

UNIVERSIDAD AUTÓNOMA DE MADRID

ESCUELA POLITÉCNICA SUPERIOR

TRABAJO FIN DE MÁSTER

IDENTIFYING DEVELOPERS’
HABITS AND EXPECTATIONS IN

COPY AND PASTE PROGRAMMING
PRACTICE

Máster Universitario en Investigación e Innovación en
Inteligencia Computacional y Sistemas Interactivos

Autora: Luqi Guan

Directores: Silvia Teresita Acuña Castillo
 John Wilmar Castro Llanos

Madrid
Julio de 2020

ii

iii

Acknowledgement

First of all, I want to thank tutor Dr. Silvia Teresita Acuña because of her huge help during
this research work. Although I had a little communication barrier due to language
problems, she still patiently communicated with me and guided my research. I really
learned a lot of things from her. I thank her not only for her help in my study, but also for
her concern for my life. She gave me confidence and made me feel warm in a foreign
country. It was also with her encouragement that I was able to successfully complete my
studies. During this research, she arranged for me every task to be completed next. The
whole process was clear and rigorous. This is also a place worth learning.

In addition, I also want to express my gratitude to Dr. John Wilmar Castro because he
always shares his knowledge on this area. It was his serious working attitude, detailed
comments, patient guidance and strong support that my research was successfully
completed. He really did a lot in this research. I admire his rigorous and serious
professionalism, and his patience and care for students.

iv

v

Abstract

Background: Both novice and experienced developers rely more and more in external
sources of code to include into their programs by copy and paste code snippets. This
behavior differs from the traditional software design approach where cohesion was
achieved via a conscious design effort. Due to this fact, it is essential to know how copy
and paste programming practices are actually carried out, so that IDEs (Integrated
Development Environments) and code recommenders can be designed to fit with
developer expectations and habits.

Objective: There are two main purposes of this study. The first one is to identify the role
of copy and paste programming or code clone in current development practices and to
know how developers use copy and paste. The second one is classifying secondary studies,
which are with respect to copy and paste programming and to answer some questions
about the quality of these studies and challenges of copy and paste programming.

Method: There are two Systematic Mapping Studies (SMSs) have been conducted,
searching the main scientific databases. The first one is for the primary studies of the area
of copy and paste programming. The search retrieved 1,271 citations and 39 articles were
retained. The second one is for the secondary studies (systematic reviews) of the area of
copy and paste programming. The search retrieved 65 citations and 5 articles were
retained.

Results: The primary studies were categorized according to eight areas: General
information of usage of clone, developer behavior, technologies and tools of code clone
detection, technologies and tools of code clone reuse, patterns of cloning, clone evolution,
effects of the code clone in the software maintenance and development, and tools of clone
visualization. The secondary studies were categorized according to three areas:
systematic review on clone detection, systematic review on clone evolution, and
systematic review on software cloning.

Conclusions: The areas, techniques and tools of clone detection and developer behavior
are strongly represented in the sample. The areas that have been least studied in the
literature found in the SMSs are tools of clone visualization and patterns of cloning. The
main challenges of copy and paste are the immaturity of existing clone detection
technology or tools and clone management.

Keywords: Copy and Paste, Secondary Study, Tertiary Study

vi

vii

Table of Contents

1. INTRODUCTION ... 1
1.1. Overview .. 1

1.2. Field of Research .. 1

1.3. Research Purpose ... 2

1.4. Research Method .. 2

1.5. Work Structure ... 3

1.6. The Contribution of Work ... 3

2. LITERATURE REVIEW ... 5
2.1. Related Works .. 5

2.2. Research Method of Secondary Study .. 7

2.2.1. Formulate Research Questions ... 7

2.2.2. Define the Search Strategy.. 7
2.2.2.1. Conformation of the control group..8

2.2.2.2. Identification and selection of the keywords ...8

2.2.2.3. Conformation of the search strings ...8

2.2.2.4. Specification of the inclusion and exclusion criteria ...9

2.2.3. Select the Studies .. 10

2.2.4. Extract the Data... 11

2.2.5. Perform Data Synthesis... 11

3. RESULTS OF THE SECONDARY STUDY 13
3.1. General Information of Usage of Clone .. 15

3.2. Developer Behavior .. 17

3.3. Technologies and Tools of Clone Detection .. 19

3.4. Technologies and Tools of Clone Reuse .. 22

3.5. Patterns of Cloning ... 23

3.6. Clone Evolution .. 24

3.7. Effect of the Code Clone in the Software Maintenance and Development . 25

3.8. Tools of Clone Visualization .. 26

4. TERTIARY STUDY ... 27
4.1. Research Method of Tertiary Study ... 27

4.1.1. Objectives and Research Questions .. 27

4.1.2. Search Strategy ... 27
4.1.2.1. Conformation of the control group ..28

4.1.2.2. Conformation of the search strings ..28

viii

4.1.2.3. Specification of the inclusion and exclusion criteria ...28

4.1.3. Quality Assessment ... 28

4.1.4. Select the Studies .. 30

4.2. Results of Tertiary Study ... 30

4.2.1. Systematic Review on Clone Detection .. 31

4.2.2. Systematic Review on Clone Evolution ... 31

4.2.3. Systematic Review on Software Cloning ... 31

4.2.4. Classification According to Quality Criteria .. 32

4.2.5. Challenges Described in Studies ... 32

5. DISCUSSION AND VALIDITY THREATS 35

6. CONCLUSIONS .. 37
6.1. Conclusions .. 37

6.2. Discussion and Future Work .. 38

REFERENCES .. 41

APPENDIX A. LIST OF KEYWORDS .. 47

ix

List of Tables

TABLE 1.1: THE CONTRIBUTION OF WORK .. 4

TABLE 2.1: COMPARISON OF CLONE EVOLUTION RESEARCH METHOD 5

TABLE 2.1: COMPARISON OF CLONE EVOLUTION RESEARCH METHOD
(CONTINUATION) .. 6

TABLE 2.2: ASSESSMENT OF CLONE DETECTION METHODS 6

TABLE 2.3: METHODS OF CODE CLONE DETECTION 7

TABLE 2.4: FRAGMENT OF THE SELECTED KEYWORDS LIST 8

TABLE 2.5: SEARCH STRINGS DEFINED .. 9

TABLE 2.6: SEARCH STRINGS BY DB .. 10

TABLE 2.7: THE NUMBER OF PAPERS OBTAINED FROM EACH DB 10

TABLE 3.1: SUMMARY OF RESEARCH AREAS ... 14

TABLE 3.1: SUMMARY OF RESEARCH AREAS (CONTINUATION) 15

TABLE 4.1: SEARCH STRINGS DEFINED .. 28

TABLE 4.2: QUALITY ASSESSMENT CRITERIA OF TERTIARY STUDY 29

TABLE 4.3: SEARCH STRINGS BY DB .. 30

TABLE 4.4: THE NUMBER OF PAPERS OBTAINED FROM EACH DB 30

TABLE 4.5: SPECIFIC AREAS FOR SECONDARY STUDIES 30

TABLE 4.6: QUALITY ASSESSMENT OF SELECTED STUDIES 32

TABLE 4.7: CHALLENGES OF COPY AND PASTE .. 32

TABLE A.1: LIST OF SELECTED KEYWORDS ... 47

List of Figures

FIGURE 3.1: MAPPING SHOWING THE PRIMARY STUDY DISTRIBUTION
... 13

x

Luqi Guan CHAPTER 1. INTRODUCTION

1

CHAPTER 1

 1INTRODUCTION

The framework of this study is copy and paste programming, which raises two Systematic
Mapping Studies (SMSs) on the primary studies and secondary studies of copy and paste.
In this chapter, we first outline the research topic. Secondly, it involves the field of
research. Then, the research purpose and solution are presented separately. Finally, we
introduce the structure and the contribution of the work.

1.1. Overview

The huge amount of available source code online has changed coding practices [Rouse,
2019]. Both novice and experienced developers rely more and more in external sources
of code to include into their programs by copying and pasting code snippets [Yarmish
and Kopec, 2007] [Pittenger, 2019]. In software engineering, it is basically a term used.
It replicates the code and reuses the code by making several modifications or not in the
existing code, which is a general activity in software engineering [Vashisht et al., 2018].

Copy and paste is usually done by novice or student programmers who think it difficult
or annoying to write code from scratch and prefer to look for pre-written solutions or
parts of solutions, which they could use to solve their own problem [Yarmish and Kopec,
2007]. Copy and paste is also completed by experienced software developers, who usually
have their own libraries that are well tested, easy-to-use code fragments and general
algorithms that can be easily adapted to certain tasks [Pittenger, 2019]. This behavior
differs from the traditional software design approach where cohesion was achieved via a
conscious design effort [Taylor et al., 2009]. It also differs from the code reuse attained
through the usage of re-use repositories built for such specific purpose. We need to know
how this copy and paste programming practices are actually carried out, so that IDEs
(Integrated Development Environments) and code recommenders can be designed to fit
with developer expectations and habits.

The research work aims to identify the role of copy and paste programming or code clone
in current development practices, by identifying through a set of Systematic Mapping
Studies [Petersen et al., 2008] the current knowledge about this topic in the existing
literature, telling apart the works that have actually carried out some empirical study from
those who have not.

1.2. Field of Research

In the domain of software engineering, there is not an appropriate definition of the
terminology “code clone”. Baxter et al. [1998] have put forward a point of view:
“Code clone is a piece of code that is similar regarding some definitions of similarity.”

Luqi Guan CHAPTER 1. INTRODUCTION

2

During the process of copy and paste programming, if bug is identified from partial code,
it needs to be corrected in all copied sections. Therefore, all relevant segments must be
identified in the source code. Several studies have shown that nearly 20-50% of large
software systems is made up of cloning code [Baker, 1995]. For many reasons, code
cloning is regarded as a problem. In the area of software maintenance, the cloned code
may lead to higher maintenance expenses because inconsistent modifications of code may
bring malfunctions and wrong program behavior [Shippey et al., 2012].

Novice software developers copy and paste code usually because they do not know how
to write code themselves. In this way, the problem arises more because of their lack of
experience and lack of programming courage than because of the copy and paste behavior
itself. The code usually comes from different sources, such as the code of a friend or
colleague, an Internet forum, the code offered by the professor/TA, and a computer
science textbook. The outcome may be style conflicts, and there may be redundant code
to solve problems that no longer require a new solution.

Another problem is that postulations and design decisions produced in specific resources
may not be applicable in a new context, so that there would be errors in the process of
copy and paste.

In fact, when people use code cloning, they often keep the names of variables, functions
or classes in the original code segment inadvertently, even though the names represent
something completely different in a new environment. Such code may actually be
unconsciously confused [Yarmish and Kopec, 2007].

Copy and paste programming may also be caused by a lack of understanding of common
functions (such as loop structures, functions, and subroutines) in computer languages
[Müller et al., 2018].

1.3. Research Purpose

Firstly, we need to know how copy and paste programming practices are actually carried
out, so that IDEs and code recommenders can be designed to fit with developer
expectations and habits.

Secondly, we need to study those existing systematic reviews of the area of copy and
paste programming, and get some useful information from them.

Therefore, two research problem have been proposed in this research work. The first one
is conducting a secondary study of those studies of copy and paste to get a summary of
the recent status in this domain. The secondary problem is conducting a tertiary study of
the systematic reviews of copy and paste to supplement our research.

1.4. Research Method

In order to carry out this work, we have retrieved the publications related to the area of
copy and paste. For this, we use a famous review method called Systematic Mapping
Study (SMS). SMS allows review of documents in specific areas of interest [Kitchenham
et al., 2011].

Luqi Guan CHAPTER 1. INTRODUCTION

3

The first SMS is for the secondary study, which aims to reply the next questions:

(RQ1) What is the current status of copy and paste?
(RQ2) How do developers use copy and paste?

The search for studies was carried out in 3 digital databases: Scopus, ACM Digital
Library, and IEEE Xplore. In addition, the retrieve period is set to start in January 2015
and end in October 2019. Obviously, the concept of copy and paste has been proposed
for many years, and there are so many literatures related to this area. However, only the
most recently published studies can represent the current level of the field. Therefore, we
changed the search period to nearly five years and it starts at 2015.

The second SMS is for the tertiary study, which is with the goal of replying the next
questions:

(RQ3) What are the major research areas in the secondary studies?
(RQ4) What are the measurements of the quality of the secondary studies?
(RQ5) What challenges of the practice of copy and paste are outlined in the published
works?

Since there are not many works about the secondary study of this topic, all the published
literatures are considered.

1.5. Work Structure

Our research introduces the different areas of the studies of copy and paste programming
and the analysis of some systematic reviews of copy and paste programming. The
chapters are shown below:

 Chapter 1 introduces the research work, which includes the research topic,
purpose and method.

 The related works of the research, as well as the research method of the secondary
study are presented in detail in the second Chapter.

 The third Chapter shows the analysis and results of secondary study.
 The fourth Chapter outlines the research method and the results of tertiary study.
 Chapter 5 indicates the discussion and validity threats.
 Chapter 6 draws a conclusion of the whole research and propose the possible

future works.
 References.
 Appendix A lists the selected key words obtained from control group articles of

the primary studies.

1.6. The Contribution of Work

Table 1.1 shows the contributions made by this research work. The task of this research
is review of literature. It has been published as a conference paper in SEKE2020.

Luqi Guan CHAPTER 1. INTRODUCTION

4

Table 1.1: The Contribution of work

Task Contribution/Results Type State Where
Review of
Literature

Copy and paste is widely used by
developers in software
engineering. It is necessary to
know how this copy and paste
programming practices are
actually carried out, so that IDEs
and code recommenders can be
designed to fit with developer
expectations and habits.

Conference
paper

P SEKE2020

International Conference

 Luqi Guan, John W. Castro, Xavier Ferré and Silvia T. Acuña. (2020). Copy and
Paste Behavior: A Systematic Mapping Study. In Proceedings of the 32st
International Conference on Software Engineering & Knowledge Engineering
(SEKE’20). KSIR Virtual Conference, Pittsburgh (USA), pp. 463-466. DOI:
10.18293/SEKE2020-130.
Quality Index: Core B.
Relationship with Master’s Dissertation: Chapter 2 and Chapter 3 shows the work.

Luqi Guan CHAPTER 2. LITERATURE REVIEW

5

CHAPTER 2

LITERATURE REVIEW

At the beginning, several literature reviews can provide guidance for our work. We can
find some publications in this field through the literature review, and we can also refer to
these literature review methods to do our research. This chapter presents some literature
reviews of the research topic. Next, a secondary study has been proposed. In secondary
study, we perform a Systematic Mapping Study of copy and paste, which includes the
state of art of copy and paste and how developers use copy and paste.

In section 2.1., we introduce the studies related to our research. In section 2.2., we outline
the research method of secondary study, which is a procedure of systematic mapping
study.

2.1. Related Works

During the search for the primary studies of this research, I found that there are four non-
systematic reviews related to copy and paste (code clone). The description of each of
these literature reviews is presented below.

Wang et al. [2017] proposed various methods used by researchers to research clone
evolution and summarized pros and cons of related studies on clone evolution in their
literature review. Besides, they introduced two related studies: clone refactoring, and
code clone quality assessment (dangerous code clone, code clone stability). Finally, they
identified empirical research based on human clone evolution as a key area for future
research. Table 2.1 shows the comparison of clone evolution research methods.

Table 2.1: Comparison of clone evolution research method
Clone evolution
research method

Advantages Disadvantages

Based on the modified
log

Based on the actual clone
changes to better correlate the
bug trend.

Hard to research the clones
increased by versions.

Based on text and
position

High space and time efficiency;
independent of a certain
programming language; simple
to extend to other languages;
suitable for large scale software
systems.

Comparative low detection
accuracy.

Luqi Guan CHAPTER 2. LITERATURE REVIEW

6

Table 2.1: Comparison of clone evolution research method (Continuation)
Clone evolution
research method

Advantages Disadvantages

Based on the CRD
(Clone Region
Descriptors)

The formation of the mapping is
not influenced by the location
and annotation of the clone
information, and it is easy to
achieve the consistency change
of the clone.

High ratio of false
positives.

Based on the topic
model

Reduce mapping problems
from high-dimensional space to
low-dimensional space by using
source text and structure
information.

High ratio of false
positives.

Based on incremental
and commit the
transaction

Low time complexity, suitable
for processing the version that
the software has provided.

High space complexity.

Solanki and Kumari [2016] researched code cloning and several techniques for detecting
code cloning in their literature review. An inclusive investigation was conducted into the
area of code clone detection, focusing on the type of clone, its techniques of detection,
and experience evaluation. The results of this research can be used as a guidance for
potential users of cloning detection technology to guide them choosing the proper tools
and technologies that suit their works. In addition, it could be helpful to identify novel
combinations of technologies that are existed and other research questions. Table 2.2
presents the evaluation of different methods of clone detection [Solanki and Kumari,
2016].

Table 2.2: Assessment of clone detection methods

Chatley et al. [2016] clarified various techniques for detecting cloning. They also
introduced the reasons for cloning, its advantages and disadvantages, and the process of
detecting cloning. The reasons for cloning are reuse mechanism, to be completed before
the deadline, lack of explanation of requirements, tested code, and coincident problems.
The advantages of cloning are fast process, template-based, encourage reuse and
disadvantages are increased demand for resources, increased possibility of poor design,
maintenance becomes a tedious task, rise in cost and time. The cloning detection process
is pre-processing, transformation, matching detection, formatting, post-
processing/filtering, and aggregation. Table 2.3 shows the methods for detecting code
cloning.

Luqi Guan CHAPTER 2. LITERATURE REVIEW

7

Table 2.3: Methods of code clone detection

Methods Description
Text-based On basis of line-by-line comparison.
Abstract-syntax tree based Convert codes into a tree-based algorithm or

tree-based matching.
Token-based Convert codes into tokens.
Graph-based On basis of program dependency graph.
Metric-based Calculate different code metrics. Metrics

contain data about the strategy name, format,
text, and project control. The parts of the code
that show similar metric quality are regarded
as clones.

Hybrid Combine two or more clone techniques.

Saini et al. [2018] summarized a comparative overview of several clone detection
technologies. These technologies are token-, metric-, graph-, text-, abstract-syntax tree
based, and hybrid. So as to obtain the best results of clone detection, these technologies
could be combined with some optimization algorithms. Compared with Type 3 (near
missed clone) and Type 4 clone (semantic clone), Type 1 (exact clone) and Type 2 clone
(rename/parameterized clone) are easy to identify. Therefore, tools and technologies that
could effectively detect Type 3, 4 clones are needed. Besides, there are not many studies
related to model clones and clone management, which could be considered as future work.

Most of these non-systematic literature reviews studies related to code clone detection
and code clone evolution, they do not refer to developer behavior, techniques and tools
of clone reuse, patterns of cloning, tools of clone visualization and effect of the code clone
in the software maintenance and development. After analyzing papers that refer to those
areas I mentioned before, I can confirm that there is no SMS on these areas of code
cloning. Therefore, also it is necessary to study developer behavior, techniques and tools
of clone reuse, patterns of cloning, tools of clone visualization and influence of the code
clone in the software maintenance and development in code cloning.

2.2. Research Method of Secondary Study

The guidelines of Kitchenham and Charters [Kitchenham and Charters, 2007] given its
representativeness in this type of software engineering studies will be used to perform the
SMS. Specifically, the following activities will be carried out: (i) formulate the research
questions, (ii) define the search strategy, (iii) select the studies, (iv) extract the data, and
(v) perform data synthesis.

2.2.1. Formulate Research Questions

The research questions of our research are proposed below: (RQ1) What is the current
status of copy and paste? and (RQ2) How do developers use copy and paste?

2.2.2. Define the Search Strategy

It is required to define the search string, the search period, and decide the search sources.
Defining the search string is not a simple task and requires several iterations. For the
definition of the chain, we will perform the following steps: (i) conformation of the
control group (CG), (ii) identification and selection of the keywords, (iii) conformation

Luqi Guan CHAPTER 2. LITERATURE REVIEW

8

of the search strings, and (iv) specification of the inclusion and exclusion criteria. Next,
we describe each of these steps.

2.2.2.1. Conformation of the control group

According to Zhang et al. [Zhang et al., 2011], a CG is a group of relevant research that
allow other similar studies to be established under criteria established in the research
questions. From this perspective, the literature CG allows identifying and selecting the
words commonly used in the context of the research topic, which constitute the basis for
shaping the search chain. To form the CG, we conducted a traditional search to identify
papers directly related to our research. After searching, we found a total of 10 papers:
[Ahmed et al., 2015] [Chatterji et al., 2013] [Kapser and Godfrey, 2006] [LaToza et al.,
2006] [Kim et al., 2004] [Stolee et al., 2009] [Vashisht et al., 2018] [Chatterji et al., 2012]
[Zhang et al., 2012] [Balint et al., 2006].

2.2.2.2. Identification and selection of the keywords

In the articles of the CG, the words that appear most frequently must be identified. These
papers make up the CG, from which the keywords that we will use in the construction of
several search strings are obtained. These different search string options will be tested in
Scopus to find the most suitable. The tests will be performed in Scopus because it is the
largest database.

The keywords were obtained from a table with the frequency of all the words that appear
in the articles of the CG. This table was generated with the help of the Atlas.ti software.
The word selection process is made up of two phases. Firstly, three of the researchers in
consensus selected the words considering that: (i) they are directly related to the objective
and the research questions, (ii) have a higher frequency of use, and (iii) are present in at
least 40% of the articles of the CG. In the second phase, each word obtained as a result
of the previous phase, were assigned a weight ranging from 0 to 1, determined by the
frequency of use of the words and their presence in the articles of the CG, where that
word with the highest frequency of use and that was present in all the articles of the CG,
had a weight equal to 1. Words that had a very low weight (less than 0.4) were eliminated
in a second filter. Table 2.4 presents a fragment of the list of the words obtained as a
result of the selection procedure described above (the whole list of words can be found in
Appendix A - Table A.1). For each of the words, the percentage of presence in the
different studies of the CG (Coverage), the frequency of use of the word (Frequency) and
the weight assigned are reported.

Table 2.4: Fragment of the selected keywords list

2.2.2.3. Conformation of the search strings

Once the keywords were identified, several options were built for the search string. For
the construction of these strings the logical AND operator is used to include keywords

Keywords Coverage (%) Frequency Weight
Code 100 1,177 1
Clones 90 677 0.74
Clone 100 441 0.69
Software 100 327 0.64
Study 100 204 0.59

Luqi Guan CHAPTER 2. LITERATURE REVIEW

9

that belong to different components and the OR operator to include synonyms for words
that belong to the same component. We build a total 5 strings. For each of these strings,
Table 2.5 shows the number of articles obtained from the Scopus database and the amount
of papers of the CG that contains said string.

Table 2.5: Search strings defined

As mentioned earlier, the search string tests were performed in the Scopus database. This
database contains 8 of the 10 papers of the CG. Search strings have 3 parts. The first part
is about copy-and-paste, the second part is about the practice of copy-and-paste and its
usage patterns, and the third corresponds to software development. The strings were
constructed from: (i) the list of selected keywords, (ii) the habits and intent words
suggested by one of the experts in the area, and (iii) the combinations “source code reuse”
and “code reuse” also suggested by the expert. Strings 4 and 5 are the ones that have the
expert’s suggestions and use the most keywords. Finally, we select string 4 because it is
the string that uses the most keywords and finds the highest number of papers in the CG.

2.2.2.4. Specification of the inclusion and exclusion criteria

According to the characteristics and particularities of the articles of the CG, it is necessary
to refine the preliminary inclusion and exclusion criteria. The criteria used to retrieve the
primary studies are presented below.

ID Search string
No.

papers
found

No.
papers

CG found

1

(“copy and paste” OR “code snippets reuse” OR “code clone” OR “code
cloning”) AND (study OR analysis OR patterns OR techniques OR studies
OR design OR approach OR behavior OR context OR method OR tools)
AND (systems OR engineering OR software OR development OR
developer OR system OR programming OR program)

956 8

2

(“copy and paste” OR “code snippets reuse” OR “code clone” OR “code
cloning”) AND (study OR analysis OR patterns OR techniques OR studies
OR design OR approach OR behavior OR context OR method OR habits
OR intent OR tools) AND (systems OR engineering OR software OR
development OR developer OR system OR programming OR engineering
OR program)

956 8

3

(“copy and paste” OR “code snippets reuse” OR “code clone” OR “code
cloning”) AND (patterns OR techniques OR design OR approach OR
behavior OR method OR habits OR intent OR tools) AND (“software
system” OR development OR developer OR system OR programming)

729 8

4

(“copy and paste” OR “source code reuse” OR “code reuse” OR “code
snippets reuse” OR “code clone” OR “code cloning”) AND (patterns OR
techniques OR design OR approach OR behavior OR method OR habits
OR intent OR tools) AND (“software system” OR development OR
developer OR system OR programming)

1,691 8

5

(“copy and paste code” OR “source code reuse” OR “code reuse” OR
“code snippets reuse” OR “code clone” OR “code cloning” OR “software
clones”) AND (analysis OR design OR approach OR behavior OR habits
OR intent OR research OR patterns OR “usage patterns” OR method OR
techniques OR tools) AND (“software system” OR development OR
developer OR system OR programming)

1,738 6

Luqi Guan CHAPTER 2. LITERATURE REVIEW

10

Inclusion criteria:

 The paper is related to copy and paste behavior; OR
 The paper discusses aspects related to copy and paste patterns; OR
 The paper is related to code clones; OR
 The paper is related to code clone detection tools; OR
 The paper is about finding duplicated code.

Exclusion criteria:

 The paper is about traditional code reuse; OR
 The paper discusses about creating repository for future reuse; OR
 The paper is about programing for reuse; OR
 The paper is about managing duplicated code; OR
 The paper is a review; OR
 The paper is not written in English.

2.2.3. Select the Studies

The search for studies will be carried out in the 3 digital databases: Scopus, ACM Digital
Library, and IEEE Xplore. Table 2.6 shows the different DBs and their search fields. The
search fields were determined by the options offered by each database, due to the different
query syntaxes [Ren et al., 2019].

Table 2.6: Search strings by DB

Once the list of retrieved articles is obtained, it is necessary to eliminate duplicates
between the databases and as a result of this first debug, the candidate studies are obtained.
Then, a first filter must be made applying the assessment criteria according to the title,
abstract and keywords of per candidate study. Articles obtained from the first filter will
be evaluated again in a second filter. In this second filter, each researcher applies the
assessment criteria to the full content of per study. As a result, the group of primary
studies is obtained. Table 2.7 presents a summary for each digital database of the number
of articles obtained in each of the groups (retrieved articles, candidate studies, primary
studies). The search was conducted in November 2019.

Table 2.7: The number of papers obtained from each DB

DBs Search fields
Scopus “Title OR Abstract OR Keywords”
ACM Digital Library “Abstract”
IEEE Xplore “Abstract”

Digital Database
Retrieved

articles
Candidate

studies
Primary studies

Scopus 626 138 28
ACM Digital Library 116 7 9
IEEE Xplore 529 18 2
TOTAL 1,271 163 39

Luqi Guan CHAPTER 2. LITERATURE REVIEW

11

2.2.4. Extract the Data

Once the primary studies are obtained, the relevant information is extracted to answer the
research questions. When possible, it is needed that more than one researcher extracts the
data separately. It is necessary to compare the data that come from different researchers,
so that the consensus among researchers could be helpful to eliminate disagreements. Or
it may also be a good method to find another researcher to offer a suggestion.

2.2.5. Perform Data Synthesis

The information extracted in primary studies should be consistent with the research
questions. The answer should highlight the similarities and differences between the
research results to facilitate further analysis.

Luqi Guan CHAPTER 3. RESULTS OF THE SECONDARY STUDY

13

CHAPTER 3

3.RESULTS OF THE SECONDARY
STUDY

Figure 3.1 presents a summary of the 39 identified primary studies. The results have been
segmented into two areas in Figure 3.1. On the left-hand side, there are two scatter (XY)
plots with bubbles at the junctions of the year-type of publication categories (top) and
topic-type of publication categories (bottom). The types of publication are conferences,
workshops, articles, book chapter and symposia. The size of per bubble depends on the
number of primary studies that are categorized by survey area. After analyzing the
primary studies and papers belonging to the control group, we identified eight different
research areas (see Figure 3.1): (i) general information of usage of clone, (ii) developer
behavior, (iii), technologies and tools of clone detection, (iv) technologies and tools of
clone reuse, (v) patterns of cloning (vi) clone evolution, (vii) effect of the code clone in
the software maintenance and development, and (viii) tools of clone visualization. The
graph on the right-hand side of Figure 3.1 presents the number of primary studies per year
of publication, revealing that interest has been increasing since 2016.

Figure 3.1: Mapping showing the primary study distribution

Luqi Guan CHAPTER 3. RESULTS OF THE SECONDARY STUDY

14

Table 3.1 describes each research area and lists the respective references. Note that Table
3.1 includes the primary studies and the control group papers. Next, we describe each of
the research areas in detail.

Table 3.1: Summary of research areas

Research Area Description References
General Information of
Usage of Clone

This area deals with clone
usage patterns, as well as
clone types.

[Chatterji et al., 2012]
[Chatterji el al., 2016]
[Islam et al., 2016] [Khan
et al., 2018] [Kim et al.,
2004] [LaToza et al.,
2006] [Stolee et al., 2009]
[Vashisht et al., 2018]
[Zhang et al., 2012]

Developer Behavior This area focuses on how
developers address the use of
clones (how they search for
and embed clones in their
code, etc.).

[Ahmed et al., 2015]
[Balint et al., 2006] [Bharti
and Singh, 2017]
[Chatterji et al., 2012]
[Chatterji et al., 2013]
[Chatterji el al., 2016]
[Ciborowska et al., 2018]
[LaToza et al., 2006]
[Müller et al., 2018] [Ohta
et al., 2015] [Stolee et al.,
2009] [Van Bladel et al.,
2017] [Xu et al., 2019]

Technologies and Tools
of Clone Detection

This area studies the
techniques and tools for clone
detection.

[Aktas and Kapdan, 2016]
[Balint et al., 2006]
[Gharehyazie et al., 2019]
[Henderson and
Podgurski, 2017] [Joshi et
al., 2015] [Kamiya, 2015]
[Kim et al., 2018] [Mondal
et al., 2015] [Mubarak-Ali
et al., 2014] [Priyambadha
and Rochimah, 2018]
[Reddivari and Khan,
2018] [Saini et al., 2016]
[Sudhamani and
Rangarajan, 2019]
[Svajlenko and Roy, 2017]
[Vashisht et al., 2018]
[Wijesiriwardana and
Wimalaratne, 2017]

Luqi Guan CHAPTER 3. RESULTS OF THE SECONDARY STUDY

15

Table 3.1: Summary of research areas (Continuation)

Research area Description References
Technologies and Tools
of Clone Reuse

This area studies technologies
and tools for clone reuse.

[Abid et al., 2017] [Lin et
al., 2015] [Narasimhan et
al., 2018] [Ohtani et al.,
2015] [Zhang and Kim,
2018]

Patterns of Cloning This area describes several
patterns of cloning, such as
forking, templating, and
customization.

[Kanwal et al., 2017]
[Kapser and Godfrey,
2006]

Clone Evolution In this area, the cloning
community focuses on how
the cloning code has evolved
over time.

[Chatterji et al., 2012]
[Chatterji et al., 2016]
[Mondal et al., 2018]
[Kanwal et al., 2018]
[Nguyen et al., 2018]
[Zhang et al., 2017]

Effect of the Code
Clone in the Software
Maintenance and
Development

This area studies the effect of
the code clone. It deals with
possible maintenance
problems caused by cloned
codes, as well as the clone
display tools and clone
patterns and refactoring
recommendations to solve
such problems.

[Kim et al., 2004] [Lerina
and Nardi, 2019] [Mondal
et al., 2017] [Wagner et
al., 2016]

Tools of Clone
Visualization

This area studies the tools of
code visualization. These
code clone visualization tools
are used for checking code
and analyzing code clones.

[Mondal et al., 2019]
[Murakami et al., 2015]

3.1. General Information of Usage of Clone

This area deals with clone usage patterns, as well as clone types. There is a general
classification of clone types:

 Type 1: The code snippets are the same, except for layout, comment changes and
blanks.

 Type 2: The structure and syntax of code snippets, except for text, types, layout,
identifiers and comment changes, are identical.

 Type 3: The code snippet is a copy with further modifications. Apart from changes in
text, types, layout, comments, and identifiers, statements can also be added, deleted
or changed.

 Type 4: More than one code snippet conducts the similar computation, albeit using
different syntax variants.

This area also describes developer cloning practices from a technical, personal, and
organizational perspective. The technical perspective refers to the need for more
systematic approaches and better-automated tool cloning support. The personal

Luqi Guan CHAPTER 3. RESULTS OF THE SECONDARY STUDY

16

perspective refers to the skills and experience of developers. The organizational
perspective refers to organization and project management enhancement.

Chatterji et al. [2012] explored the extent of agreement on a common classification of
clone types and the influence of the cloning proportion on code quality. The results show
that there is general agreement on the definition of Type-1 clones, while there is a strong
disagreement, in other cases, on the influence of the cloning proportion on the system.

Kim et al. [2004] built a classification of clone usage patterns (e.g., copy and paste the
name of a method, a class or a method, where copy was to save what you type, or copy
and paste a block or a method, where replication usually creates a clone of the structure
and reflects the design decisions in the program). This classification was based on the
analysis of why and how programmers use copy-and-paste operations.

LaToza et al. [2006] surveyed code duplication and reported six distinct types of code
duplication: (i) repeated work clones, (ii) example clones, (iii) scattered clones, (iv) fork
clones, (v) branch clones, and (vi) language clones. Each clone type can be described in
terms of the method used for its creation, the reconstruction challenges for deleting the
clones, whether the developers know they are creating clones and the size of the clones.

Stolee et al. [2009] identified several usage patterns, which they classed as elementary
patterns —between, within—, and complex patterns —repeat, distribution, composition,
isolation, relay—. These usage patterns describe how to transfer data in a desktop
environment by recording clipboard interactions when end-users perform daily tasks.

Vashisht et al. [2018] included different types of code clones. Type-1, 2, 3 code cloning
mechanisms are suitable for text content. Type-4 clone and several parts of Type-3 clone
are suitable for functional formats.

Zhang et al. [2012] conducted industrial research on the practice of cloning in large-scale
industrial developments from the perspective of technology, individuals, and
organizations. Indeed, they found that cloning is not just a technical problem, it has to be
addressed from the viewpoint of individuals, organizations, and history. In addition, the
study also identified some adjustable factors and break points for further developing
current cloning in industrial development practice. From a technological perspective, the
adjustable factor is related to a more systematic approach and better automatic cloning
tool support. From a human resources perspective, the adjustable factors are related to
developer skills and experience. From an organizational perspective, adjustable factors
are related to improvements in organizational and project management. They identify two
break points in the code cloning life cycle for clone deletion. The first break point is when
the tentative clone becomes the baseline clone. The second break point is when the third
copy of the cloned code appears. Once these two critical points have been cleared, the
clone will almost never be deleted from the system.

Khan et al. [2018] studied 11 different decent-sized web development projects (over 22K
LOC on average) based on the same set of requirements, which were coded in Java, PHP,
Ruby-on-Rails and C#. They analyzed simple clones and structural clones for evaluating
different techniques under the number, coverage and size of clones, the reasons for
creating clones, and the proportion of reconfigurable and non-reconfigurable clones.
Their analysis shows that the frameworks with the most and least clones are C# and RoR,
respectively. C# and RoR have the highest and lowest percentage of reconfigurable clones,
respectively. PHP and RoR have the highest and lowest clone coverage, respectively.

Luqi Guan CHAPTER 3. RESULTS OF THE SECONDARY STUDY

17

There is no significant difference between projects within the same technology by clone
size. The percentage of clones is determined by the size of the project, developer methods,
and project architecture. The use of design patterns and frameworks helps to control clone
generation.

Chatterji el al. [2016] addressed five questions. The first question explored whether the
software system clone rate is a possible measure of system quality. Respondents were
rather divided (45% said No and 55% said Yes). Questions 2-5 examined the extent to
which respondents agreed on the clone type definitions. Although most respondents
agreed on the cloning type definition, disagreement increases as we move up the
classification (from Type 1 to Type 4). Opinions diverged most on if the proportion of
cloned code is a measurement of system quality or not.

Islam et al. [2016] conducted empirical research on the error duplication according to
Type 1 to 3 clones. Their survey of six different systems shows that a considerable part
(10%) of clones may have error replication. Type 2 and 3 clones have more replicated
errors than Type 1 clones. Therefore, Type 2 and 3 clones ought to be considered more
in clone management. In the buggy clone class, there is usually a great deal of error
duplication. Besides, they found that nearly half of code clone bugs were replicated errors.
Their research shows that replication errors caused by cloning are common. Cloned
fragments with if-conditions and method-calls ought to be refactored because such cloned
segments may contain replication errors.

3.2. Developer Behavior

This area focuses on how developers address the use of clones (how they search for clones,
how they embed clones in their code, etc.). Therefore, research looks at how developers
use clones in both software systems development and maintenance. Responses to a survey
by Chatterji et al. [2012] indicate that clone evolution information should be used to assist
in long-term system quality maintenance tasks that have a broad effect, but is not
necessary for short-term or relatively minor maintenance. Chatterji et al. [2013] believe
that they can determine cloning intent from interviews with developers in order to develop
a different clone classification, which could spawn further research on cloning
management tools.

Ahmed et al. [2015] conducted empirical research on the copy-and-paste behavior of IDE
users. They observed some distinctions between the copy-and-paste behavior of regular
and IDE users. Their conclusions indicate that the Eclipse IDE needs a copy-and-paste
support tool tailored for IDE users due to different usage methods. Elementary pattern
(between, within, within and between, external paste) analysis shows that there is a clear
difference between the behavior of regular and IDE users. They found that IDE users
prefer to carry out copy-and-paste operations in the same file more frequently than copy-
and-paste operations across different files. IDE users often perform copy and paste
between different editor types. The analysis of complex patterns (repeat, distribution,
relay, unknown) shows up the main differences between the copy-and-paste behavior of
regular and IDE users: ordinary users use more distribution patterns, while IDE users use
more relay patterns. In addition, clone detection technology should consider clone
positioning between different file types rather than within the same file type.

Balint et al. [2006] associated code cloning with the programmer who made the change
and with the modification time to detect how developers copied patterns from each other.
They presented the Clone Evolution View tool to gain insight into the way that developers

Luqi Guan CHAPTER 3. RESULTS OF THE SECONDARY STUDY

18

copy. They then conducted a clone analysis on three major case studies (Ptolemy2,
ArgoUML, and Ant) to identify several clone patterns: consistent/inconsistent, line/block,
with one/several authors.

LaToza et al. [2006] conducted a survey that showed the percentage of developers who
made repeated changes, or refactored or eliminated duplicates in multiple locations within
a week. Finally, the developers evaluated the trouble caused by each clone with respect
to code base maintenance.

Stolee et al. [2009] identified several usage patterns (between and within, classed as
elementary patterns; repeat, distribution, composition, isolation, relay, classed as
complex patterns) that describe how to transfer data in a desktop environment by
recording clipboard interactions when end-users perform daily tasks. Such patterns help
to understand the behavior of end-users and points out areas where clipboard support
tools could be improved.

Müller et al. [2018] conducted two studies with novice programmers to understand the
general aspects of code reuse. They wanted to find out whether novice programmers
understand their source code and whether they borrow from it. They summarize the
searching approaches applied by novice programmers: based on its domain, based on its
operation, from the teacher. They report that novice programmers often need some
examples to understand the programming language, comprehend the problem, help them
out of sticky situation and optimize the application. They also report how novice
programmers use examples: as a reference and for code cloning (as design scavenging if
it is simple, as code scavenging if it is complex). They also solved the communication
problem. Additionally, they also found that source code reuse may affect programmer
understanding of their source code and meta-communication.

Bharti and Singh [2017] highlighted four major problems: source of the copied code
snippets, the reason for copy and paste, the type of clone, and cloning ratio. They
examined the possible sources of the copied code snippets (the same program as is being
coded, other modules of the same system, other software systems within the organization,
internet, other sources), reporting that 68.8% of developers usually prefer the option of
copying snippets from the same program, whereas the second option of 80.0% of
developers is to copy from other modules. Most developers cited three main reasons for
copy and paste: missing knowledge, module integration, and system requirements. They
examined several types of code clones, reporting that 40.0% of developers extremely
agreed with the use of the code snippet logic, however, 80.0% agreed with the use of code
fragments with some modifications. They examined several copy-and-paste ranges (one
line, multiple lines, function, module), reporting that the first option of 41.2% of
developers was to copy only one line of the source code, whereas the second option of
55.6% was to copy more than one line, and the fourth option of 64.7% was to copy the
entire module.

Chatterji et al. [2016] asked interviewees eight questions about the behavior/expectations
of specific developers, as well as one question about the maintenance of code clones. The
results indicate that clone evolution information should be used to assist maintenance
tasks that affect long-term system quality. In contrast, short-term or relatively minor
maintenance tasks do not need evolutionary information. Interviewees pointed out that
the plan can be evolved independently if the cloned fragments have different contexts.
They detailed a lot of potential research on the link between developer behavior and
cloning. Many interviewees believe that further research is needed regarding the basic

Luqi Guan CHAPTER 3. RESULTS OF THE SECONDARY STUDY

19

understanding of developer behavior using cloning awareness tools. Responses indicate
that clone-aware tools and cloning information are most useful for finding and fixing
defects and refactoring duplicates.

Ciborowska et al. [2018] studied the behavior of developers using the huge representative
micro-interaction data set in IDE. Their analysis of developer behavior from the data set
confirmed laboratory research observations that a large number of edits (in some cases
quick undo) were made after reusing code from the web, and few tests were performed.

Ohta et al. [2015] introduced analysis and extraction methods for developer copy-and-
paste behavior. They applied the code clone detection tool to extract actual source code
(actual copy and paste), as well as code snippets (potential reuse) for reuse. They put
forward copy-and-paste evaluation criteria. Their standards indicate that, based on a
comparison of actual and potential copy-and-paste, actual copy-and-paste can be divided
into three classes (“poor”, “better” and “best”). They confirmed that 80% of the actual
copy and paste in the case study still could be improved (i.e., is classed as “poor” or
“better” copy and paste). Their research on actual and potential copy and paste offers a
quantitative evaluation.

Xu et al. [2019] explored developer behavior with respect to library reuse and code re-
implementation. They identified instances of these behaviors from multiple sources
which they then surveyed. They supplemented this research by conducting a manual
qualitative analysis on the submission log. The results of the experiment suggest that
developers replaced the methods that they had implemented with external library methods
mainly because they did not initially understand or lack the introduction of the library.
However, developers tend to reuse well-maintained and tested libraries that meet their
requirements. On the other hand, developers tend to re-implement the code themselves if
the dependencies of library are complex, the library methods used constitute just a little
of the total library, or the library methods are deprecated. Xu et al. also list a few points
that could enhance the current code suggestion system: detect external code that is
partially similar to user code (avoid repetition or re-implementation), tailor
recommendations based on user preferences, categorize similar suggestions to help
developers to select the suggestions they like, and do not recommend inferior libraries.

Van Bladel et al. [2017] did empirical research to study the number of clones changed
during the evolution of the software and clone introduction trends. Generally, the
analyzed projects tended to have a rather low cloning density. Besides, they found that
developers used clones twice as often as deleting clones. Half of developers introduced
few clones every ten times they submitted code. However, a quarter of developers never
submitted clones, whereas the remaining 25% of developers preferred cloning.

3.3. Technologies and Tools of Clone Detection

This area studies the technologies and tools for code clone detection (CCD) and the use
of clone-aware tools. Balint et al. [2006] described how to automatically detect duplicate
fragments in multiple locations, and then described how to add developer information to
the analysis. On the word of Vashisht et al. [2018], there are currently a variety of code
clone detection technologies, including text-, tree-, token- and metric-based and PDG
(program dependent graph) CCD technologies. The most popular CCD tools are Baker's
Dup and CloneDR.

Luqi Guan CHAPTER 3. RESULTS OF THE SECONDARY STUDY

20

Gharehyazie et al. [2019] conducted empirical research on code clone in GitHub. They
used a clone detection tool (Deckard) to identify clones of code snippets in the project.
They applied network science and statistical methods and various case studies to study
code fragment popularity and characteristics. By triangulating the discoveries from
various research strategies, they observed that cross-project cloning is normal in GitHub.
Besides, they found that ecosystem cloning is based on a concentric, where the first layer
contains clones sourced from the same project, the next layer includes clones from
projects in the same application space, and the last layer is composed of clones from
projects in different areas. Based on these outcomes, they built a clone detection and
tracking tool called CLONE-HUNTRESS operating on GitHub. It is built into GitHub,
has an easy-to-understand interface that runs effectively on modern database frameworks.

Henderson and Podgurski [2017] proposed another algorithm for testing potential code
clones on program dependence graphs employing unweighted random walks on a
frequently connected subgraph lattice. As program graphs are hard to mine, the algorithm
uses a greedy strategy to prune the subgraph matching search and reduce computational
costs. As a result, the procedure can mine huge projects and detect clones fast enough for
code inspection running on desktops or continuous integration systems (with at least
500,000 LOC). The proposed algorithm does not use heuristic techniques, nor does it
place constraints on the size of the identified frequent subgraphs. Density-based
clustering was also performed on the returned clones, and the analysis shows that this
method returned significant clusters. They conclude that it is time to reconsider PDG-
based clone detection as part of the overall clone management strategy and develop a
clone management system that integrates multiple detection methods.

Sudhamani and Rangarajan [2019] presented metric-based methodologies to recognize
code clone. They report two metric-based methodologies that identify code clone by
looking at control statement (CS) and program features (PF). Method effectiveness was
tested on two datasets. They found that these techniques can detect clones that perform
similar functions. While the models explore the similarity between projects, they are
capable of pinpointing similar text segments across program files.

Aktas and Kapdan [2016] put forward an approach to the structural CCD issue. They
reported a new programming design which united various programming quality analysis
tools estimating programming measurements for structural CCD. They experimented
their approach and compared with the result that obtained by manual identification. The
outcomes of two methods were similar. The result of the examination also demonstrates
that a uniform structural CCD framework could be based on various programming quality
instruments, where each took measures various object-oriented software metrics.

Reddivari and Khan [2018] presented a novel CCD approach which is based on topic
modeling. They assumed that clone was contained by artifacts who have similar topic
distributions. Then they experimented their method and got the results that the method
had a good performance dealing with different clone types and was accurate enough for
use in practical applications.

Priyambadha and Rochimah [2018] provided a framework for semantic clone detection.
The framework is designed for CCD according to the code behavior, which is detected
by observing input, output, and method effects. Approaches with the same input, output,
and effect values will be semantically identical. However, input-, output- and effect-based
detection methods are not applicable in void or parameterless methods. On the other hand,
comprehensive detection is essential. Therefore, challenge is how to detect which variable

Luqi Guan CHAPTER 3. RESULTS OF THE SECONDARY STUDY

21

in a method serves as input, output, and effect. In this case, program dependence graphs
are used to detect variable input, output, and effects in void methods. They compare the
experimental outcomes of the system with the test outcomes of experts to output the
Kappa coefficient of the method proposed in this study. The result of calculating the
Kappa coefficient is 0.2128, where the consistency between the system and the experts
can be regarded as fair. They also compare the system results with previous methods
using the average value of the Kappa coefficient for the previous method and 0.2128. The
difference between the two methods is 0.08237. They conclude that the proposed method
is more acceptable for experts.

Kamiya [2015] presented a method of CCD based on the execution semantics and
arbitrary granularity model of code snippets. Control statements could be defined by
developers themselves, i.e., lazy evaluation and lambda. The proposed approach detects
instances of Type 3 clones where code snippets transcend procedure and module
boundaries. The model could be used as a clone metric (for clone classification) on the
basis of the content and context of code snippets in cloned classes. It also can be extended
to a uniform approach for clone detection and code query. Preliminary experiments have
shown that detection method performance is not yet reliable, as it is highly sensitive to
inputs and parameters.

Mondal et al. [2015] proposed a tool named SPCP-Miner that can identify SPCP clones
by detecting the history of code evolution in the software system. They conducted an
empirical study and confirmed that this tool is valuable in recommending clones that are
useful for refactoring and tracking. They believed that the tool could support the clone
management.

Saini et al. [2016] presented SourcererCC, which is a token-based CCD tool for Type 1
to 3 clones and uses indexes to realize scalability for large inter-project repositories on
standard workstations. SourcererCC utilizes an enhanced reverse index to rapidly search
for potential clones. The tool can actively find, and non-intrusively report, method-level
clones (between and within projects). They found from their experiments that the tool
could effectively detect Type 1 to 3 clones.

Svajlenko and Roy [2017] introduced CloneWorks, a tool for large-scale CCD projects.
CloneWorks users can fully customize the source code representation for clone detection,
target specific clone types, or conduct custom clone detection experiments. CloneWorks
uses improved Jaccard metrics to perform clone detection, and its partitioned partial index
method effectively implements subblock filtering heuristics. It can expand Type-3 clones
(where similar code snippets differ at statement level or statements are added, modified,
and/or deleted) to 250MLOC input in just four hours, with good recall and accuracy.

Wijesiriwardana and Wimalaratne [2017] showed an experimental testing platform that
included a group of clone detection components (CDC). CDC is a specific representation
of tasks related to cloning detection projects, i.e., extracting the data, preprocessing, and
clone detection. These CDCs can be utilized alone to represent easy tasks, or they can be
combined to represent complicate tasks. The practicality of the testbed was evaluated on
major clone detection experiments conducted on three open-source projects (Apache
Wink, Apache Tomcat, and Apache Commons Lang).

Kim et al. [2018] proposed FaCoY, a novel static method that detects code segments that
are semantically similar to the users’ input code. This method is based on query
substitution: the method searches Q&A systems for code segments with similar

Luqi Guan CHAPTER 3. RESULTS OF THE SECONDARY STUDY

22

descriptions but potentially different implementation using a structured code query on
basis of a summary of the structure code elements. Afterwards, alternate code queries are
generated by utilizing resulting implementations. They conducted several experiments
showing that: (i) Compared with online search engines, FaCoY is more effective; (ii)
FaCoY is capable of detecting more Type-4 clone than existing technologies; (iii) static
FaCoY is able to detect code fragments with similar execution behavior; and (iv) FaCoY
is valuable for code or patch suggestions.

Joshi et al. [2015] used data mining techniques to study Type-1 and Type-2 functional
clones. First, they collected indicators of all functions in the software system to create
data sets. Second, they conducted the DBSCAN clustering algorithm to the data set to
analyze each cluster and detect Type 1 and 2 functional clones. They observed that the
proposed approach can retrieve a higher proportion of functional clones in the software
system. The method was evaluated on the Bitmessage open-source software developed
using Python. The case study outcomes show that the best results can be achieved with
=1 because this value is small enough to maintain high accuracy and large enough to
detect a sufficient number of clones. The functional clone detection method that they
proposed effectively determined a satisfactory number of clones with higher accuracy
values.

Mubarak-Ali et al. [2014] conducted an empirical evaluation of certain CCD tools and
systematically organized a large amount of information in this respect. They selected the
Java Code Clone Detector (JCCD) as the tool to be tested because it was the latest code
clone detection technology and offered a systematic clone detection process. After the
experiments conducted in three open-source applications, they conclude that the
enhanced generic pipeline model is better than the normal one regarding the clone output
and runtime performance.

3.4. Technologies and Tools of Clone Reuse

This area studies clone reuse technologies and tools, for example, where and how to
modify the code pasting method, and the code segment merging method by creating
correct abstractions, which is the best tool for implementing the developer’s code
generation method, etc. Lin et al. [2015] reported an interactive method based on cloning
to suggest the way to change the pasted code. This method was used to build the proof-
of-concept tool CCDemon whose effectiveness was evaluated. The outcomes indicate
that this method is able to detect the majority of the positions to be modified in the pasted
code and recommend numerous of corresponding modifications. Studies have confirmed
that CCDemon supports more effective modification of the pasted code.

Narasimhan et al. [2018] put forward a method to automatically merge similar code
segments by building appropriate abstractions. This method provides a variety of
abstraction mechanisms that are selected based on research on general open-source
repositories. In order to prove the practicality of this method, they proposed a prototype
merge tool for C++ and assessed many code clones with slight variations in general open-
source software packages. They indicated that maintainers considered that the abstraction
created by the algorithm is much more helpful than the existing repeated code.

Abid et al. [2017] developed CodeEase. This prototype tool is an Eclipse plug-in and
recommends methods according to the developers’ code. Suggestions are on basis of
CCD and the analysis of the method clone structure. According to the outcomes of user
research, they found that the recommendation based on Type-2 cloning improved the

Luqi Guan CHAPTER 3. RESULTS OF THE SECONDARY STUDY

23

code generation method and recommended a friend method based on MCS (Method
Clone Structure). From qualitative data, it appears that users welcome recommendations
for friend methods without having to write a definite query. The experimental data
analysis found that the CodeEase tool reduced development time (70% users), as
CodeEase developers successfully executed error-free code, whereas other developers
gave up before they had managed to complete their programming tasks.

Zhang and Kim [2018] describe Grafter, a behavior comparison and test porting method
for cloning. To reuse clones, Grafter transplants a clone into its copy by enacting a three-
part process. First, it identifies changes in identifiers, types, and methods. Second, it
resolves errors caused by changes through code conversion. Third, it inserts a stub code
for inspection. Grafter provides difference test to check the differences of behavior
between code clones. The report indicated that Grafter is able to well reuse tests and detect
differences in behavior.

Ohtani et al. [2015] ran an experiment comparing three keyword-based code query
technologies. The first technology recommended the method-level code. The second
technology recommended code that had been reused in the past. The third technology
suggested code based on past reuse, which was adapted to the recommended code range
considering code blocks. They compared these techniques in respect of three points: i)
accuracy of the reusable code suggested by the technology, ii) extent to which code reuse
helps, iii) the time required to implement the code using these techniques. The third
technique scored highest on points i) and ii), but ranked second with respect to
implementation time. Experimental results show that method-level code
recommendations can provide more accurate reusable code than reuse-level
recommendations. However, reuse-level code recommendations are better than method-
level recommendations for reusing larger codes.

3.5. Patterns of Cloning

This area describes several cloning patterns, such as forking, templating, and
customization, and evaluates the benefits and disadvantages of using cloning, as well as
code clone management methods. Kapser and Godfrey [2006] described several cloning
modes (forking, templating, and customization) and found that code cloning can often be
used beneficially. They described the forking, templating and customization cloning
patterns and their purposes: i) forking patterns for larger portions of code with
independent evolution of duplicates, with variations at hardware, platform and
experimental variations; ii) templating for knowledge target behavior, with boiler-plating,
API/language protocols, and general or algorithmic idioms, and iii) customization where
there is existing code for similar problems with bug workarounds, and replicate and
specialize methods. They discussed the benefits and disadvantages of using cloning and
proposed ways to manage these code clones. For example, the API/library protocol
pattern has the advantage that users can learn from other codes and reduce workload by
copying the code. Its disadvantage is that developers may copy wrong or fragile code,
thereby reducing the quality of the code. The model management is to strictly review
duplicate items to guarantee the quality of cloned code. These findings support the idea
that cloning could be a considerable design decision, and the long-term maintenance of
replication should be kept in mind when developing tools.

Kanwal et al. [2017] examined the evolution of code cloning by studying the refactoring
patterns applied to code cloning. The results show that a small number of code clones
were rebuilt during the release. In most versions (five Java systems, namely JHotDraw,

Luqi Guan CHAPTER 3. RESULTS OF THE SECONDARY STUDY

24

Guava, Jabref, JFreeChart, and Xerces_J), more than 40% of clones were consistently
reconstructed. The consistent refactoring of clones means that developers are in many
cases aware of clones in the system and deliberately apply this copy-and-paste method.

3.6. Clone Evolution

This area describes the evolution of cloned code by time. As the code changes, they show
different patterns and characteristics. For example, a study of clone evolution could
indicate which clones have a long lifespan and which clones are easy to change [Pate et
al., 2013]. A survey by Chatterji et al. [2012] showed that most interviewees indicated
that evolutionary information on cloning may be useful for certain tasks like checking
what happened to clones or clone groups over a period of time, finding inconsistent clones,
seeing how the code evolved, and so on.

Chatterji et al. [2016] discussed three open-ended questions about the evolution of clones:
i) usefulness of clone evolution; ii) impact of system longevity on the clone evolution
model; and iii) behavior of developers in propagating clone changes. In response, most
interviewees indicated that cloning evolutionary information may be valuable for
program understanding, although they did not point out tasks of development and
maintenance that may need knowledge acquired by developers’ applications.
Interviewees considered that the age of the system will affect the clone model due to
increased code re-use and increased inconsistency. Finally, survey respondents believe
that developers can continue to propagate clones as long as they know the clones.

Mondal et al. [2018] conducted empirical research on the error tendency of different types
of code cloning. Besides, they investigated whether cloning error tendencies are mainly
related to late spread of code cloning. Based on the statistical test, the number of late
spread clones undergoing error repair is much less than the number of non-post spread
clones undergoing error repair. Their experimental results show that when considering
the clone management, the highest priority should be given to Type-3 clones. They found
that consistent changes in error-prone clones and the tendency to follow SPCP can be
used to classify clones which are used for refactoring and tracking. Their work indicates
that the late spread of code cloning has nothing to do with the error-proneness of code
cloning. These findings present the relationship between late propagation and cloning
error.

Kanwal et al. [2018] researched the evolution of different versions of structural clones
(JHotDraw, Guava, and JFreeChart). They defined the evolutionary patterns of structural
cloning and used these evolutionary patterns to extract the structural clone genealogy.
Clone genealogies could be classified regarding evolutionary patterns (e.g.,
consistent/inconsistent genealogies) or life cycles (e.g., dead genealogies and surviving
genealogies). The clone genealogy that remains in the system until the last release is
called the survival genealogy. The clone genealogy that disappeared during the software
development process is called the dead genealogy. They also compared the evolutionary
characteristics of structural cloning and simple cloning. Their outcomes indicate that the
live clone genealogy is more sustainable than the dead clone genealogy in simple cloning
and structural cloning. In a simple clone, the average lifespan of the dead family tree is
longer. However, the dead clone family tree represents unsustainable clones which do not
live long in the software. In fact, the life span of the dead family at most three versions
for structural clones and simple clones in any target system. The analysis reveals that
structural clones have a lower change frequency than simple clones. Therefore, they are
cheaper to maintain than simple clones. However, there are more maintenance costs in

Luqi Guan CHAPTER 3. RESULTS OF THE SECONDARY STUDY

25

structural clone because of inconsistent changes. Structural clones represent similar levels
of design in software, are larger in size, are involved in many software, and are inherently
inconsistent. Consequently, they require smarter clone management than simple clones.

Nguyen et al. [2018] focused on clone changes between different versions. After studying
the clone groups from seven open-sources applications, they concluded that the number
of clones with comparable modifications in each group of revisions were not same. They
studied whether there is any relation between the tendency of the project growth and the
amount of comparable modifications clone sets. The answer is no.

Zhang et al. [2017] presented a method for clustering and analyzing clones based on the
FCM method. They extracted some clone metrics to describe clone and clone evolution
from clone detection results and clone genealogy. Besides, they generated the clone
clustering vector for each clone, which can be easily clustered. They formulated four
research questions and conducted empirical research on six open-source software
implementations (DNSJava, jEdit, wget, conky, ProcessHacker, iTextsharp). The
research was designed to show up the general relationships between clones and their
evolution. Their findings can help developers understand clones. They found that: (i) most
clones are short lived and have more clone patterns (inconsistent change, add, subtract,
split) than the long-lived clones, especially for the object-oriented programming language;
(ii) inconsistent changes occur frequently, especially in the clones that have fewer
changes, suggesting that clones that have fewer changes require more attention; (iii) most
clones are not coarse grained; and (iv) exact clones account for very few, short-lived
clones, and the number of long-lived exact clones is insignificant (they disappear for some
reason). This suggests that people should pay more attention to near-miss clones. These
conclusions can provide some guidance for developers on clones in software development.

3.7. Effect of the Code Clone in the Software Maintenance and
Development

This area studies the effect of code clones. It deals with the maintenance problems that
clone codes can cause, as well as clone display tools and clone patterns and refactoring
recommendations to solve such problems. Kim et al. [2004] identified software
maintenance issues, including short-term maintenance tasks, where programmers
immediately modified and pasted into specific parts of the code after copy and paste, and
long-term maintenance tasks, where programmers reorganized (refactored) after frequent
copy and paste. The general copy-and-paste usage patterns of the code may cause a lot of
text, and they propose a set of tools (visualization, structure template extraction,
warning/notification, refactoring suggestions) to solve such problems.

Wagner et al. [2016] clarified the relationship between code clones (inconsistent or Type
3 clones) and faults. They conducted an experiment firstly detecting clones. Then, as part
of this study, they interviewed three developers. The outcomes showed that 17% of Type
3 clones contained defects. All Type 2 clones with defects evolve into Type 3 clones.
They concluded that there are signs that the developers were aware of cloning in two
cases, which may cause the fragile relation between the defects and Type 3 clones.
Therefore, it is essential to assure that developers know about cloning, possibly with the
help of novel tools. Future research needs to study whether it is reasonable to use the
failure rate in Type 3 clones as an indicator of defect detection.

Mondal et al. [2017] conducted in-depth empirical research to study the maintenance
work needed for non-cloned and cloned code. They implemented a prototype tool that

Luqi Guan CHAPTER 3. RESULTS OF THE SECONDARY STUDY

26

can perform two tasks: (i) calculate how much work has previously changed in a specific
approach, and (ii) predict how much work may need to be done for a particular method
change in the future. They extracted and analyzed the entire evolutionary history of
candidate software systems for the purpose of measurement and prediction. They applied
the tool to six open-source systems to calculate the effort spent on non-cloned and cloned
code. Regarding the outcomes, (i) the cloned code needs more work in maintenance than
the non-cloned code, and (ii) the workload required for Type 2 (with identifier renamed
to ‘blindrename’, dissimilarity threshold ‘0%’) and Type 3 (identifier renamed to
‘blindrename’, the dissimilarity threshold ‘20%’) is greater than for Type 1 (with an
identifier renamed to “none”, similarity threshold “0%”) clones. According to the survey
results, developers need to prioritize Type 2 and 3 clones when considering the clone
management.

Lerina and Nardi [2019] set out to quantify the value of technical debt to see if the use of
cloned code is higher than debt without cloned code. The Nicad clone detector detected
different clone types —Type 1 (identifier renamed to ‘none’, dissimilarity threshold
‘0%’), Type 2 (identifier renamed to ‘blindrename’, dissimilarity threshold ‘0%’), and
Type 3 (identifier renamed to ‘blindrename’, dissimilarity threshold ‘20%’)—, and the
SonarQube platform was used to evaluate the technical debt value. The experimental
results revealed that the cloned code actually affects the value of technical debt: The
technical debt of files with cloned code is much higher than files without cloned code.
The type of cloning will result in different technical debt values, even if the outcomes of
the four systems are different.

3.8. Tools of Clone Visualization

This area studies code visualization tools. Code clone visualization tools are used to check
code and analyze code clones. Murakami et al. [2015] introduced the Eclipse plug-in
called ClonePacker. This application helps programmers to change code fragments and
check their clones. ClonePacker receives a group of source files and methods modified
by the programmer, and it detects the clone from the source file. Finally, ClonePacker
uses circle packing to visualize the inspection results. After comparing with another tool
Libra, they proved that ClonePacker for reporting the clone location was much faster.

Mondal et al. [2019] proposed a tool of clone visualization to manage clones. This tool
incorporates various zoomable views connected to information, where users could study
clones through real-time interaction. They tested the tool on two open-source systems,
Carol and Freecol. Natural visual selection allows the selection of a small group of cloned
snippets that cover a large portion of clone change events. They observed that the cloned
class contained 10 to 20 cloned snippets in several files, which were suitable for
reconstruction. They studied the internal and cross-border relationships between the
selected clones. They observed that clones with a high common change frequency were
preferred in the boundary than the cross-boundary relationship. The parallel coordinate
view reveals insights into the way that clones evolved. For example, in the Carol system,
they observed that 12 fragments evolved together in four groups. They observed small
groups of two to five cloned snippets, which had undergone close changes in many
software versions. They also researched the distribution of clones. For Freecol, the file
network view recommended a high degree of coupling between different modules. At the
end, they checked the source code files covering the clones that changed a lot in order to
determine the usage of clones.

Luqi Guan CHAPTER 4. TERTIARY STUDY

27

CHAPTER 4

3TERTIARY STUDY

During secondary study, we found some non-systematic reviews, systematic literature
reviews, and systematic mapping studies about copy and paste (code cloning). Non-
systematic reviews have been analyzed in section 2.1. However, the quality of the
systematic studies has not been analyzed, and no combined studies have been conducted
to derive answers about the current state of copy and paste. The intention of Chapter 4 is
to classify secondary school studies that are with respect to the field of copy and paste
programming and to critically analyze the quality of selected research. So as to achieve
this aim, a tertiary study was conducted to classify the selected secondary studies.

In section 4.1., we describe the procedure of the tertiary study. In section 4.2, we analyze
the results obtained.

4.1. Research Method of Tertiary Study

The tertiary study will be conducted in accordance with the instructions introduced by
[Kitchenham and Charters, 2007] on systematic literature reviews in the area of software
engineering. In order to conduct research, specific stages are proposed: plan, conduct and
report. Planning is for determining the requirement of review, which includes objectives
and research questions, determining search strategies that includes search strings and
inclusion/exclusion criteria, which would be fully introduced along the sections below.

4.1.1. Objectives and Research Questions

Tertiary research can obtain information about literature studies on certain topics, and can
also obtain information such as the quality, the number, and the emphasis of these
publications on the research area. As mentioned above, the primary goal of a master’s
degree thesis is to classify secondary school research related to copy and paste practice.
To this end, it is with the aim of solving the next research questions:

(RQ3) What are the major research areas in the secondary studies?
(RQ4) What are the measurements of the quality of the secondary studies?
(RQ5) What challenges of the practice of copy and paste are outlined in the published
works?

4.1.2. Search Strategy

It is essential to define the search string, the search period and decide the search sources.
The definition of the search string is not a simple task and requires several iterations. For
the definition of the chain, we will perform the following steps: (i) conformation of the
control group (CG), (ii) conformation of the search strings, and (iii) specification of the
inclusion and exclusion criteria. Next, we describe each of these steps.

Luqi Guan CHAPTER 4. TERTIARY STUDY

28

4.1.2.1. Conformation of the control group

According to [Zhang et al., 2011], CG is a group of related research, and other similar
research can be established according to the criteria established in the research question.
To form a CG, we conducted a traditional search to identify papers directly related to our
research, which are systematic mapping study or review of copy and paste. As a result of
the search, we found two papers: [Rattan and Kaur, 2016] and [Ain et al., 2019].

4.1.2.2. Conformation of the search strings

Table 4.1 presents the number of records obtained in the Scopus database and the amount
of papers of the CG that obtains said string.

Table 4.1: Search strings defined

Search string No. papers found
No. papers CG

found
(“copy and paste code” OR “source code reuse”
OR “code reuse” OR “code snippets reuse” OR
“code clone” OR “code cloning” OR “software
clones”) AND (“systematic literature review”
OR “systematic review” OR “mapping study”
OR “systematic mapping” OR “literature
review” OR SLR)

13 2

This database contains all papers of the CG. Search strings have 2 parts. The first part is
about copy and paste, the second part is about the systematic review. We can conclude
that this string does well for our work.

4.1.2.3. Specification of the inclusion and exclusion criteria

So as to define which research ought to be involved in the tertiary study, inclusion and
exclusion criteria are outlined. The assessment criteria are introduced as below:

Inclusion criteria: Studies mention an issue with respect to the defined search string;
AND peer reviewed studies; OR secondary studies.

Exclusion criteria: The study is not marked as a secondary study; OR the study is a
secondary study, but the subject does not present issue strictly with respect to
programming practice of copy and paste; OR duplicated papers; OR the study is not
written in English.

We adopted a peer review strategy. After I first searched the search string and selected
the studies, the other two researchers and I conducted a second screening of the studies
to ensure that the study was within the criteria we defined.

4.1.3. Quality Assessment

In the tertiary study, the quality of each publication will be assessed through the criteria
used by [Verner et al., 2012] [Kitchenham et al., 2010]. The standard is based on the
following five quality assessment questions (Table 4.2) [Curcio et al., 2019]:

Luqi Guan CHAPTER 4. TERTIARY STUDY

29

Table 4.2: Quality assessment criteria of tertiary study

Luqi Guan CHAPTER 4. TERTIARY STUDY

30

4.1.4. Select the Studies

The search for studies will be carried out in the 3 digital databases: Scopus, ACM Digital
Library, and IEEE Xplore. Table 4.3 shows the different DBs and their search fields. The
search fields were determined by the options offered by each database, due to the different
query syntaxes [Ren et al., 2019].

Table 4.3: Search strings by DB

Once the list of retrieved articles is obtained, it is necessary to eliminate duplicates
between the databases and as a result of this first debug, the candidate studies are obtained.
Then, a first filter must be made applying the assessment criteria according to the title,
abstract and keywords of per candidate study. Papers obtained from the first filter will be
evaluated again in a second filter. In this second filter, each researcher applies the
assessment criteria to all content of each study. Also, the quality assessment will be
considered in next filter.

As a result, the group of final studies is obtained. Table 4.4 presents a summary for each
digital database of the number of articles obtained in each of the groups (retrieved articles,
candidate studies, final studies). The search was conducted in June 2020, and the received
papers were published before June 2020.

Table 4.4: The number of papers obtained from each DB

4.2. Results of Tertiary Study

Along this section, we show the outcomes of the tertiary study, and we also answer the
research questions that we proposed previously. Table 4.5 shows the classification of
papers. There are five papers that are divided into three areas. They are systematic review
on code clone detection, clone evolution, and software cloning.

Table 4.5: Specific areas for secondary studies

ID Description References
1 Systematic review on

clone detection
[Rattan and Kaur, 2016]
[Ain et al., 2019] [Rattan
et al., 2013]

2 Systematic review on
clone evolution

[Pate et al., 2013]

3 Systematic review on
software cloning

[Shippey et al., 2012]

DBs Search fields
Scopus “Title OR Abstract OR Keywords”
ACM Digital Library “Abstract”
IEEE Xplore “Abstract”

Digital Database
Retrieved

articles
Candidate

studies
Final Studies

Scopus 13 9 5
ACM Digital Library 3 1 0
IEEE Xplore 49 1 0
TOTAL 65 11 5

Luqi Guan CHAPTER 4. TERTIARY STUDY

31

So as to solve the question: (RQ3) What are the major research areas in the secondary
studies?, the study carried out in the specific areas is described below.

4.2.1. Systematic Review on Clone Detection

In work of [Ain et al., 2019], they reviewed the newest technologies and tools for
detecting code clones. In particular, a systematic literature review (SLR) was conducted
to study 54 papers related to CCD. Therefore, six classes are outlined based on relevance
to merge these papers: text-, lexical-, tree-, metric-, semantic- based method and hybrid
method. In addition, they pointed and studied 26 tools for CCD, inlucding 13
development/recommendation tools and 13 existing tools. In addition, 62 open source
theme systems were introduced, and the source code was utilized for CCD. The
conclusion is that there have been studies separately examining Type 1 to 4 clones.
However, a novel method with complete tool support needs to be developed to jointly
detect all types of clones. In addition, while dealing with Type 4 clone detection, more
methods need to be introduced to make simpler the development of the program
dependency graph (PDG).

In work of [Rattan and Kaur, 2016], they focused on the tools and metric-based clone
detection technology. All selected studies are classified on basis of three aspects: metrics,
tools, and match detection. These tools include Datrix, eMetrics, and so on, which are
used for metric computation, clone deletion, and clone detection. The types of metric for
CCD are process, product, project, and object-oriented. The categories of matching
detection are clustering, fingerprint recognition, visualization, and classification
algorithms.

[Rattan et al., 2013] did a systematic mapping study in the area of software cloning
(especially software cloning detection). They studied 213 of the 2,039 articles. The
selected papers on software cloning are roughly divided into various groups. These are:
(i) an empirical assessment of clone detection tools/technologies, (ii) clone management,
its benefits, and cross-cutting nature, (iii) the number of papers involving 9 different types
of clones, and (iv) 13 intermediate representatives and 24 match detection technology.

4.2.2. Systematic Review on Clone Evolution

In work of [Pate et al., 2013], they systematically reviewed the studies related to clone
evolution. They conducted a detailed research of 30 related studies determined according
to their research plan. The review describes three issues: (i) methods of studying clone
evolution, (ii) patterns of clone evolution, and (iii) evidence that clones have changed
consistently during the period of software evolution. Generally, the outcomes of this
review show that there are contradictions among the studies about the lifetime of clone
generation and the consistency of changing clones during software evolution.

4.2.3. Systematic Review on Software Cloning

In work of [Shippey et al., 2012], they investigated the purpose, the CCD techniques and
the dataset utilized in the research of code cloning between 2007 and 2011. Then they
analyzed the state of art of the research on code cloning in order to find techniques for
defecting prediction. They selected 220 studies to perform a mapping study. The outcome
shows that the major focus of the research is code clone detection technology. The
number of studies accepted in journals and conferences has increased by 71% during the
past 4 years. The majority of dataset has been used only once, so the conclusion of one

Luqi Guan CHAPTER 4. TERTIARY STUDY

32

study report cannot have a comparison with that of another research report. There are few
benchmark data sets that correctly identify clones. Few studies have applied code clone
detection to defect prediction.

4.2.4. Classification According to Quality Criteria

This section describes question below:

(RQ4) What are the measurements of the quality of the secondary studies?

All 5 selected papers are considered into a quality assessment. The scores obtained by
each assessment criteria are showed below (Table 4.6).

Table 4.6: Quality assessment of selected studies

References Inclusion/
exclusion
criteria

Adequacy
of search

Synthesis
method

Quality
criteria

Information
provided

about
primary
studies

Final
Score

[Rattan et
al., 2013]

1 1 1 1 1 5

[Rattan and
Kaur, 2016]

0.5 1 1 0 0.5 3

[Ain et al.,
2019]

1 1 1 0.5 1 4.5

[Pate et al.,
2013]

1 1 1 0.5 1 4.5

[Shippey et
al., 2012]

1 0 1 0 0.5 2.5

From Table 4.6 we can see that the studies of [Rattan et al., 2013], [Pate et al., 2013],
[Ain et al., 2019] have high quality. The study of [Rattan and Kaur, 2016] has medium
quality with score 3. The study of [Shippey et al., 2012] has lowest quality with 2.5 score.

4.2.5. Challenges Described in Studies

This section describes question below:

(RQ5) What challenges of the practice of copy and paste are outlined in the published
works?

The Table 4.7 shows the challenges that we found in 4 papers. There is no challenge
mentioned in [Pate et al., 2013].

Table 4.7: Challenges of copy and paste

Challenge References
The immaturity of existing clone
detection technology or tools

[Rattan and Kaur, 2016] [Ain et al.,
2019]

Clone management [Rattan et al., 2013] [Shippey et al.,
2012]

Luqi Guan CHAPTER 4. TERTIARY STUDY

33

The work of [Rattan and Kaur, 2016] is based on studying clone detection techniques.
They found that there are limited clone detection tools that can be used easily in an
experiment. So, developing more simple tools for metric-based clone detection is
necessary.

In work of [Ain et al., 2019], they found that it is very complex to detect the Type 4 clone
and there are few studies dealing with the detection of this kind of clone. So, it is needed
to develop new techniques and tools for detecting Type 4 clone.

In work of [Rattan et al., 2013], they think developers often need to deal with a lot of data
and it is difficult to manage code clone. So, a scalable management tool which can help
to understand the behavior of cloning patterns is necessary.

In work of [Shippey et al., 2012], they think the code clones may cause higher
maintenance costs due to the error made in the process of copy and paste.

Luqi Guan CHAPTER 5. DISCUSSION AND VALIDITY THREATS

35

CHAPTER 5

DISCUSSION AND VALIDITY
THREATS

The analysis reveals that the areas techniques and tools of clone detection and developer
behavior are mainly represented in the sample. The area techniques and tools of clone
detection is represented by 14 publications (35.9% of the total), while developer behavior
is the second largest set of primary studies, with a total of 8 publications, that is, 20.5%
of all of the primary studies retrieved in the SMS (39). The areas that have been least
studied in the literature found in the SMS are tools of clone visualization and patterns of
cloning. Because there is an increasement in the number of publications since 2016, the
practice of copy and paste is of notable interest. However, the areas of tools of clone
visualization and patterns of cloning that requires much more research effort.

The tertiary study is based on systematic literary reviews regarding the instructions
introduced by [Kitchenham and Charters, 2007]. Among the first 65 papers selected from
the well-known research database, 5 studies were remained according to a serious
procedure, ranging from research selection to discussions to resolve the discussions
conducted in pairs during the selection process. All 5 selected studies have undergone
quality assessment. In addition to providing a systematic way that other researchers can
replicate, the execution of the entire process also makes the results analysis more
confident.

From the analysis of the results of tertiary study, there are 3 systematic reviews (60% of
the total) on code cloning detection tools or techniques. There is 1 systematic review on
code evolution and 1 systematic review on software clone. Therefore, the most important
research area of secondary studies is also clone detection. The studies of [Rattan et al.,
2013], [Pate et al., 2013], [Ain et al., 2019] have high quality. The study of [Rattan and
Kaur, 2016] has medium quality with score 3. The study of [Shippey et al., 2012] has
lowest quality with 2.5 score. The main challenges of copy and paste are the immaturity
of existing clone detection technology or tools and clone management.

We identify as possible threats to validity: (i) Coverage of research questions (RQ), (ii)
bias towards certain publications, (iii) quality of the evaluation, and (iv) lack of
knowledge of the area. It is probable that the proposed RQs could partially cover the study
theme, which we try to mitigate by defining a work objective and raising several RQs in
consensus, with the purpose of making the objective attainable. It is possible that in an
SMS the process will be directed towards a specific group of studies, which we avoid by
forming a literature CG and by consensus building a search chain with explicit terms
obtained from the CG. It is likely that the quality of the evaluation of the studies was not
adequate due to ignorance of the research area, which we mitigate by including in the
team an investigator with experience in the subject of code clone.

Luqi Guan CHAPTER 6. CONCLUSIONS

37

CHAPTER 6

CONCLUSIONS

This chapter review the contents of the previous chapters to briefly summarize the
achievements. It also provides a global view of completed work and provides instructions
for future works.

6.1. Conclusions

This work conducted both the secondary study and the tertiary study in order to reply the
next research questions:

RQ1. What is the current status of copy and paste?

The research on copy and paste or code clone deals with eight areas: (i) general
information of usage of clone [Chatterji et al., 2012] [Chatterji et al., 2016] [Islam et al.,
2016] [Khan et al., 2018] [Kim et al., 2004] [LaToza et al., 2006] [Stolee et al., 2009]
[Vashisht et al., 2018] [Zhang et al., 2012], (ii) developer behavior [Ahmed et al., 2015]
[Balint et al., 2006] [Bharti and Singh, 2017] [Chatterji et al., 2012] [Chatterji et al., 2013]
[Chatterji el al., 2016] [Ciborowska et al., 2018] [LaToza et al., 2006] [Müller et al., 2018]
[Ohta et al., 2015] [Stolee et al., 2009] [Van Bladel et al., 2017] [Xu et al., 2019], (iii)
technologies and tools of clone detection [Aktas and Kapdan, 2016] [Balint et al., 2006]
[Gharehyazie et al., 2019] [Henderson and Podgurski, 2017] [Joshi et al., 2015] [Kamiya,
2015] [Kim et al., 2018] [Mondal et al., 2015] [Mubarak-Ali et al., 2014] [Priyambadha
and Rochimah, 2018] [Reddivari and Khan, 2018] [Saini et al., 2016] [Sudhamani and
Rangarajan, 2019] [Svajlenko and Roy, 2017] [Vashisht et al., 2018] [Wijesiriwardana
and Wimalaratne, 2017], (iv) technologies and tools of clone reuse [Abid et al., 2017]
[Lin et al., 2015] [Narasimhan et al., 2018] [Ohtani et al., 2015] [Zhang and Kim, 2018],
(v) patterns of cloning [Kanwal et al., 2017] [Kapser and Godfrey, 2006], (vi) clone
evolution [Chatterji et al., 2012] [Chatterji el al., 2016] [Kanwal et al., 2018] [Mondal et
al., 2018] [Nguyen et al., 2018] [Zhang et al., 2017], (vii) effect of the code clone in the
software maintenance and development [Kim et al., 2004] [Lerina and Nardi, 2019]
[Mondal et al., 2017] [Wagner et al., 2016], and (viii) tools of clone visualization [Mondal
et al., 2019] [Murakami et al., 2015].

Most primary studies and papers belonging to the CG, at 32.2%, deal with techniques and
tools of clone detection area and followed by developer behavior (27.1%) area and
general information of usage of clone (18.8%) area.

Luqi Guan CHAPTER 6. CONCLUSIONS

38

RQ2. How do developers use copy and paste?

There are two main kinds of patterns for using copy and paste have been defined.
Elementary patterns include between, within, within and between, and external paste.
Whereas complex patterns include repeat, distribution, relay, and unknown. For one thing,
the elementary patterns consist of a single copy and paste incident involving one or more
files. For another, complex patterns consist of more than two copy and paste interactions
involving two or more files [Ahmed et al., 2015].

Among the areas of code clone research identified, one of the areas that most interest us
is how developers face the use of clones (how they search, how they embed it in their
code, etc.) in order to conduct an experiment with students from software engineering to
see how they use them and compare quality, for example with the non-use of clones or
with alternative ways of searching/using clones. Therefore, as future work will be
deepened in the work on the behavior of developers and how and why they use copy and
paste as well as in the empirical studies carried out to define an experimental design on
how it affects the behavior of developers. They follow copy and paste practices in the
quality of the software developed.

RQ3. What are the major research areas in the secondary studies?

The returned systematic reviews have been divided into 3 areas: (i) Systematic review on
clone detection [Rattan and Kaur, 2016] [Ain et al., 2019] [Rattan et al., 2013], (ii)
Systematic review on clone evolution [Pate et al., 2013], and (iii) Systematic review on
software cloning [Shippey et al., 2012].

Secondary studies belong to clone detection area, at 60%, software clone (20%) area and
clone evolution (20%) area.

RQ4. What are the measurements of the quality of the secondary studies?

Based on the criteria used in the tertiary study [Verner et al., 2012] [Kitchenham et al.,
2010], the studies of [Rattan et al., 2013] (score 5), [Pate et al., 2013] (score 4.5), [Ain et
al., 2019] (score 4.5) have high quality. The study of [Rattan and Kaur, 2016] has medium
quality with score 3. The study of [Shippey et al., 2012] has lowest quality with 2.5 score.

RQ5. What challenges of the practice of copy and paste are outlined in the published
works?

There are 4 papers discussing the challenges. First challenge is the immaturity of existing
clone detection technology or tools [Rattan and Kaur, 2016] [Ain et al., 2019], second
challenge is about clone management [Ain et al., 2019] [Shippey et al., 2012].

6.2. Discussion and Future Work

Among the areas of code clone research identified, one of the areas we identify as having
a high interest is the study of how developers face the use of clones (how they search,
how they embed it in their code, etc.), to experiment with students from software
engineering to see how they use them and to compare their quality either with the non-
use of clones or with alternative ways of searching/using clones. From tertiary study, we
know that the main research question of secondary studies is clone detection. The main
challenges of copy and paste are the immaturity of existing clone detection technology or

Luqi Guan CHAPTER 6. CONCLUSIONS

39

tools and clone management. Therefore, we propose as future work firstly to further study
how and why developers use copy and paste, and how the behavior of developers that
follow copy and paste practices affect the quality of the software developed, secondly to
develop more code clone detection and management tools in order to provide convenience
to developers.

Luqi Guan REFERENCES

41

REFERENCES

Abid, S., Javed, S., Naseem, M., Shahid, S., Basit, H.A., and Higo, Y. (2017). “CodeEase:
Harnessing method clone structures for reuse”, in Proc. IEEE 11th International
Workshop on Software Clones (IWSC’17). Co-located with SANER 2017. Klagenfurt,
Austria, pp. 24-30.

Ahmed, T.M., Shang, W., and Hassan, A.E. (2015). “An empirical study of the copy and
paste behavior during development”, in Proc. IEEE/ACM 12th Working Conference
on Mining Software Repositories. Florence, Italy, pp. 99-110.

Ain, Q.U., Butt, W.H., Anwar, M.W., Azam, F., and Maqbool, B. (2019). “A systematic
review on code clone detection”, IEEE Access, Vol. 7, pp. 86121-86144.

Aktas, M.S., and Kapdan, M. (2016). “Structural code clone detection methodology using
software metrics”, International Journal of Software Engineering and Knowledge
Engineering, Vol. 26, Issue 2, pp. 307-332.

Baker, B.S. (1995). “On finding duplication and near-duplication in large software
systems”, in Proc. 2nd Work. Conf. Reverse Eng. Toronto, Ontario, Canada, pp. 86–
95.

Balint, M., Marinescu, R., and Girba T. (2006). “How developers copy”, in Proc. 14th
IEEE International Conference on Program Comprehension (ICPC’06). Athens,
Greece, pp. 1-10.

Baxter, I.D., Yahin, A., Moura, L., Sant’Anna, M., and Bier, L. (1998). “Clone detection
using abstract syntax trees”, in Proc. of the International Conference on Software
Maintenance (Cat. No. 98CB36272). Bethesda, MD, USA, pp. 368-377.

Bharti, S., and Singh, H. (2017). “An industrial study on developers’ prevalent copy and
paste activities”, in Proc. International Conference on Next Generation Computing
and Information Systems (ICNGCIS’17). Jammu, India, pp. 147-152.

Chatley, G., Kaur, S., and Sohal, B. (2016). “Software clone detection: A review”,
International Journal of Control Theory and Applications, Vol. 9, Issue 41, pp. 555-
563.

Chatterji, D., Carver, J.C., and Kraft, N.A. (2012). “Claims and beliefs about code clones:
Do we agree as a community? A survey”, in Proc. 6th International Workshop on
Software Clones (IWSC’12). Zurich, Switzerland, pp. 15-21.

Chatterji, D., Carver, J.C., and Kraf, N.A. (2013). “Cloning: The need to understand
developer intent”, in Proc. 7th International Workshop on Software Clones (IWSC’13).
San Francisco, CA, USA, pp. 14-15.

Chatterji, D., Carver, J.C., and Kraft, N.A. (2016). “Code clones and developer behavior:
Results of two surveys of the clone research community”, Empirical Software
Engineering, Vol. 21, Issue 4, pp. 1476-1508.

Ciborowska, A., Kraft, N.A., and Damevski, K. (2018). “Detecting and characterizing
developer behavior following opportunistic reuse of code snippets from the web”, in
Proc. IEEE/ACM 15th International Conference on Mining Software Repositories
(MSR’18). Gothenburg, Sweden, pp. 94-97.

Luqi Guan REFERENCES

42

Curcio, K., Santana, R., Reinehr, S., and Malucelli, A. (2019). “Usability in agile software
development: A tertiary study”, Computer Standards & Interfaces, Vol. 64, pp. 61–
77.

Gharehyazie, M., Ray, B., Keshani, M., Zavosht, M.S., Heydarnoori, A., and Filkov V.
(2019). “Cross-project code clones in gitHub”, Empirical Software Engineering, Vol.
24, pp. 1538-1573.

Henderson, T.A.D., and Podgurski, A. (2017). “Rethinking dependence clones”, in Proc.
IEEE 11th International Workshop on Software Clones (IWSC’17). Co-located with
SANER 2017. Klagenfurt, Austria, pp. 66-74.

Islam, J.F., Mondal, M., and Roy, C.K. (2016). “Bug replication in code clones: An
empirical study”, in Proc. IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER’16). Suita, Japan, pp. 68-78.

Joshi, B., Budhathoki, P., Woon, W.L., and Svetinovic, D. (2015). “Software clone
detection using clustering approach”, in: Arik S., Huang T., Lai W., Liu Q. (eds).
Neural Information Processing. ICONIP 2015 (pp. 520-527). Lecture Notes in
Computer Science, vol 9490. Springer.

Kamiya, T. (2015). “An execution-semantic and content-and-context-based code-clone
detection and analysis”, in Proc. IEEE 9th International Workshop on Software Clones
(IWSC’15). Montreal, QC, Canada, pp. 1-7.

Khan, A., Basit, H.A., Sarwar, S.M., and Yousaf, M.M. (2018). “Cloning in popular
server side technologies using agile development: An empirical study”, Pakistan
Journal of Engineering and Applied Sciences, Vol. 22, pp. 1-13.

Kanwal, J., Inoue, K., and Maqbool, O. (2017). “Refactoring patterns study in code clones
during software evolution”, in Proc. IEEE 11th International Workshop on Software
Clones (IWSC’17). Co-located with SANER 2017. Klagenfurt, Austria, pp. 45-46.

Kanwal, J., Basit, H.A., and Maqbool, O. (2018). “Structural clones: An evolution
perspective”, in Proc. IEEE 12th International Workshop on Software Clones
(IWSC’18). Campobasso, Italy, pp. 9-15.

Kapser, C., and Godfrey, M.W. (2006). “Cloning considered harmful considered
harmful”, in Proc. 13th Working Conference on Reverse Engineering (WCRE’06).
Benevento, Italy, pp. 645-692.

Kim, M., Berman, L., Lau, T., and Notkin, D. (2004). “An ethnographic study of copy
and paste programming practices in OOPL”, in Proc. International Symposium on
Empirical Software Engineering (ISESE’04). Redondo, Beach, CA, USA, pp. 83-92.

Kim, K., Kim, D., Bissyandé, T.F., Choi, E., Li, L., Klein, J., and Traon, Y.L. (2018).
“FaCoY: A code-to-code search engine”, in Proc. ACM 40th International Conference
on Software Engineering (ICSE’18). Gothenburg, Sweden, pp. 1-12.

Kitchenham, B., and Charters, S. (2007). “Guidelines for performing systematic
literature reviews in software engineering”. Tech. Rep., Keele University and
Department of Computer Science, University of Durham.

Kitchenham, B., Pretorius, R., Budgen, D., Brereton, O.P., Turner, M., Niazi, M., and
Linkman, S. (2010). “Systematic literature reviews in software engineering - A tertiary
study”. Information and Software Technology, Vol. 52, pp. 792- 805.

B.A. Kitchenham, D. Budgen and O. Pearl Brereton. (2011). “Using mapping studies as
the basis for further research - A participant-observer case study”, Information and
Software Technology, Vol. 53, Issue 6, pp. 638–651.

Luqi Guan REFERENCES

43

LaToza, T.D., Venolia, G, and DeLine, R. (2006). “Maintaining mental models: A study
of developer work habits”, in Proc. 28th International Conference on Software
Engineering (ICSE’06). Shanghai, China, pp. 492-501.

Lerina, A., and Nardi, L. (2019). “Investigating on the impact of software clones on
technical debt”, in Proc. IEEE/ACM International Conference on Technical Debt
(TechDebt’19). Montreal, QC, Canada, pp. 108-112.

Lin, Y., Peng, X., Xing, Z., Zheng, D., and Zhao, W. (2015). “Clone-based and interactive
recommendation for modifying pasted code”, in Proc. 10th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE’15). Bergamo, Italy, pp. 520-
531.

Mondal, M., Roy, C.K., and Schneider, K.A. (2015). “SPCP-Miner: A tool for mining
code clones that are important for refactoring or tracking”, in Proc. IEEE 22nd
International Conference on Software Analysis, Evolution, and Reengineering
(SANER’15). Montreal, QC, Canada, pp. 484-488.

Mondal, M., Roy, C.K., and Schneider, K.A. (2017). “Does cloned code increase
maintenance effort?”, in Proc. IEEE 11th International Workshop on Software Clones
(IWSC’17). Klagenfurt, Austria, pp. 1-7.

Mondal, M., Roy, C.K., and Schneider, K.A. (2018). “Bug-proneness and late
propagation tendency of code clones: A Comparative study on different clone types”,
Journal of Systems and Software, Vol. 144, pp. 41-59.

Mondal, D., Mondal, M., Roy, C.K., Schneider, K.A., Wang, S., and Li Y. (2019).
“Towards visualizing large scale evolving clones”, in Proc. IEEE/ACM 41st
International Conference on Software Engineering: Companion (ICSE-
Companion’19). Montreal, QC, Canada, pp. 302-303.

Mubarak-Ali, A.-F., Sulaiman, S., Syed-Mohamad, S.M., and Xing, Z. (2014). “Code
clone detection and analysis in open source applications”, Open Source Technology:
Concepts, Methodologies, Tools, and Applications, Vol. 4, Issue 4, pp. 1112-1127.

Müller, L., Silveira, M.S., and de Souza, C.S. (2018). “Do I know what my code is
saying?: A study on novice programmers’ perceptions of what reused source code may
mean”, in Proc. 17th Brazilian Symposium on Human Factors in Computing Systems
(IHC’18). Belém, Pará, Brazil, pp. 1-10.

Murakami, H., Higo, Y., and Kusumoto, S. (2015). “ClonePacker: A tool for clone set
visualization”, in Proc. IEEE 22nd International Conference on Software Analysis,
Evolution, and Reengineering (SANER’15). Montreal, QC, Canada, pp. 33-39.

Narasimhan, K., Reichenbach, C., and Lawall, J. (2018). “Cleaning up copy–paste clones
with interactive merging”, Automated Software Engineering, Vol. 25, pp. 627-673.

Nguyen, T.L., Fish, A., and Song, M. (2018). “An empirical study on similar changes in
evolving software”, in Proc. IEEE International Conference on Electro/Information
Technology (EIT’18). Rochester, MI, USA, pp. 560-563.

Ohta, T., Murakami, H., Igaki, H., Higo, Y., and Kusumoto, S. (2015). “Source code
reuse evaluation by using real/potential copy and paste”, in Proc. IEEE 9th
International Workshop on Software Clones (IWSC’15). Montreal, QC, Canada, pp.
33-39.

Ohtani, A., Higo, Y., Ishihara, T., and Kusumoto, S. (2015). “On the level of code
suggestion for reuse”, in Proc. IEEE 9th International Workshop on Software Clones
(IWSC’15). Montreal, QC, Canada, pp. 26-32.

Luqi Guan REFERENCES

44

Pate, J. R., Tairas, R. and Kraft, N. A. (2013). “Clone evolution: A systematic review”,
Journal of Software: Evolution and Process, Vol. 25, Issue 3, pp. 261-283.

Petersen, K., Feldt, R., Mujtaba, S., and Mattsson, M. (2008) “Systematic mapping
studies in software engineering”, in Proc. 12th International Conference on
Evaluation and Assessment in Software Engineering (EASE’08). Bari, Italy, pp. 68-77.

Pittenger R. (2019). “Building ASP.NET web pages dynamically in the code-behind”.
https://www.codeproject.com/Articles/25573/Building-ASP-NET-Web-Pages-
Dynamically-in-the-Code. [Accessed 06/09/2020].

Priyambadha, B., and Rochimah, S. (2018). “Behavioral analysis for detecting code
clones”, Telkomnika, Vol. 16, Issue 3, pp. 1264-1275.

Rattan, D., and Kaur, J. (2016). “Systematic mapping study of metrics based clone
detection techniques”, in Proc. International Conference on Advances in Information
Communication Technology & Computing (AICTC’16). XBikaner, India, article 76,
pp. 1-7.

Rattan, D., Bhatia, R., and Singh, M. (2013). “Software clone detection: A systematic
review”, Information and Software Technology, Vol. 55, Issue 7, pp. 1165-1199,

Reddivari, S., and Khan, M.S. (2018). “A topic modeling approach for code clone
detection”, in Proc. 30th International Conference on Software Engineering and
Knowledge Engineering (SEKE'18). San Francisco Bay, CA, USA, pp. 486-491.

Ren, R., Castro, J.W., Acuña, S.T., and de Lara, J. (2019). “Usability of chatbots: A
systematic mapping study”, in Proc. 31st International Conference on Software
Engineering and Knowledge Engineering (SEKE’19). Lisbon, Portugal, pp. 479-484.

Rouse, M. (2019). “What is source code in programming and how does it work?”
https://searchapparchitecture.techtarget.com/definition/source-code. [Accessed
06/09/2020].

Saini, V., Sajnani, H., Kim, J., and Lopes, C. (2016). “SourcererCC and SourcererCC-I:
Tools to detect clones in batch mode and during software development”, in Proc.
IEEE/ACM 38th International Conference on Software Engineering Companion
(ICSE-C'16). Austin, TX, USA, pp. 597-600.

Saini, N., Singh, S., and Suman. (2018). “Code clones: Detection and management”,
Procedia Computer Science, Vol. 132, pp. 718-727.

T. Shippey, D. Bowes, B. Chrisianson and T. Hall.(2013). “A mapping study of software
code cloning”, in Proc. 16th International Conference on Evaluation & Assessment in
Software Engineering (EASE 2012). Ciudad Real, 2012, pp. 274-278.

Solanki, K., and Kumari, S. (2016). “Comparative study of software clone detection
techniques”, in Proc. Management and Innovation Technology International
Conference (MITicon’16). Bang-San, Thailand, pp. 152-156.

Stolee, K.T., Elbaum, S., and Rothermel, G. (2009). “Revealing the copy and paste habits
of end users”, in Proc. IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC’09). Corvallis, OR, USA, pp. 59-66.

Sudhamani, M., and Rangarajan, L. (2019). “Code similarity detection through control
statement and program features”, Expert Systems with Applications, Vol. 132, pp. 63-
75.

Svajlenko, J., and Roy, C.K. (2017). “Fast and flexible large-scale clone detection with
cloneworks”, in Proc. IEEE/ACM 39th International Conference on Software
Engineering Companion (ICSE-C’17). Buenos Aires, Argentina, pp. 27-30.

Luqi Guan REFERENCES

45

Taylor, R.N., Medvidovic, N., and Dashofy, E. (2009). “Software Architecture:
Foundations, Theory, and Practice”. John Wiley & Sons, First Edition.

Van Bladel, B., Murgia, A., and Demeyer, S. (2017). “An empirical study of clone density
evolution and developer cloning tendency”, in Proc. IEEE 24th International
Conference on Software Analysis, Evolution and Reengineering (SANER’17).
Klagenfurt, Austria, pp. 551-552.

Vashisht A., Sukhija, A., Verma, A., and Jain P. (2018). “A detailed study of software
code cloning”. IIOAB Journal – Special Issue: Computer Science, Vol. 9, Issue 2, pp.
20-32.

Verner, J.M., Brereton, O.P., Kitchenham, B., Turner, M., and Niazi, M. (2012).
“Systematic literature reviews in global software development: A tertiary study”. In
Proc. 16th International Conference Evaluation and Assessment Software
Engineering (EASE’12). Ciudad Real, Spain, pp. 2-11.

Wagner, S., Abdulkhaleq, A., Kaya, K., and Para, A. (2016). “On the relationship of
inconsistent software clones and faults: An empirical study”, in Proc. IEEE 23rd
International Conference on Software Analysis, Evolution, and Reengineering
(SANER’16). Suita, Japan, pp. 79-89.

Wang, K., Zhang, L., and Yann, S. (2017). “A study on code clone evolution analysis”,
in Proc. IEEE 8th International Conference on Software Engineering and Service
Science (ICSESS’17). Beijing, China, pp. 340-345.

Wijesiriwardana, C., and Wimalaratne, P. (2017). “Component-based experimental
testbed to facilitate code clone detection research”, in Proc. 8th IEEE International
Conference on Software Engineering and Service Science (ICSESS’17). Beijing,
China, pp. 165-168.

Xu, B., An, L., Thung, F., Khomh, F., and Lo D. (2019). “Why reinventing the wheels?
An empirical study on library reuse and re-implementation”, Empirical Software
Engineering, Vol. 25, pp. 755-789.

Yarmish, G., and Kopec, D. “Revisiting novice programmer errors”. ACM SIGCSE
Bulletin, Vol. 39, Issue 2, pp.131-137.

Zhang, T., and Kim, M. (2018). “Poster: Grafter: Transplantation and differential testing
for clones”, in Proc. IEEE/ACM 40th International Conference on Software
Engineering: Companion (ICSE-Companion’18). Gothenburg, Sweden, pp. 422-423.

Zhang, H., Ali, M., and Tell, P. (2011). “Identifying relevant studies in software
engineering”, Information and Software Technology, Vol. 53, Issue 6, pp. 625-637.
Special Section: Best papers from the APSEC.

Zhang, G., Peng, X., Xing, Z., and Zhao, W. (2012). “Cloning practices: Why developers
clone and what can be changed”, in Proc. 28th IEEE International Conference on
Software Maintenance (ICSM’12). Trento, Italy, pp. 285-294.

Zhang, F., Su, X., Zhao, W., and Wang, T. (2017). “An empirical study of code clone
clustering based on clone evolution”, Journal of Harbin Institute of Technology (New
Series), Vol. 24, Issue 2, pp. 10-18.

Luqi Guan APPENDIX

47

APPENDIX A
LIST OF KEYWORDS

Table A.1 lists the selected keywords obtained from control group articles of the primary
studies.

Table A.1: List of selected keywords

Keywords Coverage (%) Frequency Weight

code 100 1,177 1

clones 90 677 0.74

clone 100 441 0.69

software 100 327 0.64

study 100 204 0.59

source 100 195 0.58

copy 100 193 0.58

system 100 187 0.58

patterns 100 181 0.58

paste 100 153 0.56

design 100 133 0.56

analysis 100 122 0.55

development 100 100 0.54

programming 100 90 0.54

research 100 82 0.53

systems 100 79 0.53

studies 100 77 0.53

approach 100 51 0.52

cloning 80 267 0.51

engineering 90 105 0.49

behavior 90 102 0.49

usage 90 89 0.49

tool 90 89 0.49

program 90 68 0.48

context 90 58 0.47

reuse 90 40 0.47

developer 80 142 0.46

method 80 58 0.42

techniques 70 81 0.38

snippets 40 22 0.21

