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Incorporating Wheelchair Users in People Detection

Rafael Martín-Nieto · Alvaro
García-Martín · José M. Martínez

Abstract A wheelchair users detector is presented to extend people detection, pro-
viding a more general solution to detect people in environments such as houses adapted
for independent and assisted living, hospitals, healthcare centers and senior residences.
A wheelchair user model is incorporated in a detector whose detections are afterwards
combined with the ones obtained using traditional people detectors (we define these as
standing people detectors). We have trained a model for classical (DPM) and for mod-
ern (Faster-RCNN) detection algorithms, to compare their performance. Besides the
extensibility proposed with respect to people detection, a dataset of video sequences
has been recorded in a real in-door senior residence environment containing wheelchairs
users and standing people and it has been released together with the associated ground-
truth.

Keywords People detection · Wheelchair users · Assisted living · Independent
living · Healthcare system

1 Introduction

In health care centers, senior residences, hospitals, etc., it is usual to see people who
need wheelchairs and their detection is useful to monitor them and to provide them
assistance in case they need. Knowing the location of a wheelchair user can be useful
for some healthcare applications (e.g. monitoring), and it can be used to analyze the
behaviour and actions of such users in different environments. The automatic detection
of mobility impaired people, including wheelchair users, is also an important problem
for Intelligent Transportation Systems (ITS) in public traffic areas [1]. Many assistance
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applications that can be derived from the automatic wheelchair users detection (e.g.,
doors, elevators, escalators), can automatically activate a special operation mode for
such people after detecting them, the green-light time can be increased in pedestrian
crossing with traffic lights when a wheelchair user is detected, etc. All these events could
be activated manually by one person, but, if automatic activation is achieved, people
in wheelchairs will feel more comfortable and these events would become something
natural, and the operation would not need human agents for correct functioning.

Another application for which the presented detector is useful is independent living.
According to the definition given by the World Institute on Disability (http://www.
wid.org/), independent living is defined as allowing people with disabilities to have
the same level of choice, control and freedom in their daily lives as anyone else. In
the context of caring for the elderly, independent living is seen as a continuum care,
whose next step would be the incorporation to a nursing home. The proposed model
detector is useful for both stages, first to monitor the wheelchair user in their domestic
environment ensuring that everything runs properly, and then to video monitor people
in a nursing home, allowing to detect interesting events such as fall detections [2,3].

2 State of the art

In this section we present an overview of works related with the presented detector.
First, some works related to the standing people detection problem are presented,
and how it has been solved from different viewpoints. After that, the different previous
wheelchair users detections approaches are classified and described. Finally, the selected
solutions are presented.

2.1 Standing people detection

In computer vision, standing people detection can be considered as a two steps process
[4,5]. First, it is necessary to localize the initial objects candidates to be standing per-
son in the scene. The two most common approaches to localize those objects are those
based on some kind of segmentation of the scene in foreground (objects) and back-
ground [6] and those based on a scanning approach [7,8]. In general, those algorithms
based on a scanning approach have been proved to be more robust to real and more
complex sequences where there are several background and people variabilities [7,9,10,
11]. There are also some approaches that try to combine both approaches together [12,
13].

The second step in any standing people detection can be considered as a standard
pattern recognition issue. In this case, it is necessary to previously define a standing
person model and then classify any new candidate selected during the previous step as
a standing person or not. The classification process will be characterized according to
the chosen standing person model. Therefore, standing people detection approaches can
be classified into two groups, namely, holistic and part-based detectors, depending on
the model properties. The holistic detectors define the person as a region or shape [14,
15,16,17], whilst the part based detectors define the person as combination of multiple
regions or shapes [8,18]. In general, those algorithms based on part-based models are
able to deal with partial occlusions better than those based on a holistic model, but
significantly increasing the model complexity.
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In recent years the object detection results (and therefore people detection results)
have been greatly improved thanks to the use of deep learning algorithms. Some ex-
amples of these algorithm are [19], [20] or [21].

2.2 Wheelchair users detection

There are some works in the state of the art trying to address the wheelchair users
detection problem. These works can be classified into two main groups. The first group
focuses on detecting ellipses which correspond to the wheelchair wheels. The second
group is based on detecting the wheelchair users using discriminative features, usually
color and Histogram of Oriented Gradients (HOG).

The first approach of the works that try to find the wheel ellipses is presented in
[22]. The model considered here is based on two wheels with a head over them. The
wheels are detected using the Hough transform to detect ellipses in an edge image
obtained via the Canny detector. The head is found using a skin detector. All these
stages are performed after a background subtraction. In [23], the detection is based only
in determining the location and orientation of the wheels, proposing a mathematical
method of ellipse-circle geometry. [24] follows the work presented in [22] and includes
tracking and event detection. In this case, Zimmer frames are also detected. The loca-
tion of doors is also used for the detections. The wheelchair users detector presented
in [25] starts from a background subtraction stage, similar to [22]. After obtaining the
foreground, the resulting bounding boxes are analyzed locating the wheel, and then
the user and the assistant (if any). A novel idea is presented in this work, which is to
recognize whether an assistant is pushing the wheelchair.

On the other hand, the second group aims to find discriminative features to detect
the wheelchair user. Similar to other studies, [26] starts with a background subtrac-
tion. This solution is based on detecting wheelchair user parts (e.g., head, chest, legs)
and wheelchair parts. Finding each part is based on color, which is previously de-
fined. After that, the object position is obtained using a stereo vision camera. The
justification for not trying to locate the wheels is that there are orientations (front
and rear) in which they are unobservable. Besides, there are different wheelchair mod-
els, especially electrical, which do not have large wheels as conventional wheelchairs.
The recognition proposed in [1] also uses stereo vision cameras. The feature used is
HOG, allowing discrimination between standing people and wheelchair users thanks
to a previously trained Support Vector Machine (SVM). The detector proposed in [27]
considers two descriptors, HOG and Contrast Context Histogram (CCH), which are
adopted to model, respectively, the shape and appearance of the wheelchair. An Ad-
aBoost learning stage selects the features which better discriminate the object. All
the possible wheelchair orientations are classified in 8 different models composing a
state graph whose elements can change to adjacent orientation models. A Gaussian
pyramid is constructed to overcome the scale problem by downsampling the image
from the original resolution. The approach proposed by [28] focuses on a dimension-
ality reduction using sparse representation to improve the generalization capability.
To characterize the wheelchair users, directional maps are defined by determining the
dominant direction of motion in each local spatiotemporal region.
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2.3 Discussion

The proposed wheelchair users detectors approach (see section 3.1) has advantages over
the previously existing solutions: it does not need a background model for background
subtraction, it can detect wheelchairs in any orientation, it does not need to know the
dimension of some parts of the wheelchair, it does not need stereo vision cameras, it
does not need to know the wheelchair colors in advance, and it does not consider the
wheelchair user as a rigid object, allowing deformations.

We have chosen a scanning approach with a part-based model (DPM), and a deep
learning approach (Faster-RCNN) for the object detection algorithms. We have chosen
these two detection algorithms as the first one, DPM, is a classic algorithm, based on
HOG filters, that offers good detection after the great improvement of the detection
algorithms in the last years, and the second one, Faster-RCNN, to observe the operation
of the proposed technique using one of the most modern and effective algorithms of
the state of the art, based on neural networks.

3 Detection approach

This section describes the original detection algorithms (see section 3.1), whose training
method is used to generate the wheelchair users detection models (see section 3.2).
The detections from the different models (standing people and wheelchair users) are
combined for an integrated detection (see section 3.3).

3.1 Detection algorithms

The first considered detection algorithm is the Deformable Parts Model (DPM) detector
[8]. The DPM detector is based on exhaustive search and a part-based person model.
It is a part-based adaptation of the original Histogram of Oriented Gradients detector
(HOG) [14]. It proposes an object detection system based on mixtures of multiscale
deformable part models where each deformable body part is modeled as the original
HOG detector [14]. The algorithm model also contains the flip (horizontally mirrored)
of the model.

The second detection algorithm chosen for the experiments of the proposed system
is the Faster RCNN (Regions with Convolutional Neural Network Features) [21] detec-
tor, which consist in a more efficient variation, mainly in terms of computational cost
but also in performance, of the previous versions R-CNN [29] and Fast R-CNN [30]
detectors. The three variations have in common the combination of bottom-up region
proposals with rich features computed by a convolutional neural network. The main
difference of the Faster-RCNN is the use of a Region Proposal Network (RPN) that
enables nearly cost-free region proposals.

The computational cost of the detections is not treated in this paper as this aspect
is analyzed by the authors of DPM ([8]) and Faster-RCNN ([21]). The used DPM
approach is implemented with MATLAB and the computational cost is about 2 seconds
per frame, considering an image of 352 × 288 pixels. Note that there is also a faster
implementation in OpenCV that increases the detection time to about 1 second per
frame. The used Faster RCNN approach is implemented with MATLAB and Caffe,
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Fig. 1 DPM standing people model. The three columns are, from left to right, root model,
parts model and parts deformation.

and the computational cost is about 150-200 milliseconds per frame (Faster RCNN,
VGG-16 with GPU), considering an image of 500x375 pixels.

3.2 Detection models

This subsection adds some details about the two different trained algorithm models.
The standing people has not been trained in this work, but it is presented here for
comparing it with the wheelchair users model.

Figure 1 shows a visual example of the DPM person model, namely the INRIA
person model, extracted from [31]. The model also contains the flip of the model, but
it has not been included in the figure as it does not provide additional information
different from the data already shown.

Following the original people detection algorithm, we train a wheelchair users de-
tector model.

To generate the wheelchair users model, we used the annotations of the training
set from the Smile Lab training dataset (see subsection 4.1.1), containing 3674 positive
examples. For the negative examples set, we used the standing people model negative
examples from [31]. For this purpose, we ensure that this image set does not contain
any pictures with a wheelchair nor a wheelchair user.

For the DPM standing people detector model, there is just one model variation as
the appearance from the different points of view are similar. Unlike the standing people
model, a model with two variations is trained for the wheelchair users, as it is considered
that the appearance of the front and side wheelchair users are different enough to be
independent in their appearance classification. We have also performed experiments
testing from 2 to 8 model variations, obtaining very similar or worse results, due to the
overfitting of the model to the training data. Figure 2 shows the resulting wheelchair
user model. The trained model also contains the flip of each model (as the original
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Fig. 2 DPM wheelchair user model. Each row represents a model variation. The three columns
are, from left to right, root model, parts model and parts deformation.

people detector model), but it has not been included in the figure as again it does not
provide additional information different from the data already shown.

For the Faster-RCNN detector, and according to the author’s results [21], we have
chosen the pre-trained network VGG-16 model [32] that has 13 convolutional layers and
3 fully-connected layers. We have retrained the network using the PASCAL VOC 2007
and 2012 datasets, and we have added a new object class, the wheelchair user object,
using the same positive and negative examples than for the DPM model training. The
Faster-RCNN model does not have a graphic representation as in the case of the DPM
model.

This wheelchair users models are available for research purposes in the Wheelchair
users dataset webpage (http://www-vpu.eps.uam.es/DS/WUds/).

3.3 Detectors combination

The DPM wheelchair user detections and the standing people detections are combined
to obtain the general people detections. All the detections from each detector are
maintained as we consider that each detector works for disjoint people models. As each
detector has a different Standing People (SP ) / Wheelchair User (WU) Detection
Confidence output space or range CSP/WU (see Figure 4), in order to add the outputs
from both detectors (each output is a set of bounding boxes, each of them with an
associated confidence), it is necessary to normalize both confidence outputs. Therefore,
we normalize both detectors, CSP (0 ≤ CSP ≤ 1) and CWU (0 ≤ CWU ≤ 1).
The normalization is performed according to the probability density function (pdf) of
each Detection Confidence. In particular, the Standing People Detection Confidence
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distribution has been estimated using the detector output over the INRIA dataset [14],
whilst the Wheelchair Users Detection Confidence distribution is obtained detecting
the wheelchair users from the training images set. Using the score histogram, the pdf
is estimated trying to adjust properly to the obtained scores. The score histogram and
the estimated pdf are shown in Figure 3.

In order to facilitate comparison between models, pdf and cdf (cumulative distri-
bution function) are represented in Figure 4 for both standing people (from [33]) and
wheelchair users models. As the considered detection algorithm is the same for both
models, the density functions obtained are relatively close, but this conversion should
be performed to join the detectors results rigorously. After normalizing the detections of
the different models, both sets of detections are joined together to obtain the complete
set that considers the different people appearances.
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Fig. 3 DPM wheelchair user (left) and standing people (right, extracted from [33]) models
score histograms with the fitted pdfs.
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Fig. 4 DPM Standing people and wheelchair user detectors pdf (left) and cdf (right).

The Faster-RCNN output detections are by default normalized between 0 and 1
in the algorithm, so this step does not apply to its results as the normalization is
internally included in the algorithm.
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Sequence number #Frames #Wheelchair users #Standing people
1 449 1 From 3 to 5
2 351 1 From 2 to 5
3 239 1 From 4 to 5
4 287 1 From 3 to 7

Table 1 Properties of each of the sequences from the Smile dataset.

4 Experimental setup

4.1 Datasets description

This section contains the two different datasets used for the experimental validation
and the evaluation metrics. The SmileLab wheelchair dataset [27] was used for the
models generation (see section 3.2) and validation (see section 5.1). The Wheelchair
Users dataset was used to check the generated model in a different and independent
scenario.

4.1.1 Smile Lab wheelchair dataset

This dataset was created by the Smile Lab (http://smile.ee.ncku.edu.tw/) at the
Department of Electrical Engineering, National Cheng Kung University, Taiwan. The
dataset is divided into two main image sets: the train sequences and the test sequences.
Each of the frames has a resolution of 720x480 pixels.

The training sequences are composed of 8 image subsets and a total of 3674 images,
each one of them contains a set of images of wheelchairs with a defined orientation
relative to the camera. The different orientations and models are shown and defined in
[27].

The test sequences are composed of 4 image subsets, each one of them containing
a sequence with a wheelchair and some standing people walking around. Unlike the
training set, each of these frame subsets contains a continuous recording, allowing to
use tracking techniques to improve detection, as shown in [27]. The test set contains a
total of 1314 frames divided in 4 folders. Table 1 shows the properties of each sequence.

The ground truth of this dataset was not available, so we created it annotat-
ing manually each of the frames from both sets. This ground truth is available for
downloading as additional content in the Wheelchair users dataset webpage (http:
//www-vpu.eps.uam.es/DS/WUds/).

4.1.2 Wheelchair Users dataset

This dataset was recorded by the Video Processing and Understanding Lab due to
the lack of public wheelchair datasets. We used it to test the trained wheelchair users
detector, as it contains sequences with a higher number of wheelchairs (up to four) and
some more complex situations and scenarios (illumination changes, occlusions, etc.).
The sequences were recorded in a real environment of a senior residence, in order to
work with an environment as realistic as possible (due to privacy issues, real recording
with actual residents was not possible). Each of the frames has a resolution of 768x432
pixels and the sequences are recorded at 25 fps. Compared to the other dataset, this
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one contains a new environment with a larger number of sequences, a greater number
of frames per sequence, and more wheelchair types (three different wheelchairs).

The dataset consists of 11 sequences (S1 to S11), each of them recorded from two
points of views (V1 and V2), resulting in a total of 22 sequences. Table 2 shows the
properties of each recorded sequence.

All sequences were recorded in the same room, using two GoPro cameras (HERO3
White edition). The fisheye effect was corrected using the GoPro Studio software tool.
Each camera views are shown in Figure 5 and a room top view map is shown in Figure
6.

This dataset and its annotated ground truth are publicly available for research
purposes. The ground truth of this dataset was manually annotated for each frame
of each sequence. The annotated ground truth considers the wheelchair users and the
standing people present in every frame, even if they are highly occluded.

Fig. 5 Camera views of the Wheelchair Users dataset. Left: viewpoint 1. Right: viewpoint 2.

Fig. 6 Top view map of the Wheelchair Users dataset. V1 and V2 represent camera 1 and
camera 2 locations and fields of view.
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Sequence number #Frames #Wheelchair users #Standing people
1 1318 1 0
2 916 1 0
3 860 1 1
4 1167 1 1
5 1638 2 0
6 723 2 0
7 1082 2 2
8 743 2 2
9 2102 2 2
10 2460 2 2
11 1855 4 0

Table 2 Properties of each of the recorded sequences from the Wheelchair Users dataset.

4.2 Evaluation metrics

In order to evaluate the proposed approach, we quantify the performance results. Global
sequence performance is usually measured in terms of Precision-Recall (PR) curves [16,
34,35]. These curves compare the similarities between the output and ground truth
bounding boxes. For each value of the detection confidence or score, Precision-Recall
curves are computed:

Precision =
#TPPD

#TPPD +#FPPD
(1)

Recall =
#TPPD

#TPPD +#FNPD
(2)

Where TPPD are True Positive People Detections, FPPD are False Positive People
Detections, and FNPD are False Negative People Detections.

In addition, in order to evaluate not only the yes/no detection decision but also the
precise people locations, we take into account the three evaluation criteria defined in
[36], that allow to compare hypotheses at different scales: relative distance (dr), cover
and overlap. A detection is considered true if dr ≤ 0.5 (corresponding to a deviation
up to 25% of the true object size) and cover and overlap are both above 50%.

The integrated Average Precision (AP) is generally used to summarize the algorithm
performance in a single value, represented geometrically as the area under the PR curve
(AUC-PR). In order to approximate the area correctly, we use the approximation
described by [37].

5 Experimental validation

The detectors are run on the evaluation datasets in order to analyze their performance.
As the wheelchair users models were trained using the dataset presented in subsection
4.1.1, the results obtained on its test images are expected to be better than the results
obtained on the images of the dataset presented in subsection 4.1.2, as it is a completely
independent scenario with different wheelchairs of those used to train the model.

This section contains results of the detector over the Smile Lab dataset (see sub-
section 5.1) and over the Wheelchair Users dataset (see subsection 5.2).
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Fig. 7 Precision vs Recall detection curves for the Smile Lab dataset test sequences using
complete (standing people, SP, and, wheelchair users, WU) ground truth.
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Fig. 8 Precision vs Recall detection curves for the Smile Lab dataset test sequences using
separated detection results and separated ground truth. detSP corresponds to the Standing
Person model detections, detWU corresponds to the Wheelchair Users model detections, gtSP
corresponds to the Standing Person ground truth, and gtWU corresponds to the Wheelchair
Users ground truth.

Ground Truth All (SP+WU)
Smile WUds

DPM Faster-RCNN DPM Faster-RCNN

Detector
SP 0,777 0,734 0,577 0,688
WU 0,405 0,712 0,637 0,735

SP+WU 0,864 0,777 0,733 0,811

Table 3 Detectors AUC using complete (standing people, SP, and, wheelchair users, WU)
ground truth.

5.1 SmileLab dataset results

Figures 7 and 8 show the resulting precision-recall detection curves obtained for the
detection on the Smile Lab dataset test sequences. Table 3 presents the numeri-
cal AUC values of the precision-recall detection curves. All these curves are also
available for downloading in the publication webpage (http://www-vpu.eps.uam.
es/publications/IntegratingWheelchairUsersInPeopleDetection/).

The combination of the detection results of both models (standing person and
wheelchair user models) improves the results of each model separately, for both detec-
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Ground Truth
Smile WUds

SP WU SP WU

Detector
DPM SP 0,852 0,163 0,883 0,283

WU 0,415 0,977 0,265 0,833

Faster-RCNN SP 0,767 0,124 0,728 0,391
WU 0,599 0,999 0,268 0,912

Table 4 Detectors AUC using separated detection results and separated ground truth.

H M F R P
[27] 1086 83 73 0.929 0.937
DPM 1218 96 99 0.927 0.925

Faster-RCNN 1314 0 7 1 0.995

Table 5 Comparative results for the wheelchair users detections between [27] and our ap-
proaches. H, M, F, R and P are, respectively, hits, miss detects, false detects, recall and
precision.

tion algorithms (DPM and Faster-RCNN), as seen in Table 3, in which the area under
the curve of the combination of models is better than the detection of each model
separately, for both detection algorithms. The final results obtained by the DPM de-
tector are better than those obtained by the Faster-RCNN, but it is probably due to
overfitting, as the result of the Faster-RCNN is better when using a different dataset
for evaluation (see the following section). With respect to the results using separated
ground truth (Table 4), the DPM detector is able to better detect standing people,
but wheelchair users are better detected by the Faster-RCNN model. The proposed
detection improves the initial performance 11,3% and 5,8% on average for this dataset.
Note that the training images and the test images are different but contain the same
(people and wheelchair model) standing people and wheelchair users.

The obtained results can not be directly compared with the results presented in
[27] for several reasons. Only the wheelchair users are detected in [27], while we detect
both wheelchair users and standing people, but for this comparative we will use only
the wheelchair users model detections. Also they consider a detection error when a
wheelchair is detected with an orientation different from the one (between eight possible
orientations) annotated in the ground truth. The work presented in this paper does not
consider the wheelchair orientation, as defined in previous sections. The authors of this
dataset did not provided us the ground truth that they had used, so we had to generate
a new one, as commented in subsection 4.1.1. Table 5 shows the results given by [27]
and our wheelchair users detection results. We have selected the closest point between
our precision-recall curve and the point given by the authors of the dataset. The results
obtained by the DPM detector are very close to those presented in [27] but slightly
worse, and the results obtained by the Faster-RCNN are significantly better, especially
highlighting the null value of miss detections in all sequences. It is noteworthy that our
ground truth has more frames annotated than the results given by [27] (1314 vs 1169
frames). Our ground truth has annotations of every sequences frames, regardless of it
complexity, the existence of occlusions, etc. Our work does not tries to improve the
detections results of [27], as we present a different approach integrated into a complete
system, but the result is greatly improved in the case of the Faster-RCNN detector.
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Fig. 9 Precision vs Recall detection curves for the Wheelchair Users dataset using complete
(standing people, SP, and, wheelchair users, WU) ground truth.
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Fig. 10 Precision vs Recall detection curves for the Wheelchair Users dataset sequences using
separated detection results and separated ground truth. detSP corresponds to the Standing
Person model detections, detWU corresponds to the Wheelchair Users model detections, gtSP
corresponds to the Standing Person ground truth, and gtWU corresponds to the Wheelchair
Users ground truth.

5.2 Wheelchair Users datasets results

Figures 9 and 10 show the resulting precision-recall detection curves obtained for
the detection on Wheelchair Users dataset sequences. Table 3 presents the numeri-
cal AUC values of the precision-recall detection curves. All the obtained curves are
available in the publication webpage (http://www-vpu.eps.uam.es/publications/
IntegratingWheelchairUsersInPeopleDetection/).

In the Wheelchair Users dataset sequences there is a greater number of wheelchair
users, both in absolute value (greater number of wheelchair users in the sequences)
and relative value (wheelchair users vs standing people ratio), so it is expected to get a
greater improvement with respect to the original standing people detector. In this case
the percentage increase of the AUCs, compared to the initial detector, is 27% and 17,9%
on average, much higher than the 11,3% and 5,8% obtained in the previous dataset. The
Faster-RCNN detector performance is better in this dataset than in the one discussed in
the previous section. With respect to the evaluation with partial ground truths (Table
4), the results obtained with the WUds are The combination of the detection results of
both models (standing person and wheelchair user models) improve the results of each
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model separately, for both detection algorithms (DPM and Faster-RCNN), as seen in
Table 3, in which the area under the curve of the combination of models is better than
the detection of each model separately, for both detection algorithmssimilar to those
observed with the Smile dataset.

The transfer learning to the new sequences is generic enough to improve the re-
sults, reaching in fact a higher percentage increase in the recorded sequences than
for the Smile dataset sequences when using the Faster-RCNN algorithm. . The new
recorded scenario dataset presents a realistic scenario for the detectors, where not all
the wheelchair types can be considered in the model, in the same way as in the stand-
ing people detector not every person, orientation and pose are present. The recorded
sequences also contains severe illumination changes and occlusions.

6 Conclusion

In this paper, we treat the problem of different appearances for the same semantic
object class detection. Typical senior residences scenarios are an example of this prob-
lematic situation. In particular, our main objective is to detect both standing people
and wheelchair users simultaneously. For this reason, an extension of people detection
that allows to detect people with the need of using a wheelchair has been presented.
We have trained two additional wheelchair users detectors models whose detections
can be combined with the detections obtained using the traditional standing people
detectors models, providing generality and supplementary detection capacity. This ap-
proach can not only be applied to the case of wheelchairs but the ideas exposed here
can be extrapolated to other scenarios where there are individuals with an appearance
different from the standard, as Zimmer frames users or people using walking sticks.

Due to the appearance of wheelchairs, we have trained a model with two different
variations (front/rear and side point of views), allowing to detect different orientations.
The proposed detector does not consider the wheelchair orientation in the output, but
we consider that this does not provide much information for the different applications
derived from the detection. In any case, if the orientation estimation were interesting or
necessary, the wheel ellipse can be located in the detection bounding box after detecting
the wheelchair, following one of the existing methods.

Due to the absence of public datasets with this type of content, new sequences with
greater complexity have been recorded in order to test the designed approach and to
provide future researchers with images and sequences for their experiments. We have
made publicly available the generated wheelchair user model, the recorded sequences
and ground truth files. We have proven the capacity of transfer learning from a training
dataset to a new one completely independent.

There are multiple future work lines to improve the different proposals. About the
wheelchair users detector, more complex models can be studied, for example consider-
ing more model variations. About the combination, we have chosen a simple technique,
therefore it could be improved in order to optimize the combination of the different
information sources. Also a new model can be trained using both the Smile Lab dataset
and the recorded sequences to achieve greater generality. A tracker can be added to the
sequence detection to combine the information extracted during the sequence frames
giving temporal continuity to the detections. As the recorded dataset uses a multi-
camera deployment, the detections obtained for each viewpoint can help to reinforce
the detections from the other one. Apart from this, the typical lines of future work for
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object detection can be applied here. Finally, the improved people detection can be
used as a starting point for multiple event detection systems, in scenarios where the
presence of wheelchair users is very common, such as hospitals, healthcare centers or
senior residences.
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