evaluated. In this 

sense, alternative solutions based on targeting ACE2 receptor has been proposed(Zhang et al., 

2020a). The most promising approach consists of treatment with a soluble recombinant form 

of the human ACE2 (APN01), which potentially can bind SARS-CoV-2, block host cell 

infection and protect the lungs from injury (NCT04287686; NCT04324996).  

CD147 is another cell surface protein that can act as a coronavirus receptor. The CD147, 

also known as basigin, EMMPRIN or leukocyte activation antigen M6, is a member of the 

immunoglobulin superfamily expressed in many epithelial, neuronal, lymphoid and myeloid 

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2504
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=582
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=1613
https://eur02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.guidetopharmacology.org%2FGRAC%2FObjectDisplayForward%3FobjectId%3D3127&amp;data=02%7C01%7CMRuizO.56618%40migracion.quironsalud.es%7Ce34ecdfe939c41bf0dfd08d80ec1f6a3%7Cd879fa4639544e5ca3cfab74f00c58da%7C0%7C0%7C637275573515138922&amp;sdata=cY0W%2FzTTA%2F9PYcuGyYKGDvqUQoyqv3IOcxldQPJ4Nrc%3D&amp;reserved=0
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cell types in its different glycoforms(Grass and Toole, 2015). CD147 is a type I integral 

membrane receptor, that binds to many different ligands including cyclophilin proteins, 

integrins or the Plasmodium Falciparum reticulocyte binding-like homologue 5 (PfRh5)(Xiong 

et al., 2014). CD147 is overexpressed in several cancers, atherosclerosis, inflammation or 

microbial diseases(Grass and Toole, 2015). Accordingly, the role of CD147 in infections by 

pathogens such as human immunodeficiency virus (HIV), hepatitis B (HBV) and C viruses 

(HCV) or Kaposi’s sarcoma-associated herpesvirus (KSHV) has been reported(Xiong et al., 

2014). As described above, CD147 is an essential receptor in erythrocytes for plasmodium 

falciparum infection in malaria(Crosnier et al., 2011) and a clinical trial using an anti-CD147 

antibody (Meplazumab) in malaria patients will start this year (NCT04327310). CD147 also 

facilitates human cytomegalovirus (HCMV) entry to epithelial and endothelial cells(Vanarsdall 

et al., 2018). More linked to SARS-CoV2-induced pulmonary damage, CD147 levels were 

found upregulated in chronic obstructive pulmonary disease (COPD) patients(Jouneau et al., 

2011). Additionally, cultured primary bronchial epithelial cells from asthmatic patients showed 

higher CD147 levels after influenza A virus infection than cells from non-asthmatic 

patients(Moheimani et al., 2018). Regarding coronaviruses, CD147 is a receptor for the S 

protein in the SARS-CoV-1(Chen et al., 2005) and also for SARS-CoV-2(Ke Wang, Wei Chen, 

Yu-Sen Zhou, Jian-Qi Lian, Zheng Zhang, Peng Du, Li Gong, Yang Zhang, Hong-Yong Cui, 

Jie-Jie Geng, Bin Wang, Xiu-Xuan Sun, Chun-Fu Wang, Xu Yang, Peng Lin, Yong-Qiang 

Deng, Ding Wei, Xiang-Min Yang, Yu-Meng Zhu, 2020). In this new study, surface plasmon 

resonance and co-immunoprecipitation assays demonstrated a direct interaction between 

CD147 and the RBD region of the S1. Furthermore, CD147 blockade with Meplazumab 

inhibited SARS-CoV-2 replication in Vero E6 cells. All these data, including an open label 

clinical trial using the humanized CD147 antibody Meplazumab to treat COVID-19 pneumonia 

(NCT04275245), support the concept that CD147 is a potential therapeutic target to fight 

COVID-19.  

 

Statin effects in the key SARS-CoV-2 entry pathways: ACE2 and CD147 

 

Statins have been postulated to possess pleiotropic beneficial effects including  the 

inhibition of the untoward effects due to an overactivated RAS such as inflammation and 

fibrosis(Ruperez et al., 2007; Rodrigues Diez et al., 2010). In this sense, both 

hypercholesterolemia and arterial hypertension are often observed in several clinical conditions 

such as obesity, type 2 diabetes, atherosclerosis and other cardiovascular diseases. For these 

https://eur02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.guidetopharmacology.org%2FGRAC%2FLigandDisplayForward%3FligandId%3D11026&amp;data=02%7C01%7CMRuizO.56618%40migracion.quironsalud.es%7Ce34ecdfe939c41bf0dfd08d80ec1f6a3%7Cd879fa4639544e5ca3cfab74f00c58da%7C0%7C0%7C637275573515138922&amp;sdata=S92gcYNIakJr1W9eGneqEQ0xkHcPSyJJQvmC6wGvgy4%3D&amp;reserved=0)
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reasons, patients are frequently prescribed with statins and RAS blockers. Since ACE2 is a 

receptor for SARS-CoV-2 entry into host cells, an intense debate about the use of RAS blockers 

in COVID-19 patients has recently been generated, based on the fact that both ACEi and ARB 

are shown to modulate ACE2 tissue levels (South et al., 2020; Vaduganathan et al., 2020). 

Statins have also been included  among the drugs that increase ACE2 levels(South et al., 2020). 

In a model of experimental atherosclerosis in rabbits, atorvastatin increased ACE2 protein 

levels in hearts and kidneys compared to untreated atherosclerotic animals(Dong et al., 2008; 

South et al., 2020). Similar results were observed using rosuvastatin or pravastatin in rat 

vascular balloon injury or diabetes(Li et al., 2013; Min et al., 2018). However, in those studies 

ACE2 levels were decreased in injured tissues compared to healthy groups, and therefore, 

ACE2 upregulation induced by statins is only described under disease situations. Thus, the 

reported upregulation of ACE2 by statins in preclinical studies could represent a normalization 

of ACE2 levels. Therefore, the clinical relevance of these findings is uncertain and probably 

negligible.  

Another pleiotropic effect of statins is the modulation of the CD147 at different levels. 

Mechanistically, statins alter CD147 expression, structure and function by inhibiting protein 

isoprenylation and N-glycosylation(Sasidhar et al., 2017). In cultured THP-1 monocytes, 

pretreatment with atorvastatin, pravastatin or fluvastatin, impaired CD147 translocation to the 

cell surface, downregulating matrix metalloproteinase activity, and inhibiting THP-1 

differentiation to macrophages after phorbol-12-myristate-13 acetate (PMA) 

administration(Sasidhar et al., 2017). Atorvastatin also downregulated CD147 levels and 

attenuated plaque vulnerability in experimental atherosclerosis in mice(Liang et al., 2017). 

Therefore, all these studies suggest that statins, by downregulating CD147 in human cells, 

including pulmonary cells, could impair the virus ability to infect cells and could be used as an 

add-on or coadjuvant therapy against COVID-19.  

 

COVID-19 and lipid rafts 

 

Lipid rafts, defined as small heterogeneous membrane domains enriched in cholesterol 

and sphingolipids, participate in the compartmentalization of several cellular processes(Lajoie 

and Nabi, 2007). A relevant role of membrane lipids in the attachment of viruses, including 

some coronaviruses, to host cells has been previously reported(Choi et al., 2005; Heaton and 

Randall, 2011). In this sense, in Vero E6 cells lipid rafts play an important role in the 

coronavirus life cycle during the early stage of SARS(Li et al., 2007). Closer to COVID-19, 

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2949
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2954
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2953
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2951
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one in vitro study addressed the role of cholesterol-rich membrane microdomains in the 

interaction of the S protein of SARS-CoV-1 with ACE2(Glende et al., 2008). ACE2 was 

present in detergent-resistant membranes, therefore cholesterol was required for efficient S-

mediated binding to ACE2-containing cells. These data suggest that lipid raft modulation could 

be an option to reduce ACE2-mediated virus infection. 

 

Statins modulate lipid rafts: potential role in SARS-CoV-2 infections 

 

Statins inhibit the cholesterol biosynthesis pathway by inhibiting HMG-CoA reductase 

and modulate cell membrane lipid raft composition. Statins have been proposed to treat 

disorders associated with lipid rafts changes. Thus, atorvastatin reversed many of the lipid raft-

associated signaling defects characteristic of autoreactive T cells in systemic lupus 

erythematosus(Jury et al., 2006). In the viral context, viruses could subvert cholesterol 

homeostasis generating a protective membrane environment that facilitates virus assembly and 

proliferation(Deng et al., 2010). Therefore, some authors propose targeting host cell lipid flow 

as a potential new antibacterial and antiviral strategy(Fernandez-Oliva et al., 2019). 

Accordingly, the use of methyl-β-cyclodextrin (MβCD) for cholesterol depletion and lipid raft 

disruption decreased the infectivity of several viruses, such as HCV or bovine parainfluenza 

virus, mainly through blocking virus entry into host cells(Fernandez-Oliva et al., 2019). Similar 

results were observed using gemfibrozil as a lipid-lowering drug(Bajimaya et al., 2017). 

Studies performed in cells infected by several +ssRNA viruses, including from the 

Coronaviridae family, suggested that viruses induce changes in cell cholesterol metabolism 

through activation of cellular HMG-CoA reductase. In 2005, transmission electron microscopy 

evidenced that SARS viral infection can result in alterations to the host subcellular membrane 

inducing a gyroid cubic structure that could modulate viral severity, persistence and free radical 

production(Almsherqi et al., 2005). Thus, plasma membrane structural changes in the host cells 

seems to be playing a key role in SARS-CoV infection(Almsherqi et al., 2005). All these data 

support the potential use of statins to prevent or reverse host cell lipid raft alterations induced 

by COVID-19 infection, which could reduce both cell infection and viral replication. 

 

SARS-CoV-2 and autophagy 

 

Macroautophagy, thereafter referred to as autophagy, is a very conserved process in 

which damaged cellular material is enclosed into a double-membrane structure called 

https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=3439
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autophagosome, which finally fuses with lysosomes and forms the autolysosomes for 

degradation. The main aim of this process is to recycle cellular material, maintain energy levels 

and promote cell survival(Yang and Shen, 2020). Canonical autophagy can be divided into 

three different steps. The first one is the initiation step, where an isolation membrane, also 

called phagophore, is formed. The second step is the elongation, in which this isolated 

membrane enlarges and forms the autophagosome. During the third step, maturation, 

autophagosomes merge with lysosomes forming the autophagolysosomes(Cong et al., 2017). 

Several proteins closely regulate these processes, being the mammalian target of rapamycin 

(mTOR) signaling network a central hub in autophagy(Munson and Ganley, 2015). 

Autophagosome formation is mainly controlled by a cluster of genes called autophagy-related 

genes (ATG). Furthermore, the unc-51 like autophagy activating kinase (ULK) complex, as 

well as the class III hVPS34 phosphatidylinositol 3-kinase complex, which includes BECN1 

(Beclin 1), are essential in the initiation of the autophagy and autophagosome formation(Wirth 

et al., 2013). Microtubule-associated protein light chain 3 (LC3) is involved in elongating and 

enclosing the phagophore(Yang and Klionsky, 2010). LC3 forms a complex with Atg8, and is 

cleaved by Atg4, generating LC3-I which has a glycine residue in the C-terminal side. Then 

Atg7 conjugates LC3-I with a phosphatidylethanolamine resulting in LC3-II, which is initially 

attached to both faces of the phagophore membrane, although later on it will be only present in 

the inner face, enabling autophagy to continue(Yang and Klionsky, 2010; Deretic, 2016). Apart 

from its role in cellular homeostasis, autophagy also participates in the innate immunity 

response by degrading intracellular pathogens(Maier and Britton, 2012). Regarding viruses, 

autophagy could act as pro-viral or anti-viral process, depending on the virus(Jackson, 2015). 

Autophagy inhibition increased virulence and replication of some viruses, such as herpes 

simplex virus 1 (HSV1)(Orvedahl et al., 2007) and the Sindbis virus(Orvedahl et al., 2010). 

Moreover, some viruses can modulate the autophagy pathway as a mechanism to increase their 

own replication(Maier and Britton, 2012). This is the case of HSV1, Kaposi’s sarcoma 

associated herpesvirus (KSHV) and murine γ-herpesvirus (MHV) which inhibit 

autophagosome formation by inhibiting Beclin1(Maier and Britton, 2012). The interaction 

between the order of Nidovirales and autophagy has been mostly investigated in the 

coronavirus and arterovirus families(Cong et al., 2017). One of the most studied arteroviruses 

causes the porcine reproductive and respiratory syndrome (PRRS). In PRRSV, autophagosome 

and lysosome fusion are decreased, suggesting that viruses can promote an incomplete 

autophagy, an abnormal process that may benefit viral replication(Sun et al., 2012). 

Coronaviruses and other RNA viruses exploit the autophagy for their own replication using the 

https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2109
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2272
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2152
https://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=2329
https://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2796
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double-membrane compartments formed during autophagy as a platform for their viral 

replication machinery which protects viral RNA from the innate immune system of the host 

cell(Choi et al., 2018). A recent study demonstrated that autophagy inhibition favored MERS-

CoV viral replication. Thus, S-phase kinase-associated protein 2 (SKP2) promoted 

ubiquitination and degradation of Beclin1, while SKP2 inhibition enhanced autophagy and 

reduced MERS-CoV replication up to 28,000-fold(Gassen et al., 2019). 

Interestingly, CD147 is also related to autophagy. The small-molecule compound AC-

73, which targets CD147, elicits autophagy and reduces cell proliferation by inhibiting the 

ERK/STAT3 pathway(Spinello et al., 2019). Moreover, in human prostate cancer PC-3 cells 

CD147 inhibited autophagy via the PI3K/Akt/mTOR signaling pathway, preventing cell death 

from unrestrained autophagy(Fang et al., 2015). Taking into account all the available 

information suggesting a relevant role of autophagy in coronavirus infection and, potentially, 

in SARS-CoV-2 infection, autophagy should be considered as a potential target to treat 

COVID-19. 

 

 

 

 

 

 

Role of statins in the autophagy response 

 

Some of the pleiotropic effects attributed to statins may related to their potential role 

regulating essential proteins involved in autophagy(Ashrafizadeh et al., 2020). Atorvastatin 

induced autophagy by enhancing Beclin1 and LC3-II(Gao et al., 2016) gene and protein 

expression or via AMPK/mTOR pathway(Zhang et al., 2013). In cancer cells, lovastatin 

induced autophagy by up-regulating LC3-II(Shi et al., 2012), and atorvastatin through LC3-I 

to LC3-II conversion(Hu et al., 2018). In the same way, pitavastatin stimulated autophagy in 

melanoma after also increasing LC3-II levels(Al-Qatati and Aliwaini, 2017). Interestingly, not 

only in tumoral tissues statins trigger autophagy. In coronary arterial myocytes simvastatin 

increased autophagy by mTOR pathway inhibition(Wei et al., 2013). In relation to lung, the 

most affected tissue in SARS-CoV-2 infection, fluvastatin induced autophagy in two lung 

adenocarcinoma cell lines (A549 and SPC-A-1), by increasing LC3-II levels(Yang et al., 

2017). Additionally, statins could increase autophagy by indirect mechanisms. Thus, in vitro 
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studies showed that lovastatin and simvastatin elicited SKP2 degradation and, therefore, an 

increase in Beclin1 levels and autophagy(Vosper et al., 2015; Wang et al., 2017). Altogether, 

these studies demonstrate that statins modulate autophagy, and therefore add another target 

supporting their potential beneficial effects in SARS-CoV2 infection. 

 

SARS-CoV-2 and NLRP3 inflammasome activation. 

 

Viruses infecting host cells need to survive and to replicate. Following infection, host 

cells activate the innate immune response trying to eliminate the viruses and prevent virus 

replication(Thompson et al., 2011). To this purpose, host cells have developed highly 

conserved sensors to recognize viral infection and trigger antiviral immune responses. These 

sensors, known as pattern recognition receptors (PRRs), include Toll-like receptors (TLRs), 

several DNA sensors such as cyclic GMP-AMP synthase (cGAS) and retinoic acid-inducible 

gene-I (RIG-I)-like receptors (RLRs). The aim of the PRRs is to identify different pathogen-

associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) 

from invading viruses. PRRs binding to their ligands recruit different pathways through 

activation of the transcription factors NF-κB, activator protein 1 (AP1), and interferon 

regulatory factors (IRFs)(Lamkanfi and Dixit, 2014). While IRFs lead to secretion of type I 

interferons (INFs), which exert their function by signaling through the JAK-STAT pathway 

and the subsequent interferon stimulated genes (ISG) synthesis, NF-κB activates the production 

of proinflammatory factors, including interleukin 6 (IL-6), and also initiates the first stage of 

inflammasome activation(Yang et al., 2019; Zhao and Zhao, 2020). Among the PPRs, the host 

cell response to an RNA viral infection, usually involves the activation of the NACHT, LRR 

and PYD domains-containing protein 3 (NLRP3), and the NLRP3 inflammasome(Kelley et al., 

2019). NLRP3 inflammasome activation is a complex process initiated by caspase-1 activation, 

followed by the maturation of interleukin 1 beta (IL-1β) and IL-18, leading to inflammation 

and some mechanisms of cell death, such as pyroptosis(Man and Kanneganti, 2016). In this 

sense, the open reading frame 3a from the SARS-CoV-1 protein activates the canonical NF-κB 

pathway and the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of the 

p105/NF-κB subunit(Chen et al., 2019; Siu et al., 2019). Accordingly, an increased expression 

of several pro-inflammatory cytokines, including IL-1β and IL-6, has been observed and 

related to the pathogenesis of acute lung injury in SARS-CoV-1 patients(He et al., 2006). 

Similar results have been observed in SARS-CoV infection in mice, in which NF-κB inhibition 

increased survival(DeDiego et al., 2014). Analogous mechanisms are proposed for the new 
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SARS-CoV-2, in which an exacerbated inflammatory response leading to a cytokine storm 

syndrome is responsible for COVID-19 severity and mortality(Mehta et al., 2020). In 

agreement with this hypothesis, clinical trials intended to modulate the inflammatory response 

have been proposed. Some examples are the use of the anti-interleukin drugs anakinra (IL-1 

receptor antagonist), tocilizumab and sarilumab (blocking antibodies against the IL-6 receptor) 

and colchicine, which disrupts NLRP3 inflammasome activation and downregulates IL-1β, IL-

18 and IL-6 levels(Martinez et al., 2015) or even tranilast that targets the NACHT domain of 

NLRP3 blocking the NLRP3 complex formation(Huang et al., 2018). Additionally, following 

pilot clinical trials, the antimalaria drugs chloroquine, hydroxychloroquine or mefloquine are 

also being used to treat COVID-19(Chen et al., 2017; Tang et al., 2018),92. Several potential 

mechanisms of action have been proposed for these drugs, including modulation of ACE2 

expression and anti-inflammatory effects including decreased NLRP3 inflammasome 

activation.  

 

 

 

 

Statins regulate NLRP3 inflammasome-mediated inflammation 

 

Probably, one of the best-characterized pleiotropic actions of statins is their anti-

inflammatory effects(Blanco-Colio et al., 2003; Liao and Laufs, 2005; Hothersall et al., 2006). 

Attenuation of vascular inflammation, on top of their lipid-lowering effect, is thought to 

contribute to the beneficial effect of statins on cardiovascular outcomes(Albert et al., 2001; 

Blanco-Colio et al., 2003). At the molecular level, atorvastatin inhibits NF-κB activation 

induced by Ang II or tumor necrosis factor-α (TNF-α) in cultured rat vascular smooth muscle 

cells (VSMCs) and mononuclear cells by a redox-mediated inhibition of IKK-1/-2(Ortego et 

al., 2005). Similar results were observed in cultured human endothelial cells, in which 

cerivastatin prevented TNFα-induced NF-κB pathway activation by inhibiting PI3K/Akt 

signaling(Holschermann et al., 2006). Several studies have shown a direct regulation of NLRP3 

inflammasome by statins(Parsamanesh et al., 2019). In THP-1 monocytes, atorvastatin 

inhibited NLRP3 inflammasome by suppressing the TLR4/MyD88/NF-κB pathway(Kong et 

al., 2016). In patients with cardiovascular diseases, treatment with statins downregulated the 

expression of NLRP3 and the downstream cytokines, IL-18 and IL-1β(Satoh et al., 2014; Altaf 

et al., 2015). Accordingly, in human peripheral blood mononuclear cells obtained from patient 
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with hyperlipidemia or healthy controls, stimulation with cholesterol crystals caused NLRP3 

inflammasome activation and release of IL-1β, that was abolished by simvastatin 

pretreatment(Boland et al., 2018). Regarding NLRP3 inflammasome, administration of 

atorvastatin during 8 months in patients with coronary artery disease resulted in a decrease in 

NLRP3 inflammasome levels(Satoh et al., 2014). There are also some studies suggesting the 

potential therapeutic role for statins in respiratory diseases such as COPD and 

asthma(Hothersall et al., 2006; So et al., 2018). A recent study revealed that statins markedly 

reduced the risk of subsequent hospitalized exacerbations in COPD frequent exacerbators(Lin 

et al., 2020). Therefore, taking into account the demonstrated anti-inflammatory actions of 

statins, both in NF-κB-mediated cytokine induction and NLRP3 inflammasome activation, 

these drugs could be considered as a potential way of impairing uncontrolled inflammation in 

the treatment of COVID-19 patients. 

 

 

 

 

Coagulation complications in COVID-19 patients 

 

 

The coagulation system could be regulated by host defenses to limit the spread of 

pathogens during severe infections, as exemplified by a large variety of viruses such as HIV, 

Dengue virus or Ebola(Antoniak and Mackman, 2014). Nevertheless, in acute viremia this 

situation could lead to disseminated coagulation contributing to multiorgan failure and 

mortality(Antoniak and Mackman, 2014). Tissue factor (TF) is an essential cofactor component 

of the TF-factor VIIa complex enzyme. TF is transmembrane protein mainly expressed in the 

vascular adventitia in normal conditions(Butenas et al., 2009). However, during viral infection, 

TF can be expressed by endothelial cells (and monocytes) and, when exposed to blood, it can 

activate the coagulation cascade. TF binds to plasma factor VIIa forming the TR-Factor VIIa 

complex enzyme which triggers blood coagulation by proteolysis activation of the zymogens 

factor IX and factor X to the serine proteases, factor IXa and factor Xa(Butenas et al., 2009). 

Coagulation disorders have been also reported in SARS-CoV-1 and MERS-CoV infections 

associated with thrombotic complications and hematologic manifestations. Different 

complications, such as vascular endothelial damage (in both small- and mid-sized pulmonary 

vessels), disseminated intravascular coagulation (DIC), deepyvenous thrombosis and 

pulmonary embolism, leading to pulmonary infarction, have been  observed in SARS-Cov-1 
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infected patients(Wong et al., 2003; Chong et al., 2004; Hwang et al., 2005; Giannis et al., 

2020). Similarly, DIC was one of the major complications reported in fatal MERS-CoV cases. 

Clinical reports include a stable MERS patient who developed MERS-induced DIC, 

intracerebral hemorrhage, and multiorgan failure(Giannis et al., 2020).  

Accordingly, coagulopathy complications are one of the most recent discoveries in 

COVID-19 patients. Some authors have suggested that clot formation in COVID-19 patients 

could be related to the exacerbated inflammatory responses but, like for other viruses, the direct 

participation of the SARS-CoV-2 virus should not be discarded (Connors and Levy, 2020). 

First evidence of abnormal coagulation parameters in COVID-19 patients appeared in China 

where elevated partial thromboplastin time and prothrombin time (a parameter of how long it 

takes the blood to clot) were found. In addition, D-dimer (a fibrin degradation fragment 

produced after blood clot dissolving) levels and other inflammation biomarkers such as IL-6, 

erythrocyte sedimentation rate and CRP, were increased in COVID-19 patients.(Connors and 

Levy, 2020). More recent cohort studies from different countries evaluated clotting factors 

and/or coagulation function in COVID-19 patients with acute respiratory illness and found 

increased fibrinogen levels as well as prothrombin time prolongation(Di Micco et al., 2020). 

However, D-dimer levels elevation and mild thrombocytopenia are the most consistent 

hemostatic abnormalities in COVID-19 patients and are associated with a higher risk of 

requiring mechanical ventilation, ICU admission or death(Bikdeli et al., 2020; Klok et al., 

2020). Based on these data it is recommended to consider the preventive and therapeutic use 

of antithrombotic agents in COVID-19 patients(Bikdeli et al., 2020). Indeed, autopsies from 

patients who died of COVID-19 showed a high incidence of deep venous 

thrombosis(Wichmann et al., 2020) and anticoagulation treatment was associated with survival 

in COVID-19 hospitalized patients(Paranjpe et al., 2020; Tang et al., 2020). At present, a wide 

range of clinical trials are evaluating the use of low-molecular-weight heparin to treat COVID-

19 patients (e.g., NCT04372589; NCT04345848). 

 

Role of statins in the thrombotic process 

 

Among the wide range of proposed pleiotropic effects of statins, the interference with 

the activation of the clotting system and the coagulation cascade is one of the most studied. In 

1997, in vitro studies showed that fluvastatin dose-dependently, impaired TF activity, and 

therefore the coagulation process(Colli et al., 1997). Preclinical studies have addressed the 
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potential mechanisms involved. In vitro data suggest that the inhibition of small G (Rho, Rac 

and Ras) protein isoprenylation by statins is key to inhibit the coagulation cascade(Eto et al., 

2002; Holschermann et al., 2006). Importantly, the RhoA/Rho-kinase (ROCK) pathway is a 

key regulator of TF(Ding et al., 2017). Statins can also downregulate clot formation by other 

mechanisms, including  the thrombomodulin augmentation, via the transcription factor 

Kruppel-like factor 2 (KLF2)(Sen-Banerjee et al., 2005; Lin et al., 2007). Thrombomodulin 

binds thrombin and promotes protein C activation, lowering factors Va and VIIIa plasma levels 

and thus having a potent anticoagulant effect(Maruyama, 1999). The anti-thrombotic effects of 

statins have also been confirmed in preclinical studies(Undas et al., 2002). Interestingly CD147 

inhibition, an effect also attributed to statins as we described in other section, diminished acute 

ischemic stroke in mice by reducing thrombo-inflammation(Jin et al., 2017). 

Importantly, several human studies support the anti-thrombotic effects of statins, In the 

Platelet Receptor Inhibition in Ischemic Syndrome Management (PRISM) study, in patients 

with acute coronary syndrome statin administration reduced the risk of clinical outcomes and 

statin treatment discontinuation abrogated statin-related beneficial effects(Heeschen et al., 

2002). In the Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) 

trial, efficacious in preventing stroke was found in patients with acute cerebral ischemia treated 

with statins(Amarenco et al., 2009). In addition to these clinical trials, some other human 

studies have been performed in this regard. Patients with stable atherosclerotic plaque treated 

with high-dose (80 mg/d) atorvastatin, showed a reduction in the ROCK activity vs. placebo 

that could modulate the coagulation process(Nohria et al., 2009). In hypercholesterolemic 

patients rosuvastatin, but not atorvastatin, reduced TF(Panes et al., 2017). Moreover, 

atorvastatin as well as simvastatin prolonged prothrombin time in patients with 

hypercholesterolemia reducing the tendency to clot generation(Kadikoylu et al., 2003). 

Additionally, a meta-analysis study suggests that statins reduce plasma D-dimer levels after 

three months suggesting their potential use in some coagulation disorders(Sahebkar et al., 

2015). Summarizing, all these proposed anti-thrombotic effects of statins can be another way 

of exerting beneficial effects in COVID-19 patients and their associated clinical complications. 

 

Statins against COVID-19: a hypothesis worthy of consideration 

 

Statins are used, or have been proposed to be used, either alone or as adjuvant drugs, in 

several diseases. These pathologies include hypercholesterolemia, diabetes, hypertension, 

cardiovascular diseases, chronic kidney diseases, different types of cancer, rheumatoid 
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arthritis, asthma or COPD(McCarey et al., 2004; Zhou and Liao, 2009; So et al., 2018; Fatehi 

Hassanabad, 2019), as well as other infective diseases induced by pathogenic microorganisms 

such as malaria, Ebola, influenza virus related diseases or MERS(Taoufiq et al., 2011; Mehrbod 

et al., 2014; Yuan, 2015; Shrivastava-Ranjan et al., 2018). Unfortunately, some of the potential 

protective effects have not yet been evaluated in some of these diseases or more thorough 

studies are needed. Supporting our hypothesis, while writing this review, other authors have 

also suggested the add-on therapy of statins in COVID-19 patients due to their anti-

inflammatory and immuno-modulatory effects, their ability to curb down   cholesterol in lipid 

rafts, and of course for their extended worldwide use(Bifulco and Gazzerro, 2020; Castiglione 

et al., 2020). In addition, several clinical trials in COVID-19 patients, using simvastatin 

combined with the JAK-1/2 inhibitor ruxolitinib to treat COVID-19 patients (NCT04348695), 

using atorvastatin alone (NCT04380402) or combined with other drugs (NCT04333407) are 

currently underway.  

Here, we review some pleiotropic effects of statins such as the downregulation of 

CD147 expression and function, lipid raft disruption, autophagy activation, and attenuation of 

both the inflammatory response and the coagulation activation (Figure 2). All these processes 

are thought to be relevant in the infection and replication of SARS-CoV-2 in host cells. 

Although the use of statins would require to consider potential interactions with other 

experimental therapies for COVID-19 (The University of Liverpool, 2020), taking into account 

their effectiveness, safety, low cost and worldwide distribution, it is worth considering their 

potential to fight COVID-19. Additionally, in-silico studies to identify FDA approved drugs 

targeting SARS-CoV-2 positioned rosuvastatin as the sixth potentially usable drug that may 

have clinical utility in COVID-19(Farag, Ayman; Wang, Ping; Ahmed, Mahmoud; Sadek, 

2020). As rosuvastatin does not use the cytochrome P4503A4 (CYP3A4) and the P-

glycoprotein transport system (P-pg), its inferior interference with various drugs employed in 

these patients, such as remdesivir or chloroquine, would favor its choice as the appropriate 

statin. For this potential to be realized, first steps would be a) to analyze COVID-19 infection 

databases for potential differential severity or mortality, after adjusting for cofounders, of 

patients already on statins, and b) providing a biological plausibility basis by studying the 

impact of statins on viral replication and numbers in cultured cells. This may be followed by a 

pilot clinical trial that, given the known safety profile of the drugs, may be started without 

awaiting the results of basic science and epidemiological studies if these are delayed. So far, 

only observational evidence on the impact of statins in COVID-19 patients is available. 

Although the high mortality among elderly people, who are more likely to have cardiovascular 
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risk factors and be taking statins, may argue against any benefit of these drugs, it is also true 

that a high percentage of elderly people with COVID-19 survive or may even have 

asymptomatic infection(Spiegeleer et al., 2020). In this regard, a recent large multinational 

report of 96.032 hospitalized patients with COVID-19 supports the potential beneficial effects 

of statins. Thus, treatment with statins was more frequent among surviving patients than among 

those patients who died (10.0% vs 6.9%, p <0.0001). Indeed, statin use was an independent 

predictor of low in-hospital mortality (HR, 95% CI: 0.793, 0.736–0.855), although it was not 

associated with a differential risk of ventricular arrhythmias during hospitalization (Mehra et 

al., 2020) These results are in line with a smaller study in 154 nursing home residents in which 

there was a statistically significant association between statin intake and the absence of 

symptoms during SARS-CoV-2 infection (unadjusted OR 2.91; CI 1.27-6.71; p=0.011), which 

remained statistically significant after adjusting for age, sex, functional status, diabetes mellitus 

and hypertension (Spiegeleer et al., 2020).  

 

Nomenclature of Targets and Ligands  

Key protein targets and ligands in this article are hyperlinked to corresponding entries in 

http://www.guidetopharmacology.org, the common portal for data from the IUPHAR/BPS 

Guide to PHARMACOLOGY (Harding et al., 2018), and are permanently archived in the 

Concise Guide to PHARMACOLOGY 2019/20 (Alexander et al., 2019). 
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Figure 1. SARS-CoV-2 complete infectious virion. RNA genome encodes a spike protein 

(SP), an envelope protein (EP), a membrane protein (MP), and a nucleoprotein, being the spike 

protein the most important surface membrane protein of the SARS-CoV-2 

 

Figure 2. Schematic summary of SARS-CoV-2 entry into host cells, replication, effect on 

host cells and postulated impact of statins. ACE2 and CD147 are located in the plasma 

membrane, associated to lipid rafts and can act as SARS-CoV-2 receptors. Statins, by inhibiting 

cholesterol synthesis, modify lipid rafts composition. Statins can also downregulate CD147 

expression and its translocation to the cell surface. Autophagy in host cells is altered during 

SARS-CoV-2 infection, by a mechanism that involves SKP2 upregulation and subsequent 

BECN1 degradation. Statins decrease SKP2 levels and induce BECN1 and LC3 II synthesis, 

which trigger autophagy activation. Another process modulated by SARSCoV-2 is the 

activation of the NF-κB pathway leading to proinflammatory cytokine synthesis, including IL-

6, and NLRP3 inflammasome activation. Statins can downregulate NF-κB pathway activation, 

proinflammatory cytokine synthesis and NLRP3 inflammasome activation. Anti-thrombotic 

effects of statins by TF modulation could also be beneficial in COVID-19 patients. Purple, 

discontinuous lines: viral entry and release. Black lines: cell processes. Green lines: positive 

regulation of the process. Red lines: negative regulation of the process. Continuous green or 

red lines: process regulated by statins. Discontinuous green or red lines: process regulated 

by virus. Viral proteins: EP: Envelope protein, NP: Nucleocapsid protein, MP: Membrane 

protein, SP: Spike protein. *: Denotes targets of specific ongoing clinical trials against COVID-

19. 
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Figure 1. SARS-CoV-2 complete infectious virion. RNA genome encodes a spike protein (SP), 

an envelope protein (EP), a membrane protein (MP), and a nucleoprotein, being the spike 

protein the most important surface membrane protein of the SARS-CoV-2 
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Figure 2. Schematic summary of SARS-CoV-2 entry into host cells, replication, effect on host 

cells and postulated impact of statins. ACE2 and CD147 are located in the plasma membrane, 

associated to lipid rafts and can act as SARS-CoV-2 receptors. Statins, by inhibiting cholesterol 

synthesis, modify lipid rafts composition. Statins can also downregulate CD147 expression and 

its translocation to the cell surface. Autophagy in host cells is altered during SARS-CoV-2 

infection, by a mechanism that involves SKP2 upregulation and subsequent BECN1 

degradation. Statins decrease SKP2 levels and induce BECN1 and LC3 II synthesis, which 

trigger autophagy activation. Another process modulated by SARSCoV-2 is the activation of 

the NF-κB pathway leading to proinflammatory cytokine synthesis, including IL-6, and 

NLRP3 inflammasome activation. Statins can downregulate NF-κB pathway activation, 

proinflammatory cytokine synthesis and NLRP3 inflammasome activation. Anti-thrombotic 

effects of statins by TF modulation could also be beneficial in COVID-19 patients. Purple, 

discontinuous lines: viral entry and release. Black lines: cell processes. Green lines: positive 

regulation of the process. Red lines: negative regulation of the process. Continuous green or 

red lines: process regulated by statins. Discontinuous green or red lines: process regulated by 

virus. Viral proteins: EP: Envelope protein, NP: Nucleocapsid protein, MP: Membrane protein, 

SP: Spike protein. *: Denotes targets of specific ongoing clinical trials against COVID-19. 


