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ABSTRACT

T
raffic on computer networks has faced an exponential grown in recent years.

Both links and communication equipment had to adapt in order to provide

a minimum quality of service required for current needs. However, in recent

years, a few factors have prevented commercial off-the-shelf hardware from

being able to keep pace with this growth rate, consequently, some software tools are

struggling to fulfill their tasks, especially at speeds higher than 10 Gbit/s. For this reason,

Field Programmable Gate Arrays (FPGAs) have arisen as an alternative to address the

most demanding tasks without the need to design an application specific integrated

circuit, this is in part to their flexibility and programmability in the field. Needless to say,

developing for FPGAs is well-known to be complex. Therefore, in this thesis we tackle

the use of FPGAs and High-Level Synthesis (HLS) languages in the context of computer

networks. We focus on the use of FPGA both in computer network monitoring application

and reliable data transmission at very high-speed. On the other hand, we intend to shed

light on the use of high level synthesis languages and boost FPGA applicability in the

context of computer networks so as to reduce development time and design complexity.

In the first part of the thesis, devoted to computer network monitoring. We take ad-

vantage of the FPGA determinism in order to implement active monitoring probes, which

consist on sending a train of packets which is later used to obtain network parameters.

In this case, the determinism is key to reduce the uncertainty of the measurements.

The results of our experiments show that the FPGA implementations are much more

accurate and more precise than the software counterpart. At the same time, the FPGA

implementation is scalable in terms of network speed — 1, 10 and 100 Gbit/s. In the con-

text of passive monitoring, we leverage the FPGA architecture to implement algorithms

able to thin cyphered traffic as well as removing duplicate packets. These two algorithms

straightforward in principle, but very useful to help traditional network analysis tools to

cope with their task at higher network speeds. On one hand, processing cyphered traffic

bring little benefits, on the other hand, processing duplicate traffic impacts negatively in

the performance of the software tools.



In the second part of the thesis, devoted to the TCP/IP stack. We explore the current

limitations of reliable data transmission using standard software at very high-speed.

Nowadays, the network is becoming an important bottleneck to fulfill current needs, in

particular in data centers. What is more, in recent years the deployment of 100 Gbit/s

network links has started. Consequently, there has been an increase scrutiny of how

networking functionality is deployed, furthermore, a wide range of approaches are

currently being explored to increase the efficiency of networks and tailor its functionality

to the actual needs of the application at hand. FPGAs arise as the perfect alternative to

deal with this problem. For this reason, in this thesis we develop Limago an FPGA-based

open-source implementation of a TCP/IP stack operating at 100 Gbit/s for Xilinx’s FPGAs.

Limago not only provides an unprecedented throughput, but also, provides a tiny latency

when compared to the software implementations, at least fifteen times. Limago is a key

contribution in some of the hottest topic at the moment, for instance, network-attached

FPGA and in-network data processing.

ii Mario Daniel Ruiz Noguera



RESUMEN

E
l tráfico en las redes de ordenadores ha crecido exponencialmente durante los

últimos años. Tanto los enlaces como los equipos de comunicación han tenido

que adaptarse para proveer la calidad de servicio mínima dependiendo de la

aplicación. Sin embargo, en los últimos años, ciertos factores han impedido

que el hardware tradicional sea capaz de seguir este ritmo de crecimiento, por lo tanto,

algunas herramientas tienen problemas para cumplir sus tareas, especialmente a ve-

locidades mayores a 10 Gbit/s. Por este motivo, las FPGA surgen como una alternativa

para implementar las tareas más demandantes sin tener que desarrollar un circuito

específico, esto es debido en parte a su gran flexibilidad y alta capacidad de programación

en el campo. Sin embargo, el desarrollo en esta tecnología es conocido por ser complejo.

Es por ello que en esta tesis abordamos el uso de FPGAs y lenguajes de alto nivel en el

ámbito de redes de ordenadores. Tanto en la monitorización de las mismas, como en la

transmisión fiable de datos a muy alta velocidad. Mientras que con el uso de lenguajes

de alto nivel pretendemos posicionarlos como una alternativa para reducir el tiempo y

complejidad de desarrollo en el contexto de redes de ordenadores.

En la primera parte de esta tesis, dedicada a la monitorización de redes de orde-

nadores. Aprovechamos del determinismo de las FPGAs para implementar sondas de

monitorización activas, las cuales consisten en enviar un tren de paquetes a partir del

cual se pueden medir parámetros de red. En este caso el determinismo es primordial para

reducir la incertidumbre en las medidas. Los resultados de los experimentos muestran

que la implementación FPGA es mucho más exacta además de tener mayor precisión en

las medidas que la versión software. A su vez, la implementación FPGA es escalable a

diferentes velocidades de enlace — 1, 10 y 100 Gbit/s. En el ámbito de la monitorización

pasiva, también aprovechamos de las FPGAs para implementar algoritmos capaces

de reducir el tráfico encriptado y eliminar paquetes duplicados. Estos dos algoritmos,

simples en principio, pero útiles a la hora de ayudar a las herramientas tradicionales de

análisis de red a seguir operando en enlaces de mayor velocidad. Por un lado, analizar

tráfico encriptado no trae mayores beneficios, mientras que analizar tráfico duplicado

impacta negativamente en el desempeño de las herramientas de software.



En la segunda parte de esta tesis, dedicada al protocolo TCP/IP. En el contexto actual,

las redes se están convirtiendo en un cuello de botella para satisfacer las necesidades

modernas, en particular en los centros de datos. A demás en los últimos años se comenzó

a desplegar enlaces de 100 Gbit/s. En este sentido, hay un mayor escrutinio de cómo se

implementa la funcionalidad de red, además, se están explorando una gran variedad de

alternativas para incrementar la eficiencia y adaptar su funcionalidad a las necesidades

reales de la aplicación en cuestión. Las FPGAs se presentan como la alternativa ideal

para solventar este problema. Es por esto que en esta tesis desarrollamos Limago una

implementación de código abierto la cual implementa el protocolo TCP/IP completo

a 100 Gbit/s para las FPGAs de Xilinx. A demás de lograr un ancho de banda sin

precedentes en transmisión fiable de datos, también, presenta una latencia muy baja

comparada con las implementaciones de software, al menos quince veces. Limago es una

contribución de vital importancia en algunos de los temas de investigación más activos

en el momento, por ejemplo, FPGAs conectadas directamente a la red y procesamientos

de datos en la fuente de los mismos.

iv Mario Daniel Ruiz Noguera
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INTRODUCTION

T
his chapter furnishes the context of this Ph.D. Thesis. First of all, we delineate
the pivotal motivation of this thesis, challenges and insights that guided its
progress. Shortly after, we set in context this work in regards with the current
trends in the FPGA and monitoring arena as well as FPGAs as network-

attached elements. With that in mind, we formulate the objectives of this Thesis. Finally,
we outline the Thesis organization and detail the content of each chapter.

1.1 Motivation of the Thesis

Our day-to-day activities are becoming more and more dependent on communication

networks: the Internet, mobile apps, e-commerce, cloud applications, among others. Such

widespread use of communications has implications at both access and server sides of

the computer networks, for instance, there is an increasing need for fast and reliable

networks. At the access side, it drives the development of faster access technologies, such

as 10 Gbit/s passive optical networks or five generation (5G) mobile networks. At the

server side, it causes exponential increase in network traffic being faced by data centers.

From this perspective, the authors in the paper [1] argue that the exponential growth

would not have been possible without exponential growth in the computing ecosystem:

chip level, system level and adopting community. As they stated these factors feed

themselves to keep the growth at an exponential pace. In this regard, Cisco forecasts [2]

the IP traffic growth in the period of 2017 to 2022, see Figure 1.1. What is more, Lord



CHAPTER 1. INTRODUCTION

Figure 1.1: IP traffic compound annual growth rate. Source: [2].

et.al [3] explore the different factors that impact on the continuous growth on the Internet,

for instance, Figure 1.2 shows the exponential growth in the broadband demand in the

United Kingdom at peak time for a ten-year period. This figure confirms Nielsen’s Law [4]

of the Internet bandwidth, an empirical observation which states that “A high-end user’s
connection speed grows by 50% per year”.

It is expected that the network speed continues growing to meet the data traffic

growth, thereupon, the computing performance should match the growing rate. In such

a way, computer networks have turned into a critical infrastructure, where malfunctions

cannot be tolerated. Hence, it is paramount to guarantee the quality of network links in

order to ensure an appropriate operation of the whole ecosystem. As a result, network

testing is key to assess such networks and it has become more necessary than ever

before. Notwithstanding, network testing becomes a complex and expensive task at

such speeds; with Dennard scaling dead (Figure 3.3), the traditional software-based

approaches struggle to monitor multi-gigabit-per-second networks. Lately, application

specific circuits to tackle network monitoring at such speed have gained traction so as to

overcome the limitations of Commercial Off-The-Shelf (COTS) hardware.

Field Programmable Gate Array (FPGA) has proven to be able to perform a wide

variety of monitoring task. Yet, in 2005 Taylor et al. [5] include a FPGA implementation

in their survey for packet classification. In another survey in 2010 [6] the authors

made a thorough and comprehensive research of the different approaches with FPGA

for network security, they argue that for those applications surveyed the FPGA-based

implementation surpassed the performance of the software-based counterpart. Moreover,

the company Arista [7] in 2018 released a white paper with the four key trend in

4 Mario Daniel Ruiz Noguera
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Figure 1.2: Total broadband demand for one ISP in the UK, measured at peak time over
a ten-year period. Source: [3].

the networked use of FPGAs — Software Defined Network (SDN); latency-sensitive

automated trading; network capture and timestamping; networked video. Therefore,

FPGAs have arisen as a ubiquitous technology not only for network monitoring, but

also, for other networking tasks, for instance, switching [8]. When compare to traditional

Application Specific Integrated Circuit (ASIC), FPGA provides more flexibility and less

non-recurrent engineering cost, while keeping the high degree of parallelism. In this

light, FPGAs stand as one of the most advantageous and cost effective solutions to deal

with challenging network monitoring. Furthermore, one of the driving forces of FPGA in

networking has been the open-source hardware and software project NetFPGA [9–11].

It started in 2006 as a teaching project in Stanford University, and rapidly, it became a

popular prototyping platforms for research and industry projects.

On the other hand, it is well-known that the FPGA development is lengthily and

complex. For many years Hardware Description Languages (HDLs) have dominated

how to describe programmable logic for FPGA designs. Nevertheless, in the last decade

High-Level Synthesis (HLS) tools have demonstrated enough maturity as well as good

Quality of Results (QoRs), consequently, they have gained a portion in FPGA development

phase [12]. Briefly, HLS tools aims at enabling to describe hardware using languages

such as C/C++ (a higher degree of abstraction when compared to the RTL paradigm). On

Ph.D. Dissertation 5
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this subject, in the paper [13] the authors present an exhaustive survey of HLS tools,

where they argued that, even though the QoR of HLS is not as good as handcrafted

Register Transfer Level (RTL), the productivity can be over four times higher. Yet, in 2011

Cornu et al. [14] presented efficient hardware accelerator implementations of algorithms

that gave better performance than the RTL counterpart. Forconesi et al. [15] present

an evaluation of Vivado-HLS (Xilinx’s commercial tool) implementing a flow monitoring

application, they claim a reduction of one order of magnitude in the development time

when compared to RTL design. Moreover, one of the key of the success of HLS tools,

apart from the fact that the main programming language is C/C++, is the ability to

explore the design space much quicker and usually without requiring to modify the

source code. Furthermore, in the last lustrum the industry and research community

introduced several tools for packet processing targeting FPGA designs [16–21] based

on high level abstraction languages. These factors have fueled the use of HLS tools

and FPGAs in the context of computer networks. Consequently, high level synthesis for

networking applications is an active research topic.

Not only have FPGAs been used for networked tasks, but also, some researchers

have used them as a compute node in a distributed environment [22–24]. When compare

to General-Purpose Graphics Processing Unit (GP-GPU), FPGAs have less Floating

Point Operations per Second (FLOPS); however, they are more flexible to map irregular

algorithms. What is more, the communication latency is smaller due to the direct com-

munication of the interface with the programmable logic [25]. In light of these features,

in the last five years there have been efforts to shift the CPU-attached paradigm to a

network-attached one [26–29]. This phenomenon has been driven by the growth of com-

putation power and heterogeneity on FPGAs. The idea is to detach the FPGA from a host

machine and communicate directly through the network. Thus, increasing the overall

efficiency and reducing the communication overhead. This would not have been possible

without an efficient and scalable 10 Gbit/s TCP/IP implementation which was made

open-source back in 2015 [30]. The efforts in the community are focused on improving

the abstraction model of the infrastructure. Furthermore, one of the current endeavors

is to accelerate heavy tasks by moving the compute closer to the data so as to reduce

the communication overhead [31]. However, there has been little effort on enhancing

the underlying communication infrastructure to tailor it to today’s needs. For instance,

convolutional neural networks need a large bandwidth to communicate the convolutional

layers.

6 Mario Daniel Ruiz Noguera
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1.2 Context of this Thesis

As stated above, the COTS (plus it associated software) solutions for monitoring

high-speed networks are struggling to keep the pace of the network link evolution. Thus,

FPGAs have emerged as a ubiquitous technology to tackle some of the most complex tasks.

Needless to say, FPGA development has been considered a skillfulness labor. However,

FPGA design is evolving towards HLS which, not only reduces the development time,

but also, democratizes the use of FPGAs owing to a simpler design methodology. On

the other hand, as every technology, FPGAs have their limitations, for instance, large

memory requirements with low-latency access. Nonetheless, the new families include

harden High Bandwidth Memory (HBM) that might help to overcome such limitation.

In this regard, network monitoring; FPGA for networking and HLS described above

have drawn the attention of the community for the last years. Remarkably, much of the

research is contemporary to the period of this thesis. Figure 1.3 plots the number of

references that can be found on the Web of Science (WoS) for every year in the period of

1990 to 2018 for the following queries:

• FPGA and network* NOT (“neural network*”)

• NetFPGA

• FPGA and “High Level Synthesis”
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The plot shows an almost linearly rise of results in monitoring with FPGAs over the

years, since 1999. This fact confirms that FPGAs have gained a portion of the academic

interest in that matter, by virtue of their myriad applicability. Despite that, most of

the research has been focused on security and deep packet inspection. The NetFPGA

brought light into packet processing; switching schemes and some testing appliances.

Antichi et al. [32] were one of the pioneers in passive monitoring system using NetFPGA.

In that work they presented a system based on the cooperation of a NetFPGA and a

general purpose host machine. As a follow up, the paper [33] presents OSNT: an open-

source network tester, with packet generation as well as packet capture capabilities.

Likewise, Oeldemann et al. [34] present a network tester which is similar to the OSNT

work but with subtle improvements on the trace replay and software programmability

through their Application Programming Interface (API). What is more, Puš et al. in

2015 presented a custom board with an FPGA able to handle 100 GbE links, the FPGA

distributes the traffic into different cores in the host machine for further processing.

With regard to HLS, the research has been mainly focused on accelerating algorithms,

especially machine learning accelerators. In spite of that, there have been efforts towards

monitoring appliances using HLS [15, 35]. The introduction of P4 [36], a domain-specific

language optimized around network data, led the way of efficient and high level abstrac-

tion models for packet processing [17–19, 37–39]. In 2017, Emu [40] was introduced

to enable rapid development of network functionality. What is more, Eran et al. [20]

presented a library for packet processing aiming at code reusability, which is built on top

of HLS.

Additionally, the increasing demands for distributed computing and the performance

and scalability of many distributed applications depend upon an efficient implementation

of the Transmission Control Protocol (TCP) and the Internet Protocol (IP). Implementing

a TCP Offload Engine (TOE) on an FPGA opens interesting opportunities to explore

programmable Network Interface Cards (NICs) as they offer higher flexibility than many

commercial NIC. Unfortunately, reaching 100 Gbit/s speed is challenging, even using

NIC-based TOE. Hence, Sidler et al. [30] paved the way in 2015 with a scalable 10 Gbit/s

TCP/IP full stack implemented on an FPGA. Thus, most of the network-attached FPGA

works have been built on top of it [26, 41].

All in all, this plot acknowledges the increase efforts of the community on FPGA

for networking, as well as the raised of HLS efforts. On the other hand, the number of

NetFPGA results have stalled since 2015, this is mainly because the latest version of the

platform has not been updated since 2014.
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1.3 Objectives of this Thesis

Previously, we have presented the research lines of this thesis. Consequently, in this

section we describe the main objectives of this thesis. We lay out three main objectives.

The first one delves deep into the FPGA capabilities for network monitoring in both

active and passive areas. The second one seeks for a very high-speed low-latency and

reliable data transmission implementation for distributed FPGA infrastructure, where

FPGAs are detached from host machines and connected directly to the network. Finally,

the third one scrutinizes the applicability of HLS in the FPGA design methodology for

networked applications, this objective is fully embedded in the two previous objectives.

The following items summarizes the sub-objectives of this Thesis:

• Explore FPGA capabilities in active monitoring: FPGAs are well-known for

their high degree of parallelism as well as their determinism. We want to take

advantage of these two factors to perform active measurement. In particular, we

want to contrast the accuracy of FPGA-based solutions against the software-based

counterpart using the packet-train technique.

• Explore FPGA capabilities in passive monitoring: in this regard, we want

to leverage the heterogeneity of FPGAs to thin traffic smartly without losing

any relevant information. We explore how to cap cyphered packets, and how to

remove duplicate packets. Aiming at helping traditional software tools not to

handle unnecessary data.

• Explore FPGA capabilities to implement a full TCP/IP stack: the newer

paradigm of host machine detached FPGA (network-attached) calls for an efficient

communication protocol. TCP has been the de facto standard of reliable data

transmission, in spite of that, it is well-known for being a very demanding due to

its high memory consumption to keep track of the state of each connection. We

want to push further the FPGA capabilities and provide the community with an

open-source TCP/IP implementation at 100 Gbit/s with very low-latency, where

they can build their own application on top of it.

• Evaluate the applicability of HLS: this thesis presents a unique opportunity

to evaluate plain HLS (C/C++) in the context of a wide variety of networking appli-

cations. Therefore, we try applying HLS as much as possible in our development.

In particular, we use Vivado-HLS the commercial solution of Xilinx.

This thesis is highly experimental. Therefore, each objective has been verified with a

proof-of-concept implementation, and, in some cases we propose more than one solution.
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1.4 Thesis Structure

To conclude the introduction, this section summarizes the rest of this document. This

Thesis is divided into four parts, Part I Introduction: Chapter 3 presents a technical

background on the different technologies used in the development of this thesis. It

also provides a brief history of the integrated circuits, computer networks and FPGAs.

Further, we present some concepts about network monitoring. The main idea of this

chapter is to put the reader in context of the different technologies that clash in this

Thesis. Finally, it shows every of each FPGA platforms used during this Thesis.

Part II Network Monitoring: in this part the we explore the FPGA capabilities to

perform network monitoring. In particular Chapter 4 focuses on active monitoring, where

we take advantage of the FPGA determinism to implement the packet-train technique

in order to assess the Quality of Service (QoS) of a Device Under Test (DUT). The

scalability of the above mentioned technique, as well as its FPGA implementation, has

been proven with the assessment of different network link speed — 1, 10 and 100 Gbit/s.

Secondly, Chapter 5 aims for providing bump-in-the-wire implementations to thin the

traffic in order to help traditional monitoring tools to cope with their task. We explore

alternatives to do so without losing relevant information. We present two designs where

ciphered packets are capped and duplicate packets are removed. In doing so, we explore

the heterogeneity of the state-of-the-art FPGAs.

In Part III Offload Tasks, we explore the FPGA architecture to implement very

demanding tasks, but this time aiming for offloading part or the whole TCP/IP stack to a

single FPGA. We first explore different circuits to offload the 16-bit one’s complement

checksum widely used in the IPv4 in Chapter 6. In Chapter 7 we present Limago an

FPGA-based 100 GbE TCP/IP stack, which is based on a previous work. Limago tenfolds

the communication speed when compared with the starting point while keeping its

scalability in term of concurrent connections. To do so, we have widely used HLS not only

to accelerate the development process, but also, to gain flexibility. This work contributes

with a step forward in the widespread of FPGAs into distributed environments.

Finally, in Part IV Conclusions, Chapters 8 and 9 in English and Spanish respec-

tively summarize the conclusion and finals remarks of this thesis. In addition to that, we

present the contributions to the community, a discussion whether it makes sense to use

HLS and lastly future directions in these topics.

10 Mario Daniel Ruiz Noguera



C
H

A
P

T
E

R

2
INTRODUCCIÓN

E
ste capítulo provee el contexto de esta tesis doctoral. Primero, presentamos
las motivaciones esenciales de esta tesis, desafíos y percepciones que guiaron
su progreso. Luego, ponemos esta tesis en contexto con respecto a las tenden-
cias actuales en el campo de las FPGAs y monitorización de redes, también

comentamos el nuevo paradigma de FPGAs conectadas directamente a la red. Teniendo
en cuenta estos aspectos, formulamos los objetivos de esta tesis doctoral. Finalmente,
delineamos la organización de este documento y presentamos sucintamente el contenido
del resto de los capítulos.

2.1 Motivación de esta tesis

Las actividades diarias se han vuelto cada vez más dependientes de las redes de

ordenadores: Internet, aplicaciones móviles, comercio electrónico, aplicaciones en la nube,

entre otros ejemplos. En este sentido, el uso generalizado de las redes de ordenadores

tiene implicaciones tanto a nivel de acceso y nivel de servidores, por ejemplo, cada vez

hay más necesidad de redes de ordenadores más rápidas y fiables. En el nivel de acceso,

crea la necesidad del desarrollo de tecnologías de acceso más rápidas, por ejemplo, redes

pasivas ópticas de 10 Gbit/s o la quinta generación de redes móviles (5G). Mientras que,

en el lado del servidor ha causado un incremento exponencial en el tráfico que procesan

los centros de datos. Desde este punto de vista, los autores en el artículo [1] discuten que

este incremento exponencial no podría haber sido posible sin un incremento exponencial
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Figure 2.1: Tasa compuesta de crecimiento anual de tráfico IP. Fuente: [2].

en el ecosistema de los ordenadores: a nivel de circuito integrado, a nivel de sistema y en

particular a nivel de adopción en la comunidad. Ellos también discuten que esos factores

se realimentan para mantener el crecimiento a un ritmo exponencial. En este contexto,

Cisco [2] predice que el tráfico IP crecerá exponencialmente durante el periodo 2017 a

2022, vea la figura 2.1. Más aún, en el artículo [3] se exploran los diferentes factores que

impactan en el crecimiento continuo en Internet, por ejemplo, la figura 2.2 muestra el

crecimiento exponencial en la demanda de banda ancha en el Reino Unido en un periodo

de diez años medido durante la hora punta. Esta figura confirma la ley de Nielsen [4] del

ancho de banda de Internet, que es una ley empírica basada en observaciones la cual

afirma que “La velocidad de conexión de un usuario crece un 50 % cada año”.

Se espera que la velocidad de conexión de las redes de ordenadores continuará cre-

ciendo para equilibrar el crecimiento del tráfico de red, por consiguiente, el rendimiento

de los equipos de cómputos debe equiparar este crecimiento. De esta manera, las redes

de ordenadores se han convertido en una infraestructura donde el malfuncionamiento no

se puede tolerar. Por lo tanto, es primordial garantizar la calidad de los enlaces de red

para asegurar un funcionamiento adecuado de los sistemas informáticos. Como resul-

tado, la monitorización de las redes de ordenadores es una parte esencial para asegurar

su correcto funcionamiento y esta tarea es más necesaria que nunca. No obstante, la

monitorización de las redes de ordenadores se convierte en una tarea compleja y costosa

a tales velocidades; con el escalado de Dennard muerto (figura 3.3), los enfoques tradi-

cionales basados en software tienen dificultades al monitorizar redes de varios gigabits

por segundo. Últimamente, los circuitos específicos para abordar la monitorización de las

redes de ordenadores a tal velocidad han ganado tracción para superar las limitaciones
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Figure 2.2: Demanda total de ancho de banda para un proveedor de Internet en el Reino
Unido, medido en un periodo de diez años en la hora punta. Fuente: [3].

del hardware que se encuentra en las tiendas.

Las FPGAs han demostrado la capacidad de llevar a cabo una gran variedad de

tareas de monitorización en el contexto de redes de ordenadores. En 2005 Taylor et al. [5]

incluyó una implementación FPGA en su estudio de clasificación de paquetes de red.

Por otro lado, en el artículo publicado en 2010 [6] los autores hacen una evaluación

completa y minuciosa de las diferentes aproximaciones con FPGA en el contexto de

seguridad en redes de ordenadores, ellos afirman que para las aplicaciones evaluadas

la implementación basada en FPGA sobrepasa el desempeño de la implementación

software. Además, en 2018 la empresa Arista [7] publicó un reporte con las cuatro

tendencias en el uso de FPGA en el contexto de las redes de ordenadores — Software
Defined Network (SDN); aplicaciones de comercio automáticas sensitivas a latencia;

captura de tráfico de red y marcado temporal; vídeo bajo demanda. Por lo tanto, las

FPGAs han surgido como una tecnología ubicua no solo para tareas de monitorización de

redes, sino que también para otras tareas relacionadas con las redes de ordenadores, por

ejemplo, switching [8]. Cuando comparamos la capacidad de una FPGA con un ASIC, la

FPGA provee más flexibilidad en términos de programación y menos costes recurrentes

de ingeniería, mientras que mantiene un alto nivel de paralelismo. Basados en estas

consideraciones, las FPGAs se posicionan como una de las soluciones más ventajosas
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y económicas para solventar problemas complejos relacionados con la monitorización

de redes de ordenadores. Además, NetFPGA ha sido una de las fuerzas impulsoras de

las FPGAs en el contexto de redes de ordenadores. La iniciativa NetFPGA [9–11] es

un proyecto de código abierto, tanto hardware como software. Empezó en 2006 como

un proyecto de enseñanza en la universidad de Stanford y rápidamente se convirtió en

una plataforma de prototipado tanto para proyectos de investigación como proyectos

industriales.

Por otro lado, es conocido que el tiempo de desarrollo en FPGA es largo y complejo.

Por muchos años los lenguajes de descripción de hardware (HDL por sus siglas en inglés)

han dominado como describir hardware para diseños de FPGA. Sin embargo, en la

última década los lenguajes de síntesis alto nivel (HLS por sus siglas en inglés) han

demostrado suficiente madurez y calidad de resultados, es por ello que han ganado una

parte importante en la fase de desarrollo en el mundo de las FPGAs [12]. Sucintamente,

las herramientas HLS permiten describir hardware utilizando lenguajes de alto nivel,

por ejemplo, C/C++ (introduciendo un mayor nivel de abstracción cuando se comparan

con la metodología de nivel de transferencia de registro). En esta línea, en el artículo [13]

los autores presentan una investigación exhaustiva de las herramientas HLS, en dicho

artículo se discute que, aunque la calidad de resultados de las herramientas HLS no es

tan buena como implementaciones personalizadas de RTL, la productividad es hasta

cuatro veces mayor. En 2011 Cornu et al. [14] presentaron implementaciones eficientes de

aceleradores de hardware desarrolladas en HLS que conseguían mayor desempeño que la

implementación RTL. Forconesi et al. [15] presentaron una evaluación de Vivado-HLS (la

herramienta comercial de Xilinx), ellos implementaron una aplicación de monitorización

de flujos. En dicho artículo afirman que lograron una reducción de un orden de magnitud

en el tiempo de desarrollo comparado con la metodología tradicional. Es más, una de

las claves del éxito de las herramientas de HLS, aparte del hecho de que los principales

lenguajes de programación son C y C++, es la habilidad de explorar el espacio de diseño

mucho más rápido y generalmente sin la necesidad de cambiar el código fuente. A demás,

en el último lustro la industria y la comunidad investigadora han introducido varias

herramientas basadas en lenguajes de alto nivel para procesado de paquetes en el

contexto de diseños FPGA [16–21]. Estos factores han alimentado el uso de herramientas

HLS en el ámbito de redes de ordenadores. Por consiguiente, los lenguajes de síntesis de

alto nivel son un tema de investigación muy activo.

Las FPGA no solo han sido usadas para tareas de redes de ordenadores, investi-

gadores también las usan como nodo de computo en entornos de computación distribui-

dos [22–24]. Cuando comparamos a las FPGAs con unidades de procesamiento gráfico

de propósito general (GP-GPU por sus siglas en inglés), las FPGAs proveen menos op-

eraciones de coma flotante por segundo (FLOPS por sus siglas en inglés), sin embargo,

14 Mario Daniel Ruiz Noguera



2.2. CONTEXTO DE ESTA TESIS

las FPGAs son más flexibles para implementar algoritmos irregulares. Lo que es más,

la latencia de comunicación es mucho menor debido a que las interfaces están directa-

mente conectadas al área de lógica programable [25]. A la luz de estas características,

en los últimos cinco años ha habido esfuerzos para moverse del paradigma de FPGA

conectadas a una CPU a un paradigma donde las FPGAs están conectadas directamente

a la red [26–29]. Este fenómeno es consecuencia de la creciente heterogeneidad de las

FPGAs. Fundamentalmente, la idea es desconectar la FPGA de una máquina anfitriona

y conectarla directamente a la red. Con esto, se busca incrementar la eficiencia total del

sistema y reducir el sobrecoste de comunicación. Este fenómeno no habría sido posible

sin una implementación de TCP/IP a 10 Gbit/s que se hizo de acceso libre en 2015 [30].

Los esfuerzos en la comunidad han estado centrados en mejorar el nivel de abstracción

de este paradigma. Es más, una de las líneas actuales de investigación está centrada en

mover el procesamiento de los datos más cerca de la fuente de los mismos para reducir

el sobrecoste de su movimiento [31]. Sin embargo, ha habido muy poco esfuerzo en

aumentar la velocidad de comunicación en la infraestructura subyacente para adaptar el

paradigma a las necesidades actuales. Por ejemplo, las redes neuronales convolucionales

requieren un ancho de banda enorme en la comunicación de las capas convolucionales.

2.2 Contexto de esta tesis

Como se menciona anteriormente, las soluciones de hardware que se encuentra en

la tienda (más su software asociado) tienen dificultades para mantener el ritmo a la

que la velocidad de los enlaces de red ha evolucionado. Es por esto, que las FPGAs han

surgido como una tecnología ubicua para abordar algunas de las tareas más complejas.

Sin embargo, el desarrollo de hardware usando FPGA es considerado una tarea en la cual

se necesitan muchas habilidades. No obstante, los diseños en FPGA están evolucionando

hacia los lenguajes de alto nivel, estos no sólo reducen el tiempo de desarrollo, sino que

también democratizan el uso de las FPGAs debido a una metodología de diseño mucho

más simple. Por otro lado, como toda tecnología, las FPGAs tienen sus limitaciones, por

ejemplo, requerimiento de una gran cantidad de memoria con un acceso de baja latencia.

Sin embargo, las nuevas familias de FPGA incluyen memorias HBM como parte del

silicio, esta nueva característica puede ayudar a mitigar esta limitación.

En este sentido, los conceptos descriptos previamente: monitorización de redes de

ordenadores; FPGA en redes de ordenadores y síntesis de alto nivel han llamado la

atención de la comunidad científica durante los últimos años. Notablemente, la mayoría

de la investigación en estas líneas es contemporánea al periodo de esta tesis. La figura 2.3

muestra el número de referencias que se pueden encontrar en la web de la ciencia desde
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el año 1990 a 2018 para las siguientes consultas:

• FPGA and network* NOT (“neural network*”)

• NetFPGA

• FPGA and “High Level Synthesis”

La figura muestra un incremento casi lineal de la cantidad de resultados en mon-

itorización con FPGAs en el transcurso de los años, desde 1999. Este hecho confirma

que las FPGAs han ganado parte del interés académico en este ámbito, por su virtud de

aplicabilidad infinita. A pesar de esto, la mayoría de la investigación ha estado centrada

en seguridad e inspección profunda de paquetes. El proyecto NetFPGA iluminó el camino

en procesamiento de paquetes; esquemas de switching y dispositivos de monitorización.

Antichi et al. [32] fueron algunos de los pioneros en monitorización pasiva usando la

tarjeta NetFPGA. En dicho trabajo, presentan un sistema basado en la cooperación de

una NetFPGA y un sistema anfitrión de propósito general. Como continuación de esta

línea investigativa, en el artículo [33] presentan OSNT: un sistema de código abierto

para la evaluación de redes de ordenadores, que incluye generación de paquetes como así

también capacidad para captura de tráfico. De la misma forma, Oeldemann et al. [34]

presentan un sistema para evaluar redes, muy similar a OSNT, pero con pequeñas mejo-

ras en la reproducción de trazas y en la programación software a través de su interfaz de

programación. Es más, Puš et al. en 2015 presentaron una tarjeta hecha a medida usando
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una FPGA capaz de manejar enlaces de 100 Gigabit Ethernet, la FPGA distribuye el

tráfico entre los diferentes núcleos de la máquina anfitriona para ser luego procesado.

Con relación a HLS, la investigación se ha centrado en la aceleración de algoritmos,

especialmente en el ámbito de aceleradores de aprendizaje automático. A pesar de esto,

ha habido esfuerzos hacia sistemas de monitorización de redes usando HLS [15, 35]. La

introducción de P4 [36], un lenguaje de dominio específico optimizado alrededor de los

datos, guio el camino hacia modelos de abstracción de alto nivel en el ámbito de procesado

de paquetes de red [17–19, 37–39]. En 2017, Emu [40] fue introducido para promover el

desarrollo rápido de funcionalidades de redes. Es más, Eran et al. [20] presentaron una

biblioteca para procesado de paquetes de red con el objetivo de aumentar la reutilización

de código, esta biblioteca está construida sobre HLS.

Asimismo, la creciente demanda por computación distribuida, desempeño y adapt-

abilidad de muchas aplicaciones distribuidas depende de una implementación eficiente

del protocolo de comunicación TCP/IP. La implementación de un acelerador de dicho

protocolo en FPGA abre interesantes oportunidades para explorar tarjetas de red pro-

gramables, ya que estas ofrecen mayor flexibilidad que las tarjetas de red comerciales.

Desafortunadamente, alcanzar 100 Gbit/s es un desafío complejo incluso usando tarjetas

de red comerciales con aceleración TCP. De ahí que, el trabajo Sidler et al. [30] sentó las

bases con una implementación completa del protocolo TCP/IP a 10 Gbit/s para FPGA. A

partir de esto, la mayoría de los desarrollos de FPGA conectadas directamente a la red

han sido construidos sobre dicho trabajo [26, 41].

Considerando todo lo anteriormente mencionado, la figura reconoce el incremento del

interés en la comunidad científica en el uso de FPGA para tareas de redes de ordenadores,

a su vez que también demuestra el crecimiento en los esfuerzos por el uso lenguajes

de alto nivel. Por otro lado, el número de resultados de NetFPGA se ha quedado más o

menos estable desde 2015, esto se puede deber a que la última versión de la plataforma

data del año 2014.

2.3 Objetivos de esta tesis

En la sección anterior, presentamos las líneas de investigación abordadas en esta

tesis. Por consiguiente, en esta sección describimos los objetivos principales de esta tesis.

Establecemos tres objetivos principales. El primero profundiza en la capacidad de las

FPGAs en el ámbito de la monitorización de redes de ordenadores, tanto en escenarios

de monitorización activos como pasivos. El segundo objetivo busca la implementación

de un sistema de transmisión de datos fiable, de alta velocidad y con baja latencia en

el contexto de comunicación de nodos de FPGAs distribuidos, donde las FPGAs están
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desconectadas de máquinas anfitrionas y conectadas directamente a la red. Finalmente,

el tercer objetivo evalúa la aplicabilidad de HLS en la metodología de diseño de FPGA

para aplicaciones de redes de ordenadores, este objetivo está completamente empotrado

en los dos anteriores.

Los siguientes ítems resumen los sub objetivos de esta tesis:

• Explorar las capacidades de las FPGAs en monitorización activa de redes
de ordenadores: las FPGA son conocidas por su alto grado de paralelismo y su

determinismo. Queremos sacar provecho de estas características para llevar a cabo

mediciones activas. En particular, queremos contrastar exactitud de las FPGA

contra las soluciones de software usando la técnica de los trenes de paquetes.

• Explorar las capacidades de las FPGAs en monitorización pasiva de re-
des de ordenadores: en este ámbito queremos aprovechar la heterogeneidad de

las FPGA para reducir el tráfico de red inteligentemente sin perder información

relevante en el camino. Aquí exploramos como recortar paquetes cifrados, y como

remover paquetes duplicados. La idea es ayudar a las herramientas de software
tradicional para no procesar datos innecesariamente.

• Explorar las capacidades de las FPGAs para implementar el protocolo
TCP/IP completo: el nuevo paradigma de FPGA desconectadas de máquinas

anfitrionas necesita de una implementación eficiente del protocolo de comunicación.

TCP ha sido el estándar de facto para transmisión de datos fiables, a pesar de

eso, es conocido que dicho protocolo es muy demandante debido a la gran cantidad

de memoria requerida para almacenar el estado las cada una de las conexiones.

Nosotros queremos llevar las capacidades de las FPGA al límite y proveer a la

comunidad con una implementación FPGA de código libre del protocolo TCP/IP

a 100 Gbit/s con muy baja latencia, a partir de la cual cualquier persona pueda

construir su aplicación.

• Evaluar la aplicabilidad de los lenguajes de alto nivel: esta tesis presenta

una oportunidad única para evaluar código HLS (C/C++) en el contexto de una

gran cantidad de aplicaciones de redes. Entonces, trataremos de aplicar HLS la

mayor cantidad de veces posibles en nuestros desarrollos. En particular, usaremos

Vivado-HLS la herramienta comercial de Xilinx.

Esta tesis tiene un gran componente experimental. Es por ello que cada uno de estos

objetivos han sido verificados con implementaciones en la forma de pruebas de concepto,

y en algunos casos proponemos más de una solución para el mismo problema.
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2.4 Estructura de la tesis

Para finalizar la introducción de esta tesis, esta sección resume el resto del documento.

La tesis está dividida en cuatro partes, Parte I Introduction: el capítulo 3 introduce

el entorno técnico de las diferentes tecnologías utilizadas en el desarrollo de esta tesis.

También provee sucintamente la historia de los circuitos integrados, redes de ordenadores

y FPGAs. A demás, presentamos algunos conceptos básicos acerca de monitorización de

redes de ordenadores. La idea principal de este capítulo es poner a lector en contexto de

las diferentes tecnologías usadas en esta tesis. Finalmente, mostramos todas las tarjetas

de desarrollo usadas durante la tesis.

Parte II Network Monitoring: en esta parte exploramos las capacidades de las

FPGAs para llevar a cabo tareas de monitorización de redes. En particular, el capítulo 4
se centra en monitorización activa, donde aprovechamos el determinismo de las FPGAs

para implementar la técnica de trenes de paquetes con el objetivo de verificar la calidad

de servicio de un dispositivo bajo pruebas. La escalabilidad de la técnica previamente

mencionada, así como su implementación FPGA ha sido demostrada verificando su

funcionamiento en diferentes velocidades de enlace — 1, 10 y 100 Gbit/s. Luego, el

capítulo 5 tiene el objetivo de proveer implementaciones que se conecten antes de las

herramientas tradicionales de software para reducir el tráfico que llegan a estas, de

esta manera se pretende ayudar a las herramientas tradicionales a cumplir con su

objetivo. En este capítulo exploramos alternativas para hacer la reducción del tráfico

sin perder información relevante. A demás, presentamos dos implementaciones donde

los paquetes cifrados son recortados y los paquetes duplicados son removidos. En este

sentido, exploramos la heterogeneidad de las FPGAs.

En la Parte III Offload Tasks, exploramos la arquitectura de las FPGA para

implementar tareas muy demandantes, pero en este caso el objetivo es descargar parte

o la totalidad del protocolo TCP/IP a una FPGA. Primero en el capítulo 6 exploramos

diferentes circuitos para descargar la computación de la suma de comprobación de

16-bit en complemento a uno, que es usado en todas las cabeceras de IP versión 4.

Luego en el capítulo 7 presentamos Limago: una implementación FPGA del protocolo

TCP/IP que funciona en redes de 100 Gigabit Ethernet, el cual está basado en un trabajo

previo. Limago multiplica por diez la velocidad de comunicación cuando se compara

con su predecesor, al mismo tiempo mantiene la escalabilidad en termino de conexiones

concurrentes. Para lograr este objetivo, usamos HLS no solo para acelerar el proceso de

desarrollo, sino también para ganar más flexibilidad. Limago contribuye con un paso

hacia adelante en la diseminación de FPGA en entornos distribuidos.

Finalmente, en la Parte IV Conclusions, los capítulos 8 y 9 en inglés y español

respectivamente resumen las conclusiones y proveen algunas observaciones extras.
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Adicionalmente, presentamos las contribuciones de esta tesis a la comunidad científica,

también incluimos una discusión de cuando tiene sentido utilizar síntesis de alto nivel y

por último las direcciones del trabajo futuro en esta área de investigación.
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TECHNICAL BACKGROUND

I
n this chapter we set in context the different technologies that clash in this Thesis.
In Section 3.1, we start with a brief history of computers as well as computer
networks, then we present FPGAs. Secondly, in Section 3.2, we motivate the need
of network monitoring and we present both active and passive alternatives. After

that we move to the FPGA arena, Section 3.3 introduces the design tools: Vivado and
Vivado-HLS. In section 3.4 we shed light on how FPGAs are able to handle multi-gigabit-
per-second networks. Section 3.5 presents the standard AXI4 specification, which is the
underlying communication infrastructure of all of our designs. Finally, we show the
different FPGA platforms used in this Thesis (Sections 3.6 to 3.8).

3.1 Background

The first computers were enormous mechanical monsters, power hungry, complex

to use and prone to failures as well as costly. Nonetheless, when the first transistor

was invented (1947) a new era begun. A decade later, using a few transistors the first

integrated circuit was create (1958) and the silicon revolution started. More powerful

and easy-to-use computer were built. What is more, based on empirical observations,

Moore’s Law state that the amount of transistors within an integrated circuit doubles

every two years [42]. Years after, the law was revisited and the time span was updated

to eighteen months. In any case, the exponential growth in the number of transistor

has been proven and stays valid to these days [43, 44]. In this context, Figure 3.1 plots
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Figure 3.1: Logarithmic scale of computation per second per thousand dollars since 1900,
spans five families of technologies. The computation per second doubles every 1.3 years
approximately. Source Kurzweilai. 1

the exponential growth in calculations per second per $ 1000 in the span of 110 years,

the invention of the transistor was a breakthrough which allowed cheaper and more

powerful computation systems. However, the figure also shows that regardless of the

technology the exponential growth in the computation power has been a constant.

Nonetheless, computers were isolate from each other, therefore large storage systems

were used to save data and some mechanism to move data were created. Consequently,

the need for a communication system across computers arose. Therefore, when computers

could communicate to each other, more complex systems were built. At the beginning,

the computer networks were only accessible to the government, universities and big

companies. However, in the 1990s the democratization of the Internet begun. A few

years later, another empirical law originated, Nielsen’s Law [4], which states that “Users’
bandwidth grows by 50% per year”, a 10% slower than Moore’s Law. Figure 3.2 plots

the end-user connection speed between 1983 and 2018, the actual data fit the Nielsen’s

law estimation. Shortly afterwards, computer networks evolved into mainstream, and

thus monitoring them became key in order to control the network healthiness. Not only

Internet Service Providers (ISPs) are interested on keeping the Quality of Service (QoS)

1 Source: “The Singularity Is Near: When Humans Transcend Biology”. Author Ray Kurzweil
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Figure 3.2: Logarithmic scale of access speeds of an end-user over the years. The empirical
model fits very well the actual data. 2

of a network, but also, it has become an active research topic. The books [45, 46] provide a

wider explanation of the history of computers and networks. In this context, Edholm’s law

of bandwidth [47] splits the access technologies in three categories — wireline, nomadic

and wireless — and states “the three telecommunications categories march almost in lock
step: their data rates increase on similar exponential curves, the slower rates trailing the
faster ones by a predictable time lag”. Extrapolating the results presented such work, the

rate of nomadic and wireless technologies will converge in 2030.

Even though, Moore’s Law still alive, Jerry Wu et al. [48] evaluate the current limita-

tion of the Moore’s Law and how the amount of transistor could continue to growth in the

future. The computing performance of a processor does not only depend upon the number

of transistors. Another important factor in this matter is the frequency. For many years,

the vendors were able to increase the operating frequency. To do so, the voltage operation

was lowered so as to reduce the heat dissipation. This span of time was called Dennard

scaling [49, 50]. In the early 2000s, the increase in frequency stalled mainly due to heat

dissipation. Therefore, new processors with multi and many core were built to keep

increasing the computing performance. Lately, the overhead of intra core communication

is slowing down on the computing performance of multipurpose processors. Figure 3.3

depicts the performance of a processor over the years, the performance slowed down

gradually, and, it appears that since 2015 the performance growth has stalled. Yet, some

2 Source: https://www.nngroup.com/articles/law-of-bandwidth/
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Figure 3.3: Growth in processor performance over 40 years, SPEC integer benchmarks.
Source: [51].

authors argue that to solve challenging problems the only path is designing application

specific circuits [51, 52].

On the other hand, in 1984 Xilinx introduced the first Field Programmable Gate

Array (FPGA) as an alternative to Application Specific Integrated Circuit (ASIC). The

FPGAs are more cost-effective because of their reduced non-recurrent engineering costs

in terms of development time. Nevertheless, FPGA consumes more power to perform

the same task. An FPGA is an ASIC but with a highly degree of programmability.

What is more, the design can change over the time, thus the same chip can be used

for different applications. Fundamentally, the architecture of an FPGA is made of an

array of programmable logic block and a matrix of interconnection to communicate those

blocks. This architecture provides scalability improvement over the Programmable Array

Logic (PAL) its predecessor. The first commercial FPGA had only sixty-four logic block,

each with two three-input LUT and one register, and it has a huge die (silicon area)

when compare to the state-of-the-art microprocessor at that time. In those days, the

designs were done manually given the little complexity. However, following Moore’s Law

the amount of transistors growths, thus the amount of programmable logic growths at

an exponential pace, and therefore the complexity. As the complexity of FPGAs growth,

the need for abstraction languages and design tools arose. Therefore, Register Transfer

Level (RTL) was established as the main programming model for FPGA, being Very
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High Speed Integrated Circuit Hardware Description Language (VHDL) and Verilog the

two most popular languages. Afterwards, FPGAs started to incorporate more complex

pieces of silicon to address a wider variety of problems. For instance, on-chip memory,

specialized multiplier accumulators, even microprocessors. Trimberger [53] describes the

evolution of FPGAs in three phases: 1) Age of Invention (1984-1991); 2) Age of Expansion

(1992-1999) and 3) Age of Accumulation (2000-2007). He also states that FPGAs have

been the driving force of the network equipment since 2000’s, because their capability

of changing functionality in the field, consequently, FPGAs have evolved to adapt to

network tasks. Nowadays, FPGAs can be found in a wide range of applications, but

mostly in high-performance systems and low-latency applications. What is more, FPGAs

are moving towards a more heterogeneous architecture with different subfamilies to

tackle effectively different type of problems [54]. Furthermore, one of the key aspects of

FPGA when compared to processors is its huge parallelism.

3.2 Network Monitoring

Computer networks have become a critical infrastructure where malfunction cannot

be tolerated. Therefore, monitoring the healthiness of such networks is key for providing

reliable network and complying Service Level Agreements. The infrastructure managers

use the results of the monitoring tools in order to obtain insight of the status of the net-

work at a given time. And, based on such results they can take actions to solve problems.

Lee et al. [55] provides a survey of different monitoring techniques. In particular, we can

distinguish two types of monitoring, active and passive. The main difference resides in

the nature of the traffic, which can be artificial or real. In what follows we present both

alternatives with their pros and cons.

3.2.1 Passive Monitoring

Passive monitoring captures the real traffic in a certain point in the network. After

that, the traffic is analyzed in order to estimate the network behavior. The passive

probes can collect raw traffic or summaries coming from specialized systems, being

NetFlow one of the most popular. What is more, the traffic analysis can be done a) in

real-time to provide proactive action in the network, or b) on-demand, for instance, when

a problem occurs the analyst can recover the traffic and perform the analysis. This type

of monitoring leads to reactive actions into the network, for instance, actions must be

taken after a problem occurs. Large and fast storages systems are needed to save the

captured traffic for future analysis [56, 57]. Needless to say, real-time analysis can be

very demanding for today’s networks speeds.
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3.2.2 Active Monitoring

Active measurement demands to inject traffic into a network with the goal of measur-

ing its characteristics. Such approach allows to obtain reliable statistics and determine

the Key Performance Indicators (KPI) of a segment of the network. This type of measure-

ments can be applied to any kind of network infrastructure or equipment. This approach

allows to measure, throughput (link or path capacity), latency — Round-Trip delay Time

(RTT) or One-Way Delay (OWD) (time synchronization is needed) —, packet loss ratio

and jitter. The injected traffic can be generated in such a way that triggers corner cases

that in a normal scenario would be extremely difficult to catch. However, this approach

is highly intrusive, because additional traffic is injected into the network, hence the

normal behavior of the network is perturbed. This kind of measurement is often used to

validate a path or network equipment. What is more, the interference introduced to the

real traffic depends upon the frequency and length of the synthetic traffic injected.

3.3 Tools and Design Flow

In this section we present the different FPGA design tools we have used in the

development of this thesis. We have used Xilinx’s FPGAs, therefore, we only refer to

Xilinx tools. Sometimes these types of tools are called Electronic Design Automation

(EDA) tools.

3.3.1 Vivado

It was introduced in 2012 to replace ISE, the previous EDA tool. Vivado is the Xilinx’s

EDA to translate digital designs from RTL designs abstraction level to a bitstream —

a set of bits that configures the FPGA to implement a digital circuit. Vivado allows

the user to synthesize (maps the operation to the programmable logic), simulate and

perform timing analysis. In order to obtain the final bitstream the implementation must

be performed, the resources are placed and route in the target FPGA. Apart from the

traditional RTL design methodology, Vivado incorporates the IP integrator tool, which

is a graphical tool to connect the IP-Cores at interface level, this tools helps with the

integration of large designs. It simplifies traditional design methodology and reduce

the probability of errors in the interconnection of modules, the connection of a complex

interface such as AXI4-Full is reduced to draw a line between two modules — the

tool automatically connects the input and outputs properly. Figure 3.4 shows how IP

integrator looks like, this figure is a piece of Limago (chapter 7).
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Figure 3.4: Vivado IPI, part of the block design of Limago.

3.3.2 High-Level Synthesis

There are a wide variety of High-Level Synthesis (HLS) tools, but in this thesis we

have only used Vivado-HLS, which is the commercial tool from Xilinx Inc. Vivado-HLS

aims at translating a behavioral C/C++ algorithm into a digital circuit that implements

such behavior. In particular, Vivado-HLS provides an IP-Core as a result which can

be integrated in any design flow of Vivado suite. Figure 3.5 summarizes the Vivado-

HLS design flow. The tool uses the description of an algorithm in any of the supported

languages, and after the C Synthesis RTL code is generated. At the same time, the user

can provide testbenches to verify the algorithm functionality, in this step a C simulation

can be carried out, or a RTL simulation. Noteworthy, the tool uses the same set of

testbenches to run both C and RTL simulation. Once the user obtains the desired result

the RTL code is packaged using a IP-XACT standard format, and it can be used in any

other tool of Xilinx’s environment. The C Synthesis uses the constraints/directives to

translate the behavioral algorithm into an RTL design. Thus, the tool performs the

following steps in order it fulfill its purpose:

1. Scheduling: determines which operation occurs during each clock cycle taking into

account data dependencies, this process depends heavily upon user constrains.

2. Binding: maps each schedule operating onto the hardware resources available in

the target device. Constrains allow a certain degree of flexibility on the mapping.

Figure 3.6 depicts an example of how Vivado-HLS schedules and binds a simple piece

of code to a hardware implementation. What is more, Vivado-HLS generates a FSM to
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Figure 3.5: Vivado-HLS design flow. 3

sequence the operation into the RTL design. The constraints allow the user to explore

the space design without modifying the source code. Among the HLS benefits we can

highlight: improve productivity; develop and verify at C level and quick space design

exploration.

Figure 3.6: Vivado-HLS scheduling and binding example. 3

3 Source: https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_1/ug902-
vivado-high-level-synthesis.pdf
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3.4 FPGA for Networking

In this section we shed light on how FPGAs are able to handle multi-gigabit-per-

second input/output pins. This feature, allows FPGAs to support a wide variety of

Ethernet speeds as well as standards. Furthermore, we explain how FPGA translates

the physical bits into frames that can be processed within the programmable logic.

3.4.1 Multi Gigabit Transceivers

It is well-known that the operating frequencies of FPGAs are much lower than

ASICs, around one order of magnitude less. Therefore, to handle very high-speed inputs

and outputs. FPGAs take advantages of Multi Gigabit Transceiver (MGT). MGTs are

specialized hardware able to Serialize and Deserialize data at rate above 1 Gbit/s. On

the one hand, in the input side this piece of hardware receives data at very high-speed

in a serial fashion and parallelize it — using a Serial In Parallel Out (SIPO), in such

a way that the operating frequency inside of the FPGA can be reduced. On the other

hand, in the transmitting side, the FPGA provides data through a bus and the MGT

serialize it to be outputted — using a Parallel in Serial Out (PISO). MGTs have been

paramount to support multiple network speeds as well as different standards. Currently,

the state-of-the-art MGTs are able to reach up to 112 Gbit/s.

3.4.2 Interpreting the bits

Following the Open Systems Interconnection (OSI) layers: the physical layer de-

scribed how the bits are encoded and transmitted over the medium. This is specified, for

instance, in the RJ45, SFP+ and QSFP28 standards. Typically, 10 and 100 GbE interfaces

incorporate a chip to decode the modulation and provides a chip to chip interface, for

instance, 10G Attachment Unit Interface (XAUI) for 10 GbE and CAUI-4 (100 Gigabit

Attachment Unit Interface four lanes) for 100 GbE. This interface is connected to the

MGTs to perform the serialization and deserialization. After that, the FPGA implements

the Media Access Control (MAC) which as output provides interpretable frames. Each

frame is split into multiple n− bit wide transactions, the width of the transaction de-

pends on the Ethernet speed and can vary from 32-bit to 512-bit (1 and 100 GbE links).

Up to 40 GbE Xilix provides soft IP-Cores to implement the MAC module, which means

logic is needed to implement such functionality. However, to support 100 GbE Xilinx

designed a harden IP-Core, which means the implementation is a piece of silicon and

does not occupy logic resources when used. For instance, Figure 3.7 shows the different

elements in the architecture of 10 Gigabit Ethernet. Usually, the MAC core in the FPGA

interface the user logic with an AXI4-Stream interface (Section 3.5.2).
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Figure 3.7: Architectural positioning of 10 Gigabit Ethernet. 4

3.5 AXI4 Specification

Advanced eXtensible Interface 4 (AXI4) is part of the Advanced Microcontroller Bus

Architecture (AMBA) interface specification from ARM [58, 59], which was introduced in

2010. It is an open standard, and it has become the “de facto” connection and management

interface in today’s logic designs. Xilinx introduced the AXI4 standard as part of the

design methodology with the release of their System on a Chip (SoC) [60], since then

every new FPGA family has supported it.

AXI4 is a point to point interface, there are always a master and slave. It has three

flavors: two memory map oriented and one stream-oriented — no address is required. The

memory mapped flavors have separated address/control and data phases. The support

for unaligned transfers is given by the strobe bytes. One of the benefit AXI4 provides is a

consistent signalization among the different flavors. In such a way, the user only needs

to learn once the protocol and can apply it to any kind of design. Table 3.1 summarizes

the characteristics of each AXI4 flavor and provides some examples of it applicability.

3.5.1 AXI4-Full and AXI4-Lite

AXI4-Full: For high-performance memory-mapped requirements, to achieve so, the

concept of a burst is used, in which the address is provide once, and the access follows a

sequential pattern, incremental or decremental, up to 256 transactions.

4 Source: IEEE 802.3-2018 - IEEE Standard for Ethernet
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AXI4-Lite: It is the lightweight version of AXI4-Full with no burst support. It is used

for simple, low-throughput memory-mapped communication for instance, to and from

control and status registers.

AXI4-Full and AXI4-Lite have five independent channels:

• Read Address Channel

• Write Address Channel

• Read Data Channel

• Write Data Channel

• Write Response Channel

The data transfer can occur in both directions between master and slave at the same

time. The data transfer size range depending on the application. However, the limit is

up to 256 transactions per burst. On the other, hand AXI4-Lite just support one data

transfer per burst.

3.5.2 AXI4-Stream

The AXI4-Stream is used for high-speed streaming data where no address is involved.

It has single channel for transmission of streaming data. It is similar to the write data

channel of an AXI4-Full. The bursts are unlimited contrary to AXI4-Full. Since there is

no addressing involved, the transactions follow a strict order, thus, cannot be reordered.

This is the standard way to communicate packets within Xilinx FPGAs.

3.6 1 Gbit/s Platform

ZebBoard is a low cost board based on a Xilinx Zynq SoC (an XC7Z020-CLG484-1)

device that encompasses in a single device a microcontroller based on a dual core ARM

AXI4-Full AXI4-Lite AXI4-Stream

Dedicate for
high performance

and memory mapped
systems

register-style interfaces
peripherals

non-address
based

Burst support up to 256 No Unlimited
Data width 32 to 1,024-bit 32 or 64-bit any number of bytes

Application
Embedded devices and

memory mapped
Small footprint

control logic
DSP, video,

communication

Table 3.1: Summary of different AXI4 flavors.
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Cortex-A9 (namely PS, Processing System) and an FPGA (namely PL, Programmable

Logic). The board has plenty of input/output connectors, standing out an FPGA Mez-

zanine Card (FMC) connector that allows plugging complex peripherals to the system.

Furthermore, an operating system such as Linux can be run in the PS, thus enabling

complex applications to be developed. Besides, the PL was the state-of-the-art technology

at that time (Xilinx 7-Series), which allows building complex hardware peripherals in the

form of hardware modules (also known as IP-Cores, from Intellectual Property core). We

attached two external Gigabit Ethernet interfaces through the FMC connector directly

to the programmable logic. Figure 3.8 shows the board with the FMC daughter card.

3.7 10 Gbit/s Platform

NetFPGA is an open-source hardware and software project, developed by Stanford

and Cambridge Universities in collaboration with Xilinx. It is intended for rapid pro-

totyping of computer network devices. The NetFPGA-10G is based on Xilinx Virtex-5

FPGA (an XC5VTX240TFFG1759-2). It provides four SFP+ interfaces and has an 8X

PCI Express Gen 1 interface to the host. Even though it can work standalone, it is

typically attached to a host machine. Figure 3.9 shows the NetFPGA-10G board, the four

interfaces the left hand side are the cage where the SFP+ connector is plugged and the

next to them are Physical Layer (PHY) chips.

Figure 3.8: ZedBoard development board from Avnet.
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Figure 3.9: NetFPGA 10G development board from the NetFPGA initiative.

3.8 100 Gbit/s Platforms

In this section we present the different platforms we have used during this thesis

for 100 Gbit/s network speed. As stated above, Xilinx incorporates a harden 100 Gbit/s

Ethernet MAC and Physical Coding Sublayer (PCS) core in its Ultrascale and Ultrascale+

devices, which comply with the IEEE 802.3-2012 specification. Figure 3.10 depicts the

CMAC architecture. Note that the interface with the user logic is an LBUS interface.

The LBUS interface is 512-bit wide and it is clocked at 322.265625 MHz yielding to a

maximum throughput of 165 Gbit/s.

3.8.1 AXI4-Stream adapter

The output communication of the CMAC [61] with the user side is done through a

Local BUS (LBUS). LBUS has four 128-bit data segments each of them with independent

signalization at 322.265625 MHz. Giving a maximal theoretical throughput of 165 Gbit/s.

Xilinx uses this bus because it has less penalty when compared to AXI4-Stream. For in-

stance, in the last transaction the LBUS could misspend 15-Byte out of 16-Byte, however

AXI4-Stream could waste 63-Byte out of 64-Byte. However, to facilitate interaction with

existing IP-Cores (most of the Xilinx’s and third-parties IP-Cores support AXI4-Stream),

we developed a LBUS to AXI4-Stream adapter (and vice-versa).

Even though the effective throughput in the AXI4-Stream channel is lower than

LBUS in most cases, we can assure than even for the worst case scenario in both ways —
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Figure 3.10: Xilinx’s integrated CMAC block for 100 Gbit/s. 5

transmission and reception, the Ethernet effective throughput is met using AXI4-Stream.

Note, in an AXI-Stream interface the packets are aligned to each transaction (we use

the same clock frequency of 322.265625 MHz). For instance, the worst case scenario is a

packet with 65-Byte — Ethernet frame without Frame Check Sequence (FCS) — because

we only use 65-Byte out of 128-Byte available, we can compute the throughput as equa-

tion 3.1 shows, the constant that multiplies the relation is the maximum AXI4-Stream

throughput, which is the same as LBUS mentioned previously.

AX I4−SThr =
65

128
∗165Gbit/s = 83.789Gbit/s (3.1)

On the other hand, the Ethernet effective throughput for a 65-Byte packet is described

in equation 3.2, the frames in Ethernet have an overhead of 24-Byte due to preamble

(7-Byte), start of frame (1-Byte), FCS (4-Byte) and inter packet gap (12-Byte), those bits

are present in the wire but not in the logic.

EthernetThr =
65

65+24
∗100Gbit/s = 73.03Gbps (3.2)

The previous equation shows that in the worst case scenario there is a margin of

at least 10 Gbit/s in the AXI4-Stream interface when compared with the theoretical

maximum of Ethernet for a 65-Byte packet. What is more, in Figure 3.11 both LBUS and

5 Source: https://www.xilinx.com/support/documentation/ip_documentation/cmac_usplus/
v2_4/pg203-cmac-usplus.pdf
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Figure 3.11: LBUS to AXI4-Stream adapter.

AXI4-Stream throughput are summarized as a function of packet size, ranging between

60 and 1536-Byte, which is the typical range in a network. The theoretical baseline of

100 GbE is also shown as a reference. The critical point is a 65-Byte packet, when the

AXI4-Stream reaches a performance of 50.78% of the full capacity — we have studied

this packet size in detail before. The performance loss for using AXI4-Stream instead of

LBUS is a little price to pay when compared with out-of-the-box integration with the

rest of IP-Cores provided by Xilinx and third-parties. Consequently, we decided to use

AXI4-Stream in our designs. What is more, since Vivado 2019.1 the IP-Core incorporate

AXI4-Stream as an interface with the user logic.

VCU108

This board has an Ultrascale device (XCVU095-2FFVA2104E) [62]; one QSFP28 cage

and one CFP2 cage both of them support 100 GbE. Additionally, there are two banks of

2.5 GB each of DDR4 memory. Regarding to the programmable logic there are over a

million flip-flops, over a half million of LUTs and 1,728 BRAMs. Finally, the board has a

PCIe of third generations with eight lanes. Figure 3.12 shows the board.

VCU118

This board has an Ultrascale+ device (XCVU9P-L2FLGA2104E) [63]; two QSFP28

cages both of them support 100 GbE. Additionally, there are two banks of 4 GB each of

DDR4 memory. Regarding to the programmable logic there are over two million flip-flops,
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Figure 3.12: VCU108 development board from Xilinx.

over a million of LUTs, 2,160 BRAMs and 270 Mb of URAM memory. Finally, the board

has a PCIe of third generations with sixteen lanes. Figure 3.13 shows the board.

ALVEO U200

This board has the same FPGA as the VCU118, however it has 64 GB of memory

split into four banks. It also has two QSFP28 cages both of them support 100 GbE.

Additionally, it is thought for Data Centers, therefore, it is able to work twenty four

hours a day, seven days a week; all the time. Figure 3.14 shows the board.

ADM-PCIE-9V3

The ADM-PCIE-9V3 high-performance network accelerator card includes two QSFP28

cages, 8 GB of DDR4 memory and a XCVU3P-2-FFVC1517 FPGA. The programmable

logic is a third part of the VCU118. Figure 3.15 shows the board.

Finally, table 3.2 details the characteristics of the six platforms used during this

thesis. Bear in mind that, VCU118 and ALVEO U200 share the same FPGA, therefore

there is only one column for both boards, however, the ALVEO U200 has 64 GB of

memory.
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Figure 3.13: VCU118 development board from Xilinx.
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Figure 3.14: Alveo U200 data center accelerator card from Xilinx.

Figure 3.15: ADM-PCIE-9V3 half-length and low profile high-performance network
accelerator card from Alpha Data.
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Element ZedBoard NetFPGA10G VCU108
VCU118

ALVEO U200 ADM-PCIE-9V3

Device XC7Z020 XC5VTX240T XCVU095 XCVU9P XCVU3P
Node (nm) 28 65 20 16 16
Family Artix 7 Virtex 5 Kintex Ultrascale Kintex Ultrascale + Kintex Ultrascale +
LUT 53,200 74,880 537,600 1,182,000 394,000
FF 106,400 149,760 1,075,200 2,364,000 788,000
BRAM (Mb) 4.9 11.6 60.8 75.9 25.3
URAM (Mb) N/A N/A N/A 270 90
DSP48E 220 96 768 6,840 2,280
Ethernet Speed 1 GbE 10 GbE 100 GbE 100 GbE 100 GbE
MAC Soft IP Soft IP Harden IP Harden IP Harden IP
PCI Express N/A Gen 2 x8 up to 40 Gbit/s Four Gen1/2/3 Six Gen3/4 x16/x8 Two Gen3/4 x16/x8

External DRAM 512 MB DDR3 Four x32 RLDRAM II Two 2.5 GB DDR4
Two 4 GB DDR4
Four 8 GB DDR4 Two 8 GB DDR4

Price (dollars) $ 449 $ 1,675 $ 5,995 $ 6,995 $ 4,950

Table 3.2: Summary of different features per each platform.
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ACTIVE MONITORING

A
ctive monitoring is essential for assessing network infrastructure. Therefore, in
this chapter we evaluate FPGAs capabilities to implement such probes. What
is more, this chapter shows the advantages of FPGA-based active monitoring
probes in terms of accuracy and reliability when comparing the results to those

of software-based. Likewise, results show that FPGA-based solutions are significantly
better, especially at 10 Gbit/s — we only compare 1 and 10 Gbit/s FPGA implementations
against software. Furthermore, this chapter also demonstrates that active monitoring
probes using FPGAs are fully scalable — a 1 Gbit/s, a 10 Gbit/s and finally a 100 Gbit/s
probes were implemented — while keeping the same level of accuracy. We take advantage of
high-level synthesis and open-source platforms, as much as possible, to develop prototypes
quicker. Noticeable advantages of our proposal are the high accuracy, the competitive cost
with respect to the software counterpart, which runs in high-end off-the-shelf workstations
and the capability to easily scale to a wide variety of network speeds.

4.1 Introduction

Active monitoring requires the injection of artificial traffic to the network. One of

its advantages is that the control is total in the nature of the injected traffic, which

turns out to be extremely useful for a wide variety of scenarios [55], thus, gaining

insight of the network behavior. The main drawback of this approach is that extra traffic

is introduced into the network which might interfere with real traffic. There are two
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important factors that affect real traffic when using active probes: the size and frequency

of the artificial probing traffic. Therefore, a trade-off is mandatory to obtain a meaningful

estimation without jeopardizing the normal functioning of the network. Moreover, active

probes fulfill two purposes: a) measuring Key Performance Indicators (KPI); b) evaluate

particular cases in order to foresee issues before they even happen with real traffic.

Hence, verifying the Quality of Service (QoS) become rather easy using such type of

monitoring probes.

The most basic figures of merit of network links and network equipment are [64]:

throughput, latency — One-Way Delay (OWD) or Round-Trip delay Time (RTT) —, jitter

and Packet Lost Ratio (PLR). As link speed grows, measuring these parameters is not

only more difficult, but also, it calls for testing devices that must provide unprecedented

accuracy. For instance, the transmission of a minimum-size Ethernet frame takes 670 ns

at 1 Gbit/s; 67 ns at 10 Gbit/s and only 6.7 ns at 100 Gbit/s. Apart from the difficulties of

measuring at such small timescales, switching time is no longer negligible, making it

imperative to include the switching equipment within the test scope of active probes as

well.

Among the different active measurement methods, the packet-train technique has

gained interest in the recent years. Such technique not only allows for an accurate

measurement of the link throughput, without significantly interfering the existing traffic

in the link. But also, it has proven to be effective and highly immune to interferences

such as cross-traffic load at the end-user equipment [65]. Section 4.5 further details the

packet-train technique, which also provides OWD or RTT and PLR.

Software-based active probes, such as the packet-train technique, work reasonably

well for moderate link speeds (up to 1 Gbit/s). The packet-train technique requires a very

precise timestamping of incoming and outgoing packets in order to provide an accurate

throughput and latency measurement. The faster the link, the more precise the times-

tamping should be. However, the precision of software-based solutions is known to be

limited by uncertainties at the different elements in both the reception and transmission

chain (NIC, PCIe bus, operating system). Moreover, current software tools are severely

constrained when it comes to performing this type of measurements at high-speed (e.g.

10 Gbit/s), even if they run at kernel level in the operating system. On the other hand,

hardware-based solutions have proved to be very accurate, but often criticized when

compared to software solutions due to the high skills required to start a new design and

the long development cycles (low productivity) as well as acquisition costs. Fortunately,

the new FPGA families, as well as High-Level Synthesis (HLS) tools [15, 66] can very

efficiently reduce these costs, consequently, making hardware solution a reality in the

testing infrastructure.

Currently, the speed of Ethernet interfaces in the state-of-the-art FPGAs goes up to
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400 Gbit/s, thus making it possible to use the proposed monitoring approach at both the

access and the transport networks. That is, the network quality monitoring devices will

be placed at the network ends as well as in the intermediate transport infrastructure.

This way, it is possible to have a complete picture of the operation of the network.

However, in order for this strategy to be fully usable, all network monitoring devices at

access level should be time-synchronized, so that a complete delay map of the network

can be constructed. However, devices at transport level could avoid time-synchronization

and measure RTT instead.

To evaluate FPGAs capabilities to perform active monitoring, we have followed two

different approaches. 1) For 10 Gbit/s, we have used the open-source NetFPGA project.

In order to reduce development time, we used NetFPGA-10G [67] OSNT (Open Source

Network Tester) [33] monitor project as a starting point, and we also used HLS tools

(namely, Vivado-HLS) [68] to implement the IP core in charge of computing network

parameters. 2) For 1 and 100 Gbit/s we have used standard boards without networking

reference designs. Therefore, we have done the design from scratch using Hardware

Description Language (HDL) when determinism was needed, and Vivado-HLS when

productivity was sought. Such two design strategies turned out to be very effective both

in terms of coding productivity and accuracy of measurements. Actually, the quality of

measurements was found to be much better than that obtained with software solutions

running on commodity servers, though the development effort was not significantly

higher, thanks to the use of open source platforms and HLS tools.

Hence, we propose the use of novel FPGA design as a means for comprehensively

testing network equipment with packet trains. The most remarkable novelties are: First

of all, we show that very accurate results can be obtained in 1, 10 and 100 Gbit/s, using

proof-of-concept designs. Secondly, FPGA SoCs or MPSoC can be used to implement very

cost-effective testing appliances, featuring a minimal component footprint and a reduced

power consumption, which could easily be deployed across the whole network. Moreover,

we also quantify how inaccurate software-based solutions can be at multi-gigabit-per-

second speeds, unless the corresponding hardware aid comes into play. Finally, we also

show the benefits of open-source platforms and high-level synthesis in order to reduce

FPGA development time and cost, thus making programmable logic competitive to

software in terms of design productivity.

4.2 Proposed Monitoring Device Architecture

The proposed network quality monitoring device is presented in Figure 4.1. The

appliance (FPGA + interfaces + peripherals) will have at least two network interfaces:
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one for management, connected to the processor side, and the other for quality monitoring,

connected to the FPGA side. The management interface will typically be implemented as

100 Mbit/s or 1 Gbit/s Ethernet. Regarding to the monitoring interface, its speed will

match that of the network link to be monitored. Currently, FPGAs support Ethernet

speeds up to 400 Gbit/s. In the programmable logic, both the Ethernet MAC and the

packet generators and receivers will be implemented. The packet generator will be

used for active measurements, whereas the packet receiver is needed in case of passive

measurements (chapter 5). A key element in the monitoring devices is the time clock

synchronization block, which enables one-way delay measurements. It will take the

input of a GPS receiver as reference to generate a local clock synchronized to Universal

Time Coordinated (UTC). What is more, quality monitoring devices will be located at

the network edges, at the client connections. Monitoring devices will also be located

at intermediate routing/switching locations of the network. The devices located at the

edges will perform active measurements, whereas the devices at the intermediate points

will mainly be dedicated to passive measurements. All devices will be controlled by a

centralized monitoring entity, which will be in charge of generating a map of the situation

of the network, identifying possible malfunctions and/or bottlenecks. The advantage of

having monitoring devices at various points of the network is that this allows for the

construction of a complete quality map of the network. However, the challenge here is

the economic costs of such comprehensive deployment of monitoring devices, which is in

part tackled by this work.

The processor and the blocks implemented in the FPGA side (Ethernet MAC, packet

Intermediate
Router

Edge
Router

Edge
Router

Edge
Router

GPS

GPS

GPS

Monitoring
Device

Monitoring
Device

Monitoring
Device

Edge
Router

Figure 4.1: Device monitoring in different parts of a network.
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generator and receiver, clock synchronization) will be connected via a standard AXI4

interface. Apart from the programmable SoC, the other components needed in the

network monitoring device are Double Data Rate (DDR) memory, Flash memory, GPS

receiver, Ethernet physical medium devices and power regulators. That is, the monitoring

appliances will feature a minimal component count, thus allowing for low-cost solutions

to be developed. Moreover, the proposed solution features a small size and reduced power

consumption, for instance, 8.5 W in our proof-of-concept design for 1 Gbit/s interfaces.

4.3 Related Work

Certainly, the benefits of using FPGAs in multi-gigabit-per-second networks are

well-known. However, previous works in the active network testing area are scarce and

mainly focus on replacing configurable traffic generators [69–71]. Probably the closest

proposal to ours is [72]. Such work uses FPGAs to test networking equipment according

to RFC2544 [73], which aims at benchmarking methodology for network interconnect

devices. However, such work considers only 1 Gbit/s networks, and no previous work

considers accurate time synchronization mechanisms such as GPS, which is needed to

accurately measure OWD and jitter in a distributed way. Finally, the benefits of using

HLS for networking applications are beginning to be recognized, as shown in [30] where

such methodology has been used to implement a 10 Gbit/s TCP/IP stack in FPGA.

Active monitoring is a well-known tool to evaluate network performance. In this

context, there are diverse open-source alternatives in GNU/Linux, such as pktgen [74],

which implement a packet generation at kernel-level with the possibility of timestamping

these packets. Such software allows implementing the packet-train network measure-

ment technique, which is later explained in subsection 4.5. Intel DPDK [75] is a user-level

framework which allows operating in network links up to 100 Gbit/s, but at this moment

DPDK does not include packet timestamping. Another problem with software solutions

is that it is becoming more challenging for conventional server architectures to monitor

multi-gigabit-per-second networks. Not only that, such high-end servers are very expen-

sive and some times the price is comparable with an FPGA card able to work at the same

link speed.

With the purpose of implementing cost-effective monitoring devices, it is mandatory

to move to the FPGA arena, leveraging programmable logic for deterministic timing

and software for remote access and management, running on the embedded processor or

host machine. Since some years ago, there are open-source platforms, such as NetFPGA,

which provide a network-oriented framework for rapid prototyping of designs and they

have become a reference in research. In this scope, several contributions based on
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NetFPGA-10G (section 3.7) can be found. For instance, the work in [33] presents a

framework for passive monitoring. Active measurements have also been implemented

in [66], and in this other work [72] the use of NetFPGA to test networking equipment

at 1 Gbit/s according to RFC2544 [73] is described as well. However, such works do not

study the effects of clock drift in the measurements and attaches the FPGA to a host,

thus augmenting the cost and power so that a massive deployment of monitoring devices

will not be cost-effective.

4.4 Use Cases

The range of application of high-speed network testing tools is very diverse. The

typical use case focuses on testing the capabilities of network equipment. Nonetheless,

this testing can also be extended to other scenarios, where it is necessary to perform

distributed measurements along a network path. Moreover, such testing must be per-

formed continuously in time to monitor the network Quality of Service (QoS) parameters.

Below we provided three examples, in two of them this type of distributed continuous

testing has been applied, apart from the usual testing of network equipment. In the third

example the measurements must be performed before the path is put into operation.

4.4.1 Service Level Verification

Nowadays, we are witnessing a fierce competition between operators to provide

more bandwidth in the residential access link for the less possible price, some ISP offer

10 Gbit/s connection for residential access. In this competition for market share the

regulators are playing their role as referees to enforce a given QoS level.

Of particular interest is the case of bandwidth reselling between operators, at the

access and metro link level. There, the regulator must ensure that the QoS provided

by the incumbent operator to the hiring operator meets a QoS level that allows the

transmission of interactive multimedia services. Since the number of potential users in

the metro network is very large and the residential bandwidth is growing at a significant

pace, see Figure 1.2. We note that the metro network switches, working at multi-gigabit-

per-second data rates, must be carefully tested both before deployment and also during

operation.
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MEASUREMENTS

4.4.2 Measurement of Next-Generation Elastic Optical Network
Equipment

Elastic optical networks are being developed to offer the possibility of dynamically

changing the signal modulation format and/or the spectrum allocation of optical data

links [76, 77]. This dynamic reconfiguration capability paves the way for new operation

models, whereby links are no longer statically provisioned, but dynamically adapted to

traffic demands. Therefore, the link capacity must be continuously monitored in these

elastic optical networks, to check if the underlying network has reconfigured the provided

bandwidth or not.

4.4.3 Measurement of Dynamically Provisioned Optical Paths

The H2020 Metro-Haul research project [78] aims at defining the metro optical

network architecture to interconnect incoming 5G (fifth generation of mobile network

technology) access networks with the core network. For this, it is developing new tech-

niques, based on Software Defined Network (SDN), to provision optical paths dynamically

in an optical transport network. This metro network has to provide Key Performance In-

dicators (KPI) such as capacity, latency or packet loss, with very stringent requirements.

In order to verify that the deployed optical paths meet these requirements, it is

mandatory to test them before they are put in operation. In such context, active mea-

surements must be performed at 100 Gbit/s to check that the requested KPIs are met

before the optical path is put in operation. Given the foreseen heterogeneity in the

optical network, with different equipment providers, these preliminary measurements

are essential for the network operator to assure the QoS provided to the users, and

complement passive measurements performed during the optical path lifetime [79]. Cur-

rently, COTS equipment is not able to provide such measurement with the necessary

accuracy. Therefore, specialized hardware is mandatory. In this light, FPGAs arise as

the most cost-effective solution.

4.5 Packet-Pair and Packet-Train Techniques for
Network Measurements

We propose to use the packet-train technique, which is an evolution from the previous

packet-pair technique. Packet-pair [80] is an active measurement method based on

sending multiple packet pairs from a source to a destination endpoint in order to estimate

the corresponding QoS parameters. Each pair is composed of equally sized packets sent

back-to-back at the maximum allowed speed in a link or end-to-end path. At the receiver
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side, packet dispersion is analyzed to estimate the capacity. As it turns out, packet-pair

techniques are prone to both capacity underestimations and overestimations due to

interfering traffic, because only two packets are used in the measurements. However,

packet-trains [81, 82] provide better accuracy and robustness, simply because more

packets are involved in the measurement and the resulting train is less sensible to

cross-traffic interference than the corresponding pair.

When using packet-train techniques, a group of N packets is sent back-to-back from a

sender to a receiver and the average dispersion of the N packets is used to calculate the

capacity, as shown in Figure 4.2. Additionally, One-Way Delay (OWD), jitter and Packet

Lost Ratio (PLR) may also be estimated by including timestamps and sequence numbers

on the packets. Increasing the number of packets in the train provides immunity against

interfering traffic but also increases interference in the measured network. What is more,

this technique is based on flooding the link, and, consequently, the measurement time

interferes the rest of traffic on the path, so must be kept at a minimum — unless the

path is not in service yet, for instance, the scenario described in section 4.4.3. Typically,

train lengths range from 100 to 1,000 packets. Regarding packet sizes, OWD is better

measured using minimum-sized packets to reduce the impact of the transmission time

on the estimation. Yet, for OWD probes must be time-synchronized, thus increasing

the complexity in the implementation. However, Round-Trip delay Time (RTT) can be

measured using a packet reflector at the end of the path to measure, hence, avoiding

time synchronization.

On the other hand, the confidence level in the measurement plays a key role in the

number of packets within the train. But as shown later, for hardware implementations

short number of packets are as confident as larger number of them. Nevertheless,

depending on the current state of the path or device under test, the number of packets

within the train must be traded-off to reduce interference with real traffic.

Equation (4.1) shows how latency is obtained, where TSr i is the timestamp of the

packet i at the receiver, and TSti is the timestamp of the packet i at the transmitter.

Equation (4.2) presents the expression to calculate instantaneous link throughput, where

L is the frame size. Finally, equation (4.3) shows how to calculate jitter. To correctly

perform the calculations in (4.2) and (4.3), it must be verified that packets are consecutive,

as this is implicit in these equations.

latency= TSr i −TSti (4.1)

throughput = L
TSr i −TSr i−1

(4.2)

jitter = ||TSr i−2 −TSr i−1|− |TSr i−1 −TSr i|| (4.3)
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Figure 4.2: Representation of packet-train technique.

4.6 Software-based Solutions

Traditionally, network measurements have been performed using specialized hard-

ware designed for such a task. In the recent years, several software-based solutions

that run on top of Commercial Off-The-Shelf (COTS) systems have also been applied for

network measurement and testing tasks. The latter provide a cost-effective and flexible

solution for the development of network testing probes. For instance, pktgen [74] is a

Linux kernel module that enables the generation of traffic with different packet headers

and payloads defined by the user (source and destination MAC and IP addresses, UDP

ports, etc.) and also with specific statistical features, namely inter-arrival time and

number of flows. Additionally, this kernel module adds a sequence number and the de-

parture timestamp for each packet, which makes this tool suitable for throughput, OWD,

jitter and PLR measurements. The main drawback is that the departure timestamp is

taken in the Linux kernel and not in the Network Interface Card (NIC) itself, which

adds measurement noise due to the transit time from the Linux kernel to the NIC. In

high-speed links (10 Gbit/s and beyond), it is noticeable that more packets per second

must be copied to the kernel, so the measurement noise is more significant. Thus, all

traditional software traffic generators cannot exactly mimic the transmission pattern

defined by the user, which severely biases the measurement in a high-speed scenario,

as stated in [83]. Even if a real-time operating system is used, the interruption timer

accuracy is in the order of milliseconds, that is far too coarse for 10 Gbit/s networks and

even worse for 100 Gbit/s.
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In addition, at the time of this work was done, vanilla network drivers could not

cope with minimum-sized packets at 10 Gbit/s rates neither in transmission nor in

reception, which is essential for testing. Recently, high-speed network engines have

been developed [84] to solve this issue. For instance, a software traffic generator called

PktGen-DPDK [85] built on top of Intel’s DPDK [75] is available. Such traffic generator

is able to transmit either random generated packets or PCAP traces. Although this

traffic generator provides 10 Gbit/s and beyond rates, at the time of the work was done it

could not add sequence numbers neither transmission timestamps to the packets, so it

was not able to measure OWD. Recently, DPDK-LatencyMetter has been released [86]

for 10 Gbit/s network, such work achieves really good result at the expense of sending

thousand times each train, thus flooding the network for a long period of time. Only the

Linux pktgen module will be considered later in our comparative analysis for 1 Gbit/s

and 10 Gbit/s.

4.7 Hardware-based Solutions

For years, the use of programmable logic devices (more specifically, FPGAs) has

democratized hardware design for low volume users [53]. Nevertheless, the complexity of

designing specialized hardware still resides in the FPGA design flow, which traditionally

has been based on the challenging Hardware Description Language (HDL). To circumvent

this issue, Vivado-HLS tool was used section 3.3.2. HLS typically uses C/C++ as design

entry, instead of the lower-level Register Transfer Level (RTL) abstraction model used by

HDLs. HLS tools not only improve design productivity, but also bring FPGA technology

closer to networking engineers.

We take advantage of Vivado-HLS to develop several hardware-based solutions. Three

designs have been implemented, one for each network link speed: 1 Gbit/s, 10 Gbit/s and

100 Gbit/s. The first one was used to demonstrate the feasibility of building accurate,

affordable, low power and portable 1 Gbit/s network testing appliances on top of an

FPGA SoC device. The second one, provided as proof-of-concept for 10 Gbit/s networks

and it is based on the open-source NetFPGA [87] project. Finally, the third one is built

leveraging the Virtex Ultrascale+ FPGA-fabric and provides the proof-of-concept for

100 Gbit/s links, which is the current trend for backbone and metro links. For the sake of

simplicity, they are going to be referred as HwP1, HwP10 and HwP100 respectively.

Time synchronization is not a straightforward task. In local area networks, protocols

such as Precision Time Protocol (PTP) can be used. But PTP is no longer valid for

Internet-wide measurements (it requires that all intermediate routers/switches support

PTP), so other approaches should be used. The most common alternative is to use Global
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Figure 4.3: High level overview of the ZedBoard (SoC) design.

Positioning System (GPS) receivers, since GPS provides a precision close to that of an

atomic clock at a reasonable price. However, it remains a challenge to utilize a GPS clock

reference in a network monitoring device while maintaining the low-cost and low-power

features.
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4.7.1 Hardware Architectures Description for HwP1 and
HwP10

With the aim of speeding up the hardware development cycle and bringing it as close

as possible to the network application engineers, we have used HLS tools to design the

prototypes, as described in [15]. Our tool of choice is Vivado-HLS [68], which generates

synthesizable HDL code from a C/C++ source along with synthesis directives. On the

other hand, modules where timing is critical (operations need to be done in an exact

number of clock cycles) were implemented using the traditional FPGA design flow based

on HDLs (VHDL or Verilog).

The designs communicate with the external Physical Layer (PHY) chip by means

of an AXI4-Stream interface. The difference between both prototypes is in the width

of the bus and its frequency of operation (32-bit at 100 MHz for HwP1 and 256-bit at

156.25 MHz for HwP10).

In both architectures, depicted in Figures 4.3 and 4.4, there are two key IP-Cores with

similar behavior in the heart of the system. On the one hand, the Packet Generator
was developed using HLS for HwP1 and HDL for HwP10, apart from the language,

the differences are: 1) AXI4-Stream width and 2) frequency of operation. Customizable

options include source and destination MAC and IP addresses, UDP ports, packet size

and train length. In addition, each generated packet contains a sequence number, and

it is timestamped as close as possible to the physical layer chip. On the other hand,

the Accurate Timestamp Module is in charge of clock synchronization and clock drift

correction. Both implementations use the Pulse Per Second (PPS) signal from a GPS

receiver as a reference to compensate the clock drift. At HwP1, this module is split in

two parts following a hybrid hardware-software approach: the first part is a variable-

rate counter implemented in hardware, which runs at 100 MHz. The second part is an

algorithm that runs in the ARM processor. Such algorithm uses the sum of the previous

errors to correct the rate of the counter, and sends it back to hardware. Therefore, we

can obtain a remarkable timestamp resolution of 10 ns, with an extremely low clock

drift, thanks to the GPS-based error compensation. At HwP10, we have leveraged on

the OSNT project functionality, which implements a Direct Digital Synthesizer (DDS) to

correct the clock drift [33]. The design operates at 156.25 MHz, with a 6.4 ns resolution.

There are some differences in the architectures mainly because HwP1 has a tightly

coupled processor near the FPGA (enabling a hybrid hardware-software approach, as

mentioned before) and HwP10 provides a framework with a library of pre-designed

modules. In HwP1, following the hybrid hardware-software approach, the Packet Re-
ceiver, developed in HLS, receives the packets and filters them according to user-defined

rules. Then, a software program running on the ARM processor computes the Network
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Parameters.

On the other hand, HwP10 uses the infrastructure available in the NetFPGA frame-

work for packet reception and a custom-developed HLS module to compute the Network
Parameters which is able to calculate active parameters of a network using a specific

data stream based on the packet-train technique. Equations 4.1, 4.2 and 4.3 are im-

plemented in this module. To do so, it receives a 160-bit AXI4-Stream with the needed

meta data, which is generated in the reception logic, one transaction for each packet that

meets the filtering rules (that is, the packet corresponds to a packet-train measurement).

The result can be queried from its AXI4-Lite interface, using an application in the host

that reads the network parameters calculator registers.

In summary, the designs are good to send packet trains with the aim of measuring

the required quality parameters (delay, jitter, loss and throughput). The logic of HwP1

was fully implemented using HLS, whereas, in the HwP10 only the packet generator

was implemented on HDL. Additionally, both designs use a PPS signal from an external

GPS in order to support OWD and jitter measurements when testing in a distributed

infrastructure. The code of both projects is freely available on GitHub [88].

Finally, it is worth remarking that both hardware implementations occupy less than

55 % of most of the available resources in the FPGA. Absolute figures of used resources

in both solutions are shown in Table 4.2. More details about the implementation can be

found on the published papers [66, 89, 90].

4.8 Performance Evaluation

4.8.1 Evaluation Testbeds

Two different performance evaluation scenarios have been considered for both soft-

ware and hardware solutions. The first scenario, used for calibration, is based on sending

measurement packets through an interface and receiving them in another interface of

the same testing device, in a loopback fashion. The second scenario is based on sending

the measurement packets through an interface that is connected to the DUT —in this

particular case, a Cisco Catalyst 2960-S. In the DUT, the measurement traffic is for-

warded from one SFP+ port to another SFP+ port that is connected to the traffic receiver

interface of the testing device. This scenario addresses the 10 Gbit/s case. For the sake of

completeness, the performance analysis has been repeated for the 1 Gbit/s case, using

the same setup but connected to 1 Gbit/s DUT ports.

To evaluate the software solution, the pktgen module has been executed on a server

running an Ubuntu Linux 14.04 with a 3.16.0 kernel. The server has two Intel Xeon
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E5-2620 processors with 6 cores each, 32 GB of RAM and an Intel 82599 10 Gbit/s NIC.

For all tests the ixgbe vanilla driver has been used along with pktgen 2.75 module.

All the experiments featured packet trains of 100 and 1,000 packets with frame sizes

of 60, 64, 128, 256, 512, 1,024 and 1,514 bytes, excluding frame preamble and check

sequence. The experiment was repeated ten times to obtain mean and standard deviation

for throughput and OWD. In the case of pktgen module, traffic has been generated

using a single transmission queue since packet sequence numbers must be correlative

for throughput and delay measurements, and using multiple queues produces packet

disorder [91].

4.8.2 Experimental Results

The throughput measurements in the 1 Gbit/s scenario using the testing setup

with the DUT are shown in Figure 4.5. As it can be observed, results obtained with

the hardware HwP1 prototype are fairly close to theoretical throughput value and

the standard deviation is very small. In the case of measurements using the software

approach, if the train length is 100 packets and the packet sizes are lower than 256-Byte,

the results are quite far from the theoretical values, and present larger deviations.

With sizes of 256-Byte and above, we observe that the empirical values approach the

theoretical ones. For 1,000-packet trains, measurements are more accurate and present

less deviation.

Likewise, Figure 4.6 shows the throughput measurements for 10 Gbit/s. Similar to

1 Gbit/s, the results for the hardware system are very similar to the theoretical values,

with extremely low deviation. However, the results for the software system significantly

depart from the theoretical ones, but improve as the packet size and train length increase.

From this results, we can conclude that software-based systems are not suitable for

10 Gbit/s active measurement. Similar results were obtained in the calibration setup,

measuring the loopback for 1 and 10 Gbit/s scenarios.

In both figures (4.5 and 4.6) the theoretical curve indicates the maximum number

useful bits/s that can be carried in a given network and is calculated as theoretical =
f rame size

f rame size+24 ∗LinkSpeed( bits
s ), the number 24 is the sum of preamble, CRC and inter-

frame gap.

Note that, for some scenarios, regulatory bodies require that link measurements

are performed using minimum-sized packets, which implies that software solutions are

infeasible. Additionally, a thorough network device testing should generate traffic with

packet sizes ranging from the minimum size to the MTU.

Regarding OWD measurements, Table 4.1 shows the results for both loopback and

switch setups at 1 Gbit/s and 10 Gbit/s. As it can be observed, software measurements are
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Figure 4.5: 1 Gbit/s DUT throughput with different packet sizes. Mean and standard
deviation measured both in software and hardware.

far from the hardware values, adding up to 150 µs of error in the worst case scenario —

loopback at 1 Gbit/s. If accuracy below thousands of µs is needed, the hardware solution

is the most suitable option. It is also worth noting that the hardware approach not only

shows the most accurate results, but it also presents extremely low variation (less than

0.01%) which makes it well suited for jitter measurements. It is also worth to highlight

that the confidence level in the measurement of both hardware implementations is

extremely high, both train length of 100 and 1,000 packets shows the same results.

4.8.3 Latency Calibration for HwP1 and HwP10

We note that the measured latency in the hardware developments is significantly

larger than the theoretical minimum (frame transmission time) in the loopback sce-

nario. This is due to the different elements in the transmission chain. In the 10 Gbit/s

case, the FPGA features three IP-cores that add up latency to transmission and recep-

tion: 10G MAC core, 10G Attachment Unit Interface (XAUI) core and Multi Gigabit

Transceiver (MGT). Particularly, the reception MGT has an elastic buffer in order use the

same clock for transmission and reception, so that the design is simplified. Such elastic

buffer will also add uncertainty to the latency measurement. Moreover, we note that

this buffer is not the only source of latency; the 10G MAC and XAUI cores can add up
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to 200 ns (adding transmission and reception latencies). Nevertheless, the main source

of latency in the NetFPGA-10G board is the physical medium chip, which performs a

conversion from XAUI to the 10 Gbit/s serial electrical interface, as well as Electronic

Dispersion Compensation (EDC). Such operations add a significant latency to the trans-

mission/reception path. Similar considerations should be taken into account for 1 Gbit/s

case.

Considering the results of Table 4.1, we can empirically infer that the aggregate

delays (due to the reasons discussed above) linearly depend on the packet size. There-

fore, we can use the loopback scenario to extract a calibration function from the delay

measurements. To obtain such a function, we have firstly represented the scatter plot

of measured data set (70 points) as shown in Figure 4.7 for 1 Gbit/s and Figure 4.8 for

10 Gbit/s. As a second step, we have fitted the data using a linear regression, as it is the

simplest method to calculate such function. Finally, we have subtracted this function

from the theoretical one to obtain the calibration function. Such calibration function

has been later applied to the Catalyst 2960-S switch delay measurements, obtaining

comparable results to those reported [92] for a similar device.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 128  256  384  512  640  768  896  1024  1152  1280  1408  1536

T
h

ro
u

g
h

p
u

t 
(G

b
it
/s

)

Packet Size (Bytes)

Measured Throughput 10 Gbit/s scenario

pktgen (100 packets)

HW (100 packets)

pktgen (1000 packets)

HW (1000 packets)

Theoretical Throughput

Figure 4.6: 10 Gbit/s DUT throughput with different packet sizes. Mean and standard
deviation measured both in software and hardware.

58 Mario Daniel Ruiz Noguera



4.8. PERFORMANCE EVALUATION

 0

 5

 10

 15

 20

 25

 0  200  400  600  800  1000  1200  1400  1600

f(x)=1.1091 +0.0130*x

T
im

e
 (

µ
s
)

Packet Size (Bytes)

Packet Size vs Delay

Samples

Measured

Theoretical

Calibration

Figure 4.7: Regression on hardware platforms to calibrate measured delay on ZedBoard
at 1 Gbits/s.

 0

 0.5

 1

 1.5

 2

 2.5

 0  200  400  600  800  1000  1200  1400  1600

f(x)=0.8542 +0.0010*x

T
im

e
 (

µ
s
)

Packet Size (Bytes)

Packet Size vs Delay

Samples

Measured

Theoretical

Calibration

Figure 4.8: Regression on hardware platforms to calibrate measured delay on NetFPGA
and OSNT at 10 Gbit/s.

Ph.D. Dissertation 59



C
H

A
P

T
E

R
4.

A
C

T
IV

E
M

O
N

IT
O

R
IN

G

1Gbit/s 10Gbit/s
Loopback Switch Loopback Switch

Packet
Size
(bytes)

# of
packets

OWD
pktgen
(µs)

OWD
HwP1
(µs)

OWD
pktgen
(µs)

OWD
HwP1
(µs)

OWD
pktgen
(µs)

OWD
HwP10
(µs)

OWD
pktgen
(µs)

OWD
HwP10
(µs)

60
100 29 ± 5 1.890 ± 0.003 38 ± 14 5.149 ± 0.003 17 ± 6 0.883 ± 0.000 17 ± 8 3.79 ± 0.003

1,000 30 ± 7 1.889 ± 0.000 34 ± 5 5.149 ± 0.001 17 ± 5 0.883 ± 0.000 17 ± 6 3.80 ± 0.002

64
100 33 ± 9 1.941 ± 0.002 34 ± 6 5.236 ± 0.003 17 ± 7 0.883 ± 0.000 18 ± 5 3.81 ± 0.001

1,000 30 ± 5 1.945 ± 0.003 33 ± 4 5.235 ± 0.002 18 ± 6 0.884 ± 0.000 18 ± 6 3.80 ± 0.002

128
100 34 ± 5 2.772 ± 0.001 43 ± 6 6.720 ± 0.005 20 ± 5 0.945 ± 0.000 20 ± 3 3.97 ± 0.007

1,000 37 ± 5 2.773 ± 0.003 44 ± 6 6.728 ± 0.002 28 ± 1 0.946 ± 0.000 29 ± 2 3.97 ± 0.008

256
100 53 ± 8 4.437 ± 0.005 59 ± 8 9.425 ± 0.003 35 ± 8 1.069 ± 0.000 34 ± 7 4.20 ± 0.001

1,000 53 ± 8 4.438 ± 0.007 59 ± 7 9.426 ± 0.002 35 ± 8 1.069 ± 0.000 34 ± 9 4.20 ± 0.000

512
100 83 ± 13 7.763 ± 0.003 92 ± 13 14.793 ± 0.004 59 ± 12 1.317 ± 0.000 58 ± 13 4.65 ± 0.000

1,000 84 ± 11 7.765 ± 0.006 92 ± 11 14.796 ± 0.002 61 ± 11 1.317 ± 0.000 60 ± 10 4.65 ± 0.000

1024
100 122 ± 11 14.423 ± 0.002 134 ± 11 25.556 ± 0.003 90 ± 11 1.812 ± 0.000 89 ± 10 5.56 ± 0.001

1,000 123 ± 3 14.424 ± 0.002 135 ± 4 25.555 ± 0.002 91 ± 4 1.812 ± 0.000 92 ± 8 5.56 ± 0.000

1514
100 170 ± 17 20.798 ± 0.001 172 ± 47 35.854 ± 0.003 130 ± 16 2.322 ± 0.064 129 ± 15 6.48 ± 0.000

1,000 171 ± 6 20.796 ± 0.001 188 ± 9 35.853 ± 0.000 132 ± 6 2.317 ± 0.007 131 ± 9 6.48 ± 0.000

Table 4.1: Switch and loopback estimated OWD with different packet sizes and link speeds. Mean and standard deviation.
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4.9. HWP100: VCU118 AND ALPHA DATA ADM-PCIE-9V3

4.9 HwP100: VCU118 and Alpha Data ADM-PCIE-9V3

Hitherto, 1 and 10 Gbit/s active probes were described. In light of the extraordinary

results of those probes, the natural step is to move forward in the link speed. There-

fore, we have scaled the probe to support 100 Gbit/s. Even though, the current DPDK

implementation supports a wide variety of 100 GbE NICs, the accuracy could not be

compared against a hardware implementation. Thus, this probe is a unique element to

accurate measure 100 Gbit/s infrastructure. We have built two probes using different

boards with different part of the same FPGA family. The first one takes advantage of the

Xilinx VCU118 development board (section 3.8.1), which includes two QSFP28 interfaces

as well as one 1 Gbit/s Ethernet interface. This board is suitable for prototyping. On

the other hand, the Alpha Data ADM-PCIE-9V3 is data center oriented board with two

QSFP28 interfaces (section 3.8.1), the FPGA is three times smaller than the VCU118,

however, for this design it is not an issue. For both board, the design was made from

scratch. Even though they share most of the logic there are subtle differences regarding

the infrastructure that connects with the physical parts. The focus will be on the Alpha

Data ADM-PCIE-9V3 design.

In this case, we have designed a more complete active probe, see Figure 4.9. There

are ARP and VLAN support, implemented using HLS. Each interface has its own IP and

MAC address to fully compliant with network specifications. However, to avoid problem

with timestamp synchronization of the probes, this design does not include any kind of

synchronization scheme. Each probe has two interfaces, one to generate the packets and

the other to receive and forward packets, acting as a packet reflector. In such a way that

Round-Trip delay Time (RTT) is measured in the same probe that generates the packet

avoiding synchronization issues across probes. Noteworthy, the timestamp resolution is

as small as 3.013 ns.

The design uses two physical interfaces. Interface zero: is split into two independent

designs. On the one hand, the transmitting side, a synthetic packet generator has been

developed, using HDL to have full control of the logic. On the other hand, the receiving

side is in charge of filtering the packets, analyzing them and generating a summary,

implemented using HLS. Interface one: is targeted by the traffic generator, receives

the packets and swaps the MAC, IP addresses and UDP ports in order to reflect the

packet to the sender, implemented using HLS. In that way, the QoS parameters can be

calculated, without synchronizing the probes. In what follows, the main components of

the design are explained in detail.
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4.9.1 Synthetic Packet Generator

This piece of hardware is written in Verilog and implemented as a Finite State

Machine (FSM). In such a way that, the behavior is completely deterministic and it

provides the most accurate measurements. This module is in charge of generating UDP

packets that will carry useful information for the measurement. The packets can be

generated at the maximum throughput, which is extremely close to the theoretical value

in 100 Gigabit Ethernet links.

When a measurement is requested, some of the fields in the packets can be set, such

as VLAN, source and destination IP addresses, source and destination ports, packet size,

and Bit Error Rate Test (BERT) type used for the payload. Moreover, each UDP packet

carries an iperf [93] compatible payload. Figure 4.10 shows the generated packet at IP

level. Additionally, other configurable parameters are the amount of packets in the burst

and the inter-packet gap between packets — number of idle cycles from one packet to

another at the generation process. All those configurations are done through an interface

from a program running in the computer hosting the FPGA card. The following BERT

types have been implemented in the payload of the packets, so the active measurements

can also be used to check if the optical modulation and the Forward Error Correction

(FEC) implemented in the optical path are working properly:

LBUS          AXI4S Adapter

Inbound Packet
Handler ARP Outbound Packet

Handler

DMA
Subsystem

Host

Ultrascale+ Integrated 100 G Ethernet Subsystem

AXI4-S AXI4-Lite

Packet Generator
Network

Parameters
Calculator

Phython Server + User programs

PCIe

LBUS          AXI4S Adapter

Inbound Packet
Handler ARP Outbound Packet

Handler

Ultrascale+ Integrated 100 G Ethernet Subsystem

Loopback

Interface 0 Interface 1

Third-Party IP HDL IP HLS IP

Programmable Logic

Figure 4.9: 100 Gbit/s active probe architecture overview.
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Figure 4.10: 100 Gbit/s synthetic packet structure.

• PRBS (Pseudo Random Binary Sequence): binary sequence that is difficult to

predict and exhibits statistical behavior similar to a truly random sequence.

• All zeros: A sequence of all zeros.

• All ones: A sequence of all ones.

• 1:1: A sequence composed of alternating ones and zeros.

• 1:7: Also referred to as “1 in 8”. It has only a single one in an eight-bit repeating

sequence.

• 2:8: A pattern that contains a maximum of four consecutive zeros and only two

ones.

• 3:24: A pattern that contains the longest string of 15 consecutive zeros with only

three ones.
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4.9.2 Packet Filtering and Parameters Calculator

In the receiver side, packets are timestamped in the moment they reach the FPGA

side. The packet handler module is in charge of filtering packets by type. For instance,

ARP and UDP packets are taken into account in this implementation. After that, UDP

packets are parsed and those fields that are configurable are verified in order to check

if the packets match with the required configuration. If so, the useful information is

extracted to compute the packet train parameters. This information is fed to the statistics

generator — a piece of hardware very similar to the Network Parameters described

in section 4.7.1— which collects it. The result of the measure is then sent to the HOST

machine through PCIe. However, for the VCU118 implementation an IPFIX report is

generated and sent through the 1 Gbit/s interface. All the modules described in this

subsection have been implementing using HLS.

4.9.3 Evaluation Testbeds

We have used the same two scenarios as described in section 4.8.1. The first one,

the probe connected in a loopback fashion. The second scenario, in this case we have

used two switches: Huawei Cloud Engine 8800 and Mellanox MSN 2100-CB2FC. Both

switches were configured to support hybrid interfaces. In such a way that, the interfaces

are able to handle packets with VLAN and without VLAN.

All the experiments featured packet trains of 1,000,000 packets with frame sizes

of 64-Byte to 1514-Byte with a step of 1-Byte, excluding frame preamble and check

sequence. Experiments using packets with VLAN and without VLAN were carried out.

Each experiment was repeated ten times to obtain mean and standard deviation for

throughput and RTT. This probe aims at testing the Metro-Haul infrastructure where a

reliability of six nines is sought, therefore at least a million of packets are needed.

4.9.4 Experimental Results

The throughput measurement for the experiments without VLAN are shown in

Figure 4.11. Whereas, Figure 4.12 shows the throughput results when VLAN is used. At

a glance, it seems that the results are really close to the theoretical. Yet, a closer look

Figure 4.13 and Figure 4.14 shows that there is little difference with the theoretical

value. However, the almost 0.02% difference is negligible. In this case, we have not

carried out experiment with software-based solution because of the poor result of such

solution at 10 Gbit/s.

Figure 4.15 shows the RTT measurements for the different scenarios. The results

when VLAN is used are almost identical to the results when there is no VLAN. It is
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Figure 4.11: 100 GbE active probe measured throughput when NoVLAN.

also noteworthy that the Mellanox switch is 300 ns faster that the Huawei one. In

this case, we do not need to compute a function to calibrate the system. Since we have

every possible value, the calibration is done subtracting the measure value with the

correspondent loopback value. We believe that the drop in latency around 832-Byte is

due to a mode change in the Mellanox switch.
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Figure 4.12: 100 GbE active probe measured throughput when VLAN.
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Figure 4.13: Error of 100 GbE active probe measured throughput when NoVLAN.

At the same time that the RTT experiments were carried out, we measured the jitter

of our solution for the different scenarios. The results are shown in Figure 4.16. The

jitter in all experiment is negligible compared to the latency, again this fact confirms

that FPGAs are the solution to perform active measurements.
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Figure 4.14: Error of 100 GbE active probe measured throughput when VLAN.
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4.10 Conclusions and Future Directions

The increasing speed of communication networks poses a serious challenge for testing

and calls for more accurate probes. In this chapter we presented the advantages of

FPGA technology to implement accurate and affordable testing appliances for high-

speed networks. Although software-based solutions are undoubtedly the most convenient

approach in terms of deployment and development costs, it has been shown that the

non-determinism of software severely limits the accuracy of such solutions at multi-

gigabit-per-second speeds. Moreover, non-determinism arises in the NIC itself and its

connection to the system (PCIe, chipset), so using GP-GPU accelerators or multi/many

core architectures does not help to solve such an issue.

In order to assess the benefits of FPGA active probes for high-speed networks, several

solutions have been proposed, ranging from plain programmable logic to SoC devices. The

first one runs at 1 Gbit/s and is based on the ZedBoard. The second one runs at 10 Gbit/s

on top of NetFPGA-10G. The third one runs at 100 Gbit/s on a Virtex Ultrascale+ device.

The packet-train technique has been chosen to perform the measurements due to its well-

known features of accuracy, interference immunity and low network overhead during

testing. With the help of these three proof-of-concept designs, the advantages of hardware

solutions have been exposed in terms of determinism and accuracy when compared to

the software alternative. Another contribution is to present the benefits of open-source

platforms and high-level synthesis for improving FPGA design productivity. In this

context, most of the development of the proof-of-concepts has been done using HLS, apart

from the packet generator, which was done using HDL to have full determinism. This

methodology has proven to reduce the development cycle without a degradation on the

results.

Table 4.2 provides a qualitative and quantitative summary of FPGA versus software

solutions for HwP1, HwP10 and HwP100. As it was evidenced in Figure 4.5, software

solutions only provide a good accuracy for throughput measurements at 1 Gbit/s and

when using large packet sizes. At 10 Gbit/s the software accuracy is very poor, even

if using kernel-level approaches such as the one evaluated in this thesis. In terms of

designability and design time, the use of HLS brought those variables in the FPGA

design closer to the software standard. Regarding costs and power consumption, the

results presented in Table 4.2 are the corresponding to the prototypes that have been

evaluated. For the software solution, a high-end server with a 10 GbE card was used. For

HwP1, the configured system includes the ZedBoard card (section 3.6), a GPS receiver

and a GbE FMC daughter card. For HwP10, a NetFPGA-10G (section 3.7) card was used

(academic price), along with a low-end computer attached to it. Finally, for HwP100 an

ADM-PCIE-9V3 card (section 3.8.1) and a low-end server attached to it were used.
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Finally, in this chapter the scalability of the packet-train technique fitting different

network speed has been shown. What is more, the use of dedicate hardware has also been

proven, especially when considering the nanosecond-accuracy. Therefore, this technique

could be applied to the upcoming 200 and 400 Gbit/s, for instance, using a VCU129

board [94]. Nowadays, such very high-speed devices are very expensive, however there

is no COTS counterpart able to handle such speed. Therefore, in such state-of-the-

art technologies using FPGA becomes mandatory. Locally, in this chapter we have

demonstrated that using HLS the development phase is simpler and shorter.
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Feature SW HwP1 HwP10 HwP100
Approximate cost 5000 USD 1400 USD 3500 USD 9000 USD
Power consumption 160 W 8.5 W 120 W 150 W
BRAM Blocks (BRAM36) N/A 86 out of 140 11 out of 324 148 out of 720
DSP Blocks (DSP48E) N/A 0 out of 220 2 out of 96 17 out of 2280
Number of Slices N/A 8,210 out of 13,300 28,996 out of 37,440 Not Reported
Slice LUTs N/A 22,224 out of 53,200 79,099 out of 149,760 121,606 out of 394,080
Slice Registers N/A 24,589 out of 106,400 81,646 out of 149,760 207,198 out of 788,160
Timestamp resolution 10 µs 10 ns 6.4 ns 3.103 ns
Designability Easy Moderate Moderate Advance
Design time Weeks Months Months Months
Engineer skills needed Drivers FPGA FPGA FPGA
Maximum rate supported 10 Gbit/s 1 Gbit/s 10 Gbit/s 100 Gbit/s
VLAN Support 3 7 7 3

Measure throughput 1 Gbit/s poor 3 3 3

Measure throughput 10 Gbit/s poor [86] N/A 3 3

Measure throughput 100 Gbit/s not verified N/A 3 3

Measure OWD 1 Gbit/s 7 3 3 7(only RTT)
Measure OWD 10 Gbit/s 7 N/A 3 7(only RTT)
Measure RTT 100 Gbit/s 7 N/A N/A 3

Table 4.2: Features summary of software and hardware prototypes.
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PASSIVE MONITORING

I
n this chapter we explore the FPGA capabilities to implement two passive bump-
in-the-wire implementation which aim for reducing the input traffic load smartly.
The idea is to plug this appliance between the point to monitor and the traditional
software-based probe, in such a way that the FPGA is in charge of preprocessing

the traffic and reducing the output traffic. Thus reducing the computing performance
needed as well as the reducing the storage system of the software probe.

5.1 Introduction

Passive monitoring, which is based on capturing traffic for real-time or for offline

forensic analyses, is widely used to evaluate the healthiness of networks (section 3.2.1).

Over the years many tools to perform this type of analysis have been developed. What

is more, among GNU/Linux tools we can find wireshart, tcpdump, tshark. However,

network traffic monitoring is becoming increasingly challenging to manage due to the re-

lentless growing speed of network links. This effect is even more noticeable at 100 Gbit/s;

the huge volume of data makes it very difficult to perform online analyses or event to

store traffic for subsequent forensic investigations. Researchers have studied different

architecture to be able to cope with such speeds, however the solutions do not completely

address the matter.

In this context, it is mandatory to implement mechanisms to significantly reduce the

amount of information used in the analysis without losing any relevant details, thus, it



CHAPTER 5. PASSIVE MONITORING

is therefore mandatory to carry out some sort of smart filtering and/or capping in the

network traffic to be analyzed. What is more, network traffic monitoring usually faces

the problem of packet duplication, which arises when port mirroring is being used. That

is, when traffic is copied from the ports of a switch or a router that are being monitored,

to a mirror port where a monitoring probe is attached. Thus, a packet can be copied

twice, both at the ingress and egress ports, therefore generating duplicates. Information

redundancy caused by packet duplication not only leads to increased workloads at the

monitoring probes, but also calls for more disk space to store the network traces. Actually,

packet duplication might increase 100% the monitoring load, in the worst case.

In this chapter, we present two FPGA-based bump-in-the-wire passive probes which

aim for reducing the traffic load in the software probe. We present two different ap-

proaches: a) smart capping cypher packets and b) removing duplicate packet. These

might seem straightforward ideas, however, they have been proven to alleviate the traffic

load in the probe. What is more, they can even be combined together to further reduce

the traffic. Hence, extending the usability of traditional monitoring tools.

To do so, we have taken advantage of the Ultrascale(+) architecture of the VCU108/118

(section 3.8.1) boards and High-Level Synthesis (HLS) (section 3.3.2) to cut down develop-

ment time. However, we also used a traditional approach based on Hardware Description

Language (HDL) to optimize critical areas of the designs. Both alternatives are a proof-

of-concept based on a store and forward architecture, where the packet is stored until a

decision is made, therefore, the packets are forwarded, capped or dropped. Moreover, we

have achieved designs able to work at 100 Gbit/s, consequently, reducing the costs and

computational load of the host associated to the network analysis.

5.2 Packet Capturing: Related Work

With respect to traffic capture, the authors in [95] studied the hardware that is

necessary to store 10 Gbit/s network traffic at line rate. Even with today’s equipment the

challenge remains, the work [96] presents the challenges to capture and store at 40 Gbit/s,

not only capturing is difficult, but also, storing the data for further analysis becomes

demanding. Trying to scale up the problem at 100 Gbit/s makes the task extremely

difficult and costly. The author in FlowScope [97] presents an event triggered packet

capture, they claim to be able to achieve more than 120 Gbit/s capture rate, but, the

storage is done when a trigger happens. The literature shows significant progress in

capturing and storing traffic at high-speed rate, however the hard disk drive capacity

is limited and expensive at such speed. Consequently, the need of reducing the traffic

to be analyzed and eventually stored is paramount, thus saving compute resources and

72 Mario Daniel Ruiz Noguera



5.3. CAPPING CYPHER PACKETS

capacity on the hard disk drive.

5.3 Capping Cypher Packets

The ratio of encrypted traffic is relentlessly increasing, and therefore the information

that can be extracted from the packet payload is limited. For such encrypted traffic,

storing the payload is most times useless and has a counterproductive effect in the

storage. For that reason, we use a method able to identify plain text (that is, human

readable) in the network packet payload. The method is based on both detecting bursts

of printable American Standard Code for Information Interchange (ASCII) characters

and computing the percentage of such printable characters in the packet payload. This

method has proven to be very effective in reducing the amount of information used in

traffic analysis, by saving only the headers of packets with encrypted payloads. Needless

to say, such implementation helps the current tools to handle a smaller amount of traffic

than if they were connected directly to the network.

In this section we explore a bump-in-the-wire FPGA implementation of such method,

able to identify plain text (human readable) in the packet payload, which is extremely

useful for forensic and real-time analyses. As stated in section 3.8 in the board at hand,

packets are received through a 512-bit (64-Byte) AXI4-Stream interface at 322.265625

MHz (3.103 clock period), and the maximum packet rate is 148.8 million packets per sec-

ond. At this rate, it becomes a serious challenge to implement the selected algorithm for

discriminating ciphered traffic. In order to address this challenge, a low-level, handmade

architecture was developed using VHDL and integrated in a HLS flow in order to reduce

the development time.

The approach to recognize encrypted traffic and capping it, since it is mostly irrelevant

for further analysis, has already been explored. There are a few works in the literature

with different approaches to identify encrypted traffic; in the following paragraphs we

summarize them.

Velan et al. [98] preset a survey of methods to detect encrypted traffic. The work [99]

presents a survey in traffic classification based on the payload. In the paper [100] the

future directions of traffic classification are studied. In [101] the authors present a

method to detect encrypted traffic in real-time, evaluating only the first packet on the

flow. In such work, 94 % of encrypted traffic is detected as encrypted. Regrettably, that

solution is impracticable onto FPGA at 100 Gbit/s because it needs a large memory to

save the information of flows —on-chip memory is a limited resource on FPGAs—, even

with an efficient implementation of a hash table, because the collisions will reduce the

performance. Similar to the previous work, in [102] a mechanism is implemented to
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recognize applications encapsulated in Secure Sockets Layer (SSL) connections, which is

based on the size of the first packet in the connection. Such method achieved more than

85 % accuracy, but it needs again a large memory to identify the flows, which makes

it less suitable for a hardware implementation. In [103] an FPGA-based solution is

implemented that achieves 786,432 concurrent flows using an external QDR-II memory

at 10 Gbit/s, a small number of flows compared with the amount of concurrent flows in a

real core network. Ongoing research try to tackle flow-based monitoring at 100 Gbit/s on

FPGAs one such example is [104], however, the number of supported flows is negligible

compared to the actual concurrent flows in a 100 Gbit/s links. Therefore, we discarded

the idea of using flow information to detect cyphered packets owing to the huge memory

consumption, given that in other software-based works [105] authors deal with about

10 Million of flows at 10 Gbit/s. However, the new FPGA devices with High Bandwidth

Memory (HBM) could open up new architectural design able to deal with flow-based

monitoring. Additionally, in [106] a hybrid method to identify encrypted application traffic

is presented, combining a signature-based method and a statistical analysis method.

Such hybrid method achieves a classification accuracy above 99%. But that work does

not consider the speed at which they can classify the traffic, and unfortunately it seems

to be impossible to achieve 100 Gbit/s with FPGAs using this method. The patent [107]

also describes an encrypted-traffic discrimination device, but the description about the

architecture is very vague and generalist. In fact, the speed that can be achieved by

the proposed system is not provided. On the other hand, we can find in the literature

traffic classification using stateful machine learning implementations [108, 109]. These

machine learning algorithms are very expensive to implement onto FPGAs, and what is

more, a previous phase is necessary to train the network.

The literature review, previous paragraph, reveals that the research on detecting

encrypted traffic is based on inspecting flows, such stateful algorithms are not very well

suited for FPGA design due to the huge amount of memory needed. However, Uceda et
al. [110, 111] in 2015 introduced a stateless algorithm able to detect cyphered packets.

These works use bursts of consecutive printable ASCII characters and the percentage of

printable ASCII present in a packet as the basic metrics to recognize relevant packets

that need to be further analyzed (i.e. not encrypted packets). The output of this algorithm

can be a whole packet without encrypted traffic or a capped packet with just protocol

headers (e.g. IP or TCP) for encrypted traffic. For example, this implementation can keep

some content of the handshake of SSL flows such as the X.509 certificate, because of the

amount of ASCII text in the payload, and discard the payload in the rest of the packets of

the encrypted flow. Given the good results provided in the original work, we exploit the

stateless characteristics of this method and leverage the massive parallelism of FPGA as

well as HLS to make an architecture able to filter encrypted network traffic at 100 Gbit/s.

74 Mario Daniel Ruiz Noguera



5.3. CAPPING CYPHER PACKETS

Given the previous efforts on encrypted traffic discrimination found in the literature.

The main contributions and distinguishing features of our work can be summarized as:

• This architecture is able to deal with fully loaded 100 Gbit/s Ethernet links, guar-

anteeing that the complete payload of packets can be processed at line rate.

• The presented approach is able to be extended to filter by other different criteria,

while maintaining the line rate capability.

• The work shows the benefits of using a mixed approach combining HLS and low

level design for critical parts, which reduces development effort and increases

performance.

5.3.1 Method to Identify Relevant Packets

It is estimated that in 2016, over 70 % of the traffic was encrypted [112]. However,

the 30% remaining continue using plain-text in the payload. In this part of the passive

monitoring we focus on finding non-encrypted traffic, in this case packets that carry

information in plain text, specifically those encoded in ASCII and the subset of variable

8-bit Unicode Transformation Format (UTF-8). According to their payload, different

types of packets can be defined [110] (Figure 5.1):

(a) Completely binary (encrypted). Class I.

(b) With printable ASCII at the beginning of the payload. Class II.

(c) Mix of printable ASCII and binary. Class III, IV and V.

(d) Pure plain-text ASCII. Class VI.

In the works [110, 111] the authors studied statistically the relation of consecutive

printable ASCII characters and the percentage of printable ASCII characters in the

payload to determine the usefulness of the payload of a given packet for the network

analyst. Additionally, they proposed two software-based solutions: the first one inspected

the whole packet more accurate but not able to achieve 10 Gbit/s, and the second one

implemented an algorithm able to achieve line rate at 10 Gbit/s but at the expense of not

scanning the whole payload, thus less accurate.

In this implementation, based on such previous works, the speed link was scaled to

100 Gbit/s and furthermore, all bytes in the payload are inspected in order to increment

the granularity and accuracy in the decision. Noticeable, our implementation does

not trade accuracy for speed. Moreover, this implementation uses fixed parameters to
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Figure 5.1: Taxonomy of classes of protocols according to how printable ASCII data is
carried. Source: [110].

simplify the design: the packet is accepted as non-encrypted when a burst of twelve

consecutive printable ASCII characters is detected or the percentage of printable ASCII

is greater or equal than 50% of the packet size. If the packet does not meet these rules,

it is considered binary and then, just the first 64-Byte are kept (headers containing

information of Ethernet, IP, and transport protocols), which is the only part of the packet

that will be useful for a network analyst.

5.3.2 Architecture

The basic structure to filter encrypted traffic is the so-called Analyzer Unit, which is

a store and forward architecture, depicted in Figure 5.2. The architecture is composed

of three main blocks that will be explained later on. The first version was described in

C/C++ using Vivado-HLS tool [68], and using directives as described in [35, 113]. The

proposed architecture can be easily extended to filtering any kind of traffic by simply

modifying the decider module, as long as the filtering criteria are stateless or the output

First-In First-Out (FIFO) does not get full. One of the biggest challenges is to obtain a

design which meets the 3.103 ns of clock period.

Receiver: The receiver is connected to the incoming 100 Gbit/s Ethernet interface

(source of traffic to be filtered) through a 512-bit (64-Byte) width AXI4-Stream interface.

Its function is to receive Ethernet traffic and split it into two streams: (a) one is an exact

copy of the input, which is sent to a FIFO to be stored until the decision is made. (b) A

byte-by-byte reduction to a 64-bit boolean vector that represents if the corresponding

byte is a printable character (byte decimal value between 32 and 126) or not. This vector
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Figure 5.2: Analyzer unit, which is a store and forward architecture.

will be called from now on the vector of ASCII information, which is later sent to the

decider to be analyzed. The reduction from 512-bit to 64-bit is a naïve comparison, which

can be made even combinational. It corresponds to detecting for each octet if it is between

the hexadecimal values 0x20 and 0x7E, both inclusive. A simplification is to consider

also DEL (0x7F) as printable ASCII. If so, the comparative is even simpler: It is only

needed to check the three most significant bits of each byte. This module was developed

in C using Vivado-HLS.

Transmitter: This module is in charge of generating the output stream. It receives

two input streams: The decision stream indicates the amount of bytes to be transferred,

and it comes from the ASCII decider module through a 32-bit width AXI4-Stream. The

other stream is coming from the FIFO and contains the already analyzed packet. When

a valid decision arrives, the logic starts to read data from the FIFO and forwards the

amount of bytes that the decision informed. If the decision has less bytes than the packet,

the rest of data are discarded in order to empty the FIFO for the next computation. This

module was developed in C using Vivado-HLS. This architecture can also be used to

discard packets, when the decision is zero, the whole packet is read but not forwarded.

ASCII Decider: The ASCII decider receives the 64-bit vector of ASCII information
indicating which characters are printable. This core uses that information to count the

amount of printable characters and to detect sequences as explained in section 5.3.1. At

each clock cycle, two operations should be done: i) the 64-bit vector is reduced to a 7-bit

number that represents the amount of printable characters in the current transaction;

and ii) using the last 11-bit from previous transaction it tries to find sequences of twelve

consecutive printable characters.

Initially, we implemented this module using HLS. However, the implementation had

an initiation interval bigger than 5 clock cycles. Therefore, we could not handle scenarios
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with short packets. Consequently, we decided to implement this module using HDL to

use low level elements efficiently.

Verifying the consecutive number of printable ASCII is computationally straightfor-

ward; it implies to test 64 times in parallel the presence of twelve consecutive ‘1’. In a

Xilinx UltraScale device, it implies 44 LUTs and less than 2 ns using a behavioral VHDL

description. Nevertheless, counting the amount of ‘1’ is a much harder problem, and it is

deeply analyzed in section 5.3.3.

Finally, in order to take the decision of how many bytes are to be transferred, a

4-state Finite State Machine (FSM) as shown in Figure 5.3 is implemented. Each state

and the transition between states are described below.

• WAIT_FIRST_WORD: This is the first state after reset. When the packet has

64-Byte or less, the packet must be sent completely, then decision is 64, and next

state is WAIT_READY, otherwise the packet is greater than 64-Byte and the next

state is COUNT. While there is not any packet, state does not change.

• COUNT: This state sums printable ASCII characters and bytes received. When a

sequence of twelve printable ASCII characters is detected, the packet must be sent

completely; otherwise, if the packet ends, the amount of printable ASCII characters

is compared with the amount of received bytes: if it is greater or equal than 50 %

the packet must be sent completely, otherwise only the first 64 bytes are sent, then

the next state is WAIT_READY. If no sequence or packet ends are detected, the

state does not change.

• WAIT_READY: This state waits for handshake (assert ready signal) from transmit-

ter. When ready is valid and packet ends the next state is WAIT_FIRST_WORD,

otherwise if the packet has not ended yet, the next state is WAIT_PACKET_END.

If ready is not asserted, the value on decision does not change and the state does

not change, what is more, decider ready is set to ‘0’.

• WAIT_PACKET_END: If we arrive to this state a sequence has been detected and

the decision is sent, however, the packet has not ended yet, then this state waits

until signal last or pkt_end is asserted to change the state to WAIT_FIRST_WORD,

otherwise the state does not change.

5.3.3 Counting the Amount of ones in a Vector

The problem to count the printable ASCII characters in a 512-bit transaction is

reduced to the problem of counting the amount of ‘1’ present in a 64-bit vector of ASCII
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WAIT

FIRST

WORD

reset

COUNT

!last && valid

WAIT

READY

last && valid

sequence || last

ready &&
(last || pkt_end)

WAIT

PACKET

END

ready &&
!(last || pkt_end)

last

Figure 5.3: ASCII decider finite state machine implementation.

information. Such a task sometimes is called Hamming Weight or popcount function. Skl-

yarov et al. [114] studied different implementations of Hamming Weight and compared

their results with other implementations, however, with a vector of width 64 the latency

is 5.2 ns, almost doubling the clock period required for this architecture. Consequently,

to solve the problem different alternatives were studied to achieve the necessary timing.

A naïve implementation in VHDL gives poor results, then we have studied different

alternatives that fit better in a 6-LUTs architecture present in Xilinx devices. The idea is

to use of n-to-k reducers (or counters), also a sort of Carry Save Adder (CSA) that counts

n-bit giving k-bit results, see section 6.6.4 for more information about CSA. We have

evaluated different alternatives:

• Using 7-to-3 reduction trees (V1): The main building block is a 7 to 3 reducer

since it can be efficiently implemented using three times two 6-LUTs and a muxF7.

Starting with nine 7-to-3 reducers — the result of such reductions are S(0) to S(8)

in Figure 5.4 — as result nine 3-bit numbers plus one bit (Figure 5.4.A) to obtain

3-bit results. Then we reduce again as shown in Figure 5.4.A obtaining three 3-bit

number plus a 4-bit number that can be added using a ripple carry adder tree.

• Using 7-to-3 and 8-to-4 reduction tree (V2): In this approach, after the first

7 to 3 reduction we apply an 8 to 4 reduction (using four 6-LUTs, two muxF7

and a muxF8 per bit) with the aim to reduce the logic depth (Figure 5.4.B). This
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approach increases area, and worsens the delay (due to more fan-out and network

congestion).

• Using reduction trees 6-to-3 (V3): Since a 6 to 3 reducer can fit in 3 parallel

6-LUTs we expect to reduce net congestion and improve delay. The first state

reduces from 64-bit to eleven 3-bit numbers — T(0) to T(10). Then, again a second

level reduces to six 3-bit numbers and a third level to three 4-bit that can be added

with a three input ripple carry adder (Figure 5.4.C).

For the two first proposed architectures (V1 and V2), a first step reduces the 64-bit

vector to nine 3-bit numbers plus an additional bit that should be added later. The

resulting dot graphic to be added is depicted at Figure 5.4.A and Figure 5.4.B respectively

for V1 and V2 architectures. In case of V1 a second level composed by three parallel

7-to-3 reducers and ad-hoc reducer that outputs 4-bit as shown at Figure 5.4. A produces

three 3-bit and a 4-bit number that are added by an addition tree. On the other hand,

T(0)
T(1)
T(2)
T(3)
T(4)
T(5)

T(6)
T(7)
T(8)
T(9)
T(10)

Tr'
Tc'
Tz'
Ty'
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Tn'
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S(0)
S(1)
S(2)
S(3)
S(4)
S(5)
S(6)
S(7)
S(8)
X(63)

Sr'
Sc'
Sz'
Sy'

A C

S(0)
S(1)
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S(4)
S(5)
S(6)
S(7)
S(8)
X(63)

Vr'
Vc'
Vz'

X(63)

B

Sr VcVz VrScSz

Sy

Tz Tc Tr

Tn Tw Ty

Figure 5.4: Dot graph for different reduction trees: A) two levels of 7-3 reduction and
finally quaternary adder. B) 7-3 and 8-4 reduction and finally ternary adder. C) two levels
of 6-3 reduction and a level of two input adders and a final ternary adder.
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Version Critical Path (ns) LUTs
naïve 2.99 93
7-to-3 (V1) 2.89 92
7-to3 & 8-to-4 (V2) 2.98 80
6-to-3 (V3) 2.65 65

Table 5.1: Critical path and resources utilization for different tree reduction implemented
on a XCVU095-2FFVA2104E FPGA.

V2 uses three parallel 8-to-4 reducers as proposed in Figure 5.4.B, generating a number

than can be added using ternary adders. Finally, Figure 5.4.C shows for V3 the first step

of 6-to-3 reducer, followed by the second level of reduction, composed by a three × 6-to-3

reduction and three × 5-to-3 reduction tree. The third logic level finally reduces to three

4-bit numbers to be added by a ternary adder.

The implementation details of these alternatives for a XCVU095-2FFVA2104E FPGA

are summarized in Table 5.1, where the 6-to-3 reduction clearly gives the best results

both in area and delay.

5.3.4 Implementation Results

The implementation targeted the Xilinx VCU108 board (section 3.8.1), and was

made using the Vivado Design Suite 2016.2. The implementation was simulated with

the Integrated Block for 100G Ethernet [115] obtaining successful results, achieving

line rate. The proof-of-concept was also evaluated in a real implementation feeding

the design with different pcap traces. The clock timing constraint of a 3.103 ns period

(322.265625 MHz) is satisfied and the resource usage for a Xilinx Virtex UltraScale

XCVU095-FFVA2104-2-E device is provided in Table 5.2. It should be noted the small

footprint of the design, which uses less than 4% of the total area. Thus, a smaller and

cheaper device such as an XCVU065 could be used in a commercial implementation of

the design, or more computation can be included in the same chip.

Resource used max available % usage
LUT 11761 537,600 2.19
FF 31016 1,075,200 2.88
BRAM 53 1,728 3.04

Table 5.2: Resource usage in a Xilinx UltraScale xcvu095.
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5.4 Packet Deduplication

Packet duplication has usually been an undesirable side-effect of traffic monitoring.

Packet duplication produces redundant information in the monitoring probe, which leads

to an increased workload, and calls for more disk space to store the network traces.

The most common way to capture traffic from a network is using the port mirroring

feature of the switching devices, which is also known as Switched Port Analyzer (SPAN).

This feature, included in most enterprise-grade switches and routers, consists in making

a copy to a mirror port of packets traversing monitored ports. The mirror port is then

connected to a monitoring probe running a capture traffic engine such as tcpdump,

tshark, DPDK-based tool, etc. Port mirroring unavoidably creates packet duplication.

For instance, in Figure 5.5, when computer A sends data to computer B, packets pass

through port 1 (ingress port) and port 2 (egress port). If both port 1 and port 2 are

configured to be mirrored, the packet appears twice in the mirroring port. In the worst

scenario, all traffic could be duplicated, which implies a large resource wasting. What is

more, it is a challenge to know the interval between copies of the same packet, because

such lapse of time is function of switching time, queuing delay and traffic load at given

time. Such interval is a key metric for a deduplication device, since, it defines time

window where a duplicate can be found.

Packet deduplication has had little relevance in the academia, because off-the-shelf

hardware could, in the past, deal with this problem. However nowadays, with the advent

of 100 Gbit/s networks, this problem is becoming increasingly challenging, since time

between packets could be as small as 6.7 ns. Thus, packet deduplication becomes key

for monitoring 100 Gbit/s networks, because at such speeds, processing unnecessary

Figure 5.5: Simple monitoring set up.

82 Mario Daniel Ruiz Noguera



5.4. PACKET DEDUPLICATION

information causes a penalty that cannot be afforded. Additionally, packet deduplication

brings additional benefits, as authors in [116] discuss, for instance reducing the amount

of stored data on disk.

In this part of passive monitoring, we have explored FPGAs to detect and discard

duplicate packets caused by port mirroring at 100 Gbit/s speeds. A novel architecture is

introduced to detect and remove duplicated packets, which is based on using an element-

based (not time-based) sliding window. For this, a hash function is used to represents

each packet with a k-bit key. There is a total of N sliding windows, which are addressed

using n = log2N bits of the key, and each window contains M elements whose size is

k−n bits. In principle, this architecture could remove any type of duplicate as long as

the hash function take into account such scenario. What is more, HLS can be used for

a part of the design, however the core of this work is a handcrafted design which uses

many low level optimizations, consequently, we avoid using HLS because the tool is not

thought for such low level optimizations, at least is not an easy task to achieve them.

5.4.1 Related Work

Authors in [117] introduced the packet duplication problem. They studied the dif-

ferent types of duplicates that can be generated when a mirror port is used to capture

traffic. The main problem that packet duplication brings is an increase in the amount of

information to handle, which makes more difficult the network monitoring process. We

took this work as a starting point to create an FPGA architecture that deals with the

problem of packet duplication at 100 Gbit/s networks. Packet duplication means that

two or more packets contains the same information. However, this definition does not

imply that some fields inside protocol headers could change —e.g., such as IP addresses

or ports. Anyway, in this work we focus on packets that look exactly the same, which is

the common behavior for switching duplicates.

Comparing each byte of the payload, as it is mentioned in [117], is a complex task,

because it implies parsing each packet header in order to get a pointer to the first byte of

the payload. In the literature there are extensive research about packet parsing using

FPGAs [16, 19, 118, 119], this extra complexity has been avoided for this proof-of-concept.

Nevertheless, including packet parsing is an appealing alternative for future work. On

the other hand, the previous N packets should be stored to perform the comparison,

and to guarantee line rate the packets should be stored on on-chip memory, a very

scarce resource on FPGA. In doing so, the maximum number of packets is limited. What

is more, the payload comparison depends on the current payload size and the size of

stored packets, consequently, the comparison time is not deterministic. Hence, to address

the issue of storing the whole packet with variable size, we decided to perform a hash
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function to every packet and obtain a fix-length digest.

Noteworthy, this problem is abbreviated to find efficiently an element within a

memory structure of S elements, and that also allows a very fast insertion and dele-

tion of elements. Currently, there are different technological choices to satisfy these

requirements, following the most popular options are summarized. Content-Addressable

Memory (CAM) [120] is a memory that compares input data against a set of stored

values, and returns the address of the matching data, if the data is present in the

memory. Usually, CAMs feature a single-cycle latency lookup time, thus making them

a really fast option, although the speed of a CAM comes at the cost of a huge resource

utilization. Authors in [121] introduce the architecture of CAMs and their features. As

a generalization of CAMs, Ternary Content-Addressable Memory (TCAM) [122, 123] is

one of the most popular methods for packet classification. Using the concept of “don’t
care” in the comparison, it allows searching for not exact matches. This sort of memory

is widely used in network equipment to route traffic, because it is very useful to compare

subnetworks. As well as CAMs look up time is one clock cycle but resource utilization is

significant. Additionally, removing stored elements in a TCAM is a difficult task, as it

takes longer than comparison [122].

Furthermore, another popular alternative is Bloom Filters [124], this data structure

is widely used to test if an element is within a set. Due to its functionality, false positive

matches are possible, on the other hand, false negative matches are not. While it is

straightforward to insert elements, removing a single element is not possible for the

simple reason that it could remove other elements as well. The latter reason discards

such data structure for the problem at hand.

Finally, there is a commercial solution in the market [125], which claims to be capable

to detect all duplicate packets and remove them at 100 Gbit/s speed. However, they do

not provide any details on how they achieve such functionality, or what is the size of the

sliding window in terms of time or number of elements.

The CAM appears to be the best option. However, to fulfill the deduplication require-

ments, an element has to be removed from the table after a certain amount of time or

number of incoming packets. Moreover, a second memory is mandatory to implement the

removal logic (a sorted list with the elements within the CAM), this increase the amount

of required memory and due to the stringent restriction of this problem that memory has

to be on-chip. Consequently, using CAM seems not to be the ideal solution. Accordingly,

we propose a novel architecture able to tackle packet deduplication taking advantage of

BRAM memory in the most efficient possible way. Another caveat of CAMs is that the

insertion time depends heavily on the load factor.

In addition, authors in [117] recommended to use a time-sliding window of 15 ms to

detect packet duplication in 100 Mbit/s networks. According to that work, it is expected
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that such time window is going to be several times shorter at 100 Gbit/s, due to faster

switching times —for instance, some switch vendors claim that their equipment can

switch frames in the order of microsecond. Nevertheless, we decided instead to use an

element-based sliding window, because for time management we would need extra bits

to store timestamps and a mechanism to remove expired packets, thus increasing both

the complexity and on-chip memory requirements of the design.

5.4.2 Hashing a Packet

Storing and comparing variable-length packets is neither efficient nor deterministic,

because the Ethernet frame length could range between 60-Byte and 1518-Byte (not

counting the Frame Check Sequence). In order to solve this problem, hash functions are

commonly used to reduce the contents of a packet to a fixed-length key (digest). There are

different sorts of hash functions, some better than other [126]. In the context of network-

ing, a very important metric of hash functions is how the packets are distributed along

the addressable area of the hash function [127]. A hash function is judged as good if it

produces a uniform distribution of packets into the addressable area. However, achieving

this goal can sometimes be complex because each network link has its particular traffic

patterns.

Hash functions suffer from a problem called hash collision, that is, that two different

inputs to the hash function produce exactly the same digest. In our case, this means

that several packets can have exactly the same key. Software implementations typically

deal with this problem using either chained hash tables or a fixed array of M possible

collisions. In both cases, it is necessary to store the original data along with the hash in

order to solve the collision. The difference is that the former uses dynamic structures,

while the latter uses static ones. In principle, the latter is more suitable for FPGA

implementation, but some type of insertion and replace policy has to be implemented

when no more space is available in the fixed array of M possible collisions.

Hash collisions are particularly detrimental to our solution of packet deduplication.

For the problem at hand, two equal digests mean a duplicate packet. However, in case of

collision, two different packets will have the same digest, consequently, generating a false

positive. This is an undesirable condition because it will remove a non-duplicated packet,

thus potentially losing valuable information. In order to minimize the probability of a

false positive occurring, we analyze the relationship between the digest size and number

of packets in the element-based sliding window. Equation 5.1 is a fair approximation of

the probability that two different elements in a window of S elements have the same key

in an addressable area of size K . A detailed background about the equation can be found

in [128].
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Pcoll ision = S2

2K
= S2

2x2key−bit (5.1)

Given the equation above, we face a conflict in the number of elements in the window.

The more elements we have, the bigger the window is, therefore, bigger delay can exist

between duplicates. However, the probability of collision rises quadratically with the

number of elements, so there exists a trade-off between window size and probability

of a false positive. In our case, we chose as a starting point a 64-bit key (K = 264)

and a 65,536-element window (S = 65,536), which gives a probability of collision of

approximately 1.164 ·10−10, which is low enough for our problem.

In the bibliography [129–131] there are many suitable implementations of different

hash functions for FPGA designs, and also more complex schemes, such as sketch

tables [132], but none of them operates at 100 Gbit/s — at least in a pipeline fashion

with an II=1. Thus, for this proof-of-concept we decided to use a simple hash function,

however, this piece can be upgraded at any time. What is more, this piece of hardware

can be implemented using HLS in particular for complex hash functions.

5.4.3 Architecture Overview

The trivial FPGA implementation of an element-based sliding window consists of

using a shift registers with M stages, and comparing each stored digest against the

current digest in parallel. This solution could be easily implemented using LUTRAMs,

but it is only valid for a few elements. If the number of stages of the shift register grows,

the resource utilization grows too, thus adding excessive complexity to the FPGA design.

As a result, the design frequency has to be decreased in order to meet time constrains,

and a 100 Gbit/s data rate cannot not be achieved. Actually, it is absolutely impossible in

current FPGAs to compare 65,536 elements concurrently in one clock cycle — as small

as 3.1 ns.

We developed instead a mixed alternative. On the one hand, it takes advantage

of BRAMs and their true dual port capabilities. On the other hand, we mimic a shift

register, to emulate the behavior of an element-based sliding window. The main idea is

to connect the data output of stage(i) to the data input of stage(i+1), so that when the

write enable signal is asserted, data from the i-th stage passes to the (i+1)-th stage and

so on, producing a shifting of the elements of a given row, and also dropping the oldest

element. Now, instead of only one shift register, we have N shift registers selectable by

the address of memories. We use the n most significant bits of the key to address the

memory and the remaining bits of the key are stored in the memory. Therefore, N is

always a power of two. What is more, part of the comparison is done when addressing
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Figure 5.6: Architecture of the memory with N rows and M stages.

the memory with the most significant bits of the key.

Figure 5.6 shows a high-level overview of this architecture. First, each row behaves

as a different shift register, thus increasing the number of the elements in the window.

Second, it allows sharing the comparison logic to detect duplicates among all rows (that is,

all shift registers), because only one row will be active at a given time. However, it should

be noted that this scheme does not guarantee an even access to all rows. Depending on

the traffic patterns, the hash function might tend to access some rows more frequently

than the others. Thus, we cannot state that 100 % of the elements are going to be always

used. Anyway, this solution offers a larger capacity than a simple shift register.

We decided not to use HLS to implement this architecture, mainly due to the low

level optimization needed to achieve an initiation interval of one. Designing such low

level optimization is easier with traditional HDL.

5.4.4 FPGA Architecture

Figure 5.7 shows a block design of the deduplicate module and the connection between

its submodules. As the hash function is computed for the whole packet contents, the

design follows a store and forward approach.

The Hash Function module computes a digest of the packet using a hash function.

It is straightforward task because we have chosen a naïve hash function: it simply divides

the packet contents in 64-bit chunks, and it does a bit-by-bit XOR of all the chunks in

order to obtain a 64-bit key. Though this hash is not as good as others are, it is enough

for proof-of-concept purposes. However, any other hash function could be implemented

as long as it has a pipeline implementation, or, if the initiation interval is different from

one multiple implementations can be used. The resulting 64-bit key is outputted one
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Figure 5.7: Global architecture of the deduplicate module.

clock cycle after tlast is asserted in the incoming AXI4-Stream interface. Meanwhile,

while the hash function is computed, the packet is being queued in the FIFO, waiting for

the drop or forward decision depending whether it is a duplicate or not. We implement

this piece using HLS.

The Packet Dropper is a simple module, which waits for the decision coming from

the Deduplicate module. When the decision is made, it starts to read the packet stored

in the FIFO. If the decision was to drop the packet, the packet will be dequeued, but not

sent. Note that it is mandatory to dequeue the packet in order to empty the FIFO. On

the contrary, if the decision was to forward the packet, the entire packet will be dequeued

and sent to outgoing traffic. We used HLS for this part of the design.

The Port Arbiter module selects what port of the BRAMs is going to be used. Usually,

it works as a Round Robin mechanism, that intersperses each key to one of the two ports

of the BRAMs. The reason for using the two ports is doubling the performance. However,

if two consecutive keys point to the same row (the n most significant bits are equal), the

both keys will be sequentially sent to the same port, to prevent data corruption. If both

ports use the same address simultaneously, data integrity cannot be guaranteed.

The Deduplicate module is composed of M BRAMs (stages). The n most significant

bits of the key are used to address the memories, while the remaining k− n bits are

compared with the data output of the M memories. If there is a match, the current

key will not be written, and there are two possible actions regarding the element that

matches: A) do nothing and keep that element in the memories; or B) remove it and

create a bubble (gap) in the memories. Additionally, this module informs that the current

packet is a duplicate and needs to be dropped. Later we will explain the implication of

choosing A) or B) options. On the contrary, if there is no match, the k−n bits of the

current key are written to the BRAM at stage 0, and data from BRAM at stage i is
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written to BRAM at stage i+1.

Finally, the Shifter module is a low priority process that is in charge of generating

dummy elements to force a shifting of elements in the sliding window. This process is

designed to remove old packets from the BRAM-based shift register. It uses a BRAM

memory where each position contains the timestamp of the last access to each row. If

we assume that the hash produces a uniform distribution, the mean access time to each

row will be the maximum time of a packet × the number of rows (pkttimemax · N =

1230.4ns ·N). The checker process inserts a bubble when a row has not been accessed for

this time. Therefore, this module helps to reduce the false positive ratio by removing the

oldest key.

We used HDL to implement the Port Arbiter, the Deduplicate and the Shifter
modules because we need low level optimizations and determinism, which cannot be

guaranteed using HLS.

5.4.4.1 Low Level Architecture of Deduplicate Module

Figure 5.8 shows in more detail the low level architecture of the BRAM-based shift

register. As it was explained above, the current key is latched and separated in two

parts, where the n most significant bits are used as address to select one of the N
shift registers. Additional registers have been placed at the output of BRAMs due to

the relatively high clock-to-output time of these memories (TRCKO_DO ≈ 1.35ns in the

Xilinx UltraScale Family). Without these registers it would be very difficult to meet

timing, but the drawback if that read latency is increased to 2 clock cycles. Once that

the output data is at the registers (two clock cycles after setting the address), its values

are compared with the remaining k−n bits of the current key. If there is a match in

any of the comparisons, it means that a duplicate has been found. That is, as a result

of the parallel comparison, we have a vector of M bits pointing (one-hot encoding) at

the position of the element that matches (if it was any). This vector is registered, and in

the next step a bitwise OR reduction is made. This OR reduction is critical in terms of

timing, and its results is the duplicate found flag. If this flag is true, the current key will

not be inserted in the first element of the shift register —wea0 = 0.

As stated above, there are two options when a duplicate is detected. A) Do nothing

with the element that is stored in the memory: In this case the blue multiplexer in

Figure 5.8 is not implemented. B) Overwriting the position where the match was found,

creating a bubble. The comparison bit of the i-th stage is connected to the select pin

of the i-th multiplexer. When a match happens, the element in the i-th stage will be

deleted. This feature is a good idea when we are sure that there is only one duplicate, as

it creates space for other elements.
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When there is no match, there are two possibilities as well. If we have decided to use

alternative A, the write enable signals for all M BRAMs are asserted, thus producing

a shift of the elements from the i-th stage to the (i+1)-th stage, and also eliminating

the oldest element. However, if we chose alternative B, the row could include bubbles

(each element has a valid flag). If we assert the all write enable signals, a shift will be

produced removing the oldest element, but this has no sense, because we are wasting

space. Instead of asserting all write enable signals, we propose using a smarter logic

—e.g., a priority encoder. When a new key arrives and there is not match, we use the valid

flag to calculate the value of the write enable vector. For example, if the j-th position

is empty, the priority encoder asserts the write enable signal only for stages 0 up to

j-th. This pokes the first bubble and does not remove the oldest element. Although this

solution is straightforward, it however requires for each stage an OR reduction of the

valid flags of the previous stages. That is, that for the worst case (StageM−1) we need

an OR reduction of M−1 bits, which might be challenging considering the tight clock

period.

Finally, the shift bit connects to the Shifter module and it is used to insert bubbles

in case that the incoming traffic pattern is such that certain rows are not updated. It

takes only one clock cycle to insert a bubble in a given row. All write enable signals are

asserted, and the select pin of the multiplexer for Stage0 is set to “1” so that a bubble

is inserted in the first stage, while the select pin of the multiplexers of the remaining

stages are set to “0” in order to shift the elements.

As a summary, the deduplication process takes 4 clock cycles. Anyway, if two consec-

utive addresses are the same, then we can save one clock cycle at the fetching process,

because the address has already been set. Due to this latency, we decided to use both

ports of the BRAMs in order to get the maximum throughput, though this decision im-

plied additional logic in order to avoid conflicts, as it has been explained in the previous

section.

Figure 5.8: Deduplicate architecture based on M stages.
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5.4.5 Experimental Results

First of all, we targeted the VCU108 board (section 3.8.1) for this proof-of-concept.

Apart from that, we completed several implementations of our architecture, varying

the Depth and Stages parameters. Table 5.3 presents the results for five different

combinations of Depth and Stages parameters for which timing constraints could be

met. We have highlighted our initial goal of 65,536 elements, but a larger number of

elements is also possible if more stages are used. The selected configuration of BRAMs is

10-bit address and 72-bit data, so memories are underutilized if the Depth parameter

is less than 1024. Additionally, 17-bit out of the total 72-bit of data are not used; these

bits could be used to store an extra hash in order to reduce the false positive probability.

FPGA resources utilization for all combinations are under 10 % except for BRAMs.

Therefore, there are enough resources to include additional features, such as a traffic

filters (section 5.3 [133]).

5.4.6 Packet Deduplicate Pipeline Architecture

The previous low level architecture relies in the fact that, always there are two clock

cycles between packets. This is true for 100 Gbit/s link speeds, where the minimum time

between packets can be as small as 6.72 ns. However, for higher network link speeds

this will not be true anymore. Consequently, we have improved the low level architecture

to handle one hash comparison per clock cycle — initiation interval equal to one. To

do so, we use one of the ports of the BRAM for lookup and the other for insertions. As

explained before, to reach high performance with BRAM the output register is mandatory,

therefore, the read latency is two clock cycles, which guarantees higher performance.

What is more, the insertion latency is one clock cycle. Hence, this new implementation

in the worst case scenario has an initiation interval of three clock cycles, when two

consecutive digests target the same row. Therefore, to achieve II=1, we have included

a four-stage shift register in parallel to the BRAM-based to overcome the write and

BRAM-based Shift register
packet size (bytes)

Used
BRAMs

60 760 1,514
Depth Stages Elements Sliding Window (ms)

256 64 16,384 0.11 1.02 2.01 128
512 64 32,768 0.22 2.05 4.03 128

1,024 64 65,535 0.44 4.11 8.06 128
1,024 75 76,800 0.51 4.81 9.44 150
1,024 78 79,872 0.53 5 9.82 156

Table 5.3: Summary of the schemes of Depth and Stages that meet timing and its
maximum sliding window as a function of the packet size.
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Figure 5.9: BRAM-based shift register, packet deduplicate pipeline architecture with
hazard detection unit.

read latency of the BRAMs. Note that there is another register stage after the digest

comparison (ORed Reducer). Consequently, the comparison is not only done against the

output of the BRAM-based shift register, but also, against the auxiliary four-stage shift

register. In terms of processors, this auxiliary piece of hardware handles the data hazards.

The other port of the BRAM is used to insert new digest when such digest was not found

within the memory. As a result, this new architecture is able to handle a maximum of or

322 million packet per second. Figure 5.9 depicts this improved architecture. Noteworthy,

this architect is highly pipeline therefore we can increase the number of stages, number

of BRAM in the memory.

We implement this pipeline architecture targeting the VCU118 board (section 3.8.1).

We used Vivado 2018.3 to synthesize and implement the design. We were able to meet

timing with 150 stages and depth of 2,048. In this case, the resource usage of the pipeline

architecture is as follows: 0.37 % LUTs; 0.25% FF and 28.19% BRAM. Therefore, we can

store up to 307,200 elements in our memory — collision probability of 2.55×10−9— that

means a time window of:

• 2.06 ms with 60-Byte packets, worst case scenario.

• 19.26 ms with 760-Byte packets, mean packet size.

• 37.79 ms with 1514-Byte packets, largest packet (without taking into account

jumbo frames).

5.5 Conclusion and Discussion

In this chapter we have presented two bump-in-the-wire passive solutions to thin

network traffic. On the one hand, a stateless architecture to identify and filter encrypted
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traffic at 100 Gbit/s was presented. The algorithm is based on the recognition of sequences

of consecutive characters or the presence of a percentage of readable characters in the

payload of a packet. This hardware solution is built on top of a previous work. Compared

to the original work, there is a tenfold performance increase while evaluating the whole

packet. The current architecture can be easily extended to discriminate any kind of traffic

by simply modifying the decider module (Figure 5.2). Additionally, it would be possible to

add more stateless filters (such as IP/port origin/destination, protocol, etc.) in combination

to this filter, while, keeping the line rate operation. Although this architecture is aimed

for network monitoring purposes (capturing and storing unencrypted traffic), it can

also be used to divert binary traffic to network nodes with decryption capabilities for

further deep packet inspection. Based on the literature 70% of the traffic is encrypted

and the mean packet size in a network is around 700-Byte, thus in a full link this

implementation reduces the output mean packet size to 255-Byte. A 65% reduction on

the storage capacity.

On the other hand, we have presented a novel FPGA-based architecture capable

of detecting and removing duplicated packets from a mirror port in Ethernet network

traffic monitoring system. Deduplication is important, because it means less CPU load

and less storage requirements in the network monitoring equipment. The architecture

uses packet hashing and an element-based sliding window. In the basic architecture,

the size of the sliding window corresponds to of 0.53 ms with minimum-size packets, or

9.82 ms with maximum-size packets. However, the improved architecture is able to store

3.84× more keys. According to the bibliography, such times are big enough to successfully

remove switching-based duplicates. We presented a novel scheme of memory that we

have named BRAM-based shift register. This memory scheme allows us to keep N shift

registers of M stages with M elements simultaneously available. Additionally, we used

the two ports of BRAMs in order to access two different shift registers in parallel and

thus double performance. In devices with multiple Super Logic Region (SLR) we could

use a chain of deduplicate modules to increase the number of stored elements without

jeopardizing the performance of the architecture.

Both architectures (section 5.3.2 and section 5.4.4.1) are designed to work at line rate

in 100 Gbit/s Ethernet links (up to 148.8 million packets per second), using a 512-bit

AXI4-Stream interface clocked at 322.265625 MHz. Such data rate calls for a careful

design of the critical parts of the algorithm. A mix design methodology that uses HLS for

non-critical parts and HDL for time-critical regions is able to cope with that data rate,

but at the same time it provides a significantly better productivity than a conventional,

HDL-only approach. What is more, we also observed that for handcrafted architectures

as well as for well-known low level architectures HDL is still the best alternative to

design.
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Moreover, these two implementations can be chained together in the same FPGA to

further reduce the traffic load in the software probe.
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CHECKSUM OFFLOADING

E
nd-to-end packet integrity in TCP/IP is ensured through checksums based
on one’s complement addition. Once a negligible part of the overall cost of
processing a packet, increasing network speeds have turned checksum com-
putation into a bottleneck. Actually, supporting 100 Gbit/s bandwidth is a

challenge partially due to the difficulties of performing checksums at line rate. As part of
a larger effort to implement a 100 Gbit/s TCP/IP stack on an FPGA, in this chapter we
analyze the problem of checksum computation for 100+ Gbit/s TCP/IP links and describe
an efficient solution for the 512-bit wide, 322 MHz buses being used in the 100 Gbit/s
Ethernet interfaces of Xilinx UltraScale(+) devices. The proposed architecture computes
thirty-three 16-bit one’s complement additions in only 3.1 ns, more than enough to support
100 Gbit/s Ethernet links.

6.1 Introduction

The TCP/IP network protocol provides mechanisms to verify data integrity through

the detection of corrupted packets. These mechanisms are based on computing a check-

sum of the packet at the source, before sending it, and then controlling the checksum

upon arrival at the destination. Checksums are used to protect both the packet headers

as well as the payload of the packet, and there are both layer 3 (IP headers) and layer

4 (TCP segments or UDP datagrams) checksums — the layer levels refer to Open Sys-

tems Interconnection (OSI) model (Figure 7.1). In both cases, the TCP/IP checksum is
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calculated as 16-bit one’s complement addition over 16-bit words.

At low line rates, the overhead of computing the checksum is expensive but not

necessarily overly large when compared to that of other parts of the protocol. Yet, already

early in 1989 Clark et al. [134] suggested that the checksum could become a problem in

packet processing. As network bandwidth increases and, thus, the amount of data being

sent and received per unit of time grows, in-flight computing of the checksum becomes a

major bottleneck and might affect the overall latency. In particular, the checksum must

be computed not only at the source and destination, but also, during routing if there is

any change to the header. In the case of TCP and (optionally) UDP packets, the payload

is also included in the checksum. Hence, computing the checksum of a packet potentially

involves processing many 16-bit words. As checksum calculation is performed several

times over the life time of a packet, doing it efficiently is key to achieve higher line rates

and lower latency.

Nowadays, at 10 to 100 Gbit/s speeds, packet processing is offloaded to hardware —

usually to the Network Interface Card (NIC) — since otherwise processing is too slow.

We carried out a simple experiment to confirm such hypothesis. We set up a testbed with

a 128 GByte, 2.20 GHz Xeon E5-2630 v4 server (A) and a 192 GByte, 2.60 GHz Xeon

6126 server (B), both running Gentoo Linux (kernel 4.14.7). We used a Mellanox 100 GbE

ConnectX-5 NICs on both servers, which were connected to each other via a QSFP28

direct attach cable, and we run iperf2 over TCP to measure the overall performance.

Results show that, when server B acts as a client, performance decreases from 28.3 Gbit/s

to 10.0 Gbit/s when checksum offloading is disabled (rx off and tx off options of ethtool).

As part of a larger effort to implement a 100 Gbit/s TCP/IP stack on programmable

logic (chapter 7), intended for in-network data processing and network-attached FPGAs.

We have confronted the need of implementing an ultra-low latency checksum mechanism

capable of sustaining a 100 Gbit/s line rate. While, the checksum arithmetic is well-

known and comparatively simple, quoting the RFC793 [135] “The checksum field is the
16-bit one’s complement of the one’s complement sum of all 16-bit words in the header and
text”, the low-latency requirement imposed by higher bandwidth is a major challenge. In

this chapter we describe our solution to compute the checksum at 100 Gbit/s on an FPGA.

We aim for an implementation with one clock cycle latency and one clock cycle initiation

interval in order to support maximum throughput even for the shortest packets. Our

design covers computing the checksum for i) the IP header: from 10 to 30 × 16-bit words,

to be processed in one clock cycle; and for ii) the UDP/TCP/ICMP header plus payload:

iterating over 33 × 16-bit words checksum per clock cycle over several clock cycles. The

target frequency is 322 MHz (3.1 ns), which is the one used by the Xilinx’s Integrated

CMAC. Such an architecture is not suitable for HLS, due to the low level nature and

necessary optimizations. The results are available as two open source implementations,
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one for the IP header and another for ICMP, UDP, and TCP packets.

6.2 Related Work

The checksum computation is a straightforward algorithm, described in RFC793 [135]

and RFC1071 [136]. Nevertheless, the overhead of checksum processing when imple-

mented in software is well-known [137, 138]. Kay et al. [139] show that checksum

calculation was the major processing overhead in a software TCP/IP implementation.

Today’s commercial NICs offer TCP/IP offloading, reducing the overhead on the CPU

for any task related to packet processing, including checksum. Indeed, the Xilinx AXI

1G/2.5G Ethernet subsystem also provides full checksum offloading capabilities. Unfor-

tunately, these capabilities are neither available in the 10 Gigabit Ethernet Subsystem

nor in the UltraScale(+) Devices Integrated 100G Ethernet core.

One’s complement addition has the interesting property of being associative. Thus,

the 16-bit words can be added in any order. Although a hardware implementation

was already suggested in 1996 RFC1936 [140], there have been only a few studies of

low-latency checksum in hardware implementations, mostly for 10+ Gbit/s link speeds.

Henriksson et al. [141] provide a 0.18 µm ASIC implementation for 10 Gbit/s Ethernet.

On FPGAs, a Stratix III has been used to achieve a throughput of 14.2 Gbit/s [142].

Atomic Rules [143], along with other companies, offers a 10 to 400 GbE UDP Offload

Engine with an integrated checksum computation for the UltraScale(+) families, but

no details about the implementation are available and only the 10 Gibt/s and 40 Gibt/s

versions seem to be accessible at the moment. Recent implementations of a 10 Gbit/s

TCP/IP stack for FPGAs include checksum computation [30, 144] using HLS, however at

such speed, there are at least 67.2 ns to compute the checksum an order of magnitude

bigger that at 100 Gbit/s. The lack of alternatives for such a speed, and aiming for

an initiation interval of one as well as one clock cycle of latency, lead us to study and

implement an efficient Register Transfer Level (RTL) circuit to tackle the issue at hand.

Therefore, in this chapter we exploit the Xilinx’s Ultrascale(+) architecture to perform

efficiently the TCP/IP checksum computation at a minimum line rate of 100 Gbit/s.

6.3 Use Cases

The results of this chapter are part of a larger effort to implement an open source

TCP/IP stack capable of reach 100 Gbit/s line rate (presented in chapter 7). Other projects

that can benefit from the contributions of this work are, for instance, a 10 Gbit/s TCP/IP

stack [144], which we use as starting point, or projects using a NetFPGA [145]. In terms
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of networking protocols, we have focused on IPv4 (Internet Protocol Version 4), since the

deployment of IPv6 is still limited [146], and actually IPv4 is a more difficult problem

because the IPv6 header does not include a checksum.

We make no assumptions about the use of the stack, regarding whether it is on a NIC,

as an end point of the network, or on a router or on a middle box, because of that we aim

for one clock cycle of latency. In such cases, checksum computation is used quite often.

For instance, routers recompute the checksum if headers change as a result of a Network

Address Translation (NAT) or port re-assignment. In NICs with offloading support, the

host sends data through PCIe and the NIC has to segment and packetize such data,

performing the checksum computation and including the result in the packet header.

Finally, in accelerators using TCP/IP as a mean of communication, e.g. [30], outgoing

packets must include both IP and TCP checksums and the checksum in the incoming

packet must be verified before being processed.

An efficient checksum architecture boosts the performance of those implementations,

reducing the latency and increasing the throughput, a win-win situation.

6.4 Module Communication and Processing Time

From now on, we will assume that the checksum implementation is interfaced with a

512-bit AXI4-Stream and its output is a 16-bit AXI4-Stream. In case of messages that

span more than 64-Byte (e.g., the checksum of a TCP segment), the message is split in as

many 512-bit AXI4-Stream transactions as necessary, the tlast signal states when the

message ends.

In TCP/IP over Ethernet, the shortest and largest packet are as follows. For small

packets, the size is 60-Byte and time between packets can be as small as 6.72 ns. In a

packet with a Maximum Transmission Unit (MTU) of 1500-Byte, the minimum time

between two packets is 121.92 ns.

6.5 IPv4 Header and TCP/UDP Checksum
Calculation

Following the RFC793 and RFC1071 [135, 136] specifications, the transmitter side

computes the checksum as follows:

i. The value of the checksum word (16-bit) is set to zero — since the checksum field is

part of the packet for which the checksum has to be computed.

ii. The message is split into 16-bit words.
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iii. All 16-bit word fragments are added using one’s complement arithmetic.

• The overflow bits are fed into the addition.

iv. The sum is complemented (flip the bits) and becomes the overall checksum.

v. The checksum is inserted into the header and sent with the data.

On the other hand, the receiver uses the following complementary steps for error

detection:

i. The message (including the checksum field) is split into 16-bit words.

ii. Every word is added using one’s complement arithmetic.

iii. The result is the computed checksum. If the value is 0, the message is considered to

be correct.

The procedure is similar for the IP header, TCP header and optionally for the UDP

header. In what follows, the differences between the three cases are explained and one’s

complement arithmetic is discussed in detail.

0 3 7 11 15 19 23 27 31

4 Header
Length Type of Service Total Length

Identifier Flags Fragment Offset

Time to live Protocol IP Checksum

Source Address

Destination Address

Options

0

1

2

3

4

W
or

d

Bit

Figure 6.1: IP Version 4 header.
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6.5.1 IP Header Checksum Computation

Figure 6.1 shows the IPv4 header with its 14 fields. Thirteen are mandatory, whereas,

the 14th field is optional and appropriately named: options. Since an IPv4 header may

contain a variable number of options, the Internet Header Length (IHL) field (4-bit)

defines the size of the header in steps of 32-bit words, which also coincides with the

offset to the next protocol — OSI layer 4. The minimum value for this field is five which

indicates a length of 5 × 32-bit = 160-bit ≡ 20-Byte ≡ 10 × 16-bit words. As a 4-bit field,

the maximum value is fifteen words (15 × 32-bit, or 480-bit ≡ 60-Byte ≡ 30 × 16-bit

words).

The interface of our module is 512-bit wide. As a result, the whole IP header fits in a

single transaction. Processing complexity is mainly caused by the variable header length,

which requires a variable sum ranging from 10 to 30 × 16-bit words. The proposed

architecture considers the maximum possible number of words and a multiplexer selects

whether the word is valid or not.

6.5.2 TCP/UDP Header Checksum Computation

TCP checksum is a 16-bit field in the header, Figure 6.2. On the contrary of IPv4

header, the checksum of OSI layer 4 covers a pseudo-header, the TCP/UDP header,

and the payload. The pseudo-header has to be created prior to checksum calculation

with information from the IPv4 header that includes: the source and destination IP
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Figure 6.2: TCP header.
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Source Address
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Figure 6.3: TCP and UDP pseudo header.

addresses, the protocol and the TCP segment length, Figure 6.3. The message covered

by this checksum is shown in Figure 6.4. In case of odd number of bytes, a zero padding

is inevitable to make the total number even. Note that the checksum field is at the

very beginning of the header, meaning that the packet has to be stored and cannot be

delivered until the last byte has been taken into account in the checksum computation.

This is the main reason why the latency of the checksum computation impacts directly

in the latency and performance of the network protocol.

Pseudo
Header

TCP
Header

Check
sum TCP

Options
if Any

Payload
if Any

12-Byte 20-Byte 0 to 40 Bytes 0 to 1460 Bytes

Figure 6.4: Data used to compute TCP checksum.

For UDP packets, the checksum is computed including the same pseudo-header as

TCP, Figure 6.3. The UDP header size is fixed to 64-bit, which includes four fields,

each of which is 2-Byte (16-bit), Figure 6.5. The maximum length of an UDP packet

is 65,507-Byte (65,535 maximum IP packet size - 8-Byte UDP header - 20-Byte IP

header). For the longest packet, 12 + 65,535-Byte = 65,547-Byte require 1025 × 512-bit

AXI4-Stream transactions, we consider that case for a specialized network supporting

jumbo frames. However, packets are hardly ever that long in a wide area network,

because the Ethernet MTU is usually 1500-Byte.

In the case of TCP, the main difference with respect to UDP is that the TCP header

might have optional fields, so its size varies between 20-Byte to 60-Byte in 4-Byte steps.

In practical terms, the payload varies from 0 (acknowledge packets without payload) to

1460 (maximum segment size that fits the Ethernet MTU). Hence, the shortest packets

have 12-Byte (pseudo header) + 20-Byte (header), i.e. can be processed in one 512-bit
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0 3 7 11 15 19 23 27 31

Source Port Destination Port

Length Checksum1
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Figure 6.5: UDP header.

transaction. For the longest packets, 12 + 20 + 1460-Byte = 1492-Byte require 24 ×
512-bit AXI4-Stream transactions.

6.5.3 One’s Complement Addition

The one’s complement of a binary number K in an N-bit representation system is

determined by inverting every bit (flipping ‘0’s for ‘1’s and vice versa). It is arithmetically

equivalent to perform 2N−1−1−K . Therefore, the number zero has two representations

(00...00) and (11...11). As a consequence, an N-bit one’s complement numeral system can

only represent integers in the range −(2N−1−1) to 2N−1−1, whereas two’s complement

can represent integers in the range of −2N−1 to 2N−1 −1.

One’s complement addition is calculated by summing as natural numbers and adding

the carry to the result — a.k.a. swing the bit(s) around. An interesting property in

multi-operand one’s complement addition is the possibility to add as natural numbers

(equivalent to two’s complement) and “recirculate” (swing around) all the carries. As an

example, consider the following 20-Byte IP header. The underlined 16-bit word represent

the checksum.

4500 0030

0000 0000

4006 F96A

C0A8 0005

C0A8 0008

In order to calculate the checksum, we can sum each of 16-bit values within the header

in a two’s complement fashion, avoiding only the checksum field itself (considering as 0).

Then we have the following addition (values in hexadecimal)

4500 + 0030 + 0000 + 0000 + 4006 + 0 +

C0A8 + 0005 + C0A8 + 0008 = 20693h (132755 dec ).
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Then swing the bits outside the 16-bit boundaries around getting 0693hex + 2 =

0695hex. The one’s complement inverse (negation bitwise) is the checksum, i.e. not(695) =

F96Ahex.

In order to verify the checksum, all 16-bit numbers are added including the checksum:

4500 + 0030 + 0000 + 0000 + 4006 + F96A +

C0A8 + 0005 + C0A8 + 0008 = 2FFFDh (196605 dec ).

“Recirculating” the bits outside the 16-bit boundaries. FFFDhex + 2 = FFFFhex. Taking

the one’s complement (flipping every bit) yields 0000hex, which indicates that no error is

detected.

Observe that is equivalent to add bigger numbers and reduce later to 16-bit. For

instance, we can perform the same one’s complement addition using 32-bit values instead

— groping two 16-bit words regardless of the order —:

45000030 + 00000000 + 40060000 +

C0A80005 + C0A80008 = 20656003Dh

Then the number is reduced to 16-bit:

20656 + 003D = 20693h (132755 dec ).

A final reduction is necessary 0693hex + 2 = 0695hex. The one’s complement (not(0695)

= F96Ahex) gives the checksum.

6.5.4 Solving the Worst Case at 100 Gbit/s

In case of TCP or UDP, several 512-bit wide transactions could be needed to process

a packet. The processing involves adding 512/16= 32 words of the current transaction,

plus a 16-bit word from the previous computation, in case of a message larger than

64-Byte. Based on this, we propose a basic building block for the design consisting of an

adder for 33 × 16-bit one’s complement numbers in 3.1 ns (322 MHz). For longer packets,

we combine this basic building block as needed. In what follows we study different

alternatives to add these 33 numbers in one’s complement arithmetic.

6.6 Architectures for Checksum Computation

In a first attempt, we modeled the problem using C/C++ in Vivado-HLS. Both a naïve

and an advance version of the code needed at least several clock cycles to complete. Con-

sequently, this approach was discarded. The next version of the solution was developed

at RTL level, namely in VHDL.

Ph.D. Dissertation 105



CHAPTER 6. CHECKSUM OFFLOADING

6.6.1 Naïve Binary Computation

Xilinx FPGAs implement efficiently two’s complement addition using built-in carry-

logic resources. We name this approach ArchBin16. It uses a binary tree reduction,

Figure 6.6, where six levels of adders are necessary to get a 22-bit number. Then two

extra additions are needed to achieve the one’s complement number.

6.6.2 Wide Binary Computation

With the purpose to reduce the critical path latency and leverage the low-latency

built-in carry-logic, wider adders can be used in the first stages. This architecture is

called ArchBin32 and it is based on 32-bit words. It implements a binary tree reduction;

four levels are necessary to obtain a 35-bit word. Then two extra levels are required to

obtain the result. The total amount of additions is the same as before but the routing

seems to be more complex.

Figure 6.6: Binary tree adder.
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6.6.3 Using Ternary Trees

Using the built-in carry-logic and the adjacent 6-LUT, it is feasible to build ternary

adders (add 3 N-bit-2’s complement elements) using the same resources as a binary adder.

Taking advantage of this idea, it is possible to reduce the tree depth and the resource

usage. The first Level (L1) reduces 33 × 16-bit numbers to 11 × 18-bit numbers. Thus,

within four logic levels we get a 22-bit number. Then two supplementary additions are

needed to achieve the one’s complement number as stated previously. This architecture

is called ArchTern16.

6.6.4 Using Reduction Trees

None of the previous alternatives reaches the desired performance. The solution that

we have finally adopted leverages the Carry Save Adder (CSA) to reduce the numbers

with minimum latency. In Xilinx FPGAs, it is possible to implement efficiently 7-3

counters (a CSA that reduces 7-bit to 3-bit number without carry propagation) [147].

Each bit of the result is implemented using two adjacent 6-LUTs and a slice multiplexer

(muxF7), see Figure 6.7. In such figure a6 to a0 are inputs whereas c2, c1 and c0 are

the output of logic functions which combined represent the addition of the seven inputs.

Harnessing such architecture, Figure 6.8 shows an example of a 7 to 3 CSA adapted for

one’s complement arithmetic. Seven n-bit words are arranged, the procedure groups the

seven bits for each column (Ci), as result the sum is a 3-bit word per column (Re i), which

represents the amount of ones in the vertical column — sometimes this function is also

referred as popcount. The weight of the least significant bit of the result is the same as

the weight of the column Ci. Note that the two most significant columns could produce

overflow bits, however, due to one’s complement arithmetic properties the bits are swung

around, filling the holes produced by Re1 and Re2. More in detail, the overflow bit of

a6 a5 a4 a3 a2 a1a0

LUT6 LUT6

mux7

LUT6

mux7

LUT6 LUT6

mux7

LUT6

c2 c1 c0

Figure 6.7: Carry save adder low level architecture using FPGA fabric logic.
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Figure 6.8: 7 to 3 carry save adder example adapted for one’s complement addition.

Ren−2 fills the hole produced by Re1 and the overflow bits of Ren−1 fill the holes produced

by Re2. The second part (B) represents the same information, but it is arranged in a

different way (Re i is skewed). Then Row R0 can be seen as the actual sum of a columns,

R1 represents the first carry and finally, R2 contains the second carry. Noteworthy, using

CSA the overflow bits do not need to be added again, because they do fit in the holes

created by these adders. Consequently, the complexity is reduced, hence, an addition is

removed.

Regarding the problem at hand, the first level of reduction is depicted in Figure 6.9(a).

Each row is one of the thirty-three 16-bit words to be one’s complement added. We have

arranged the columns as follows: three clusters of 7-bit and two clusters of 6-bit all these

clusters are reduced to 3-bit results. Consequently, 33 × 16-bit numbers are reduced to

15 × 16-bit numbers, as shown in Level 1 (L1) of Figure 6.9(b). Observe that the white

dots correspond to swinging the overflow bits from the dotted circles around.

The level 1 clusters two 7-bit elements per column, leaving one row for the next

level, thus reducing from 15 to 7 numbers. In the second level (L2), seven numbers are

clustered and reduced to three numbers. As explained, with only three levels of logic, we

are able to reduce 33 numbers to only 3 numbers without increasing the width of the

numbers — 16-bit each. In what follow we discuss different alternatives to sum these

three numbers in one’s complement arithmetic to reach the final result.
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Figure 6.9: Reduction tree data arrangement. (a) Level 0 of reductions. (b) Following
levels of reductions.

Reduction Tree Version 1

The first version of the reducer tree, called ArchRed1, finishes L3 with a ternary

adder, plus two binary adders, as suggested in the following pseudo code.

L4 <= L3[ 2 ] + L3 [ 1 ] + L3 [ 0 ] ;

sumPrev <= L4( 1 5 : 0 ) + L4 ( 1 7 : 1 6 ) ;

sumFinal <= sumPrev ( 1 5 : 0 ) + sumPrev ( 1 6 ) ;
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Reduction Tree Version 2

The second version, ArchRed2, tries to reduce the three successive additions (L3),

processing in parallel the possible results and selecting the correct one with a multiplexer.

The two most significant bits of the sum are used as selector.

L4 [ 0 ] <= L3[ 2 ] + L3 [ 1 ] + L3 [ 0 ] ;

L4 [ 1 ] <= L3[ 2 ] + L3 [ 1 ] + L3 [ 0 ] + 1 ;

L4 [ 2 ] <= L3[ 2 ] + L3 [ 1 ] + L3 [ 0 ] + 2 ;

with (L4 [ 0 ] ( 1 7 : 1 6 ) ) select
sumFinal <= L4[ 0 ] when "00" ,

L4 [ 1 ] when "01" ,

L4 [ 2 ] when others ;

Reduction Tree Version 3

The third version, ArchRed3, uses a 3 to 2 CSA generating a fourth level (L4 in

Figure 6.9(b)). Then, the two possible results are computed in parallel and a multiplexer

selects the correct one. The most significant bit of the sum is used as selector. Using

this solution only one 16-bit carry propagation is present in the critical path. In a Xilinx

device, this means two CARRY8 components, therefore, yielding the best delay result.

L5 [ 0 ] <= L4[ 1 ] + L4 [ 0 ] ;

L5 [ 1 ] <= L4[ 1 ] + L4 [ 0 ] + 1 ;

with (L5 [ 0 ] ( 1 6 ) ) select
sumFinal <= L5[ 0 ] when "0" ,

L5 [ 1 ] when others ;

Reduction Tree Version 4

A deeper look into the reduction tree reveals that two clusters in the L0 are reducing

only 6 words. Therefore, instead of feeding backwards a single word, which also includes

a carry chain in the critical path. We tried feeding back level 3 to level 0 and convert the

6 to 3 CSA into 7 to 3 CSA. Hence, instead of adding 33 x 16-bit words each cycle we add

35 x 16-bit words, thus cutting down the critical path in the feedback. The reduction of

L4 is then needed only to get the final result. We call this implementation ArchRed4,

Figure 6.10 depicts the reduction tree. This architecture is a little bit faster (1.8%) than

ArchRed3 but has more logic (13%), therefore, ArchRed3 is a better option.
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Figure 6.10: ArchRed4 low level reduction architecture.

6.7 Experimental Evaluation

All the previous architectures have been synthesized and implemented using Vivado

2017.4 for the Xilinx UltraScale+ architecture, targeting the VCU118 development board

(section 3.8.1). Table 6.1 shows the delay and logic levels break-even for the studied

circuits where lgc and rt stand for time spent in logic and routing respectively. Logic

levels column details the components in the critical path. Additionally, the area and

delay of the different architectures are presented. LUTs and CLBs usage are included,

the amount of carry-logic component (carry8) is reported as well. The inputs and outputs

were registered in order to obtain the post place and route timing report. The first

element of Max Delay column summarizes the worst path expressed in ns.

Only reducer trees are the alternatives that meet timing at 322 MHz, the target

frequency for the Xilinx’s 100 Gbit/s Ethernet interfaces. The design ArchRed4 is the

one with the minimum delay. However, ArchRed3 is only 1.8 % slower but 13 % smaller.

What is more, the area penalty of ArchRed3 is almost negligible compared to the naïve

implementation.

The results shown in Table 6.1 regarding to delay are valid for Virtex UltraScale+ (16

nm), whereas for the Virtex UltraScale (20 nm) the same circuits have a delay penalty

ranging from 27 % to 35 % due to the use of a previous generation node technology.

Actually, in Virtex UltraScale, the best available design ArchRed3 reaches only 3.7 ns.

The best solution has been included as a part of Limago (chapter 7), implemented in

the VCU118 board, the implementation of Limago reach similar delay results for the

checksum logic as the ones shown in Table 6.1.

Figure 6.11 shows the performance of the checksum architecture depending on the

message size. The 100 Gbit/s Ethernet link theoretical throughput is also shown. The plot

demonstrates that the maximum possible performance is achieved comfortably even for

the smallest packets. The figure also shows that the implementation reaches 165 Gbit/s

when the message size is a multiple of 64-Byte — and, thus, there are no wasted bytes in

the last AXI4-Stream transaction.
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Area

LUTs Carry8 CLBs
Bin16 4.684ns (lgc 2.4ns (52.1%) rt 2.2ns (47.9%)) 20 (CY8=13 LUT2=6 LUT6=1) 541 98 117
Bin32 5.278ns (lgc 2.9ns (54.6%) rt 2.4ns (45.4%)) 25 (CY8=17 LUT2=7 LUT3=1) 530 85 103
Tern16 4.073ns (lgc 2.0ns (49.8%) rt 2.0ns (50.2%)) 17 (CY8=11 LUT2=2 LUT3=3 LUT6=1) 368 53 96
Red1 3.691ns (lgc 1.6ns (42.9%) rt 2.1ns (57.1%)) 13 (CY8=6 LUT2=1 LUT6=4 MUXF7=2) 707 8 130
Red2 3.070ns (lgc 0.9ns (29.0%) rt 2.2ns (71.0%)) 11 (CY8=3 LUT5=1 LUT6=4 MUXF7=3) 748 5 138
Red3 2.979ns (lgc 0.9ns (31.5%) rt 2.0ns (68.5%)) 10 (CY8=2 LUT3=1 LUT5=1 LUT6=3 MUXF7=3) 734 5 140
Red4 2.925ns (lgc 0.955ns (32.650%) rt 1.970ns (67.350%)) x (CY8=3 LUT3=2 LUT6=3 MUXF7=3) 831 5 188

Table 6.1: Delay and logic depth break-even for the studied circuits in an UltraScale+ architecture.
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Figure 6.11: Checksum computation performance.

To support a hypothetical 200 Gbit/s link, we assume that the bus width will double

to reach a 1024-bit AXI4-Stream. In such a case, the checksum for TCP/UDP in the

worst-case scenario can be reduced to 65 × 16-bit word one’s complement addition at

322 MHz. Following the same idea as described in the design ArchRed3, with an extra

level of reduction, it is feasible to reach the required processing rate. However, the delay

of this new level has to be cut out from the routing. In the current Virtex UltraScale+

architecture this is only viable with a careful relative placement of the logic. In conclusion,

the throughput of the proposed design can be doubled, but further work is needed to do

so. Figure 6.12 shows how the low level architecture would look like for a hypothetical

200 Gbit/s implementation.

64 x 16-bit

9 x 7 to 3 CSA 29 x 16-bit 4 x 7 to 3 CSA

1 x Bypass

13 x 16-bit 6 x 16-bit
1 x 6 to 3 CSA

DQ
Q1 x 16-bit

2 x Bypass

1 x 7 to 3 CSA
1 x 6 to 3 CSA

1 x 3 to 2 CSA

16-bit

16-bit

A

B

16-bit
result

A+B

A+B+1

bit (16)

1

0

3 x 16-bit

L0 L1 L2 L3 L4 L5

current
transaction

Figure 6.12: Possible architecture for 200 Gbit/s checksum computation leveraging CSA.
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6.8 Conclusion

In this chapter we have shown how to efficiently calculate the one’s complement check-

sum in a 100 Gbit/s Ethernet links taking advantage of the Xilinx Virtex UltraScale+

architecture and CSAs. The result of this chapter are published on the paper [148].

We were able to reduce the one’s complement checksum as the addition of 33 ×
16-bit numbers in one’s complement arithmetic at 322 MHz. After evaluating several

alternatives, we conclude that the best solution is implemented using tree levels of 7 to

3 CSA, which fits well in the slice Xilinx’s devices architecture. This means that, after

three levels of logic, the problem is transformed in the one’s complement addition of 3 ×
16-bit numbers. For the final addition a 3 to 2 CSA adder, two binary adders in parallel

and a multiplexer are used. This architecture reaches the desired throughput with a

negligible area penalty in Virtex UltraScale+ devices, achieving an initiation interval of

one and one clock cycle of latency, extremely useful to reach maximum throughput with

short packets. Extrapolating such idea, a checksum offloading engine at 200 Gbit/s is

feasible with a meticulous relative placement of the logic. All the designs discussed are

available as open-source [149].

Achieving similar results with HLS is not feasible due to the lack of low level opti-

mization available in such a tool. However, this is not necessary damaging because the

traditional HDL fulfill such purpose and the integration between HLS and HDL modules

can be done easily using standard interfaces. What is more, since Vivado-HLS 2019.1

the RTL blackbox concept has been introduced, where a user can integrate RTL code

within the tool making the integration even simpler.

Finally, we use the result of this chapter to implement a 100 GbE full TCP/IP stack.

Limago is discussed in the next chapter chapter 7.
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RELIABLE DATA TRANSMISSION

T
he realization that the network is becoming an important bottleneck in comput-
ing clusters and in the cloud has led in the past years to an increase scrutiny
of how networking functionality is deployed. From TCP Offload Engines to
Software Defined Network, including Smart NICs and In-Network Data Pro-

cessing, a wide range of approaches are currently being explored to increase the efficiency
of networks and tailor its functionality to the actual needs of the application at hand. To
address the need for an open and customizable network stack, in this chapter we intro-
duce Limago, an FPGA-based open-source implementation of a TCP/IP stack operating
at 100 Gbit/s. To our knowledge, Limago provides the first complete description of an
FPGA-based TCP/IP stack at these speeds, thereby illustrating the bottlenecks that must
be addressed, proposing several innovative designs and showing how to incorporate ad-
vanced protocol features into the design without jeopardizing throughput. As an example,
Limago supports the TCP Window Scale option, addressing the Long Fat Pipe issue,
which arises in very high-speed connections. Limago not only enables 100 Gbit/s Ethernet
links in an open source package, but also, it paves the way to programmable and fully
customizable NICs based on FPGAs harnessing HLS.

7.1 Introduction

The growing amount of data and the complexity of the workloads that characterize

modern distributed computing have turned the network into a potential bottleneck [3].
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Besides, in cloud environments, the network also limits the number of virtualized/con-

tainerized applications that can be deployed on a single server: The more CPU cycles

needed to deal with an increasingly complex networking stack — which needs to provide

not only TCP/IP packet processing but additional functionality such as Network Func-

tion Virtualization (NFV) or Remote Direct Memory Access (RDMA) — the less CPU

cycles that are available to applications. In addition, the trend towards specialization

seen in cloud computing opens up the possibility of tailored network designs through

Smart Network Interface Cards (NICs), which push application-level processing to the

network [150]. As a result, we are witnessing a flurry of activity around programmable

networks based on a variety of designs and architectures.

Data processing in distributed applications often requires large data transfers be-

tween machines. In these applications, low bandwidth or inefficiencies in the network

processing can significantly reduce the overall performance. In recent years the band-

width of commodity Ethernet in data centers has increased to 40 Gbit/s and is transition-

ing towards 100 Gbit/s. To cope with the increasing network bandwidth and reduce the

CPU cycles spend on network processing, network cards have been adding increasingly

more offloading capabilities, e.g., checksum calculation, TCP segmentation, or Receive

Side Scaling (RSS). High-performance network cards are even able to offload complete

network stacks in the form of TCP Offload Engine (TOE). Despite these efforts, I/O

inefficiencies and data movement overheads remain, this effect is even worse at a higher

network bandwidth a situation worsen as the increasing network bandwidth requires

the CPU to process data at a higher rate.

On the other hand, it is well-known that TCP/IP is a complex protocol that burdens

the CPU. In the literature [151–154] there is a general agreement on, (i) TCP/IP is a

demanding protocol, as a rule of thumb to process 1 b/s of TCP/IP it is necessary 1 Hz

of CPU. (ii) Dedicated hardware improves significantly the TCP/IP performance. (iii)

However, developing an ASIC is not advisable because it cannot cope the update in the

TCP/IP protocol and it is not suitable for every application. In this light, FPGAs emerge

as the optimal solution to implement TOE either as a host attached card, or even as a

standalone solution (network-attached).

An industrial grade example of these developments is provided by Microsoft Cat-

apult [155], a deployment of FPGAs in the cloud that has evolved through several

generations [156, 157]. The current version inserts an FPGA on the data path between

the top of rack switch and the server machine, bump-in-the-wire. Hence, all network

traffic in and out of the host goes through the FPGA. The FPGA is then used to augment

the network functionality with system and application-level features. For instance, it can

be used as a customizable smartNIC to offload network virtualization functionality [157],

application-level functionality such as RDMA packet processing to support key-value
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stores [158], or for distributed machine learning algorithms [159]. For inter-FPGA com-

munication, Catapult uses a proprietary protocol called Lightweight Transport Layer

(LTL) [155]. LTL provides a connection based interface on top of UDP by introducing

packet sequence numbers and acknowledgments to guarantee reliability and packet

ordering.

Catapult is, by far, not the only possible design. In IBM’s cloudFPGA [22], the FPGA

is deployed as a network-attached accelerator. Similarly, Caribou [31] deploys FPGAs

as storage nodes that extend the TCP/IP stack with distributed consensus functionality

(a network function) [160] as well as scans and string processing (application-level

functionality) [31, 161]. What is more, Sapio et al. [162] discuss the opportunities and

challenges of in-network processing, FPGAs suit very well this offload paradigm. In this

context, Tokusashi et al. have recently explored in-network processing [150] comparing

FPGAs, programmable switches, and ASICs. These examples have shown that an FPGA-

based NIC can accommodate a tight integration of networking and accelerator logic,

providing high throughput processing at low average and tail latencies. The latter is

especially challenging to achieve on a CPU-based system.

Promising as they are, for FPGA-based designs a challenge remains: scalability with

increasing network bandwidth. To address this challenge, we introduce Limago, an

open-source 100 Gbit/s TCP/IP network stack on an FPGA. Limago explores the changes

needed to upgrade an existing open-source TCP/IP stack from 10 Gbit/s [30] to 100 Gbit/s,

but maintaining the same high-productivity design methodology, based on Vivado-HLS,

which was utilized in the previous design. In doing so, Limago illustrates how to tackle

the problem of FPGA-based packet processing at such rates. From the existing design,

Limago inherits the scalability in terms of the number of connections as well as the

control flow and congestion avoidance functionality. Limago not only transforms and

adapts these existing features to increase the supported bandwidth from 10 Gbit/s to

100 Gbit/s, but also contributes novel features widening its applicability. The changes are

non-trivial extensions of the existing stack. For instance, the data path had to be widened

eight times and the operating frequency doubled to reach the target bandwidth, several

low-level architectural changes and balanced pipeline stages were necessary to meet

timing, and accessory modules were redesigned so as to match the current needs. Limago

also incorporates functionality such as the TCP Window Scale option, an extension to

the basic TCP/IP protocol which addresses the Long Fat Pipe issue section 7.2.1.

Limago serves as a platform for further research in programmable networking and as

a design guideline on how to tackle high network bandwidths with FPGA-based systems.

The key contributions of Limago are:

u First open-source FPGA-based 100 Gbit/s TCP/IP stack.
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u Very low communication latencies below 1.5 µsecond.

u Full Window Scale support — 64 KB to 1 GB.

u Fully developed using High-Level Synthesis (HLS), making it easier to modify and

maintain, apart from the checksum computation.

u High data transfer for multiple connections.

u Customizable option at synthesis level.

7.2 TCP/IP Background

Computer network is organized in seven layers, according to the Open Systems

Interconnection (OSI) model [163]. From the lowest layer (layer 1, the physical layer

controlling access to the physical medium) to the top layer (layer 7, or application layer),

each layer abstracts the details of the level below and provides a well-defined interface

to the level above. Figure 7.1 shows the standard OSI layers, including their names and

numbers. The TCP/IP is a suite of communication protocols covering layers 3 (Network

layer, IP) and 4 (Transport layer, TCP) addressing how data should be split into packets,

addressed, transmitted, and received at the destination. TCP/IP is widely used both in

the Internet as well as in data centers. What is more, TCP/IP is the core of the Internet

as we know it today.

TCP provides a reliable data transmission using a connection-oriented mechanism

between two end points. With TCP, the two communicating parties have to establish a

Figure 7.1: The standard seven-layer of the OSI model. Source: [164].
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connection before data can be exchanged. TCP converts the data sent by the application

into a set of packets that the IP (layer 3) can transport. This action is called packetization.

Each packet contains a sequence number, representing the offset to the first sent byte.

This feature allows packets to have variable size. The TCP implementation determines

the best size for the packet to be sent, commonly fitting each segment into a single IP

packet in order to avoid fragmenting an IP packet.

RFC793 [135] describes the original implementation of TCP. In what follows a brief

description is provided. There are three separated parts in a TCP connection. Before data

can be exchanged a connection has to be established in a process known as three-way
handshake. Let us say that we have two machines A and B. Machine A sends a SYN

packet (identified as such by one of the flags in the header), with the port number, a

random sequence number. If machine B is ready to communicate in that port, a SYN-ACK

packet is sent to machine A. The SYN flag says that the connection is being opened and

the ACK flag acknowledges the first SYN packet. Finally, to acknowledge the SYN-ACK

packet, an ACK packet is send from machine A to machine B. At this point the connection

has been established and data can be exchanged in any direction.

For the actual data exchange: each packet has a sequence number (SEQ), which is

the offset to the first sent byte. Each transmitted packet has to be acknowledged (ACK),

with packets being re-transmitted after a certain time-out until the ACK is received. As

a result, each packet is stored until acknowledged in case a re-transmission is needed.

The process determining which packets are in flight, which ones have been received

or are waiting for an acknowledgment is called sliding window protocol because of the

circular buffers involved at the sender and receiver to keep track of what has been sent,

what has been received, and what needs to be or has been acknowledged. This method

of transmission would be inefficient if the sender waits to transmit a new segment

until the previous segment has been acknowledged, the channel will be idle most of the

time. To maximize bandwidth, the sender transmits many consecutive segments, up to

the receiver’s advertised window — this determines flow control mechanisms based on

the dynamic re-sizing of the sliding window, which is a defined in 16-bit field (64 KiB)

on the TCP header. This field defines the number of bytes the recipient can hold. The

sender cannot have more than that number of bytes pending acknowledgment, otherwise

packets will be lost. The recipient can acknowledge several segments in a single message,

also saving bandwidth by doing so, namely, delayed acknowledgment. When all data

have been transmitted, FIN packets are sent in both directions and the connection ends,

known as teardown. Figure 7.2 shows the three-way handshake and teardown TCP

process— no data is exchanged in such example. The book [164] provides an in depth

analysis of the TCP standard as well as the other network protocols.

TCP/IP stack is known to be very memory intensive, due to the large amount of
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Figure 7.2: A normal TCP connection establishment and termination. Source: [164].

memory needed to keep track of the current state of each connection. What is more,

multiple connections are supported by the same machine, consequently, TCP/IP is a very

challenging stack.

7.2.1 Long Fat Pipe

TCP is widely used and, for that reason, many extensions and optimizations have been

proposed. One such optimization addresses the problem of the so-called Long Fat Pipes.

The problem arises when the RTT(s)× LinkCapacity(bit/s) > Buf f erSize(bit), at

which point the channel capacity never will be reached due to pauses in the transmission.

The reason is simple; the sender cannot transmit more data than the receive buffer can

hold. More specifically, the amount of unacknowledged data in-flight is limited to the

size of the receive buffer. In the original implementation, the buffer size (window) is

limited to 64 KiB as specified by the 16-bit field in the TCP header. To tackle this issue,

the Window Scale option was introduced [165]. This TCP option negotiates a Window

Scale (WS) factor during the three-way handshake. This scaling factor determines the

buffers size through the following equation: 64K iB×2WS, enabling buffers size to growth

of up to 1 GiB, 128 times bigger than the original implementation. This TCP option is

backwards compatible. If one of the end-point does not support it, the scaling factor will

be set to zero thus, not scaling. What is more, in the negotiation phase the window scale

is set to the minimum value advertised by the end-points.
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7.3 Challenges at 100 Gbit/s

Limago uses the 322 MHz clock provided by the integrated 100G CMAC, and a

512-bit AXI4-Stream interface (section 3.8.1). With respect to the 10 Gbit/s version,

that is an eight times increase in the width of the datapath and more than a two times

increase in the operating frequency. Moreover, the smallest packet (64-Byte) just fits into

a single transaction and, for such short packets, the processing rate must be 148.8 million

packets per second. The greater data rate implies novel designs for several components

often taken for granted. For instance, existing SmartCAM [166] design, used for flow

identification, do not operate at such frequency and a new solution is thus needed, what

is more, the previous design is not open-source. Similarly, certain optimizations are

optional at lower rates, but a must at such bandwidth. For instance, the Long Fat Pipe
issue might not be observable at 10 Gbit/s but must be addressed to reach 100 Gbit/s.

This requires additional circuitry to support and negotiate the TCP Window Scale option.

Furthermore, the computation of one’s complement checksum poses a real challenge at

such speed.

7.3.1 TCP/IP Checksum

Checksum computations are widely used when processing TCP/IP packets. Limago

uses an efficient implementation, leveraging 7 to 3 Carry Save Adder (CSA) circuits [147]

to calculate the checksum within one clock cycle. The module was written in HDL to

achieve a low-latency in this recurrent circuit. Actually, this is one of the few modules

of Limago written in HDL; the vast majority of blocks are written in Vivado-HLS. But

in this case, an efficient and low-latency implementation was needed, impossible to

achieve with the Vivado-HLS version being used (2018.2). The circuit is described in

detail in chapter 6 and in [148].

7.3.2 CuckooCAM

The 10 Gbit/s version of the stack uses the smartCAM [166] module provided by

Xilinx as a fast lookup engine, which is not open-source. Such module uses a four-tuple

consisting of IP source and destination addresses plus TCP source and destination ports

as a key, 96-bit key. We replaced this module with our own implementation, CuckooCAM,

based on cuckoo hashing and providing an initiation interval of one clock cycle for lookup

and deletion. In CuckooCAM, insertion time depends on the load factor and the occupancy

rate can exceed 90% due to a secondary memory structure known as a stash. It is clocked

at 322 MHz, providing 322 million lookups per second — this lookup rate is achieved

when there are no insertions. The width of the key and value are configurable; therefore,
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we have reduced the size of the key to a three-tuple by removing Limago’s own IP address

which does not change during operation, consequently we use a 64-bit key. The reduction

of the key from 96-bit to 64-bit results in a significant reduction in BRAM usage for this

module (22%) — this result is for an implementation that supports more than 10,000

elements. We were able to develop such a demanding design very quickly using HLS

with exceptional Quality of Result (QoR).

7.3.3 DRAM Memory Access

To support a large number of connections, the TOE uses external memory for its

receive and send buffers. In particular, this is necessary for the send buffer, where the

payload has to be stored until it is acknowledged — at least for a period of time equal to

RTT. DRAM memory bandwidth has not increased at the same exponential rate as the

Ethernet links [167], therefore, we need to assess if the off-chip memory provides enough

bandwidth to fulfill Limago’s requirements. For 100 Gbit/s, the resulting requirements in

terms of memory bandwidth are close to the peak bandwidth provided by DDR4 present

in the VUC118 board (section 3.8.1). To reach such bandwidth, we use sequential access

as much as possible, i.e., the bigger the segment size the better. Additionally, the offsets

into the receive and send buffer are determined by the TCP sequence number. This can

result in unaligned memory accesses affecting the memory bandwidth further. Therefore,
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Figure 7.3: Memory controller maximum performance with different memory address
map, sequential write.
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we verified the viability of storing the buffers in the external DDR4-2400 through several

microbenchmarks, varying the memory-alignment as well as the access size. First of all,

we evaluate which address map adapts better for sequential writes, Figure 7.3 shows a

summary of the experiments. The plot also shows that, for our scenario the precharge

option worsen the performance. The two best options are using ROW_COLUMN_BANK

with and without interleaving. We observed a peak bandwidth of 125 Gbit/s with 64-Byte

aligned words and approximately a 6% performance loss when transfers were not aligned,

thereby ensuring the design achieves enough memory bandwidth for all cases. Since the

buffers in external memory are organized as a circular buffer, additional logic is required

to handle the wrap-around when the “end” of the buffer is reached. Particularly, a single

data transfer is split into two transfers (one before the wrap-around and one after),

requiring data re-alignment. The HLS code for this module was redesigned carefully

to guide the synthesis tool to the most efficient implementation involving a 64 to 1

multiplexer.

7.3.4 TCP Window Scale Option

Links with a large bandwidth×delay product suffer from the Long Fat Pipe issue

(section 7.2.1): those links where the bandwidth × delay product is larger than the buffer

size [165]. The Window Scale option is used to allocate any fix-size buffer in the range of

216 to 230-Byte, thereby leading to a better usage of links — reducing or eliminating the

idleness in the link.

Currently, Window Scale is the only supported TCP option in Limago. Due to the lack

of a standard TCP option layout, the parsing of options is done sequentially, one clock

cycle each. Fortunately, the Window Scale option is only negotiated during the initial

three-way handshake, for instance, options are only parsed once in the lifetime of a

connection. The Window Scale is set to the minimum value advertised by both endpoints.

The buffer size is automatically set to the negotiated value, which can never be bigger

than the one announced. The flow control also benefits of this option, because more bytes

can be sent consecutively. Support for the Window Scale option has to be enabled at

synthesis.

Finally, the maximum number of connections depends on the external DRAM capacity

and the Window Scale factor, as shown by Equation 7.1. DRAMb is the log2(DRAMSize)

and WSb is the log2(WindowScale). As an example, with 4 GB of DRAM and a Window

Scale of 128, 232−7−16 = 29 = 512 concurrent connections can be supported. In this exam-

ple, only the Tx Buffer is taken into account, if the Rx Buffer is enabled, the number of

connection is reduced in half unless there are two independent memories for each buffer,

which for 100 Gbit/s is almost mandatory to achieve maximum throughput.
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#conn = 2DRAMb−WSb−16 (7.1)

7.4 Related Work

The benefits of TCP Offload Engine (TOE) are well-known [168–170]: reduced CPU

utilization and bypassing of the Operating System. In a TOE, packet processing is moved

to the NIC, whereas the control decision remains in the host. Nowadays, most NICs offer

some degree of offloading. In this section, we focus on FPGA implementations of TCP/IP

stacks.

LDA technologies [171] offers an ultra-light, ultra-high speed and ultra-low latency

(20 ns) FPGA-based TOE. Their solution includes independent transmitter and receiver

modules. Each module can handle thousands of connections and an external memory is

not necessary. For sixteen connections, 44 BRAMs and 2,704 LUTs are necessary. Neither

the implementation details nor the maximum throughput are available, but, published

results for this TOE using Solarflare NICs are based on 10 Gbit/s connections. Chevin

Technology [172] offers a 10/25 Gbit/s TCP/IP core, which can work both as client or

server. It supports up to 256 simultaneous connections. The Tx and Rx buffers can be

configured from 1 KiB to 1 GiB, implying Window Scale support. For sixteen connections,

5 BRAMs and 12,000 LUTs (plus the external buffer) are necessary. Enyx [173] offers an

RTL TOE solution with up to 4,000 connections, but not further details about resource

utilization are provided. They also have announced a 25 Gbit/s implementation [174].

Dini [175] offers a 10 Gbit/s solution where the FPGA is used as a NIC. The buffer size is

configurable from 4 KiB to 64 KiB and it supports up to 128 connections per instantiated

IP-Core and out-of-order packet delivery. Algo-Logic [176] supports full duplex rates up

to 20 Gbit/s per instance, claiming more than 200 Gbit/s can be achieved with multiple

instances. The design targets low-latency applications such as high-frequency trading.

The authors in [177] presented a comparison of three 10 Gbit/s alternatives: a pure

software TCP/IP stack, a software TOE with kernel-bypassing and a hardware TOE

(Fraunhofer HHI 10 GbE TCP/IP) with kernel-bypassing, concluding that the hardware

solution has less latency and a more deterministic behavior. The work in [178] presents

a complete TOE implementation supporting jumbo frames and configurable Maximum

Segment Size (MSS) and timestamp. Only one connection is supported with a 90 ns

latency for a 100-Byte packet. Their solution is compared against a commercial, one

achieving better latency. Bianchi et al. [179] introduce a TCP implementation using

XFSMs, which is claimed to be “code-once-port-everywhere”. The implementation is

tested over three different architectures, software, FPGA, and NS3 emulator [180],
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reaching similar results. At CERN [181], a simplified and unidirectional 10 Gbit/s

TCP/IP implementation was made for a lossless data collection using an FPGA. Probably,

the closest work to Limago is [153], an asymmetrical standalone TCP/IP implementation

oriented to video-on-demand, which supports 20,480 connections working as a client and

2,048 connections working as a server. It also can send up to 40 Gbit/s but only receive

up to 4 Gbit/s. The starting point for Limago is a 10 Gbit/s TOE written by Sidler et
al. in C++ using Vivado-HLS [30, 144]. Such design targets the Virtex 7 FPGA family

architecture.

7.5 Limago Architecture

The main focus of this chapter is how to implement an efficient 100 Gbit/s TOE using

HLS as much as possible. To do so, layers 1 and 2 of the OSI model have to be addressed

as well. In this section, we dive deep into our framework which is used along with the

TOE to provide the full network stack capabilities, part of this infrastructure may also be

used as a shell in other designs. The first version of Limago runs on a Xilinx’s Ultrascale+

VCU118 development board (section 3.8.1) and we also have implemented Limago for

the ALVEO U200 board (section 3.8.1).

Figure 7.4 shows Limago’s main components. We use AXI4-Stream to interface with

the application logic as well as with the network modules. Since CMAC exposes an LBUS

interface, we added a custom adapter module that converts between AXI4-Stream and

LBUS (section 3.8.1)— since Vivado 2019.1 the IP-Core includes AXI4-Stream optional

support. This piece of hardware was done using Verilog to have total control even for

short packets.

Rx and Tx checksum are shortly introduced in section 7.3.1 and detailed in depth

in chapter 6. Additionally, CuckooCAM is briefly presented in section 7.3.2, its imple-

mentation details fall out of the scope of this thesis. In what follows the rest of the

components of the infrastructure are described in detail, all of them have been developed

using HLS unless stated otherwise.

Inbound Packet Handler: parses Ethernet and IPv4 headers of every incoming

packet and determines to which category it belongs. Currently, the following kind of

packets are supported: Address Resolution Protocol (ARP), Internet Control Message

Protocol (ICMP), TCP and UDP. If the packet matches the filter, the signal TDEST

will carry a different identifier for each kind of packet. Then an AXI4-Stream Switch

forwards the packet to the appropriated module. If the packet does not belong to one of

the previous categories, it is dropped. In addition, the Ethernet header is removed for

ICMP, UDP and TCP packets and the rest of the packet is realigned.
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Figure 7.4: Limago general architecture overview.

ARP module: is in charge of the ARP packets. When an ARP request arrives and the

IP address matches, it generates an ARP reply packet. Its main function is to associate

IP addresses with Media Access Control (MAC) (physical) addresses, which is done

using a 256-element table. The ARP module also receives MAC address requests from

the Outbound Packet Handler. If the entry is not present in the table, an ARP request

packet will be generated, and a miss will be reported. Additionally, at system start up,

an aggressive MAC discovery address is implemented — an ARP request is sent to every

IP address within the range of the subnet (LAN) in order to obtain the associated MAC

address. In doing so, we avoid of retransmitting the first packet of each connection.

ICMP module: provides responses to echo request packets, a.k.a., ping. The module

is useful to verify connectivity and gives a fair estimation of the Round-Trip delay Time

(RTT).

Memory Interface: is composed of a Data Mover and Memory Interface Generator
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(MIG), both Xilinx IP-Cores. The MIG exposes a 512-bit AXI4 memory mapped interface

and communicates with the off-chip DDR4 memory. The Data Mover is in charge of

merging data and commands, which are produced in a streaming fashion from the TOE

module, to an AXI4 interface. The maximum frequency of the MIG is limited to 300 MHz,

a theoretical maximum of 153.6 Gbit/s could be achieved, but that is enough to transfer

the payload to the external memory (section 7.3.3). The clock domain crossing is done

using the internal FIFO of an AXI4-Interconnect.

Outbound Packet Handler: gathers packets coming from ARP, ICMP and TOE

modules. ARP packets are forwarded directly. However, ICMP and TCP packets need

to be prepended with the Ethernet header (14-Byte). If needed, a MAC address lookup,

consisting of the IP destination address, is issued to the ARP module. If the lookup is

a hit, the Ethernet header is constructed using the returned MAC address, prepended

to the packet, and transmitted. Otherwise, the packet is dropped and an ARP request

is generated instead. Moreover, the packet size is evaluated and padded to 60-Byte if

needed, to comply with the CMAC specifications.

DMA subsystem: we use the DMA for PCI Express (PCIe) Subsystem Xilinx IP-Core

for providing users access to memory mapped registers within the logic. Limago uses

the Xilinx’s drivers both for debugging and communication. The necessary customization

layers are built on top of them. There is another debug module, JTAG2AXI, when there

is not PCIe connectivity. It fulfills the same need, debug or access to the current state of

the design.

7.6 TOE Architecture

This section describes the overall architecture of the TOE (Figure 7.5). As a starting

point we used an open-source 10 GbE TOE implementation [30], because it is written in

C++, it is scalable in terms of concurrent connections and it has been proved to give good

performance. The internal structure is divided into three parts, the incoming data path

(Rx Engine), the outgoing data path (Tx Engine), and the state-keeping data structures.

The figure also shows the external buffer Tx and Rx Buffer, these buffer use off-chip

memory, in Limago the Rx Buffer is optional. Furthermore, the dash boxes are optional

modules that can be enabled at synthesis. We also use HLS to implement this module,

however, we made few optimizations in the code to guide the tool to a better result.

7.6.1 Rx Engine

Incoming packets are processed by the Rx Engine. To verify the checksum, first the

TCP pseudo header is constructed and prepended to the packet payload (Figures 6.3 and
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Figure 7.5: TOE architecture overview.

6.4 respectively). The pseudo header and packet payload are then forwarded to the Rx
checksum module. If the result equals to zero, the checksum is valid, and the packet is

passed on to the next module, otherwise it is dropped. Valid packets are parsed to extract

the necessary fields from the IPv4 and TCP headers, which is done in one clock cycle,

at the same time the pseudo header is removed. The Rx Engine contains a Finite State

Machine (FSM) that takes decisions based on the extracted fields. First, it looks up the

destination port in the Port Table, if the port is not in the LISTEN mode the packet is

discarded. Next, using the three-tuple — IP source address, TCP source and destination

port — a look-up to the CuckooCAM is issued. The CuckooCAM returns a tuple with

a boolean flag indicating if the lookup is a hit, and a 16-bit sessionID. The sessionID

is used as an index to look-up the state of the connection in all the other tables. If the

lookup was a miss but the packet has the SYN flag set, the three-tuple is inserted with

a new sessionID and a SYN-ACK event is generated. The FSM uses the sessionID to

retrieve the sequence and acknowledgment number from the two SAR Tables and, if

necessary, updates them. Finally, if the packet contains a payload, a notification is sent

to the application while the payload is written to the Rx Buffer — in the case that is

enabled. The FSM in the Rx Engine enforces a strict order of the packets and currently

does not support out-of-order processing.
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7.6.2 Data Structures

Session Lookup: provides the means to interface with the CukooCAM, using the

three-tuple to obtain the sessionID. It handles the requests from the different producers

and forwards the response properly. The sessionID is used to index every data structure

to access the state of the corresponding connection. For each incoming packet a lookup

is issued to the CukooCAM module implemented outside this module (section 7.3.2). In

case of a SYN or a SYN-ACK packet, if the three-tuple has not been inserted yet, it

will be inserted using a new sessionID identifying the new connection. Additionally, the

Session Lookup module contains a table that maps the sessionID to the three-tuple. This

mapping is used by the Tx Engine to generate the IPv4 and TCP headers of outgoing

packets.

Port Table: keeps track of the state of each port, which can be CLOSE, LISTEN or

ACTIVE. The standard port range for static and ephemeral ports are used. It is queried

for every incoming packet in order to check the state of the port. If an incoming packet

targets a port in CLOSE state, it is discarded and a RST packet is generated as a response.

State Table: stores the current state of each connection as specified by RFC793 [135].

To simplify the implementation, the CLOSE and LISTENING states are merged. The

State Table can be updated by the Rx Engine when incoming packets are processed and

by the Tx App If when the application opens a new connection. Consistency is guaranteed

by using atomic operations. The locking is fine-grained so that only the currently accessed

entry is locked.

Timers: this module supports all time-based event triggering as required by the

protocol, three timer modules are implemented: Re-transmission, Probe and Time-Wait
Timer. It follows the same approach of the original version, using the approach introduced

by [182], which provides linear scaling of on-chip memory. This is a viable approach, as

TCP timers operate with a millisecond granularity. Given a clock period of 3.103 ns and

one timer access per clock cycle, we can update 322,268 connections per millisecond.

Event Engine: gathers events from the Rx Engine, the Timers, and the Tx App
If. Consequently, events are merged and forwarded to the Tx Engine that processes

them to generate the corresponding outgoing packets. Each event will trigger the gen-

eration of a new TCP packet. The final event stream is then merged with outstanding

acknowledgments [183].

Buffering and Window Management: since TCP is a stream-based protocol, it

requires buffering on the receiving and transmitting side. On the receiving side, data is

buffered in case the application is not able to immediately consume it. On the sending

side, buffering is required for re-transmission in case of packet loss. Thus, when support-

ing multiple connections, the amount of memory that is needed increases linearly with
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the number of connections. For more than ten concurrent connections, the routing of

on-chip memory becomes very complex and using DRAM to store the payloads becomes

therefore mandatory. For every connection the memory buffer is logically implemented

as a circular buffer which is stored in a fixed and pre-allocated segment within the

off-chip memory. Stored in the Tx and Rx SAR Tables there are pointers, for instance,

ack’ed, transmitted. These pointers represent the state of the TCP sliding window of

each connection at a given time. The information stored in these tables is mandatory to

handle the segmentation and reassembly (SAR) of packets as well as maintaining the

TCP window. For instance, the Tx SAR Table keeps track of three partitions: transmitted

but not yet acknowledged, data written by the application to the buffer but not yet

transmitted, and finally free space, see Figure 7.6. In addition to these three pointers,

the Tx SAR Table also stores the Send Window which is advertised by the other device

and represents the size of its receive buffer. The Usable Window, as shown in the figure,

can be computed on the fly and is not explicitly stored in the table. Moreover, to support

the Window Scale TCP option, the Tx SAR Table stores the Window Scale negotiated

when the connection is established. This value defines the size and boundaries of the

buffer.

Statistics: this module gathers events for inbound and outbound packets. The values

can be read through an AXI4-Lite interface using the DMA subsystem. It provides

access to received packets and bytes as well as transmitted packets and bytes and re-

transmissions per connection. This element is optional and can be removed at synthesis.
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7.6.3 Tx Engine

Each event triggers the generation of a new packet; the packet generation is done by

the Tx Engine. The source of new packets can be the user application by either initiating

a data transmission or by opening a new connection, which triggers a SYN packet. The

Rx Engine generates events that create ACK packets, including SYN-ACK. The Timers
module triggers timeout-related events, such as re-transmission, probe packets and FIN

packets for teardown. Like the Rx Engine, the Tx Engine has a FSM to handle each

possible event. Contrary to Rx Engine, since each event carries the sessionID and event

type, the sessionID is known when the event arrives. Consequently, the data-structures

are queried immediately getting the necessary metadata to generate the packet. The

Destination IP address and TCP ports are queried from the Session Lookup. Once the

metadata is retrieved, the TCP pseudo header can be built. If the packet has payload, it is

fetched from the external memory or directly from the application. Prepending the TCP

pseudo header with the payload, the Tx Checksum computes the TCP checksum. After

that, the checksum is inserted in the TCP header and the pseudo header is removed.

Later, the IP header is prepended to the TCP packet. Finally, the packet is forwarded to

the Outbound Packet Handler.

7.7 Limago Evaluation

7.7.1 Experiments Setup

Limago was designed following a bottom-up approach in order to introduce new

functionality in an incremental manner while retaining the ability to easily isolate

behavior in the new pieces of hardware. The majority of Limago is programmed in

Vivado-HLS, which helped with code productivity as well as maintaining a more flexible

design methodology.

The evaluation of Limago covers both functionality and performance. In terms of

functionality, first the ARP and ICMP modules were tested using GNU/Linux arping
and ping programs. Then, to test the TOE, we implemented an echo server transmitting

the received payload back to the sender. Such a design allows to test both the Rx and Tx

Engines. The same echo server is used to verify the correct functionality of the internal

elements as well as verifying connectivity.

For the performance evaluation, we use iPerf [93] version 2. We implemented iPerf in

hardware, using Vivado-HLS, supporting both client and server modes. As a client, the

application actively opens a connection and sends data at the highest possible rate to

the server. The transmission duration is specified by a parameter; after termination the
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throughput is calculated using the equation sent_bytes
time . As a server, the application waits

for a SYN packet to establish a new connection. Once the connection is established, the

client starts transmitting data and the application on the FPGA consumes the incoming

payload while the TOE acknowledges the received packets. Client and server mode can

be used at the same time, for the client mode, the user has to specify the remote host

address, remote host port, and the test duration. We have also built a user program on

top of the Xilinx DMA driver to interact with the iPerf application deployed on the FPGA.

Limago was tested using two different configurations (Figure 7.7). Scheme 1 corre-

sponds to a standard implementation, each TOE communicates with the corresponding

CMAC, and a 100G cable connects both CMACs. In this case the maximum throughput is

limited by the Ethernet connection. Scheme 2 removes the Ethernet CMAC and connects

the TOE using a 512-bit AXI4-Stream interface clocked at 322 MHz. The idea behind

this configuration is to verify the maximum throughput. In the second configuration, we

also have tested replacing DDR4 with a 512 KiB URAM — Scheme 2(b). This allows us

to verify the physical bounds for each part of the design.

7.7.2 Throughput

To test the throughput of Limago we measured the throughput under two configu-

rations (Figure 7.7) one to test the throughput over a network and another to test the

maximum processing rate of Limago when not limited by the network. In this experi-

ment, TOE0 transmits data to TOE1, i.e, only the memory attached to TOE0 is involved.

The throughput reported measures the complete Ethernet frame, i.e., including the

Ethernet, IP and TCP headers as well as the payload. In this experiment, the application

TOE0 TOE1

DDR40 DDR41

CMAC CMAC

a) Scheme 1

VCU118

@300 MHz @300 MHz

100 G Direct Attach Copper

@322 MHz @322 MHz

TOE0 TOE1

DDR40 DDR41

b) Scheme 2

VCU118

@300 MHz @300 MHz

@322 MHz

Figure 7.7: Limago interconnection schemes to evaluate potential bottlenecks.
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transmitted segments ranging between 1024-Byte to 4096-Byte in steps of 64-Byte, using

only one connection, each experiment lasted five minutes. Figure 7.8 plots the result of

each experiment. For scheme 1, using external DRAM and transmitting packets over

the 100 Gbit/s Ethernet link, the throughput is bound by the network — follows the

theoretical 100 Gbit/s line-rate as expected. Scheme 2, using DRAM, Limago transmits

more than 100 Gbit/s for all cases. However, beyond 2048-Byte segment size, the DRAM

bandwidth limits the throughput. Scheme 2(b), using on-chip URAM, looks like a loga-

rithmic function where the throughput increases with an increasing segment size. These

experiments show that Limago is able to surpass 100 Gbit/s when it is not bound by the

network.

We also have carried out experiments with multiple connections at the same time.

For those experiments we have used two servers and a Huawei cloudEngine 8800 switch.

The specifications of the severs are as follows: both servers run on a 4.14.7-gentooHPC

OS and use a Mellanox MT27800 ConnectX-5 100 Gbit/s NIC; server A has an Intel

Xeon CPU E5-2630 v4 at 2.20 GHz and 128 GB of RAM memory, whereas, server B has

an Intel Xeon Gold 6126 CPU at 2.60 GHz and 192 GB of RAM memory. All offloading

capabilities have been enabled in both machines, using ethtool. We use iPerf (version 2)

to test the performance, this time the servers work as a client, which means they send

the data. Three different scenarios have been evaluated, each server individually and
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both servers combined. For both servers combined, each one contributes with half of the

connections. The number of concurrent connections range from two to thirty in steps of

two, each test lasted five minutes and was repeated five times, we set the packet size to

1460-Byte, which is the maximum that guarantee no IP fragmentation. Figure 7.9 shows

the results — which are measured at the application level — the mean and standard

deviation are plotted, as well as the theoretical maximum. In general, the performance

increases with a higher number of concurrent connections, until it is stable. With regard

to both servers sending data simultaneously, a better performance is not observed, from

this we notice that the switch could be the bottleneck. Further experiments are necessary

to confirm this.

7.7.3 Latency Measurement

We have performed latency measurements in Limago using the iperf2 application, in

particular, the setup time and the acknowledgment to the first segment time as depict

in Figure 7.10, in such figure the latencies are labeled as ∆tsetup and ∆tsegment. We set

an observation point next to the TCP module, both ingress and egress. Therefore, we

are able to capture the exact time at what the events happen. We have carried out the
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Figure 7.10: Diagram of events where latency was measured in Limago.

latency measurement under two scenarios, Limago → Limago and Limago → server A

and server B. For both servers, we used the vanilla configurations, and left the operating

system select which core to use in order to run the application. The same experiment

was repeated using the Huawei Cloud Engine 8800 switch in between. Each experiment

was repeated five times, therefore we plot the arithmetic mean and standard deviation

in Figure 7.11, the left side shows the ∆tsetup time. On the other hand, the right side

shows the ∆tsegment time. Additionally, we have evaluated the effect of offloading part of

the TCP stack to the NIC as well. In both sides the gray box shows the measurement

when the end-points were connected using the switch. The figure shows that Limago to

Limago is at least 15 times faster than when there is software involved in the experiment

— ∆tsetup = (1213.27±23.53) nanoseconds and ∆tsegment = (1424.9±7.08) nanoseconds.

Regarding the offloading, we witness a latency increase when the offloading is enabled,

this may be caused of the process being allocated in a different NUMA node, however we

do not dive deep in this matter. What is more, Limago presents a unique opportunity

to evaluate the software latency with both high accuracy and high precision. This kind

of experiments are left to future work due to the huge amount of variables to evaluate

in the software side, for instance evaluating the effect of allocating the application in a

different NUMA node that the one connected to the NIC.
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Figure 7.11: Latency measurement on Limago for ∆tsetup and ∆tsegment time under
different connection schemes.

7.7.4 Resource Usage and Code Complexity

Limago has been implemented using Vivado and Vivado HLS 2018.2. The prototype

uses a VCU118 board with a Virtex Ultrascale+ FPGA. Figure 7.12 shows the BRAM

usage of the TOE for a wide variety of number of connections at a specific Window Scale.

The LUTs and Flip-Flop cost are omitted due to small variation between the different

scenarios — ranging between 36 K to 41 K. As explained earlier and confirmed by the

actual BRAM usage, the data structures in our implementation scale linearly with the

number of supported connections.

The resource usage of Limago for 10,000 connections and no Window Scale is listed

in Table 7.1. The overall LUT usage is at 10% whereby 3.1% is used by the TOE. The

TOE is also 1.5% of the available Flip-Flops which is around 20% of the total usage. But

at the same time 90% of the logic resources are still available and can be used to deploy

an application on the FPGA. BRAM capacity is a scarcer resource, the TOE uses almost

12% of them, overall around 80% of BRAM and 100% URAM capacity is still available for

further use. The table also shows the resource summary for the 10 Gbit/s starting point
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Figure 7.12: TOE BRAM18 usage for different window scale and maximum number of
connections.

implementation, for the same FPGA, the resources of the TOE increased by a factor of

1.2 to 2.1. The overall logic resources increased by a factor of two and the BRAM usage

by 20%. Particularly noteworthy, the tenfold bandwidth increase, at worse, only requires

twice as much resources. This fact is also in part because of Limago targets a FPGA two

generation ahead, with a technology node of 16 nm compare against the 28 nm of the

starting point implementation.

Limago has ten core modules, seven of them are written in HLS. Apart from the

checksum, the other two HDL modules are straightforward, however determinism is

needed. We used cloc [184] to count the lines of code (no headers), the HLS part is 7,456

lines; whereas the HDL is 1,482 lines.
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Element LUT FF BRAM
10 Gbit/s Implementation

TOE 15,415 1.3% 16,616 0.7% 186.5 8.7%
SmartCAM 2,201 0.2% 1,772 0.1% 57.5 2.7%
Total 77,393 6.6% 85,306 3.6% 369 17.1%

100 Gbit/s Implementation
Memory 17,423 1.5% 25,995 1.1% 41.5 1.9%
CMAC 14,614 1.2% 39,550 1.7% 26.5 1.2%
ARP 1,260 0.1% 3,193 0.1% 1.5 0.1%
ICMP 2,056 0.2% 5,561 0.2% 0.0 0.0%
Inbound 1,816 0.2% 6,293 0.3% 8.5 0.4%
Outbound 2,680 0.2% 9,324 0.4% 34 1.6%
CuckooCAM 2,095 0.2% 1,392 0.1% 36 1.7%
TOE 36,469 3.1% 36,229 1.5% 247.5 11.5%
Total 119,844 10.1% 178,339 7.5% 441.5 20.4%

Comparison
Increase 154.85 % 209.06 % 119.65 %

Table 7.1: Full design resource usage on the VCU118 for 10,000 connections. The original
implementation and Limago resources are displayed as well as a comparison.

7.8 Conclusions

Limago [185] is an open-source [186] 100 Gbit/s TCP/IP stack that can be imple-

mented on FPGA to enable research and development in programmable NICs and

in-network computing. Starting from a pre-existing stack operating at 10 Gbit/s, and

designed to support sufficient number of connections in order to operate in a data center,

Limago provides a tenfold increase in bandwidth at the cost of a mere 20% increase in

BRAM usage, without jeopardizing the ability to support multiple connections of the

original design, and maintaining the same design methodology based on Vivado-HLS.

The current prototype has been implemented and successfully tested on Xilinx VCU118

and Alveo U200 boards. Limago paves the way to reach a better utilization in heteroge-

neous infrastructures such as [22, 23]. Finally, Limago can achieve more than 100 Gbit/s,

however it is network bounded.

Future work includes further optimizations of the stack to, for instance, enable

reordering of out-of-order packets and additional TCP features taking advantage of

the increasing availability of High Bandwidth Memory (HBM) in the latest FPGAs.

This feature will improve the throughput when packet loss occurs as well as support

application level processing [187, 188]. Needless to say, that the price to pay for these

kind of features is an increase in the BRAM consumption.
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8
CONCLUSIONS

T
his chapter aims at summarizing and highlighting the main contributions
of this Thesis, which have been already described in their respective chap-
ter. Section 8.1 presents the main contribution of each chapter as well as the
publications derived of the research. In Section 8.2, we discuss the lessons

learned in this Thesis as well as providing suggestions on whether it makes sense to use
HLS for network tasks. Finally, in Section 8.3 we outline the future directions, based on
the result of this Thesis and the current research trends.

8.1 Contributions

In Chapter 4 (Active Monitoring) we have evaluated active monitoring probes using

the packet-train technique in both FPGA-based and Software-based solutions. We were

able to quantize the accuracy and precision of both approaches. The experimental results

demonstrate that, not only the FPGA-based solution are significantly better than the

Software-based counterpart, but also, shorter trains provide the same accuracy in the

measure. Therefore, introducing little interference in the network our solutions are able

to obtain meaningful Quality of Service (QoS) parameters. What is more, the scalability

of the FPGA-based solution is demonstrated with three implementation targeting 1,

10 and 100 Gbit/s. Such results pinpoint the FPGA solution as the most accurate and

cost-effective option to measure actively networks. Noteworthy, we were able to design

our proof-of-concepts very quickly using HLS in the non-critical parts. We expect that
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the FPGA-based solution would provide the same quality of results for the upcoming

200 and 400 Gbit/s link speeds. The hardware implementation of the 1 and 10 Gbit/s

implementations was released as open-source [88]. The contribution of this chapter led

to the following publications (chronological order) [66, 89, 90, 189]:

u Mario Ruiz, Javier Ramos, Gustavo Sutter, Jorge E. López de Vergara, Sergio

López-Buedo and Javier Aracil. “Leveraging Open Source Platforms and
High-Level Synthesis for the Design of FPGA-Based 10 GbE Active Net-
work Probes”, in 2015 International Conference on ReConFigurable Computing

and FPGAs (ReConFig). IEEE, 2015.

u Mario Ruiz, Javier Ramos, Gustavo Sutter, Jorge E. López de Vergara, Sergio

López-Buedo and Javier Aracil. “Accurate and Affordable Packet-train Test-
ing Systems for Multi-Gb/s Networks”. IEEE Communication Magazine, vol.

54, no. 3, pp. 8087, 2016.

u Mario Ruiz, Javier Ramos, Gustavo Sutter, Jorge E. López de Vergara, Sergio

López-Buedo and Cristian Sisterna. “Harnessing Programmable SoCs to De-
velop Cost-effective Network Quality Monitoring Devices”, in 2016 26th

International Conference on Field Programmable Logic and Applications (FPL),

IEEE, 2016.

u Jorge E. López de Vergara, Mario Ruiz, Lluís Grifre, Marc Ruiz, Luis Vaquero,

José Fernando Zazo, Sergio López-Buedo, Oscar González de Dios and Luis Ve-

lasco. “Demonstration of 100 Gbit/s Active Measurements in Dynamically
Provisioned Optical Paths”, in the 45th European Conference on Optical Com-
munication (ECOC).

In Chapter 5 (Passive Monitoring), we discussed the current software-based passive

monitoring probes limitations when monitoring 100 Gbit/s computer networks. Conse-

quently, we proposed two FPGA-based bump-in-the-wire implementations that aim at

reducing the traffic load in the traditional probes so as to overcome the current processing

limitations. On the one hand, we take advantage of the high degree of parallelism of

FPGAs to detect cyphered packet and then capping them section 5.3— we estimate a

60 % traffic reduction with this method. On the other hand, we leveraged the on-chip

BRAM memory to implement a BRAM-based shift-register to detect duplicate packets

and remove them, the best implementation is able to compare the current packet against

a sliding windows of 307,200 elements which in the best case translates into a 37.79

millisecond time window (section 5.4.6). Moreover, in this chapter we show how to use a

mix approach of HLS and HDL in order to overcome the limitations of HLS in critical
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parts of the design. The contribution of this chapter led to the following publications

(chronological order) [133, 190]:

u Mario Ruiz, Gustavo Sutter, Sergio López-Buedo and Jorge E. López de Vergara.

“FPGA-based encrypted network traffic identification at 100 Gbit/s”, in

2016 International Conference on ReConFigurable Computing and FPGAs (ReCon-

Fig). IEEE, 2016.

u Mario Ruiz, Gustavo Sutter, Sergio López-Buedo, José Fernando Zazo and Jorge

E. López de Vergara. “An FPGA-Based Approach for Packet Deduplication
in 100 Gigabit-per-Second Networks”, in 2017 International Conference on

ReConFigurable Computing and FPGAs (ReConFig). IEEE, 2017.

In Chapter 6 (Checksum Offloading), we discussed the complexity and computational

cost of the one’s complement checksum computation. The results show a degradation

in the performance of the Linux/GNU TCP/IP stack when the CPU is in charge of

computing the one’s complement checksum. Hence, for handling 100 Gbit/s TCP/IP stack

related tasks in an FPGA we were able to reduce the problem to the addition of 33 ×
16-bit words in a period of 3.1 ns. Consequently, we studied different alternatives to

tackle such problem. Based on our results, the only option to achieve such a task is

to use Carry Save Adder (CSA). Therefore, the best alternative is a low level series of

reductions harnessing 7 to 3 CSA (Figure 6.7). The different alternatives studied in this

chapter were made open-source [149]. In this case, using HDL is the only solution able

to implement efficiently such handcrafted architecture. The contribution of this chapter

led to the following publications (chronological order) [148, 191]:

u Mario Ruiz, Tobías Alonso, Gustavo Sutter and Sergio López-Buedo. “FPGA Effi-
cient Checksum Computation for Multi-Gigabits per Second Networks”,

in III Jornadas de Computación Empotrada y Reconfigurable (JCER2018).

u Gustavo Sutter, Mario Ruiz, Sergio López-Buedo, and Gustavo Alonso. “FPGA-
based TCP/IP Checksum Offloading Engine for 100 Gbps Networks”, in

2018 International Conference on ReConFigurable Computing and FPGAs (ReCon-

Fig). IEEE, 2018.

In Chapter 7 (Reliable Data Transmission) we discussed the new paradigm of FPGA

in distributed environment (network-attached) and in network data processing. Conse-

quently, the need for a scalable and high-speed TCP/IP stack has arisen. At the same time,

a flexible and high productive design methodology is sought, consequently our option is

to use HLS. Therefore, we present Limago the first complete open-source TCP/IP stack
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implementation at 100 GbE. In this context, we introduced the challenges to tenfold

the starting point implementation as well as introducing improvements to achieve 100

GbE. The results show an unprecedented throughput as well as very low latency while

using a small portion of the resources. Noteworthy, more than 85 % of the line of codes

were written in C/C++. What is more, Limago paves the way for more efficient detached

FPGAs and shows the benefits of using HLS for implementing such a complex protocol at

high-speed. As a result, Limago has been made open-source [186, 192]. The contribution

of this chapter led to the following publication [185]:

u Mario Ruiz, David Sidler, Gustavo Sutter, Gustavo Alonso and Sergio López-Buedo.

“Limago: an FPGA-based Open-source 100 GbE TCP/IP Stack”, in 2019 29th

International Conference on Field Programmable Logic and Applications (FPL),

IEEE, 2019.

The research of chapters 6 and 7 is a collaboration with the Systems Group of the

Swiss Federal Institute of Technology in Zürich (ETHz), and part of the work was carried

out during Mario Ruiz and Gustavo Sutter stay at such group during the first half of 2018.

Additionally, Limago is being use as the underlying infrastructure of distributed Machine

Learning inference using Convolutional Neural Networks. One such example of this

was the demonstration of Xilinx at the 29th Field Programmable Logic and Applications

conference.

Finally, the use of HLS has been paramount in order to design some of the functional-

ity of the different implementations detailed through this thesis. Especially, Limago is

mostly written in C++ and translated into hardware using Vivado-HLS. Finishing such

a work would not have been possible in the span of this Thesis if HDL had been used.

Such a result validates the use of HLS for network tasks and packet processing, even for

a very complex one as TCP/IP. Nonetheless, to tweak critical parts we always can use

HDL to implement the most efficient solution and integrate it afterwards in HLS, which

currently is even simpler using the RTL Blackbox.

8.2 Discussion

One of the main contribution of this Thesis is the use of HLS in order to implement

networking task. In this section, we shed light on the lessons learned on how to identify

whether it makes sense to use HLS for a given network task. These rules are extracted

from the experience gained in this Thesis and are empirical observations. What is

more, we also observed that the Quality of Result (QoR) of Vivado-HLS has highly
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improved since 2015. Therefore, we expect that some of today’s limitations are tomorrow’s

strengths.

In terms of packet processing, HLS has demonstrated to handle such a task ade-

quately achieving: i) initiation interval of one clock cycle, ii) an acceptable latency and iii)

little resource usage. However, one drawback is the implementation of FIFOs, especially

with 512-bit interfaces, where there is little control on the underlying BRAM configura-

tion, and, most of the time the design ends up with BRAM misuse. In particular, in this

Thesis we have used HLS for parsing packets and extracting fields from the headers in:

the Inbound Packet Handler and Loopback modules of the active probes (section 4.9.2)

and the Inbound Packet Handler, ARP, ICMP, and TOE modules of Limago (section 7.5).

Nonetheless, most of the times is complex to reuse the code. For that reason, this year

(2019) Eran et al. [20] introduce a HLS library for code reuse in packet processing to

gain even more design productivity.

The TOE module (section 7.6) has also demonstrate the benefits of using HLS so

as to implement a very complex module, with several iterations between the different

internal parts. Moreover, we were able to evaluate several improvements in the design

with little changes on the code. Needless to say, an HDL implementation would have had

better results, especially for short packets. However, our experimental results show that

Limago reaches the theoretical maximum Ethernet throughput for a 1024-Byte segment

size, while having a very low-latency. Certainly, the extraordinary QoR and the high

design productivity of HLS make Limago the best example of a design methodology of a

complex design for networking tasks. Using only HDL in the most critical parts where a

high level of determinism is mandatory and harnessing HLS in the remaining parts.

In the following items we summarize when to use HLS according to our experience:

3 Parsing packets (section 4.9.2 and section 7.5).

3 More than two modules with communication between them (section 5.3.2, sec-

tion 5.4.3 and section 7.6).

3 Unsure about the best architecture, Network Parameter Calculator (section 4.7.1).

3 Not targeting a specific initiation interval neither latency, Network Parameter

Calculator (section 4.7.1).

3 Complex algorithms/designs with multiple iterations, TOE (section 7.6).

In the following items we summarize when the HLS version is not the best solution

at the moment:
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7 Very handcrafted architectures such as the one described in sections 5.3.3, 5.4.6

and 6.6.

7 Specific scheduling of the operations such as the deduplicate pipeline architecture

(section 5.4.6).

7 Combinational modules such as the one’s complement checksum computation

(section 5.3.3).

7 Low level control of the FPGA fabric resources, for instance, controlling individually

each BRAM port as needed (section 5.4.6).

7 Full determinism on the logic, variability in the generation as observed in the 1

Gbit/s Packet Generator (Figure 4.5).

7 High arithmetic intensity with data dependencies, counting the number of print-

able ASCII on a vector (section 5.3.3) or computing the one’s complement checksum

(section 6.6).

Nonetheless, this latter list is bounded to be reduced on the future due to expected

improvements on the QoR of HLS tools.

In the gray areas we suggest to start developing with HLS and to evaluate the most

critical parts using the Vivado-HLS reports. Once, the critical part becomes a bottleneck

that cannot be addressed using HLS and impedes to reach the necessary performance

only then move to an RTL implementation of the critical part.

8.3 Future Work

Through the thesis we have shed light on how to take advantage of the FPGA

capabilities and HLS tools to perform a wide variety of network tasks. Ranging from

monitoring, both active and passive probes, and reliable data transmission at a very high-

speed using the demanding TCP protocol. We expect that more and more researchers

will join the FPGA community to take advantage of their capabilities to carry out more

network tasks.

Most of the experiment with the passive monitoring probes were carried out using

synthetic traces. Therefore, the evaluation in a real environment remains. Specially

to validate the traffic reduction when capping cyphered packets. What is more, such

evaluation will bring light into the deduplicate implementation to remove switching

duplicates. On the other hand, for actives probes, we have demonstrated the good quality

of results of the FPGA implementation even for 100 Gbit/s, where there is not software
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implementation to do the same. Therefore, implementing such a probe at the upcoming

200 and 400 is a step forward in order to test such equipment, however, it will require

some effort in the packet generator due to the change in the data path.

The heterogeneity of the FPGAs opens up new possibilities. For instance, Xilinx

has incorporate HBM memory in some Ultrascale+ devices. In this context, using such

memory the selective acknowledgment, another TCP option, may be supported. However,

the trade-off between BRAM and performance gain has to be studied. More BRAM is

indispensable to keep track of the different segments, while more bandwidth to the

off-chip memory is mandatory for non-sequential accesses. Furthermore, the latency

experiments in section 7.7.3 open the possibility of measuring accurately the effect of the

different variables in the GNU/Linux TCP implementation, even evaluating different

TCP/IP implementations.
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CONCLUSIONES

E
ste capítulo resumen y resalta las principales contribuciones de esta tesis, las
cuales han sido ya descriptas en su respectivo capítulo. La sección 9.1 presenta
las principales contribuciones de cada capítulo, así como las contribuciones
a la comunidad científica en forma de publicaciones derivadas de la investi-

gación desarrollada. Mientras que en la sección 9.2 discutimos las lecciones aprendidas
en esta tesis y también sugerimos en qué caso tiene sentido usar síntesis de alto nivel para
tareas de redes. Finalmente, en la sección 9.3 presentamos los trabajos futuros que pueden
surgir a partir de los resultados de esta tesis y las tendencias actuales en el área.

9.1 Contribuciones

En el capítulo 4 (Active Monitoring) evaluamos la monitorización activa de redes

usando la técnica de trenes de paquetes con soluciones basadas tanto software como

FPGA. Fuimos capaces de cuantizar la exactitud y precisión de ambas alternativas. Los

resultados de los experimentos demuestran que, las FPGAs no sólo son mucho mejores

que las soluciones software, sino que también con pocos paquetes en el tren se consigue la

misma exactitud en las medidas. De esta forma, las soluciones con FPGA son capaces de

obtener resultados de calidad de servicio significativos con una interferencia muy baja en

la red. A demás, la escalabilidad de las implementaciones FPGA ha sido demostrada con

tres implementaciones dirigidas a 1, 10 y 100 Gbit/s. Los resultados obtenidos en esta

tesis demuestran que la opción FPGA es la solución más exacta y rentable para realizar
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medidas activas en las redes de ordenadores de muy alta velocidad. Notablemente fuimos

capaces de diseñar las pruebas de concepto de forma muy rápida usando síntesis de

alto nivel en las partes menos críticas del diseño. Vaticinamos que la implementación

FPGA para las venideras velocidades de 200 y 400 Gbit/s proveerá la misma calidad

de resultados. Las implementaciones FPGA de 1 y 10 Gbit/s se liberaron como código

abierto [88]. Las contribuciones de este capítulo resultaron en los siguientes artículos de

divulgación científica (ordenados cronológicamente) [66, 89, 90, 189]:

u Mario Ruiz, Javier Ramos, Gustavo Sutter, Jorge E. López de Vergara, Sergio

López-Buedo and Javier Aracil. “Leveraging Open Source Platforms and
High-Level Synthesis for the Design of FPGA-Based 10 GbE Active Net-
work Probes”, in 2015 International Conference on ReConFigurable Computing

and FPGAs (ReConFig). IEEE, 2015.

u Mario Ruiz, Javier Ramos, Gustavo Sutter, Jorge E. López de Vergara, Sergio

López-Buedo and Javier Aracil. “Accurate and Affordable Packet-train Test-
ing Systems for Multi-Gb/s Networks”. IEEE Communication Magazine, vol.

54, no. 3, pp. 8087, 2016.

u Mario Ruiz, Javier Ramos, Gustavo Sutter, Jorge E. López de Vergara, Sergio

López-Buedo and Cristian Sisterna. “Harnessing Programmable SoCs to De-
velop Cost-effective Network Quality Monitoring Devices”, in 2016 26th

International Conference on Field Programmable Logic and Applications (FPL),

IEEE, 2016.

u Jorge E. López de Vergara, Mario Ruiz, Lluís Grifre, Marc Ruiz, Luis Vaquero,

José Fernando Zazo, Sergio López-Buedo, Oscar González de Dios and Luis Ve-

lasco. “Demonstration of 100 Gbit/s Active Measurements in Dynamically
Provisioned Optical Paths”, in the 45th European Conference on Optical Com-
munication (ECOC).

En el capítulo 5 (Passive Monitoring), discutimos las limitaciones actuales de las

sondas de monitorización activas basadas en software cuando se requiere monitorizar

redes de 100 Gbit/s. Es por este motivo que proponemos utilizar soluciones basadas

en FPGA que se conectan antes de la solución software y que tienen como objetivo

reducir el tráfico que llega a la sonda, de esta forma se puede superar las limitaciones

actuales. Por otro lado, aprovechamos del alto nivel de paralelismo presente en las

FPGAs para detectar paquetes cifrados y luego recortarlos, para sólo quedarnos con

octetos más significativos sección 5.3 — con este método estimamos una reducción del 60

% del tráfico. Así mismo, aprovechamos las memorias internas de las FPGAs (BRAM)
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para implementar un registro de desplazamiento mejorado, para detectar paquetes

duplicados y luego eliminarlos. La mejor implementación es capaz de almacenar 307.200

elementos, lo que se traduce en una ventana temporal de 37,79 ms de tráfico de red

en el mejor de los casos (sección 5.4.6). En este capítulo también mostramos cómo usar

un enfoque mixto entre síntesis de alto nivel y lenguajes de descripción de hardware
para superar las limitaciones actuales de la síntesis de alto nivel. Las contribuciones de

este capítulo resultaron en los siguientes artículos de divulgación científica (ordenados

cronológicamente) [133, 190]:

u Mario Ruiz, Gustavo Sutter, Sergio López-Buedo and Jorge E. López de Vergara.

“FPGA-based encrypted network traffic identification at 100 Gbit/s”, in

2016 International Conference on ReConFigurable Computing and FPGAs (ReCon-

Fig). IEEE, 2016.

u Mario Ruiz, Gustavo Sutter, Sergio López-Buedo, José Fernando Zazo and Jorge

E. López de Vergara. “An FPGA-Based Approach for Packet Deduplication
in 100 Gigabit-per-Second Networks”, in 2017 International Conference on

ReConFigurable Computing and FPGAs (ReConFig). IEEE, 2017.

En el capítulo 6 (Checksum Offloading), discutimos la complejidad y el costo com-

putacional de la suma de comprobación en complemento a uno. El resultado de los

experimentos muestra una degradación en el desempeño del protocolo TCP/IP cuando la

CPU está encargada de realizar el computo de la suma de comprobación en complemento

a uno. Por lo tanto, para manejar tareas relacionas con el protocolo TCP/IP a 100 Gbit/s

fuimos capaces de reducir el problema a la suma de 33 palabras de 16-bit cada una

en un tiempo máximo de 3.1 nanosegundos. Consiguientemente, estudiamos diferentes

alternativas para abordar dicho problema. La mejor alternativa aprovecha una serie

de reducciones de sumadores que evitan el acarreo (CSA por sus siglas en inglés), en

particular un CSA de 7-bit a 3-bit (figura 6.7). Las diferentes alternativas propuestas en

este capítulo se han liberado como código abierto [149]. En este caso, la única solución

viable es usar lenguajes de descripción de hardware debido a todas las optimizaciones de

bajo nivel necesarias. Las contribuciones de este capítulo resultaron en los siguientes

artículos de divulgación científica (ordenados cronológicamente) [148, 191]:

u Mario Ruiz, Tobías Alonso, Gustavo Sutter and Sergio López-Buedo. “FPGA Effi-
cient Checksum Computation for Multi-Gigabits per Second Networks”,

in III Jornadas de Computación Empotrada y Reconfigurable (JCER2018).

u Gustavo Sutter, Mario Ruiz, Sergio López-Buedo, and Gustavo Alonso. “FPGA-
based TCP/IP Checksum Offloading Engine for 100 Gbps Networks”, in
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2018 International Conference on ReConFigurable Computing and FPGAs (ReCon-

Fig). IEEE, 2018.

En el capítulo 7 (Reliable Data Transmission), discutimos la nueva función de las

FPGAs en entornos distribuidos, así como la necesidad de protocolos de comunicación

que se adapten a la necesidad de las aplicaciones. De esta forma, la necesidad de una

implementación FPGA del protocolo TCP/IP a muy alta velocidad se hizo latente. Al

mismo tiempo, se busca una metodología de diseño flexible y de alta productividad, por

este motivo usamos síntesis de alto nivel. Es por ello que presentamos Limago la primera

implementación completa de código abierto del protocolo TCP/IP en una FPGA a 100

Gigabit Ethernet. En este sentido, presentamos los desafíos que tienen que ser abordados

para lograr un ancho de banda diez veces mayor a su predecesor, pero también discutimos

algunas mejoras necesarias a estas velocidades. Los resultados muestran un ancho de

banda sin precedentes y una latencia muy baja sólo utilizando una porción pequeña de

los recursos disponibles. Notablemente, más del 85 % del código fuente de Limago está

escrito en C/C++. Limago allana el camino para comunicaciones más eficientes y con

menos latencia y al mismo tiempo muestra los beneficios de la síntesis de alto nivel en

un protocolo de tan alta complejidad. Como resultado Limago se ha hecho accesible como

código libre [186, 192]. La contribución de este capítulo resultó en el siguiente artículo

de divulgación científica [185]:

u Mario Ruiz, David Sidler, Gustavo Sutter, Gustavo Alonso and Sergio López-Buedo.

“Limago: an FPGA-based Open-source 100 GbE TCP/IP Stack”, in 2019 29th

International Conference on Field Programmable Logic and Applications (FPL),

IEEE, 2019.

Parte de la investigación llevada a cabo en los capítulos 6 y 7 es una colaboración con

el grupo de sistemas de Universidad ETH Zürich y parte del trabajo fue llevado a cabo

durante la estancia de Mario Ruiz y Gustavo Sutter en dicho grupo en la primera mitad

del año 2018. Adicionalmente, Limago está siendo usado como la infraestructura de co-

municación en un sistema de inferencia distribuida con redes neuronales convolucionales.

Un ejemplo de esto es la prueba de concepto llevada a cabo por Xilinx en la conferencia

29th International Conference on Field Programmable Logic and Applications.

Finalmente, el uso de síntesis de alto nivel ha sido primordial en el desarrollo

de alguna de las funcionalidades de las diferentes implementaciones llevadas a cabo

durante esta tesis. Especialmente en Limago, que está escrito mayoritariamente en

C++ y traducido a hardware usando Vivado-HLS. Terminar Limago no habría sido

posible en el lapso de esta tesis si se hubiera utilizado lenguajes de descripción de

hardware. Los resultados obtenidos con Limago validan el uso de síntesis de alto nivel

152 Mario Daniel Ruiz Noguera



9.2. DISCUSIÓN

para procesamiento de paquetes de red, incluso para tareas tan complejas como el

protocolo TCP/IP. No obstante, para ajustar las partes críticas siempre podemos utilizar

lenguajes de descripción de hardware para obtener la solución más eficiente e integrarla

posteriormente con la síntesis de alto nivel, este paso es relativamente sencillo utilizando

RTL Blackbox.

9.2 Discusión

Una de las principales contribuciones de esta tesis es el uso de síntesis de alto

nivel para solucionar tareas de redes. En esta sección arrojamos luz sobre las lecciones

aprendidas sobre cómo identificar en qué casos tiene sentido usar síntesis de alto nivel

para solucionar una tarea de red determinada. Estas reglas son observaciones empíricas

que se extraen de la experiencia adquirida en esta tesis. Es más, también observamos

que la calidad de resultado de Vivado-HLS ha mejorado mucho desde 2015. Por lo tanto,

esperamos que algunas de las limitaciones de hoy sean las fortalezas del mañana.

Con respecto al procesado de paquetes, la síntesis de alto nivel ha demostrado ser

capaz de manejar dicha tarea adecuadamente consiguiendo: i) intervalo de iniciación de

un ciclo de reloj, ii) una latencia aceptable y iii) bajo uso de recursos. Sin embargo, una de

las limitaciones actuales se encuentra al implementar FIFOs, especialmente cuando el

ancho del bus es de 512-bit, en este caso hay muy poco control sobre la configuración de

la BRAM y muchas veces se desperdicia parte de su almacenamiento. En particular, en

esta tesis usamos síntesis de alto nivel para diseccionar y extraer campos de la cabecera

de los paquetes, por ejemplo, en los módulos Inbound Packet Handler y Loopback de las

sondas activas (sección 4.9.2) y en los módulos Inbound Packet Handler, ARP, ICMP y

TOE de Limago (sección 7.5). No obstante, muchas veces es complejo reutilizar código.

Por este motivo, este año (2019) Eran et al. [20] presentó una biblioteca para síntesis de

alto nivel para aumentar la reusabilidad del código para procesado de paquetes con el

objetivo de obtener mayor productividad en la etapa de diseño.

El módulo TOE (sección 7.6) también ha demostrado los beneficios de utilizar síntesis

de alto nivel para implementar un módulo muy complejo, con varias iteraciones entre las

diferentes partes internas. Además, pudimos evaluar varias mejoras en el diseño con

pocos cambios en el código fuente. Demás está decir que una implementación usando

lenguajes de descripción de hardware daría mejores resultados, especialmente para

paquetes cortos. Sin embargo, los resultados experimentales muestran que Limago

alcanza el rendimiento máximo teórico de Ethernet para un tamaño de segmento de

1024-Bytes, mientras que tiene una latencia muy baja. Ciertamente, el extraordinario

rendimiento y la alta productividad de diseño de síntesis de alto nivel hacen de Limago
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el mejor ejemplo de una metodología de diseño de cómo implementar una tarea de red

extremadamente compleja. Utilizando sólo lenguajes de descripción de hardware en las

partes más críticas donde es obligatorio un alto nivel de determinismo y aprovechando

síntesis de alto nivel en las partes restantes.

En la siguiente lista resumimos cuando utilizar síntesis de alto nivel de acuerdo a la

experiencia obtenida en esta tesis:

3 Diseccionar paquetes (sección 4.9.2 y sección 7.5).

3 Más de dos módulos que se comunican entre ellos (sección 5.3.2, sección 5.4.3 y

sección 7.6).

3 Desconocimiento de la mejor arquitectura, Network Parameter Calculator (sec-

ción 4.7.1).

3 Sin objetivo fijo de intervalo de iniciación o latencia máxima, Network Parameter
Calculator (sección 4.7.1).

3 Algoritmos o implementaciones complejas con múltiples iteraciones, TOE (sec-

ción 7.6).

En la siguiente lista resumimos cuando la versión actual de la herramienta de síntesis

de alto nivel no es la mejor solución al menos por el momento:

7 Arquitecturas muy artesanales como la descrita en las secciones 5.3.3, 5.4.6 y 6.6.

7 Secuencia específica de operaciones, como la arquitectura de deduplicate pipeline
de la sección 5.4.6.

7 Módulos combinacionales como el de la suma de comprobación de complemento a

uno sección 5.3.3.

7 Control de muy bajo nivel de los recursos básicos de la FPGA, por ejemplo, control

individual de los puertos de una BRAM según se requiera (sección 5.4.6).

7 Determinismo total en el circuito lógico implementado, con síntesis de alto nivel

observamos variabilidad en el Packet Generator de 1 Gbit/s (figura 4.5).

7 Alta intensidad aritmética con dependencia de datos, por ejemplo, contar la can-

tidad de caracteres ASCII imprimibles en un vector (sección 5.3.3) o computar la

suma de comprobación de complemento a uno (sección 6.6).
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No obstante, esta última lista está destinada a reducirse en el futuro debido a las

mejoras esperadas en la calidad de resultados de las herramientas de síntesis de alto

nivel.

En las áreas grises sugerimos comenzar a desarrollar con síntesis de alto nivel y

evaluar las partes más críticas utilizando los reportes de Vivado-HLS. Una vez que la

parte crítica se convierte en un cuello de botella que no puede ser abordado usando

síntesis de alto nivel e impide alcanzar el rendimiento necesario sólo entonces sugerimos

pasar a una implementación de más bajo nivel de la parte crítica.

9.3 Trabajo futuro

A través de la tesis, hemos arrojado luz sobre cómo aprovechar las capacidades de las

FPGAs y las herramientas de síntesis de alto nivel para realizar una amplia variedad

de tareas de red. Desde monitorización, sondas activas y pasivas, y transmisión fiable

de datos a una velocidad muy alta utilizando el exigente protocolo TCP/IP. Esperamos

que más y más investigadores se unan a la comunidad FPGA para aprovechar sus

capacidades para llevar a cabo tareas de red.

La mayoría de los experimentos en monitorización pasiva han sido realizados uti-

lizando trazas sintéticas. Es por esto que la evaluación de dichas implementaciones en

entornos reales queda pendiente. Especialmente para validar la reducción de tráfico

lograda cuando se recortan paquetes cifrados. A demás, esta evaluación también proveerá

información importante sobre la implementación para reducir duplicados de switching.

Por otro lado, en el contexto de sondas activas, hemos demostrado la buena calidad de

resultados que se pueden lograr con implementaciones FPGAs incluso para velocidades

de enlace de 100 Gbit/s, donde no hay implementación de software capaz de proveer

dichas medidas. Es por ello, que implementar sondas para las velocidades de 200 y 400

Gbit/s es un paso adelante para comprobar el equipamiento, sin embargo, esto requerirá

esfuerzo adicional, sobre todo en el generador de paquetes debido al cambio en el camino

de los datos.

La heterogeneidad de las FPGA abrió nuevas posibilidades. Por ejemplo, Xilinx ha

incorporado memorias HBM en algunos dispositivos de la familia Ultrascale+. En este

contexto, aprovechando dicha memoria se podría implementar asentimiento selectivo,

otra opción de TCP. Sin embargo, es necesario hacer una evaluación más profunda para

entender mejor el incremento en memoria BRAM, y si esto compensa la ganancia en

desempeño. Se necesita utilizar más BRAM para almacenar el estado de los segmentos,

mientras que se necesita más ancho de banda a la memoria cuando no haya accesos

secuenciales. Por otro lado, los experimentos de latencias llevados a cabo en la sección
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7.7.3 abren la posibilidad de medir de forma muy exacta los efectos de las diferentes

variables presentes en el manejo del protocolo TCP en GNU/Linux, incluso se podrían

evaluar diferentes implementaciones del protocolo.
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