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AUTOMATIC VACANT PARKING PLACES
MANAGEMENT SYSTEM USING

MULTICAMERA VEHICLE DETECTION
Rafael Martín-Nieto, Álvaro García-Martín, Alexander G. Hauptmann, José M. Martínez

Abstract—This paper presents a multicamera system for vehi-
cles detection and their corresponding mapping into the parking
spots of a parking lot. Approaches from the state-of-the-art,
which work properly in controlled scenarios, have been validated
using small amount of sequences and without more challenging
realistic conditions (illumniation changes, different weather). On
the other hand, most of them are not complete systems, but
provide only parts of them, usually detectors. The proposed
system has been designed for realistic scenarios considering
different cases of occlussion, ilumination changes and different
climatic conditions; a real scenario (the International Pittsburgh
Airport parking lot) has been targeted with the condition that
existing parking security cameras can be used, avoiding the
deployment of new cameras or other sensors infrastructures.
For design and validation, a new multicamera dataset has been
recorded. The system is based on existing object detectors (the
results of two of them are shown) and different proposed postpro-
cessing stages. The results clearly show that the proposed system
works correctly in challenging scenarios including almost total
occlusions, illumination changes and different weather conditions.

Index Terms—Parking management system, Vehicle detection,
Homographies, Perspective correction, Automatic spot mapping,
Multicamera fusion.

I. INTRODUCTION

PARKING lots are a widely used service where a great
investment is made every year. The management of these

car parks is very expensive and in many cases complex,
especially in the case of those that have many places such as
airports or large commercial areas. Solving this problem using
computer vision promises a number of advantages over intru-
sive sensors like induction loops or other weight-in-motion
sensors [1]. In addition, a vision-based system may provide
many value-added services, like parking space guidance and
video surveillance [2]. Such systems allow the decongestion of
crowded parking areas, directing vehicles to areas with lower
occupancy, guiding the vehicles by a faster route.

Surveillance cameras are readily available in most car park-
ing lots, so in many cases the solution is only to adequately
process the information available from the already existing
cameras, or complete the deployment by adding some cameras
to have a full coverage that allows the system to operate.
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The previously developed systems are mainly based on
image segmentation or machine learning (SVMs, NN) over
spot patches, but due to the evolution in the last years of object
detection algorithms, it is possible to use the detections of
these algorithms for the proper operation of automatic parking
management systems.

This paper is structured as follows: after this introduction,
section II presents an overview of the related work. Section
III presents and describes details of the complete system and
each of the blocks that compose it. Section IV presents the
evaluation framework (dataset and evaluation metrics) used to
obtain quantitative results of the system. Section V presents
the experiments and results obtained by the system. Finally,
section VI describes the conclusions of the paper and some
lines of future work.

II. STATE OF THE ART

In this section, we overview works related to the proposed
automatic parking management system, which try to locate oc-
cupied/empty parking spots. We have organized all the related
works in three categories taking into account the technique
used for the occupied/free parking spots classification: image
segmentation, machine learning (SVMs, NN, etc.) over spot
patch (or patches), and vehicle detection techniques based on
object detectors.

A. Image segmentation based systems

Image segmentation based systems try to differentiate, in
each considered frame, between vehicles and parking spots.
Background subtraction is a typical technique used in this
category, where an empty image is used to subtract each frame
in order to get the foreground mask (vehicles). The vehicles
are extracted and then mapped to each parking spot. The
most representative works included in this category are [1],
[2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13]. The
algorithm from [1] considers three main processing stages:
firstly, shadows in the image are attenuated (or removed) and
image distortion is corrected; afterwards, correspondences are
established between stationary cameras and visible parking
places, and, finally, the parking place status is evaluated. Status
classification is based on the assumption that the surface of a
vacant parking place is relatively invariant in comparison to an
occupied place. The parking slots labelling process is treated
in [2] as a color classification process which decomposes the
image observation into an object component and a lighting
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component. The object type is either “car” or “ground”, and
the lighting condition is either “shadowed” or “unshadowed”
(the system needs to know the direction of sunlight). Both the
expected object map and the expected shadow map are created
to help in the image pixels labelling. A frame preprocess-
ing is applied using the Surface Texture and Microstructure
Extraction (STME) in [3], resulting in an image where the
vehicles appear as “bumps” in an elevation map. A method for
individual vehicle detection using grayscale images acquired
from an elevated camera is presented in [4]. Vehicles are
considered to be composed of several components such as
hood, windows, headlights, etc., so images of parking cells
are fragmented by gray level and a cell is considered occupied
if it is composed by a large number of small components.
A dual camera device was designed and calibrated manually
in [5], where parking lots (manually specified) are detected
using background subtraction. After that, two morphological
operations, erosion and dilation, are performed to connect the
blobs and to eliminate the noise. The system introduced in [6],
and enhanced in [7], needs to store an unedited zero occupancy
image, and manually store the identified coordinates of every
parking spot. The object (vehicle) detection is based on a com-
bination of background extraction and edge detection (using
the Sobel operator). Background subtraction is also used in [8]
but with two additional considerations: a preprocessing color
filter is applied for maintaining color stability, and a shadow
removal is used to remove shadow foreground pixels. A spot
is considered occupied if the percentage of the foreground
pixels in the spot patch are over an empirical threshold. A
stitching algorithm is used in [9] to integrate visual cues from
multiple cameras for constructing a panoramic scene. Color,
position and motion are used for tracking vehicles across
different cameras. Two features are used to capture the vacant
properties of each parking space: edge (Canny filter) and color
(background subtraction). Three different methods of image
analysis are combined in [10]. Edge counting and histogram
classification are utilized as static analysis methods (infor-
mation available in a single frame), and a crafted algorithm
for blob tracking as dynamic (across-frames) method using
background/foreground estimation. The vehicular occlusion
problem, which is important in other approaches, is supposed
to be avoided in the paper through camera placement at high
floors, which is not always a possible solution. In [11], after
an initial edge detection stage, edge density, closed contour
density and foreground/background pixel ratio are combined
to decide whether a car is present or not in each parking
spot. The parking space boundaries are fixed, and the region
of each parking space can be defined using 4 dots or just
a parallelogram as a given parking spot. After that, each
parking space is numbered. The parking management system
described in [12] tries to find the car park coordinates from
an empty car spot, acquiring an image with cars, converting
the image to black and white for simple analysis, removing
noise and determining whether car spots are vacant or filled.
Each spot is segmented to decide whether it belongs to the
background (empty) or to the foreground (occupied). Two
types of car parking lots photos are used: one is taken from
Google earth and the other one is a real car park photo. After

a homography transformation, the system presented in [13]
performs a background subtraction, and a feature classification
(SURF [14] and HOG [15]) to decide the status of each
parking spot.

B. Spots Patch classification based systems

Spots patch classification based systems use classification
machine learning techniques (SVM, NN, etc.) which are
trained with previously labelled patches of occupied and free
parking spots. The most representative works included in this
category are [16], [17], [18], [19], [20], [21], [22], [23],
[24], [25]. The parking management system presented in [16]
creates, using homography computation, a pseudo-top-view of
a parking area to determine if there are free parking lots or not.
The texture feature extraction of each parking lot is obtained
using Gabor filter banks. A SVM is trained with texture
feature vectors of every parking spot, which have been taken
in different illumination conditions and with diverse type of
shadows. The algorithm proposed in [17] uses a combination
of car feature point detection and color histogram classification
to detect vacant parking spots. The author points out that one
major weakness of this algorithm is that it can not accurately
detect the state of parking spots which are slightly or mostly
occluded by objects such as other vehicles. The method for
parking space detection proposed in [18] trains and recognizes
empty parking spaces by applying machine learning methods
(SVM). Three consecutive parking spots are proposed as a
detection patch, which contains the space under consideration
and the two neighboring spaces. The system uses PCA to
pick 50 critical features. The problem is addressed in [19]
through a Bayesian hierarchical detection framework. The top
layer is an observation layer, where each node indicates a
local feature. The local feature can be either texture-based
or pixel-based . Haar-like features are used in [20] for the
detection of features detected in input videos to determine
the presence of a car within a parking spot. A surface-based
hierarchical framework is proposed in [21] to integrate the 3-
D scene information with the patch-based image observation
for the inference of vacant space. The HOG feature dimension
is reduced using a Linear Discriminant Analysis (LDA), and
4 likelihood models are trained for each surface type. A
classification of several algorithms for vacant parking space
detection is presented in [22], depending on the challenges that
they consider for vacant parking space detection: perspective
distortion, inter-object occlusion, shadow effect, lighting vari-
ations and insufficient illumination at night. They use HOG
features for car detections, and cars are decomposed into
four types of planar surfaces. Since the perspective projection
process is highly dependent to the camera setting, the patch
classification models need to be re-trained for different camera
settings. It takes two days to install the system. The first day is
used for hardware setup, camera calibration and training data
collection. The second day is used to label the training data
and to learn models for patch classification. Most of the failure
cases are caused by the headlight of moving cars. [23] extends
the system presented in [22] adding a multiclass boosting
method to automatically select the weak classifiers weights
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through a back-propagation learning process. This system is
divided into 3 layers: 3D-cuboid model and feature extraction
layer, patch classifier layer, and weighted combination layer.
Like in other systems already mentioned (e.g., [21]), a LDA
process is used to reduce the feature dimension of the ex-
tracted HOG features. In [24], several features with different
color histograms or DoG histograms are analyzed using three
supervised learning algorithms (k-NN, LDA, SVM). Finally, a
multi-layer discriminative framework for vacant parking space
detection is presented in [25]. This extended framework adds
a status inference layer over [22].

C. Object (vehicle) detectors based systems

Object (vehicle) detectors based systems use a detection
algorithm to detect vehicles and to map them into the different
parking spots. This type of system has begun to be viable
in recent years thanks to the evolution of object detectors,
specifically [26], [27], [28]. The only work, based upon our
knowledge, included in this category is a car detection method
[29] based on the Convolutional Neural Networks (CNN)
technology. After training the CNN, to identify where there
are cars they search the whole image of a parking lotusing
a sliding window approach. In this work the detection is
performed but the results are not mapped in the different
parking spots, and therefore it is not a complete system.

In our work we also propose to follow the detection ap-
proach but designing and developing the different stages to
get a complete automatic parking managemt system: vehicle
detection, homographic transformation, perspective correction
(for allowing to reuse existing camera instalations), automatic
spot mapping and multicamera fusion (assuming the usual
avaliability of multicamera setups). Additionally we have
created a complete realistic dataset including a multi-camera
environment with both illumination and climate variability and
we perform a rigorous and methodological evaluation of the
proposed system.

D. Qualitative comparison between existing approaches and
the proposed system

Due to the absence of public datasets of stationary vehicles,
it is not possible to make a quantitative comparison of the
proposed detection based system with respect to the others,
however, the novelty of the proposed detection based system
allows to conceptually compare the advantages of the system
compared to the existing ones.

An advantage of the proposed system over existing systems
is the “automatic vehicle mapping” on the different parking
spaces. Many approaches (e.g., [7], [8], [12], [16], [17], [20])
require manually annotating, one by one, the position of each
spot, while our system needs only the corners of the parking
area and the number of spots. This advantage is especially
notable compared with the spots patch classification based
systems and especially in the case of large car parking in which
the number of places to label is high. The main advantage of
the proposed system over the image segmentation based sys-
tems is the robustness against variable background, generally
caused by climatic or lighting variability. This system is the

first of its class to detect and subsequently map in the different
parking spaces, as [29] just detect the vehicles and does not
perform the subsequent steps.

Another advantage of detection based systems is the capac-
ity to withstand “object occlusions”. Although some of the
existing systems (e.g., [18], [22], [23], [25]) already try to
support occlusions, the object detectors have a better capacity
to support them because they use the information they have
without needing to add dependency occupation rules between
adjacent spots.

Finally, adding “multicamera support” to the system allows
the existence of complete occlusions in the scenario, and the
use of redundant information from the different cameras allows
to improve the system performance.

III. PROPOSED SYSTEM

A. Overview

The proposed multicamera system is based on a parallel
processing of each camera followed by the combination (or
fusion) of their individual results. The block diagram of the
system is presented in Figure 1. Each camera captures frames,
which are processed frame-by-frame. Firstly, an “object de-
tector” (using a previously trained vehicle model) locates the
vehicles in the frame; using an “homographic conversion”
and a “perspective correction” to consider the volumen of the
detected objects, the obtained detections are “automatically
mapped” into the positions of the occupied/empty monocam-
era spot matrix. Finally, if there is a mutlicamera setup, the
information from each camera is “fused” to obtain the final
multicamera spot matrix which indicates the occupation of the
parking lot.

In order to present a system configuration example, we
proceed to describe the source of each of the modules of
our implementation: the considered detectors are existing
techniques from the state of the art but their models have
been trained specifically for the purposes of the system;
the homographic transformations are mathematical techniques
described in [30] but we have generated our own homography
matrix for each of the cameras; the perspective correction
is a technique designed by us for this system and is based
on trigonometry; the automatic spots mapping is a technique
designed by us based on homographies; the fusion considers
tuned functions of standardized sigmoids designed for our
interests.

B. Object (vehicle) detector

The object vehicle detector is initialized with the vehicle
model, and, in order to eliminate possible detections of other
areas of the parking lot that will not be monitored with these
cameras, it also receives a region of interest (ROI) mask for
each camera. An example of these masks is shown in Figure
2.

This block receives the frames of each camera and, using
an object detection algorithm, generates as output a bounding
box (rectangle) for each of the detected objects (vehicles).

We have trained new vehicle models due to existing car
models do not function properly when using an image with a
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Fig. 1. System Block Diagram: cameras provide the frames to be processed (left); the initialization block provides the necessary information for each block
(top); and the result of the system is the parking spots occupation matrix (right).

a b c
Fig. 2. Example of (a) ROI mask, (b) input frame and (c) masked frame.

high viewpoint, scales variability, occlusions, different vehicle
types, etc., as contemplated in the experiments sequences.

The main detection algorithm seleceted for the evaluation
of the proposed system is the Faster R-CNN (Regions with
Convolutional Neural Network Features) [28] detector, which
is a more efficient variation, mainly in terms of computational
cost but also in performance, of the previous R-CNN [26]
and Fast R-CNN [27] detectors. The three variations have in
common the combination of bottom-up region proposals with
rich features computed by a convolutional neural network. The
main difference of the Faster-RCNN is the use of a Region
Proposal Network (RPN) that enables nearly cost-free region
proposals. For training purposes and according to the author’s
results [28], we have chosen the pre-trained network VGG-
16 model [31] that has 13 convolutional layers and 3 fully-
connected layers. We have retrained the network using the
PASCAL VOC 2007 and 2012 datasets and we have added a
new object model, our parking vehicle model, using our dataset
(see section IV-A). The vehicle detector used in [29] is also
based on a generic CNN from the state of the art, trained by
the authors. As the code and model are not publicly available,
it can not be used in the evaluation of the system, but it could
be integrated and evaluated in a direct way

The second detection algorithm evaluation is the De-
formable Parts Model (DPM) detector [32]. The DPM detector
is based on exhaustive search and a part-based model. It is a
part-based adaptation of the original Histogram of Oriented
Gradients detector (HOG) [15]. It proposes an object detec-
tion system based on mixtures of multiscale deformable part
models where each deformable object part is modeled as the
original HOG detector [15]. The algorithm model also contains
the flip of the model. We used this detector in order to see the

behavior of the system when using a non deep-learning based
detector. As deep-learning based ones are “better” detectors,
this evaluation allows to demonstrate the robustness of the
system to detection noise.

Additionally, experiments were also made with the ACF
(Aggregate Channel Features) [33] algorithm, but, due to the
properties of this technique, the bounding boxes obtained
during the detection process covered only the roof of the
vehicles, instead of completely covering them. This causes
that this algorithm does not fulfill the requirements for the
detectors of the proposed system which considers that the
bounding boxes completely cover the vehicle.

C. Homographic transformation

The object detector of the previous block obtains a bounding
box for each detected vehicle from the viewpoint plane of each
camera. This block, using the properties of the homographies,
allows to change the position of the objects detected from the
plane of each camera to a common plane. The homography
matrix (which is needed to initialize the block), Hi, for each
camera i, is obtained using 4 points from each camera view-
point and each point correspondence in an image extracted
from a top view. This top view can be easily obtained from
Google Earth. It is not necessary to choose the same points in
each camera viewpoint for all the cameras, but each selected
point must be associated with one from the image of the
common ground plane. The dimensions of the matrices are, by
definition of homographies, 3x3. Figure 3 shows two examples
of the resulting viewpoint change using homographies. Note
that these images are generated only to illustrate the procedure,
but this computationally expensive step is not required during
the system operation by the mapping algorithm. Therefore,
homography is just applied to the base midpoint of each
bounding box resulting in an optimized computation. The
output of this block is one point for each detected vehicle.

D. Perspective correction

Due to the volume of the detected objects, it is necessary
to correct the positions of the projected points where the
detections, received from the previous stages, are mapped.
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a b

c d

Fig. 3. Homography viewpoint transformations: (a) and (b) show the starting
side viewpoints, (c) and (d) show the resulting top view common planes.

It is possible to make a position correction using the angle
between the parallel lines of the parking spaces and the
camera viewpoint. This allows the correct matching between
the vehicle detections and the parking spots. Figure 4 presents
the correction diagram and an example. In the diagram, A
corresponds to the base midpoint detection projection, B
corresponds to the final position after correction, ϕ is the angle
between the parking lines and the camera view (needed for
the block initialization), and w

2 is the half of a vehicle length
(average). Despite referring to the length of the vehicle, the
letter w is used to associate it with the width of the bounding
boxes. In the example, the blue line in Figure 4(b) represents
the base line projection of the detection bounding box. Note
that the midpoint of the base is a different point than the
center point of the bounding box; the midpoint of the base,
belonging to the ground plane, allows to fulfill the properties
of the applied homography. In addition, the choice of this
point allows the system to work independently of the height
at which the cameras are located, as its projection is always
placed between the vehicle and the camera (see Figure 4(b)).

On the other hand, it is possible that the distortion of the
lens affects the accuracy of the homography, which causes
errors and imprecision in the mapping of the spots, as seen
in the Figure 5(a). This problem is usually solved using
the intrinsic camera parameters. If these parameters are not
available, there is an alternative solution that consists of
correcting the mapping of the grid of spots using a simple
linear adjustment function (Figure 5(c) shows an example of
adjustment function). Figure 5(b) shows the result of applying
this correction. We define a uniform grid and then we add a
correction factor to the projected point in order to eliminate
the effect of the lens. You can correct the grid to fit the image,
or correct the image to fit the grid. For the system, it is more
efficient to correct the image to fit the grid, since it allows
to automate the subsequent steps without needing any other
correction. The grid could also be modified, but the image
correction simplifies the next step of automatic mapping,
as the uniform grid allows the automatic spot mapping via
homographic techniques.

to
a

b c
Fig. 4. Perspective correction diagram and example: (a) schematic diagram;
(b) camera viewpoint detection; and (c) position correction example.

a b
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Fig. 5. Camera lens correction: (a) initial grid, (b) corrected grid and (c)
correction function.

E. Automatic spot mapping

This block is based on using the properties of the homogra-
phies. However, in this case the selected destination points are
designed specially to get the automatic discrete spot numbers
directly without the need of supervision and without the need
to map each position one by one like most of the state of the art
systems (e.g. [7], [8], [12], [16], [17], [20]). The source points
are the four corners of the parking grid, and the destination
points are the corners of the synthetic destination space shown
in Figure 6, specifically: (1, 1), (1,M + 1), (N + 1,M + 1)
and (N + 1, 1). M is the number of parking columns (1 or
2), and N is the number of parking rows. The procedure to
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obtain the discrete (d) position of the mapped detection in the
occupation spot matrix (xd, yd) consists of two steps and is
presented below: x′

y′

z′

 = HASM

 xcp

ycp
1

 (1)

where, HASM is the homography matrix for automatic spot
mapping, obtained with the previously defined source and
destination points, xcp and ycp are the x and y coordinates of
the projected (and corrected in the previous stage) detections
mapped in the common plane. This matrix HASM , common
to all cameras, should not be confused with the matrices Hi,
defined for each camera and with different functionality (see
Section III-C) This block needs HASM for its initialization.

Finally, the operation that allows obtaining the discrete value
of the occupied spot is:

(xd, yd) =

⌊
x′

z′
,
y′

z′

⌋
(2)

Fig. 6. Destination points for the automatic spot mapping.

The outputs of this block are the occupancy spot matrices
generated by each camera.

F. Information fusion

Logically, due to the resolution of cameras, optics, etc.,
the greater the distance between the camera and the mapped
detections, the lower the accuracy. In order to deal with
this factor, it has been decided to study a method to fuse
the information of all cameras using a normalized sigmoid
function that allows to evaluate/study different combination
approaches in a simple way (using a unique parameter). For
this purpose, a normalized sigmoid function, P (x), has been
used:

P (x) =
kx

k − x+ 1
(3)

where, x is the normalized position between each camera
and the center of the parking, andk is the parameter which
allows to tune the sigmoid. The formula presented works for
0 < x ≤ 1, the normalized distance between the camera and
the center point of the parking area. It is necessary to repeat
the function for negative values, to get the range from -1 to
+1. This is achieved by giving the function the absolute value

of x, and then changing the sign of the result back to the same
sign as x. Additionally the result is rescaled so that at the ends
(x = 1 and x = -1) the function takes values of 1 or 0. The
final normalized function, Pnorm(x), is defined as:

Pnorm =


0.5kx
k−x+1 + 0.5 0 < x ≤ 1

0.5 x = 0
−0.5k|x|
k−|x|+1 + 0.5 −1 ≤ x < 0

(4)

Some resulting sigmoid functions are shown in Figure 7
with different examples for the k parameter. In this way, the
camera whose detections are weighted is placed at point x =
1, and the center point of the monitored parking area is placed
at point x = 0. In the case of systems with two cameras, the
other camera is located at the point x = -1, but this weighting
of the detection confidence does not require the system to
use only two cameras since it supports any number of them.
In a scenario with more than two cameras, it is necessary to
define the center of all of them, and each camera will have an
associated function Pnorm(x), adapted by its corresponding
distance to the center.

Fig. 7. Normalized sigmoid functions using different k parameter values.

As shown in Figure 7, it is possible to obtain the extreme
cases in which a plane function (k = 0) is obtained with
a constant value equal to 0.5 (all cameras have the same
confidence for all the points of the parking), a step function
(k = −1), and a straight line of slope 1 between x = −1
and x = 1 (k = ∞, only the nearest camera detections are
considered). It is also possible to obtain symmetric curves with
respect to the straight line of slope 1 (values 0.1 with -1.1, and
0.5 with -1.5).

Thanks to this confidence weighting, the most distant de-
tections will lose score against those close to the camera.
After this, the detections of all the cameras are added and
are used to obtain the final parking spaces occupancy matrix.
For the sigmoid with k = 0, the result is equivalent to adding
all detections of all cameras with their original score, since
all of them are weighted by a value of 0.5. In the case of k
= -1, the only detections that are maintained in each camera
are those of which the camera that detects is the closest of
all of the cameras. This case is a combination of information
between the different cameras, each covering the area which
contains the nearest spots.
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For the selection of parameter k, the chosen detection algo-
rithm and the scenario (mainly location of each camera) must
be taken into account. Negative values should be considered
for parameter k (e.g., -1, -1.1, -1.5) if the performance of the
detection algorithm falls significantly with distance, or if the
considered camera has low resolution, which complicates its
detection. Otherwise, positive values of the parameter k (e.g.,
1, 1.1, 1.5) will produce a better performance of the system as
it considers the farther detections of each camera with greater
weight.

After the automatic spot mapping (see Section III-E), the
occupation matrix Ok,i for camera i and a learned k parameter
is defined as:

Ok,i(xd, yd) =

{
1 if spot (xd, yd) is occupied

0 otherwise
(5)

One occupation matrix is obtained for each camera. All of
them are fused to obtain the total occupation matrix of the
system, Ok,T :

Ok,T =

ncameras⋃
i=1

Ok,i (6)

Figure 8 presents a simplified example of the complete
process, in order to clarify the information fusion stage. In the
left side, there is an example of parking with occupation, and
three cameras monitoring the area of interest. In the center, the
occupation information extracted by each camera is processed
and the monocamera occupation matrix is generated. The right
part of the example presents the result of the information
combination, obtained by combining the information from all
cameras.

Fig. 8. Information fusion example: parking and monitoring cameras (left),
monocamera extracted occupation information (center) and result of the
information combination (right).

IV. EXPERIMENTAL SETUP

A. Parking Lot dataset

The Parking Lot dataset (PLds) dataset was recorded as
there was a lack of public parking lot datasets. We used it

to test the designed system. The sequences were recorded in
a real environment (Pittsburgh International Airport parking
lot), in order to work with an environment as realistic as
possible. Each frame, recorded using Panasonic WV-SW155
cameras, has a resolution of 1280x960 pixels. Figure 9 shows
an example of each one of the two viewpoints (9a and 9b),
and examples of different illumination (day, night, sunrise with
shadows) and weather (sunny, rainy) conditions.

a b

c d

e f

Fig. 9. Examples of dataset frames: (a) shows an example of Camera
1 viewpoint, (b) shows an example of Camera 2 viewpoint. (c)-(f) show
examples of different illumination and weather.

The dataset consists of two main image sets, a training
set used to generate the detector models, and a test set used
for the experimental evaluation. The training set consists of
a longer set of images, and the test set consist of a long
(named All_CamX) and a short (named Synchronized_CamX)
version of the images, with 1000 and 100 frames, respectively.
The short versions (Synchronized sets) are subsets of the long
versions: they consist of frames synchronized between the two
cameras, to be able to evaluate the multicamera setup. The
different image sets details are presented in Table I.

In addition to generating the images, the vehicles of all
images have been manually annotated. The training images
have been annotated for its use in the generation of the
parked vehicle model, and the test images for the evaluation
of the parking vacant management system. In the case of
the Synchronized set, the vehicle occupancy matrix has been
manually generated to also evaluate the system at this level.
More details of this evaluation of the system are presented in
subsection IV-B.

This dataset and its annotated ground truth are publicly
available (http://www-vpu.eps.uam.es/DS/PLds/).
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TABLE I
PROPERTIES OF EACH OF THE IMAGE SETS FROM THE PARKING LOT

DATASET.

Sequence name #Frames #Vehicles
Training 6616 28231

Test

All_Cam1 1000 12275
All_Cam2 1000 9738

Synchronized_Cam1 100 751
Synchronized_Cam2 100 749

B. Evaluation metrics

We quantify the performance results in order to evaluate the
proposed approach. Global sequence performance is usually
measured in terms of Precision-Recall (PR) curves [34], [35],
[36]. These curves compare the similarities between the output
and ground truth bounding boxes.

In addition, in order to evaluate not only the yes/no detection
decision but also the precise object locations, we take into
account the three evaluation criteria defined in [37], that allow
to compare hypotheses at different scales: relative distance
(dr), cover and overlap. A detection is considered true if dr ≤
0.5 (corresponding to a deviation up to 25% of the true object
size) and cover and overlap are both above 50%.

The integrated Average Precision (AP) is generally used
to summarize the algorithm performance in a single value,
represented as the area under the PR curve (AUC-PR). In order
to approximate the area correctly, we use the approximation
described by [38].

In this paper two uses of the evaluation metric are distin-
guished. The first is the common one used for object detection,
previously described. The second use is at occupied/empty
spots level, according to the occupation matrix of the parking
lot. Parking spaces may be occupied or empty. In this case
it is a classification for each place, and the overlap is not
measured for it. The occupation matrix and the Ground Truth
are compared to define true positives, false positives, false
negatives and true negatives, as shown in Table II.

TABLE II
OCCUPATION MATRIX EVALUATION TABLE.

Detected spot status Ground Truth status Spot evaluation
Vacant Vacant True Negative
Vacant Occupied False Negative

Occupied Vacant False Positive
Occupied Occupied True Positive

V. EXPERIMENTS AND RESULTS

A. Detection level evaluation

As commented in section III-B, the first stage is performed
by the vehicle detector.

We evaluate the detection results with and without the use
of the ROI mask (see Figure 2) The detection results evalua-
tion is done using the two detection algorithms presented in
subsection III-B. All the generated models are executed over
the four test image sets. Both detectors are evaluated with and
without masking, e.g. Faster-RCNN default vs Faster-RCNN

masked, in order to show its usefulness. The PR curves of this
initial evaluation are shown in Figure 10 and the AUC values
are shown in Table III.

TABLE III
AUC DETECTION SCORES FOR DETECTION LEVEL EVALUATION. THE

BEST RESULTS OBTAINED FOR EACH IMAGE SET ARE SHOWN IN BOLD.

Algorithm All Cam1 All Cam2 Syn. Cam1 Syn. Cam2

Faster-RCNN Unmasked 0.436 0.766 0.438 0.708
Masked 0.723 0.905 0.726 0.871

DPM Unmasked 0.664 0.717 0.598 0.661
Masked 0.674 0.730 0.610 0.670

All results of the masked detector are above those of
the detections without masking. In particular, the Faster-
RCNN detector is able to detect vehicles from other rows
not controlled by the system and, therefore, not included
in the manually annotated ground truth. This stands out for
the camera 1, in which precision quickly falls as the recall
increases.

If we compare the performance between the two cameras,
in the case of the camera 1 the Recall performance usually
decreases faster since it is positioned at a greater distance from
the parking area controlled by the system. This will be taken
into account in later stages by combining the information from
the different cameras (see section V-C).

The All and Synchronized curves behave similarly, so the
selection of synchronized frames is sufficiently representative
for later experiments.

B. Perspective correction evaluation (monocamera)

The second performed evaluation considers the perspective
correction. This evaluation is carried out at parking spots level
with the aim of demonstrating the need to correct the projec-
tion of the detections due to the point of view. Figure 11 shows
the improvement of performing the perspective correction for
both detectors, for each of the cameras, and including the
corresponding precision-recall values obtained from the use of
the Ground-Truth detection. Table IV presents the values of
area under the curve (AUC) for all the curves shown in Figure
11. The results show that perspective correction is necessary
and results in a significant improvement. From the Ground-
Truth detection, the scores for each camera are also obtained
(red and blue cross), which allow to have a measure of the
best score that the monocamera detections can reach. Despite
the improvement, the results can be further enhanced by the
multi-camera information combination, which is presented in
the following subsection.

TABLE IV
MONOCAMERA AUC SCORES FOR PERSPECTIVE CORRECTION AT

PARKING SPOTS LEVEL EVALUATION, FOR THE TWO OBJECT DETECTION
TRAINED MODELS AND FOR THE TWO CAMERAS IMAGE SUBSETS. THE
BEST RESULTS OBTAINED FOR EACH IMAGE SET ARE SHOWN IN BOLD.

Algorithm Syn. Cam1 Syn. Cam2

Faster-RCNN Uncorrected perspective 0.380 0.452
Corrected 0.526 0.622

DPM Uncorrected perspective 0.440 0.402
Corrected 0.578 0.537
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Fig. 10. Detection level evaluation for the two object detection trained models (Faster-RCNN [28] and DPM [32]).
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Fig. 11. Monocamera spots evaluation: perspective correction evaluation for
the two object detection trained models and for the ideal detection (detection
Ground Truth).

C. Multicamera information fusion level evaluation

Finally, using the complete system, the matrix of occupied
and empty spots is obtained and it is evaluated by comparing
different results (the ones for each threshold of each detector
model and the parameter k) with the ground truth of the matrix
of occupancy of parking spaces. These results are shown in

Figure 12. The Area Under the Curve of each detector is also
computed and shown in Table V. This table also contains
the result of the spots evaluation using the detections Ground
Truth (manual annotations of bounding boxes for each camera
view). Despite the use of ideal vehicle detections in this case,
the result of the parking spots evaluation is not perfect (the
value [1,1] is not reached for precision-recall) but the impact
on the score is minimal (<0.03 precision lose). This error is
due to the ideal annotations of vehicles contain subjective
errors of the manual annotation (e.g., object bounding box
estimation due to occlusions). We consider that it is not
worth trying to correct it since it allows analyzing the impact
on the result, which is despicable compared to the AUC
values obtained by the considered detectors. The best result is
obtained with the Faster-RCNN detector, followed very closely
by the DPM detector, but in all cases the results obtained are
good enough for the proper functioning of the system (AUC
around 0.9). Although the DPM detector presents worse results
in detection (see section V-A), the complete system obtains,
at spots level evaluation, very close results to those obtained
by the Faster-RCNN detector. It is worth to point out the
difference between the results of Figure V, which shows the
spots evaluation at multicamera level, with the results of Figure
11, which shows the spots evaluation at monocamera level.

With respect to the different functions of normalized sig-
moids used for the information combination/fusion, the results
between them are very similar, but thanks to them it is possible
to slightly improve the overall result of the system for a
very small cost (simply weighting the detection scores of
each bounding box depending on the distance to the detecting
camera).

Page 9 of 12



10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

on

Parking occupancy evaluation for F-RCNN

0
0.1
0.5
inf
-1.5
-1.1
-1

0.7 0.75 0.8 0.85 0.9 0.95

Recall

0.75

0.8

0.85

0.9

0.95

P
re

ci
si

on

Parking occupancy evaluation for F-RCNN

0
0.1
0.5
inf
-1.5
-1.1
-1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

on

Parking occupancy evaluation for DPM

0
0.1
0.5
inf
-1.5
-1.1
-1

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Recall

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

P
re

ci
si

on

Parking occupancy evaluation for DPM

0
0.1
0.5
inf
-1.5
-1.1
-1

Fig. 12. Multicamera parking occupancy evaluation for the two object detection trained models: full curve (left) and zoom of the equal error rate area (right).

TABLE V
MULTICAMERA PARKING OCCUPANCY EVALUATION: AREA UNDER THE
CURVE FOR THE TWO OBJECT DETECTION TRAINED MODELS AND FOR
THE IDEAL DETECTION (DETECTION GROUND TRUTH), CONSIDERING

DIFFERENT K PARAMETER FOR THE NORMALIZED SIGMOID FUNCTIONS.
THE BEST RESULTS OBTAINED FOR EACH ALGORITHM ARE SHOWN IN

BOLD.

k 0 0.1 0.5 ∞ -1.5 -1.1 -1 Optimal k
F-RCNN 0.910 0.909 0.912 0.916 0.918 0.919 0.905 -1.1

DPM 0.910 0.913 0.913 0.912 0.910 0.905 0.894 0.5
Det. GT 0.991 0.982 0.982 0.982 0.982 0.983 0.980 0

In order to configure a deployed system, the configuration
of the parameters could be done in a convenient and simple
way, as for the evaluation of spots it is necessary only to
annotate a binary matrix of occupation (0 or 1 depending on
whether the spot is empty or occupied). After this evaluation,
the weight of each camera would be learned from the k
parameter and detection threshold with the best overall score.
The computational and time cost of this evaluation is reduced
and it does not require previous knowledge of the distance,
reliability or quality of each camera for the person who is
responsible for deploying and adapting the system.

TABLE VI
PARKING OCCUPATION DENSITY EVALUATION: AREA UNDER THE CURVE
FOR THE TWO OBJECT DETECTION TRAINED MODELS DIVIDED IN THREE

OCCUPATION DENSITY CATEGORIES: LOW (1-12 VEHICLES), MEDIUM
(13-24 VEHICLES) AND HIGH (25-36 VEHICLES).

k

Alg. Dens. 0 0.1 0.5 ∞ -1.5 -1.1 -1

F-RCNN

High 0.960 0.961 0.962 0,.962 0.961 0.958 0.956

Med. 0.965 0.969 0.971 0.972 0.972 0.969 0.963

Low 0.863 0.867 0.870 0.871 0.872 0.869 0.860

DPM

High 0.918 0.919 0.919 0.920 0.920 0.919 0.892

Med. 0.923 0.924 0.924 0.925 0.926 0.928 0.914

Low 0.930 0.916 0.917 0.920 0.920 0.917 0.926

TABLE VII
PARKING WEATHER EVALUATION: AREA UNDER THE CURVE FOR THE

TWO OBJECT DETECTION TRAINED MODELS DIVIDED IN FOUR WEATHER
CATEGORIES: DAYTIME/NIGHTTIME AND CLEAR/RAINY.

’

k

Alg. Dens. 0 0.1 0.5 ∞ -1.5 -1.1 -1

F-RCNN

Day. 0.909 0.912 0.913 0.912 0.909 0.904 0.893

Night. 0.939 0.935 0.927 0.924 0.930 0.931 0.928

Clear 0.909 0.912 0.913 0.913 0.910 0.904 0.894

Rainy 0.917 0.910 0.903 0.897 0.898 0.901 0.897

DPM

Day. 0.905 0.905 0.908 0.912 0.914 0.915 0.900

Night. 0.993 0.993 0.993 0.993 0.993 0.993 0.972

Clear 0.905 0.905 0.908 0.913 0.914 0.915 0.899

Rainy 0.967 0.968 0.967 0.964 0.967 0.971 0.973

Parking occupation density evaluation: To verify that
the proposed complete system is robust to occlusions, an
additional study is added, classifying the frames in three
occupancy density categories: low (1-12 vehicles), medium
(13-24 vehicles) and high (25-36 vehicles). The results of
this study are shown in Table VI. In spite of the need to
divide a small number of frames (100) into three categories,
which results in low resolution curves, the results show that the
system performs correctly in occlusions situations. The results
obtained by disaggregating the dataset are close to the mean
except for Faster-RCNN low density occupancy, suffering a
fall of performance of about 10% due to in scenarios with
low vehicle density, a misclassification of a vehicle penalizes
doubly (false positive and false negative) when occupying the
square adjacent to the one it actually occupies. It should be
noted that this system is especially designed for high density
scenarios, where it is most useful to route vehicles to places
where there are available spots.

Parking weather evaluation: Following the same proce-
dure, a study of the system performance for different types
of weather is added, classifying the frames in four weather
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categories: daytime/nighttime and clear/rainy. The results of
this study are shown in Table VII. The scores obtained for
the system in the nighttime frames are better than for the
complete image set, due to during the night there are less
reflections, which facilitates the operation of the detector. With
respect to rainy frames, for the DPM detector the results get
worse (between 0.003 and 0.015) for k = [0.1, 0.5, ∞, -
1.5, -1.1] and improve (between 0.003 and 0.007) for k =
[0, -1]. For the faster-RCNN detector, the results improve the
overall performance between and 0.052 and 0.058 for all k. For
daytime and clear frames sets, the behavior of the system is
practically identical to the general behavior, as these categories
contain most of the frames considered in the synchronized
category. These small performance variations do not affect the
system operation so, as indicated above, the system works for
different types of lighting and weather conditions.

Optimal parameter k : The process of learning the
optimal k parameter for each algorithm consists of evaluating
the range of values of the parameter, selecting the value that
best adapts to the characteristics of the detection algorithm.
After performing the experiments, considering the different
possible values of k parameter, an optimal parameter has been
obtained for each of the algorithms considered, as indicated
in Table V. For the Faster-RCNN algorithm, the best sigmoid
is obtained with the parameter k = −1.1. This is due to the
most useful information is generated in the spots closest to
each camera, and for this reason this parameter generates the
best score after the dataset evaluation. In the case of the DPM
algorithm, the best sigmoid is obtained with the parameter
k = 0.5. In this case, the combination whose experimental
score is better is obtained by maintaining the detections of
medium distance with a greater weight than that considered
for the Faster-RCNN algorithm. The optimal examples of
sigmoids, and other examples, are shown in Figure 7. An
optimum value is also obtained experimentally with k = 0
for the case in which the detections were ideal. This result
is consistent as in the case of ideal detections, all detections
have the same confidence and are, therefore, weighted with a
constant value (flat sigmoid).

VI. CONCLUSIONS

This paper presents a multicamera system for the manage-
ment of vacant parking places by means of vehicle detection
and their corresponding mapping into the parking spaces of
a parking lot. The system has been designed so that existing
parking lot security cameras can be used for the proposed
system after a simple configuration, without the need for a
complete new camera deployment. The designed system faces
more complicated scenarios than the ones tackled in the state
of the art: almost total occlusions and climatic changes (cloudy
scenarios, rain, snow ...), that limits/reduces their performance.
In this scenario with such a variable background it is not
possible to carry out a precise background extraction, nor it is
possible to label and define the region of each place as some
parked vehicles completely occlude some of the spots behind
them. In addition, the consideration of a multicamera scenario,
which, as far as we know, has not been reported before for
this type of systems, is added.

A new dataset has been recorded and synchronized. The
publicly available dataset is composed by the generated park-
ing vehicle models, the recorded frames and the ground truth
files.

There are multiple future work lines to improve the pro-
posed system. With respect to the combination, we have cho-
sen a simple technique using normalized sigmoid functions,
therefore different functions could be studied in order to
optimize the combination or fusion of the different information
sources. Also a new dataset with more cameras and with
different spatial configurations could be recorded to see the
behavior of the system in those situations. A tracker can be
added to the sequence detection to combine the information
extracted during the sequence frames providing temporary
continuity to the vehicle detections. Apart from this, current
lines of future work for object detection can be applied here,
since the detector is the first stage of the system.
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