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Abstract: This paper studies user classification into children and adults according to their interaction with 
touchscreen devices. We analyse the performance of two sets of features derived from the Sigma-Lognormal 
theory of rapid human movements and global characterization of touchscreen interaction. We propose an 
active detection approach aimed to continuously monitorize the user patterns. The experimentation is 
conducted on a publicly available database with samples obtained from 89 children between 3 and 6 years 
old and 30 adults. We have used Support Vector Machines algorithm to classify the resulting features into 
age groups. The sets of features are fused at score level using data from smartphones and tablets. The results,
with correct classification rates over 96%, show the discriminative ability of the proposed neuromotor-
inspired features to classify age groups according to the interaction with touch devices. In active detection 
setup, our method is able to identify a child using only 4 gestures in average. 

1. Introduction

Touchscreen panels have changed the way users
interact with new devices. They have increased their 
relevance because of their portability and ease of use. 
The touchscreen enables an intuitive experience of use
that allows a direct interaction with what is being 
displayed. According to [1], the touchscreen market is 
growing 10 times faster than other electronics markets 
and the revenue for these types of devices grew up from 
4.3 to 23.4 billion dollars during the last decade.  

Touchscreen devices provide mobile access to an
unlimited number of digital content and services (e.g. 
more than a half of YouTube visits come from mobile
devices and this percentage is increasing [2]). The 
universal user profile does not exist and digital services 
are used by people from everywhere, all ages, all 
ethnicities and all socioeconomic status. In this context,
the classification of users according to geographic and 
demographic attributes is crucial for the creation of
accurate specific user profiles. Those profiles are used
to generate digital identities of the users that can be 
exploited by services and platforms (e.g. recommender 
systems, parental control, security) [3]. Some of these
attributes can be obtained from metadata associated to
the device (e.g. IP address, language selection, GPS 
location) or can be inferred from the user behaviour 
(e.g. browsing history, social network contents, and
keystroke dynamics) [4]. We want to highlight the
spread of the use of this kind of devices by young 
children. The study in [5] reveals that 97% of US 
children under the age of four use mobile devices,
regardless of family income. 

In this paper we analyse a way to classify users of 
touch panels according to two age groups (children and 
adults). Furthermore, we implement a novel Active User
Detection (AUD) algorithm for age prediction. In this 
paper we apply AUD algorithms in order to take
advantage of physiological and behavioural mannerism 
of the user while interacting with a touchscreen device. 
Such mannerisms are often distinctive among different 

users, they are stable over a period of time and difficult
to mimic [6]. Therefore, AUD systems are well protected
against spoofing or hacking and recent works have
shown that they report better results than single user
authentication systems [7]. The main objective of the
AUD method is to detect an intruder (children in our 
case) with the minimum possible delay from the
moment he or she starts using a touch-based device. 
Thanks to the usage of AUD systems, in this context, it 
would be possible for example to adequate the content
shown on the screen for the new user profile instantly,
avoiding locking the session and asking for a password 
or traditional parental control systems. 

The age is a human attribute which belongs to soft
biometrics, like the ethnicity or the gender. According to 
the classification proposed in [8], soft biometrics traits 
can be divided into physical (e.g. age, ethnicity, 
gender), behavioural (e.g.  mood, stress) and adhered 
human characteristics. These characteristics provide
information about an individual and aim to recognize 
individuals but they are not capable to distinguish
between them due to a lack of distinctiveness and
permanence.  

Besides, the age is a key attribute in user profiling
with direct application on several automatic systems 
(e.g. parental control, recommender systems, 
advertising). The most popular way to know the age of
the user is by using online questionnaires in which the 
user directly reveals his age. However, this solution 
assumes: i) honesty on the response of the users, and
ii) that users can read. Both assumptions cannot be
guaranteed because of many practical reasons. 
Besides the fact that people lie, nowadays children start
to use digital platforms and services before learning to 
read. 

In the existing literature, there are many 
experiments exploring the use of technology by 
children, seeking how to improve the design of adapted
interfaces and applications [9]. However, modelling and
characterizing mathematically how children interact with 
touch devices and how their conduct differs from the
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adult's one is a field that has not been studied deeply 
enough. A work related to this topic is [10] where the 
authors analysed different types of touching tasks like
tap, rotate or drag and drop, and they found that 
children have different success rates when trying to
perform different tasks. Simple tasks (e.g. swiping,
tapping) can be done by all children without any 
problem, but the more complex ones are very difficult to 
complete for short age children. In [11], researchers 
measured the touch gestures of children and compared
them to gestures from adults. They discovered that 
children have a larger miss rate compared to adults 
when trying to hit small targets. The difference between
adults and children is mainly caused by the different
grade of maturity of their anatomy and neuromotor 
system. These features are less mature in children, so 
they have worse manual dexterity causing rougher 
movements [12] [13]. 

In a complementary case of our study, [14], authors 
showed high classification rates between young adults 
(20-50 years) and older adults (70+ years) based on
touch-gestures, demonstrating differences in 
neuromotor skills during human ageing whilst our work 
studies differences between undeveloped neuromotor 
skills in children and total maturity in young adults. 

In [15], researches show that people with a long 
thumb complete swipe gesture over a smartphone
faster than those with shorter thumbs. This could be a 
key to identify children due to their shorter thumbs and
therefore longer time task. 

In this paper we will analyse two different types of 
touchscreen gestures: swipe and tap. In swipe tasks, 
users slide their finger over the screen, while tap tasks 
consist on tapping the touchscreen for a short period of
time. We choose these gestures because they are the
most common ones in touchscreen interaction and they 
are easy to be performed by children. To do this, we use 

information of swipe and tap patterns from a publicly 
available database presented in [16] comprised of 119
subjects (89 children and 30 adults) using two different
types of devices: a smartphone and a tablet.  

Related to handwriting models, global features 
have shown to achieve good performance in this kind of 
systems (e.g. signatures, doodles) [17], but they have 
never been used to classify users regarding their age, 
so we will analyse whether they are suitable for this 
purpose. Global features refer to features extracted
from the whole touchscreen patterns, such as the mean
velocity or max acceleration among others. 

This work extends previous research [18] [19] by: i) 
studying user age-group classification based on the
combination (at feature level and score level) of 
neuromotor characteristics with global features 
obtained from touch interaction; ii) combining swipe and 
tap tasks following an Active User Detection framework 
for different use cases; iii) classification results show 
accuracies over 90% in several scenarios with top
correct classification rates of 96%. In AUD, the
algorithm shows to be able to detect children interaction
in 4 gestures in average. The system proposed in this 
work is compared with the method proposed in [20]. The 
results show a performance improvement over 6%.   

The rest of the paper is organized as follows: 
Section 2 depicts the systems architecture. Section 3
presents the experimental work carried out. Section 4 
analyses the results obtained and Section 5 presents 
the conclusions and goals achieved in this work. 

2. System Description

The architecture proposed is divided into three
consecutive stages (see Fig.1 for details): feature
extraction to compute the most suitable features for
each touch-based task, SVM classification to classify 
between child an adult for one-time task detection, and
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Fig. 1. System architecture. Each feature set (𝑓𝑡) is composed by the number of features (20, 21 or 3 depending 
of the set of features employed) multiplied by the number of samples (S). 
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Active User Detection where a sequence of touch tasks 
performed during the interaction with the device is taken 
into account to decide whether it has been produced by 
an adult or a child. 

2.1. Feature Extraction 
The feature extraction approach followed in this 

paper depends on the task performed: tap or swipe. For 
swipe tasks we analyse the performance of two feature 
approaches, one based on the Sigma-Lognormal model 
and a different one based on global features. It is worth 
noting that Sigma-Lognormal features extract
information related to neuromotor skills involved in the 
action performed, meanwhile global features extract 
holistic information from the trajectory of the gestures. 
For tap tasks we employ the feature approach based on
Tap/Offset features proposed in [20]. 

2.1.1 Sigma-Lognormal features: The application of 
the Sigma-Lognormal model and global features is 
analysed for the swipe task, while in tap tasks we will 
follow the feature approach from [20] as they are more 
suitable for tap gestures (few samples, lack of fine 
movement). The Sigma-Lognormal theory of rapid 
human movements allows to represent complex 
movements with an analytic model that describes some 
physical and cognitive features of human beings [21] 
[22]. This model has been successfully applied to
handwriting tasks like handwritten signature [23] [24].  

The Sigma-Lognormal model decomposes the 
complex signals that describe the speed of muscular 
movements into simpler ones that can be explained by 
few parameters. These parameters contain information 
about the activity itself but also about the neuromotor 
skills of the person [25]. 

Studies like [25] and [26] have proved that the 
Sigma-Lognormal model can be used to characterize 
children handwriting. They conclude there are two main
groups of children that are separable by looking at their 
learning stage. Children’s neuromotor skills become
more similar to the adults’ skills when they grow up, 
namely, when they finish their preoperational stage. At
age 10, children know how to activate each little muscle 
properly to produce determinate fine movements [16].
As they are based on the same neuromotor skills, the 
principles applied to the handwriting models can be
used to model touchscreen patterns. 

The Sigma-Lognormal model [13] [23] states that 
the velocity profile of human hand movements can be 
decomposed into strokes. Moreover, the velocity of
each of these strokes, 𝑖, can be described with a speed 
signal 𝑣𝑖(𝑡) that has a lognormal shape: 

|𝑣𝑖(𝑡)| =
𝐷𝑖

√2𝜋𝜎𝑖(𝑡−𝑡0𝑖)
exp (

(ln(𝑡−𝑡0𝑖)−𝜇𝑖)2

2𝜋𝜎𝑖
2 ) (1) 

where each of the parameters are described in Table 1.
The complete velocity profile is modelled as a sum of 
the different individual stroke velocity profiles as: 

𝑣𝑟(𝑡) = ෍ 𝑣𝑖

𝑁

𝑖=0

(𝑡) (2) 

where 𝑁  is the number of lognormals of the entire
movement. A complex action, like a handwritten
signature or touch task, is a summation of these
lognormals, each one characterized by different values 
for the six parameters in Table 1. 

In Fig. 2, the speed profiles of touchscreen swipe 
patterns from adult and child are shown (numerical 
refers to the data acquired by the device while analytical 
refers to the velocity profile obtained by the Sigma-
Lognormal model). This numerical signal is used as 
input of the Sigma Lognormal model [13]. The analytical 
signal is calculated using the Sigma-Lognormal 
parameters extracted from the numerical signal. The 
parameters of the Sigma-lognormal model have been
adapted to calculate 18 different features that can be
used to depict the neuromotor properties of the users 

Table 1. Sigma-Lognormal parameters description 

Parameter Description 

𝐷𝑖 
Input pulse: covered distance when 

executed isolated 

𝑡0𝑖
Initialization time. Displacement in

the time axis 

µ𝑖 Logtemporal delay 

𝜎𝑖 
Impulse response time of the 

neuromotor system 

𝜃𝑠𝑖 Initial angular position of the stroke 

𝜃𝑒𝑖 Final angular position of the stroke 

Fig. 2. Child (left) and adult (right) speed profiles from a touchscreen pattern (swipe). Numerical: is the captured
velocity signal |𝑣(𝑡)| of the touch activity (input of the model). Analytical: is the reconstructed Sigma-Lognormal 

velocity 𝑣𝑟(𝑡) profile (output of the model). Strokes: is the decomposition in individual strokes of the model. 
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[21]. The task time and the number of lognormals in 
each task have been added as features number 19 and
20. These features can be classified into three different
groups (see Table 2). A visual comparison between
children and adults speed profiles from Fig. 2 shows 
that children speed signals are composed by a higher 
number of strokes than the adult’s signals. The larger 
maturity on the neuromotor skills of adults produces soft 
velocity profiles revealing a fine control of the 
movements. 

Table 2 uses several time variables in the time-
based features definition. These variables are also 
times that represent an specific point at each lognormal 
from each swipe performed. 𝑡2𝑖 , 𝑡3𝑖 , 𝑡4𝑖 are zeros in the 

first and second derivative of equation (1). 𝑡3𝑖 is the 
statistical mode and 𝑡2𝑖 , 𝑡4𝑖 are the inflection points of 

each lognormal signal. 𝑡1𝑖 𝑡5𝑖  are calculated this way: 

𝑡1𝑖  =  𝑡0𝑖  +  𝑒𝑥𝑝 (𝜇𝑖  −  3𝜎𝑖)  and 𝑡5𝑖  =  𝑡0𝑖  +  𝑒𝑥𝑝 (𝜇𝑖  +
 3𝜎𝑖). They are choosen to make the [𝑡1𝑖 ,  𝑡5𝑖] interval to 
contain the 99.97% of the area under the lognormal 
signal. 

Every task is composed of at least one lognormal.
Each lognormal has its own values for the features so a
combination of features is needed to obtain a single 
value for task/feature. In this work, the values of the
features have been combined by computing the
arithmetic mean of the parameters obtained from each
|𝑣𝑖(𝑡)|. 

2.1.2 Global features: The global features set 
refers to features calculated from the entire touch task 
pattern, such as the mean velocity, max acceleration or 
total duration. For this purpose, many global features 
sets have been proposed in the literature [27] [28] [29] 
for signature verification. We use the 28-dimensional 
features set applied in [30] due to good results obtained 
in swipe patterns, but with some limitations (pressure
measurements were not acquired in this database).
After removing the features related to pressure, a 21-

dimensional feature vector was computed, as shown in
Table 3. 

2.1.3 Tap/Offset features: tap tasks are 
characterized by two features: i) the distance between 
the target point and the point touched (Offset-distance); 
and ii) the time that the user touches the screen during 
the tap task (Tap-time) [20]. 

2.2. Classification 
In this stage, we use feature selection (based on 

Sequential Forward Selection) to calculate the best
subset of features for each feature set in swipe task. Up 
to 5 features were extracted to achieve the best result 
for the lognormal features:  𝑓1, 𝑓2, 𝑓9, 𝑓19, 𝑓20 and other 5 
features where selected from the global feature set: 
𝑣’, 𝑣2𝑠𝑡 , 𝑣3𝑠𝑡 , 𝑎2𝑠𝑡 , 𝑎3𝑠𝑡 .  

As a classifier we use SVM (Support Vector
Machines) with a RBF kernel (Radial Basis Function 
with 𝐶 =  30 and σ =  10) because of its good general 
performance in binary classification tasks. As showed in
Fig. 1 three binary SVM classifiers were implemented,
one for each feature set. Up to four different
classification algorithms were compared: Decision Tree,
KNN, SVM-RBF and Logistic Regression. We chose 
SVM-RBF due to it achieved the best and more stable
results in all scenarios. 

 Each SVM is trained using samples from children 
and adults over the training data (users sequestered for
the test phase). The two approaches proposed for
swipe task achieved similar performance independently 
(as later we will see in section 4). Therefore, we perform 
the fusion of both approaches both at the feature and
score level. For fusion at feature level, both sets of
features were concatenated to form the final feature 
vector. For fusion at the score level, the final score is 
obtained as the average of the previous two. 

Table 2. Sigma-Lognormal model extracted 
features. These features are calculated for each 
lognormal of the decomposition of the numerical 
signal. 

Space-based features Time-based features 

𝑓1  =  𝐷𝑖 𝑓8   =  𝛥𝑡0  =  𝑡0𝑖  – 𝑡0𝑖−1  

𝑓2  =  µ𝑖 𝑓9  =  𝑣2  = |𝑣𝑖  (𝑡2𝑖)|  

𝑓3  =  𝜎𝑖 𝑓10  =  𝑣3  = |𝑣𝑖  (𝑡3𝑖)|  

𝑓4  =  𝑠𝑖𝑛(𝜃𝑠𝑖) 𝑓11  =  𝑣4 = |𝑣𝑖  (𝑡4𝑖)|  

𝑓5  =  𝑐𝑜𝑠(𝜃𝑠𝑖) 𝑓12  =  𝛿𝑡05  =  𝑡5𝑖 – 𝑡0𝑖−1  

𝑓6  =  𝑠𝑖𝑛(𝜃𝑒𝑖) 𝑓13  =  𝛿𝑡15  =  𝑡5𝑖 – 𝑡1𝑖−1  

𝑓7  =  𝑐𝑜𝑠(𝜃𝑒𝑖) 𝑓14  =  𝛿𝑡13  =  𝑡3𝑖 – 𝑡1𝑖−1  

𝑓15  =  𝛿𝑡35  =  𝑡5𝑖 – 𝑡3𝑖−1  

General features 𝑓16  =  𝛿𝑡24  =  𝑡4𝑖  –  𝑡2𝑖−1 

𝑓19  =  𝑇𝑎𝑠𝑘 𝑡𝑖𝑚𝑒 𝑓17   =  𝛥𝑡1  =  𝑡1𝑖  –  𝑡1𝑖−1 

𝑓20 = # 𝑜𝑓 𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙𝑠 𝑓18   =  𝛥𝑡3  =  𝑡3𝑖  – 𝑡3𝑖−1 

Table 3. Global features set. 

Parameter Description 

𝑇 Task time. 

𝑣’, 𝑣𝜎 , 𝑣1𝑠𝑡 , 𝑣2𝑠𝑡 , 𝑣3𝑠𝑡

Velocity: mean, standard 
deviation, first quartile, second 

quartile and third quartile.  

𝑎’, 𝑎𝜎 , 𝑎1𝑠𝑡 , 𝑎2𝑠𝑡 , 𝑎3𝑠𝑡

Acceleration: mean, standard 
deviation, first quartile, second 

quartile and third quartile.  

𝑑𝑁−1 Distance between end points. 

𝜃 
Angle between line and 

horizontal axis. 

෍ 𝑑𝑖

𝑁

𝑖=0

 
Summation of distance between 

adjacent points. 

𝑑𝑥, 𝑑𝑦
Distances between mean and 

min point. 

𝜎𝑎𝑥 ,  𝜎𝑎𝑦
Standard deviation of x and y 

axis acceleration. 

𝐻, 𝑉 
Horizontal and vertical span 

ratio 

𝐴 Swipe area 
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2.3. Active User Detection 
The AUD algorithm proposed in [31] for intrusion 

detection is adapted in this work for children detection. 
The algorithm is based on calculating a new score from 
the cumulative sum of previous events (swipe or tap in
this paper). If the user is an adult (genuine) the 
cumulative sum will be almost zero. At the moment the
user profile changes into a child (intruder) this score will 
tend to increase until reaching a certain threshold, in
which the user will be detected as a child. The algorithm 
starts with the calculation of the log likelihood ratio 𝐿𝑛: 

𝐿𝑛 = log (
𝑓𝑐(𝑥𝑛)

𝑓𝑎(𝑥𝑛)
) (3) 

where 𝑓𝑎  and 𝑓𝑐  are the probability distributions of the 
SVM calculated previously on the classification stage 
with the training set, and 𝑥𝑛  is the score of the event 

number 𝑛  from a test user. In Fig. 3 an example is 
shown with a sequence of events. It starts with an adult
and changes into a child at the middle of the sequence. 
If 𝑓𝑎(𝑥𝑛) is higher than 𝑓𝑐(𝑥𝑛), this means that the event 

𝑥𝑛 is likely made by an adult and therefore 𝐿𝑛will be a 
negative number (see Fig. 4). By the moment the user 
profile changes into a child (event number 21 in Fig. 3),
𝐿𝑛 will be positive and the cumulative sum will start to 
increase. 

The aim is to reach a certain threshold and detect
the child with the minimum number of touch gestures 𝑁.
The cumulative sum calculates the score taking into 
account past events: 

𝑠𝑐𝑜𝑟𝑒𝑀 = max (෍ 𝐿𝑛

𝑀

𝑛=1

, 0) (4) 

note that 𝑠𝑐𝑜𝑟𝑒𝑀 is set to have a minimum value of 0,
because otherwise, several adult sequences could 
decrease the value too much making necessary to
insert a higher number of children samples to reach the 
decision threshold.  

Fig. 3 shows an example of a sequence of events 
with 40 samples (20 from adult X and 20 from children 
Y). The events are chosen randomly between swipes 

and taps with p probability (tap/swipe rate). The curve 
shows that 𝑠𝑐𝑜𝑟𝑒𝑀 is close to zero with adult samples 
and it tends to increase at the moment child samples 
start. The selection of the threshold to calculate when 
the user is detected as a child is crucial in performance 
terms: a high threshold could decrease the number of
false detections (adults detected as a child), but also it
could increase the time delay (time between the child
starts to operate the device till he is detected). In order 
to choose the best threshold, we will present ADD 
(Average Detection Delay) and PFD (Probability of
False detection) curves, previously used in [31]. ADD
curves show the number of samples necessary to
detect a child as a function of the threshold. On the other
hand, PFD curves depict the percentage of false
detection. Additionally, we add PND (Probability of Non 
Detection) to depict the percentage of children who are
not detected by the system. 

3. Experiments

3.1. Database
The experimental protocol is based on the publicly

available database presented in [16]. It is a database 
with touchscreen activity of both children and adults 
performing predesigned tasks in an ad-hoc app. 

The database comprises samples from different
guided activities such as tap, double tap and drag and 
drop (swipe) tasks. In the present work, we have used 
the data from swipe and tap activities. Swipe activities 
consist in picking one object on the device screen and
moving it to a target area, meanwhile tap activities 
consist in touching the screen over a target area for a
moment. These tasks have been selected because they 
are simple and common neuromotor tasks as they 
consist in moving the finger on a surface and also they 
are widespread gestures in touchscreen device
interaction. Multidevice information is available as long 
as the users have completed the tasks in both a
smartphone and a tablet. This allows testing our
solution in both scenarios. 

The dataset is composed by 89 children between 3
to 6 years old and 30 young adults under 25 years old. 
The mean age of the children is 4.6 years. The total 
number of samples is 2912 for children and 1157 for 

Fig. 4. Probability distribution of adults and children 
for tap task. The score 𝑥𝑛 shows that 𝑓𝑐(𝑥𝑛)  is 

higher than 𝑓𝑎(𝑥𝑛) and the log likelihood ratio 𝐿𝑛

will be positive. 
 

Fig. 3. Example of QCD-based curve with a sequence 
of 40 samples (20 from an adult and 20 from a 
children) with p=0.5 (dots are tap samples). 
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adults (see [16] for more details). To the best of our 
knowledge, this is the largest database in the field of
interaction with touchscreen technology with children 
under 6 years old. 

The main issue when acquiring data from children
activity is to maintain the kids’ attention during a long 
time period. The authors of the database have adapted 
the activities interfaces to make the tasks more 
interesting to children. Thank to this, they have 
managed to obtain a completion rate near 100% in tap
tasks and above 90% in all types of tasks. 

3.2. Experimental protocol 
The experiments were divided into two well 

differentiated scenarios: one-time detection and active
user detection. 

One-time detection refers to feature extraction and 
SVM classifiers experiments, where only one sample is 
used to discriminate among children and adults. The 
users have been separated randomly in training (60%) 
and test (40%). It is guaranteed that users (children and
adults) employed for training are different from those
employed for test (open-set classification paradigm). 
The experiments were repeated 50 times and the final 
performance is presented in terms of average correct
classification rate computed as 100 −
𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 (𝐸𝐸𝑅).  𝐸𝐸𝑅 refers to the value where False 
Match Rate (percentage of children classified as adult) 
and False Non-Match Rate (percentage of adults 
classified as children) are equal. Due to the higher 
number of children tasks in the database compared with
the adults, selecting a percentage of the total users 
make the two scenarios to be unbalanced. Experiments 
balancing the number of both classes in training and
testing processes have been made. Nevertheless, the
results show small variations around 1% of accuracy 
(variation that can be related to the statistical variation
due to the dataset). 

On the other hand, active user detection 
experiments take a sequence of events during a period 
of time to detect a change in the user profile (from adult
to child or vice versa). It is worth highlighting that active
detection samples are the scores from the one-time 
detection system (see Fig. 1), so the performance of the 
first one is crucial for both scenarios. 

3.2.1 One-time detection: up to three SVM 
classifiers were performed in this section, one for each 
set of features: Sigma-Lognormal and global features 
for swipe task, and Tap/offset features for tap task. 

Swipe tasks fit into the Sigma-Lognormal model as 
they are composed by precision movements over time.
The parameters of the model (see Table 1) for all tasks 
were extracted using the Script Studio software [7]. This 

software provides the 6 × 𝑁 parameters for each swipe 

task. 𝑁  is the number of lognormals and it is 
automatically calculated by Script Studio according to
the input data (coordinates 𝑥, 𝑦  and their respective 
timestamps). In this work, we process the parameters 
of the model to remove the smallest lognormals. This 
post-processing is intended to discard all small 
lognormal signals that do not have the same importance
as the big ones in order to differentiate between children 
and adults. Any lognormal with a maximum amplitude 
(which occurs in 𝑡3) under a specified threshold (in this 

work we use the mean value of 𝑣3  across all the
lognormals of the task as threshold) will be removed. 

It is vital to remark that all small lognormal signals 
would be necessary to reconstruct the original stroke
accurately but not to perform a distinction between two 
types of users, as the smallest signals will have a
negligible impact in the mean values of each task. 

After reducing the number of lognormal signals, the
features in Table 2 are computed. The features have
been computed for all the lognormal signals in each
swipe sample for a total number of features equal to 
18 × 𝑁’ + 2 . Where 𝑁’  is the number of lognormals 
validated after the postprocessing (𝑁’ ≤ 𝑁) and the two 
remaining features are the number of lognormals and
the task time. Finally, each feature is averaged (using
the 𝑁’ values) to obtain a feature vector of dimension 20 
for swipe task. 

Regarding global features set (see Table 3), they 
were also extracted for swipe tasks in order to compare 
and study the difference among both set of features at 
performance terms. To do this, the two sets of features 
were combined following two different scenarios: fusion 
at score level and fusion at feature level. 

3.2.2 Active user detection: these experiments 
simulate a human device interaction with a sequence of
swipe and tap gestures combined in order to detect as 
soon as possible if the device is being used by a child.
To simulate this change in the user profile, we build
sample sequences with a first half of adult samples and 
the second half of child samples. Moreover, the rate
between taps and swipes in each sequence can vary 
depending on the application used (remember that each
sample of the sequence could be a tap or swipe); for 
instance, in reading applications swipe gestures are
more common than taps gestures meanwhile, in
videogames applications it would be the opposite. The 
different combinations have a significant impact in
results due to tap gestures have a worse performance
in one-time user detection and it could yield a drop of 
performance for active detection in those sequences 
where tap gestures are more common. To analyse this 
effect, we separate the experiments into different 

Table 4. Results achieved for each one-time detection system in correct classification rate (%) terms. 

Our 
implementation of 

[20] 

Swipe Tap 

Device Sigma-Lognormal  Global 
Feature
Fusion 

Score
Fusion 

Tap/Offset 

Phone 86.5 93.6 92.1 92.7 94.1 85.4 

Tablet 90.5 96.3 94.5 94.9 96.5 80.0 
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scenarios taking into account the percentage between 
tap and swipe gestures in the sample sequences made. 

Finally, we compute an error rate in order to
compare among all scenarios and devices proposed in 
this paper. 

4. Results

4.1. One-time detection
In Table 4 we summarize all experiments performed

in this section. For swipe tasks, the best result was 
achieved by the fusion at score level of both feature sets.
The mean value of correct classification rate having into 
account all evaluated scenarios and both devices is
94.4%. The best results are obtained with tablets as 
sensors, while when using smartphone’s data slightly 
worse results are achieved. Note that swipe gestures 
have longer trajectories in tablet screens compared to
smartphone screens. Larger movements imply more 
information available to classify users. However, tap
gestures do not take advantage of the screen’s size due 
to the target point has the same size in both devices 
(remember that the distance between the target point
and the point touched is one of the three features in 
Tap/Offset set). 

Fig. 5 shows the probability distribution functions of 
the scores calculated in the classification process for
both swipe and tap task in phone device. For swipe task, 
scores from children and adults are visibly separated 
into two different zones, making possible to get high
accuracy rates (over 93%). There are also other zones 
where the score distributions overlap. These regions 
are the source of incorrect classifications. Combining 
scores from several samples (Active User Detection) of 
the same user could reduce the overlapping areas, 
increasing even more the accuracy rate. Regarding tap
task, both probability distributions show greater overlap 
causing a worse performance.  

Table 4 also shows the classification accuracies 
obtained from the method proposed in [20]. The 
improvement in accuracy rate can be associated to the 
better discrimination due to a combination of LogNormal 
and global features that describes better touched based 
gestures, while in [20] their features are basically 
related to the precision of the gestures. 

Finally, the age of children is a key factor to take
into account in classification performance. Neuromotor 
skills in children become more similar to the adult ones 
as they grow up. At the age of ten, children have their 
neuromotor skills completely developed making the
classification task more complicated [32]. In order to 
analyse the impact of the children growth we compare
children scores by age obtained in the classification task 
with the distributions of adults scores, expecting to
observe a similarity between adults and children as 
children are older. Fig. 6 shows the scores obtained by 
the SVM of the children in tap and swipe task sorted by 
age (left axis-y). Besides, the distribution of adults 
scores is plotted to easy comparison. We can observe
that children scores get close to the adult ones as 
children grow up due to maturity of their neuromotor 
skills, especially in tap task. In accuracy terms, we
divide children into three age groups: under 4 years old,
between 4-5 and older than 5; the accuracies in tablet
device were 85.0%, 80.8% and 76.3% respectively in
tap task and 98.2%, 96.5% and 93.2% respectively in 
swipe task. 

4.2. Active user detection 
As mentioned before, the swipe/task rate (p) could

be crucial for AUD results due to worse performance in
tap tasks. Real user interaction with touch screens 

Fig. 5. Probability distribution of adults and children 
for tap and swipe tasks with phone device. 

Fig. 6. Probability distribution of adults (right y-axis) and children scores sorted by age (left y-axis) for swipe 
task (right) and tap task (left) with tablet device. 
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involves swipe and tap gestures. Thus, we decided to
distinguish among three scenarios taking into account
different percentages of swipe and tap events: 

• First scenario (p ≤ 0.25): sample sequence with a

25% or less of swipe gestures.

• Second scenario (0.25 < p < 0.75): sample

sequences with swipes and tap gestures balanced.

• Third scenario (p ≥ 0.75): sample sequences with

a majority of swipe gestures.

The swipe and tap gestures from each user are
randomly chosen for all three scenarios to build each
sample sequence. The experiments are repeated up to
100 times so we have 100 different samples sequences 
for each user.  In order to analyse the AUD system 
performance, we present ADD (Average Detection
Delay), PFD (Probability of False Detection) and PND 
(Probability of Non Detection) curves shown in Fig. 7. 
All curves were calculated individually for each user,
and finally averaged. 

PFD curves show how many adults in percentage 
are identified as children (false detections). All 
scenarios show similar PFD performance; as it is 
expected, false detections decrease when thresholds 
increase. Furthermore, the third scenario (p > 0.75), 
where swipes gestures are more common, decrease 
faster due to having a better performance in one-time
user detection for swipe, so false detection are relatively 
uncommon among swipe gestures. 

In addition, ADD-PFD curves denote how many 
samples are necessary to identify a child on average 
depending on false adult detections. This quantity is a
significant factor to take into account when an AUD
system is designed. The system tries to identify a child
with the minimum amount of samples as possible in
order to reduce the time delay (time between the child
starts to operate the device till he is detected) but 
avoiding false detections as well. It can be seen that the
number of samples necessary to identify a child
increases when we decrease the false detection, so
there is always a trade-off between both curves. 
Moreover, ADD curve for the third scenario (p > 0.75) 
has better performance again. 

PND curves depicts the percentage of children 
which are not detected by the system. In this case, the 
first scenario (p < 0.25) increases faster with the
threshold. Regarding the third scenario we expected to 

achieve the best results but it tends to obtain the highest 
PND rate with high thresholds. The main reason of this 
effect is that the lack of swipe samples in some children 
suggests that they would never be detected by the
system for high thresholds. Note that the third scenario
has the best results for low thresholds where few 
samples are enough to reach it. It can be seen that there 
is always a trade-off between false child detection (PFD) 
and non-child detection (PND), as it is possible to 
decrease the false adult detection at the cost of having
more children who are not detected by the system and
vice versa. Therefore, performance will vary depending 
on the system design and application. 

The PFD-PND curves showed in Fig. 8 are useful 
performance metrics to analyse AUD systems. Note 
that PFD/PND in active detection are similar to
FMR/FNMR in one-time detection. The main difference
is that PFD and PND curves are obtained from a 
sequence of stacked scores meanwhile FMR/FNMR
come from one-time detection. In order to differentiate 
among both cases, we decided to keep the same
nomenclature as in [31]. In these curves we can
appreciate the trade-off effects: reducing the false child 
detection rates (PFD) makes the system more prone to 
non-child detection (PND) as a consequence. In this 
figure we can analyse better the p rates effects over the
sample sequence. The case having more swipe than
tap gestures yielded better performance as expected. 

Table 5 summarizes the correct classification rates,
computed as the opposite of the EER. Each correct 

Fig. 7. PFD (left), PFD-ADD (middle) and PND (right) curves for smartphone. 

Fig. 8. PND-PFD curves for single user scenario 
with smartphone device. Points where curves cross 
the black line are the EER values. 
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classification rate has been calculated independently 
for each device and p rates. This table shows that AUD
results are slightly better in smartphone devices due to 
it achieves better results in tap gestures. In fact, the
difference between smartphone and tablet devices 
tends to decrease when tap gestures are less common. 

Besides, the correct classification rates for one-time 
detection were added to the table to compare among
algorithms. It can be seen that AUD results are always 
between swipe and tap gestures in one-time detection
results: results in AUD scenario where most of samples 
are swipe are close to swipe results in one-time 
detection meanwhile AUD algorithm improves one-time
detection when tap gestures are more common. In fact,
if we only consider swipe gestures (p = 1) or tap 
gestures (p = 0) in AUD, the results improve one-time
detection marks so active user detection could improve 
one-time detection system at the cost of having more
time to detect a child. 

5. Conclusions and Future Work

In this paper, we have studied user classification
into children and adults according to their interaction
with touchscreen devices like smartphones and tablets. 
Furthermore, we present an active user detection
algorithm that takes advantage from the previous 
classifier results to identify children during a device
interaction session. 

Firstly, we have studied feature extraction based on 
the parameters of the Sigma-Lognormal. These 
features illustrate the neuromotor skills of users, making 
it capable to discern between children and adults. An
evaluation of its performance has been made, using a
public database with touchscreen activity of both 
children and adults. The classification rates are over
95% combining both Sigma-Lognormal and global 
features, but with small differences depending on the
age group.  

Secondly, we developed an active user detection 
system aimed to detect a child with the minimum delay 
as possible from the time he starts to interact with the
device. We simulate this situation generating 
sequences of tap and swipe gestures during a period of
time. Depending on the type of sequences, our methods 
achieve accuracies ranging between 86% and 95%.
These accuracies can be obtained using features 
extracted from only 4 simple gestures made by adults 
or children. Although our error rates are very low, they 
are limited by the number of samples per user, some 
children have insufficient number of samples to be 
identified, yielding worse performances for short 
sequences. A major limitation of this work comes from
the database used, as it does not contain data from 

users with ages between 6 and 25 years old. To the best 
of our knowledge there is no such database with touch 
screen interaction data available to the research
community. 

As future works, a reliable and fast classifier of 
users from all ages based on their interaction should be
developed as a combination of different expert systems. 
The main drawback of other methods like using the 
browsing history or social network profiles, is that they 
need a high amount of data. Our system allows to 
classify users using data from simple and short (2
seconds) tasks. These features make our solution
suitable for applications that require classification on the 
fly. As future improvements of this system, two main 
aspects can be taken into account. First, the patterns 
used in this work are too simple: swipe and tap gestures.
Better classification rates may be achieved if the
information comes from more complex tasks or from 
continuous monitoring. Second, this study includes the 
analysis of touch patterns from children under 6 years.
However, how to recognize users with mature
neuromotor skills (from 10 years old onwards) is a
challenging task and new models and methodologies 
should be proposed for that purpose in the future. The 
classification of older users using the Sigma-Lognormal 
model is a possibility since it is demonstrated that the
neuromotor abilities decay with the age. Note that the 
number of public databases is very scarce. We
encourage researchers to work in this field. 
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