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Resumen

Resumen

El Aprendizaje Automático es un campo de la Inteligencia Artificial enfocado en el análisis au-
tomático de datos. En la era del big data, aparecen algoritmos que permiten el análisis de can-
tidades ingentes de datos de forma eficiente, permitiendo incorporar cada vez más conocimiento
en nuestros estudios. Uno de los principales campos de aplicación de estos algoritmos es la bioin-
formática, donde típicamente se analizan grandes cantidades de datos de alta dimensionalidad.
No obstante, una de las principales dificultades en el análisis automático de datos de origen bi-
ológico es la variación inevitable que se produce en las condiciones experimentales, ocasionando
los conocidos efectos de batch. Esto dificulta la integración de experimentos que proceden de
distintas fuentes experimentales, reduciendo así la capacidad simultánea de análisis y perdiendo
información biológica relevante.

Enfocado en experimentos de citometría de flujo, en este trabajo proponemos un nuevo al-
goritmo con el objetivo de suavizar la influencia de los efectos de batch simultáneamente en
un número arbitrario de condiciones experimentales. Aplicando técnicas del estado del arte
en Aprendizaje Automático, como adaptación de dominio y aprendizaje adversario, presenta-
mos el domain-adversarial autoencoder (DAE). Para la validación del DAE como algoritmo de
adaptación de dominio o normalización de batch, en este trabajo se realizan experimentos con
tres conjuntos de datos. Los dos primeros son datos sencillos y artificiales compuestos de beads.
En uno de ellos, se simula de forma artificial el atasco o desalineamiento del citómetro. En el
otro, tenemos los mismos datos analizados en dos máquinas distintas. El tercer ejemplo es un
conjunto de datos real compuesto de células dendítricas de ratón que también han sido recogidos
en dos citómetros distintos.

En primer lugar, mostramos cómo estos efectos de batch influyen en los análisis típicamente
aplicados por los usuarios de citometría de flujo, como el clustering con Phenograph o la visual-
ización con t-SNE. Después, veremos como el DAE consigue eficientemente paliar los efectos de
batch en estos ejemplos y mejorar los resultados, consiguiendo un incremento notable del F1-
score en clustering antes y después de la corrección. Además, se realiza una evaluación visual de
las representaciones en espacios de dos dimensiones mediante un autoencoder estándar (SAE),
t-SNE y un DAE.

Adicionalmente, en este trabajo se presenta una forma novedosa de evaluar la calidad de la
normalización de los datos por batch o experimento mediante distancias estadísticas. En partic-
ular, utilizamos la versión multidimensional de la distancia entre distribuciones de Kolmogorov-
Smirnov. Veremos como la distribución de los datos en la representación latente del DAE es
muy parecida en datos procedentes de diferentes experimentos, presentando una distancia más
pequeña que en el caso del SAE, donde no proporcionamos al algoritmo información del dominio
para su entrenamiento.

Por lo tanto, este trabajo permite concluir que la adaptación de dominio en datos de cit-
ometría de flujo abre una nueva línea de investigación, que proporciona herramientas para la
integración de datos procedentes de distintos experimentos.
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Abstract

Machine Learning is a field of Artificial Intelligence focused on automatic data analysis. In
the era of big data, there appear algorithms that allow the analysis of large quantities of data
efficiently, incorporating more knowledge into our studies. One of the main fields of application
for these algorithms is bioinformatics, where large amounts of high-dimensional data are typi-
cally analyzed. However, one of the main difficulties in the automatic analysis of data with a
biological origin is the inevitable variation that occurs in the experimental conditions, causing
the well-known batch effects. This makes it difficult to integrate data that come from different
experimental sources, thus reducing the simultaneous capacity for analysis and losing relevant
biological information.

Focused on flow cytometry data, in this work we propose a new algorithm in the context of
unsupervised learning with the aim of smoothing the influence of batch effects simultaneously
under an arbitrary number of experimental conditions. Applying state-of-the-art techniques in
Machine Learning, such as domain adaptation and adversarial learning, we present the domain-
adversarial autoencoder (DAE). For the validation of the DAE as a domain adaptation or batch
normalization algorithm, in this work we carry out experiments with three data sets. The first
two are simple, artificial datasets composed of beads that have been passed through the cytometer
in a controlled environment. In one of them, the clogging or misalignment of the cytometer is
artificially simulated. In the other, we have the same data analyzed on two different machines.
The third example is a real dataset with dendritic cells of mice that have also been collected on
two different cytometers.

Firstly, we show how these batch effects influence the analysis typically applied by flow
cytometry users, such as clustering with Phenograph or visualization with t-SNE. Secondly,
we see how the DAE manages to efficiently alleviate the batch effects in these examples and
improve the clustering results, achieving a notable increase in the F1-score after the correction.
In addition, we provide with a visual evaluation of the representations in two-dimensional spaces
learnt with a standard autoencoder (SAE), t-SNE and a DAE.

Additionally, in this work we present a novel method to evaluate the quality of the batch
normalization of data using statistical distances. In particular, we use the multidimensional ver-
sion of the Kolmogorov-Smirnov distance between distributions. We show that the distribution
of the data in the latent representation of the DAE is very similar when the data comes from
different experiments, presenting a smaller distance than in the case of the SAE, where we do
not provide the algorithm with domain information in the training step.

Therefore, this work allows us to conclude that domain adaptation in flow cytometry data
opens a new line of research, which is focused in developing tools for the integration of data
from different experiments.

Key words

Flow cytometry, Batch effects, Autoencoders, Unsupervised learning, Domain adaptation, Clus-
tering, Dimensionality reduction.
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1
Introduction

1.1 Motivation and hypothesis

In the era of Artificial Intelligence and Machine Learning, the automated analysis of biologi-
cal experiments is growing exponentially, making it possible to study larger amounts of high-
dimensional data simultaneously. There are thousands of automated pipelines for the analysis of
data obtained using different technologies, such as micro-arrays, mass spectrometers, sequencing
experiments or, the objective of this work, flow cytometers. In the last 40 years, flow cytometry
has become a leader technique in biomedical research, rich in applications, that allows high-
resolution single-cell characterization of thousands of cells in a very high throughput way, as
they pass through one or more lasers while suspended in a buffered solution and stained with
different fluorochromes, allowing the measurement of protein expression levels and intracellular
signalling. Letting the identification and quantification of cells types and their function, it is
an invaluable tool in many fields, such as virology, immunology or cancer biology, among many
others.

The field of flow cytometry is continuously evolving due to the development of new and more
complex data acquisition equipment with greater cell phenotyping capacity. The inclusion of
more lasers, detectors and fluorochromes has greatly increased the number of parameters that
can be simultaneously measured with these instruments. However, the high dimensionality of the
collected data represents a challenge for its analysis, traditionally performed manually. There-
fore, the field is evolving towards the use of new automatic and unbiased analysis techniques,
making use of computational tools and state-of-the-art algorithms for the analysis of big data.
As a consequence, the automated and unbiased analysis of flow cytometry data is extremely
demanded in the discipline of biomedicine with an increasing interest in methods such as t-SNE
for the visualization of high dimensional cytometry data, as well as clustering techniques for the
detection of cell populations [1].

However, the automated analysis of data in molecular biology is specially challenging due
to variations in the experimental conditions. Several factors can have an influence: the sample
management and preparation procedures and equipment variability can have dramatic effects
in the quality of data that may hamper its integrated analysis. These non-biological sources
of variability, which can be generally named batch effects, cause changes in the collected data
that may lead to inaccurate predictions or conclusions. As noted in [2], flow cytometry data is

1



Analysis of flow cytometry data with domain-adversarial autoencoders

particularly sensible to batch effects. The experimental conditions in which the data is prepared
and acquired greatly influence the subsequent analysis. For example, when applying techniques
of dimensionality reduction, such as t-SNE [3] or PCA [4], the scientific community note that data
in the embedded space are mainly distributed according to the experimental conditions (batch),
instead of being grouped by phenotype. The same sources of error apply to clustering results.
This seriously limits the applicability of automatic analysis methods, which, as is commonly the
case, joint analysis of data from different experiments is required.

Thus, we hypothesized that domain-adversarial neural networks [5], in the context of au-
toencoders, could represent an interesting technology to palliate batch effects in flow cytometry
data analysis. A standard autoencoder (SAE) [6] is a feed-forward neural network composed
of an encoder and a decoder, which are joined by a narrow layer; and they are frequently used
to compress data or to obtain a good representation in a space of lower dimension: the latent
space or the bottleneck. After least squares training, the encoding weights form a subspace
of the principal components input vectors [7]. And not only that, due to their unsupervised
nature, they do not require labeled data to be trained, which many times is very expensive or
impossible to achieve. However, their main drawback is that the user cannot influence the shape
or the distribution of the projected data. Adversarial autoencoders introduce the possibility of
including constraints in the encoded representation of data by the use of an adversarial network.

In the context of domain adaptation [8], we propose to train an adversarial autoencoder sen-
sible to the experiment conditions, which we have called domain-adversarial autoencoder (DAE).
In the particular case of flow cytometry data, we consider that different experimental conditions
(typically, different sample preparation and/or acquisition conditions) define different domains.
In that way, the batch effects, whatever their source is, would be contained in the domain. In
classification, domain adaptation in neural networks via adversarial learning has shown promis-
ing results [5], improving significantly the classification accuracy. Applying domain-adversarial
autoencoders, we obtain a double benefit. On the one hand, we acquire clean data, free of batch
effects, as output of the decoder. On the other hand, we also obtain a representation of the data
in smaller dimension as output of the encoder, which can be compared to the t-SNE projection
shown in [2]. Moreover, this method allows us to add to the visualization new samples that
were not part of the training set, the out-of-sample examples (OOS), without repeating the
whole training process from scratch, as it happens with t-SNE and with most of dimensionality
reduction techniques typically used in the cytometry field.

The main motivation of this work is to design a method of flow cytometry data analysis
capable of palliate batch effects. In particular, our first aim is to review the current state of
the art in domain adaptation and present a new unsupervised method, the domain-adversarial
autoencoder (DAE). We then focused on DAE and explored its ability to remove batch effects as
compared to biological effects contained in flow cytometry data, and developed different metrics
to evaluate its capacity. To carry out these objectives, we use a dataset consisting of the flow
cytometric analysis of labelled beads with different combination of fluorochromes as an artificial
model of cell populations. In addition, we use data obtained from mouse cells, in a more realistic
experimental procedure. Even though similar techniques have been applied to analyze data of
image cytometry [9, 10], mass cytometry and RNA-seq [11, 12]; we propose here a pipeline to
analyze flow cytometry data.

1.2 Objectives and followed approach

The main objective of this work is double. Firstly, as core of this work, we are seeking for
the development of a methodology for the correction/removal of batch effects in flow cytometry
data, creating a pipeline that allows to analyze samples from different batches (experimental

2 CHAPTER 1. INTRODUCTION
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sources, conditions, etc.) in an integrated manner, thus enabling the direct comparison of data
based solely on biological variability. The second objective is to introduce a research line in
the field of Artificial Intelligence, focused around domain adaptation in neural networks in the
context of unsupervised learning.

With this general purposes, the work is focused on the following topics:

• To review the state-of-the-art methods in adversarial learning, such as generative adver-
sarial networks and adversarial autoencoders.

• To study and understand the existing approaches in domain adaptation via adversarial
learning in neural networks.

• To review the automatic pipeline of analysis of flow cytometry data and to understand the
problem of batch effects in flow cytometry data.

• To develop a new method, the domain-adversarial autoencoder, which, in the context of
unsupervised learning, is able to extract relevant information from flow cytometry datasets,
devoid of experimental variability.

• To implement these methods and to validate them in synthetic (beads) and real flow
cytometry datasets (mice cells).

1.3 Structure

In this context, this work is structured around four main chapters (two of them dedicated to
reviewing the state of the art and two contribution chapters):

1. Multi-domain problems and deep neural networks, where we introduce relevant
topics of Machine Learning necessary to the understanding of this work. We start reviewing
dimensionality reduction methods that have been widely used in biological analysis, such
as PCA and t-SNE. Then, we present the concept of unsupervised learning, reviewing
clustering techniques and giving a thorough explanation of autoencoders. Finally, we get
immerse in the world of adversarial learning in neural networks, visiting the concept of
multi-domain problems and existing domain adaptation methods.

2. Automated analysis of flow cytometry data. In this chapter we review existing ap-
proaches for analyzing flow cytometry data as well as the challenges and the limitations
of this kind of analysis. We focus on the challenges originating from batch effect contami-
nation of data and how it limits the interpretation of data from the biological perspective
of real biomedical research applications.

3. Domain adaptation in unsupervised learning, where we present and implement the
domain-adversarial autoencoder (DAE), introducing its advantages and applications in the
context of flow cytometry data. We also give some metrics to evaluate the removal of batch
effects, which are based in statistical distances that compare the distribution of data in
the encoded space.

4. Experiments, where we apply the developed methods on flow cytometry datasets. Firstly,
with two synthetic datasets that have been generated to test the automatic pipeline analy-
sis of cytometry data. Secondly, with real dataset, containing data from multiple cell types
from two different groups of samples (genotypes) to be compared for scientific purposes.
For each dataset, we will compute the embedding via t-SNE, a standard autoencoder and

CHAPTER 1. INTRODUCTION 3
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a domain-adversarial autoencoder, comparing the embedding quality and the correction of
batch effects.

Finally, we include a chapter of conclusions and further work, where we explore future lines
of research.

4 CHAPTER 1. INTRODUCTION



2
Multi-domain problems and deep neural networks

In this chapter we review the state of the art in dimensionality reduction, unsupervised learning,
domain adaptation and adversarial neural networks; establishing the foundations to develop the
analysis of the model and problems assessed in this work. In this document, the notation for
datasets is D = {xn}Nn=1, with xn ∈ Rm, where N is the number of samples andm the dimension
of data. We say that the dataset is m-dimensional. This chapter is organized as follows:

1. In Section 2.1 we address the problem of dimensionality reduction. Firstly, we review the
linear algorithm of Principal Component Analysis (PCA). Due to its importance in the
analysis of flow cytometry data, we also review the dimensionality reduction technique
known as t-Distributed Stochastic Neighbor Embedding (t-SNE).

2. In Section 2.2 we review the framework of unsupervised learning. Within this discipline,
we pay special attention to clustering techniques and autoencoders, a particular case of
neural networks that are widely used for data denoising and dimensionality reduction.

3. Section 2.3 introduces the technique of adversarial learning with neural networks. Adver-
sarial neural networks are widely used for data generation, but here we focus in learning
with autoencoders, studying the concept of domain adaptation in Machine Learning, and
the approach followed to achieve it via adversarial learning.

2.1 Dimensionality reduction

Dimensionality reduction is a field of Machine Learning that aims to transform data from a high-
dimensional space into a low-dimensional space retaining meaningful information and maintain-
ing initial relationships. Thus, dimensionality reduction methods are generally used to reduce
the initial dimension of data, so the computational load of training a model is reduced; or to
extract a limited set of meaningful variables, reducing the influence of noise that may lead to
wrong conclusions. Dimensionality reduction is also typically applied before clustering analysis.
There are two main techniques to achieve this:

• Feature selection, trying to select the most significant variables according to some met-
ric; such as the amount of information they contain.

5
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• Feature learning, seeking to create new independent variables by combining, in some
manner, the initial features. These methods can be divided into linear and non-linear.

In this work we will focus on algorithms of feature learning, describing in detail the most
important methods in the field of flow cytometry data analysis: PCA (linear) and t-SNE (non-
linear).

2.1.1 Principal Components Analysis (PCA)

Principal Component Analysis (PCA) [4] is a linear method for feature learning. Basically, its
objective is to find a d-dimensional subspace in which the variance of the projected data is
maximum, where d is the number of principal components we want to study.
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Figure 2.1: 2-dimensional PCA projection of FCM data coloured by class.

The method is based on the spectral analysis of the covariance matrix of the dataset D.
Let S be the covariance matrix. As S is symmetric, we can write S = PDP T , where P is the
matrix with the eigenvectors of S as columns, which form an orthonormal basis; and D is a
diagonal matrix containing the eigenvalues. The eigenvectors that correspond to the largest d
eigenvalues, which are the principal components, are used to project the data. This projection
can be written as

α = P Td x ,

where Pd denotes the matrix containing the first d eigenvectors in columns. Thus,

Var(α) = Var(P Td x) = P Td SPd = Dd ,

whereDd is a diagonal matrix containing the d largest eigenvalues. So PCA is a method that finds
the projection of the data in d dimensions in which the variance is maximum [4]. In addition, as
the covariance matrix of the projected data is diagonal, we know that the new features are all
independent to one another and that their variance is the corresponding eigenvalue. That is to
say, if we set the target dimension d equal to the original dimension m, we will find a projection
in which the variables are uncorrelated. However, the main drawback of PCA is its linearity.
As we can see in Figure 2.1, the PCA projection of data composed of 14 different populations,
which will be treated later in this work (Section 5.1.2), is very deficient. Different classes are
intertwined, while, ideally, there should be 14 totally separate groups.
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2.1.2 t-distributed Stochastic Neighbor Embedding (t-SNE)

t-distributed Stochastic Neighbor Embedding (t-SNE) [3] is a non-linear method for dimen-
sionality reduction, mainly used for data exploration and visualization. The algorithm tries to
minimize the divergence between two distributions: the pairwise similarities of the points in
D and the pairwise similarities in the corresponding points of the embedding. The algorithm
consists of two steps:

1. First, t-SNE computes a probability distribution over pairs in D in such a way that similar
points are assigned a higher probability while dissimilar points are assigned a very low
probability. For xi, xj ∈ D, their similarity is computed as the conditional probability of
selecting xj as a neighbour of xi if the probability of selecting a neighbour is proportional
to the probability density of a Gaussian centered at xi.

2. Second, t-SNE computes a similar probability distribution over the low-dimensional map.
Then, t-SNE tries to minimize the difference between these conditional probabilities (or
similarities) in the original and the projected space. This is done by minimizing the sum of
Kullback–Leibler divergence [13] using a gradient descent method. In that way, t-SNE tries
to find a projection that preserves the computed similarity in the original high-dimensional
data, which is considered a probability distribution, in the low-dimensional mapping.

Recall that the Kullback–Leibler divergence is a measure of how different two probability
distributions are. In Figure 2.2 we can see the t-SNE projection of FCM data composed of 14
different populations. Unlike in the projection calculated by PCA (Figure 2.1), points belonging
to different classes are now separated in the embedding.
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Figure 2.2: 2-dimensional t-SNE projection of FCM data coloured by class.

So the mapping defined by t-SNE attempts to find patterns in data that are preserved in
the embedding. This is done identifying similar points (clusters) in the high-dimensional data.
The main drawbacks of t-SNE are its high computational demand and the inability to project
examples that were not in the training sample (Out-of-sample examples or OOS). That is, it is
a sample-dependent method.
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2.2 Unsupervised learning

The field of Machine Learning encompasses many disciplines and types of learning. One possi-
bility is to consider the learning strategy depending on the data available to train the algorithm.
In this framework, we can make a classification into three types:

• Supervised learning: each point xi ∈ D is associated to an output variable yi and this
information is used during the training of the algorithm, trying to find a mapping from the
input data to the output variable. Supervised problems can be grouped into classification
and regression problems.

• Unsupervised learning: labels are not available. The goal for unsupervised learning is
to model the underlying structure of the data in order to learn from it. Manifold learning
and clustering techniques are a particular case of this learning strategy.

• Semi-supervised learning: some data is labeled, so a mixture of supervised and unsu-
pervised techniques can be applied.

In this work we will focus on unsupervised learning techniques, as flow cytometry data will
be seldom labeled. In this section we will review cluster analysis and, then, we will give an
introduction to autoencoders, one of the principal approaches in unsupervised learning using
neural networks.

2.2.1 Cluster analysis

Cluster analysis, also known as clustering, is the problem of identifying objects that, in some
sense, can be considered similar. As noted in [14], the clustering problem has been addressed
in many contexts, but it is a computationally demanding problem. Still an open problem is to
select the number of K groups in which we want to separate data. It is also challenging to asses
the performance of a clustering algorithm, as data is unlabeled. Giving an extensive review of
clustering algorithms is not the objective of this work. However, in this subsection we will review
the most archetypal clustering algorithm, K-means, noting its main disadvantages to analyze
flow cytometry data.

A classic algorithm: K-means

Given the number of clusters, K, K-means aims to partition observations in D in K clusters.
First, K centroids are randomly initialized, assigning each point to its closest centroid. K-means
minimizes the error function

J =
N∑
n=1

K∑
k=1

rnk ‖xn − µk‖2 , (2.1)

where µk indicates the k-th centroid and rnk is 1 if the closest centroid to the point xn is µk.
The minimization comprises two steps until convergence:

1. First we update rnk as

rnk =

{
1 if k = argminj ‖xn − µj‖

2 ,

0 otherwise .
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2. The centroids µk are updated by minimizing equation (2.1). It is easy to check that the
optimal centroid µk for the cluster k in the average of the points belonging to that cluster.

In spite of its simplicity, K-means has a strong mathematical background and its results are
generally good [15]. However, its main inconvenience is that finding the optimal solution for
an arbitrary number of clusters is NP-hard [16]. Generally, in flow cytometry data, we do not
know the number of different cell populations in a sample, so we need clustering algorithms that
estimate the number of groups. See Chapter 3 for more details.

2.2.2 Standard autoencoder (SAE)

Autoencoders [6] are a particular type of Artificial Neural Networks. They are very popular
because of their unsupervised nature and that is the reason why they are widely used for data
compression and visualization. They could be considered as a self-supervised algorithm because
the target is the same as the input data. As shown in Figure 2.3, an autoencoder is composed
of two stacked networks: the encoder and the decoder. They are commonly joint by a more
narrow layer typically called embedding layer or bottleneck, with dimension d.

.

.

.

.

.

.

.

.

. .
.
. .

.

.

Encoder Decoder

Embedding

OutputInput

Figure 2.3: Architecture of an autoencoder. Left: encoder. Right: decoder.

The autoencoder is, thus, a function

o : Rm →Rm

x 7→o(x,Θ) ,

where m is the input dimension and Θ is the set of weights of the autoencoder. With the
objective of reconstructing the input in the output. In order to train an autoencoder, there are
three main parts:

• A parametric encoding function E: φ = E(x,Θe), applied to the input points x ∈ Rm,
where Θe is the set of weights of the autoencoder that belong to the encoder part.
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• A parametric decoding function D: x̂ = D(φ,Θd), applied to the points in the latent space
φ ∈ Rd, where Θd is the set of weights of the autoencoder that belong to the decoder part.

• A distance function that measures the amount of information lost between the compressed
representation in the bottleneck and the decompressed representation. This reconstruction
error is used as loss function.

The autoencoder is trained to minimize the reconstruction loss using Stochastic Gradient
Descent, computing the gradient with back propagation. Typically, autoencoders are trained
to minimize the mean squared error between the input and the output via the following loss
function

J(Θ) =
1

2N

N∑
i=1

‖o(xi,Θ)− xi‖2 +
ν

2
‖Θ‖2 ,

where ν controls the regularization term to avoid overfitting. With appropriate dimensionality
and sparsity constraints (such as regularization), autoencoders can learn projections that are
more interesting than PCA or other basic and linear techniques. Moreover, we obtain an en-
coding and a decoding function. The encoding function is especially interesting, as it allows us
to project into the latent space out-of-sample examples (OOS) that were not in the training set
without extra computational cost, in contrast to t-SNE.

Autoencoders have also been retaken in deep frameworks. At first, a standard architecture
of an autoencoder was used, for example, in sparse and denoising autoencoders [17, 18]. More
recently, more sophisticated versions of autoencoders have been developed. Their goal may not
be to learn perfect sample reconstructions but to modify certain properties in the embedding
space. Some examples are variational autoencoders [19] and adversarial autoencoders [20]. Due
to their importance in this work, we will introduce adversarial autoencoders with more detail in
the following section.

2.3 Adversarial neural networks

In adversarial neural networks two networks, a generative and a discriminative network, contest
with each other. This framework was firstly introduced by Ian Goodfellow and his group with
generative adversarial neural networks (GANs) [21]. This kind of models learn to generate
new data imitating the distribution of the real samples x in the training set using the two
networks previously mentioned:

• The generative network or generator G learns to map from samples z of a latent space with
prior p(z) (typically from a Gaussian or a mixture of Gaussians) to a data distribution of
interest, which is in the training set (pdata).

• The discriminative network or discriminator D differentiates between fake data coming
from the generator and data from the true data distribution (i.e. the one of the training
set).

The generator’s objective during training is to fool the discriminator, creating realistic data
in appearance so the discriminator consider they are not fake or artificial. That is to say, the
generator is trained to increase the error rate of the discriminator. The solution to this game is
expressed as follows in [21]:

minG maxD
[
Ex∼pdata [logD(x)] + Ez∼p(z) [log(1−D(G(z)))]

]
,
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where E denotes the expected value. The generator G and the discriminator D can be found
using alternating stochastic gradient descent in two steps: training D to distinguish between true
and fake samples and then training G to fool the generator with generated samples. Although
GANs were initially proposed as generative models in a context of unsupervised learning, their
applications have been expanded to semi-supervised [22] and supervised learning [23] and have
been applied in a huge number of fields, such as fashion, advertising, drug design or video games.

In this section we will introduce two models that use the proposed adversarial objective and
are important for the understanding of the domain-adversarial autoencoders (DAE) proposed
in Chapter 4: the adversarial autoencoders and the domain-adversarial neural networks.

2.3.1 Adversarial autoencoders

Adversarial autoencoders (AAE) [20] are probabilistic autoencoders that use the generative
adversarial networks to perform variational inference. Although they employ adversarial learning
in a different context, we consider them important for the state of the art in the usage of
adversarial networks in the context of autoencoders.

Encoder Decoder

Input Reconstruction

Discriminator

Adversarial cost

Latent space

D
Draw samples 

from p(z) Input

Figure 2.4: Architecture of an adversarial autoencoder. Top row is a standard autoencoder
that minimizes the reconstruction error of an input given its latent representation. The second
row is a discriminator which aim is to discriminate if samples come from the embedding of the
autoencoder or from the prior distribution p(z).

Adversarial autoencoders are able to impose a certain distribution in their latent space
using a discriminative network (Figure 2.4). Let x be the input and z the latent vector of the
autoencoder, with probability distribution q(z). Assume that p(z) is the distribution desired
in the coding space. The adversarial network guides q(z) to match p(z) while the autoencoder
endeavors to minimize the reconstruction error. As in GANs, both the discriminative network
and the autoencoder are trained simultaneously with iterative stochastic gradient descent in two
steps:
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1. Reconstruction phase. The autoencoder updates its weights minimizing the reconstruction
error of the input data.

2. Regularization phase. First, the discriminator is updated to distinguish real and gener-
ated samples from p(z). Then, the weights of the encoder are updated to confound the
discriminative network.

After the training procedure, the decoder is a generative model that maps the prior p(z)
to the distribution of the data, pdata. Some of the applications of adversarial autoencoders
are unsupervised clustering, dimensionality reduction and data visualization [20]. Even though
adversarial autoencoders are not focused in domain adaptation or removal of batch effects, which
are the main objectives of this work, we consider them important because of the way they employ
an adversarial network to modify some properties of the latent space of the autoencoder, in this
case, to fit a desired distribution. Therefore, it is necessary to define p(z), which means that we
need previous information that reduces the unsupervised scenery. In our application, we do not
have prior information of this type. Thus, a similar domain-based approach will be followed to
remove the batch effects in the experiments of this project.

2.3.2 Domain-adversarial neural networks

Domain adaptation [8] is a Machine Learning problem where training and testing data proceed
from similar but different distributions. The key idea is to train an algorithm that cannot
distinguish between domains. In this manner, we typically seek the generalization between two
similar problems in which one of them is not labeled. For example, we can have labeled data of
sentiment analysis from book reviews, but we may want to generalize it to unlabeled data from
films reviews [5].

There are several approximations to address this problem. Specifically, a variant of denoising
autoencoders [17], the marginalized stack autoencoder [24], have demonstrated state-of-the-art
performance. By learning a robust representation against noise, they learn stable features across
domains, allowing domain transfer and classifier learning jointly. In the context of adversarial
learning, domain-adversarial neural networks (DANN) [5] propose to control the stability of
representation explicitly in the neural network with the incorporation of an adversarial network.
Thus, DANN simultaneously learn the desired function of classification and try to predict domain
membership. With extensive experiments, they show that this approach outperforms standard
neural networks and SVMs (Support Vector Machines) in classification problems.

Hence, in [5], authors propose DANN as a method to address classification problems in
which there are a source domain DS and a target domain DT . In this context, the classification
algorithm is provided with a labeled source sample S = {(xi, yi)}ni=1 ∼ DS and a target sample
T = {xj}n

′
j=1, which is unlabeled. Being N = n+n′ the total number of samples, the objective is

to learn a good classifier for T , although we have no information about DT . In order to confront
this problem, there are several approaches. Domain-adversarial neural networks are focused
on the minimization of the H-divergence [8], as they show that the learning algorithm should
minimize a trade-off between the correct classification of the source and the H-divergence. As
noted in [8], controlling the H-divergence can be done finding a representation where both S
and T are as equal as possible.

In that way, they claim that if a neural network is able to generalize between domains,the
internal representation among hidden layers cannot contain information about domains. Do-
main adaptation is achieved by adding a domain classifier (Figure 2.5) connected to the layer
containing the hidden representation via a gradient reversal (flip) layer. Here comes the ad-
versarial game: the feature extractor must find a hidden representation that is good enough to
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Input (x) Hidden representation

Class label (y)

Domain label (d)

Gradient reversal

Figure 2.5: Architecture of a domain-adversarial neural network. It comprises three neural
networks: a feature extractor (blue), a label predictor (green) and a domain predictor (purple).

predict the class labels of S at the same time it tries to fool the domain predictor, so it is not
able to distinguish between examples coming from S and T . Unlike in GANs and adversarial
autoencoders, optimization is carried out via stochastic gradient descent in one step thanks to
the appearance of the gradient reversal layer (GRL). During backpropagation, the flip layer
multiplies the gradient by a negative constant, encouraging features in the hidden of source and
target domains to be similar.

Adversarial learning methods are a promising approach to training robust deep networks,
generating complex samples across diverse domains. However, this approach can only be applied
when labeled data comes from the source domain, while target data is distributed with a similar
but different distribution. Therefore, this methodology requires labeled data, which is very hard
to obtain. Despite this, we do not have any evidence of domain-adversarial adaptation with an
adversarial network in unsupervised learning techniques, such as the autoencoders. Not only
that, with domain-adversarial neural networks we have the explicit constraint of having a source
and a target domain, while we also might be interested in training all at once with data coming
from several domains, many times more than two domains. All these problems will be addressed
in Chapter 4.
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3
Automated analysis of flow cytometry data

This chapter will be devoted to the revision of automated analysis of flow cytometry data.
Being one of the most used techniques of single-cell analysis, flow cytometry (FCM) allows
the phenotypic study of cell populations. Due to a technological revolution, automating flow
cytometry analysis is especially important because of the large number of parameters and data
that can be measured simultaneously. In the context of unsupervised learning, we are seeking to
review the main clustering and visualization techniques applied in flow cytometry experiments.
The chapter will be organised as:

• In Section 3.1 we will study the main properties of the data obtained by flow cytometers
as well as the preprocessing steps needed to its proper analysis. Thus, we will introduce
the biexponential transformation, which is the normalization technique more frequent in
flow cytometry data.

• In Section 3.2 we will review the most common approaches followed to the cluster analysis
of flow cytometry data. We will introduce the algorithm Phenograph and the F1-score,
metric that will be used to evaluate the performance of the cluster analysis in testing data
that is manually labeled.

• Section 3.3 will contain standard procedures used for visualization in two or three dimen-
sions of flow cytometry data, which are typically multi-dimensional.

• Finally, in Section 3.4, we will introduce the problem of batch effect in flow cytometry data,
difficulty that we aim to solve in this work. We will show some examples in which batch
effect does not allow the proper analysis of the data, as differences among experiments do
not permit to see differences in cell populations.

3.1 Flow cytometry (FCM)

Flow cytometry (FCM) is a technique that allows high-resolution single-cell characterization of
thousands of cells in a very high throughput way, as they pass through one or more lasers while
suspended in a buffered solution (Figure 3.1). The cells are stained with different fluorochromes,
allowing the measurement of protein expression levels and intracellular signalling, together with
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Figure 3.1: The underlying working principle of a flow cytometer. Image from [25].

size and shape information. Because of that, the spectrum of applications of FCM is huge,
starting from clinical diagnosis to biomedicine or molecular biology. The main characteristics of
FCM are:

• The analysis is multi-parametric and simultaneous. The analyzable parameters are:

– Those related with physical characteristics of the particle, such as size and complexity.
Therefore, depending on how light is modified when passing through cells, they can
be discriminated.

– The fluorescence associated to the particle.

• The analysis is performed on individual particles inside a complex population, such as
fluorochrome coupled antibodies or fluorescent proteins and molecules.

• The analysis is carried out at speeds from 500 to 4000 particles per second, allowing us
to analyze a very large number of cells which enables the identification of populations
represented at very low frequency.

• Particles of sizes 0.5-100 µm can be analyzed.

As shown in Figure 3.2, a cytometer is composed of different subsystems. First of all, the
fluid system where the sample is in suspension and flowing through the circuit thanks to the
surrounding liquid. Then, the laser beam will strike, so we can detect fluorescence at different
wave-lengths, which is detected by an electronic network composed of several detectors connected
to a computer. The fluid passing through the lasers is such a fine beam where “only one cell
fits”, allowing analysis of individual cells. Finally, the electronic network converts the signal in
digital data that can be stored and analyzed with a computer. As introduced before, we can
measure two types of parameters with a flow cytometer:

• Intrinsic or structural factors, for which no reagents or probes are needed. The most
common are:

– Cell size (side scatter or FSC).
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Figure 3.2: Signal processing and detection. Image from [25].

– Cell complexity (side scatter or SSC).

• Extrinsic factors, that need the labelling of cellular structures with fluorochromes.

Once the electronic network has converted the signal in digital data, it is stored in the computer.
Before its analysis, FCM data must be corrected via background fluorescence subtraction and,
more important, compensation procedures to correct the spectrum overlap between different
fluorochromes.

In order to perform the analysis, FCM users typically find one-parameter histograms or two-
parameter histograms, also called dot plots. Histograms corresponding to each parameter can
be analyzed using statistical tools to calculate the percentage of cells that fluoresce in a specific
way and intensity. Nowadays, these analysis require expert knowledge and manual work ; this
can be done when the number of available parameters is restricted, most commonly between 2
and 10.

However, in the last times, FCM has undergone a technological development, increasing the
number of parameters that can be analyzed in a cell [1, 26]. Thus, the number of available detec-
tors has increased, reaching as many as 30 in some cytometers. This has driven the progress in
computational tools that enable semi-automatic analysis and interpretation of high-dimensional
data from FCM. Thanks to its power and versatility, the applications of flow cytometry are
large. In particular, this work is focused in the phenotypic profiling of the sample, with the
objectives of identifying cell populations in the sample and finding possible alterations in known
cell populations. In this work, we will analyze synthetic and real flow-cytometry data. Each
dataset is explained with more detail in Section 5.1.2.

3.1.1 Preprocessing of FCM data

The biexponential (logicle) transform [27] is an effective method that provides several advantages
for analysis and visualization of FCM data. In FCM applications, fluorescence signals can
range to essentially zero. In addition, some cell populations will have low means and even
negative data values, specially after compensation. In these particular situations, standard
logarithmic transformation, which is also typically used in FCM data, fails to adequately display
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Figure 3.3: Example of FCM data before (up) and after (down) applying the biexponential
transform.

cell populations, specially when comparing populations with low levels of fluorescence versus
high-levels-of-fluorescence populations. For these reasons, FCM data have been difficult to
interpret.

Logicle functions are a generalization of the hyperbolic sine function. By applying a biexpo-
nential transform to the data, we obtain a more accurate visual representation of fluorescence
units in the low range of the scale as compared to the higher range of the scale. This effect
is shown in Figure 3.3. The upper figure shows the boxplot of FCM data before applying the
transformation. We can observe very unbalanced data, with extreme outliers. In the figure
below it is easy to see that the biexponential transformation works well on this data, softening
the influence of outliers. The authors of this transformation [27] had a triple objective:

• The transformation is logarithmic for large data values.

• The function becomes linear near zero and extends to negative values.

• The transition between the logarithmic and the linear regions is smooth.

They conclude that a generalization of the hyperbolic sinus function, which they call logicle
function, can best fulfill the criteria above. The expression for the logicle scaling function is:

S(x;w) = Te−(m−w)
(
ex−w − p2e−(m−w)/p + p2 − 1

)
for x ≥ w , (3.1)
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where T is the top scale data value, w = 2p ln p/(p + 1) is the range of negative and linearized
data and m is the range of visualization. Equation (3.1) is for the positive data that fulfills
x ≥ w. In the negative region, where x < m, authors enforce symmetry using the logicle
function for the value w−x. In x = w, the derivative of Equation (3.1) is zero, so it is the linear
region of the transformation. These parameters are estimated from data.

3.2 Clustering with flow cytometry data

As a general rule, FCM data is not labeled. We do not know what type of cells compose a given
sample, and, in general, how many different populations there are neither. Because of that,
unsupervised learning techniques are popular when analyzing FCM data. Clustering algorithms
are of special interest, since they allow us to identify different cell populations (which would
be the identified clusters). Moreover, a most common application in flow cytometry deals with
finding sample-based differences in the density of the populations that follow a certain biological
perturbation and may be absolutely unexpected.

Therefore, in order to analyze FCM data, it is important to find an effective clustering al-
gorithm, capable of handling large volumes of data and of identifying in an unbiased manner
the different populations present in the sample, which are in principle unknown, not only their
number, but also their characteristics. In [2], authors select as the default clustering method
Phenograph [28], as it obtained the best confident interval of F1-scores when analyzing conven-
tional FCM data. In this subsection we will describe this method and the F1-score as a possible
metric to be used.

3.2.1 Phenograph

Phenograph [28] is a computationally efficient clustering method designed for single-cell data.
It creates a graph (or network) that represents phenotypic resemblance among cells. Then,
Phenograph identifies different cell populations in the graph using modularity optimization.
The main advantages of Phenograph are:

• Phenograph works well on large samples, producing high-quality results without down-
sampling.

• Phenograph automatically estimates the number of cell populations in the sample (i.e. the
number of clusters).

Phenograph builds the graph in two steps. Firstly, it builds a graph in which each cell (data
point) is a node connected to its k-nearest (euclidean distance) neighbours. Note that we need
to set k for this step, but the authors claim that the final result is not very influenced by this
choice. In the second step, the graph is refined building a weighted graph in which the weight
between nodes i and j is their Jaccard similarity coefficient, which is

Wij =
|v(i) ∩ v(j)|
|v(i) ∪ v(j)|

,

where v(i) is the set of k-neighbors of the node i defined before. This metric is maximum
for nodes with the same set of neighbours and tunes automatically the number of neighbours
k, as edges in dense regions are reinforced and edges in sparse regions are penalized. The
term modularity in a graph refers to the presence of modules that are densely intraconnected.
The task is to find a partition of the graph that captures its modular structure. The problem
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of finding the partition that maximizes modularity is NP-complete. However, the Louvain
community detection method [29] is a good approximation. In particular, Phenograph runs
multiple random restarts of the Louvain method and chooses as solution the partition with the
maximum modularity.

3.2.2 F1-score

Assessing the quality of the results obtained by a clustering algorithm is still an open problem,
as we do not have labels that can be employed to define the accuracy or the error. Sometimes,
we can use previously labeled data (many times, synthetic) to determine if the algorithms are
working properly. Even though this situation does not reflect real-life problems, this approxi-
mation allows us to make decisions, hoping that the behaviour of the algorithm will be similar
with new unlabeled datasets.

In this work, we will use some synthetic datasets to evaluate the performance of the algo-
rithms tested. We will focus on the F1-score [30], which is a measure of the accuracy of a test.
In binary classification, the F1-score is the harmonic mean of the precision and recall, being 1
the best value and 0 the worst. Thus, the F1 score is defined as

F1 = 2× precision× recall
precision + recall

,

where:

• Precision is the number of true positives divided by the total positives.

• Recall is the number of total positives divided by the number of samples that should be
positive.

In multi-label problems, the F1-score is the average of the F1-score of each class. An
important issue to mention is the way we calculate the cluster-class assignments. One approach
is to select, for each class, the cluster that maximizes the F1-score for that class. But this
does not prevent the same cluster from being selected for multiple classes. For this reason, we
use the Hungarian assignment algorithm [31], which finds a mapping that maximizes the sum
of F1-scores of all the reference classes, ensuring that for each reference class only one cluster
is selected. Thus, there can be clusters that do not “match” with any reference class. This
decision makes the evaluation very strict (although also more fair), because in order to obtain a
good F1-score, both the number of clusters and their precision are very important, so that the
existence of overclustering is greatly penalized.

3.3 Dimensionality reduction in flow cytometry data

In order to visualize clustering results and cell populations in FCM data, we can use a dimen-
sionality reduction method that projects data into a 2-dimensional space. As mentioned before,
FCM data is typically multidimensional. Not only that, the number of channels tend to increase
with the development of technical aspects. Even though Phenograph is applied to the original
fully dimensional FCM data, it is interesting to provide the user with a 2-dimensional map to
achieve a better visualization and understanding. In addition, 2-dimensional projections are the
standard display procedure, since when the number of measured parameters is increased, the
number of paired combinations of parameters also increase, making visualization a tedious task,
which is biased to the order in which these projections are displayed.
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Figure 3.4: The influence of batch effect in FCM data: t-SNE projection of equivalent FCM data
obtained from two different cytometers. Colors distinguish the cytometer used in the experiment
(i.e. each domain).

With this purpose, authors in [2] select the t-SNE projection. In general, t-SNE is a reliable
choice, as it handles non linear data and preserves both global and local structure, so it has been
widely used for visualization of FCM data in recent years [32]. However, the main disadvantages
of applying t-SNE to FCM data are the following:

• t-SNE depends on data and does not provide a function to project new data. This means
that it is difficult to embed into the latent space examples that were not in the training
sample provided to t-SNE. They are the out-of-sample examples (OOS examples).

• t-SNE is computationally expensive. This is specially unfavourable when treating with
FCM data, as we deal with large volumes of data, so we will need an strategy for down-
sampling. This also implies to define an strategy of up-sampling FCM events.

• t-SNE is very sensible to batch effects, which will be introduced in Section 3.4.

In this work we will try to mitigate some of these effects applying Adversarial Autoencoders
to FCM data, as we will see in the following chapters.

3.4 The problem of batch effect in flow cytometry data

As we have previously mentioned, one of the biggest challenges in automating the analysis of
problems with a biological background is their dependence on experimental conditions. Batch
effects are non-biological factors: they are the unpredictable technical differences we find when
biological samples are collected, processed and measured. Thus, avoiding the influence of batch
effects is specially challenging when integrating data from different experiments, which have
been prepared and/or measured in different days or nonidentical conditions. The main objective
of this work is to perform batch normalization using Machine Learning. Remember that domain
adaptation in Machine Learning tries to infer properties from data that comes from similar but
slightly different distributions. One way of achieving this is to train algorithms that are not
capable of distinguishing data according to their domain. In order to achieve batch correction,

CHAPTER 3. AUTOMATED ANALYSIS OF FLOW CYTOMETRY DATA 21



Analysis of flow cytometry data with domain-adversarial autoencoders

we will consider that the information about the experimental conditions is contained in the
domain.

In Figure 3.4 we can see an example of the influence of batch effects in the analysis of FCM
data. The projections appear colored with two different colors: they are data from equiva-
lent beads but acquired on two different machines. The first kit is a conventional cytometer
(FORTESSA) and the second kit is a spectral cytometer (SP6800). The samples were prepared
and acquired in the same way and on the same dates, so the differences between the two are
almost exclusively due to the use of a different cytometer. This is considered as batch effect in
our particular example. As we can see, the t-SNE projection is very sensitive to these effects:
data from different domains hardly intersect with each other. Our goal is to obtain data from
different domains (i.e. different experimental conditions) completely overlapped for the same
populations.

Some previous works tried to mitigate batch effects using a specific network architecture or
custom loss functions. In [11], authors use autoencoders to perform batch normalization in mass
cytometry and RNA-seq data. In this case, batch normalization is achieved in the embedding
space using regularization with the Maximum Average Discrepancy (MMD) [33], obtaining good
results. However, this method is restricted to two-domain problems. We will see in Chapter
4 that our approach, which is based on the concept of adversarial network, is a relatively easy
architecture which, in addition, is general for an arbitrary number of domains.
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4
Domain adaptation in unsupervised learning

In previous chapters we described fundamental concepts detailing methods and algorithms that
are needed to analyze FCM data and its challenges and limitations, which help us to fully under-
stand the proposal of this work: the domain-adversarial autoencoder (DAE). Thus, this section
is focused on the algorithm developed to achieve domain adaptation (i.e. batch correction) with
autoencoders incorporating an adversarial network. Regarding definitions, from the point of
view of Machine Learning, the DAE is an algorithm for domain adaptation. However, concern-
ing flow cytometry data, the DAE is applied with the objective of correction of batch effects
(to simplify, batch correction). In this and following chapters, we use these terms indifferently,
as we identify domains with data acquired in different experimental conditions. This chapter is
divided in two sections that cover the following topics:

• In Section 4.1, we introduce the architecture of a domain-adversarial autoencoder (DAE),
explaining the adversarial network to perform domain adaptation or batch correction.
Training adversarial networks is always a subtle problem so we also give a detailed schema
of the technique used in this work.

• Section 4.2 presents some approaches to assess the performance of batch normalization.
Since we are facing an unsupervised learning problem, evaluation techniques are always
an open and complex problem. In this section we present an evaluation proposal that can
be applied in a generic way, regardless the number of considered domains.

4.1 Domain-adversarial autoencoder (DAE)

The domain-adversarial autoencoder (DAE) is the method proposed in this work to achieve
domain adaptation in an unsupervised-learning context. As we have seen before (Section 2.2),
an autoencoder is composed of two parts: an encoder and a decoder. The encoder is the
net that projects the data into the latent space or embedding. The decoder reconstructs the
original data given the latent representation. Domain-adversarial autoencoders are based in the
following principle: if the autoencoder is able to generalize between domains, the embedding
cannot contain information about them. If the embedding does not contain information about
the domain, the reconstruction of the decoder should be domain-independent.
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4.1.1 DAE architecture

Encoder Decoder

Input Reconstruction

Discriminator Domain 
prediction

Embedding

Gradient 
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Figure 4.1: Architecture of a domain-adversarial autoencoder. Top row is a standard autoen-
coder (blue) that minimizes the reconstruction error of an input given its latent representation.
The second row is a discriminator (orange) which aim is to discriminate to which domain the
samples belong.

A DAE is a model composed of two neural networks, see Figure 4.1. The first one is a
standard autoencoder, which, as explained before, is a symmetric network with the objective of
reconstructing the input at the output. The second one is the discriminator or domain classifier,
which is the net in charge of domain adaptation. The purpose of this is to discriminate the
domain from which the data comes given its embedding in the latent space. Thus, a DAE is a
composition of three functions:

• A parametric encoding function E: φ = E(x,Θe), applied to the input points x ∈ Rm,
where Θe is the set of weights of the autoencoder that belong to the encoder part.

• A parametric decoding function D: x̂ = D(φ,Θd), applied to the points in the latent space
φ ∈ Rd, where Θd is the set of weights of the autoencoder that belong to the decoder part.

• A parametric discriminating function δ: δ(φ,Θδ), applied to the points in the latent space
φ ∈ Rd, where Θδ is the set of weights of the discriminator.

In this case, the encoder E needs to find a good representation of the data in a d-dimensional
space that allows the decoder to perform a good enough reconstruction while trying to fool the
discriminator and, thus, removing the information about the domain in the latent space. The
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adversarial game is solved introducing a gradient reversal layer (flip layer) between the encoder
E and the discriminator δ. This layer is the identity function during forward propagation.
However, during back propagation it multiplies its input by −1. Thus, during back propagation
the output of the gradient reversal layer is leading to the opposite of gradient descent in the
encoder with respect to the discriminator.

4.1.2 Training a DAE

In order to be trained, a DAE must be provided with a “labeled” sample of N events, S =
{(xi, di)}Ni=1, where xi is the data point and di is the domain from which this point comes. Note
that di is not a true label in the sense of classification problems, it is just a vector containing a
domain identification. For example, assume we have data from three different experiments in a
laboratory. Then, di ∈ {0, 1, 2}. This type of label does not incorporate expert knowledge, as
the definition of different domains (experiments in this case) is objective.

Rigorously, a DAE is a network trained in an adversarial context, so we need to define two
loss functions. We note the reconstruction loss and the domain loss for the sample (xi, di) by:

J ir(Θe,Θd) = Jr (D(E(xi; Θe); Θd), xi) and (4.1)

J id(Θe,Θδ) = Jd (δ(E(xi; Θe); Θδ), di) (4.2)

respectively. Jr and Jd are specified by the user. Training a DAE consists in optimizing

J(Θe,Θd,Θδ) =

(
1

2N

N∑
i=1

J ir(Θe,Θd) +
ν

2
‖Θe‖

)
−

(
1

2N

N∑
i=1

J id(Θe,Θδ)

)
, (4.3)

where ν controls the regularization term to avoid extremely large values in the embedding space.
Thus, the objective is to find a set of weights that are optimal in the classical adversarial game

(Θ∗e,Θ
∗
d) = argmin

(Θe,Θd)
J(Θe,Θd,Θδ) , (4.4)

Θ∗δ = argmax
Θδ

J(Θe,Θd,Θδ) . (4.5)

The encoder E, the decoderD, and the discriminator δ can be found with standard stochastic
gradient descent (SGD) in two stages:

• Train the autoencoder to minimize the reconstruction loss.

• Train the discriminator to distinguish the domain of the samples.

Algorithm 1 contains the pseudocode of this learning methodology (in this case, batch refers to
the amount of examples used in each iteration of training in the neural network). In general, we
believe that two good choices for the reconstruction and domain losses are the mean squared error
or MSE, and the categorical cross-entropy, respectively. The mean squared error is a classical
choice in regression problems (deep inside, an autoencoder is a regression problem in which the
input and the output are the same) and the categorical cross-entropy is one of the most used
losses to train multi-class classification networks. Specifically, our loss functions would be:

Jr(Θe,Θd) =

(
1

2N

N∑
i=1

‖D(E(xiΘe),Θd)− xi‖2 +
ν

2
‖Θe‖

)
and

Jr(Θe,Θδ) =

(
1

2N

N∑
i=1

l∑
c=1

yxi,c(Θδ) log pxi,c(Θδ)

)
,
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where l is the number of considered domains, y is a binary indicator for the domain to be
correctly predicted for the observation xi and p is the predicted probability for observation xi
to belong to the domain c. If the problem is composed of two different domains, the standard
binary cross-entropy is also a good choice. Regarding activation functions, we propose to use the
rectified linear units (ReLU), in every hidden layer; the linear function in the last layer of the
autoencoder and the softmax function in the last layer of the discriminator (which are also quite
standard set-ups both in regression and classification problems). Concerning the architecture
of the networks, the learning rate and the optimizer, we recommend the user to perform a grid
search to find the optimal combination. As the grid search cannot be done training the DAE
(note that we are not just minimizing the reconstruction error, we have a much more complex
loss function), we decided to do it with an standard autoencoder and use the same configuration
later for the DAE.

Algorithm 1: DAE - training update
input: Samples S = {(xi, di)}Ni=1

Encoder E, weights Θe

Decoder D, weights Θd

Discriminator δ, weights Θδ

Number of training epochs ne
Batch size m

begin
for i ∈ {1, 2, . . . , ne} do

B ← Sample minibatches of m examples {(x1, d1), . . . , (xm, dm)} from S
for Bi ∈ B do

Jr ← Compute reconstruction loss between Bi and D(E(Bi))
Update weights of E and D via SGD of Jr
Jd ← Compute domain loss in Bi
Update weights of δ via SGD of Jd
Update weights of E via SGA of Jd

end
end

end

Clarifications:
SGA: stochastic gradient ascent.
SGD: stochastic gradient descent.
Sample minibatches: sample bN/mc batches from S.

4.2 Assessment of batch normalization

The assessment of domain adaptation or batch normalization is still an open problem. There
are no standard ways of measuring the error or the success of the algorithms. In this work we
have argued that if there is no information about the domains in the latent space learnt by
the DAE, then we should not see the effects of batch normalization in the reconstruction given
by the decoder when we train with equivalent data whose differences are due to the domain,
batch or experiment. Thus, we propose to use a statistical distance that compares distributions
among domains in the latent space of the DAE. The reasoning is as follows: if the distributions
of the data given the domains are statistically indistinguishable, then there cannot be domain
information. Thus, we would be able to evaluate the capacity of the algorithm to carry out the
domain adaptation with two important advantages:
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• We are using a non-parametric statistical notion of distance, avoiding possible biases in
the models.

• We are obtaining a number that objectively serves to evaluate the quality of the batch nor-
malization, instead of simply evaluating it in a visual way, which is also clearly subjective
and dependent on factors such as the scale or the quality of the drawing.

4.2.1 Multidimensional KS distance

The Kolmogorov-Smirnov (KS) [34] statistic is a notion of statistical distance between the em-
pirical distribution function of a sample and a reference distribution F (x). The empirical dis-
tribution Fn for n independent and identically distributed (i.i.d.) ordered observations {Xi}ni=1

is

Fn(x) =
1

n

n∑
i=1

I(−∞,x](Xi) , (4.6)

where I(−∞,x] is equal to 1 if Xi ≤ x and 0 otherwise. The KS distance can be computed as

Dn(x) = supx|F1,n(x)− F (x)| .

The Glivenko-Cantelli theorem [35] ensures that if F (x) is the distribution from where the sample
comes from, then Dn → 0 almost surely when n→∞.
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Figure 4.2: Example of the two-sample KS distance. Orange and blue lines are the empirical
distribution functions of two samples randomly generated. The red segment represents the
corresponding KS distance between them.

The two-sample KS distance quantifies the statistical distance between the empirical dis-
tribution of two samples, being one of the most useful and general non-parametric methods
for comparing samples. Suppose we have two sets of ordered i.i.d. observations, {Xi}ni=1 and
{Yj}mj=1. In this case, the two-sample KS distance is:

Dn,m = supx|F1,n(x)− F2,m(x)| ,

where F1,n(x) and F2,m(x) are the empirical distribution functions of the samples, defined as
in Equation (4.6). Figure 4.2 contains the illustration of this value, where the two-sample KS
distance is the length of the red segment.
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Figure 4.3: Multidimensional KS distance of a 2-dimensional blobs dataset generated with ex-
planatory purposes. Left: the probability distribution is the same in both blue and red samples
(Dn,m = 0.062). Right: the probability distribution is different (Dn,m = 0.177).

With domain adaptation we are seeking for projections in which data are indistinguishable
among domains. If the two-sample KS distance is small when comparing samples from differ-
ent domains, we could think that the projected data is really domain-independent. The main
problem of the KS distance is that it assumes one-dimensional samples. However, there is a
generalization of this measure for multidimensional data: the two-dimensional Peacock’s dis-
tance [36] and its generalization, the multidimensional KS distance [37], which can be applied to
compare two-dimensional samples. Figure 4.3 contains an example of how the multidimensional
KS distance works. In the first case (left), both the blue sample and the red sample are identi-
cally distributed, so we obtain a very small distance (0.062) that indicates that the samples are
statistically near. In the second case (right), a constant is added to one of the samples, causing
a displacement that prevents the samples from following the same probability distribution. In
this case the distance is bigger (0.177), as expected.

Regarding batch normalization, we propose to evaluate the quality of an embedding com-
paring the multidimensional KS distance before and after the domain adaptation. Before batch
correction, we expect the multidimensional KS distance to be large, as samples proceeding from
different domains are easily distinguishable. After batch normalization, the distance between
domains should be smaller (i.e. we do not expect big differences between the distributions of the
samples). These measurements can be used to form a kind of confusion matrix, in which rows
and columns indicate the domain belonging of data. Making a heatmap, in the case of SAE and
t-SNE projections, we expect to see a diagonal matrix, as distances between different domains
should be large. However, in the projection learnt by the DAE, we expect to see a block, since,
in this case, distances outside the diagonal should be smaller.
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5
Experiments

After covering the notions and basics in domain adaptation and adversarial learning, we have
introduced the algorithm proposed in this work, the domain-adversarial autoencoder (DAE). In
this chapter we present the experiments carried out with flow cytometry data (FCM data) to
verify the efficiency of the DAE to perform batch normalization. This chapter is divided in the
following sections:

• In Section 5.1 we review the available software resources in Python to analyze flow cy-
tometry data and to perform adversarial learning in neural networks. This section also
contains an explanation of the datasets used to test the performance of the algorithm: a
synthetic dataset (beads) and real flow cytometry data (dendritic cells).

• In Section 5.2 we explain the experimental set up that we have followed in this work.

• In Section 5.3 we show the DAE’s performance on the mentioned datasets, comparing the
projections and the clustering results obtained before and after the batch normalization
of FCM data.

5.1 Software and datasets

This section is devoted to the available data and software resources used to conduct the experi-
ments of this work. First, we introduce the software and the main Python libraries we have used.
Second, we give detailed information about the FCM datasets that have been chosen to test our
algorithm, as they had strong batch effects that needed to be corrected for further analysis.

5.1.1 Software

The experiments and code developed in this work are based on standard software libraries. The
code has been implemented in Python, using the Keras library to build the neural network
architectures. Below, we describe some of the most important libraries that we have used in this
work.
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Name N m C l

Beads_4_simple 144701 4 5 5
Beads_4 107702 4 14 2
Dendritic 1843470 11 Unknown 2

Table 5.1: Description of the datasets used in the experiments. N indicates the number of
examples, m is the number of channels used for the analysis, C is the number of different
populations in the samples (if known) and l is the number of considered domains.

• NumPy [38] is a fast and versatile library whose main data class is an N -dimensional array
object. It offers comprehensive mathematical functions to operate on these arrays and it
is compatible with Keras and Scikit-learn libraries.

• Keras [39] is a deep-learning API written in Python. It is the high-level API of TensorFlow
[40], and provides a convenient interface for solving Machine Learning problems focused
on deep learning. This library counts with powerful tools and blocks to efficiency program
and test algorithms of Machine Learning, specially neural networks.

• Scikit-learn [41] is an accessible library with efficient tools for data analysis and mining. It
contains tools to perform in a very effective way grid searches over the parameters of the
models and several dimensionality reduction methods, including implementations of PCA
and t-SNE.

• FCSparser (https://github.com/bpteague/fcsparser) is a Python package for loading
.fcs files, which is the most common format in FCM data.

• A Python implementation of the two-dimensional KS distance can be found in https:
//github.com/syrte/ndtest. This code can be used to compare the distribution between
two 2-dimensional samples, which is the dimension chosen for all the embeddings computed
in this work.

• The implementation of Phenograph used in this work is in R and it is included in the
cytofkit package [24], which is an integrated pipeline for mass cytometry analysis.

5.1.2 Datasets

Regarding the experiments carried out in this work, we have chosen three datasets with increas-
ing complexity (two of them are synthetic and one contains real-world data from FCM experi-
ments). Table 5.1 summarizes their main characteristics. Synthetic data are beads stained with
a combination of fluorochromes that are passed through the cytometer and analyzed in a very
controlled way. Thus, the number of “populations” is known, which makes them very useful
data to test the algorithms implemented. Real data consist on mouse cells stained with different
combinations of antibodies and fluorochromes, used for state-of-the-art research in immunology,
so the actual number of cell populations is unknown.

The first dataset, denoted beads_4_simple, contains simple data of beads in a controlled
environment. The main characteristics of this dataset are:

• Number of populations. There are five pure populations (negatives, AF647+ simple,
FITC+ simple, v450+ simple and PE+ simple).

• Number of channels. Four conventionally compensated channels: APCREDLASER,
FITCBLUELASER, PACIFICBLUEVIOLETLASER and PEYELLOWLASER, which cor-
respond to the markers AF647, FITC, v450 and PE respectively.
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• Batch effect. Simulation of progressive misaligment of a cytometer mimicked by using
different concentrations of fluorochromes when staining the beads of different files (that
are acquired sequentially). As result, we have files with the same populations but with
differences in the expression levels due to a simulation of misalignment of a cytometer.
Altogether, we have five situations (i.e. five domains) with different marker’s dilution,
where more dilution implies less concentration and less expression levels.

The second dataset, named beads_4, is more complicated. In this case, batch effects are
not simulated but real, generated by the use of two different machines to acquire the FCM data
from equivalent samples. As in the previous dataset, we have simple data of beads that have
been acquired in a controlled environment. The main differences are:

• Number of populations. There are 14 different classes or populations (combinations of
4 fluorochromes), including negatives examples.

• Number of channels. Four conventionally compensated channels: ccV450, ccBV711,
ccPE and ccAlexaFluor647.

• Batch effect. We have equivalent data acquired in two different machines: FORTESSA
(conventional cytometer) and SP6800 (spectral cytometer). Therefore, the first domain is
composed by the samples acquired with the conventional cytometer (CONV) and the sec-
ond domain contains the samples acquired in the spectral cytometer (SPC). Samples were
prepared and acquired in the same mode and on the same dates, so the differences between
CONV and SPC must be, almost exclusively, due to the use of different cytometers. This
is the batch effect we are seeking to correct in our tests.

The third and final dataset, which will bee referred as dendritic dataset, comes from a real
experiment. It contains equivalent single-cell suspensions of skin-draining lymph nodes from
mice acquired in two different machines. Samples of two types of animals are available: WT or
control animals, and KO or animals with different genotype (and potentially with some different
populations). However, in this work we have used only data from WT animals to constraint the
differences between samples to be strictly batch effects instead of a combination with biological
changes. On these data, we highlight the following points:

• Number of populations. We do not know the total number of cell populations in these
samples. We only have a labeled subpopulation by expert immunologists, which is the
one of interest in these data, the "migratory dendritic cells", a rare population (i.e. low
number of cells) in WT control animals, and even rarer in KO modified animals. As a
consequence, classes are now very unbalanced.

• Number of channels. Eleven conventionally compensated channels: ccAPC, ccAPC-
Fire750, ccBV421, ccBV570, ccBV605, ccBV711, ccFITC, ccPE, ccPE-CF594, ccPE-CY7
and ccPerCP-CY5.5.

• Batch effect. We have equivalent data acquired in two different machines: FORTESSA
(conventional cytometer, CONV) and SP6800 (spectral cytometer, SPC), as in the beads_4
experiment, so the first domain contains CONV samples and the second domain SPC sam-
ples from WT animals. In this case, this is the batch effect we are seeking to correct.

Finally, note that the three datasets have been previously processed by the Cellomics Unit
of the Spanish Centro National de Investigaciones Cardiovasculares (CNIC) (see Section 5.2).
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5.2 Methodology

In this section we explain thoroughly the procedure followed to perform the experiments and
the evaluation strategies to assess the results, which are common to all the tests carried out in
this work.

5.2.1 Method design

Regarding the design of the method and the data loading, recall that data have been already
pre-processed and normalized with the biexponential transformation (see Section 3.1.1), which
has been applied independently for each domain or batch. The first step is to load data from
the .fcs files through the fcsparser library. As mentioned before, target datasets are made up
of experiments from different domains. Therefore, we form three objects:

• A data matrix X ∈ RN × Rm with the expression levels of each channel (m markers) for
each bead or cell (n samples).

• A categorical array Y of dimension N with the information of the population each sample
(cell or bead) belongs to (if known). In our case all our experiments are labeled and this
data is used for display and evaluation purposes, but this information is not necessary to
train the algorithms proposed in this work.

• A categorical array D of dimension N that encodes the domain each sample (cell or bead)
belongs to.

We split these objects, finally obtaining a training set Dtrain = {Xtrain, Ytrain, Dtrain} and a
testing set Dtest = {Xtest, Ytest, Dtest}. This partition is done with the StratifiedKFold object
of Scikit-learn, selecting randomly (in a stratified way) 5/6 of the data for the training subset
and 1/6 for the testing subset.

Once the data are correctly loaded and preprocessed, we proceed to train the neural networks.
At this point, we study of the distribution of the data and the presence of possible extreme points
that may hinder further analysis. Figure 5.1 contains the box-plots for the three datasets and
we do not consider the existence of significant outliers in the transformed data that should be
removed to train properly the neural networks. Hence, we first train a standard autoencoder
(SAE) with the following common parameters, which are common across all datasets.

• Both the encoder and the decoder are composed of 2 hidden layers, each one of 24 units.

• The bottleneck layer is composed of 2 units, as we are interested in 2-dimensional embed-
dings for display reasons, allowing an appropriate visualization.

• The activation function is the ReLU in hidden layers, linear in the last layer (decoder).

• The learning rate is selected with a grid search over a set of possible values. The space
of search is lr ∈ {1e − 05, 1e − 04, 1e − 03, 1e − 02, 1e − 01} and the best model is the
one obtaining the maximum score. The selected score function is the negative squared
root mean error. This is done over 4 training and validation splits with the method
GridSearchCV available in the library Scikit-learn.

• For the stochastic optimization of the neural networks we use the method Adam, which
uses Momentum and adaptive learning rates. It is the optimizer that performs best on
average [42].
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Figure 5.1: Box-plots after applying the logicle transform. Top is the Beads_4_simple, middle
is the Beads_4 and bottom is the Dendritic dataset. There are not significant outliers.

• As loss function we use the Mean Squared Error (MSE) between the input and the output.

• We also include regularization in the weights belonging to the encoder, to control the size
of the embedding. We use a fixed value ν = 10−4.

Before training the SAE it is necessary to standardize the data. The used transformation is

X̂ =
X − µ
σ

,

where µ is the sample mean and σ is the standard deviation. Both parameters are estimated from
the training set, applying the subsequent transformation to both the training and validation sets
during the grid search and to the training and testing sets when training the final models. This
normalization is also done by batch, which means that the mean and deviation are calculated
independently for each domain (or batch). That is, we will have as many tuples (µi, σi), 0 ≤
i < l, as different experiments, where l denotes the number of domains of the dataset.

Regarding the domain-adversarial autoencoder (DAE), as previously mentioned in Chapter
4, we use a very similar configuration to that of a SAE. We apply the standard normalization per
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batch and reuse the optimal parameters of the SAE, such as the learning rate, the architecture
and the regularization parameter ν. Concerning the discriminator, we use a net with two hidden
layers with 32 units each and with the ReLU as activation functions. The activation of the
last layer is the softmax (recall that the discriminator is a net for classification with the task of
predicting the domain the data belong to). Thus, the discriminator is trained using the sparse
categorical cross-entropy as loss function.

Lastly, for comparison purposes, the t-SNE projections are computed over the testing subset
using the standard methods available in Scikit-learn. All parameters are left by default. The
same normalization procedure per batch is applied to the data, as algorithms must be compared
under the same circumstances.

5.2.2 Evaluation strategy

The evaluation of the results is carried out in three ways. On the one hand, we have the visual
evaluation, which is based on verifying that the embeddings appear overlapped by domain or
batch in the latent space. On the second hand, on the embeddings computed for the testing
subsets, we evaluate the batch normalization with the two-dimensional KS distance and its
representation in heatmaps that we have introduced in Chapter 4. When we use a standard
autoencoder (SAE) or t-SNE to project data, we do not provide the algorithm with information
about batches or domains. Thus, we expect the KS distance to be large, as samples proceeding
from different domains are separated in the embedding space, so they are statistically far. How-
ever, data from different domains projected with a DAE are expected to be overlapped, so we
expect smaller distances between samples. These forms of evaluation are implemented on the
testing subsets.

Lastly, we also wanted to evaluate the correction of batch effects in the original space and
dimension of the data, and not only in a projected space. To do that, we assess the quality of the
reconstruction of the DAE (where batch effects should be removed), compared with the original
input data, by computing the F1-scores obtained by Phenograph clustering (see Section 3.2)
over the data in the original multidimensional space. This is possible because we have labeled
data. Note that to evaluate the batch normalization in the reconstruction we need to invert
the standard normalization applied before training the networks, which is independent for each
domain. As we do not have a source and target domain, because they are all mixed in out
partitions, we select the parameters computed for the first domain (l = 0), so the reconstruction
would be

Xclean = σ0X̂ + µ0 ,

where µ0 and σ0 are the parameters computed for the first domain of the experiment and Xclean
denotes the batch normalization of the dataset.

5.3 Results

This section contains the results of batch normalization in the three datasets presented before
and with the methodology explained in the previous section. The results of the grid search for
the learning rate can be seen in Figure 5.2, where we show both negative squared root mean
error (NRMSE) and negative mean absolute error (NMAE). In the case of the beads synthetic
datasets, the optimal learning rate is l∗r = 10−3. In the case of dendritic cells, the optimal result
is 10−4.

Following the previous methodological scheme, for each dataset firstly we establish a visual
evaluation of the results comparing the embeddings obtained by the different methods used in
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Figure 5.2: Grid search results for the optimal learning rate of a SAE. From left to right: the
beads_4_simple, the beads_4 and the dendritic datasets.

Figure 5.3: Embeddings of the Beads_4_simple dataset. From left to right: t-SNE, SAE and
DAE projections. Top row is coloured by class and bottom row is coloured by domain or batch.

this work (t-SNE, SAE and DAE). Secondly, we show the heatmaps containing the multidi-
mensional KS distance before and after batch correction (SAE and DAE, respectively). Finally,
we study the efficiency of batch normalization using Phenograph to perform clustering and
measuring the F1-score in the original and the reconstructed data.

5.3.1 Tests on beads_4_simple dataset

For the Beads_4_simple dataset, we show the t-SNE, SAE and DAE embeddings coloured both
by class and domain in Figure 5.3. Clearly, t-SNE and SAE projections are influenced by the
domain, as we can see a clear separation in the embedding space. Moreover, in the latent space
of the SAE, even though events of the same class tend to come together in the embedded space,
the batch effect originated by the decrease in expression values is clearly seen in each domain or
batch. These effects are corrected in the embedding computed by the encoder of the DAE, where
data is grouped by class or phenotype, but where batch effects are also corrected. Visually, an
almost perfect overlap is observed between data from different domains and the same class (or
population).

At this point, it seems appropriate to illustrate a little better how the DAE is working. The
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Figure 5.4: Decision regions of a discriminator trained over the SAE projection of the
Beads_4_simple dataset consisting on five domains.
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Figure 5.5: Heatmaps with the values of the two-dimensional KS distance on the embeddings of
a SAE (left) and a DAE (right) in the Beads_4_simple dataset. Tuples indicate (class, domain).

encoder of the DAE tries to fool the domain discriminator, and the way of achieving this is to
superimpose data in the embeddings so that the domains are not distinguishable. For example,
in Figure 5.4 we can see the decision regions of a neural network for classification with the same
architecture and parameters used in the discriminator. The neural network is trained with the
SAE projection and it clearly learns to distinguish data from different domains. As the encoder
is trained to fool a network of the same type, it learns to project data into a latent space where
data is not as clearly separable (by domain but by class) as long as the decoder reconstruction
error is still acceptable.

These results are supported by the heatmaps containing the two-dimensional KS distance,
which can be seen in Figure 5.5. In the image on the left, we see that data from the same domain
present large distances, which means that the empirical probability distributions of data from
the same class but different domains are different. However, in the DAE projection shown on
the right, we see well-defined blocks. While the distributions of the classes do not mix, we see
how the distances between projections of data from different domain decrease with respect to
previous values. This is precisely the effect sought in this work.

Finally, we make some tests over the DAE reconstructions, in which we expect a considerable
batch correction that results in improved Phenograph clustering results. Before batch correction,
the clustering results can be seen in the left part of Table 5.2. We can see that, in general,
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DOMAIN

CLASS Before After
0 1 2 3 4 0 1 2 3 4

1 0.319 0.34 0.369 0.354 0.385 0.444 0.473 0.477 0.482 0.465
2 1 1 0 0 0 0.676 0.658 0.609 0.621 0.588
3 1 1 0 0 0 0.521 0.478 0.439 0.4 0.363
4 1 1 0 0 0 0.813 0.759 0.629 0.705 0.619
5 1 1 0 0 0 0.66 0.526 0.561 0.558 0.515
ALL 0.737 0.709 0.205 0.182 0.199 0.571 0.546 0.522 0.536 0.499

Table 5.2: F1-scores before and after batch normalization obtained via automatic clustering
with Phenograph in the beads_4_simple dataset. Global before: 0.439. Global after: 0.534

each population (i.e. each class) of each of the domains is detected as a different cluster; and
even for some of the clusters we obtain a perfect F1-score. However, some groups are totally
missclassified, resulting in a low global F1-score. The results after batch normalization can be
seen in the right columns of Table 5.2. As we can see, there are no longer clusters that correspond
to populations of only one of the domains or batches, it is instead a mixture of all. However,
since there is a lot of overclustering in each population (i.e. class), the F1-scores are lower than
expected. Anyways, it improves the pre-correction value globally. The differences shown in the
table can be summarize as follows:

• Pre-correction: a chosen cluster can either match a class perfectly for some domains (e.g.
domains 0 and 1 achieve perfect F1-score for class 5), but without containing any event
of the same class belonging to other domains (domains 2 to 4 for the same class 5).

• Post-correction: a chosen cluster has events from all domains (since they are no longer
separated), but there is overclustering.

Therefore, for the beads_4_simple dataset, the results of the batch correction are very posi-
tive, since we can see an improvement of the display of the data in the embedding, where the
domains overlap but the different classes remain separated; in the evaluations made with the
two-dimensional KS distance on the latent space, obtaining smaller distances between batches
or domains in the DAE projection; and in the F1-score obtained by Phenograph using the
reconstructed data obtained by the DAE.

5.3.2 Tests on beads_4 dataset

The beads_4 dataset, as mentioned in the first section of the chapter, is composed of data
coming from two different machines: the conventional (CONV) and spectral (SPC) cytometers.
Therefore, this time we consider two domains or batches that we refer to as CONV and SPC.
The t-SNE, SAE and DAE projections of these data can be seen in Figure 5.6. Regarding the
t-SNE projection, we can see that test examples are completely separated by domains, thus,
appearing in the latent space twice the number populations we know there are in the sample
(recall this synthetic dataset is labeled). The SAE projection is also sensible to batch effects,
even though these effects are visually soften in comparison to the t-SNE embedding. This means
that the positioning of events is more realistic, as events or cells that are supposed to be similar
are nearer in the embedding space (e.g. same class for different domains). Clearly, the DAE
projection presents the highest visual degree of overlap between domains, while events remain
class-separated.
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Figure 5.6: Embeddings of the beads_4 dataset. From left to right: t-SNE, SAE and DAE
projections. Top row is coloured by class and bottom row is coloured by domain or batch.

Figure 5.7: Decision regions of a discriminator trained over the SAE projection of the beads_4
dataset.

We also show the decision regions obtained after training 10 epochs a neural network for
classification, with the same configuration of the discriminator, on the embedding learned by
the SAE (see Figure 5.7). As there are domain differences in the latent space, the network
achieves a 93% of accuracy. However, if we train for the same number of epochs the same
net, but this time on the embedding learned by the DAE, the classification accuracy decays to
a 68.19%, so for the network it is harder to distinguish between domains. In the same way,
we appreciate the overlapping in the visual evaluation. Be aware that the baseline accuracy is
approximately 50%, as in this dataset, there are two classes that are balanced between domains;
so a trivial classifier would guess correctly half of the examples.

To support these results, we show the heatmaps with values of the two-dimensional KS
distance in Figure 5.8. This time, despite the clear improvement obtained in the DAE projection,
there are still some differences in the way that data from different domains are distributed. For
example, events of class 9, although they are very close, do not present the same mean given
the domain. Either way, given the same source data, the distance associated with the DAE
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Figure 5.8: Heatmaps with the values of the two-dimensional KS distance on the embeddings of
a SAE (left) and a DAE (right) in the beads_4 dataset. Tuples indicate (class, domain).

DOMAIN

CLASS Before After
CONV SPC CONV SPC

1 1 0 0.790 0.718
2 0.801 0 0.890 1
3 1 1 0.999 1
4 1 0 1 1
5 1 1 0.66 1
6 1 0 0.999 1
7 1 0.001 1 1
8 1 0 0.650 0.789
9 0.631 1 0.946 0.810
10 1 1 0.999 1
11 0.993 0.001 0.999 0.999
12 0.998 0.998 0.862 0.774
13 1 0.999 0.996 0.809
14 0.995 0.998 0.968 0.970
ALL 0.968 0.665 0.943 0.928

Table 5.3: F1-scores before and after batch normalization obtained via automatic clustering
with Phenograph in the beads_4 dataset. Global before: 0.841. Global after: 0.936.

projection is always smaller than the distance computed with the SAE projection. Therefore, in
this particular dataset, the DAE is bringing closer the distributions of the projected data among
domains or batches, as expected.

For these data, clustering results are especially good. We can see in Table 5.3 a very signifi-
cant improvement in the results. Especially for the domain SPC, which had very low F1-scores
in some classes before applying batch normalization. This is due to the appearance of these
artificial groups we observed in the SAE projection of Figure 5.6, where we can see that some
classes appear separated in the embedding space because of the batch effects. The specific F1-
score for the SPC domain changes from 0.665 in the original data to 0.928 in the corrected data.
The global F1-score is 0.841 for non-corrected data, while we obtain 0.936 in the data corrected
by the domain-adversarial autoencoder.
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Taking this into account, we can conclude that we have satisfactorily removed a large majority
of the batch effects present in this dataset. In favour of the relevance of this result we must advert
that the batch effects were originated from using two different machines to acquire the FCM
data, which is an extreme situation that does not normally occur in flow cytometry laboratory
approaches. Thus, one can consider this batch effect an extreme perturbation of the experimental
conditions, which goes beyond any experimental condition commonly used in flow cytometry
real experiments. The effects of the correction are visually observed in the embeddings and
objectively measured in the clustering results.

5.3.3 Tests on dendritic dataset

Figure 5.9: Embeddings of the dendritic dataset. From left to right: t-SNE, SAE and DAE
projections. Top row is coloured by class and bottom row is coloured by domain or batch.

Finally, in this section, we present the results obtained in a real-world experiment. This
dataset contains dendritic cells of mice (see Section 5.1.2 for more details) that have been ac-
quired using two different machines. Again, an extreme perturbation is introduced as a batch
effect, which is not a common task to encounter in flow cytometry approaches. As in the previ-
ous experiment, we consider two domains: CONV, which are the equivalent samples acquired in
the conventional cytometer; and SPC, which are the samples acquired in the spectral cytome-
ter. Recall that we have only one population labeled in this dataset, which is the population
of biological interest, and we are using only data from WT animals, so we are sure that differ-
ences between domains are strictly batch effects and not biological changes. In addition, this
population is considered a “rare population” in cytometry; that is, it constitutes a very small
percentage of cells considering the whole dataset, and, therefore, it is difficult to detect. Ac-
tually, we are facing a dataset with few labels, which could be considered in a semi-supervised
learning context.

Figure 5.9 contains the t-SNE, SAE and DAE projections of this dataset. The batch effects
have a strong influence in the t-SNE and SAE embeddings. Continuing with the results obtained
in the tests with synthetic beads, the DAE manages to project the data in a space where the
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Figure 5.10: Heatmaps the values of the two-dimensional KS distance on the embeddings of a
SAE (left) and a DAE (right) in the dendritic dataset. Tuples indicate (class, domain).

differences among domains are not significantly appreciated in the embedding. The improvement
is visually evident: events that were hardly in contact in the t-SNE and SAE projections, now
have a very high degree of overlapping.

This fact can be verified in the heatmaps of the two-dimensional KS distance, which can be
seen in Figure 5.10. Concerning the SAE, we can see that there are already similarities in the
populations. Clearly, this is because the events of the target and other unknown cell populations
fall very close in both domains in the projection, which indicates that the autoencoder is already
bringing closer events that are biologically similar, independently on the batch or experiment.
Although the distributions are still clearly distinguishable. With respect to the DAE projection,
we can see an obvious improvement, as the target population still shares a small distance between
domains; and the events with label 0, which are the vast majority, present almost distance 0
when comparing samples acquired in different machines. Therefore, again, the distribution of
the projected data between domains or batches is much more similar in the case of the DAE,
indicating a clear adaptation to the domain also in data from real cells.

DOMAIN

CLASS Before After
CONV SPC CONV SPC

1 0.002 0.206 0.107 0.247
ALL 0.002 0.206 0.107 0.247

Table 5.4: F1-scores before and after batch normalization obtained via automatic clustering
with Phenograph in the dendritic dataset. Global before: 0.195. Global after: 0.173.

Finally, we can compare the F1-score obtained in the clustering with Phenograph (Table 5.4).
This time, the score is only computed for the labeled class. As the tagged target population is
not very far between domains initially (before correction), we do not start with much room for
improvement in the numerical results. Even though, contrary to what happens with the two-
dimensional KS distance, the F1-score does not result optimal, going in line with the projections
observed in Figure 5.9, we do consider this a positive result; as before correction, there are
failures in the clustering because part of the tagged population from one of the domains falls
into different clusters (Phenograph is able to find events from one domain but not from the
other). However, after correction, although the selected cluster guesses correctly events from
both domains; it is also a larger cluster with events belonging to other populations that are not
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identified. All of this, together with the fact that our reference standard is a rare population and
there is a noticeable unbalance of cells from this class between the two domains, make the global
F1-score similar before and after the correction (slightly lower, in fact). Anyway, the individual
F1-scores for each file/domain are improved after the batch correction with the DAE. In any
case, the proper detection and clustering of this population of migratory dendritic cells, have
been demonstrated to be extremely difficult [2], even when the full spectra for expression levels
are available when acquiring the data with the cytometer (which is not our case, since we are
using classical conventional channels). Nevertheless, the KS distance gives us room for expect
an improvement of the F1-scores in more realistic batch effects, which remain to be tested.

Therefore, despite these clustering results in a complex dataset that has a huge deficit in
population labeling, we can conclude that the batch correction has been satisfactory. Both
the visual results and the statistical distance measurements show a clear attenuation of the
differences between the different domains, which, due to the characteristics of the dataset used,
correspond almost entirely to batch purposes.
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6
Discussion and further work

The problem of batch normalization in biological experiments is important to adequately intro-
duce automated pipelines of analysis that study samples that may have been acquired in different
experimental conditions, which may introduce non-biological variations that can complicate fur-
ther studies. In this work, we have applied state-of-the-art Machine Learning disciplines, such
as domain adaptation and adversarial learning with deep neural networks, to mitigate the batch
effects in flow cytometry (FCM) data. We have carried out diverse experiments with three types
of data: synthetic data with simulated batch effects, synthetic data with extreme batch effects
and real data from dendritic cells with extreme batch effects.

Initially, we proposed a method of domain adaptation since it possesses several features that
would fit theoretically well with the task at hand. First, this work proposes a new method for
domain adaptation in the context of unsupervised learning: the domain-adversarial autoencoder
(DAE). Second, in the particular case of FCM data, we have considered that data acquired in
different conditions (batches) defined different domains in our experiments. In the experimental
approaches undertaken in this work we were able to ascertain that the benefit of applying
domain-adversarial autoencoders is double. On the one hand, we obtain corrected data as
output of the decoder. On the other hand, we obtain a representation in a space of smaller
dimension, almost free of batch effects. For checking these results, we have carried out two
types of experiments: we have evaluated the corrected reconstructed data using Phenograph,
a clustering algorithm, proving that the new method achieves better clustering results; and we
have also compared the embeddings obtained via t-SNE, a standard autoencoder (SAE) and
a DAE, assessing the removal of the batch effects of the last one with respect to the first two
techniques. The embedding comparison has been done both visually and numerically, using a
statistical distance that compares the distribution of data over domains in the latent spaces of
SAE and DAE.

The experimental approaches undertaken for this project allowed us to verify that batch
effects greatly influence the outcome of automated pipelines of analysis of FCM data. For
example, we have seen that when using t-SNE to project the data into a 2-dimensional space,
the data is mainly distributed according to the origin of the experiment, instead of its phenotype.
We have also observed the same effects applying clustering techniques: obtaining almost a perfect
grouping in some of the domains or batches, and null results in others. The results presented in
the memory (Chapter 5) enable us to draw important conclusions:
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• Regarding the visual results, we can see, as expected, a clear visual separation by batches
or domains in the projections calculated by t-SNE and the SAE in all datasets. Impor-
tantly, we gain a great improvement by the projections obtained by DAE, since we can
see a manifest overlap in correspondent populations, being the visual distinction between
domains much more difficult in this second case, but still maintaining the phenotipic dif-
ferences between populations. This has important applications in the flow cytometry field,
since most of the present data representations rely on these projections, and will greatly
benefit from the method developed herein.

• Regarding the evaluation of the embeddings with the multidimensional KS distance, we
have also obtained very promising results. In all the experiments carried out, we have
systematically attained smaller values of distances with the DAE than with the SAE. This
measure is a first approximation to a possible objective measurement of the efficiency of
batch effects’ removal obtained by the method developed within this work.

• The results of the F1-score in the clustering performed by Phenograph also seem very
promising, albeit we obtained better results with the synthetic datasets than with the real
biological samples, as expected. In the dendritic dataset, the results are less optimistic
because we have very few tagged events of the class of interest, and, although a clear
visual overlap exists in the target class in the DAE embedding, which makes it a promising
approach to pursue in future investigations, the global F1-score slightly decreases after the
correction. Remember that these scores are calculated on the original complete datasets
(before) and with the same data at the output of the decoder (after). In addition, the
batch effects target of corrections were extreme cases, which opens up some room for
improvement when more realistic batch effects are tested.

Therefore, the domain-adversarial autoencoder has been validated by our experiments as an
efficient algorithm to palliate batch effects in FCM data. The developed method allows working
with multiple domains or batches (two or more) simultaneously, which is a huge advantage with
respect to other similar approaches in the literature. Visually, we obtain reliable projections in
2-dimensional spaces, which are not as separated by batch or experiment as before, providing
the user with a very powerful tool to visualize and understand their data, which opens up new
opportunities to improve the state of the art in flow cytometry data analysis; as stated below.
This visual correction is objectively supported by the results obtained with the multidimen-
sional KS distance in all our experiments; and also the clustering results with Phenograph are
better after the batch correction performed by the DAE, effectively reducing the influence of the
batch effects in both synthetic datasets. In addition, with the DAE, we obtain both corrected
data and an alternative dimensionality reduction to t-SNE, avoiding many of its problems: the
computational cost, the inability to project new data and the stochastic component.

The research work presented herein has still much room for improvement if further work is
undertaken following the lines stated below:

• For visualization reasons and as a first approximation, this work is focused on calculating
projections or embeddings of the data in 2-dimensional spaces, and we have restricted our-
selves to the channels typically analyzed by flow cytometry users, despite having a broader
spectrum available. However, the dimension of the bottleneck layer can be enlarged, just
as more channels can be introduced into the analysis, possibly improving the quality of
the reconstruction.

• The assessment of the batch correction is still an open problem. In this work we give a
possible measure for its evaluation, but many others statistical distances could be used
instead. As future work we leave the review of the existing literature in this field, as well
as the implementation and testing of other notions of distance.
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• The purpose of this work is to alleviate the batch effects in samples that have been acquired
in different conditions but with the same biological information. That is, the DAE acts as a
batch effect remover for these samples, offering a representation without batch information.
However, it is also interesting to project and reconstruct out-of-sample data, with possibly
different characteristics, using the DAE. For example, we could use data from two different
genotypes: cells from wild type (WT) mice, and cells from some knock-out (KO) mice,
which contain, in principle, similar but potentially different populations that are beyond
our knowledge. In this scenario, we could train the DAE with WT data, and apply the
batch correction to KO data.

• This work is restricted to the analysis of flow cytometry data. However, the applications of
the domain-adversarial autoencoder can be extended to any unsupervised biological prob-
lem in which batch effects complicate the integration of data from different experiments.
Moreover, it can be extended to general machine learning problems that are composed of
data from different but similar distributions in an unsupervised manner. One of the main
objectives is to extend the tests performed in this work to fully validate the usage of the
domain-adversarial autoencoder for domain adaptation in unsupervised learning.
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Glossary of acronyms

• SAE: standard autoencoder.

• DAE: domain-adversarial autoencoder.

• OOS: out-of-sample.

• FCM: flow cytometry.

• KS: Kolmogorov-Smirnov.

• WT: wild-type.

• KO: knock-out.
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