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Hierarchical improvement of foreground
segmentation masks 1n background subtraction

Diego Ortego, Juan C. SanMiguel, José M. Martinez

Abstract—A plethora of algorithms have been defined for fore-
ground segmentation, a fundamental stage for many computer
vision applications. In this work, we propose a post-processing
framework to improve foreground segmentation performance of
background subtraction algorithms. We define a hierarchical
framework for extending segmented foreground pixels to un-
detected foreground object areas and for removing erroneously
segmented foreground. Firstly, we create a motion-aware hierar-
chical image segmentation of each frame that prevents merging
foreground and background image regions. Then, we estimate
the quality of the foreground mask through the fitness of the
binary regions in the mask and the hierarchy of segmented
regions. Finally, the improved foreground mask is obtained as
an optimal labeling by jointly exploiting foreground quality and
spatial color relations in a pixel-wise fully-connected Conditional
Random Field. Experiments are conducted over four large and
heterogeneous datasets with varied challenges (CDNET2014,
LASIESTA, SABS and BMC) demonstrating the capability of the
proposed framework to improve background subtraction results.

Index Terms—Foreground segmentation improvement, back-
ground subtraction, foreground quality, post-processing

I. INTRODUCTION

ENCHMARKING computer vision algorithms has re-
B cently garnered remarkable attention as a methodological
performance assessment [1][2][3][4][5] driving the develop-
ment of better algorithms. Alternatively, one may focus on
improving the results of algorithms by post-processing tech-
niques. This scheme may be of interest when the details of
algorithms are not available and, therefore, making further
changes or adjusting parameters is not possible.

In this context, foreground segmentation is a popular low-
level task in computer vision to detect the objects of interest
or foreground in images or videos [3][5][6][7][8] where such
“interest” depends on the application domain. For example,
foreground in images can be defined as salient or co-salient
objects [3][9][10] or as generic objects [11][12]. In videos,
foreground may correspond to all moving objects [6] or
specific objects relying on saliency [13] or co-saliency [14],
spatio-temporal patterns [15] or weak labels [16]. Moreover,
unconstrained video object segmentation addresses challenges
related to camera motion, shape deformations of objects
or motion blur [17]. Existing approaches are unsupervised
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(e.g. detect spatio-temporal relevant objects [18][19]), semi-
supervised (e.g. propagate initially segmented objects [20]) or
supervised (e.g. frame-by-frame human intervention [21]). In
this paper, we focus on video sequences with a relative control
of camera motion, where video object segmentation is tackled
through background subtraction (BS) [6][22] which compares
each frame with a background model of the sequence.

Boosting BS performance has been mainly addressed by
making use of three strategies. Firstly, selecting appropriate
background models is akin to the ability of simultaneously
dealing with several challenges [6] while accurately adapting
the background model to sequence variations. For example,
Gaussian and support vector models [23][24] deal effectively
with dynamic background; subspace learning models [25][26]
handle better illumination changes; neural networks [27][28]
offer a good computation-accuracy trade-off; and RPCA
(Robust Principal Component Analysis) and sparse models
[29][30][31][32] provide suitable frameworks to integrate con-
straints for foreground segmentation under different chal-
lenges. Secondly, properly choosing BS features [33][34][35]
is key as each feature type (e.g. color, gradient, texture,
motion) exhibits robustness against different BS challenges,
thus combining them may overcome single-feature short-
comings. Moreover, deep learning models [36][37][38][39]
have recently emerged as promising frameworks to unify
modeling and feature selection. However, current models
[36][37][38][39][40] are limited to employ train and test
data from the same video sequence. Thirdly, post-processing
techniques may improve foreground segmentation masks by
either removing false positives or recovering false negatives
[41]. For instance, there are techniques independent of the
BS algorithm such as morphological operations [42][43] to
fill holes or remove small regions; and inspection foreground
mask properties [44][45] to filter false positives and expand
to undetected areas. Moreover, specific post-processing may
tackle errors due to illumination changes [46][47], shadows
[48][49] or dynamic backgrounds [42][50]; but the designed
features depend on the employed background model, thus
limiting their applicability.

For BS post-processing, the use of generic properties from
foreground masks is desired to provide independence of spe-
cific phenomena (e.g. illumination or shadows) and, unlike
morphological operations, to exploit complementary features
to the ones extracted from the mask only. A recent analysis
of these properties to estimate performance without ground-
truth data (i.e. quality) [51] identified the best property as
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the fitness between connected components of the foreground
mask (i.e. blobs) and the regions of the segmented image
(fitness-to-regions). Therefore, in this paper we propose to
improve foreground segmentation masks in BS through the
fitness to several segmented image regions partitions, which
enables extending foreground masks to undetected areas while
removing poorly fitted and isolated foreground regions.

The contribution of this paper is five-fold. Firstly, we
introduce motion constraints to build an image segmentation
hierarchy without merging moving foreground and background
regions. Secondly, unlike related state-of-the-art [44][45], we
apply the fitness-to-regions property to estimate the quality
of the foreground mask using each image in the segmenta-
tion hierarchy. We obtain a hierarchy of foreground quality
images leading to better improvement scores as compared to
[44]. Thirdly, a motion-based combination of the foreground
quality images hierarchy is proposed to prevent foreground-
background merging in absence of motion, while promoting
the extension of foreground regions in presence of motion.
Fourthly, we improve foreground mask by fusing the fore-
ground quality images into a unique foreground quality that
is later converted into a foreground probability map by apply-
ing a pixel-wise fully-connected Conditional Random Field
(CRF). Fifthly, we demonstrate the utility of the proposed
approach to improve BS results of both top and low perform-
ing algorithms as presented in the experimental comparisons
conducted using fourteen algorithms over four heterogeneous
datasets with varied challenges (CDNET2014 [1], LASIESTA
[52], SABS [53] and BMC [54]). Moreover, we also show
the potential application of foreground quality images for
algorithm combination.

The reminder of this paper is organized as follows: Sec-
tion II overviews existing post-processing techniques for BS.
Section III-B details the proposed framework for BS post-
processing. Subsequently, Section IV presents the experimen-
tal methodology and the experimental results. Finally, Section
V summarizes the main conclusions.

II. RELATED WORK

Post-processing techniques for BS can be classified into
model-dependent and model-independent. The former employs
the background model, such as shadows detectors to compare
image and background features in foreground areas [48],
whereas the latter only uses image and foreground properties
[44][45], thus being independent of a particular algorithm.

Model-dependent techniques target challenging situations
that produce erroneous foreground such as illumination
changes, shadows or dynamic background. Removing erro-
neously detected foreground due to illumination changes has
been addressed through color relations between the image
and the background model in foreground areas [46][47].
Furthermore, chromatic, physical, geometric or texture rela-
tions between images and its related background model can
be exploited to detect cast shadows in foreground masks
[48][49][55]. Additionally, detecting dynamic background mo-
tion [50] has not directly been tackled to post-process the
result but to guide parameter tuning [42][56]. However, the

joint analysis of blinking pixels and background to image
differences performed in [42] could be directly applied to
remove false positives rather than influence the background
modeling. Similarly, one can find that contour based tech-
niques for abandoned object detection [57][58], based on both
image and background information in foreground areas, can
be applied to remove foreground errors associated to ghosts.

Model-independent techniques are based on the analysis
of foreground mask properties to improve results. A com-
mon strategy is to post-process foreground masks through
morphological operations [42][43]. This strategy only relies
on the foreground mask, thus obviating useful information
that can be extracted from a joint analysis of the foreground
and the color image. In this sense, there are techniques that
analyze generic foreground mask properties [44][45] to filter
erroneous foreground or to expand it to undetected foreground
areas. In [45], region or blob mask properties associated to
the internal uniformity, contrast in contours, shape complexity
and fitness-to-regions are used to remove false positives blobs.
Furthermore, [44] employs fitness-to-regions embedded into a
Markov Random Field framework where high (low) fitness
is associated to good (poor) foreground probability. In [59],
the coherence of optical flow directions in each individual
frame and frame-by-frame coherence of optical flow are used
to remove erroneous blobs, split blobs that contain different
objects and merge blobs belonging to the same object, thus im-
proving foreground segmentation performance in background
subtraction. Moreover, in [60] image boundaries are used
to remove erroneously detected blobs caused by the effect
of illumination. Also, ghosts can be post-processed using
optical flow [41], as foreground objects often moves. However,
absence of motion is not only characteristic in ghosts, but also
in static foreground objects.

As a conclusion, Model-independent techniques stand out as
very interesting alternatives due to their independence of BS
algorithms. The fitness-to-regions property has demonstrated
a great potential to both estimate foreground quality [51] and
improve results [44]. However, the use of over-segmented
images (i.e. superpixels) in [44] highly limits the improve-
ment capabilities, as superpixels normally do not extend over
complete objects. In fact, such mapping between superpixels
and objects remains an open issue in the object proposal
literature [61][62][63], where superpixel merging to cover
large or complete object regions is inspected.

III. FOREGROUND MASK IMPROVEMENT
A. Overview

We propose a framework to improve foreground masks
M, obtained by BS algorithms from an image Z; in the
temporal instant ¢ (see Figure 1). Firstly, we compute a

. . . l L
motion-aware segmentation hierarchy H; = {Rt} ,—1> Where

R, = {Rél}il is the image segmentation partition at
hierarchy level [ that is composed by k' individual image
regions R} ; and L is the number of hierarchy levels. This
hierarchy contains several image segmentation partitions, each
describing a degree of detail of the image Z; (from fine to
coarse levels). The coarser the level the higher the merging



Image 7

Foreground

Motion-aware segmentation hierarchy H

Hierarchical
foreground
quality estimation

Motion-aware
hierarchical
segmentation

Foreground quality hierarchy Q

Improved
foreground mask

Foreground quality

Weighted {Z,Q} Foreground
foreground quality ” improvement
combination p

Fig. 1: Foreground improvement framework overview. For clarity, we avoid the temporal index ¢ (common to all notation).
The motion-aware hierarchy H computed from the motion-aware color-based UCM (Eq. 1) is explained in Subsection III-B1,
while the foreground quality hierarchy Q is computed using a fitness-to-regions property (Eq. 3) defined in Subsection III-B2.
Then, a unique foreground quality Q is estimated using the weighted combination (Eq. 4) from Subsection III-B3. Finally, the
improved foreground mask AM™ is obtained via optimal labeling (Eq. 10) as presented in Subsection III-B4.

of regions, thus covering larger object areas. We consider
spatial similarities based on color and introduce motion con-
straints through the optical flow O, in order to avoid merging
foreground and background regions in each partition of the
hierarchy H;. Then, we estimate a foreground quality image
for each level of the hierarchy Q. using a fitness-to-region
property, thus obtaining a foreground quality hierarchy Q; =
{Qé}le. The quality image Q. of each level has the same
size as Z; where each pixel is a score denoting its foreground
quality. Subsequently, all levels of foreground qualities are
combined to estimate a unique foreground quality image O,
using a weighted average scheme based on the optical flow
magnitude. This weighted average increases the importance
of coarse levels in H, for high optical flow magnitudes, as the
presence of strong motion boundaries prevents an undesired
foreground-background merging. Finally, we use a Conditional
Random Field (CRF) to obtain an improved foreground mask
M through an optimal labeling process that combines both
foreground quality and spatial information. For simplifying
notation, the temporal index is omitted in Figure 1 and in the
following subsection.

B. Description

1) Motion-aware hierarchical segmentation: Merging su-
perpixels to estimate semantically meaningful image regions
containing objects is a common practice in the object proposal
literature [61][62][63]. Building on such idea, we compute
a motion-aware hierarchical image segmentation that extends
over different degrees of details through each level partition
into regions while preventing foreground-background merging.

A complete hierarchy of partitions can be deﬁned as the
set of all image segmentation results H' = {R”} _, where
the level index n goes from the finest segmentation R! (i.e.
superpixels) to the coarsest segmentation RY (i.e. complete
image domain). The complete hierarchy can be understood
as a dendrogram (tree) of regions where coarse levels are
built merging regions from finer ones according to adjacent
regions similarities. Such complete hierarchy can be computed
through an ultrametric contour map (UCM) [64], which is
a boundary map that can be thresholded to obtain a set of
closed boundaries containing segmented image regions. The

lowest threshold leads to R', while the highest threshold
produces R™Y. Monotonically increasing the threshold merges
the superpixels whose dissimilarity is under the threshold.
Therefore, superpixels and their dissimilarities are required to
compute the UCM by applying a greedy graph-based region
merging algorithm [64]. In particular, we have used the Piotr
Dollar’s proposal' which employs the mean boundary value
[65] as dissimilarity between SLIC based superpixels [66].
Figure 2 presents an image (a), whose UCM [64] (d) is
extracted from superpixels (c) and dissimilarities defined by
image boundaries [65] (b). Therefore, thresholding the UCM
with increasing values provides coarser partitions as presented
in Figure 2 (c) and (e). We name this UCM based on color
image properties as color-based UCM 1/°. While merging
regions to fit foreground objects, merging between adjacent
foreground regions is expected to occur before foreground-
background merging. However, computing the hierarchy re-
lying on appearance similarities as done by the color-based
UCM U does not necessarily lead to the desired result (i.e.
foreground and background not merged in the same regions).
For example, in Figure 2 the color-based UCM Ut (d) of an
image (a) lacks of boundaries in the top front part of a car
due to color similarities with background regions. Therefore,
we address such problem by including motion constraints
to prevent foreground-background merging. We first create a
motion-based UCM U™t (see Figure 2(h)) based on per-pixel
optical flow magnitude [67] (see Figure 2(f)) which defines
moving object boundaries (see Figure 2(g)). To obtain /™,
we extract boundaries and superpixels over the optical flow
magnitude (replicated to 3 channels). Similarly to [68], we
do not re-train the boundary detector [65] (trained for static
image boundaries) as it effectively detects motion boundaries
(see Figure 2(g)) and re-training may confuse the detector due
to the misalignment of optical flow boundaries with the true
image boundaries. Then, U mot and Ul are combined into the
motion-aware color-based UCM U (see Figure 2(i)):

U= Fuem U U™, (1)

where fyem (¢, ) is the combination function applied to U/t
and U°'. We propose a combination to keep only strong

Uhttps://github.com/pdollar/edges
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Fig. 2: Examples of ultrametric contour map (UCM) [64] and motion-aware image segmentation. The UCM (d) of an image
(a) is obtained through superpixels (c) and their similarities (b), whereas thresholding the UCM leads to different image
segmentation partitions (c)-(e). Furthermore, given the optical flow magnitude (f) for image (a), we name the UCM from (d)
as color-based UCM /°°" and compute a motion-based UCM /! (h). This U™ is obtained from motion boundaries (g)
computed from the optical flow magnitude (f). Combining both UCMs we obtain a motion-aware color-based UCM U (i) that
produces an image segmentation (j) with no foreground-background merging, unlike the direct use of 2/ (e). The top-right
rectangle of (e)(j) zooms an area to observe differences between merged regions.

boundaries of the motion UCM U™°?, thus obtaining the
motion-aware color-based UCM U/ as:

2

P — { max (up,col7up,mot) Zf up,mot > )\L
0 otherwise

where p is the 2D pixel location in the UCM maps and
Al is a threshold large enough to assure that only strong
motion boundaries are added. This combination employs color
merging while introducing only strong motion boundaries,
thus preventing from over-segmentation due to weak motion
boundaries that may appear. Therefore, the motion-aware
color-based UCM U allows the computation of a complete
hierarchy H’ that prevents foreground-background merging.

Foreground segmentation requires foreground-background
separation, thus we need each image region to contain fore-
ground or background without merging both classes. This
desired result does not occur for partitions close to R (i.e.
partitions close to the complete image domain that tend to
contain foreground and background merged), thus we sample
the complete hierarchy to get a hierarchy H C H’ conformed
by a subset of L levels (as introduced in Subsection III-A)
starting from the finest one. To that end, we threshold U/
to produce an image segmentation where foreground and
background are not merged (see Figure 2(j)), whereas directly
thresholding 2/°°" merges both classes (see Figure 2(e)). We
uniformly threshold ¢/ with L thresholds or levels ranging
from the finest one (i.e. superpixels) to a maximum value.
The result after applying the multiple thresholds is a motion-
aware color segmentation hierarchy H = {Rl }lel (see Figure
1), where each level [ is composed by an image segmentation
partition R! obtained applying a threshold \! = s(I — 1) over
U and s is the step between levels. We avoid using a single
threshold A generating a unique image segmentation that may
have errors. Instead we consider selecting a number of levels L
(i.e. {)\l }lel) and defining the step between levels s to obtain

each threshold A (note that A” from Eq. 2 corresponds to the
coarsest level threshold). Therefore, using a high (low) value
of s means that there are less (more) A\ possible values from
the finest to the coarsest segmentation. Then, fixing the step
between consecutive levels s and varying L reveals the effect
of including more levels as analyzed in Subsection IV-B1. This
hierarchy H serves as the basis of the hierarchical foreground
quality estimation, presented in Subsection III-B2, to extend
foreground for different image partitions.

2) Hierarchical foreground quality estimation: Based on
the potential of image regions to estimate blob-level fore-
ground quality [51], we employ the property of fitness-to-
regions to extend detected foreground blobs over foreground
objects while removing erroneous foreground pixels. For each
hierarchy level [, we compute a foreground quality ¢! for each
region R! as:

> MP
I PER!

q; = Wv 3)

where |-| denotes cardinality (i.e. |R;| is the number of pixels
in region R;) and MP is the pixel location p in the foreground
segmentation mask M with values of 1(0) for foreground
(background). This per-region quality g} measures the fitness
of the foreground mask to the region R; through its percent-
age of foreground pixels. Therefore, the per-level lforeground
quality image is defined as an image Q' = {qﬁ}le with the
same size of the image Z, where ¢! is the quality per-region
Rl and k! is the number of regions in level . Furthermore,
the set of quality ima}:ges per-level form a foreground quality
hierarchy Q = {Ql ,—; that is combined to obtain a unique
foreground quality image as depicted in Subsection III-B3.
Figure 3 shows examples of foreground qualities Q' (g)-(i)
extracted from fitness of the foreground segmentation mask
M (b) of image 7 (a) to different segmentation partitions (d)-
(f) of the hierarchy H), having in fine (detailed) levels a weak
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Fig. 3: Hierarchical quality estimation. The image under
analysis (a) has an associated foreground mask (b) that can
be improved to accurately detect foreground as done by the
ground-truth (c). The fitness between the foreground mask and
the several image segmentation partitions (d)-(f) is the per-
level quality Q' shown in (g)-(i).

spatial extension of the quality scores and high fitness to false
positives of the foreground mask, while coarse levels enlarge
regions covering foreground objects and diffusing foreground
errors over background regions.

3) Weighted foreground quality combination: Given all the
foreground quality images Q = {Ql}lel, we obtain a unique
foreground quality Q by combining all levels instead of
selecting the best one, as such selection is not trivial. When
no foreground-background merging is guaranteed, the coarsest
level would be the best choice. However, stationary or slowly
moving objects have, respectively, no motion boundaries or
weak ones, thus easing foreground-background merging in
coarse levels. Therefore, we perform a per-pixel weighted
average to combine all levels by assigning different weights
to each level based on the pixel optical flow magnitude.

In video sequences, we can distinguish between stationary
objects or background and moving foreground objects through
motion data. This premise has already been introduced in
the hierarchy through strong motion boundaries provided by
UP™% and it can also be used to estimate Q through a
weighted average as:

> w'P (|loP||) QbP
l
;w“’ (o -

where w!P (||OP||) is the level [ weighting function for
pixel location p based on the optical flow magnitude ||OP]|
associated to p. We propose a weighting function linear with
the level indexes and the motion values:

wt(or)) = |22 jor e - da - ), 6

Qr = )

where d = 2+ and m is an upper bound for |[OP| that

assures maximum confidence in the coarsest level when there

Finest level (I=1) Coarsest level (I=L)

1 1 1
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(@)
1

251
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Fig. 4: Weighting function to combine all hierarchy levels.
Weights for each level are shown in (a), where the finest
level (a)-left is weighted with maximum (minimum) weight in
stationary (moving) pixels and the coarsest level (a)-right is
weighted exactly in an opposite fashion. This assures that in
cases of moving regions, where motion boundaries prevents
from foreground-background merging, higher confidence is
assigned to the coarsest level. The intermediate levels weights
(a)-middle are defined to progressively move from the finest
to the coarsest weight. In (b), the complete weighting function
is presented with the parameters used, L = 8 and m = 0.25.

is enough motion (see Subsection IV-B1 for an analysis of
the effect of m in the performance). The higher the motion
the higher the weight value for coarse levels (see the right
subfigure in Figure 4(a)) where foreground is highly merged
and the motion-aware UCM U has strong motion bound-
aries preventing foreground-background merging. However,
for low ||OP|| values the combined UCM does not guarantee
avoiding foreground-background merging, thus the coarser the
level the lower the weight (see the left subfigure in Figure
4(a)) to reduce the contribution of coarse levels that may
merge foreground and background. Therefore, the intermedi-
ate levels weights (see the middle subfigure in Figure 4(a))
range between the aforementioned finest and coarsest level
weights. Additionally, the weighting function w"P (|[OP||) can
be represented in 3D as depicted in Figure 4(b). In Figure 5
we present examples comparing the proposal and an equally
weighted average (i.e. mean). In the first column, an image
(a) and its foreground segmentation mask (b) contain a sta-
tionary person. The absence of motion induces a foreground-
background merging that leads to the extension of scores
out of the foreground area when equally weighting the per-
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Fig. 5: Example for the effect of the proposed weighted aver-
age. For each row, from top to bottom: images under analyses
(a)(e), segmented foreground masks (b)(f) and foreground
quality Q applying, respectively, an equally weighted average
(c)(g) and the proposed weighting (d)(h).

level foreground qualities (c), whereas the proposed weighting
palliates such merging by assigning a higher weight value to
fine levels in absence of motion. Conversely, in the second
column an image (e) contains moving people that are not
fully segmented in its foreground segmentation mask (f). The
presence of motion allows improving the foreground quality
obtained by applying equal weights (g) through the proposed
weighting that assigns higher scores in the unsegmented top
parts of the people due to the higher importance of coarse
levels in presence of motion (h).

For scenarios with camera jitter, our assumption for the
optical flow magnitude is not satisfied, leading to ||OP|| values
exceeding m and therefore promoting coarse levels. In these
cases we simply average all hierarchy qualities to compute Q.
The detection of frames affected by camera jitter is conducted
using the average value of the temporal median of the optical
flow magnitudes over large temporal windows.

4) Foreground improvement: Foreground mask improve-
ment can be performed by thresholding the quality image Q,

as it expands over detected an undetected foreground regions.
However, as motion boundaries used to restrict foreground-
background merging are often not fitted to foreground object
contours, a simple thresholding may add erroneous fore-
ground pixels to the improved mask. Therefore, we introduce
additional constraints to reduce such misclassifications near
foreground object contours using a pixel-wise Conditional
Random Field (CRF), which provides a robust framework to
incorporate such constraints via spatial information potentials.

Using a CRF casts foreground segmentation into a binary
pixel labeling problem, where a labeled image C has either
foreground CP = 1 or background CP = 0 pixels. We use the
fully-connected CRF model of [69] to compute the optimal
labeling C* after an energy minimization process. The energy
is defined over pixels and their labels as:

E©) =3 1+ S fePch,  ©

PET PEZ qeN,

where f,, is a unary potential function to define the foreground
probability, f, is a pairwise potential function for labeling
smoothness by penalizing neighboring pixels taking different

labels and Ny, is the set of neighbors of pixel location p.
For the pairwise potential f,, we use the model from [69]:

p—al® Jz° —Iqu?)

fp (€CP,C%) = pu(CP,CY) [wl exp (

202 20?3
cwmexp (P —al’
202 ’
)

where each term is multiplied by p (CP,C9) = 1 if CP # C4
and zero otherwise to penalize locations with distinct labels;
the first term is an appearance Gaussian kernel based on RGB
and pixel location euclidean distances that aims to assign the
same label to pixels with similar color and near positions; the
second term is a Gaussian kernel dependent on pixel location
euclidean distance to smooth the label assignment by removing
isolated labels; the parameters o, 0 and o control the scale
of the kernels; and w; and wsy weight the contribution of each
kernel to the pairwise potential. We set o, = 10, og = 5,
0y =3, w1 = 1 and wy = 1 that are all default parameters2 in
the implementation used, except o, and o that have been set
to a smaller value in order to limit long range spatial connec-
tions that may decrease foreground segmentation performance
due to similarities between foreground and background colors
in the scene (we refer the reader to the additional material
in http://www-vpu.eps.uam.es/publications/HFI/ for an exper-
iment on these parameters). The pairwise potential in [69] was
originally used for semantic segmentation in scenarios where
foreground and background colors better define foreground
and background classes, thus higher o, and og values lead
to extremely accurate foreground segmentation.
Moreover, we define the unary potential function f, as:

fu(CP) = =In(FP), ®

where F is a foreground probability estimated from the fore-
ground quality image Q. Such estimation is performed in order

Zhttps://github.com/johannesu/meanfield-matlab
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Fig. 6: Example of the foreground segmentation process. An
image Z (a) with foreground segmentation mask M (b) has
a ground-truth shown in (c). The foreground quality Q (d)
is linearly transformed to resemble a probability (optimal
foreground-background separation threshold 7 for quality Q is
mapped into 0.5 in F) and compute an improved foreground
mask M*(f) through a CRF.

to transform Q into an information resembling a probability
as needed by the CRF to correctly perform the foreground
segmentation through maximum a posteriori inference. To that
end, we perform a linear mapping between Q and F (see
Figure 6(e)) as:

-

where 7 is the foreground-background separation threshold
associated to 0.5 foreground probability after the mapping
(we analyze the effect of 7 in the performance in Subsection
IV-B2). Note that linearly mapping fitness between superpixels
and probability scores has been successfully performed in the
literature [44].

Finally, we obtain the improved foreground mask M* as
the optimal labeling:

0.5

T Qp’
0.5 P 0.5—71
1—7 Q + 1—7

if P <7

if QP> 7’ ©)

M* =argmin E (C) .
c

(10)

Figure 6 depicts the foreground segmentation process of the
image (a) given the foreground quality Q (d) of the foreground
segmentation mask M (b) with associated ground-truth (c).
The foreground quality Q is transformed into a foreground
probability F using the linear transformation shown in Figure
6(e) to compute the improved foreground mask M™* in Figure
6(f). Note that in the example presented in Figure 6 7 is
set to 0.2. Furthermore, in Figure 7 an example image (a)
is segmented with errors (b) compared to ground-truth (c) and
has an estimated foreground probability F (d) that leads to
different improved foreground masks (e)-(f) depending on the
technique applied. The foreground mask presented in (e) is
obtained by directly applying maximum a posteriori inference
over F (i.e. thresholding over 0.5 without considering the
pairwise potential), thus leading to errors in the object contours
that are mostly solved in M* (f) as it jointly considers the
unary and pairwise potentials via the CRF framework.

(®) ©
® ®

Fig. 7: Example of foreground segmentation improvement
when using or not the pairwise potential. An image Z (a)
with foreground segmentation mask M (b) has a ground-
truth shown in (c¢). Maximum a posteriori inference over
the foreground probability F (d) leads to the foreground
segmentation shown in (e) when only F is used, whereas
M* (f), obtained through the CRF that considers spatial
information, produces a better foreground mask.

@

(d)

IV. EXPERIMENTAL WORK

A. Experimental methodology

We use real and synthetic sequences from four datasets: the
well-known CDNET2014 dataset [1], the recent LASIESTA
dataset [52] and the synthetic datasets SABS [53] and BMC
[54]. These datasets contain common BS challenges with their
corresponding ground-truth data. For CDNET2014, we select
eight of the eleven categories (PTZ, Thermal and Turbulence
are excluded) as the proposed framework has been designed
for color images in stationary camera scenarios, thus using
40 sequences (113848 frames). For LASIESTA, we select
both indoor and outdoor sequences discarding those involving
moving cameras (MC Moving Camera and the first three
sequences of SM Simulated Motion), thus using 38 sequences
(16250 frames). For the SABS synthetic dataset, we select 8
of the 12 sequences (6400 frames) and discard 4 out of 5
sequences with different compression qualities. For the BMC
synthetic dataset, we use 10 sequences from the learning
category (14990 frames). We do not use the rest due to the
extremely low availability of ground-truth for long sequences.
Note that we do not use unconstrained video object segmenta-
tion datasets [5][70] as they consider that moving objects may
not be part of the foreground.

To apply the proposed post-processing framework, we an-
alyze the datasets with several algorithms (see Table I for a
brief summary) to demonstrate that the improvement achieved
is generalizable: CwisarDH [28], SuBSENSE [42], AMBER
[71], MBS [72], PAWCS [73], SharedModel [74], WeSamBE
[75], Spectral-360 [76], FTSG [77], LOBSTER [78], SC-
SOBS [79], FuzzySOM [80], MLAYER [81], GMM [82]
and KDE [83]. We have selected this set of algorithms to
demonstrate the framework capability to improve results from
low to top performance algorithms. We use the results provided
in CDNET2014, whereas we employ the BGSlibrary [84] to



TABLE I: Background subtraction algorithms selected to
validate the improvement obtained by the proposed post-
processing framework. Key: C: Color. T: Texture. M: Motion.

TABLE II: Example of the effect of L and m in the F-
score. The higher L, the better the performance until too coarse
levels are used and foreground-background merging occurs
(see L=32 and L=64). The selection of the parameter m has

run selected algorithms in the remaining datasets. We do not
consider recently emerged deep learning models [37][40] as
they currently rely on the ground-truth data for training from
the same sequences in which tests are performed. Also, we
have selected a top (SuBSENSE) and a low (GMM) per-
forming algorithm across all datasets to compare performance
among databases.

To assess the algorithms performance, we use standard
Precision (Pe), Recall (Re) and F-score (Fs) based on pixel-
level comparisons between foreground segmentation masks
and ground-truth. These measures are computed as:

Pe=TP/ (TP + FP), (11)
Re=TP/(TP+FN), (12)
Fs=2-Pe-Re/(Pe+ Re), (13)

where TP, FP and FN are, respectively, correct, false and
missed detection pixels (as compared to ground-truth ones).

B. Effect of parameters in performance improvement

1) Number of levels and optical flow bounding: The use
of a hierarchy to extend over foreground objects is one of the
main contributions of this paper. This hierarchy has a prede-
fined number of levels that are combined using a weighted av-
erage dependent on the upper bound m for ||OP||. We present
in Table II the impact of these parameters values in the average
F-score of six sequences from CDNET2014 dataset (skating,
highway, canoe, winterDriveway, tramCrossroad_Ifps and cu-
bicle) segmented with SUBSENSE and GMM. Firstly, a higher
number of hierarchy levels L leads to higher performance due
to larger extensions of uncompleted foreground objects and
the removal of more erroneous foreground pixels through low
fitness-to-regions values. Secondly, the value of m is related to
the optical flow magnitude and the importance given to coarse
levels. The lower the value the better, but its value has little
impact in the performance. Attending to Table II, we have
used L=8 due to its pick of performance increment (%AL)
and m = 0.25 as it provides slightly better results than the
rest of the values analyzed. Additionally, we have heuristically
set the step s to 0.015, thus leading to the coarsest level L=8
using a threshold A\* = 0.105. Note that heuristically setting

. - Dataset
Algorithm  [Model type description Features CDNET]LASIESTA[SABS[BMC low impact in the F-score. %AFS _ an,e;/ ZLI;SOId denotes the
CwisarDH |Weightless neural network C v . . . S
SUBSENSE |Non-parametric sample-based T/ 7 77 improvement percentage achieved in terms of average F-score.
AMBER Multi-resolution temporal templates |C,T v/ Note that 7 = 0.25 is used for the experiment.
MBS Single Gaussian of multiple features |C v
PAWCS Non-parametric sample-based C, T v/ m
SharedModel|Mixture of Gaussians C v 025 03 075 1 Mean %AF's
WeSamBE  |Non-parametric sample-based C v - - -
Spectral-360 |Dichromatic reflection model C v 1 7852 7852 7852 7852 7852 -
FTSG Flux tensor and mixture of Gaussians|C, M [/ 2 7911 7909 7908 7906 7908 0.71
LOBSTER |Non-parametric sample-based C, T v S 4 7958 7954 7952 7950 7953 0.57
SC-SOBS  |Self-organized neural network C v 8 8011 .8006 .8003 .8001 .8005 0.65
PuzySOM_Self-organized newral network c § ; j L 128044 | 8040 [ 8038 | 8035 || .8039 042
ayer-base §

e eerbased____ <ty Y 16 | 8069 | 8066 | 8066 | 8065 || 8067 || 034
<DE Non-parametric kel c e Y 32 | 8005 | 8015 | 8027 | .80394 || 8021 || -0.57

64 | 5062 | .5331 | .5555 .5705 .5413 -32.51

the number of levels and using a step to threshold an UCM
are common practices in the literature [85][86].

2) Linear mapping: The transformation of foreground qual-
ity to foreground probability is done through a linear mapping
guided by parameter 7 (see Eq. 9). Therefore, we sweep
the value of 7 € [0,1] to find out how its value affects
the improvement capabilities (using L = 8, m = 0.25). In
particular, we compare the original algorithm performance
against the performance obtained by the proposed improve-
ment framework when only a unary or both a unary and a
pairwise potential are used in the CRF energy function.

We have performed this experiment in CDNET2014 (using
CwisarDH, SuBSENSE, AMBER, MBS, FTSG, SC-SOBS
and GMM) and in LASIESTA (using the six algorithms
evaluated) datasets. For space constraints, we have selected
SuBSENSE and AMBER and SuBSENSE and FuzzySOM
as top and medium performance algorithms, respectively, in
CDNET2014 and LASIESTA datasets. The remaining algo-
rithm results are available online (http://www-vpu.eps.uam.
es/publications/HFI/). Figures 8 and 9 present the average
performance achieved in terms of Pe, Re and Fe (columns)
for each pair of algorithms (rows) in CDNET2014 and LASI-
ESTA datasets, respectively. In general terms, using a unary
potential alone (superscript *1 in the figures) improves recall
for low values of 7 (approximately between 0.1 and 0.5), thus
supporting the capability to extend over foreground objects.
However, this recall improvement comes with the reduction
of the precision due to contour-inaccurate partitions in the
motion-aware hierarchy that lead to an extension of foreground
masks not fitted to objects contours. This precision reduction
is overcome by including the pairwise potential in the CRF
energy function (superscript *2 in the figures), which is able
to fit foreground masks to object contours while keeping
and improved recall (see Figure 7). Therefore, as shown in
Figures 8 and 9, we can conclude that a good value of 7
is approximately between 0.2 and 0.3 as both precision and
recall are improved and the CRF with both unary and pairwise
potentials outperforms the use of the unary potential alone,
thus we select the unary and pairwise based CRF to present
the results in the following subsections.
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Fig. 8: Examples of the effect of 7 parameter in the per-
formance of SuBSENSE [42] and AMBER [71] algorithms.
Each row denotes an algorithm, whereas each column presents,
respectively, the average Precision (Pe), Recall (Re) and F-
score (Fs) in CDNET2014 dataset. In each figure, the red line
denotes the performance of the algorithm in the dataset, the
green line with dots is the performance achieved by applying
maximum a posteriori inference only using the foreground
probability F (*1) and the blue line with triangles is the
performance using both F and the pairwise potential (*2).
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Fig. 9: Examples of the effect of 7 parameter in the perfor-
mance of SUBSENSE [42] and FuzzySOM [80] algorithms.
Each row denotes an algorithm, whereas each column presents,
respectively, the average Precision (Pe), Recall (Re) and F-
score (Fs) in LASIESTA dataset. In each figure, the red line
denotes the performance of the algorithm in the dataset, the
green line with dots is the performance achieved by applying
maximum a posteriori inference only using the foreground
probability F (*1) and the blue line with triangles is the
performance using both F and the pairwise potential (¥2).

C. Improvement over the original algorithms in CDNET2014,
LASIESTA, SABS and BMC datasets

We present the improvement in all datasets results for a
fixed configuration of L = 8, m = 0.25 and 7 = 0.25.
In Table III, we show the average performance results in
terms of Pe, Re and Fs, together with the percentage increases
of Fs for LASIESTA, SABS and BMC datasets. In these
datasets, improvements are obtained for all algorithms on
average and we present some examples of these improvements
in Figures 10 and 11 for, respectively, LASIESTA and SABS

and BMC datasets. Moreover, we present per-category and
overall performance results for the CDNET2014 dataset in
Table IV. Note that an improvement of around 2% for top
algorithms in CDNET2014 (SuBSENSE, FTSG, WeSamBE or
SharedModel) is a significant one as the percentage between
the first and fifth performing unsupervised algorithms in
CDNET20143 is 2.6%. From the tables it can be observed
that results are better than the original performance for almost
all algorithms and categories in CDNET2014 (see Table IV)
with the exception of the Intermittent Object Motion cate-
gory for top-performing algorithms (SuBSENSE, FTSG and
WeSamBE), where there are weak decreases in performance
due to the static nature of most of the foreground objects
in this category. This stationarity leads to no foreground-
background merging prevention when performing the hier-
archical image segmentation, thus foreground probabilities
are easily expanded over background regions and foreground
regions are less extended to undetected areas due to the lower
importance of high levels in the hierarchy when combining
the quality images. Additionally, Figures 12 presents some
examples of improvements achieved in CDNET2014. Please,
see online (http://www-vpu.eps.uam.es/publications/HFI/) all
the foreground masks and complete performance results.

D. Comparison against the state-of-the-art

We compare our improvement capabilities against available
similar approaches in the literature, i.e. approaches aiming to
improve foreground masks from a model-independent perspec-
tive. In particular, we present in Table V the improvements
over SOBS algorithm [87] (a previous version of the already
evaluated SC-SOBS algorithm) for the algorithm in [44] and
the proposed framework using 7 = 0.25 (marked with *).
We use SOBS algorithm in 5 categories of CDNET2014 as
that are the categories and algorithm with available results.
Despite the use of fitness-to-regions by [44], we achieve
a superior improvement as we introduce a hierarchical ap-
proach that enables the extension of the segmented foreground
masks to undetected foreground areas while fitting to object
contours. We have a higher improvement in all categories
attending to Pe, Re and Fs and we only perform worse for
Pe in Shadow category, where we decrease in a 0.3% the
original Pe performance. Note that we only compare our
post-processing improvement capabilities against [44] as other
model-independent post-processing works, such as [45] and
[59], do not provide code to reproduce the complete post-
processing technique.

E. Applying foreground quality to algorithm combination

Recently, combining BS algorithms results demonstrated to
obtain substantially better results [88]. Adopting this idea,
we present here a potential use of the foreground quality
image as the information to guide the algorithm combination.
For each frame we average the foreground quality images
from a set of algorithms and we use that image as the
quality Q to feed to foreground improvement from Subsection

3http://changedetection.net/


http://www-vpu.eps.uam.es/publications/HFI/
http://changedetection.net/

10

TABLE III: Overall average performance for each analyzed algorithm and the proposed improvement in LASIESTA, SABS
new old
and BMC datasets. NAFs = £5°_Z15"" denotes the improvement percentage achieved for F-score.

Fgold
LASIESTA SABS BMC

Pe Re Fs %AFs Pe Re Fs %AFs Pe Re Fs %AFs
SuBSENSE 8491 8542 | .8385 3.60 SuBSENSE 7138 7786 | .6740 0.77 SuBSENSE 8420 | .8706 | .8494 021
SuBSENSE* .8867 .8801 .8687 - SuBSENSE* 7125 7961 6792 : SuBSENSE* 8568 | .8597 8512 :
LOBSTER .6899 | .8204 | .7159 6.90 LOBSTER 7429 | .6834 | .6555 5.00 LOBSTER 8024 | 7757 7359 251
LOBSTER* 7416 | .8534 | .7650 ! LOBSTER* 7483 7511 .6883 o LOBSTER* .8222 | .7835 7544 :
FuzzySOM .5491 8452 | .6299 27.20 FuzzySOM 4375 5716 | 4861 17.63 FuzzySOM 7099 | .8083 7166 731
FuzzySOM* 1572 | 9077 8011 : FuzzySOM* 5813 6618 | 5718 ! FuzzySOM* 7544 | 8434 | .7690 :
MLAYER .6514 | .8237 .6749 6.13 MLAYER 5392 | 7549 | .6237 11.45 MLAYER 7686 | .8222 7500 1.96
MLAYER* 6916 | .8541 7163 : MLAYER* .6012 | .8315 6951 : MLAYER* 8013 8171 7647 :
GMM .3227 9234 | 4134 17.30 GMM 5532 | .6481 .5685 172 GMM .6789 | .8833 7448 773
GMM* 4001 9784 | 4849 : GMM* 6690 | .7020 | .6351 ! GMM* 7518 | .9005 .8024 :
KDE 3792 | 9493 5013 367 KDE 3369 | 7388 | .4536 2491 KDE 4934 | 7848 .5395 46.45
KDE* .5947 9626 | .6853 : KDE* 4658 8000 | .5634 : KDE* 8123 .8222 7901 :

TABLE IV: Per-category average foreground segmentation performance achieved by the proposed framework in CDNET2014

dataset. Bold denotes better performance of the proposed improvement (*). The Average column denotes average performance
new old

across all categories, being %A Fs = £ Zs"" the improvement percentage in terms of average F-score.

Fgold
Baseline Bad Weather Camera Jitter Dynamic Background Intermittent Object Motion
Pe Re Fs Pe Re Fs Pe Re Fs Pe Re Fs Pe Re Fs
PAWCS .9394 | 9408 | .9397 | 9379 | .7091 | .8059 | .8660 | .7840 | .8137 | .9038 | .8868 | .8938 | .8392 | .7487 7764
PAWCS* 9397 | 9525 | 9420 | 9370 | .7950 | .8576 | .8732 | .8078 | .8213 | .9194 | .9018 | .9074 | .9302 | .7200 8021
FTSG 9170 | 9513 | 9330 | 9192 | 7393 | 8184 | .7645 | .7717 | .7513 | 9129 | 8691 | 8792 | 8512 | .7813 7891
FTSG* 9125 | 9606 | .9352 | 9413 | .8244 | .8769 | .7753 | .8204 | .7664 | .9303 | .8824 | .8974 | 8432 | .7873 .7850
SuBSENSE 9495 | 9520 | 9503 | 9168 | 8121 | .8594 | 8115 | .8243 | .8152 | .8915 | .7768 | 8177 | .7957 | .6578 .6569

SuBSENSE* 9430 | .9610 | .9514 | .9267 | .8672 | .8944 | .8247 | .8794 | .8498 | .9371 | .7982 | .8539 | .8156 | .6270 .6414

SharedModel 9502 | .9545 | 9522 | .8559 | .8387 | .8439 | .8377 | .7960 | .8141 | 9198 | .7597 | .8222 | .7587 | .7182 6727

SharedModel* | 9419 | .9669 | .9541 | .8649 | .8840 | .8706 | .8474 | .8376 | .8377 | .9400 | .7768 | .8384 | .8002 | .7252 .6930

WeSamBE 9422 | 9422 | 9413 | 9184 | 8017 | .8531 | .8395 | .7777 | .7976 | .8933 | .6796 | .7440 | .7888 | .7472 71392

WeSamBE* 9356 | .9589 | .9466 | .9281 | .8598 | .8908 | .8660 | .8354 | .8417 | .9283 | .6819 | .7656 | .8093 | .7254 7381

Spectral-360 9065 | .9616 | .9330 | .8621 | .7175 | .7769 | .8387 | .6696 | .7142 | .8456 | .7819 | .7766 | .7374 | .5878 .5609

Spectral-360* 9105 | 9709 | 9395 | .8756 | .7878 | .8242 | 8341 | .7306 | .7471 | .8906 | .8085 | .8317 | .7804 | .5783 5518

MBS 9431 | 9158 | 9287 | .7652 | .8312 | .7802 | .8443 | .8321 | .8367 | .8606 | .7637 | .7904 | .8201 | .6386 .7092
MBS* 9389 | .9330 | .9356 | .8354 | .8780 | .8483 | .8727 | .8857 | .8788 | .8950 | .8045 | .8169 | .9403 | .6069 7132
AMBER .8980 | .8784 | .8813 | 9010 | .6782 | .7698 | .8493 | .6505 | .7107 | .7990 | 9177 | .8436 | .7530 | .7617 7211
AMBER* 9067 | .8913 | .8925 | .9297 | .7854 | .8460 | .8636 | .7230 | .7579 | .8373 | .9358 | .8740 | .7891 | .7706 7366
CwisarDH 9337 | .8972 | 9145 | 9173 | .6697 | 7477 | 8516 | .7437 | .7886 | .8499 | .8144 | 8274 | 7417 | .5549 5753
CwisarDH* 9322 | 9577 | 9446 | 9412 | .7391 | .8004 | .8809 | .832 8513 | .9248 | .8878 | .9019 | .7923 | .5905 .6008
SC-SOBS 9341 | 9327 | 9333 | 8412 | .5655 | .6605 | .6286 | .8113 | .7051 | .6283 | .8918 | .6686 | .5896 | .7237 5918
SC-SOBS* 9384 | 9524 | .9452 | .8735 | .6850 | .7589 | .7085 | .8463 | .7647 | .6805 | .9255 | .7241 | .8039 | .7065 .6660
GMM .8461 | .8180 | .8245 | .8285 | 7152 | 7662 | .5126 | .7334 | .5969 | .5989 | .8344 | .6330 | .6688 | .5142 .5207
GMM* 8670 | .8581 | .8569 | .8951 | .8245 | .8572 | .6188 | .7972 | .6759 | .7180 | .9020 | .7301 | .7345 | .5488 .5503
Low Framerate Night Videos Shadows Average
Pe Re Fs Pe Re Fs Pe Re Fs Pe Re Fs %AFs
PAWCS 6285 | 7555 | .6433 | 5559 | 3929 | 4171 | .8710 | 9172 | .8913 8179 | 7669 | .7726 17
PAWCS* .6285 | 7702 | .6512 | 5570 | .3984 | 4044 | .8628 | .9470 | .9000 8310 | .7866 | .7857 ’
FTSG .6996 | 7547 | 6563 | 4179 | .6873 | .5043 | .8535 | .9214 | .8832 7920 | .8095 | .7768 20
FTSG* 7087 | 7669 | .6673 | .4268 | .7196 | .5158 | .8503 [ .9561 | .8973 7985 | .8397 | .7926 )
SuBSENSE .6276 | .8435 | .6594 | 4224 | 6494 | 4918 | .8646 | .9419 | .8986 71849 | .8072 | .7687 21
SuBSENSE* 6353 | .8600 | .6763 | .4317 | .6832 | .5083 | .8602 | .9596 | .9041 7968 | .8294 | .7849 '
SharedModel 7362 | .8342 | 7696 | 4030 | .5810 | .4663 | .8455 | .9445 | .8898 7884 | .8033 | .7788 23
SharedModel* | .7614 | .8517 | .7950 | .4159 | .6181 | .4864 | .8442 | 9651 | .8981 8020 | .8282 | .7967 "~
WeSamBE .6459 | .8768 | .6884 | 4683 | .6429 | .5335 | .8686 | .9401 | .8999 7956 | .8010 | .7746 24
WeSamBE* .6535 | .8966 | .7072 | 4797 | .6724 | 5520 | 8596 | .9560 | .9017 8075 | .8233 | .7930 ’
Spectral-360 6666 | .7349 | .6977 | 3605 | .7113 | .4553 | .8187 | .8898 | .8519 7545 | 7568 | .7208 31
Spectral-360* | 7351 | .7616 | .7425 | 3485 | 7367 | .4491 | .8247 | .9046 | .8620 7749 | 7849 | 7435 '
MBS .8864 | .6727 | .6754 | 4716 | 5049 | .4834 | .8063 | .7762 | .7784 7997 | 7419 | 7478 36
MBS* 9192 | .6853 | .6810 | .5049 | .5373 | .5137 | 8015 | .8431 | .8111 8391 | 7717 | .7748 )
AMBER 5943 | 4727 | 4338 | 3149 | .6498 | .3593 | .8098 | .8297 | .8128 7399 | 7298 | .6916 51
AMBER* .6534 | 4805 | 4859 | .3303 | .7004 | .3799 | .8199 | .8818 | .8431 7662 | 7711 | 7270 '
CwisarDH 7421 | 6659 | .6986 | 4442 | 4511 | 3753 | .8476 | .8786 | .8581 7910 | 7094 | 7232 66
CwisarDH* 8407 | 7783 | 7962 | 5132 | .4948 | .3801 | .8569 | .9395 | .8927 8353 | 7775 | 7710 )
SC-SOBS 5451 | 7844 | 5565 | 3303 | .6225 | .3841 | .7230 | .8502 | .7786 .6506 | .7727 | .6586 3.3
SC-SOBS* .6290 | .8688 | .6325 | .3585 | .6826 | .4142 | .7376 | .9188 | .8149 7162 | 8232 | 7151 )
GMM .6997 | 5643 | .5284 | .3300 | .5531 | .3793 | .7156 | .7960 | .7370 .6500 | .6911 | .6232 10.4
GMM* 7824 | .6226 | .6539 | .3417 | .6170 | .4001 | .7340 | .8678 | .7785 7114 | 7548 | .6879 )




TABLE V: Performance comparison of the proposed framework against [44] in categories with data available for [44].

[ [ Baseline [ Camera jitter | Dynamic Background | Intermittent Object Motion | Shadows |
Pe Re Fs Pe Re Fs Pe Re Fs Pe Re Fs Pe Re Fs
SOBS 9313 | 9193 | 9251 6399 | .8007 | .7086 | .5856 | .8798 | .6439 | .5531 7057 5628 7219 | 8355 | 7717
SOBS + [44] | 9261 | 9319 | 9289 | .7009 | .8211 | .7502 | .6576 | .8955 | .6960 | .5727 | .7010 5645 7281 | .8736 | .7907
SOBS* 9382 | 9527 | 9453 | 7474 | .8446 | .7834 | .6983 | .9303 | .7463 | .7146 | .7147 6128 7198 | 9202 | .8022

Fig. 10: Example of foreground improvements in LASIESTA
dataset. For each row, from top to bottom: image, ground-
truth, originally segmented foreground mask and improved
foreground mask. Form left to right, example for: SUBSENSE
in frame 72 of I _BGS_02 sequence (Bootstrap category),
LOBSTER in frame 301 of I_CA_0I sequence (Camouflage
category) and FuzzySOM in frame 984 of O_RA_0I sequence
(Rainy category).

TABLE VI: Per-category average performance in CDNET2014
achieved by the proposed combination (FusedQ) compared to
the combination strategy IUTIS-5 [88].

TUTIS-5 FusedQ
Pe Re Fs Pe Re Fs
Baseline 9464 | .9680 9567 | 9197 | .9793 | .9484
Bad Weather 9349 | .7503 8289 | .9384 | .8422 | .8857
Camera Jitter 8511 | .8220 8332 | .8552 | .8216 | .8209
Dynamic Background 9324 | .8636 8902 | .9357 | .9257 | .9297
Intermittent Object Motion | .8501 | .7047 | .7296 | .8304 | .7590 | .7532
Low Framerate 7724 | 8376 | .7911 7571 8489 | .7951
Night Videos 4578 | 6333 | 5132 | .3995 | 7691 | .4922
Shadows 8766 | 9492 | 9084 | .8545 | .9651 | .9039
Average 8277 | .8161 8064 | .8113 | .8639 | .8161

III-B4. Despite being a simple combination, we outperform
the TUTIS-5 algorithm [88] as presented in Table VI. Note
that TUTIS-5 combines the algorithms SuBSENSE, FTSG,
CwisarDH, Spectral-360 and AMBER so we have used these
five algorithms to average their foreground quality images.

Fig. 11: Example of foreground improvements in SABS and
BMC datasets. For each row, from top to bottom: image,
ground-truth, originally segmented foreground mask and im-
proved foreground mask. Form left to right, example for:
LOBSTER in frame 544 of Bootstrap sequence (SABS),
FuzzySOM in frame 484 of 511 sequence (BMC) and LOB-
STER in frame 918 of 411 sequence (BMC).

F. Discussion

The results obtained in this section confirms that the pro-
posed hierarchical fitness-to-regions strategy is effective for
algorithm improvement. This capacity comes from its robust-
ness to different challenges or distortions that typically affect
background subtraction. Basically, regarding the distortions
that produce false positives (e.g. dynamic backgrounds, camera
jitter, shadows, illumination changes or ghost artifacts), a
corresponding foreground quality image tends to produce low
scores due to a low percentage of foreground pixels compared
to the size of the corresponding segmented image regions in
which that foreground is (i.e. low fitness). Furthermore, false
negatives are typically induced by camouflages, challenge that
the proposed framework overcomes using motion constraints
to allow extending partially detected objects without merging
with background regions. Moreover, a small image degradation
like noise or compression should not substantially affect the
proposed framework as modern optical flow is robust to these
issues [89] and the key ingredient to keep the performance is



Fig. 12: Example of foreground improvements in CDNET2014
dataset. For each row, from top to bottom: image, ground-
truth, originally segmented foreground mask and improved
foreground mask. From left to right, example for: FTSG in
frame 956 of snowFall sequence (Bad Weather category), SC-
SOBS in frame 1071 of badminton sequence (Camera Jitter
category) and SuBSENSE in frame 2063 of fall sequence
(Dynamic Background category).
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Fig. 13: Relative computational complexity for the proposed
approach. From left to right: optical flow (OF), ultrametric
contour maps (UCMs), CRF and the rest of the operations.

to be able to delimit objects in the motion-aware color-based
UCM U, task supported by the strong boundaries extracted
from the optical flow magnitude.

However, despite the aforementioned good results, fitness-
to-regions has two main limitations. Firstly, foreground objects
with weak foreground qualities are removed by our approach,
which means that we cannot deal with extremely uncertain
cases for reconstructing an entire object from few pixels. Sec-
ondly, fitness-to-regions may lead to errors when a complete
background object is almost detected as foreground (i.e. a false
positive), as high qualities may be obtained.

Moreover, the computational cost of the proposed approach
is mainly due to the optical flow, the UCMs and the CRF
optimization that require approximately 80% of processing
time (see Figure 13, where relative computational cost is
presented). Our un-optimized MATLAB implementation of the
proposed approach has an average running time of 0.43 fps
for color images of 320 x 240 in a standard laptop (i7-4600U
@ 2.1GHz 2.7GHz and 8GB RAM).

V. CONCLUSIONS

In this paper, we propose a framework for the improvement
of foreground segmentation masks obtained by background
subtraction algorithms that is independent of each algorithm
characteristics. In particular, we use the foreground masks and
the analyzed images to compute a foreground quality that
is used to improve results through an optimization process.
We obtain such foreground quality in a hierarchical manner
by combining the fitness between the foreground mask and
image segmentation partitions obtained at different degrees
of detail that prevent foreground-background merging due
to motion constraints. Experiments using fifteen algorithms
and four large background subtraction datasets show that
algorithms results can be improved analyzing the quality of
their results. Current framework limitations are mainly related
to a bad foreground probability estimation either when the
original foreground segmentation is too bad for a segmented
object or when complete foreground objects are not detected
and, therefore, no fitness between foreground and segmented
image regions can be estimated. Future work will explore the
capabilities of semantic segmentation to improve foreground
quality and the effects of temporal information in the energy
function for foreground refinement.
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