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Quick fixing ATL transformations with speculative analysis
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Abstract Model transformations are central compo-
nents of most model-based software projects. While en-
suring their correctness is vital to guarantee the quality
of the solution, current transformation tools provide lim-
ited support to statically detect and fix errors. In this
way, the identification of errors and their correction are
nowadays mostly manual activities which incur in high
costs. The aim of this work is to improve this situation.

Recently, we developed a static analyser that com-
bines program analysis and constraint solving to iden-
tify errors in ATL model transformations. In this paper,
we present a novel method and system that uses our
analyser to propose suitable quick fixes for ATL transfor-
mation errors, notably some non-trivial, transformation-
specific ones. Our approach supports speculative analy-
sis to help developers select the most appropriate fix by
creating a dynamic ranking of fixes, reporting on the
consequences of applying a quick fix, and providing a
previsualization of each quick fix application.

The approach integrates seamlessly with the ATL ed-
itor. Moreover, we provide an evaluation based on exist-
ing faulty transformations built by a third party, and on
automatically generated transformation mutants, which
are then corrected with the quick fixes of our catalogue.

Key words Model transformation, ATL, Transforma-
tion static analysis, Quick fixes, Speculative analysis.

1 Introduction

Model transformation is one of the cornerstones of
Model-Driven Engineering (MDE), as it enables the au-
tomation of model manipulations. Hence, methods to
detect and correct transformation errors, as well as to
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speed up the construction of transformations, are of
great interest for MDE practitioners [33].

Many transformation languages and tools have been
proposed along the years, and some like ATL [15] or
ETL [18] are widely used by the MDE community. How-
ever, they have not achieved the same level of maturity
as supporting tools for general-purpose programming
languages like Java. In this respect, missing features in-
clude static analysers that detect advanced typing and
rule errors, quick fix generators able to propose correc-
tions to these errors, and tools that help understanding
the consequences of applying a correction.

The static guarantees that transformation languages
provide vary. For instance, most QVT [32] implemen-
tations statically type the transformation against the
source/target meta-models, but other languages such as
ATL or ETL are dynamically typed. In the latter case,
transformations are prone to typing errors, like access-
ing a feature that is defined on a subtype of the receptor
object’s type, mistakes in type declarations, or naviga-
tion through possibly null references. Other elusive er-
rors that are important to detect and fix include rule
conflicts (i.e., rules with overlapping applicability condi-
tions, which cause errors in languages like ATL), unre-
solved or incorrectly resolved bindings, and conformance
errors of the generated output models with respect to the
target meta-model (e.g., uninitialized mandatory fea-
tures) [35]. Nowadays, in most cases, these errors have
to be discovered by manual testing, which is a costly
activity with the risk to be incomplete. Instead, fault
localization using static analysis is an automatic, lighter
technique, while facilities to fix typing errors may help
to improve the developer productivity and the transfor-
mation quality.

In previous work [35], we built a static analyser for
ATL transformations, named anATLyzer1, which is able
to detect a wide number of typing and rule errors (about
45 different types). The analyser is integrated with the

1 http://www.miso.es/tools/anATLyzer.html



standard ATL editor, so that errors can be detected in-
teractively while the user is constructing the transforma-
tion. Using the analyser, we discovered that even trans-
formations considered in a mature stage, like those in
the ATL Use Cases2, contain errors.

In this work, we extend the analyser with the possi-
bility to propose and apply quick fixes for the detected
errors. Quick fixes can be used for autocompletion in
order to speed up transformation development, or as a
means to correct existing errors. Depending on the kind
of error, quick fixes may suggest changes in the trans-
formation (e.g., adding filters to rules or collections, or
refine the type of a variable), in the meta-model (e.g.,
setting a feature cardinality to optional), or add trans-
formation pre-conditions that prevent the transforma-
tion execution for problematic models. In this way, quick
fixes proposed for an error can be selected and applied
interactively.

In case of errors that can be fixed in several ways,
we provide a static ranking which shows first the quick
fixes that we have found empirically to solve more errors
and introduce less issues. In addition, to help developers
make better decisions when several possibilities exist,
and to understand the consequences of applying a fix,
we use speculative analysis [3,28]. This term was coined
by the programming languages community in analogy
to speculative execution, e.g., for branch prediction and
cache pre-fetching in program execution. It consists in
analysing the possible future states of the program evo-
lution (a transformation in our case), with the purpose
of gathering information about remaining or introduced
errors by a quick fix. This analysis is presented to the
developer who can use it to perform more informed de-
cisions when applying a quick fix.

We have evaluated several aspects of our approach.
First, we have tested the completeness and validity of
our quick fix catalogue by applying it to a large set of
transformation mutants automatically synthesized from
existing third-party transformations. The aim of this ex-
periment is twofold: (i) to evaluate the degree in which
there are quick fixes applicable for every error found,
and (ii) to study how the quick fix application impacts
the quality of the transformation. The latter is analysed
by inspecting whether the quick fix actually solves the
targeted error, does (not) produce additional issues, or
solves other problems as a side effect. Second, we have
empirically collected the efficacy of each quick fix (i.e.,
errors solved vs. issues introduced) to create a static
ranking of quick fixes for every error. Then, we compare
such a static ranking with a dynamic ranking produced
by speculative analysis, taking as a basis the “optimal”
quick fix selected by ATL experts. This experiment is
performed over a set of faulty transformations developed
by third parties.

2 http://www.eclipse.org/atl/usecases/, some
of these transformations originated from industrial projects

To the best of our knowledge, this is the first work
proposing a catalogue of quick fixes for model transfor-
mations which can be used in practical tools.

This paper extends our previous work [36] with
the following contributions: we enlarge our catalogue of
quick fixes, including variants and refinements of previ-
ously existing ones; we give a detailed account of all of
these quick fixes and illustrate them with comprehensive
examples; we support speculative analysis; we present
a more precise experimental evaluation; we provide a
static ranking of fixes which has been determined em-
pirically; we provide a dynamic ranking of fixes created
on-demand using speculative analysis; and we compare
the dynamic and static rankings.

The rest of this paper is organized as follows. First,
Section 2 introduces a classification and conceptualiza-
tion of quick fixes and a running example. Then, Sec-
tion 3 explains our method for static analysis. Section 4
presents our catalogue of quick fixes classified according
to a feature diagram, while Section 5 analyses their im-
pact and introduces our speculative analysis technique.
Section 6 describes our implementation, and Section 7
its evaluation. Section 8 discusses related research, and
finally, Section 9 ends with the conclusions and lines of
future work.

2 Overview and Running Example

In this section, we provide an overview of quick fixes and
introduce a running example that will be used in the rest
of the paper to illustrate our catalogue of quick fixes.

2.1 Quick fixes: An initial classification

Recommenders are increasingly being used to assist in
different software engineering tasks [34]. In particular,
code recommenders assist programmers with coding ac-
tivities, like API usage or the application of quick fixes.
The actual recommendation may come from a mix of
sources, like the static analysis of the program being de-
veloped, its execution, or the programmer [31]. In this
work, we focus on quick fixes, where information is gath-
ered via static analysis of the ATL transformation.

We define a quick fix as an automatable solution, and
readily applicable, to a problem detected statically. Typ-
ically, a quick fix provides a rapid means to correct a
problem reported by the IDE as the program (a trans-
formation in our case) is developed. We found no explicit
classification of quick fixes in the literature, but the fol-
lowing categories have suited our needs:

1. Repair. These quick fixes remove the targeted prob-
lem, typically adding or modifying expressions in cer-
tain locations, and without any additional input from
the developer. An example is a quick fix adding a con-
dition to ensure that a navigation expression cannot
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go through a null reference. In some cases, the appli-
cation of this kind of quick fixes may introduce errors
in other locations. For example, a quick fix changing
the type of a helper’s formal parameter3 to make it
compatible with the actual parameter of an existing
helper call (e.g., from integer to string), may pro-
duce an error in other calls that were coherent with
the original helper definition.

2. Template. This type of quick fix generates a piece of
code solving a problem, but there may be missing in-
formation that is only initialized with default values,
and the developer must add the logic to complete the
generated code. For example, a transformation may
refer to a non-existent helper, and the quick fix cre-
ates a template for it, which the user needs to fill
with appropriate code.

3. Heuristic. This corresponds to a suggestion, e.g.,
proposing a valid name for a collection operation
based on string similarity [6]. Unlike the first type
of quick fix, these suggestions are provided heuristi-
cally among several possibilities, and their applica-
tion normally implies just some replacement.

In practice, quick fixes are used in two ways: either to
correct errors or for code autocompletion. In the former
scenario, the developer is reported a problem and apply-
ing one of the available quick fixes solves the problem. In
this case, repair and heuristic quick fixes are most use-
ful. In the case of code autocompletion, the developer
may even make the error on purpose (e.g., invoking a
non-existing lazy rule) and the proposed quick fix ap-
plication generates a template that the developer later
completes manually. This is the most common use of
template quick fixes.

2.2 Conceptual overview of our approach

Figure 1 shows the conceptual view of our system. We
use this figure to provide an overview of our approach
and as a guide to read the rest of the paper.

For each kind of problem detected by our static anal-
yser, there are zero or more associated quick fixes. Sec-
tion 4 introduces our catalogue of quick fixes, which can
be extended easily via extension points (see Section 6).
Each quick fix comprises an optional application condi-
tion and an action. The application condition allows dis-
carding the quick fix if the problem occurs in a context
where it does not make sense or that the quick fix can-
not handle. The action implements a strategy to fix the
problem, which can be classified according to the affected
artefact. In the context of model transformation, quick
fixes may target the transformation implementation (the
most common case), the involved source/target meta-
models, or the transformation specification by adding a

3 In ATL, a helper is an auxiliary query operation.

transformation pre-condition. The latter two possibili-
ties (fixing the transformation contract) are sometimes
preferred over changing the implementation, as discussed
in [29] for object-oriented programs. A classification of
our fixing strategies is shown in Figure 7.
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Fig. 1 Conceptual model of our proposal for quick fixes.

Quick fixes have access to the information gathered
during the static analysis to implement the application
condition and the action. Section 3 provides an overview
of the static analysis process. Some quick fixes, like those
of type template, may require the user intervention to
complete the generated code. Sometimes, a single type
of quick fix may provide several proposals, which is typ-
ically the case of heuristic fixes that suggest the best-
rated solutions to the user. The user is provided with an
explanation of the behaviour of the quick fix, which can
be as simple as a single line or more elaborated. There
are also fixes with variants, where each variant solves a
problem in the same way, but generating code in a dif-
ferent manner. For example, a quick fix may generate an
in-line expression, or alternatively, it may encapsulate
the expression in a helper that is invoked.

The local changes performed by a quick fix may im-
pact on other locations of the transformation. Our spec-
ulative analysis identifies at runtime the abstract syntax
elements affected by a change, whereas the language con-
structs likely impacted by a fix application can be iden-
tified empirically (see Section 7.2). Section 5 introduces
our speculative analysis technique, which analyses the
consequences of applying available quick fixes for a given
problem. We use this analysis to produce a dynamic
ranking of fixes (hence the ordered annotation in Fig-
ure 1) according to the number of problems solved/re-
maining after the quick fix application. In addition, we
support a lighter way to order quick fixes without re-
sorting to speculative analysis. This consists on a default
static order of applicable fixes, derived empirically from
the automated fixing of automatically mutated transfor-
mations. This static ranking is presented in Section 5.3,
and its comparison with the dynamic one is discussed
in Section 7. The static ranking is intended to provide
reasonable accuracy without delay time, whereas specu-
lative analysis provides richer information that includes
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a previsualization of the quick fix result, but it requires
some computation time.

2.3 Running example

To illustrate our quick fix generation techniques, we will
use excerpts of a transformation from UML Activity Di-
agrams (AD) to Intalio BPMN4, partially based on the
mappings introduced in [5]. Figure 2 contains relevant
snippets of the input and output meta-models for this
transformation.

OpaqueAction
language: String

Executable
Node

- Intalio meta-model -

- UML AD meta-model -

sequence
Edges

subpartition
*

inPartition  *
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Fig. 2 Excerpts of AD (up) and Intalio (down) meta-models.

Listing 1 shows an excerpt of the transformation,
consisting of three context helpers (lines 1-11) and five
matched rules (lines 13-50). A context helper is an aux-
iliary operation defined in the context of a class, and
can be invoked on instances of that class. A matched
rule is executed for every input object that matches the
input pattern specified in the from part of the rule and
satisfies the filter (if specified). For example, in line 37,
rule initialnode matches any object compatible with type
UML!InitialNode and having an empty incoming reference.
Each rule execution creates the objects indicated in the
rule’s output pattern (to part), together with trace links
to the originating input objects. The features of the cre-
ated objects are initialized according to the declared
bindings, using the syntax feature ← OclExpr. For ex-
ample, lines 39 and 40 initialize the features name and
activityType of the created object a of type Intalio!Activity.

4 http://www.intalio.com/products/bpms

If the feature is a reference, a mechanism called
binding resolution takes place by looking up the in-
put objects resulting from OclExpr in the collection
of trace links, in order to retrieve the corresponding
target objects. In lines 47 and 48 of the example, ref-
erences source and target of the created SequenceEdge

are assigned an object of type UML!ControlFlow.source

and UML!ControlFlow.target respectively. As these types
belong to the source meta-model, the binding res-
olution mechanism takes place. The type of both
UML!ControlFlow.source and UML!ControlFlow.target is
UML!ActivityNode, which can be transformed by rules
opaqueaction (line 29) and initialnode (line 36). Both rules
create objects compatible with Intalio!Vertex, and hence,
the resolution mechanism yields correct object types for
the bindings in lines 47 and 48.

1 helper context UML!Action def:
2 toIntalioName : Intalio!Activity =
3 self.name + ’ ’ + self.oclType().name;
4

5 helper context UML!Activity def:
6 allPartitions : Sequence(UML!Activity) =
7 self.partition→collect(p | p.allPartitions)→flatten();
8

9 helper context UML!ActivityPartition def:
10 allPartitions : Sequence(UML!ActivityPartition) =
11 self.subpartition→collect(p | p.allPartition)→flatten();
12

13 rule activity2diagram {
14 from a : UML!Activity
15 to d : Intalio!BpmnDiagram (
16 name ← a.name,
17 pools ← a.allPartitions
18 )
19 }
20

21 rule activitypartition2pool {
22 from a : UML!ActivityPartition
23 to p : Intalio!Pool,
24 l : Intalio!Lane (
25 activities ← a.node→reject(e | e.oclIsKindOf(UML!ObjectNode))
26 )
27 }
28

29 rule opaqueaction {
30 from n : UML!OpaqueAction
31 to a : Intalio!Activity (
32 name ← n.toIntalio
33 )
34 }
35

36 rule initialnode {
37 from n : UML!InitialNode ( n.incoming→isEmpty() )
38 to a : Intalio!Activity (
39 name ← n.toIntalio,
40 activityType ← #EventStartempty
41 )
42 }
43

44 rule edges {
45 from f : UML!ControlFlow
46 to e : Intalio!SequenceEdge (
47 source ← f.source,
48 target ← f.target
49 )
50 }

Listing 1 Excerpt of the transformation from UML AD to
Intalio. Errors are shown underlined.

Listing 1 contains several errors (shown underlined),
none of which are detected at compile time by the stan-
dard ATL IDE. Typically, these errors may remain un-
noticed until the developer executes the transformation
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with an input model making the transformation hit the
problematic statement. Instead, our analyser statically
detects and reports the following problems, for which
we show one illustrative quick fix. Other quick fixes are
possible, as we will show in the following sections.

– Declared type mismatch (lines 2 and 6). Our
static analyser infers the type String for the helper
toIntalioName, which is incompatible with the de-
clared type Activity. Similarly, the inferred type
for the Activity.allPartitions helper (line 5) is Se-

quence(ActivityPartition), which differs from the de-
clared type Sequence(Activity).
Quick fix: change declared type by inferred type.
By applying this quick fix, the helper toIntalioN-

ame would be assigned the return type String,
and Activity.allPartitions would be assigned Se-

quence(ActivityPartition), solving the problems.
– Possible access to undefined value (line 3). The

name property is optional in class NamedElement, so
in case it holds an undefined value, it will cause a
runtime exception when applying the + operator.
Quick fix: change the cardinality in the meta-model.
By applying this quick fix, the lower cardinality of at-
tribute name would change from 0 to 1. This ensures
that this attribute will never be undefined, solving
the problem.

– Compulsory feature not initialized (lines 23 and
24). Rule activitypartition2pool creates objects of types
Pool and Lane, but it does not initialize their manda-
tory attribute name.
Quick fix: generate a default value. By applying this
quick fix to the error in line 23, the binding name← ”

would be added to the created Pool, providing a de-
fault value for name and solving the issue. Applying
the quick fix to the error in line 24 would solve the
problem for the created Lane.

– Possible unresolved binding (lines 25, 47 and 48).
This issue is signalled when the right part of a bind-
ing may contain objects not matched by any rule.
For example, the OCL expression a.node → reject(...)

in line 25 may contain objects that are not considered
by the transformation. In particular, objects that are
instances of any subtype of ActivityNode except Ini-

tialNode and OpaqueAction, like DecisionNode in Fig-
ure 2, would not be transformed by any rule. The
same problem applies to the bindings of lines 47 and
48. These errors are a smell of incompleteness that
should be either fixed or documented.
Quick fix 1: add pre-condition to the transformation.
For the binding in line 25, this quick fix generates
an OCL pre-condition that discards models in which
ActivityPartition objects contain objects different from
InitialNode and OpaqueAction in its node reference.
Quick fix 2: add rule filter. For the bindings in lines
47 and 48, another option would be to generate a rule
filter, disabling the rule execution for ControlFlow ob-

jects connecting ActivityNodes different from InitialN-

ode and OpaqueAction.
– Feature not found (lines 32 and 39). The invoked

feature toIntalio does not exist, either in the meta-
model or as an attribute (context) helper.
Quick fix: change invocation to the toIntalioName at-
tribute helper. This heuristic quick fix uses different
string comparison criteria to find a suitable proposal.
In this case, it uses the longest common substring cri-
terion [6] to suggest suitable feature/helper names.

– Enum not found (line 40). Enum literal #StartEven-

tempty cannot be found in the meta-model.
Quick fix: change to #StartEventEmpty. In this case,
the most optimal proposal is found using the Leven-
shtein string distance criterion [6].

3 Transformation Analysis

Our system uses static analysis to identify problems and
gather the information required to implement the quick
fixes. This section describes the main parts of our anal-
yser and classifies the problems it is able to detect. Fur-
ther information can be found in [35].

3.1 Static analysis of ATL model transformations

Our static analyser proceeds in three steps, as shown in
Figure 3. First, it type-checks the transformation, anno-
tating each node of the abstract syntax with its type.
Then, it creates the transformation dependence graph
(TDG), a kind of program dependence graph [9] which
makes control and data flow explicit and includes in-
formation about rule resolution and rule dependencies.
The TDG is the basis to analyse the behaviour of rules
and bindings (e.g., to determine unresolved bindings)
and to detect rule conflicts. However, some of the identi-
fied problems may not happen in practice, e.g., if the
program logic prevents the error. In those cases, the
analyser tries to find a witness model that makes the
transformation execute the problematic statement, and
hence confirming (or falsifying if it does not exist) the
problem. Our current implementation relies on the USE
Validator [19] model finder to perform this search.

ATL 
trafo. 

meta- 
models 

1: type 
checking TDG 

3.1: witness 
generation 

potential 

problems 
errors, 

warnings 

3: trafo. 
analysis 

2: create 
dep. graph 

annot. 
ATL 

model 

Fig. 3 Overview of static analysis process.

Figure 4 shows an example illustrating the analysis
process. Each node of the OCL expressions involved in
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the transformation is annotated with its inferred type.
For instance, the type of a.node→ reject(...) is a collection
of ActivityNode, and thus, the corresponding AST node is
annotated with a reference to this metaclass (type-of in
the figure). Given this information, we build the TDG
to make the data and control dependencies between the
transformation elements explicit. Figure 4 shows two re-
lationships recorded by the TDG, invoked-helper and
resolved-by. For the former, the calls to toIntalioName5

are linked to the helpers that may resolve the calls at
runtime (only one helper in this case). For the latter,
given a binding, we compute all matched rules that may
resolve it at runtime. In the example, the binding ac-

tivities ← a.node → reject(...) may be resolved by either
the opaqueaction or the initialnode rules, since their from

parts are subtypes of ActivityNode, the type inferred for
the right part of the binding.

rule initialnode { 
  from n : UML!InitialNode ( 
     n.incoming->isEmpty() 
  ) 
  to a : Intalio!Activity ( 
     name <- n.toIntalioName 
  )
} 

rule opaqueaction { 
  from n : UML!OpaqueAction  
  to  a : Intalio!Activity (
     name <- n.toIntalioName 
  ) 
} 

rule activitypartition2pool { 
  from a : UML!ActivityPartition 
  to p : Intalio!Pool, 
     l : Intalio!Lane ( 

 activities <- a.node->reject(...) 
  ) 
} 

Activity 
Node 

helper context UML!Action def: toIntalioName : ... 

Opaque 
Action 

Initial 
Node 

type-of 

type-of 

Fig. 4 Example of static analysis. Solid lines (labelled
as “type-of”) represent inferred type annotations. Dashed
lines represent “resolved-by” binding-rule dependencies and
“invoked-helper” call-helper dependencies.

This information enables rule–binding analysis, for
instance, to detect which bindings may be unresolved. In
general, this type of problems cannot be fully confirmed
by the type checker, but are marked as potential prob-
lems. In this example, we are interested in determining
if the binding a.node → reject(...) may be unresolved for
some instances of ActivityNode. We use the TDG to build
an OCL path condition [35] from the entry points of the
transformation to the possible error location. This con-
dition collects the features that an input model needs to
have to make the transformation hit the given location
and produce a failure. Then, the analyser uses a model
finder to search a model conformant to the input meta-
model and satisfying the computed OCL path condition.
If the finder finds a model, the error is confirmed. In
the example, the entry point is rule activitypartition2pool,

5 We have fixed Listing 1 for this figure.

which directly leads to the possibly faulty binding. To
assert whether the right part of the binding may contain
objects not resolved by any rule, we need the following
OCL path condition, which looks for a model with an
ActivityPartition containing some node that is neither an
OpaqueAction nor an InitialNode without incoming edges:

1 ActivityPartition.allInstances()→exists(a |
2 a.node→reject(e | e.oclIsKindOf(ObjectNode))→exists(n |
3 not n.oclIsKindOf(OpaqueAction) and
4 not (if n.oclIsKindOf(InitialNode) then
5 n.incoming→isEmpty()
6 else
7 false
8 endif)))

When fed into the model finder, it produces the wit-
ness model in Figure 5, which confirms that the error
can occur in practice. This model satisfies the OCL con-
straint as the ActivityPartition object contains a DecisionN-

ode object in its node reference, and hence, it satisfies the
condition in lines 3–8 of the OCL path condition.

Fig. 5 Witness model confirming the “possibly unresolved
binding” error in line 25 of Listing 1.

3.2 A taxonomy of errors in ATL transformations

Our analyser is currently able to detect about 45 differ-
ent types of errors. Figure 6 shows a feature model sum-
marizing the most important kinds of problems detected,
none of which is reported by the standard ATL IDE. The
problems are classified into rule problems (which are the
most specific to model transformations), style and opti-
mization warnings, and object-oriented and OCL typing
problems.

Rule errors may occur due to conflicts with other
rules (label 0 in the figure), or due to binding problems.
Rule conflicts arise if two different rules can match the
same source object, causing a runtime exception. Bind-
ing problems may be related to rule resolution (label 1),
either because the binding is unresolved (label 2) or be-
cause it is resolved with an invalid target object (label
3). The ATL resolution mechanism for bindings replaces
the source objects by the target ones in which they were
transformed. If there is no rule to transform the source
objects, they are discarded but incurring in an execution
penalty, and probably being the smell of a deeper issue.
A related problem occurs when there is a rule to resolve
the binding, but it produces target objects which are not
compatible with the target feature.
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Fig. 6 Classification of typing/rule errors in ATL transformations. Labels a–o correspond to fixing strategies in Figure 7.
Numbers 1–18 are used in Table 1.

Another source of binding problems is related to fea-
ture initialization (label 4), which may occur if a manda-
tory feature of a target object is not initialized (label 5),
a feature is initialized from a collection with higher cardi-
nality (label 6, e.g., a feature with maximum cardinality
1 is initialized from a collection with cardinality *), or a
feature is assigned an incompatible value (label 17, e.g.,
a String feature is assigned an Integer value).

Style/optimization problems include iterating over
empty collections, using “.” instead of “→” to apply a
collection operator (supported by ATL but not conform-
ing to the OCL standard style), or invoking a flatten op-
eration over a non-nested collection, among others [35].

Typing problems include referring to a non-existing
type (label 7) like an undefined class name, type dec-
laration mismatches (label 8) where the declared type
for an expression does not correspond to the real type
of the expression, or problems with feature accesses or
operation/rule calls. The latter case can be due to an
invalid receptor object (label 9), which may be unde-
fined (label 10) causing a null pointer exception, or the
accessed property may not belong to the receptor object
but to a subtype (label 11). Other sources of errors in-
clude using incorrect feature names (label 12) or making
invalid calls (label 13). The latter problem includes the
use of incorrect operation names (label 14), incompati-
ble parameter types (label 15) or an incorrect number of
parameters (label 16).

In the rest of the paper, we focus on quick fixes for
transformation-specific errors (Rule conflict, Unresolved
binding, Rule resolution with invalid target, and Feature
initialization) and on errors that typically appear in ATL
transformations although they are not exclusive of ATL
(Invalid receptor, Declaration mismatch, and Feature/
Operation not found).

4 A Catalogue of Quick Fixes for ATL

Each kind of problem detected by our static analyser
has one or more associated quick fixes. Each quick fix

follows a particular fixing strategy. The set of strategies
that we have considered are summarized in Figure 7. The
figure shows a feature diagram in which each strategy
includes a label that is used to refer to the fix strategy
in a compact way. These labels are used in Figure 6 to
depict which quick fixing strategies become applicable
for each kind of error.

In general, fixings may involve modifying the meta-
model (label n in Figure 7), creating or modifying an
OCL transformation pre-condition (label o) or modi-
fying the transformation itself. Possible transformation
modifications include generating new expressions (a),
adapting an existing expression to a new context (b),
restricting the applicability of expressions (c), or modi-
fying operation/feature calls (d). Rule-related problems
are typically fixed by creating or removing rules (e, f),
modifying rule filters (g), creating or removing bindings
(k), or modifying the right part of a binding (l). Other
fixes may involve the creation of a new helper or lazy/-
called rule6 (h, i), or changing a reference to a type (m).

Table 1 contains the current list of quick fixes in our
catalogue, and the errors to which they apply. In this
table, and in Figure 6, we group all fix strategies com-
mon to several error types in their common ancestor.
For example, Rule resolution errors (E1) can be of type
possible unresolved binding (E2) and invalid target for
resolved binding (E3). Both error types share five fixing
strategies (c, g, k, l, o), while each one of them has a spe-
cific fixing strategy (e and f). Although the table does
not show it, some of these quick fixes have variants, e.g.,
regarding how a generated expression is inserted in the
transformation (in-lined or encapsulated in a helper).

We explain our quick fixes in the next subsections,
with special focus on those more specific to transforma-
tions. We use the quick fix codes in the table to identify
each quick fix, and indicate quick fix variants adding a
suffix to their code.

6 In practice, it is more natural to consider lazy/called rules
as operations.
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Fig. 7 Classification of error fixing strategies. Labels a–m are used in Figure 6 to refer to the associated fixing strategy.

Table 1 Catalogue of quick fixes. Labels a–o in column Fix
Str. correspond to fixing strategies in Figure 7. The Type
column uses R for Repair, T for Template and H for Heuristic.

Errors (E) and Quick fixes (Q) Fix Type
Str.

Rule conflict (E0)
Q0.1 Modify guilty rules filter g R
Q0.2 Remove one guilty rule f R

Rule resolution (E1)
Q1.1 Modify filter of container rule g R
Q1.2 Remove problematic binding k R
Q1.3 Add filter to binding expression c, l R
Q1.4 Generate transformation pre-condition o R
Q1.5 Generate most general pre-condition o R

Possible unresolved binding (E2)
Q2.1 Create new rule e T

Invalid target for resolved binding (E3)
Q3.1 Remove guilty rule f R
Q3.2 Choose a different target feature k H

Feature initialization (E4)
Q4.1 Modify feature (cardinality/type) in MM n R

Compulsory feature not initialized (E5)
Q5.1 Assign default value (e.g., empty string) a R
Q5.2 Copy and adapt existing expression b H
Q5.3 Suggest mapping to a similar source feature k H

Assignment from higher cardinality (E6)
Q6.1 Add ->first() to collection d R

Invalid type (E7)
Q7.1 Suggest a type from meta-model m H
Q7.2 Add type to meta-model n R

Declaration mismatch (E8)
Q8.1 Change declared type with inferred type m R

Invalid receptor (E9)
Q9.1 Surround problem with “if” c R
Q9.2 Modify filter of container rule g R
Q9.3 Generate transformation pre-condition o R

Possible access to undefined property (E10)
Q10.1 Change feature lower bound to 1 n R

Access to property defined in subclass (E11)
Q11.1 Create helper h T

Feature/operation not found (E12, E14)
Q12.1 Suggest existing feature/operation d H
Q12.2 Create context/module helper h T
Q12.3 Create feature in the meta-model n T
Q12.4 Change feature call to operation call, and

vice versa
d R

Q12.5 Convert receptor to collection d R
Incompatible parameter (E15)

Q15.1 Create new helper operation h T
Q15.2 Change type of formal parameters j R

Invalid number of parameters (E16)
Q16.1 Add/remove actual parameters d H
Q16.2 Add/remove formal parameters j R
Q16.3 Choose other operation d H

Incompatible types (E17)
Q17.1 Assign value with correct type to feature a R

Style warnings (E18)
Q18.1 Correct invalid expression a R

4.1 Fixing rule resolution errors (E1, E2, E3)

Given a binding of the form feature ← expr, the bind-
ing resolution mechanism looks up in the trace model

the source elements resulting from evaluating expr, and
assigns their corresponding target elements to feature.
Two main problems may occur in this process: possible
unresolved binding (E2) and invalid target for resolved
binding (E3). The former is a smell of incompleteness
and may cause performance penalties because the ATL
engine needs to check type compatibility and it will out-
put error messages when it cannot assign the source el-
ement to the target feature. The latter problem may
yield invalid target models. Both problems have five fix
strategies in common (Q1.1 to Q1.5). In addition, possi-
ble unresolved binding can be fixed by creating a rule that
makes the binding resolvable (Q2.1), and invalid target
for resolved binding can be fixed by deleting the rule that
is creating the invalid target element (Q3.1) or choosing
a different target feature for the binding (Q3.2). In all
cases, the quick fixes make use of the following input
from the static analyser:

– Tf : type of the feature in the left part of the binding,
– expr: expression in the right part of the binding,
– Texpr: inferred type of expr,
– R: set of rules that resolve Texpr and are involved in

the problem.

Q1.3: Add filter to binding expression. This strat-
egy filters the expression expr in order to avoid the res-
olution of the problematic elements.

For the possible unresolved binding problem, the
filter selects only the elements that will be cer-
tainly resolved by some rule. In this case, R is the
set of rules able to resolve the binding. For exam-
ple, in the problematic line 25 of Listing 1, we have
Tf = Sequence(Intalio!Activity), expr = a.node →
reject(e|e.oclIsKindOf(UML!ObjectNode)), Texpr =
Sequence(UML!ActivityNode), and R = {opaqueaction,
initialnode}.

Then, the quick fix proceeds as follows:

1. Group R by input type, yielding sequence Gr. This
sequence contains sets of rules and is ordered by sub-
type relationships (with sibling types given arbitrary
order), where groups of rules with more concrete
types take precedence in the sequence. If a matched
rule has more than one input type, it will not appear
in R because ATL does not consider it as a candidate
to resolve bindings.
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2. Create a filter expression, filter, as follows. Take the
head of Gr, and create an if expression whose condi-
tion checks the type given to the group, and the then

branch is the or-concatenation of the rule filter ex-
pressions. The else branch applies the same procedure
to the rest of Gr. When there are no more groups,
the last else branch returns false.

3. (optimization) Simplify the conditionals in filter by
omitting checkings when the input type of the rule
is the same as the type of the right-hand side of the
binding Texpr.

4. If Texpr is a collection, modify expr to expr→select(v |
filter(v)).

5. If Texpr is a single value, create let v = expr in if filter(v)

then v else <default value> endif.

Applying this quick fix to the problem in line 25
of Listing 1 creates the sequence of rules Gr =
〈{opaqueaction}, {initialnode}〉. This is so as the in-
put types of the rules in R (UML!OpaqueAction and
UML!InitialNode) are not related by inheritance and
hence they are listed in arbitrary order in the sequence.
The resulting binding is therefore:

1 activities ← a.node→reject(e | e.oclIsKindOf(UML!ObjectNode))→
2 select(v |
3 if v.oclIsKindOf(UML!OpaqueAction) then
4 true −− implicit filter of opaqueaction
5 else
6 if v.oclIsKindOf(UML!InitialNode) then
7 v.incoming→isEmpty() −− filter of initialnode
8 else
9 false

10 endif
11 endif
12 )

The condition in line 3 comes from the input type
of rule opaqueaction, and line 4 contains true because the
rule has no filter. The condition in line 6 is added due to
the input type of rule initialnode, while line 7 is created
due to the filter of the rule. Notice that, while this quick
fix removes the problem, the developer is in charge of
ensuring that it is semantically correct.

For the invalid target for resolved binding error, the
quick fix filters out the elements resolvable by rules that
produce incompatible target objects. In this case, R is
the set of guilty rules. The identification of guilty rules
is similar to the mechanism proposed in [35]. Briefly, we
generate a path condition for each rule that may po-
tentially cause the problem, and use a model finder to
produce a witness model satisfying each path condition.
The rules for which a witness model is found are marked
as guilty and added to R. The generated quick fix is sim-
ilar to possible unresolved binding, except that the filter
condition is negated.
Q1.3b: Add filter to binding expression (variant).
The previous quick fix effectively solves the problem, but
makes the binding expression more complex. This vari-
ant of quick fix Q1.3 creates a helper with the generated
filter to enhance the readability of the binding.

Using this variant, we would extract the filter created
for the binding to the following context helper:

1 helper context UML!ActivityNode def:
2 resolveActivitypartition2poolActivityNode: Boolean =
3 if self.oclIsKindOf(UML!OpaqueAction) then
4 true
5 else
6 if self.oclIsKindOf(UML!InitialNode) then
7 self.incoming→isEmpty()
8 else
9 false

10 endif
11 endif;

While the binding would be rewritten as follows:

1 activities ← a.node→reject(e | e.oclIsKindOf(UML!ObjectNode))→
2 select(v | v.resolveActivitypartition2poolActivityNode )

Q1.1 Modify filter of container rule. This strat-
egy avoids executing the container rule of a problematic
binding for the objects that cause the problem. For this
purpose, the rule filter is added (and-concatenated) an
expression similar to the one of the previous strategy.
However, this quick fix is applicable only when the right
part of the binding is mono-valued. For multi-valued
expressions, we do not prevent the rule execution alto-
gether on the basis that a few elements of the expression
may cause a problem; in this case, we prefer using other
available quick fixes.

For example, suppose we modify the running example
as follows to include the rule objectnode (we also copy rule
edges from the initial listing for clarity):

1 rule objectnode {
2 from n : UML!ObjectNode
3 to a : Intalio!Artifact
4 }
5

6 rule edges {
7 from f : UML!ControlFlow
8 to e : Intalio!SequenceEdge (
9 source ← f.source,

10 target ← f.target
11 )
12 }

In such a case, our analyser reports invalid target for
resolved binding for the two bindings in rule edges. This is
so as the right part of these bindings can be resolved by
rule objectnode, but the type created by rule objectnode is
not compatible with the type of the target features source

and target. Thus, for the problem in the first binding, we
have Tf = Intalio!V ertex, expr = f.source, Texpr =
UML!ActivityNode, and R = {objectnode}. To obtain
set R, the static analyser first computes the set of possi-
ble guilty rules, which are three this case ({opaqueaction,
initialnode, objectnode}). Then, the model finder is used
to discriminate which rules actually cause the problem,
selecting only objectnode. Applying the quick fix adds an
additional condition to the filter of rule edges:

1 from f : UML!ControlFlow (
2 not f.source.oclIsKindOf(UML!ObjectNode)
3 )

Actually, the previous algorithm would generate the
expression let v = f.source in if v.oclIsKindOf(UML!ObjectNode)

then false else true endif, but we have an optimization for
the cases that involve only one rule.
Q1.2 Remove problematic binding. This quick fix,
which simply removes the problematic binding, is only
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applicable when the lower cardinality of the feature of
the target object is 0 in the meta-model. In the error
possibly unresolved binding of line 25 in Listing 1, the
lower cardinality of Lane.activities is zero, therefore, this
quick fix is applicable.
Q1.4 Generate transformation pre-condition.
Sometimes, the problem is not in the transformation
itself, which is correct according to the developer as-
sumptions concerning the source models. For example,
suppose that a possible unresolved binding error is no-
tified because some source type is not matched by any
rule, but the developer knows that the input models will
never contain objects of this type, and hence, the error
will never occur in practice. In such cases, applying
this quick fix generates a transformation pre-condition
that makes those assumptions (in this example, the lack
of objects of certain type) explicit. This pre-condition
serves as documentation, and in addition, it will be used
to feed the model finder in subsequent invocations in
order to discard problems the pre-condition rules out. In
practice, pre-conditions are implemented as comments
prefixed with “@pre” in the transformation header, and
are processed by anATLyzer to feed the model finder.

The generation process of pre-conditions uses a strat-
egy similar to the generation of path conditions ex-
plained in Section 3.1, but in this case, we must ensure
that every element that “goes through” the path satisfies
exactly one of the input patterns of the resolving rules.
The pre-condition generated for the problem in line 25
of Listing 1 is the following:

1 UML!ActivityPartition.allInstances()→forAll(a |
2 a.node→reject(e | e.oclIsKindOf(UML!ObjectNode))→forAll(v |
3 v.oclIsKindOf(UML!OpaqueAction) or
4 if ( v.oclIsKindOf(UML!InitialNode) ) then
5 v.incoming→isEmpty()
6 else
7 false
8 endif))

This pre-condition forbids witness models as the one
shown in Figure 5. It states the allowed shape of the
ActivityPartition objects, and hence solves the problem as
well.
Q1.5 Generate most general pre-condition. The
pre-condition generation method explained above uses
the whole path of the fixed problem. This makes the
pre-condition too problem-specific, which means that it
is unlikely that it fixes similar problems appearing in
other rules. Section 5 explores this issue in more detail.
An alternative is to use only the last part of the path
to generate the pre-condition. Hence, the most general
pre-condition generated for the problem in line 25 of
Listing 1 is as follows:

1 UML!ActivityNode.allInstances()→forAll(v |
2 v.oclIsKindOf(UML!OpaqueAction) or
3 if ( v.oclIsKindOf(UML!InitialNode) ) then
4 v.incoming→isEmpty()
5 else
6 false
7 endif)

This pre-condition is more general than the previous
one, where the restriction does not apply to the Activity-

Partition.node collection, but more generally to all Activ-

ityNode objects. This pre-condition style aims at docu-
menting the kind of elements that are not supported by
the transformation.
Q1.5b Generate meta-model restriction (vari-
ant). This variant, instead of generating a transforma-
tion pre-condition, generates an OCL invariant for the
meta-model. This fix should be selected if the user con-
siders that the restriction is not specific to the trans-
formation but to the source meta-model in general. The
invariant is generated in the context of Tf , the class type
of the binding. Hence, in the example, the following in-
variant would be generated:

context ActivityNode inv constraint activitypartition2pool:
self.oclIsKindOf(OpaqueAction) or
if ( self.oclIsKindOf(InitialNode) ) then

self.incoming−>isEmpty()
else

false
endif

It can be seen that the generation is similar to that
for helpers.
Q2.1 Create new rule (only for possible unresolved
binding). This template quick fix adds a new rule that
complements the existing ones so that the binding never
gets unresolved. The input pattern of the new rule uses
the type of the binding expression, the output pattern
uses the type of the assigned feature, and the rule fil-
ter takes into account the filter conditions of the resolv-
ing rules in order to avoid a rule conflict (i.e., two rules
matching the same object). Note that if the type of the
assigned feature is abstract, it cannot be used as out-
put pattern; in that case, we heuristically select a non-
abstract subclass that preferably is not used in any other
rule. An alternative implementation could allow select-
ing the specific type manually.

As an example, the quick fix for the possible unre-
solved binding problem in line 25 generates the following
rule:

1 rule restOfActivityNode2Activity {
2 from n : UML!ActivityNode (
3 not n.oclIsKindOf(UML!OpaqueAction) and
4 not (if n.oclIsKindOf(UML!InitialNode) then
5 n.incoming→isEmpty()
6 else
7 false
8 endif)
9 )

10 to a : Intalio!Activity
11 }

The generated rule matches any ActivityNode not
matched by opaqueaction or initialnode, and creates an Ac-

tivity, which is the kind of object required by line 25.
Being a template quick fix, it requires being completed
by providing a value for the mandatory features of the
created object a (e.g., name). This error can be elimi-
nated manually or by applying another quick fix. As in
previous quick fixes, a variant of this quick fix generates
the filter condition in a helper.
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Q3.1 Remove guilty rule (only for invalid target for
resolved binding). This quick fix removes the guilty rules,
identified as explained above. Although this may result
in subsequent unresolved bindings in other places, we do
not check this situation in the application condition of
the quick fix as it is too time consuming and this will
cause a delay when showing the list of available quick
fixes. Instead, we use speculative quick fixes to deal with
these cases (see Section 5).
Q3.2 Choose a different target feature (only for
invalid target for resolved binding). This is a heuristic
quick fix that changes the target meta-model feature as-
signed in the binding for an existing feature whose type
is compatible with some guilty rule. As an example, let
us consider that we have a rule to transform an ObjectN-

ode into an Artifact (lines 1–4 in the following listing) and
we are completing the activitypartition2pool rule to initial-
ize a target reference which will hold the Artifact objects.
We may write a binding like the one in line 9, which will
be incorrect because vertices is of type Vertex.

1 rule objectnode {
2 from n : UML!ObjectNode
3 to a : Intalio!Artifact
4 }
5

6 rule activitypartition2pool {
7 from a : UML!ActivityPartition
8 to p : Intalio!Pool (
9 vertices ← a.node→select(e | e.oclIsKindOf(UML!ObjectNode))

10 )
11 l : Intalio!Lane ( ... )
12 }

This quick fix will look for references in Pool whose
type is compatible with the output type declared in the
guilty rules set ({objectnode} in this case). Then, it pro-
poses changing the reference of the binding to the one
that minimises the number of guilty rules. In this case,
the quick fix will correctly propose changing vertices for
artifacts.

4.2 Rule conflicts

In ATL, if two or more rules match the same element,
there is a rule conflict. Rule conflicts are not detected
statically by the standard ATL IDE even for simple
cases, but the transformation fails at runtime. Our static
analysis is able to report this situation statically, identi-
fying the set of rules in conflict. Two quick fixes in our
catalogue can solve the problem.
Q0.1 Modify guilty rules filter. This quick fix is
technically similar to Q1.1. In this case, given a set of
guilty rules, we extend the filter of each rule by and-
concatenating the negation of the other rules’ filters.
In this way, all rule filters are disjoint, ensuring that
no rule conflict can arise. However, this procedure may
yield non-applicable rules in the special case that one
of the rules subsumes another one. For this purpose,
we perform the following checking: if given two con-
flicting rules r1 and r2, the filter of r2 subsumes the

filter of r1 (i.e., we have filter(r2) =⇒ filter(r1)),
then, we do not add the negation of r1’s filter to r2’s
filter, as otherwise, the modified filter of r2 could never
be satisfied. This is so as (filter(r2) ∧ ¬filter(r1)) ∧
(filter(r2) =⇒ filter(r1)) is always false. Checking
subsumption is performed by model finding (roughly,
checking if filter(r2) ∧ ¬filter(r1) is satisfiable).

As illustration, suppose we extend the running ex-
ample to distinguish two further transformation alter-
natives for initial nodes: if they receive an accept event
action, then they are transformed into an Intalio activ-
ity with type EventStartMessage, while if they receive an
accept event action which in addition has a time event
as trigger, they are transformed into an Intalio activity
with type EventStartTimer. The following two rules im-
plement this behaviour:

1 rule initialnode message {
2 from n : UML!InitialNode (
3 n.incoming→exists(edge |
4 edge.source.oclIsKindOf(UML!AcceptEventAction))
5 )
6 to a : Intalio!Activity ( activityType ← #EventStartMessage )
7 }
8

9 rule initialnode timer {
10 from n : UML!InitialNode (
11 n.incoming→exists(edge |
12 if edge.source.oclIsKindOf(UML!AcceptEventAction) then
13 edge.source.trigger→exists(t |
14 t.event.oclIsKindOf(UML!TimeEvent))
15 else
16 false
17 endif)
18 )
19 to a : Intalio!Activity ( activityType ← #EventStartTimer )
20 }

Our analyser detects a conflict between these two
rules, since any initial node matched by rule initialn-

ode timer will be also matched by rule initialnode message.
In fact, the filter of initialnode timer subsumes the filter
of initialnode message. That is, whenever initialnode timer’s
filter is true, initialnode message’s filter will be true as
well (filter(initialnode timer) =⇒ filter(initialnode message)).
Thus, applying the quick fix adds the negation of the fil-
ter of initialnode timer to initialnode message, but not the
other way round. This solves the rule conflict.

The listing below shows the rule that gets modified
after the quick fix application:

1 rule initialnode message {
2 from n : UML!InitialNode (
3 n.incoming→exists(edge |
4 edge.source.oclIsKindOf(UML!AcceptEventAction))
5 and
6 not n.incoming→exists(edge |
7 if (edge.source.oclIsKindOf(UML!AcceptEventAction)) then
8 edge.source.trigger→exists(t |
9 t.event.oclIsKindOf(UML!TimeEvent))

10 else
11 false
12 endif)
13 )
14 to a : Intalio!Activity ( activityType ← #EventStartMessage )
15 }

Q0.2 Remove one guilty rule. This quick fix is sim-
ilar to Q3.1, as it removes one of the problematic rules.
The quick fix is only applicable if the set of problematic
rules includes two rules, as otherwise, the problem would
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remain even deleting one rule. This fix requires the user
intervention to interactively select the rule to delete. As
an assistance to the user, we treat the case that one rule
subsumes the other in a special way, highlighting the
more specific rule as the most promising to be deleted.

4.3 Invalid receptor (E9, E10, E11)

This kind of problem appears when the receptor object
of a feature access or operation call can be invalid. We
distinguish two cases: access to an undefined value (i.e.,
a “null pointer exception” because the receptor object is
null or undefined), and a special kind of the feature not
found problem in which the accessed feature is defined in
a subclass of the receptor object’s class, but it is missing
in other subclasses.
Q9.1 Surround problem with “if”. This quick fix
surrounds the problematic expression with a conditional.
The generated condition of the if expression checks that
the receptor object is not undefined (for E10) or it is
compatible with the type that defines the accessed fea-
ture (for E11). If the condition is not satisfied, the else

branch contains an appropriate default value according
to the type of the expression (e.g., the empty string for
a String).

The expression self.name + ’ ’ + self.oclType().name in
line 3 of Listing 1 may cause a runtime exception if
self.name (the receptor object of the first + operator) is
undefined. Applying this quick fix generates the follow-
ing conditional, where the else branch returns the empty
string as the default value of String expressions:

1 if (not self.name.oclIsUndefined()) then
2 self.name + ’ ’ + self.oclType().name
3 else
4 ’’
5 endif

Q9.1b Filter problem with select (variant). When
the problematic statement is located within a collection
operation, it may be more idiomatic to filter the collec-
tion before executing the operation. For instance, the
following expression yields a problem because the lan-

guage feature is defined in OpaqueAction but not in the
ActivityNode superclass.

1 anActivity.node→select(oa | oa.language = ’OCL’)

Applying this quick fix would modify the expression
as follows:

1 anActivity.node→
2 select(oa | oa.oclIsKindOf(UML!OpaqueAction))→
3 select(oa | oa.language = ’OCL’)

Q9.2 Modify filter of container rule. The underly-
ing idea of this strategy is similar to Q1.1. If the problem
appears within a binding, it is possible to avoid the prob-
lem by preventing the rule execution. In this case, the
rule filter is modified to avoid accessing the undefined
property. This is a typical idiom in ATL, in which there
are several similar rules dealing with different variations

(e.g., a rule to deal with objects for which certain prop-
erty is undefined, and another rule to handle the definite
case).

As an example, assume we have the following rule:

1 rule initialnode message {
2 from n : UML!InitialNode
3 to a : Intalio!Activity (
4 name ← ’Initial to ’+n.outgoing→first().name,
5 activityType ← #EventStartMessage
6 )
7 }

There is a possible undefined access in line 4 because
the lower cardinality of ActivityNode.outgoing is 0. This
quick fix would add the following filter to the rule (see
line 2), making the access in line 4 unproblematic:

1 rule initialnode message {
2 from n : UML!InitialNode ( n.outgoing→notEmpty() )
3 to a : Intalio!Activity (
4 name ← ’Initial to ’+n.outgoing→first().name,
5 activityType ← #EventStartMessage
6 )
7 }

Q9.3 Generate transformation pre-condition. This
quick fix has the same motivation and is implemented in
the same way as Q1.4.
Q10.1 Change feature lower bound to 1 (only for
possible access to undefined property). This quick fix sets
the lower cardinality of the feature to 1 in the type decla-
ration of the receptor object, in the source meta-model.
Hence, for a mono-valued feature named feat, naviga-
tion expressions of the form obj.feat.feat’... become safe.
If the feature is multi-valued, expressions of the form
obj.feat→first().feat’... become safe (but not those contain-
ing selection operators between feat and first). In this
way, this quick fix allows solving the problems in the
examples presented in the two previous quick fixes.

As a side effect, this quick fix may cause compul-
sory feature not initialized problems in other transfor-
mations that use the same meta-model as target, though
our analyser can detect these problems easily.
Q11.1 Create helper (only for access to property de-
fined in subclass). The idea of this template quick fix is
to emulate the property for the given class. For this pur-
pose, the quick fix creates a new context helper on the
type of the receptor object, with the same name as the
feature and no parameters. The new helper returns an
appropriate default value according to the type of the
feature. This default value can be modified later by the
developer to provide a more sensible value, if needed.
For example, consider the following rule:

1 rule exec2activity {
2 from n : UML!ExecutableNode
3 to a : Intalio!Activity (
4 name ← n.toIntalioName+’ exec ’+n.language
5 )
6 }

This rule accesses feature language on objects of type
ExecutableNode, but this feature is only defined in sub-
class OpaqueAction of ExecutableNode. Applying this quick
fix produces the following context helper:
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1 helper context UML!ExecutableNode
2 def: language : String = ’’;

This fixing strategy guarantees that the call will be
always resolved by either a meta-model feature or helper
operation, which will be selected by the ATL engine us-
ing dynamic dispatch (i.e., looking at runtime the type
of the receptor object).

4.4 Feature initialization (E4, E5, E6)

These problems correspond to incorrect initializations
of features in rule bindings. For instance, the assign-
ment from higher cardinality problem (E6) occurs when
a binding assigns a collection to a mono-valued feature
(i.e., a feature with upper bound equals to 1). In such a
case, we provide a quick fix that concatenates the first()

operator to the expression in the right part of the binding
in order to retrieve just the first object in the collection.

Next, we focus on quick fixes for the compulsory fea-
ture not initialized problem (E5) since it is the most com-
mon error in ATL transformations [35]. This problem
kind is signalled when a rule lacks a binding for some
feature that is mandatory in the created object (i.e., a
feature with lower bound bigger than 0). We provide four
possible quick fixes to solve this problem.
Q4.1 Modify feature cardinality in meta-model.
This quick fix sets the lower cardinality of the feature to
optional in the target meta-model. This may cause pos-
sible access to undefined value in other transformations
using the same meta-model as source, or in the current
transformation if it is endogenous.
Q5.1 Assign default value. This is the simplest strat-
egy. It creates a new binding which assigns an appropri-
ate default value to the feature according to its type. For
primitive types, we assign the usual default values (e.g.,
an empty string, 0 for integers, etc.). For objects, we try
to assign a target object whose type is compatible with
the feature’s type, and that is in the scope of the rule.

For example, assuming the cardinality of the refer-
ence Pool.lanes to be 1..*, then rule activitypartition2pool is
missing a binding for feature lanes. As the rule creates
an object of type Lane, the fix would modify the rule as
follows:

1 rule activitypartition2pool {
2 from a : UML!ActivityPartition
3 to p : Intalio!Pool(
4 lanes ← Sequence{l}
5 ),
6 l : Intalio!Lane(...)
7 }

Q5.2 Copy and adapt existing expression. This
strategy relies on the same hypothesis as the GenProg
system [23]: “a program that makes a mistake in one lo-
cation often handles a similar situation correctly in an-
other”. Indeed, recent empirical studies show that 29-
52% of commits are temporally redundant at the token-
level, meaning that they are rearrangements of existing
code [26].

Inspired by these findings, we seek bindings in other
rules that assign the same feature, and for each candi-
date binding, we check if the variables used in the right
part of the binding are compatible with the variables
that can be accessed from the current rule. A variable
in the current rule is compatible with a variable used in
the candidate binding if the feature calls over the can-
didate variable can be performed over the current rule
variable. If there are several compatible bindings, we se-
lect one at random, which is copied to the rule once it is
conveniently adapted for it.

For example, in lines 23 and 24 of Listing 1, there is
no binding for the name feature. However, this feature
is assigned in lines 16 (name ← a.name) and 32 (name ←
n.toIntalio). From these two possibilities, the second one
is discarded because our analyser detects that it has an
error (there is no feature or operation named toIntalio);
hence, only the former is available to initialize the miss-
ing bindings. Applying this quick fix to line 23 yields:

1 rule activitypartition2pool {
2 from a : UML!ActivityPartition
3 to p : Intalio!Pool(
4 name ← a.name
5 ),
6 ...
7 }

Note that even if we correct line 32 to obtain the
binding name ← n.toIntalioName, it is not offered as an
option to fix the errors in lines 23 and 24. This is so
as the context helper toIntalioName is defined for type
Action, and thus, it cannot be applied to objects of type
ActivityPartition (i.e., using a.toIntalioName in the previous
listing would be incorrect).
Q5.3 Suggest mapping to a similar source feature.
This quick fix tries to find a meta-model feature, acces-
sible from the rule input type, whose name is similar to
the assigned feature and its type is compatible with the
feature.

For example, in rule activitypartition2pool, the created
Pool and Lane objects miss the initialization of their fea-
ture name. This quick fix checks the objects in the from

pattern (ActivityPartition) to look for attributes similar to
“name”. In this case, similarity is checked by maximal
substring containment. Since ActivityPartition has an at-
tribute name of type String, the binding name ← a.name

is synthesized for both created objects.

4.5 Declaration mismatch (E8)

This problem is frequent in ATL transformations devel-
oped without any static analysis tool like ours, as ATL
does not check either statically or dynamically variable,
parameter and return type declarations. While a declara-
tion mismatch does not cause runtime exceptions when
the transformation is executed, it is a maintenance prob-
lem because developers may have expectations accord-
ing to the declared types, which may differ from the real
ones.
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Q8.1 Change declared type with inferred type.
This quick fix replaces the declared type with the type
inferred by the static analyser. In the running example,
the return type of helper toIntalioName in line 2 of List-
ing 1 (which was declared as Intalio!Activity) is fixed to:

1 helper context UML!Action def: toIntalioName : String =
2 self.name + ’ ’ + self.oclType().name;

In some cases, the type inferred by the analyser is
richer than any type that can be expressed with the ATL
type system, for example, when the branches of an if

expression have types that are not related by inheritance.
In such cases, we use the most general type OclAny.

4.6 Feature/operation not found (E12, E14)

In this section, we analyse quick fixes related to accessing
non-existing features or operations. Some of these quick
fixes rely on creating helpers. ATL supports two types of
helpers: attribute helpers and operation helpers. An op-
eration helper may take parameters, while an attribute
helper acts as a derived attribute whose result is mem-
oized. ATL also distinguishes between context helpers,
which are defined in the context of a class and act as
regular polymorphic methods, and module helpers, which
do not have any context and behave as global functions.
For practical purposes, we consider lazy and called rules
to be module helpers since they are invoked like module
helpers with one or more parameters.
Q12.1 Suggest existing feature/operation. We use
several string distance metrics [6] to look up candi-
date features (including both helper and meta-model
features) and operations with a similar name. In first
place, we use the Levenshtein distance, which measures
the number of character edits (insertion, deletion, swap)
required to change one word into another one. This gives
good results for spelling mistakes like writing toIntallioN-

ame instead of toIntalioName (distance 1). If no good pro-
posal is found within a threshold, we switch to “longest
common substring” distance, which favours strings with
similar subsequences. This distance gives good results
when names are approximated (e.g., perhaps not prop-
erly recalled by the developer), like typing toIntalio in-
stead of toIntalioName. In the case of operations, we take
into account the types of the parameters to narrow the
search and improve the accuracy of the proposal. We also
consider built-in functions, such as collection operations.
Q12.2 Create new context helper (only for calls over
an object). This template quick fix is useful to automat-
ically create a skeleton of an operation. The fix creates a
new context helper whose context is the class inferred for
the receptor object of the call, and its formal parameters
are created according to the types of the actual param-
eters in the call. The body of the helper is initialized to
a default value according to its return type.
Q12.2 Create new module helper (only for calls over
thisModule). Given a call thisModule.op(par1, . . . , parn),

the quick fix proposes adding a new helper, lazy or called
rule. The heuristic to select between these three options
is the following:

– Lazy rule. This option is selected when the problem-
atic call is in a “binding assignment position”, that
is, a location in the right part of a binding that will
make the result of the call be assigned to the bind-
ing’s feature. For instance, if the call is a direct child
of the binding (i.e., feature ← thisModule.call(param))
or if the call is within the body of a collect. More-
over, the feature initialized by the binding must be
a reference (i.e., it must have a non-primitive type),
the call must have exactly one argument, and this
argument must be a single object.

– Called rule. The same as lazy rules, but either the
call has more than one argument, or it has just one
argument of primitive type or a collection.

– Module helper. Otherwise.

This heuristic reflects the most usual invocation pat-
terns in ATL. As an example, suppose we modify the
binding for feature pools in rule activity2diagram as fol-
lows:

1 rule activity2diagram {
2 from a : UML!Activity
3 to m : Intalio!BpmnDiagram (
4 name ← a.name,
5 pools ← thisModule.allPartitions(a.allPartitions)
6 )
7 }

As the transformation does not define a module
helper or rule named allPartitions7 with one parameter,
the quick fix suggests creating the following called rule:

1 rule allPartitions(arg0 : Sequence(UML!ActivityPartition)) {
2 to tgt : Intalio!Pool
3 }

While this is a template quick fix, and so the user
should fill the helper body, the quick fix correctly infers
the signature and return type of the helper.
Q12.3 Create feature in the meta-model (only for
calls over an object). It adds a new feature to the recep-
tor object’s type. To automate this as much as possible,
we try to infer the type of the feature from the expression
in which it appears. We have defined a set of pre-defined
locations for which it is possible to use other types in-
ferred by the analyser as the type for the feature. As an
example, let us suppose that OpaqueAction does not have
a language feature and we have the code shown below.

1 helper def: normalize(str : String) : String =
2 str.toUpperCase();
3

4 −− Faulty feature access
5 thisModule.normalize(anOpaqueAction.language)

Since the invalid feature access is in a parameter po-
sition and the types for the normalize helper have been

7 The transformation does define two attribute helpers in
the context of Activity and ActivityPartition, but not a one-
parameter helper at the module level.
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properly inferred, we can determine that language has to
be an attribute of type String. If the type expected by
the faulty expression’s location is a collection, then we
set the upper bound to *, otherwise to 1 (as in this ex-
ample). By default, we set the lower bound to 1. If it is
not possible to infer the type, the user would be asked
to introduce the type of the feature through a dialog.
Q12.4 Change feature call to operation call, and
vice versa. In ATL, the syntax to call an attribute
helper requires no parentheses, as otherwise, it is in-
terpreted as an operation helper. Thus, a call like ac-

tivity.allPartitions() causes a runtime exception if the only
helpers defined in the transformation are those of List-
ing 1. This is a common mistake among ATL beginners.

This quick fix proposes replacing an operation call
by an attribute call if there is an attribute with the
same name as the invoked operation. In the example,
the call activity.allPartitions() would be changed to activ-

ity.allPartitions.

5 Impact of Quick Fixes

The application of a quick fix is a local action targeted
to fixing the problem identified at the selected location.
However, the action may have side effects in the form of
new problems appearing in other locations or even exist-
ing problems being automatically fixed. Understanding
these side effects is important both for the tool perspec-
tive (e.g., to rank quick fixes) and for the user perspec-
tive who would like to make an informed decision when
determining how the transformation should be fixed.

As an example, let us consider the possible unresolved
binding problems in lines 25, 47 and 48. If we apply the
quick fix Q2.1 Create new rule to line 25, all three prob-
lems are solved at once. However, if we choose to apply
quick fix Q1.2 Remove problematic binding or Q1.3 Add
filter to binding expression, they will have a local effect,
fixing only the targeted problem in line 25.

On the other hand, if we apply the quick fix Q2.1
to the problems in lines 47 or 48, it would create a new
rule having Vertex in the to pattern, as this is the most
general compatible type (see lines 2–12 in the listing be-
low). This new rule is resolved by the three mentioned
bindings (copied in the listing below in lines 17, 18 and
25), but now, a new error is introduced in line 25 since
the activities feature is assigned an incorrect type.

1 −− Generated rule
2 rule ActivityNode2Vertex {
3 from n : UML!ActivityNode (
4 not n.oclIsKindOf(UML!OpaqueAction) and
5 not (if n.oclIsKindOf(UML!InitialNode) then
6 n.incoming→isEmpty()
7 else
8 false
9 endif)

10 )
11 to a : Intalio!Vertex
12 }
13

14 −− Fixed bindings
15 rule edges {

16 ... to a : Intalio!SequenceEdge (
17 source ← n.source,
18 target ← n.target
19 )
20 }
21

22 −− Problematic bindings
23 rule activitypartition2pool {
24 ... to l : Intalio!Lane (
25 activities ← a.node→reject(e | e.oclIsKindOf(UML!ObjectNode))
26 )
27 }

In this example, the best option is adding a new rule
by quick fixing line 25, but the developer may need to try
the different choices manually before reaching this ver-
dict, as well as undoing the quick fix applications that
lead to unsatisfactory repairs. Instead of this manual
process, it would be useful to complement the quick fix
proposals with a technique able to foresee the transfor-
mation state that would result from applying each pro-
posed quick fix.

Therefore, we use speculative analysis to help the user
understand the impact of a quick fix. This is a general
technique to explore the consequences of modifying some
piece of code before the change actually happens [3].
This idea has been applied to rank quick fixes in the
context of Java and Eclipse [28] by reporting the number
of errors left in a Java project after the application of
each possible quick fix. However, considering the total
number of remaining errors may be misleading when the
code has several problems and a quick fix corrects some
of them but it also introduces new problems in other
locations.

In this work, we have developed a technique that pro-
vides a finer-grained analysis of the impact of a quick
fix application. Our technique automatically detects the
fixed problems and the newly generated ones after ap-
plying a quick fix without actually modifying the trans-
formation text or its meta-models. The technique is de-
tailed in Section 5.1. The information derived from this
analysis can be used for the following purposes:

– Providing impact information. This information
helps the user understand the consequences of apply-
ing a quick fix. As an example, Figure 8 shows the
dialog that anATLyzer presents to the user, which
contains the list of fixed and generated problems af-
ter speculatively applying the quick fix. This func-
tionality is explained in Section 5.2.

– Ranking quick fixes. Code recommenders typically
put the most valuable recommendations at the top
of their rankings [34]. These rankings are calculated
using models that predict the usefulness for the user.
In our case, we use speculative analysis to provide
a ranking where the fixes that remove more errors
are listed first. We call this ranking dynamic. Alter-
natively, the ranking could be calculated statically
(i.e., without speculative analysis) by analysing the
actual impact of quick fix applications on a corpus of
existing transformations. We discuss these rankings
in Section 5.3.
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– Empirical evaluation of quick fix validity. The
information provided by the speculative analysis can
be used to validate the quick fix implementation and
take measurements about its behaviour. Hence, in
Section 7, we use our technique to perform an empir-
ical evaluation of the behaviour of our quick fixes.

– Model transformation repair. Speculative anal-
ysis can be used to implement repair techniques for
model transformations. Whereas in this work we use
speculative analysis for a single quick fix, it would be
possible to generate a chain of fixes that completely
repair a given transformation. This would require us-
ing search strategies to prune the state space in order
to speed up the process. We leave this application for
future work.

1 2

3

Fig. 8 Dialog showing the impact of quick fixes applied spec-
ulatively for the problem in line 25 of Listing 1.

5.1 Speculative analysis of fixed and generated problems

The speculative analysis of a quick fix application is per-
formed using the procedure sketched in Listing 2. Given
a transformation T and a problem P to be fixed, the spec-
ulative analysis applies every available quick fix system-
atically to a fresh copy of the transformation (lines 4–
9). Copying the original transformation is important to
avoid interferences with the user’s working copy. The
copy function returns an exact copy of the abstract syn-
tax tree T’, and also the trace between the original trans-
formation and the copy. In line 5, we take into account
quick fixes that modify meta-models by copying them.
This implies not only copying the meta-model, but also
replacing every reference to the original meta-models in
the abstract syntax tree to the copied version. Next,
we create a copy P’ of the problem which points to the
copied transformation, and the original quick fix is mod-
ified to point to the copied problem. Finally, the quick

fix is applied producing a modification on the copied
transformation T’ (lines 11–12), and this transformation
is statically analysed (lines 14–16).

1 Input: transformation T, problem P
2

3 Foreach Q in quickfixesOf(P)
4 T’, Trace <− copy(T)
5 if Q.modifiesMetamodels
6 copyMetamodels(T)
7 end
8 Create P’ that refers to T’ from P
9 Change Q to point to P’

10

11 applyQuickfix(Q)
12 updateTrace(Q, Trace)
13

14 cleanTransformation(T’)
15 staticAnalysis(T’)
16 analyseImpact(T, T’, Trace)
17 end

Listing 2 Speculative analysis procedure.

A subtle step is the need to update the trace in-
formation to reflect the changes made by the quick fix
(line 12). This is particularly important for quick fixes
that replace an AST element for another. Another con-
sistency action is cleaning up the modified transforma-
tion T’ (line 14), as we need to remove the existing TDG
information from the abstract syntax tree of T’ so that it
can be freshly re-typed and analysed after the quick fix
application. The more simplistic approach of overwrit-
ing the existing analysis information does not work. For
example, if the original transformation has a binding re-
solved by two rules and a quick fix removes one of them,
the new transformation will have stale information in
the form of a binding with two resolving rules instead
of one. An alternative to removing all the analysis infor-
mation beforehand would be to perform an incremental
static analysis, which is part of our future work.

Finally, we analyse the impact of the quick fix ap-
plication. This procedure, which is outlined in Figure 9,
is only possible when quick fixes are applied over the
abstract syntax of the program. Since this is not the
default option provided by Eclipse, we had to build an
infrastructure to support our approach. Section 6 pro-
vides more details.

Fixed transformation

+
Quick fix

(change, add, remove)

Comparison

Impact

AnalysisAnalysis

Transformation
Copy

Trace
Transformation

Fig. 9 Impact computation process.

We analyse the impact of a quick fix application in
a generic way with the algorithm shown in Listing 3.
We assume that every problem has a reference to the
abstract syntax element marked as problematic (element

attribute), and the trace model has an operation get-
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Target which returns the abstract syntax element in the
copied transformation that corresponds to a given origi-
nal element. The intuition behind the algorithm is that,
if given a problem in the new transformation (p’ in T’)
we cannot find the corresponding problem in the origi-
nal transformation, then it is a new problem (lines 8–16).
The other way round, if we cannot trace a problem in the
original transformation to a problem in the new trans-
formation, then the problem has been fixed and thus no
longer appears in the problem list of the new transfor-
mation (lines 24–37). We check if two problems are equal
by comparing their problematic AST elements, but we
also check that they are the same type of problem (lines
13 and 29). This check is needed because the same AST
element may cause more than one problem.

1 Input: transformation T, copied transformation T’, trace Trc
2 Output: set of newProblems, set of fixedProblems
3

4 newProblems = { }
5 fixedProblems = { }
6

7 −− Detection of new problems
8 Foreach p’ in T’.problems
9 e’ = p’.element

10 found = false
11 Foreach p in T.problems
12 tgt = Trc.getTarget(p.element)
13 if e’ = tgt and p.class = p’.class
14 found = true
15 end
16 end
17

18 if not found
19 newProblems.add(p’)
20 end
21 end
22

23 −− Detection of fixed problems
24 Foreach p in T.problems
25 found = false
26 Foreach p’ in T’.problems
27 e’ = p’.element
28 tgt = Trc.getTarget(p.element)
29 if e’ = tgt and p.class = p’.class
30 found = true
31 end
32 end
33

34 if not found
35 fixedProblems.add(p’)
36 end
37 end

Listing 3 Calculating the impact of a quick fix.

5.2 Presenting impact information

The main application of our speculative analysis is to
help the user reason about the consequences of apply-
ing a quick fix without the burden of modifying the
transformation and undoing the undesired fixings by
hand. Without speculative analysis, the user has to ap-
ply the selected quick fix. The quick fix will change either
the transformation or the meta-models. To inspect the
change, the user must locate the place where the change
was made. This may not be straightforward until the
developer is familiar with the catalogue of fixes. For ex-
ample, applying quick fix Q0.1 to repair a rule conflict

may modify two rule filters or just one. After applying
the quick fix, the analyser will update the list of prob-
lems, but if the original transformation contained many
errors, it may be difficult to identify which ones of them
have been fixed. Moreover, if the result of a quick fix is
not satisfactory, the user must undo the quick fix and
try another one. This may not be possible automatically
if the quick fix modified the meta-models.

Hence, our objective is to present the user a con-
cise “picture” of the state that the transformation would
have if the quick fix is applied. This picture includes five
parts: (i) whether the quick fix will actually fix the tar-
geted problem, (ii) the complete list of problems that the
quick fix will solve, (iii) the list of generated problems,
(iv) the list of remaining problems, and (v) information
about the modifications that the quick fix will perform
on the transformation (e.g., a piece of generated code).

Figure 8 shows the dialog that realises this idea. We
perform our speculative analysis for each available quick
fix (label 1). When the user clicks on the quick fix, the
result is shown in the problems tabs (label 2) and in the
text tab (label 3). For usability reasons, each speculative
analysis is run in a separate thread so that the dialog is
not blocked during the computation and the user can
inspect the results as they finish.

To synthesize the piece of text in label 3, we take into
account the type of change performed by the quick fix.
Our quick fixes are implemented using a dedicated API
to perform changes on the ATL abstract syntax model
(see Section 6). The different types of change (e.g., delet-
ing an element, inserting an element into a container,
modifying a meta-model feature, etc.) are recorded in-
cluding information about the modified or created ele-
ment (or a copy if it was deleted). This information is
used by a generic procedure that synthesizes the piece
of text. Hence, any quick fix implemented with our in-
frastructure will have this feature for free.

5.3 Ranking quick fix proposals

Speculative analysis provides detailed information on the
problems fixed, remaining errors and newly introduced
errors that result from the application of a quick fix. This
way, the applicable quick fixes can be ranked according
to this information, so that quick fixes ranked first will be
more likely selected by the user. However, gathering this
information has some computational cost, and depends
on the particular error being solved.

For this reason, we also provide a static ranking of
quick fixes which is offered by default to the developer,
without the need to perform speculative analysis. The
ranking has been derived from empirical evidence of
quick fix performance. In particular, we selected four
transformations without errors, and injected errors in
them using transformation-specific mutation operators.
This produced 816 mutated transformations with errors.
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Section 7.1 contains a detailed description of the selected
transformations and the mutation procedure. Then, we
automatically applied all possible quick fixes to each de-
tected problem, and measured how many errors they
fixed and introduced. Each quick fix qf was given as
efficacy score a number between -1 and 1 calculated as
eff(qf) = (fixed − new)/(fixed + new). This way, a
quick fix is ranked higher the more errors it solves and
the less new errors it introduces. Then, we averaged the
efficacy scores across the four evaluated transformations.
Quick fixes with same score were ordered according to
higher number of applicability (i.e., frequency). Table 2
shows the obtained static ranking. We only show the
errors for which more than one type of quick fix is avail-
able. Moreover, we exclude from the ranking the quick
fixes that require user intervention, like Q0.2 Remove
one guilty rule, as they cannot be applied automatically.

Table 2 Static ranking (empirical) of quick fixes.

Problem Quick fix Score
E2: Unres. binding Q1.5 (gen. gen. pre-cond) 1 (125)

Q1.2 (rem. binding) 1 (94)
Q1.1 (modify rule filter) 1 (38)
Q1.4 (gen. pre-cond) 0,96
Q1.3 (add filter to binding) 0,89
Q2.1 (create new rule) 0,37

E3: Invalid target Q1.5 (gen. gen. pre-cond) 1 (122)
for resolved binding Q1.3 (add filter to binding) 1 (76)

Q1.2 (rem. binding) 1 (61)
Q1.4 (gen. pre-cond) 0,82
Q1.1 (modify rule filter) 0,79
Q3.2 (choose different) 0,39
Q3.1 (rem. guilty rule) -0,07

E5: Compulsory Q5.1 (assign. def. value) 1 (107)
feat. not initialized Q4.1 (modify feat. in MM) 1 (99)

Q5.2 (copy & adapt exp.) 1 (79)
Q5.3 (mapping to similar) 1 (30)

E7: Invalid type Q7.1 (suggest from MM) 0,22
Q7.2 (add to MM) 0,17

E10: Possible access Q9.3 (gen. pre-cond) 1
to undefined prop. Q9.1 (surround with if) 0,91

Q9.2 (modify rule filter) -0,04
E11: Access to prop. Q11.1 (create helper) 1
defined in subclass Q12.2 (create cont./mod.) 0,15

Q9.1 (surround with if) -0,2
Q12.1 (suggest existing) -0,45
Q9.3 (gen. pre-cond) -0,55

E12: Feature not Q12.2 (create cont./mod.) 0,71
found Q12.1 (suggest existing) 0,15
E14: Operation not Q12.1 (suggest existing) 0,81
found Q12.2 (create cont./mod.) 4,1
E15: Incompatible Q15.2 (change formal) -0.5
parameter Q15.1 (create operation) -1
E16: Invalid number Q16.1 (add/rem. actual) 0,6
of parameters Q16.2 (add/rem. formal) 0

Q16.3 (choose other) -0,25

A consequence of the chosen efficacy metric is that
template quick fixes tend to score poorly and are ranked
in the last positions, as they may introduce new issues.
For example, Q2.1 Create new rule is ranked last among
the quick fixes for E2, because it tends to generate many
compulsory feature not initialized errors (E5). In future
work, we might try to detect the user “mode”: when the
transformation is under heavy construction, then tem-
plate quick fixes might be more commonly used, while
in the testing phase, repair quick fixes are more frequent.

We can also observe that the same quick fix is ranked
differently depending on the targeted error, like for E2
and E3. However, in this case, generating a general pre-
condition (Q1.5) seems to be less problematic and is ap-
plied more frequently. In Section 7.3, we validate our
static ranking by comparison with the dynamic ranking
calculated using speculative analysis.

6 Implementation

Our proposal is backed by an implementation atop
anATLyzer [35], our static analyser for ATL that is in-
tegrated with the regular Eclipse/ATL IDE. Quick fixes
are available through the standard facilities provided by
Eclipse, complemented with a dedicated analysis view to
easily inspect and fix detected problems (see Figure 10),
as well as a control dialog to obtain information of the
speculative analysis (see Figure 8).

The analysis view contains two sections, one with
problems that need to be analysed in batch, and an-
other with problems that are detected automatically and
may need to be confirmed interactively (see Figure 10).
Batch problems (label batch analysis) are typically the
most costly to calculate and require the user to start the
computation. These include rule conflict analysis (which
uses the model finder to analyse a possibly high num-
ber of rule pairs) and unconnected components analy-
sis (which determines if the transformation generates a
connected model graph or several subgraphs). The auto-
matically detected problems (label local problems) refer to
problems in the transformation and are detected in the
background. To improve the user experience, the prob-
lems that require confirmation using the solver have to
be triggered by the user (first 3 rows below “local prob-
lems” in the figure). If they have not been confirmed yet,
they are marked with a “[?]” (as in the figure). If they get
confirmed by the solver, they are marked as “[C]”, while
if they are discarded, they are signalled with a “[D]”.
Errors show a red circle icon in the view, while warnings
show a yellow circle icon. In all cases, the errors are also
signalled in the code just like in regular programming
IDEs.

For ease of use, the list of available quick fixes for
an error is displayed via a shortcut key (shown in the
picture), while the speculative analysis tool needs to be
invoked separately (Figure 8). The list of quick fixes in
Figure 10 is ordered according to the static ranking pre-
sented in Section 5.3. The idea is to present first those
quick fixes with the highest probability of being the most
suitable ones.

A screencast of the tool, the source code of the
project and an Eclipse Update site are available at
http://miso.es/qfx.

Implementation-wise, our quick fixes do not work at
the text level (as standard Eclipse quick fixes do) but
they modify the ATL abstract syntax using a dedicated
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Fig. 10 Screenshot of the tool.

API that we have built. This decision, which was origi-
nally motivated by the need to automatically apply quick
fixes in our experiments, provides the necessary infras-
tructure to support advanced options like speculative
analysis. Working at the abstract syntax level posed sev-
eral challenges, such as the need to build a variant of the
ATL meta-model suitable to be easily manipulated us-
ing Java code, and the generation of the new code, which
is performed by means of an incremental ATL serializer
built as part of the framework.

Our catalogue of quick fixes is extensible by means
of an Eclipse extension point and a set of pre-defined
abstract quick fixes which provide useful functionality
to implement concrete quick fixes. Quick fixes benefit
from the services of our API to modify the ATL abstract
syntax.

7 Evaluation

This section reports on the evaluation of our system.
First, in Section 7.1, we evaluate its completeness and
validity by systematically generating mutants of a set
of transformations in order to create a wide range of
problems, which we try to fix with our catalogue of fixes.
We evaluate completeness by assessing whether at least
one quick fix is applicable for each error reported by the
analyser, and we evaluate validity by checking whether
an applied quick fix has effectively fixed the targeted
problem.

Then, in Section 7.2, we study the impact of each
quick fix application by looking at the problems it fixes
or introduces as a side effect. We have used this informa-
tion to derive the static ranking of quick fixes presented
in Section 5.3.

Finally, in Section 7.3, we evaluate the usefulness of
our catalogue of quick fixes and its ranking to repair a
set of transformations different from those used in the
first experiment, and written by a third-party. In this
experiment, we record the fixing strategy of two inde-
pendent ATL developers to solve every error. Then, we
study whether a quick fix is available to solve the prob-
lem in the same way, as well as the position of the quick
fix in the static and dynamic rankings.

The section concludes with an analysis of possible
threats to the validity of our evaluation (Section 7.4)
and a general discussion about our quick fix system (Sec-
tion 7.5).

All the data gathered from the experiments and the
artefacts used (source code, transformations and mu-
tants) are available at http://miso.es/qfx_exp_
sosym2015.

7.1 Evaluating validity and completeness

We say that a quick fix is valid if it always fixes its tar-
geted error. An error is completely covered by the quick
fix catalogue, if there is always an applicable quick fix. In
this respect, note that even if we implement a quick fix
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per problem type, there may be actual problems without
any fix due to the application condition of the fix.

To evaluate the validity and completeness of our
quick fix catalogue, we have performed an experiment
based on applying mutations to generate possibly faulty
transformations, and then using speculative analysis to
measure how many quick fixes are applicable (for com-
pleteness) and to determine if each applicable quick fix
resolves the targeted problem (for validity).

We have used four error-free transformations for
the evaluation: 1) PNML2PetriNet from the Grafcet to
PetriNet scenario in the ATL zoo8, which we used for
an initial evaluation in [36]; 2) an extended and error-
free version of the UML2Intalio transformation used as
running example in this paper; 3) Ant2Maven from the
ATL zoo; and 4) an extended version of the Class2Table
transformation from the ATL zoo. The two latter trans-
formations were chosen because they have few and eas-
ily fixable problems and the domains were known for us
(i.e., we want to introduce as little bias as possible when
fixing the transformations manually). Table 3 summa-
rizes the details of the transformations and the number
of mutants generated.

Table 3 Transformations used in the evaluation. Mut. is the
number of generated transformation mutants, and Ev. is the
number of mutants evaluated (i.e., a mutant needs to have at
least a problem to be valid for the experiment). Rules/Helpers
shows the number of rules/helpers in the transformation, and
Classes shows the number of source/target classes.

Transformation Mut. Ev. Rules/Helpers Classes
PNML2PetriNet 318 264 5/0 13/9
UML2Activity 318 210 9/6 248/20
Ant2Maven 242 160 30/0 48/59
Class2Table 260 182 8/4 6/5

From each transformation, we generated a set of new
transformations obtained by applying one mutation op-
erator once to the original transformation. Table 4 shows
the transformation-specific mutation operators consid-
ered in our experiment. In this way, for each mutation,
the generated transformation mutant is expected to have
only one problem. In case it contains several problems,
we classify them in a hierarchy so that we only try to fix
problems that do not depend on others. In this way, we
avoid the noise introduced by errors possibly propagated
by the depending problem. Transformation mutants that
contained no error were discarded for the experiment.

We run the experiment separately for each of the
four transformations, applying the automation script in
Listing 4 to each mutant of the transformations and ag-
gregating the results obtained in each run. We ruled out
from the evaluation quick fixes that require user inter-
vention, like Q0.2, and did not consider variants of the

8 http://www.eclipse.org/atl/
atlTransformations/

Table 4 Mutation operators for ATL transformations.

Type Targets
Creation binding

source/target pattern element
rule inheritance relation

Deletion rule, helper
binding
source/target pattern element
rule filter
rule inheritance relation
operation context
formal parameter in operation or called rule
actual parameter in operation or called rule
argument in operation invocation
parameter in operation or called rule definition
variable definition

Type type of source/target pattern element
modification helper context type

helper return type
type of variable or collection
parameter type of operation or called rule
type parameter (e.g., oclIsKindOf(Type))

Feature name navigation expression
modification target of binding
Operation predefined operator (e.g., and)
modification predefined operation (e.g., size)

collection operation (e.g., includes)
iterator (e.g., exists, collect)
operation/attribute helper invocation

quick fixes as they share the same behaviour. In this ex-
periment, we took advantage of our speculative analysis
to apply a quick fix while keeping trace links to the origi-
nal transformation (as explained in Section 5.1) in order
to compute the set of fixed and new problems. This is
a key difference with the evaluation performed in [36],
where we were not able to accurately determine if a quick
fix was valid or not.

1 Input: Mutated transformation T
2 Step 0: Run the static analyser on T, obtaining its list of problems Lp
3 Step 1: Confirm or discard potential problems by finding a model witness
4 If discarded, remove problem from Lp
5 Step 2: Foreach P in Lp
6 Retrieve the set of available quick fixes for P
7 Foreach applicable quick fix Q
8 Discard quick fix if it requires user intervention
9 Count Q as applicable for the problem type of P

10 Apply Q on T speculatively
11 Copy T into Tq
12 Apply Q on Tq
13 Run the static analyser on Tq
14 Confirm or discard problems for Tq, as in step 1
15 Compute the impact to obtain fixedProblems
16 and newProblems
17 If P belongs to newProblems
18 Mark the application of Q as valid

Listing 4 Procedure to perform the experiment based on
mutation.

Table 5 shows the results of the experiment by ag-
gregating the data obtained for the four transformations.
For each problem detected by the analyser, we show the
number of occurrences in all the mutated transforma-
tions (#Occ), the number of applied quick fixes (#Qfx),
the average number of quick fixes per transformation
(Avg) and the minimum/maximum number of simulta-
neous quick fix proposals in the transformations (Min,
Max). Column #Valid shows the number of quick fixes
deemed as valid by the speculative analysis, and Valid?
indicates if all proposed quick fixes for the type of prob-
lem are valid. Columns #Fixed and #Gen show the num-
ber of fixed and newly generated problems after applying
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Table 5 Aggregated results for the errors and quick fixes in PNML2PetriNet, UML2Intalio, Ant2Maven and Class2Table.
Type is the type of quick fix (Heuristic, Repair, Template). #Occ indicates the number of occurrences of each problem/quick fix.
Avg, Min and Max show the average number of applicable quick fixes per error, the minimum and the maximum respectively.
#Valid is the number of quick fixes identified as valid. #Fixed and #Gen show the total number of fixed and generated
problems. #Extra shows the problems fixed in addition to the quick fix’s target problem.

Type #Occ #Qfx Avg Min Max #Valid Valid? #Fixed #Extra #Gen
E00 59 59 1.00 1 1 59 104 19
Q0.1 R - 59 - - - 59 Yes 104 45 19

E02 154 455 3.40 1 6 455 837 195
Q1.1 R - 24 - - - 24 Yes 38 14 0
Q1.2 R - 84 - - - 84 Yes 94 10 0
Q1.3 R - 70 - - - 70 Yes 71 1 4
Q1.4 R - 65 - - - 65 Yes 83 18 2
Q1.5 R - 65 - - - 65 Yes 125 60 0
Q2.1 T - 147 - - - 147 Yes 426 279 189

E03 84 431 5.31 1 6 420 650 271
Q1.1 R - 28 - - - 28 Yes 44 16 5
Q1.2 R - 49 - - - 49 Yes 61 12 0
Q1.3 R - 76 - - - 76 Yes 77 1 0
Q1.4 R - 74 - - - 74 Yes 101 27 10
Q1.5 R - 74 - - - 74 Yes 123 49 0
Q3.1 R - 84 - - - 84 Yes 205 121 239
Q3.2 H - 46 - - - 35 No 39 0 17

E05 99 307 3.10 2 4 307 315 0
Q4.1 R - 99 - - - 99 Yes 99 0 0
Q5.1 R - 99 - - - 99 Yes 107 8 0
Q5.2 H - 79 - - - 79 Yes 79 0 0
Q5.3 H - 30 - - - 30 Yes 30 0 0

E06 30 26 0.89 0 1 26 30 3
Q6.1 R - 26 - - - 26 Yes 30 4 3

E07 10 20 2 2 2 20 28 19
Q7.1 H - 10 - - - 10 Yes 14 4 9
Q7.2 R - 10 - - - 10 Yes 14 4 10

E08 43 34 0.82 0 1 34 36 3
Q8.1 R - 34 - - - 34 Yes 36 2 3

E10 75 263 3.5 3 4 263 371 62
Q9.1 R - 75 - - - 75 Yes 90 15 4
Q9.2 R - 38 - - - 38 Yes 53 15 58
Q9.3 R - 75 - - - 75 Yes 102 27 0

E11 15 59 3.94 3 5 38 53 57
Q9.1 R - 7 - - - 4 No 4 0 6
Q9.3 R - 7 - - - 4 No 4 0 15
Q11.1 T - 15 - - - 12 No 12 0 0
Q12.1 H - 15 - - - 6 No 6 0 16
Q12.2 T - 15 - - - 12 No 27 12 20

E12 101 156 1.58 0 2 126 188 81
Q12.1 H - 94 - - - 64 No 86 0 64
Q12.2 T - 62 - - - 62 Yes 102 40 17

E14 118 116 1.07 0 2 107 150 40
Q12.1 H - 59 - - - 50 No 72 13 8
Q12.2 T - 57 - - - 57 Yes 78 21 32

E15 133 13 0.22 0 2 2 2 8
Q15.1 T - 11 - - - 0 No 0 0 2
Q15.2 R - 2 - - - 2 Yes 2 0 6

E16 51 80 1.58 1 3 29 30 12
Q16.1 H - 26 - - - 26 Yes 27 1 7
Q16.2 R - 51 - - - 0 No 0 0 0
Q16.3 H - 3 - - - 3 Yes 3 0 5

E17 201 95 0.87 0 2 95 105 0
Q17.1 R - 95 - - - 95 Yes 105 10 0

E18 8 8 1 1 1 8 8 1
Q18.1 R - 8 - - - 8 Yes 8 0 1

the quick fix, i.e., its impact, which will be analysed in
more detail in Section 7.2.

The average number of proposed quick fixes for
binding-related problems (E02, E03 and E05) ranges be-
tween 3 and 5. In the case of E00, there is only one
quick fix that does not require user intervention and can
be automatically evaluated. In all cases, the minimum
number of applicable quick fixes is greater or equal to
1. Other typical kinds of problem in model transforma-
tions are E10 Possible access to undefined property and,

in particular for ATL, E11 Access to property defined in
subclass. For these, the average number of quick fixes
is about 3.5 and there is always at least one applicable
quick fix. In the case of problems not specific of model
transformations, our catalogue is less complete as there
are normally only one or two proposals at most, and
for some types of problems, the average number of ap-
plicable quick fixes is low. Nevertheless, our focus when
designing the catalogue has not been on typical prob-
lems of object-oriented languages, as they are substan-
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tially covered by IDEs like Eclipse/JDT or IntelliJ. As a
matter of fact, it should be simple to implement in our
tool many of the quick fixes available in them, since the
object-oriented concepts used by ATL are essentially the
same as in mainstream programming languages. Hence,
we can claim that our catalogue satisfies the complete-
ness criteria for transformation-specific problems, but it
is limited for more general kinds of problems.

Regarding validity, most quick fix applications have
fixed the targeted problem. In general, validity is im-
portant to avoid misleading the user when a quick fix
is applied. The only quick fix types for which the #Occ
and #Valid columns differ are heuristic quick fixes (ex-
cept for three occurrences in each quick fix of E11 which
are due to our analyser behaving incorrectly for these
three specific mutations). This shows that our quick fixes
for invalid invocations are not precise enough. We have
observed two reasons. On the one hand, the synthetic
changes made by the mutants do not work well with our
string distance heuristics, which are intended to fix small
typos. On the other hand, due to implementation limi-
tations, we do not take into account typing information
in these particular quick fixes. Finally, checking for va-
lidity is also a way of testing our implementation, as an
unexpected number of non-valid quick fixes is a smell of
bugs in the implementation of the quick fixes.

Table 6 shows the results for the PNML2PetriNet
transformation. We present this particular transforma-
tion of the evaluation to allow its comparison with the
results obtained in [36]. We have increased the num-
ber of applicable quick fixes in most cases. In partic-
ular, we have more variety of quick fixes for problems
E02, E03 and E05 (i.e., the maximum of simultaneous
applicable quick fixes is increased while the average is
similar or greater). For E10, we have given support to
pre-condition generation. For the other types of errors,
there are also some quick fixes available whose appli-
cability is similar. We have added new quick fixes, like
Q18.1, which is very useful to correct style problems.
Moreover, this evaluation is more robust than the one
in [36], since we can reliably track the fixed and newly
generated problems (columns Fix and Gen) and test the
validity of quick fix applications. Altogether, this new
evaluation confirms and generalises the previous one.

7.2 Evaluating quick fix impact

We have used the information obtained in the previ-
ous experiment to study the impact of quick fixes. We
are interested in understanding their side-effects, that is,
which types of quick fixes tend to cause certain types of
problems, and which ones tend to fix other problems (in
addition to the targeted ones).
Fixed problems. Sometimes, the application of a quick
fix solves other problems different from the targeted one
as a side effect. Column #Extra in Table 5 shows the

Table 6 Errors detected in mutants of the PNML2PetriNet
transformation, and applied fixes.

Prob. Occ Qfx Avg Min Max Val Fix Gen

E00 5 5 1.0 1 1 5 5 0
Q0.1 - 5 - - - 5 5 0

E02 61 138 2.3 1 5 138 257 149
Q1.2 - 17 - - - 17 18 0
Q1.3 - 20 - - - 20 21 4
Q1.4 - 20 - - - 20 24 0
Q1.5 - 20 - - - 20 24 0
Q2.1 - 61 - - - 61 170 145

E03 30 164 5.5 4 6 154 275 124
Q1.1 - 12 - - - 12 16 4
Q1.2 - 9 - - - 9 10 0
Q1.3 - 30 - - - 30 30 0
Q1.4 - 30 - - - 30 50 8
Q1.5 - 30 - - - 30 64 0
Q3.1 - 30 - - - 30 90 96
Q3.2 - 23 - - - 13 15 16

E05 65 202 3.1 2 4 202 210 0
Q4.1 - 65 - - - 65 65 0
Q5.1 - 65 - - - 65 73 0
Q5.2 - 45 - - - 45 45 0
Q5.3 - 27 - - - 27 27 0

E06 9 7 0.8 0 1 7 11 0
Q6.1 - 7 - - - 7 11 0

E07 8 16 2.0 2 2 16 24 19
Q7.1 - 8 - - - 8 12 9
Q7.2 - 8 - - - 8 12 10

E08 9 9 1.0 1 1 9 11 0
Q8.1 - 9 - - - 9 11 0

E10 33 124 3.8 3 4 124 184 55
Q10.1 - 33 - - - 33 48 0
Q9.1 - 33 - - - 33 48 0
Q9.2 - 25 - - - 25 40 55
Q9.3 - 33 - - - 33 48 0

E12 18 26 1.4 1 2 26 31 18
Q12.1 - 18 - - - 18 18 14
Q12.2 - 8 - - - 8 13 4
E14 29 29 1.0 0 2 27 33 14
Q12.1 - 16 - - - 14 20 1
Q12.2 - 13 - - - 13 13 13
E15 36 0 0.0 0 0 0 0 0
E16 14 20 1.4 1 2 6 6 4
Q16.1 - 6 - - - 6 6 4
Q16.2 - 14 - - - 0 0 0
E17 45 4 0.1 0 1 4 4 0
Q17.1 - 4 - - - 4 4 0
E18 6 6 1.0 1 1 6 6 0
Q18.1 - 6 - - - 6 6 0

number of extra errors fixed (i.e., #Fixed - #Extra if
the number is positive, 0 otherwise). These side-effects
are pervasive for some quick fixes, like Q2.1 Create new
rule which fixes 279 extra problems in 147 applications.
Figure 11 shows a heat map representing which types of
problems are fixed by a given quick fix when applied to a
certain kind of problem. To normalize the data, for each
applied quick fix, we count 1 if there is at least one extra
problem fixed, and 0 if there is none. We summarize the
different impact relationships next.

Quick fix Q0.1, which adds additional filters to con-
flicting rules, may fix E3 Invalid target for resolved bind-
ing if some guilty rule of E3 is one of the fixed conflicting
rules.

Quick fix Q1.1 implies modifying a rule filter with an
additional constraint and can be applied over E2 Possi-
ble unresolved binding and E3 Invalid target for resolved
binding. In both cases, when there are problems similar
to the one being fixed within the same rule, they will be
fixed at once. This pattern appears in PNML2Petrinet
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E00 E02 E03 E05 E06 E07 E08 E10 E11 E12 E14 E15 E16 E17 E18
Q0.1 (E0) 2
Q1.1 (E2) 14
Q1.1 (E3) 4 4 4
Q1.2 (E2) 10
Q1.2 (E3) 10 2
Q1.3 (E2)
Q1.3 (E3) 4
Q1.4 (E2) 2 14 2
Q1.4 (E3) 4 5 14
Q1.5 (E2) 2 35 2
Q1.5 (E3) 9 8 17
Q2.1 (E2) 103
Q3.1 (E3) 8 11 26 5 4 17 2
Q3.2 (E3) 4
Q4.1 (E5)
Q4.1 (E6)
Q5.1 (E5) 8
Q5.2 (E5)
Q5.3 (E5)
Q6.1 (E6) 4
Q7.1 (E7)
Q7.2 (E7)
Q8.1 (E8) 2

Q9.1 (E10) 15
Q9.1 (E11)
Q9.2 (E10) 15
Q9.2 (E11)
Q9.3 (E10) 21
Q9.3 (E11)

Q10.1 (E10) 33
Q11.1 (E11)
Q12.1 (E11)
Q12.1 (E12) 4
Q12.1 (E14)
Q12.2 (E11) 1 2 3 2
Q12.2 (E12) 24

Q12.2 (E14) 6 3

Q15.1 (E15)

Q15.2 (E15)

Q16.1 (E16) 1

Q16.2 (E16)

Q16.3 (E16)

Q17.1 (E17) 6

Fig. 11 Heat map showing the relationships between quick
fix types and fixed problems according to the error types. The
smallest number of fixed problem is assigned white, while the
largest number is assigned dark green.

and UML2Intalio in the assignment of features from and
to for control flow edges (as in lines 47–48 in Listing 1).
This quick fix has also an impact in other bindings that
depend on the modified rule. If the impacted binding had
problem E3 and was resolved by the modified rule, the
quick fix may solve this problem as well. This possibility
is less likely and it has not arisen in our experiment. In
some cases, rule conflicts (E0) may become fixed as well.

Quick fix Q1.2 removes the problematic binding. If
the binding has other binding-related problems, they will
become automatically fixed (e.g., E6).

Quick fix Q1.3 filters the right-hand part of a binding
to constrain the elements that will be resolved. If the
quick fix is applied for E3, it can fix E2 as a side effect
since the binding filter is ruling out elements that may be
the ones causing E2. However, if the quick fix is applied
over E2, it cannot fix E3 because, in this case, the quick
fix is using the resolving rule filters (which may coincide
with the guilty rules of an E3 for the same binding) to
force the right-hand part of the binding to select only
the elements satisfying them. This provides a hint of the
order in which we should fix a binding by using Q1.3:
first E3 problems and then E2 if needed.

Quick fixes Q1.4 and Q1.5 generate a pre-condition.
This has an impact on problems that require confirma-
tion using the solver. In particular, it can fix problems
E0, E2 and E3. However, we have found an undesir-

able scenario which happens when the generated pre-
condition contradicts other problems that require con-
firmation by the solver. As an example, in one mutant
of PNML2PetriNet, we are generating the following pre-
condition:

1 PNML!NetContentElement.allInstances()→
2 forAll(v | v.oclIsKindOf(PNML!Place))

This pre-condition is too strong as it rules out ev-
ery subtype of NetContentElement different from Place, in-
cluding Transition. Thus, any problem caused by an in-
stance of Transition will be discarded as an actual prob-
lem. We are not treating this case in a special manner
in the evaluation. Nevertheless, when this happens, the
pre-condition is still useful as a template for the user.
Moreover, one could use the constraint solver to detect
this situation and notify the user.

Quick fix Q2.1 adds a new rule. This tends to solve
E2 Possible unresolved binding problems related to the
input type of the generated rule. The heat map shows
that this situation is common.

Quick fix Q3.1 removes a guilty rule detected in prob-
lem E3. Other problems of type E3 affected by the same
rule may become fixed at the same time. Similarly, a rule
conflict problem E0 may become fixed if the deleted rule
is one of the conflicting rules. In addition, any problem
within the deleted rule will disappear, no matter its type
(E5, E12 and E15 in the experiment).

Quick fix Q3.2 proposes a target feature with a type
compatible with the guilty rules. Our current implemen-
tation does not check the feature cardinality and thus
it may provoke problem E06. This could be easily fixed
with Q6.1.

Quick fix Q5.1 initialises a compulsory binding with
a default value. This quick fix only solves the targeted
problem, except in the case of bidirectional references
having two compulsory ends, in which case it solves two
problems at once. For example, in the following listing,
outgoingArc[1..*] and from[1] are not initialised, and two
problems are reported (in rules Transition and Transition-

ToPlace). Since the references are one the opposite of the
other, fixing one of them with Q5.1–Q5.3 solves both
problems.

1 rule Transition {
2 from n : PNML!Transition
3 to p : PetriNet!Transition (
4 ...
5 −− missing ’outgoingArc’ (opposite of from)
6 )
7 }
8

9 rule TransitionToPlace {
10 from n : PNML!Arc ( ... )
11 to p : PetriNet!TransitionToPlace (
12 ....
13 −− missing ’from’ (opposite of outgoingArg)
14 )
15 }

Quick fix Q6.1 uses first() to obtain an element of
a collection in the right-hand side of a binding, and
assign this value to a mono-valued feature. A trou-
bling issue is that our underlying solver (USE Valida-
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tor) only supports Set types, and hence, first() is not
supported. Our interface with the USE Validator uses
several workarounds to solve this issue, but sometimes,
some results are unreliable9. This arises in the experi-
ment in the form of Q6.1 fixing E02 Possible unresolved
binding.

Quick fix Q8.1 replaces a declared type by the in-
ferred one when they are not compatible. If the original
type declaration refers to a missing class, this is fixed as
well (2 fixes for E07 Invalid type in the heat map). For
example, in the following listing, replacing allArcs with
the inferred type Sequence(PNML!Arc) also fixes the ref-
erence to InvalidClass.

1 let allArcs : Sequence(PNML!InvalidClass) = PNML!Arc.allInstances()...

Quick fixes Q9.1 and Q9.2 add an if statement to an
expression that may access an undefined value, or modify
the container rule filter to avoid reaching the problematic
access, respectively. If there are several nested accesses
to the same feature, the quick fix will solve all of them
at once. Our current implementation of Q9.1 puts the if

in the outermost location. For instance, for the following
code in the UML2Intalio transformation, lines 1 and 2
are problematic:

1 if anActivity.name.toUpper() = ’MY ACTIVITY’ then
2 anActivity.name + ’ mine’
3 else
4 anActivity.name
5 endif

If we fix line 2 with Q9.1, a new if expression is placed
around the first if, thus solving both problems at once
(as the following listing shows). Hence, the 15 additional
fixes of E10 for Q9.1 and Q9.2 in the heat map. This may
also arise when the quick fixes are applied to E11, but
our mutants have not generated this scenario.

1 if not anActivity.name.oclIsUndefined() then
2 if anActivity.name.toUpper() = ’MY ACTIVITY’ then
3 anActivity.name + ’ mine’
4 else
5 anActivity.name
6 endif
7 else
8 ’’
9 endif

Quick fix Q9.3 generates a pre-condition to ensure
that the value of a “possibly undefined” property is al-
ways defined, solving similar accesses at once. Q10.1 be-
haves similarly, but setting the feature lower bound to
0. This latter quick fix is preferred when the problem is
not in the transformation, but it lies on the meta-model
cardinalities.

Quick fix Q12.1 is a heuristic quick fix which replaces
an access to a non-existing feature by an access to an
existing feature. If the invalid feature is used in the right-
hand side of a binding, the quick fix may solve problem
E05 if it proposes a feature that needs to be initialised.

9 We are not yet able to precisely determine in which cir-
cumstances the solver behaves correctly and in which not.
Thus, we notify the user that the analysis is not completely
reliable.

For example, one of the mutants contained the following
piece of code which has problem E12 because name does
not exist in Build. Our system proposed defaultGoal as a
possible fix, which fixed E12 and E05.
1 rule AntProject2Maven {
2 from a : Ant!Project ( ... )
3 to
4 −− The mutant replaced MavenProject!Project with Build
5 −− Problem E05 in mp because defaultGoal is compulsory
6 mp : MavenProject!Build (
7 −− Problems E12 because name does not exist
8 name ← a.name,
9 )

10 }

Quick fix Q12.2 creates a helper that resolves a call
to a feature not found, fixing the same problem in other
locations.
Generated problems. A quick fix may or may not gen-
erate additional problems as a side-effect of its applica-
tion. As Table 5 shows, some quick fixes never generate
new problems while others are more prone to this be-
haviour. Figure 11 shows a heat map representing which
types of problems are generated by a given quick fix
when applied to a certain kind of problem. Next, we re-
port the more interesting findings.

E00 E02 E03 E05 E06 E07 E08 E10 E11 E12 E14 E15 E16 E17 E18
Q0.1 (E0) 5 1 8
Q1.1 (E2)
Q1.1 (E3) 5
Q1.2 (E2)
Q1.2 (E3)
Q1.3 (E2)
Q1.3 (E3)
Q1.4 (E2) 2
Q1.4 (E3) 10
Q1.5 (E2)
Q1.5 (E3)
Q2.1 (E2) 87
Q3.1 (E3) 76 4
Q3.2 (E3) 12 1
Q4.1 (E5)
Q4.1 (E6)
Q5.1 (E5)
Q5.2 (E5)
Q5.3 (E5)
Q6.1 (E6)
Q7.1 (E7) 1 2
Q7.2 (E7) 2 2
Q8.1 (E8) 1 1

Q9.1 (E10) 4
Q9.1 (E11) 1 2 2
Q9.2 (E10) 23
Q9.2 (E11)
Q9.3 (E10)
Q9.3 (E11) 3

Q10.1 (E10)
Q11.1 (E11)
Q12.1 (E11) 1 1 1 5 1 2
Q12.1 (E12) 1 13 3 2 4 31 4
Q12.1 (E14) 3 1 1 3
Q12.2 (E11) 4 3 1
Q12.2 (E12) 1 5 5 1 1

Q12.2 (E14) 2 19 11

Q15.1 (E15) 2

Q15.2 (E15) 2 2

Q16.1 (E16) 2 3

Q16.2 (E16)

Q16.3 (E16) 3

Q17.1 (E17)

Fig. 12 Heat map showing the relationships between quick
fix types and generated problems according to error types.
The smallest number of fixed problem is assigned white, while
the largest number is assigned dark red.

Quick fix Q0.1 solves a rule conflict but tends to in-
troduce additional E2 Possible unresolved bindings be-
cause the modified rule filters cover fewer cases. Any
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other problem existing in the conflicting rule filters is
duplicated when copying the negated filter’s condition.
In particular, the mutation operators which caused E0
are creating other problems in the original transforma-
tion which are duplicated by Q0.1 (e.g., E15 and E10
in the heat map). In general, any quick fix that copies
pieces of code to another location may have the same
issue.

Quick fixes Q1.1–Q1.5 resolve binding–rule problems
and do not introduce many problems. Q1.1 introduces
some E2 errors because changing a rule filter to make it
more constrained may have this effect.

Quick fix Q2.1, which adds a new rule, produces
many errors due to uninitialized compulsory features. It
is worth noting that Q2.1 does not introduce rule con-
flicts because our implementation takes care of generat-
ing adequate rule filters.

Quick fix Q3.1 deletes guilty rules, and hence, the
generation of E2 Possible unresolved bindings. A subtle
effect of rule removal is that it may cause E5 Compulsory
feature not initialized. As an example, let us consider
this excerpt from one mutant of the PNML2PetriNet
transformation. Before the removal of TransitionToPlace,
the analyser does not raise problem E5 for outgoingArc

because its inverse has already been initialised (from).
However, if we remove this rule, we are invalidating that
condition and causing problem E5.

1 −− Guilty rule. Will be removed by Q3.1
2 rule TransitionToPlace {
3 from n : PNML!Arc ( ... )
4 to p : PetriNet!TransitionToPlace (
5 −− from is the inverse of outgoingArc
6 from ← n.source,
7 to ← n.target
8 )
9 }

10

11 −− PetriNet!Transition has outgoingArc compulsory feature
12 rule Transition {
13 from n : PNML!Transition
14 to PetriNet!Transition
15 }

Quick fix Q3.2 replaces a target feature. If the re-
placed feature is compulsory, E5 problems arise. Simi-
larly, if the cardinality of the new target feature is not
compatible with the right-hand side of the binding, E6
problems appear.

Quick fixes Q7.1 and Q7.2 correct references to in-
valid meta-model types. If the proposed meta-model
type is incorrect, it may trigger even more problems.
An alternative for these quick fixes would be not to use
distance metrics, but to propose the type that is likely
to correct more errors.

The behaviour of quick fixes Q12.x to Q16.x is more
unpredictable as they are template quick fixes and some
of them are not valid (see Table 5). In most cases, in ad-
dition to not fixing its error, they introduce additional
ones. In other cases, the quick fix may be correcting
the problem, but it does not take into account its con-
text. For instance, in a binding feat← obj.wrongFeature, if
Q12.1 suggests an existing feature for which there is no

resolving rule, then E2 Possible unresolved binding will
be raised. A similar situation occurs if the new proposed
feature has primitive type but the binding expected an
object (or the other way round). This is the reason for
the amount of E17 in the heat map.

Drawing on the experiment, one outcome is that the
behaviour of quick fixes can be roughly classified as global
and local. Global quick fixes like Q4.1, Q2.1, Q10.1 and
Q12.2 may fix many errors at once. In turn, global quick
fixes can be classified as predictable and non-predictable.
Quick fix Q10.1 is predictable because it is straight-
forward to identify the locations that will be affected,
whereas Q2.1 is non-predictable because its impact typ-
ically depends on OCL expressions that need to be anal-
ysed, likely using a solver. A local quick fix affects a
limited scope and its ability to fix many problems at
once is small. Examples are Q5.1–Q5.3, which will likely
fix only the targeted problem, even though it is possible
that they fix related problems (e.g., if there are opposite
references).

The heat map for fixed problems, Figure 11, reveals
strong relationships between rule–binding problems and
their associated quick fixes. We believe that this is due
to the implicit rule scheduling algorithm of ATL (i.e.,
all matched rules are matched “at once”) and the im-
plicit binding resolution algorithm (i.e., a binding is dy-
namically resolved according to the runtime type of its
right-hand side).

In the case of generated problems, the heat map in
Figure 12 is more scattered. There are clear relationships
between a few quick fixes and their generated problems,
like Q2.1 and E5, Q3.1 and E2 or Q9.2 and E2. However,
for other quick fixes, typically heuristic and template
ones like Q12.x, the quick fix behaviour is less clear.

Altogether, this study provides an understanding of
the effects of applying quick fixes to ATL transforma-
tions and it is a cornerstone to build a hierarchy of quick
fixes with less or more constrained application conditions
to fix/generate errors.

7.3 Evaluating usefulness of catalogue and ranking

Next, we report on an experiment to evaluate the useful-
ness of the system to fix errors in real transformations.
For this purpose, we selected 12 transformations from
the ATL zoo (i.e., developed by a third party), whose
details are shown in Table 7. The transformations range
from small (e.g., Book2Publication with 32 LOC and 1
rule) to medium-size (e.g., Mantis2XML with 505 LOC
and 5 rules, or Maven2Ant with 273 LOC and 30 rules).
In addition to cover this size range, we selected trans-
formations with meta-models or domains close to the
knowledge of the participant developers, and favoured
transformations with a low number of errors, or at least,
a low number of error types (e.g., Bugzilla2XML and Man-

tis2XML have many errors but of the same kind).
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Table 7 Transformations used for the usefulness experiment.

Transformation LOC. Rules Helpers Classes Num. errors Error types
BibText2DocBook 171 9 4 21/8 4 E5
Book2Publication 32 1 3 2/1 1 E18
Bugzilla2XML 422 8 7 9/5 82 E5
Class2Relational 87 6 1 5/4 2 E18, E8
Ecore2Class 30 3 0 18/5 2 E2, E10
Families2Persons 42 2 2 2/3 1 E10
JavaSource2Table 59 4 2 5/3 1 E8
KM32EMF 125 10 1 15/20 3 E2, E18, E5
KM32SimpleClass 56 4 0 16/5 9 E2(2), E3, E18(6)
Mantis2XML 505 5 1 10/5 97 E5(95), E17(2)
Maven2Ant 273 30 4 59/48 7 E2, E8(2), E10(2), E12, E18
XML2Book 27 2 1 5/2 4 E2, E3, E10, E18

Altogether, the selected 12 transformations have 213
errors (all detected statically and confirmed by the solver
when needed), and the types of errors found cover rea-
sonably well the range of possible errors our analyser is
able to detect (see Figure 6).

The goal of the experiment was twofold. On the one
hand, to check to what extent real faulty transformations
can be fixed according to the intention of the developers,
using quick fixes of the catalogue. On the other hand,
to evaluate the utility of the two rankings (dynamic and
static) with respect to the choices made by the developer.

The experiment was carried out by two developers
in an independent way. In a first step, they were asked
to explain how to solve each one of the identified errors
without the assistance of our quick fixes. Then, in a sec-
ond step, they were allowed to use the catalogue of quick
fixes to solve the same problems, and were asked whether
there was some quick fix equivalent to the solution they
had originally devised, the position of the quick fix in
the ranking, as well as whether the result of the fix was
the one they expected.

After the experiment, the data analysis revealed that
both developers agreed on how to resolve 32 problems
(which is less than the total number of errors because
resolving one issue may resolve others as a side effect),
while they disagreed on the resolution of 6 issues in 3
different transformations. The disagreements concerned
the resolution of errors E2 (possible unresolved binding)
and E3 (invalid target for resolved binding). Both er-
rors required considering the possibility of receiving in-
put models with unexpected features for the transforma-
tion, which could hardly be mapped to the target model.
While one developer decided to use Q1.5 and Q1.4 in
these cases (generate general pre-condition, or generate
pre-condition), the other decided to use Q1.1 and Q1.3
(modify rule filter, or add filter to binding expression).
The strategy of the first developer results in not trans-
forming the problematic models, while the strategy of
the second results in transforming only the parts of the
model that are considered by the transformation logic,
but neglecting the problematic parts.

Overall, each developer could not find a suitable
quick fix in 2 cases, in order to solve the same 2 problems,
both in the Maven2Ant transformation. In the first case

(E12 Feature not found) a binding mentioned an unde-
fined property PropertyName.value. Here, the developers
solution was to remove the binding (as the error seemed
a copy/paste error from a similar rule), but the system
only suggested choosing a similar feature (Q12.1). In
the other case (E8 Declaration mismatch), the system
proposed changing the declared type of a helper by the
inferred type (Q8.1), while in this case, the developers
choice was to modify the helper body by adding flatten

operators to the returned collections.
Developers also recorded whether the quick fix ap-

plications had the consequences they expected. This oc-
curred in all cases but two (the same situation was no-
ticed by both developers). The first case occurred when
fixing an E10 Possible access to undefined property error
with quick fix Q9.1, in an expression deeply nested in a
conditional. This resulted in a new if condition enclosing
the existing conditional, while the developers’ expecta-
tion was that the condition should have been added to
the branch of the conditional containing the error. In
the second case, fixing an E5 Compulsory feature not
initialized error with quick fix Q5.1 resulted in the ini-
tialization of a binding with OclUndefined. However, both
developers were expecting that the fix would also create
a default object in the output pattern of the rule, and
that this object were assigned in the binding instead of
OclUndefined.

Altogether, both developers could reasonably fix
most errors in the selected 12 transformations. All re-
pair actions (except 2) could be performed using quick
fixes of the catalogue, while in all cases (except 2) this
resulted in the expected behaviour.

Finally, we compare the static and dynamic rank-
ings provided by our approach, by analysing whether
the quick fixes selected by the developers in our experi-
ment are located in top positions in both rankings. Ta-
ble 8 shows the results. This table contains aggregated
information of the errors and quick fixes applied by both
developers (first column); the average and median of the
selected quick fix as calculated dynamically by the specu-
lative analysis (second column); the average and median
of the selected quick fix as calculated by the static rank-
ing (third column); the number of quick fixes of each
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kind applied (fourth column); and the number of errors
fixed by the quick fix application (fifth column).

Table 8 Comparing dynamic and static rankings of quick
fixes. Dyn. rank and Static rank columns contain the average
and median (with format average/median) of the ranks of the
selected quick fixes.

Errors & Dyn. Static # Quick # Fixed
Quick fixes rank rank fixes errors
Possible unresolved binding (E2)

Q1.1 4/4 3/ 3 2 2
Q1.3 1,2/1 4,5/5 6 6
Q1.4 2,5/2,5 4/4 2 3
Q1.5 1/1 1/1 2 3

Invalid target for resolved binding (E3)
Q1.1 2/2 5/ 5 1 1
Q1.5 1/1 4/ 4 1 1

Compulsory feature not initialized (E5)
Q4.1 1/1 2/ 2 6 362
Q5.1 1/1 1/ 1 2 2

Declaration mismatch (E8)
Q8.1 1/1 1/ 1 4 4

Possible access to undefined property (E10)
Q9.1 1,4/1 1,8/ 2 10 10

Incompatible types (E17)
Q17.1 1/1 1/ 1 4 4

Style warnings (E18)
Q18.1 1/1 1/ 1 22 22

Normally, developers tend to look at the first one
or two options of the list of offered fixes. Therefore, we
analyse to what extent the choice made by the develop-
ers in the experiment was offered in the first or second
positions by both rankings. We can observe that the fix
chosen by the developers was the first offered by the dy-
namic ranking in 88,7% of the cases (55 times), while
it was the first of the static ranking in 36% of the cases
(36 times). We can also see that the developers chose the
first or second option of the dynamic ranking in 92% of
the cases (57 times), while the choice was first or sec-
ond in the static ranking in 82% of the cases. Hence,
these high percentages show the appropriateness of the
rankings for practical use.

The ranking provided by speculative analysis is gen-
erally more accurate (regarding how the choice of the
developers scored in both rankings). As Table 8 shows,
the average and median of the positions in the dynamic
ranking is always lower or equal than for the static rank-
ing, with the exception of Q1.1 for error E2. More in de-
tail, the dynamic rank was strictly better than the static
one in 32% of the cases (20 times). The static ranking
was as good as the dynamic one in 63% of the cases
(39 times), while it was better in 4,8% of the cases (3
times). These are reasonable results, as speculative anal-
ysis checks the consequence of every quick fix, while the
static ranking is made by empirical analysis. However,
being as good as the dynamic over 60% of the times indi-
cates that the model of the static ranking is an adequate
default. It must be stressed that the advantage of using
speculative analysis is not only its more accurate rank-
ing, but on the wealth of extra information offered to the
developer, as explained in Section 5. On the other hand,

the ranking offered by the static ranking is accessible in
a quicker, more agile way through the standard quick
fix tool, which does not require from opening a separate
dialog window, with less disruption of the programming
flow.

7.4 Threats to validity

The main threat to the internal validity of the experi-
ment to determine the validity and completeness of our
catalogue (Section 7.1) is that our analyser may report
some false positives (i.e., indicate an error incorrectly).
In this case, we may be cataloguing a correct quick fix ap-
plication as invalid. The analyser may also report some
false negatives (i.e., fail to report a true error) which may
lead to marking a quick fix application as valid when it
is not. In our experience, the analyser has a low rate of
false positives/negatives (we present a preliminary eval-
uation in [35]). Nevertheless, we have manually checked
any suspicious result and performed many tests to try
to avoid this situation. In addition, our analyser uses a
model finder (USE) based on the “small scope hypothe-
sis”, which limits the search of witness models to a given
scope. To minimise the number of false negatives due
to this reason, we have used reasonably wide searching
scopes.

Related to the previous issue, our system relies on
anATLyzer to statically spot faults and it uses the TDG
to build the quick fixes. At the same time, the counting
of newly generated problems after applying a quick fix
is also performed using anATLyzer as oracle function.
Unfortunately, to the best of our knowledge, there is no
other analyser of ATL with which we can cross-validate
the results. This implies that different versions of anAT-

Lyzer (e.g., due to bug fixes) may provide slightly dif-
ferent values for the experiments and for our quick fix
ranking.

Another threat to internal validity is that muta-
tions could be biased towards the generation of errors
for which we have available quick fixes. To limit this
issue, the mutation operators were developed indepen-
dently from the quick fixes. Our solution to this threat
has led to a different threat, which is that our mutation
operators are not exercising all the quick fixes. For in-
stance, Q12.4 Change feature call to operation call (and
vice versa) is never applied. In the same line, another
threat is related to the size and complexity of the trans-
formations used in the experiment. We have used four
different transformations with different characteristics
but we cannot claim that all ATL features are present
in these transformations. Nevertheless, we have checked
that all “transformation-specific” quick fixes are exer-
cised at least once.

Regarding the internal validity of our evaluation of
the impact of quick fixes, one threat is that we are using
just first-order mutations. For instance, we know from
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our manual evaluation in Section 5.3 that Q4.1 Modify
feature cardinality in meta-model will fix any E04 Fea-
ture initialization problem for the same meta-model fea-
ture. However, Figure 12 does not reveal this because we
are mutating a correct transformation in only one place,
while we would need to remove at least two bindings
to enable this effect. For this, we would need at least
second-order mutation operators.

Regarding the experiment in Section 7.3, the main
threat to its internal validity is the possible bias of the
developers towards using quick fixes available in the tool,
but which would not repair the transformation as they
planned. To mitigate this risk, there were two develop-
ers (as opposed to the experiment in [36], made by one
developer only), and their large agreement in the selec-
tion of how to fix the 12 transformations is an indication
that they were not biased. As for the external validity, we
might extend the experiment with more transformations
and more developers, to obtain data of more types of er-
rors and quick fixes. Also, the experiment was designed
to fix already finished (and hopefully tested) transfor-
mations, for which we favoured transformations with few
errors. However, the results of the experiment cannot be
generalized to the scenario of creating a transformation
from scratch, for which another experiment would be
needed.

For all experiments, there is an internal threat re-
lated to experimenter bias because the experiments have
been carried out by the authors. To minimize the impact,
we have split the work (i.e., analyser implementation vs.
mutation operator implementation) and we have selected
transformations written by third-parties. There is also
an external threat regarding the generalization to other
transformation languages, as we only cover ATL. The
features of other transformation languages may limit or
impose additional constraints in some of the proposed
quick fixes. However, provided that a suitable static anal-
ysis phase is available, quick fixes related to OCL and
model navigation are directly applicable to OCL-based
transformation languages, such as QVT or ETL. Lan-
guages such as ETL and RubyTL could also benefit from
rule-related quick fixes.

7.5 Discussion

Next, we comment on our experience using our quick fix
system, beyond the previous empirical analysis.

We have found the system useful to fix many types
of problems, as confirmed by our experiments. However,
from a usability perspective, sometimes the generated
code may be difficult to understand. This is particularly
the case of quick fixes for rule resolution, which may gen-
erate large filter expressions because they aggregate the
types and filters of several rules. For some cases, we have
optimizations that generate more compact expressions,
and we have quick fix variants to encapsulate complex

expressions. In contrast to quick fixes for e.g., Java, our
code is inherently more complex (i.e., some of our quick
fixes copy and adapt pieces of code from other locations).
Hence, more optimizations need to be studied.

In comparison with established quick fix frameworks,
such as Eclipse JDT or Intelli/J, our proposal would be
classified as a recommendation system for model trans-
formations. However, some of the problems that the
analyser detects are bugs (i.e., problems that manifest
themselves at runtime provoking an incorrect behaviour
of the transformation), though they are uncovered stati-
cally. This is generally the case of rule conflicts, binding
resolution and invalid receptor problems. Hence, part of
our proposal can be seen as a lightweight form of auto-
matic program repair.

We have found our speculative analysis useful to rea-
son about the consequences of a quick fix. In particular,
it uncovers information that is many times unknown by
the developer, like the implicit effects of modifying a
piece of code (even a simple one). We have thoroughly
studied these effects in Section 7.2.

Regarding performance, our system is responsive
enough to be used as an editing facility. Using the model
finder is time-consuming, but we mitigate this problem
by pruning the input meta-model into a so-called error
meta-model, as discussed in [35]. With respect to the
speculative analysis, it typically requires some time to
complete the results (e.g., around 5 seconds). The to-
tal time depends on two main factors. First, the size of
the transformation because its abstract syntax model is
copied once per quick fix. While this process is typically
fast, it may impact the overall performance in case of
very large transformations. Strategies such as copy-on-
demand could be implemented to improve performance.
The second and dominant factor is the number of prob-
lems that require solver confirmation, since the execu-
tion time of the solver varies from a few milliseconds
to a few seconds. Nevertheless, our implementation does
not block the user interaction but it runs the analysis in
several execution threads.

Concerning the applicability of our proposal to other
languages beyond ATL, we believe it is conceptually ap-
plicable to any transformation language, especially to
OCL-based ones. In practice, there are three dimensions
that should be considered to determine the effort re-
quired to implement our system for other transformation
languages, namely: architecture, static analysis, and ap-
plicability of the catalogue of quick fixes.

The architecture of our system could be applied to
any transformation language, notably if it is built as an
Eclipse plug-in. The only requirement is that the ab-
stract syntax tree of the transformation definitions needs
to be available for the quick fixes, since our speculative
analysis works at the abstract syntax level and not at
the text level.

On the other hand, if the static analysis provided by
a language is powerful, more advanced and precise quick
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fixes can be implemented. Existing transformation lan-
guages vary between strongly typed languages such as
Kermeta [14] and QVT [32], where all types are resolved
at compile time and the abstract syntax is annotated
with type information, and dynamically typed languages
such as ATL and ETL [18], where type checking is per-
formed at runtime. Unfortunately, these languages do
not make available valuable information such as rule de-
pendencies and helper invocations, which we expose in
our TDG. Our static analyser is specific to ATL, thus
it cannot be directly reused for other languages, which
limits the adoption of our catalogue by other languages.

Finally, regarding the general applicability of our cat-
alogue of quick fixes, next we discuss which quick fixes
are applicable to different model transformation lan-
guages. We will assume that each language provides (or
could provide) a static analyser.

ETL [18] is very similar to ATL. Hence, our cata-
logue is easily applicable to ETL with minor adapta-
tions. However, the fact that ETL has less constrained
imperative features may make the implementation more
difficult, while OCL-related quick fixes may need to be
adapted to the query language of ETL (EOL).

Regarding the QVT languages, both QVT Opera-
tional (QVTo) and QVT Relational (QVTr) use OCL to
navigate models, hence, quick fixes related to OCL typ-
ing are applicable. QVTo does not support the implicit
execution of rules; thus, quick fixes related to rule resolu-
tion are not directly applicable, although they could be
adapted to handle problems related to incomplete map-
ping rules. Quick fixes for rule conflicts could also be
adapted to ensure the disjunction of when clauses, while
binding-related quick fixes could be adapted to ensure
proper initialization of features. In the case of QVTr,
top rules are akin to ATL matched rules, while non-top
rules are lazy. Quick fixes for rule conflicts and feature
initialization could also be adapted to QVTr as in QVTo.

Finally, our catalogue is less applicable to languages
which do not use OCL, such as graph-based languages
like Viatra [37] and Henshin [2]. Nevertheless, these lan-
guages could reuse some of our ideas, such us quick fixes
for rule conflicts and feature initialization.

8 Related Work

In this section, we focus on recent research on code rec-
ommenders, quick fixes, and automated program repair.
We leave out from this review works on fault localiza-
tion and validation&verification of model transforma-
tions, and redirect the interested reader to [33,35] for
a revision on these topics. Most of the works we anal-
yse come from the programming languages community,
as works dealing with quick fixing or repairing model
transformations are virtually non-existent.

8.1 Quick fixes and code recommenders

Different strategies for proposing and ranking quick fixes
have been studied in the programming community. For
example, in [28], quick fixes are ranked according to
the number of errors that remain after their applica-
tion. MintHint [16] uses statistical correlation analysis to
identify expressions that are likely to appear in patches.
BugFix [13] uses ideas from machine learning to auto-
matically learn from previous bugs that have been fixed
over time, in order to report a prioritized list of relevant
fix suggestions when new bugs are detected. Fix sugges-
tions are textual descriptions of the changes needed to
remove a bug, and so they must be manually encoded by
the developer. Instead, our fixes can be applied automat-
ically to solve a detected problem, and similar to these
approaches, we rank them statically according to their
efficacy on a set of transformations, but also dynamically
using speculative analysis.

Our tooling includes a facility to visualize the re-
sult of applying a quick fix speculatively. This allows
analysing the impact of a fix before its application. Other
systems with similar functionality include the one pre-
sented in [27], which provides a semi-automatic wizard
to see the result of possible fix alternatives for buffer
overflows in C code. Similar to our approach, the system
uses SMT solving to assert whether a buffer overflow can
ever occur in practice, given a potentially faulty state-
ment. Its quick fixes are empty C code skeletons where
certain values, which are computed by the SMT solver,
limit the index variables to take only values within the
buffer range. On a different area, GoalDebug [1] is a de-
bugging system for spreadsheets where users can report
expected values for cells that yield an incorrect value,
and the system generates change suggestions ranked ac-
cording to a number of heuristics. Change suggestions
can be interactively explored, applied or rejected.

Altogether, although there are previous works tack-
ling the generation and ranking of fixes for different ar-
eas, there are few works on this topic in the MDE liter-
ature, and none tackling model transformations that we
are aware of.

Solutions for quick fix generation have also been
applied to Domain-Specific Modelling Languages
(DSMLs). For example, [12] uses design-space explo-
ration to propose quick fixes for DSMLs. A quick fix
is defined as a set of model operations that reduces
the number of errors. The authors propose some guide-
lines for quick fix generation, like ranking quick fixes
by their simplicity (offer first those with less model
modifications). In our case, errors are detected by static
analysis, quick fixes implement pre-defined correction
strategies, and we rank them according to the problems
they introduce.
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8.2 Fixing errors in model transformations

Although many efforts have been devoted to the anal-
ysis and verification of model transformations in recent
years [33], works for their automated or assisted repair
are scarce.

In [4], the authors synthesize OCL pre-conditions for
graph transformation rules from meta-model integrity
constraints. The generated pre-conditions ensure rule
correctness (i.e., the rule application always yields a
model conformant to its meta-model). The work [7] tack-
les the same problem. In [17], the authors define the nec-
essary conditions that graph transformations should ful-
fil to ensure the satisfaction of containment constraints.
Though these approaches do not include a fault local-
ization phase, they allow fixing potential errors a priori.
However, the kind of detected errors is limited (meta-
model conformance or graph constraint satisfiability),
and they are restricted to graph transformation. In our
case, the challenge is bigger as ATL is dynamically typed
and more expressive.

In [20,39], the authors present a taxonomy of com-
mon pitfalls in QVT-R transformations. Some of these
errors are detected by executing the transformation us-
ing Petri nets. In our case, errors are detected statically
and we provide a suite of quick fixes to amend them.

The catalogue of refactorings for model-to-model
transformations presented in [40] aims at improving
transformation quality. We believe our method can be
applicable to the automated refactoring of ATL trans-
formations, but we leave this aspect for future work.

8.3 Automated program repair

Automated program repair [22] aims at correcting faulty
programs automatically, where faults are detected by the
dynamic testing of the programs. By relying on dynamic
testing, and different patch search heuristics, program
repair is typically a very time-consuming task. Instead,
our quick fixes are a much lighter technique, aimed to
be used interactively, and solving localized problems de-
tected statically. While automated transformation repair
is left for future work, we took inspiration from existing
works in this area, which we describe next.

Some representative works in this area include
Autofix [29] (for Objective-C), which uses pre/post-
conditions and invariants to synthetize repairs;
Nopol [8] which represents traces from successful test
executions as an SMT problem, whose solution can be
translated into a source code patch; and GenProg [21,
23,38], which uses genetic-programming to guide the
repair process. From GenProg, we adapted the heuristic
for quick fix Q5.2.

Martinez and Monperrus [25] use repair models ex-
tracted from the analysis of real patches in software
repositories, and decorated by a probability distribution

that enables reasoning on the search space of program
repair. We used this work as inspiration for our static
ranking of quick fixes. However, we did not have access
to real patches produced by ATL developers. Instead,
our quick fix ranking model was heuristically built from
automatically applied quick fixes on mutated transfor-
mations.

Works in automated program repair focus on gen-
eral purpose programming language, and handle general
problems for programming languages like infinite loops,
memory allocation errors, overflows or underflows [23,24,
27,30]. Instead, we focus on the ATL model transforma-
tion language. To the best of our knowledge, ours is the
first work targeting the generation of fixes for a model
transformation language. Hence, the range of problems
we are able to fix are transformation-specific on the one
hand, and on the other hand, type-related problems due
to the dynamic nature of ATL.

9 Conclusions and Future Work

In this paper, we have presented a method based on
static analysis and constraint solving to generate quick
fixes for ATL transformations and a catalogue of such
quick fixes. We have developed a technique to perform
speculative analysis, which provides information on the
impact of the application of each applicable quick fix.
Speculative analysis provides a dynamic quick fix rank,
but in addition, we have constructed a static ranking
empirically by the automated application of quick fixes
on transformations. We have evaluated several aspects
of our approach. First, its validity and completeness, by
taking a large set of mutated transformations. In this
set, we show that our catalogue covers a wide range of
problems, and that the quick fixes actually fix most of
the problems. Then, a second experiment has shown the
usefulness of our proposal by comparing the repair ac-
tions of developers with respect to the available quick
fixes and their rankings. The implementation of the tool
and the detailed results of the evaluation are available at
http://miso.es/qfx and http://miso.es/qfx_
exp_sosym2015 respectively.

To improve the recommendation aspect of the sys-
tem, we plan to extend our current static model by tak-
ing into account quick fixes previously selected by the
user. We also plan to tackle automated transformation
repair by applying sequences of quick fixes and provid-
ing different search heuristics. The quick fixes of our
catalogue are directed to syntactically fix a transfor-
mation, but they do not consider semantic issues (the
intent of the transformation developer). In this way, we
plan to use transformation contracts, like those provided
by PaMoMo [10,11], as an oracle to test transformation
fixes, and then complement the static analysis with dy-
namic testing. Finally, in order to provide stronger ev-
idence of the usefulness of the approach, in particular

30



when developers are defining ATL transformations from
scratch, we also plan to perform a controlled experiment
with users.
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A model transformation tool. Sci. Comp. Programming,
72(1):31–39, 2008.

16. S. Kaleeswaran, V. Tulsian, A. Kanade, and A. Orso.
MintHint: automated synthesis of repair hints. In ICSE,
pages 266–276. ACM, 2014.
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