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Automatic Semantic Parsing of the Ground-Plane in
Scenarios Recorded with Multiple Moving Cameras

Alejandro López-Cifuentes, Marcos Escudero-Viñolo, and Jesús Bescós

Abstract—Nowadays, video surveillance scenarios usually rely
on manually annotated focus areas to constrain automatic video
analysis tasks. Whereas manual annotation simplifies several
stages of the analysis, its use hinders the scalability of the de-
veloped solutions and might induce operational problems in sce-
narios recorded with Multiple and Moving Cameras (MMC). To
tackle these problems, an automatic method for the cooperative
extraction of Areas of Interest (AoIs) is proposed. Each captured
frame is segmented into regions with semantic roles using a state-
of-the-art method. Semantic evidences from different junctures,
cameras and points-of-view are then spatio-temporally aligned
on a common ground plane. Experimental results on widely-used
datasets recorded with multiple but static cameras suggest that
this process provides broader and more accurate AoIs than those
manually defined in the datasets. Moreover, the proposed method
naturally determines the projection of obstacles and functional
objects in the scene, paving the road towards systems focused on
the automatic analysis of human behaviour. To our knowledge,
this is the first study dealing with this problematic, as evidenced
by the lack of publicly available MMC benchmarks. To also cope
with this issue, we provide a new MMC dataset with associated
semantic scene annotations.

Index Terms—multiple moving cameras, semantic segmenta-
tion, area of interest, PTZ, video surveillance, scene parsing.

I. INTRODUCTION

THE field of view (FOV) of Pan-Tilt-Zoom (PTZ) cameras
can be dynamically modified, a functionality that may

be beneficial for video surveillance scenarios as it gener-
ally maximizes the sensor coverage, reducing the number of
sensors required to fully cover a scene [1]. To cope with
occlusions in these scenes, solutions based on Cooperative
Camera Networks (CCNs) [2], [3]—in which each camera
captures the scene from a different point of view—prevail over
mono-camera systems. However, these solutions generally
include static cameras or PTZ ones that are not moved. This,
in our opinion, is due to the complexity of calibrating PTZ
cameras as continuously updating is required to cope with the
camera motion and mechanical fluctuations [4].

Video surveillance applications usually start with a detection
stage to locate the objects of interest—e.g. humans—in the
scene. This stage feeds subsequent analysis stages as object
tracking and event detection. In CCNs where the cameras’
FOVs overlap, cooperation can be carried out by combining,
refining and aggregating individual detections on a common
reference plane which, for simplicity, is usually the ground
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Fig. 1. Ground-plane semantic parsing in the MMC Dataset. Top row:
Automatic partition with the proposed method for static (left) and moving
(right) cameras. Bottom row: Example frames from the dataset, ground truth
partition and semantic legend.

plane [5], [6]. The performance of detection methods has
improved enormously in recent years thanks to the advent
of deep learning solutions based on convolutional neural
networks [7]. This performance can be further improved,
both in terms of effectiveness and efficiency, by using scene
information [8]. A common strategy is to filter out detections if
their projection falls outside an Area of Interest (AoI) or focus
area in the scene. The extent and shape of the AoI depend
on the application; but AoI is usually enclosed in the ground
plane where cameras’ FOVs overlap and where best calibration
precision is achieved. AoI is generally defined manually and
by unqualified installation personnel [9], [10]. In this context,
we claim that semantic segmentation may be useful to bypass
this manual stage and automatize the process.

Semantic segmentation is the task of partitioning an im-
age into a set of role-annotated segments with human-wise
significance. Semantic segmentation is increasingly becoming
an essential baseline for applications such as self-driving,
robot sensing, and pedestrian detection. The performance
of semantic segmentation has been boosted by the recent
development of deep learning solutions [11]–[13] over vast
and varied datasets [14], [15].
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Fig. 2. Flowchart of the proposed method. From left to right: A frame is segmented into semantic regions. The closest view to this frame in a small codebook
is obtained via local-feature matching. The frame and the semantic map are aligned to this view and projected onto the ground plane. The set of projected
maps is temporally aggregated for each camera. Camera maps are finally spatially aggregated to yield an overall semantic partition of the ground plane.

In this paper, we pose a video surveillance scenario captured
by three PTZ cameras moving in surveillance mode, i.e. each
under a predefined but unsynchronized moving pattern (see
Figure 1). We target to assign to every point in the ground
plane a semantic label by projecting labels obtained for each
camera view. These labels not only permit to define the AoI
automatically but may also be used to identify the projection
of functional (e.g. doors) and non-functional (e.g., columns or
other obstacles) objects.

In order to project the labels obtained for each camera view,
we need the respective calibration parameters or at least the
homography that maps image pixels to the ground-plane. Our
first contribution is an image alignment method which, based
on the matching of local features, is able to estimate the
ground-plane homography for every possible view. Our second
contribution is a technique to efficiently combine the set of
labels generated by the different non-synchronized moving
cameras.

Due to the lack of datasets recorded with multiple and
non-static PTZ-cameras a new Dataset for evaluation has
been generated and made publicly available [16]. Results on
this dataset suggest that the proposed method outperforms
static and non-collaborative camera configurations. Additional
qualitative results on widely-used datasets indicate that our
method yields a broader AoI which is tighter to scene objects.

II. PROPOSED METHOD

A. Preliminaries

In a 3D scenario captured by K PTZ cameras which are
moving, let S = {si} be the set of semantic classes trained
in a semantic segmentation algorithm, where classes represent
roles as f loor , window, etc. Let G be the ground plane of the
scenario and let {Pj, j = 1...J} be the set of J points in this
plane. Our aim is to assign semantic labels to these points.
This is achieved by running the segmentation algorithm on
every captured frame and then projecting and combining the
semantic labels from each camera to the ground plane G.

Let In be an arbitrary frame n captured by the k-th camera
oriented in a specific direction, and let pj = (x, y, 1)T be a pixel
in In, expressed in homogeneous coordinates. We start from
a semantic segmentation1 of In, such that ∀pj ∈ In, ln(pj) =
si, si ∈ S.

1Extracted by [11] trained with the ADE20K Dataset [17]

LetHk
n,G

be a 3 by 3 homography matrix that projects pixels
pj onto G:

Pj = Hk
n,G × pj (1)

Each projected point Pj inherits from the In frame the seman-
tic label assigned to pj :

ln(Pj) = ln(pj) = si ∈ S. (2)

B. Precomputed Homographies Codebook

For a static camera, a single homography matrix Hn,G is
enough to project every captured frame onto G. However, if
the PTZ camera moves capturing frame I ′n instead of frame In,
then Hk

n,G
, Hk

n′,G . Obtaining all the ground-plane homogra-
phies for the k-th camera beforehand is infeasible, mainly due
to the mechanical fluctuations. In this paper, we propose to pre-
calculate a small subset or codebook of reference ground-plane
homographies, via homogeneously sampling the orientations
covered by a PTZ camera. In particular, we propose a default
sampling in which a 40% of minimum overlap between
consecutive reference views is imposed, which results in 9
view/homography pairs in each camera’s codebook. The effect
of this sampling is studied in Section III. The homography
matrix for any other view/orientation is on-line computed via
homography composition from the closest reference, thanks to
the geometric properties of the pan-tilt motion. This requires
that the codebook keeps reference homographies and the
corresponding frame or view used to pre-compute each.

C. On-line Homography Computation

Let {Ir,Hk
r,G
} be the codebook of view/homography pairs

for the k-th camera. For a new captured frame In, its closest
view in the codebook Ir̂ is obtained by a comparison strategy
based on local feature descriptors. In particular, we use the
AKAZE [18] method to extract a set of local features points
Φn = {φn,m} and the MLDB [18] method to describe them,
leading to a set of descriptors Γn = {γn,m}.

Let Φr and Γr be the respective sets of features points and
descriptors for a codebook view Ir . A match between two
features φn,m ∈ Φn and φr,m ∈ Φr is defined by a distance
[19] controlled by a resemblance weight α = 0.8:

d(γn,m, γr,m) < α d(γn,m, γr,m′), ∀m , m′. (3)
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Let Φn,r be the set of matching feature points between In
and Ir ; this comparison process is repeated for every view in
the codebook, and the closest view Ir̂ is obtained by maximiz-
ing the number of matching points: r̂ = argminr (|Φn |− |Φn,r |),
where |Φn | is the cardinality of Φn.

We propose to obtain the homography to project pixels in
In onto G by composing two matrices: Hk

n,G
= Hk

r̂,G
×Hk

n,r̂
.

Hn,r̂ is the perspective rectification homography between In
and Ir̂ . It is obtained by minimizing the back-projection error
between corresponding points in Φn,r . RANSAC [20] is used
to fix the maximum allowed re-projection error to treat a point
pair as an inlier. Hr̂,G is the precomputed homography in the
codebook. The projection of every pixel pj ∈ In (Eq. 1) and
the assigning of their associated semantic labels (Eq. 2) results
in the partial ground plane segmentation for the n-th frame of
the k-th camera.

D. Temporal and Spatial Aggregation

In order to enlarge the covered area, and to globally reduce
the impact of moving objects and segmentation errors, we
propose to temporally aggregate the ground-plane semantic
segmentations of several frames. Furthermore, to cope with
scene occlusions and fuse semantic evidences from different
cameras, we also propose a spatial aggregation process.

Temporal Aggregation: Given the semantic segmentation
of a set of T frames {In−T+1, ..., In} and the correspondent
set of homography matrices, a given point in the ground
plane Pj is assigned a set of Tj ≤ T semantic labels:
{ln−Tj+1(Pj), ..., ln(Pj)}. A single temporally-smoothed label
l̄n(Pj) is obtained as the mode value of this set. An example
of this process is depicted in the fifth column of Figure 2.

Spatial Aggregation: Not every semantic class in S is
projected correctly, points classified into a class not fully
contained in G may produce distorted labelled regions (e.g. see
regions labelled as column or wall in Figure 2 before spatial
aggregation). These distortions can be corrected if evidences
from multiple cameras are aggregated.

For a given scenario, we propose to divide the set S into
three subsets: SG , SE and SI .
• SG includes the semantic classes or labels which represent

ground classes, e.g. floor, pavement, road.
• SE groups the semantic classes which represent scene

enclosing concepts, e.g. wall, door, window.
• SI contains the rest of the classes, which are associated to

objects that are in the scene, e.g. people, chair, column.
Images of scene objects in the SG or SE subsets are usually

views of the same object’s face; the other object’s faces are
usually hidden. Differently, scene objects in the SI subset may
be captured from different points-of-view, which can be used
to define their spatial extension. With this in mind, we define
a hierarchy for the spatial aggregation.

First, points labelled in a SG class by at least one of the
k = 1, ...,K cameras, are aggregated by union to shape the set
of ground points PG:

PG =
K⋃
k

Pj, s.t l̄n,k(Pj) ∈ SG for some k . (4)

Second, points labelled in a SE class that have not been
previously assigned to PG , are also aggregated by union to
create the set of enclosing points PE :

PE =
K⋃
k

Pj, s.t l̄n,k(Pj) ∈ SE for some k and Pj < PG . (5)

This set needs to be refined to reduce the distortion produced
due to the lack of additional views (see how wall areas extend
to image boundaries in Figure 2 before spatial aggregation).
To this aim, a subset P∗E of PE is created by removing all the
points which are not neighbours of any point in PG .

The rest of the points, i.e. those labelled in SI classes by all
the cameras, are aggregated by intersection into PI to reduce
the distorted areas.

PI =
K⋂
k

Pj, s.t l̄n,k(Pj) ∈ SI ∀k and Pj < {PG ∪ PE }. (6)

The partition of the ground-plane is obtained by the union
of the three sets P = {PG ∪ P∗E ∪ PI }, keeping the labels
assigned to each point. Qualitative examples of this process
are depicted in Figures 1 (top row) and 2 (last column).

III. EXPERIMENTAL RESULTS

A. Experiments description

To assess the potential benefits of the proposed method,
three experiments are carried out. Ex.1 compares different
semantic partitions P with respect to a manually generated
ground-truth of a dataset which, in the absence of public
datasets, has been generated to this aim [16]. Ex.2 analyses,
using the same dataset, the results’ sensibility to the two
parameters of the proposed algorithm (T and number of
reference homographies). Finally, Ex.3 evaluates the potential
use of the method to automatically define AoIs in well-known
datasets: Terrace [9], PETS2009 [21] and APIDIS [22].

Proposed dataset: Includes four sequences (5400 frames
each at 30 fps) recorded on the same scenario but varying
the cameras dynamics—static, moving—and the scenario oc-
cupancy—crowded, empty—.

Configurations: We pose two different configurations, one
in which semantic maps for each camera are independently
projected onto the ground plane (non-cooperative) and another
in which the semantic maps are spatially aggregated by the
process described in section II-D (cooperative). Temporal
aggregation applies for both configurations.

Evaluation measures: Quantitative performance statistics
are computed by measuring the spatial overlap between the
manually annotated semantic ground-truth and the semantic
segmentation P. A point is a True Positive if it is assigned the
same semantic role in both segmentations. Otherwise, it adds
a False Positive for the class obtained and a False Negative
for the class annotated. Precision (P), Recall (R) and F-Score
(FS) measures are obtained from these statistics. For the non-
cooperative configuration, per-camera measures are averaged.
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TABLE I
EX.1 METHOD’S PERFORMANCE (%) IN THE PROPOSED DATASET

Configuration Dataset P R FSOccupancy Dynamics

Non-cooperative
Empty Static 51.8 18.9 27.7

Moving 53.4 50.0 51.6

Crowded Static 46.8 19.2 27.2
Moving 51.9 48.9 50.4

Cooperative
Empty Static 67.9 44.9 54.0

Moving 78.7 88.2 83.7

Crowded Static 66.7 46.4 54.7
Moving 75.0 87.3 80.6

TABLE II
EX.1 ROLE-DISAGGREGATED PERFORMANCE (%) FOR MOVING

COOPERATIVE CAMERAS.

Semantic Role Empty Crowded
P R FS P R FS

Floor 88 96.5 92.0 85.7 95.7 90.4
Column 56.8 91.4 70.0 59.2 86.8 70.3
Door 8.24 37.1 13.4 15.2 26.1 19.2
Wall 22.4 32.3 26.45 16.9 30.7 21.79

System set-up: In Ex.1 results are obtained using the default
homography sampling (see Section II-B), and using all the
frames for temporal aggregation, i.e. T = 5400. In Ex.2 the
impact of both T and codebook size is measured by sweeping
on these values. For both Ex.1 and Ex.2 the three semantic
sets SG , SE and SI are used. Finally in Ex.3, we temporally
aggregate results for the whole sequence and focus only on the
SG set; a single view/homography pair per camera is enough
for these static-camera recorded scenarios.

B. Results and Discussion

Results for Ex.1 presented in Table I suggest that overall
performance is substantially increased if both temporal and
spatial aggregation processes are used. In an empty scenario
the use of static non-cooperative cameras yields a camera-
averaged FS of 27%. It is relatively improved a 86% when
using moving non-cooperative cameras, a 94% if results of
static cameras are aggregated and a 202% if moving cooper-
ative cameras are used. The presence of people in the scene
produces a slightly decrease in the overall performance for
every configuration but relative improvements are similar.

As expected, the method performs best for ground classes,
which are respected by the ground-plane homographies (Table
II). The spatial aggregation is able to reduce the distortion of
inner objects as indicated by the performance on the column
class. Results for the classes in the enclosing set (door,
wall) are less effective; in our opinion, this may be due to
annotation biases—how thick is the wall?—and inaccuracies
of the semantic segmentation. Objects that lie above the
ground-plane (chairs), are not part of the model (printers),
or move (persons), are out of the scope of this letter.

Fig. 3 depicts Ex.2 results for the moving/cooperative con-
figuration. The left graph suggests that performance benefits
from the use of a higher recording time in the temporal ag-
gregation stage. However, as expected, performance converges

Fig. 3. Ex.2 Sensitivity analysis: Overall F-Score with respect to the temporal
aggregation parameter T (left) and the number of reference views with relative
computational time (right) for moving cooperative cameras configuration.

Fig. 4. Ex.3 Automatic AoI obtained by the proposed PG partition (super-
imposed in green) compared to AoI manually annotated by the authors of
Terrace [9], APIDIS [22] and PETS2009 [21] Datasets (red box).

when the complete scene has been captured at least once
by the cameras—which in the analysed sequence occurs at
around 1’ (T = 1800)—. After that, improvement is mainly
driven by the correction of semantic inconsistencies. The right
graph confirms that the better we estimate homographies (i.e.,
the more view/homography pairs we use), the better are the
results, but at the expense of higher computational resources.
Hence, a trade-off number of views should be adequately
selected for each scenario.

Fig. 4 summarizes Ex.3 results on automatic AoI extraction
over publicly available datasets. The extracted AoIs are more
tightly adjusted to the scene ground objects and cover a
broader area than the projections of the manually annotated
areas provided by the authors. Our method effectively handles
multi-class ground partitions, as in the AoI for the PETS2009
dataset, where PG encompasses road, grass, pavement and
side-walks points.

IV. CONCLUSIONS

This paper describes a novel approach to automatically
define Areas of Interest (AoIs) in scenarios recorded with mul-
tiple PTZ cameras. The ground-plane homography for every
captured frame is estimated via feature-based matching respect
to a small set of pre-calculated reference view/homography
pairs homogeneously sampling the orientations covered by
each moving camera. Temporal and spatial aggregation strate-
gies are used to obtain an accurate semantic partition of
the reference plane. Results on a new dataset confirm the
advantages of the proposed collaborative method. Besides,
a qualitative evaluation carried out on widely-used datasets
yields of broader, more precise and role-annotated AoIs that
may be used by forthcoming methods to improve and enhance
the analysis.
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