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Resumen

El aprendizaje automático es un campo con un gran impacto en la actualidad por la utilidad que

tiene a la hora de resolver muchos tipos de problemas. Sin embargo, hoy en día se manejan grandes

cantidades de datos y por ello los métodos tradiciones de aprendizaje pueden estar muy limitados en

rendimiento. Para abordar este problema se utiliza el aprendizaje regularizado, donde el objetivo es

hacer el modelo lo más flexible posible pero conservando las propiedades de generalización, de forma

que se evite el sobreajuste.

Hay muchos modelos que utilizan regularización en sus formulaciones, como Lasso, o modelos

que utilizan una regularización intrínseca, como es el caso de la Support Vector Machine (SVM). En

este último modelo, se maximiza el margen de un hiperplano separador, dando como resultado una

solución que depende únicamente de un subconjunto de las muestras, los llamados vectores soporte.

Este Trabajo de Fin de Master tiene como objetivo desarrollar un modelo de SVM con regular-

ización Laplaciana en el espacio dual, bajo la idea intuitiva de que patrones cercanos deberían tener

coeficientes similares. Para construir el término Laplaciano nos basamos en el Fused Lasso, que pe-

naliza las diferencias de los coeficientes consecutivos, pero en nuestro caso buscaremos penalizar las

diferencias de todos contra todos, utilizando como pesos los elementos de la matriz de kernel.

Este documento presenta las diferentes fases llevadas a cabo en la implementación de la nueva

propuesta a partir de la SVM estándard, además de experimentos comparativos entre el modelo nove-

doso y el método original. Como consecuencia, vemos que la regularización Laplaciana es de gran

utilidad, ya que la nueva propuesta introducida vence en puntuación de test al modelo SVM estándard

en la mayoría de los datasets utilizados, tanto en clasificación como en regresión. Además, observa-

mos que si únicamente consideramos el término Laplaciano y fijamos el parámetro C (cota superior

para los coeficientes) como si fuera infinito, obtenemos también un mejor rendimiento que el método

SVM estándard.

Palabras clave

Aprendizaje Automático, Máquinas de Vectores Soporte, Regularización Laplaciana
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Abstract

Nowadays, Machine Learning (ML) is a field with a great impact because of its usefulness in solving

many types of problems. However, today large amounts of data are handled and therefore traditional

learning methods can be severely limited in performance. To address this problem, Regularized Learn-

ing (RL) is used, where the objective is to make the model as flexible as possible but preserving the

generalization properties, so that overfitting is avoided.

There are many models that use regularization in their formulations, such as Lasso, or models that

use intrinsic regularization, such as the Support Vector Machine (SVM). In this model, the margin of

a separating hyperplane is maximized, resulting in a solution that depends only on a subset of the

samples called support vectors.

This Master Thesis aims to develop an SVM model with Laplacian regularization in the dual space,

under the intuitive idea that close patterns should have similar coefficients. To construct the Laplacian

term we will use as basis the Fused Lasso model which penalizes the differences of the consecutive

coefficients, but in our case we seek to penalize the differences between every pair of samples, using

the elements of the kernel matrix as weights.

This thesis presents the different phases carried out in the implementation of the new proposal,

starting from the standard SVM, followed by the comparative experiments between the new model and

the original method. As a result, we see that Laplacian regularization is very useful, since the new

proposal outperforms the standard SVM in most of the datasets used, both in classification and regres-

sion. Furthermore, we observe that if we only consider the Laplacian term and we set the parameter

C (upper bound for the coefficients) as if it were infinite, we also obtain better performance than the

standard SVM method.

Keywords

Machine Learning, Support Vector Machines, Laplacian Regularization
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1
Introduction

In this chapter we are going to motivate the work done, detailing the objectives and structure of the

Master Thesis.

1.1 Motivation

Machine Learning (ML) is a field with a big impact on today’s society, with great advances that have

allowed modifying the way of addressing many problems. Nevertheless, the large amount of data

generated today has led to the big data paradigm, problems that have a large amount of information,

which can affect the performance of traditional ML techniques. A first approach to this type of situation is

Regularized Learning (RL), where the bias of the model is intentionally increased to reduce its variance,

in order to prevent the overfitting, take advantage of some prior knowledge, impose structure on the

models, etc. Support Vector Machine (SVM) is one of the most important regularization models, but

there are other linear models like Lasso and Fused Lasso.

In this work we study the regularization techniques used in ML and then we propose a novel combi-

nation of the standard SVM and Fused Lasso to create a new model. Later, we see its performance in

different problems, comparing with the original techniques.

1.2 Objectives

This Master Thesis aims to analyze in depth the most common regularization techniques in ML, and as

a result propose a combination based on the ideas behind some of them. The objectives are:

Review in detail the regularization of the linear models The Lasso model [1], its extension

to Group Lasso [2], the total variation regularization and the Fused Lasso model [3] and the

Generalized Lasso model [4].

Study of the models with intrinsic regularization Standard SVM [5], the Least Squares Sup-

port Vector Machine (LS-SVM) [6] and the Laplacian SVM [7].

1



Introduction

Proposal and implementation of the new model Include an additional regularization in an

SVM, so that it penalizes the differences of the dual coefficients of the model, based on the

coefficient penalty that the Fused Lasso method uses. For this regularization, the Laplacian

is used, since it encodes the information of the weights associated to each link of the adja-

cency graph of the data. As a result, we have two SVM regularizers: the original, which tries

to maximize the margin, and the new Laplacian regularizer, which controls the difference of

the coefficients of nearby patterns.

Experiments with the new proposal Compare our new model against the standard SVM

model to see if the Laplacian regularizer is useful.

1.3 Document structure

This document consists of the following chapters:

Chapter 1 The present chapter, that provides a brief introduction to the project, explaining its

objective.

Chapter 2 Here we do a little review on the fundamentals of ML and later we explain RL

models, such as SVM and Fused Lasso, approaches used as the basis for this work.

Chapter 3 In this part, we review the procedure to pass from the primal problem to the dual

problem. Then, we introduce the new Laplacian regularizer in the dual space to build the

formulations of the new proposed method.

Chapter 4 In the experiments we compare the new method based on Laplacian regularization

against the SVM standard model. We also check the performance of a model with only the

Laplacian regularization term, a particular case of our proposal.

Chapter 5 Here the conclusions obtained from the previous experiments are presented. Sub-

sequently, a list of tasks that could be carried out in the future are detailed.

2 Laplacian regularization in the dual space for SVMs



2
Regularized learning and Support
Vector Machines

In this chapter we describe the state of the art of this area. We start from a Machine Learning (ML)

review in which the basis of regression linear models and neural networks are explained. Then we

describe the methods with regularization, as Lasso and its modified approaches, which are important,

specially Fused Lasso, for the novel combination that we propose in the next chapter. Later, we illustrate

the standard Support Vector Machine (SVM) and its derived methods, such as Least Squares Support

Vector Machine (LS-SVM) or Laplacian SVM, because this Laplacian operator is the key term of our

new regularized SVM approach.

2.1 Machine learning review

ML is the study of computer algorithms that improve automatically through experience [8]. It is a field of

artificial intelligence where the algorithms build a mathematical model based on training data in order

to make predictions with the test data.

As notation, we indicate as xT “ px1, ..., xpq the input vector, y the output, N the number of patterns

and p the number of dimensions. The goal is to predict the output based on the input, fitting a set of

parameters that define the model.

2.1.1 Linear models

We are going to review linear models for classification and regression. Although these models were

developed in the statistical age of precomputing they are still widely used because of their simplicity

and because they offer an interpretation of how inputs affect output [9]. Furthermore, in some cases

they perform better than nonlinear methods.

Linear models for classification

A linear binary classifier defines a hyperplane in the space which separates positive from negative

examples. This problem uses the function

3



Regularized learning and Support Vector Machines

fpxq “ β0 `

p
ÿ

j“1

xjβj , (2.1)

and then the prediction is

y “ sign pfpxqq “

$

&

%

`1 iffpxq ě 0,

´1 otherwise.
(2.2)

The slope of the hyperplane is determined by β1, ..., βp and the intercept is determined by the bias

β0. Classification can be approached as a probability estimation problem, so we can maximize the

likelihood by

max
θ

Pθpy|Xq, (2.3)

with θ an unknown set of parameters. Because each sample is assumed to be independent of the

others and also we can include a negative logarithm (since the minimum of the negative logarithm

function is the maximum of that positive function) we can formulate the problem as

min
θ

˜

´

N
ÿ

i“1

logPθpyi|xiq

¸

. (2.4)

If we interpret ŷi as the probability that the i-th example belongs to the positive class and 1 ´ ŷi the

probabiliy that it belongs to the negative class, then the optimization problem can be written as

min `py, ŷq “ ´
N
ÿ

i“1

yi log ŷi ` p1´ yiq logp1´ ŷiq. (2.5)

This loss function in commonly called log loss and is also referred to as binary cross entropy.

Linear models for regression

In linear regression problems, the target variable is a numerical value and the model assumes that the

function Epy|xq is linear at the inputs x1, ..., xp. Formally, we start from the input xT “ px1, ..., xpq and

we want to predict the real output y, by

fpxq “ β0 `

p
ÿ

j“1

xjβj , (2.6)

with βj unknown parameters. One method to estimate this parameters is least squares, which mini-

mizes the Residual Sum of Squares (RSS),

RSSpβq “
N
ÿ

i“1

pyi ´ fpxiqq
2 “

N
ÿ

i“1

pyi ´
N
ÿ

i“1

xijβjq
2, (2.7)

that we can express in matrix format

4 Laplacian regularization in the dual space for SVMs



2.1. Machine learning review

RSSpβq “ }y ´Xβ}2 “ py ´XβqT py ´Xβq. (2.8)

Minimizing with respect to β

∇β RSS “ ´2XT py ´Xβq “ 0, (2.9)

we obtain the estimation

β̂ “ pXTXq´1XTy. (2.10)

Notice that, in general, RSS can be viewed as an estimation of the Mean Squared Error (MSE) of an

estimator θ̂. The MSE is related with the prediction accuracy,

MSEpθ̂q “ Erpθ̂ ´ θqs2 “ Varpθ̂q ` rEpθ̂q ´ θs2. (2.11)

As we can see, it is formed by a first term, known as the variance, and a second term, the bias, so we

must find a balance between both quantities. Regarding this, the least squares estimation usually has

a very small bias but a great variance, especially if there is a large dimension compared to the number

of patterns, so sometimes it is convenient to remove some coefficients sacrificing a little bias to reduce

the variance and the global prediction error.

Another problem of least squares is the interpretability. The resulting models are dense, they depend

on all the variables, and not all of them may be informative, so it is more difficult to interpret the results.

If we retain only a representative subset of the variables, the interpretability can be improved.

A first way of solving this problem is to use the subset selection methods, among which Best

Subset Selection [10] and Forward/Backward Stepwise Regression [11] stand out. These methods

analyze the effect of the different variables and choose the ones that provide the most information to

the model.

Another way to make simpler models is to control the variance, using regularization methods, such

as Least Angle Regression (LARS) [12], which can be seen as a stepwise selection, or the well-known

Ridge Regression [13] and Lasso [1], which we will see in detail in the regularization section.

2.1.2 Neural Networks

A natural extension of the linear models are the Neural Networks (NN) [14,15]. 1 To apply the models

on some complex problems, it is necessary to adapt the data of the datasets. The SVM, which we will

see later, approaches this problem using functions that focus on training data and selecting a subset

during the procedure, by a convex quadratic optimization. Moreover, the SVM uses the so called kernel

trick to obtain a non-linear transformation. On the other hand, NN are based on learning a transforma-

1Notice that the NN are not used explicitly in ths work, although there are explained given their importance and for the sake of completeness.

David López Ramos 5



Regularized learning and Support Vector Machines

tion directly from the data, using a bio-inspired architecture. A paradigm specially important of NN are

Deep Neural Networks (DNN) [16], whose techniques have drawn ever-increasing research interests

because of their inherent capability of overcoming the drawback of traditional algorithms dependent on

hand-designed features. Deep learning approaches have been found to be suitable for big data anal-

ysis with successful applications to computer vision, pattern recognition, speech recognition, natural

language processing and recommendation systems [17].

Mathematically, and assuming the classical Multilayer Perceptron (MLP) architecture of only one

hidden layer, the output is computed as

ypx,wq “ σ

˜

M
ÿ

j“1

ω
p2q
kj h

˜

p
ÿ

i“1

ω
p1q
ji xi ` ω

p1q
j0

¸

` ω
p2q
k0

¸

, (2.12)

where wpiq are the weights (and bias) of the respective layers i, h is the activation function (sigmoid,

hyperbolic tangent, etc.) and σ is the sigmoidal function for classification (for regression we would

use the identity). To train the network, we can determine the parameters by minimizing the RSS for

regression and cross-entropy (maximum likelihood) for classification.

When it comes to minimizing the error Epwq in this case is not possible to find an analytical solution

of ∇Epwq “ 0, therefore, iterative methods are usually used. One of them is the gradient descent,

which consists in updating the weights in the opposite direction to the gradient, looking for a minimum,

wpτ`1q “ wpτq ´ η∇Epwpτqq, (2.13)

where η is the learning rate, and the initial weights are (usually) random. To evaluate the gradient effi-

ciently, the backpropagation [18] technique is used, where an iterative process is applied, calculating

the derivates by propagating the errors of the last layer in the opposite direction to that of the network.

Also in neural networks, regularization is used to control the complexity of the model, for example

by weight decay with the control parameter λ

Ẽpwq “ Epwq ` λ

2
wTw. (2.14)

Other common methods are, for example, Gaussian prioris, tangent propagation, or early stopping

(where training is stopped when the validation error begins to increase). Concerning regularization, it is

also worth mentioning Convolutional Neural Network (CNN) [19], in which invariant models are created

using invariance properties in the network structure itself, hence controlling its complexity.

6 Laplacian regularization in the dual space for SVMs
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2.2 Regularized linear models

As explained above, regularization in ML models is important to have some control over the complexity

of the model. Moreover, when there are many correlated variables in a linear regression model, the

coefficients may be poorly determined and there may be a great variance in the resulting model, a

problem that is reduced by penalizing the size of the weights. Next we are going to explain several

regularized linear models.

2.2.1 Ridge Regression

One of these methods is Ridge Regression [13], which penalizes the coefficients with the `2 norm:

β̂
ridge

“ argmin
βPRp`1

˜

N
ÿ

i“1

pyi ´ β0 ´

p
ÿ

j“1

xijβjq
2 ` λ

p
ÿ

j“1

β2j

¸

, (2.15)

with λ ě 0 the complexity parameter, that controls which term is the most important. If this parameter

is too large the coefficients are reduced towards 0 because the penalization is strong. On the other

hand, if λ is too small the regularization has no effect and the coefficients tend to the solution of the

linear model. Figure 2.1 shows the Ridge coefficient estimates for a prostate cancer example, plotted

as functions of df(λ), the effective degrees of freedom implied by the penalty λ. Here it is clear to see

that the coefficients are reduced towards 0 when df(λ) decrease.

As in the case of the linear regression model seen before, we can solve this problem in matrix form

minimizing the RSS

RSSpβ, λq “ py ´XβqT py ´Xβq ` λβTβ, (2.16)

and deriving respect to β

∇β RSS “ ´2XT py ´Xβq ` 2λIβ “ 0 ñ pXTX` λIqβ ´XTy “ 0. (2.17)

Finally, we obtain the solution

β̂
ridge

“ pXTX` λIq´1XTy. (2.18)

2.2.2 Lasso

Another well-known regularization method is Lasso [1], similar to Ridge but with important differences,

since it uses the `1 norm of the weights as a regularizer,
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FIGURE 3.8. Profiles of ridge coefficients for the prostate cancer example, as
the tuning parameter λ is varied. Coefficients are plotted versus df(λ), the effective
degrees of freedom. A vertical line is drawn at df = 5.0, the value chosen by
cross-validation.

Figure 2.1: Figure 3.8 of [20]. Profiles of ridge coefficients for a prostate cancer example, as the

tuning parameter λ is varied. Coefficients are plotted versus df(λ). The vertical line drawn at df “ 5.0

is the value chosen by cross-validation.
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β̂
lasso

“ argmin
βPRp`1

˜

N
ÿ

i“1

pyi ´ β0 ´

p
ÿ

j“1

xijβjq
2 ` λ

p
ÿ

j“1

|βj |

¸

. (2.19)

We can write it in the form with restrictions

β̂
lasso

“ argmin
βPRp`1

˜

N
ÿ

i“1

pyi ´ β0 ´

p
ÿ

j“1

xijβjq
2

¸

subject to
p
ÿ

j“1

|βj | ď t, (2.20)

with both formulations being equivalent for certain λ and t. The constraint
řp
j“1 |βj | ď t causes the

solution to be nonlinear in yi. With t small enough, some coefficients will be zero (it is a type of variable

selection). The tuning parameter t ě 0 controls the amount of shrinkage that is applied to the estimates.

Let β̂
ls

j be the full least squares estimates and let t0 “
ř

|β̂
ls

j |. Values of t ă t0 will cause reduction

of coefficients towards 0 and some of them may be exactly equal to 0. Figure 2.2 shows the Lasso

estimates as a function of bound s “ t
ř

|β̂
ls

j |
. Here, the curves decrease in a monotone fashion to 0, but

this does not always happen in general.

In Figure 2.3 we see the geometric comparison between Lasso and Ridge. Both methods find the

first point where the elliptical contour intersects the constraint region. Unlike the disc, the diamond has

corners; if the solution occurs in the corner, then some parameters βj “ 0. Another method similar to

Lasso but earlier is Breiman’s non-negative garrote [21].

Since the Lasso problem is not differentiable, iterative methods, for example, are used. Computation

of the solution to equation (2.20) is a quadratic programming problem with linear inequality constraints.

A wide variety of techniques from convex anaylisis and optimization theory have been developed to

compute the solutions path of Lasso. These include coordinate descent [22], subgradient methods,

LARS and proximal gradient methods [12].

2.2.3 Group Lasso

Lasso focuses on the selection of individual variables, rather than groups of them, so it sometimes

chooses more factors than necessary. Moreover, there are cases where variables have a certain natural

group structure, in which case it is interesting to obtain sparsity at that level, rather than at the level of

separate coefficients. Therefore, the extension called Group Lasso [2] was proposed, which considers

the problem of selecting groups of variables (factors) to improve prediction. If we use the `2 norm for

each of the J groups, the estimation of Group Lasso is the solution of:

β̂
group-lasso

“ argmin
βPRp`1

˜

1

2
}Y ´

J
ÿ

j“1

Xjβj}
2 ` λ

J
ÿ

j“1

}βj}2

¸

, (2.21)

with λ ě 0 the regularization parameter. With this expression, sparsity is induced at the factor level,

instead of the individual coefficients as in the case of Lasso.

Since the penalty reduces to an `2 norm of the subspaces defined by each group, it cannot select out
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70 3. Linear Methods for Regression
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FIGURE 3.10. Profiles of lasso coefficients, as the tuning parameter t is varied.
Coefficients are plotted versus s = t/

∑p

1 |β̂j |. A vertical line is drawn at s = 0.36,
the value chosen by cross-validation. Compare Figure 3.8 on page 65; the lasso
profiles hit zero, while those for ridge do not. The profiles are piece-wise linear,
and so are computed only at the points displayed; see Section 3.4.4 for details.

Figure 2.2: Figure 3.10 of [20]. Profiles of Lasso coefficientes, as the tuning parameter t is varied,

plotted versus s “ t
ř

|β̂
ls
j |

. The vertical line drawn is the value chosen by cross-validation. Compare

Figure 2.1; the Lasso profiles hit zero, while those for Ridge do not. The solutions are piece-wise

linear.
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Figure 2.3: Figure 3.11 of [20]. Estimation picture for the Lasso (left) and Ridge Regression (right).

Shown are contours of the error and constraint functions. The solid blue areas are the constraint

regions }β1}` }β2} ď t and β2
1 `β

2
2 ď t2, respectively, while the red ellipses are the contours of the

least squares error function.

only some of the covariates from a group (some `2 norms are 0 so all the coefficients are 0). However,

since the penalty is the sum over the different subspaces, as in the Lasso, the constraint has some non-

differential points, corresponding to subspaces that are identically zero. Different extensions of Group

Lasso are its sparse version [23] which can select individual covariates within a group by `1 penalty;

and Group Lasso with Overlap [24], which allows covariates to be shared between different groups.

In order to solve the Group Lasso, the algorithm cycles through the J groups, and is a blockwise

coordinate descent procedure [25].

2.2.4 Fused Lasso

Another extension of Lasso is Fused Lasso [3], which is a generalization for problems with characteris-

tics that can be ordered and very useful when p " N , that is, when there are many more predictors than

examples. Fused Lasso penalizes with the `1 norm the coefficients and their successive differences,

so its coefficients are given by:

β̂
fused-lasso

“ argmin
βPRp`1

˜

ÿ

i

pyi ´
ÿ

j

xijβjq
2

¸

subject to
p
ÿ

j“1

|βj | ď s1 and
p
ÿ

j“2

|βj ´ βj´1| ď s2.

(2.22)
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In the expression (2.22) the first constraint encourages sparsity in the coefficients and the second

encourages sparsity in their differences, i.e. flatness of the coefficient βj as a function of j, producing a

piecewise constant solution. This second term is based on the expression
ř

j }βj ´ βj´1}
α ď s2 called

Fusion term [26], proposed for various values of α, especially α “ 0, 1, 2. The values s1 and s2 are the

constraint limits, which can be set or restricted to a search for values in a grid, but taking into account

that for p very large the problem is computationally very expensive. In Figure 2.4 we see the geometry

of Fused Lasso, where the solution is given by the intersection of the constraint areas.

Figure 2.4: Figure 2 of Fused Lasso paper [3]. Shown are the contours of the error and constraint

areas, s1 (grey) and s2 (black).

Figure 2.5 illustrates a simulated example with 100 predictors and 10 samples generated with Gaus-

sian distribution and we can see the comparison in performance of Lasso, Fusion and Fused Lasso

estimating the true underlying coefficients. Here, Lasso performs poorly, Fusion reasonably captures

the plateau and Fused Lasso does a good job overall.

Fused Lasso has a similar sparsity property to Lasso. Instead of applying to the number of non-zero

coefficients, however, the sparsity property applies to the number of sequences of non-zero coefficients.

In Figure 2.6 we can see a prostate cancer example where sparsity of Lasso implies certain maximum

number of non-zero dots and sparsity of Fused Lasso implies certain maximum number of non-zero

sequences of consecutive feature values with the same coefficient.

There are many algorithms to optimize Fused Lasso problem, and some of them can solve it exactly
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Figure 2.5: Figure 4 of Fused Lasso paper [3]. Simulated example with only two areas of non-zero

coefficients (black points and lines; red points estimated coefficients from each method): Lasso (left),

Fusion (center) and Fused Lasso (right).

Figure 2.6: Figure 8 of Fused Lasso paper [3]. Results for the prostate cancer example: Fused

Lasso non-zero coefficients (black) and Lasso non-zero coefficients (red).
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in a finite number of operations [27].

2.2.5 Generalized Lasso

In the Fused Lasso model, differences of consecutive coefficients are penalized. However, this can be

generalized to penalize differences given by a graph as done in the Graph Fused Lasso (GFL) [28]. This

generalization is the idea under the Generalized Lasso method [4], which penalizes the `1 norm of the

coefficients transformed using a matrix D. The goal behind this method is to force certain structural

constraints instead of a pure sparsity of the coefficients. The problem is

β̂
gen-lasso

“ argmin
β

ˆ

1

2
}y ´Xβ}22 ` λ}Dβ}1

˙

, (2.23)

where D P Rmˆp is a specific penalty matrix. Several choices of D give known problems, as is the case

with Fused Lasso. Here, D is a pp´ 1qˆ p matrix with Dii “ 1, Di`1,i “ ´1 and Dij “ 0 otherwise so

that it penalizes the differences of consecutive coefficients. Note that if D P Rpˆp is invertible, we can

go from Generalized Lasso to Lasso with θ “ Dβ.

The Generalized Lasso problem (2.23) is difficult to analizy directly because the non-differentiable

`1 penalty. So usually the corresponding Lagrange dual problem is used instead, making the calculation

easier.

The structural constraint idea of Generalized Lasso and GFL is what we will use to define the new

Laplacian regularizer in Section 3.2, in which we will take the Laplacian operator as regularizer, where

we will define the weights using the kernel.

2.3 Support Vector Machines

In this section we will review the SVM model, on which our proposal is based. We will see the procedure

to convert the primal problem into the dual problem and we detail the new Laplacian regularization.

2.3.1 Standard SVM

In the late 20th century, Support Vector Machine [5] was introduced to solve pattern recognition

problems, using a transformation of the data to a larger dimension space to construct a separating

hyperplane, maximizing its margin. The transformations and parameters are chosen to minimize the

Vapnik-Chervonenkis (VC) dimension, which measures the complexity of the models. Given a training

set pyk,xkqNk where xk P Rp, yk P R, SVM seeks to construct a classifier of the form
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ypxq “ sign

˜

N
ÿ

k“1

αkykKpx,xkq ` b

¸

, (2.24)

where αk are positive real constants, b a real constant and K a kernel function. The model is trained by

maximizing the margin of the separating hyperplane (as described in detail in Section 3.1), which lead

to the following classification dual problem

max
α

Qpα;Kq “ ´
1

2

N
ÿ

k,l“1

ykylKpxk,xlqαkαl `
N
ÿ

k“1

αk,

subject to
N
ÿ

k“1

αkyk “ 0, 0 ď αk ď C, k “ 1, ..., N,

(2.25)

where C is a control parameter and Kpxk,xlq “ ϕpxkq
Tϕpxlq. Thanks to the kernel trick it is not

necessary to explicitly calculate the transformation to the larger dimension space. The solution obtained

by the standard SVM is sparse in terms of xi, because only some of αi are distinct to 0 and are called

support vectors.

In regression problems, we can use the ε-SVM that ignores errors that are smaller than ε. In

Figure 2.7 we can see a linear SVM for regression, with the loss function that depends on ε. Only the

points outside the shaded region contribute to the cost insofar, as the deviations are penalized in a

linear fashion. The prediction of the model is

ypxq “
N
ÿ

k“1

pαk ´ α
˚
kqKpx,xkq ` b. (2.26)

Like in classification, this problem is more easily solved in the dual space, obtaining the regression

dual problem

max
αp˚q

Qpαp˚q;Kq “ ´
1

2

N
ÿ

k,l“1

pαk ´ α
˚
kqpαl ´ α

˚
l qKpxk,xlq ´ ε

N
ÿ

k“1

pαk ` α
˚
kq `

N
ÿ

k“1

ykpαk ´ α
˚
kq,

subject to
N
ÿ

k“1

pαk ´ α
˚
kq “ 0, 0 ď α

p˚q

k ď C, k “ 1, ..., N.

(2.27)

Training an SVM requires the solution of a very large Quadratic Programming (QP) optimizaton

problem. However, to solve this issue, Sequential Minimal Optimization (SMO) algorithm was devel-

oped [29], which breaks this problem into a series of smallest possible QP problems, that are solved

analytically. Nowadays, it is widely used for training an SVM and is implemented by the popular LIBSVM

library [30].
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200 Smola and Schölkopf

Smola (2002) contains a more in-depth overview of SVM regres-
sion. Additionally, Cristianini and Shawe-Taylor (2000) and Her-
brich (2002) provide further details on kernels in the context of
classification.

1.2. The basic idea

Suppose we are given training data {(x1, y1), . . . , (x�, y�)} ⊂
X × R, where X denotes the space of the input patterns (e.g.
X = R

d ). These might be, for instance, exchange rates for some
currency measured at subsequent days together with correspond-
ing econometric indicators. In ε-SV regression (Vapnik 1995),
our goal is to find a function f (x) that has at most ε deviation
from the actually obtained targets yi for all the training data, and
at the same time is as flat as possible. In other words, we do not
care about errors as long as they are less than ε, but will not
accept any deviation larger than this. This may be important if
you want to be sure not to lose more than ε money when dealing
with exchange rates, for instance.

For pedagogical reasons, we begin by describing the case of
linear functions f , taking the form

f (x) = 〈w, x〉 + b with w ∈ X , b ∈ R (1)

where 〈 · , · 〉 denotes the dot product in X . Flatness in the case
of (1) means that one seeks a small w. One way to ensure this is
to minimize the norm,3 i.e. ‖w‖2 = 〈w, w〉. We can write this
problem as a convex optimization problem:

minimize 1
2‖w‖2

subject to

{
yi − 〈w, xi 〉 − b ≤ ε

〈w, xi 〉 + b − yi ≤ ε

(2)

The tacit assumption in (2) was that such a function f actually
exists that approximates all pairs (xi , yi ) with ε precision, or in
other words, that the convex optimization problem is feasible.
Sometimes, however, this may not be the case, or we also may
want to allow for some errors. Analogously to the “soft mar-
gin” loss function (Bennett and Mangasarian 1992) which was
used in SV machines by Cortes and Vapnik (1995), one can in-
troduce slack variables ξi , ξ

∗
i to cope with otherwise infeasible

constraints of the optimization problem (2). Hence we arrive at
the formulation stated in Vapnik (1995).

minimize
1

2
‖w‖2 + C

�∑
i=1

(ξi + ξ ∗
i )

subject to




yi − 〈w, xi 〉 − b ≤ ε + ξi

〈w, xi 〉 + b − yi ≤ ε + ξ ∗
i

ξi , ξ
∗
i ≥ 0

(3)

The constant C > 0 determines the trade-off between the flat-
ness of f and the amount up to which deviations larger than
ε are tolerated. This corresponds to dealing with a so called
ε-insensitive loss function |ξ |ε described by

|ξ |ε :=
{

0 if |ξ | ≤ ε

|ξ | − ε otherwise.
(4)

Fig. 1. The soft margin loss setting for a linear SVM (from Schölkopf
and Smola, 2002)

Figure 1 depicts the situation graphically. Only the points outside
the shaded region contribute to the cost insofar, as the deviations
are penalized in a linear fashion. It turns out that in most cases
the optimization problem (3) can be solved more easily in its dual
formulation.4 Moreover, as we will see in Section 2, the dual for-
mulation provides the key for extending SV machine to nonlinear
functions. Hence we will use a standard dualization method uti-
lizing Lagrange multipliers, as described in e.g. Fletcher (1989).

1.3. Dual problem and quadratic programs

The key idea is to construct a Lagrange function from the ob-
jective function (it will be called the primal objective function
in the rest of this article) and the corresponding constraints, by
introducing a dual set of variables. It can be shown that this
function has a saddle point with respect to the primal and dual
variables at the solution. For details see e.g. Mangasarian (1969),
McCormick (1983), and Vanderbei (1997) and the explanations
in Section 5.2. We proceed as follows:

L := 1

2
‖w‖2 + C

�∑
i=1

(ξi + ξ ∗
i ) −

�∑
i=1

(ηiξi + η∗
i ξ

∗
i )

−
�∑

i=1

αi (ε + ξi − yi + 〈w, xi 〉 + b)

−
�∑

i=1

α∗
i (ε + ξ ∗

i + yi − 〈w, xi 〉 − b) (5)

Here L is the Lagrangian and ηi , η
∗
i , αi , α

∗
i are Lagrange multi-

pliers. Hence the dual variables in (5) have to satisfy positivity
constraints, i.e.

α
(∗)
i , η

(∗)
i ≥ 0. (6)

Note that by α
(∗)
i , we refer to αi and α∗

i .
It follows from the saddle point condition that the partial

derivatives of L with respect to the primal variables (w, b, ξi , ξ
∗
i )

have to vanish for optimality.

∂b L =
�∑

i=1

(α∗
i − αi ) = 0 (7)

∂w L = w −
�∑

i=1

(αi − α∗
i )xi = 0 (8)

∂
ξ

(∗)
i

L = C − α
(∗)
i − η

(∗)
i = 0 (9)

Figure 2.7: Figure 1 of SVM tutorial [5]. The image shows the ε-insensitive loss function.

2.3.2 Least Squares Support Vector Machine

One variant of the standard SVM is the LS-SVM [6]. In this case, the errors are penalized using the RSS

instead of the hinge loss or the ε-insensitive loss. As a result, the solution is obtained by solving a linear

system of equations instead of a quadratic programming. Furthermore, while in classical SVM many

support values (other than support vectors) were 0, in LS-SVM the support values are proportional to

the errors.

Mathematically, we formulate the problem as

min
w,b,e

Jpw, b, eq “
1

2
wTw ` C

1

2

N
ÿ

k“1

e2k,

subject to ykpw
Tϕpxkq ` bq “ 1´ ek, k “ 1, ..., N.

(2.28)

We define the Lagrangian

Lpw, b, e;αq “ Jpw, b, eq ´
N
ÿ

k“1

αkrykpw
Tϕpxkq ` bq ´ 1` eks, (2.29)

where αk are Lagrange multipliers (which can be positive or negative due to the equality constraint and

KKT conditions). The optimality conditions are

∇wL “ 0 Ñ w “

N
ÿ

k“1

αkykϕpxkq,

BbL “ 0 Ñ
N
ÿ

k“1

αkyk “ 0,

BekL “ 0 Ñ αk “ γek, k “ 1, ..., N,

Bαk
L “ 0 Ñ ykpw

Tϕpxkq ` bq ´ 1` ek “ 0, k “ 1, ..., N,

(2.30)
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which can be written as the solution of the linear system of equations
¨

˚

˚

˚

˚

˚

˝

I 0 0 ´ZT

0 0 0 ´YT

0 0 γI ´I

Z Y I ´0

˛

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˝

w

b

e

α

˛

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˝

0

0

0

1̄

˛

‹

‹

‹

‹

‹

‚

, (2.31)

where Z “ pϕpx1q
T y1, ..., ϕpxN q

T yN q
T , Y “ py1, ..., yN q

T , e “ pe1, ..., eN q
T , α “ pα1, ..., αN q

T and 1̄

is a vector of ones. The solution is given by
¨

˝

0 ´YT

Y ZZT ` γ´1I

˛

‚

¨

˝

b

α

˛

‚“

¨

˝

0

1̄

˛

‚. (2.32)

The kernel trick can be applied to compute the matrix Ω “ ZZT , where

Ωkl “ ykylϕpxkq
Tϕpxlq “ ykylKpxk,xlq. (2.33)

2.3.3 Laplacian SVM

Within the SVM framework, a new family of learning algorithms based on a regularization that allows

exploiting the geometry of the marginal distribution was proposed, Laplacian SVM [7]. Therefore, we

will have two regularizers, one that controls the complexity of the classifier and the other that controls

the complexity as measured by the geometry of the distribution.

Laplacian SVM is framed in the context of semi-supervised learning [31], problems without labels

for all the data, where the Laplacian SVM tries to take advantage of the information in the patterns

without labels by introducing a new regularizer. It is clear to see that the collection of labeled data is

more complicated than that of unlabeled data. As a result, a pattern recognition approach that is able

to make better use of unlabeled data to improve performance is of great practical importance. Most

natural learning occurs in the semi-supervised setting. Figure 2.8 shows how unlabeled examples may

force us to restructure our hypotheses during learning. On the left we have two labeled examples (one

negative and one positive). A natural choice for classification is to use a linear separator, as shown.

However, we could have more examples, in this case, not labeled, as we see on the right. Now we

can visualize a particular geometry in which the most suitable classifier would be circular. This is the

intuition of the method, in which success depends on extracting a certain structure from the marginal

distribution.

Let us state the standard sample learning framework. There is a probability distribution in X ˆ R
with respect to which the examples px, yq have been generated. The unlabeled data is x P X generated
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Figure 1: Unlabeled data and prior beliefs

examples may force us to restructure our hypotheses during learning. Imagine a situation where one
is given two labeled examples—one positive and one negative—as shown in the left panel. If one is
to induce a classifier on the basis of this, a natural choice would seem to be the linear separator as
shown. Indeed, a variety of theoretical formalisms (Bayesian paradigms, regularization, minimum
description length or structural risk minimization principles, and the like) have been constructed to
rationalize such a choice. In most of these formalisms, one structures the set of one’s hypothesis
functions by a prior notion of simplicity and one may then justify why the linear separator is the
simplest structure consistent with the data.

Now consider the situation where one is given additional unlabeled examples as shown in the
right panel. We argue that it is self-evident that in the light of this new unlabeled set, one must
re-evaluate one’s prior notion of simplicity. The particular geometric structure of the marginal
distribution suggests that the most natural classifier is now the circular one indicated in the right
panel. Thus the geometry of the marginal distribution must be incorporated in our regularization
principle to impose structure on the space of functions in nonparametric classification or regression.
This is the intuition we formalize in the rest of the paper. The success of our approach depends on
whether we can extract structure from the marginal distribution, and on the extent to which such
structure may reveal the underlying truth.

1.2 Outline of the Paper

The paper is organized as follows: in Section 2, we develop the basic framework for semi-supervised
learning where we ultimately formulate an objective function that can use both labeled and unla-
beled data. The framework is developed in an RKHS setting and we state two kinds of Representer
theorems describing the functional form of the solutions. In Section 3, we elaborate on the theo-
retical underpinnings of this framework and prove the Representer theorems of Section 2. While
the Representer theorem for the finite sample case can be proved using standard orthogonality ar-
guments, the Representer theorem for the known marginal distribution requires more subtle consid-
erations. In Section 4, we derive the different algorithms for semi-supervised learning that arise out
of our framework. Connections to related algorithms are stated. In Section 5, we describe experi-
ments that evaluate the algorithms and demonstrate the usefulness of unlabeled data. In Section 6,

2402

Figure 2.8: Figure 1 of Laplacian SVM original paper [7]. The picture shows a binary classification

problem, with one case with only labeled data (left) and other case with labeled and unlabeled data

(right).

according to a marginal distribution. We will assume that if two points are close in the intrinsic geometry

given by the marginal, then the conditional distributions are similar. For a Mercer kernelK : XˆX Ñ R,

a reproducing kernel Hilbert space (RKHS)Hk of functionsX Ñ R is associated with the corresponding

inner product } ¨ }K . Given labeled data pxi, yiq, i “ 1, ..., l, the standard framework estimates an

unknown function by minimizing

f˚ “ argmin
fPHk

˜

1

l

l
ÿ

i“1

V pxi, yi, fq ` γ}f}
2
K

¸

, (2.34)

where V is some function loss. By penalizing the RKHS norm, we achieve smooth conditions in possible

solutions. The classic Representater Theorem says that the solution of this minimization exists in Hk

and is

f˚ “
l
ÿ

i“1

αiKpxi,xq. (2.35)

Therefore the problem is reduced to optimizing over a finite space of coefficients αi, which is the basis

of SVM, regularized least squares, and other regression and classification schemes.

The marginal distribution can be known or unknown. In most applications, it is unknown. Therefore,

we must make empirical estimates of the marginal, for which we only need unlabeled data.

Thus, given a set of l labeled examples tpxi, yiquli“1 and a set of u unlabeled examples txju
j“l`u
j“l`1 ,

by including an intrinsic smoothness penalty term, we can use the Representer Theorem and extend

the SVM by solving the primal problem for Laplacian SVM:
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min
αPRl`u,ξPRl

1

l

l
ÿ

i“1

ξi ` γAα
TKα`

γI
pu` lq2

αTKLKα,

subject to

$

&

%

yip
řl`u
j“1 αjKpxi,xjq ` bq ě 1´ ξi i “ 1, ..., l

ξi ě 0 i “ 1, ..., l,

(2.36)

where γA controls the complexity of the function in the ambient space, γI controls the complexity of

the function in the intrinsic geometry of the marginal, L is the Laplacian operator and ξi are the slack

variables. The Laplacian matrix, L “ D ´ A, where D is the diagonal degree matrix and A is the

adjacency matrix, is a representation of a graph, which can be used to find many useful properties of

its structure.

Now, we can introduce the Lagrange multipliers βi, ζi obtaining

Lpα, ξ, b,β, ζq “
1

l

l
ÿ

i“1

ξi `
1

2
αT p2γAK` 2

γA
pl ` uq2

KLKqα

´

l
ÿ

i“1

βipyip
l`u
ÿ

j“1

αjKpxi,xjq ` bq ´ 1` ξiq ´
l
ÿ

i“1

ζiξi.

(2.37)

The optimality conditions are

BbL “ 0 ñ
l
ÿ

i“1

βiyi “ 0,

BξiL “ 0 ñ
1

l
´ βi ´ ζi “ 0,

ñ 0 ď βi ď
1

l
pξi, ζi ě 0q.

(2.38)

After substituting in the Lagrangian, we obtain the dual problem for Laplacian SVM:

β˚ “ max
βPRl

l
ÿ

i“1

βi ´
1

2
βTQβ

subject to

$

&

%

řl
i“1 βiyi “ 0

0 ď βi ď
1
l i “ 1, ..., l,

(2.39)

where Q “ YJKp2γAI` 2 γI
pl`uq2 LKq´1JTY, with J “ rI 0s an l ˆ pl ` uq matrix, I an l ˆ l identity

matrix and Y “ diagpy1, y2, ..., ylq. Note that when γI “ 0, we get coefficients of expansion to 0 on the

unlabeled data. The expansion of coefficients on the labeled data and the matrix Q are those of the

standard SVM in this case, as it was to be expected.

The Laplacian used here penalizes the f of the RKHS. In Chapter 3 we will use another approach

closer to that of Fused Lasso (in fact, GFL), where we will penalize the differences between each pair

of coefficients, using the kernel matrix as weights.
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In this chapter we introduce the new SVM model with Laplacian regularization. First, we review the

procedure to convert the primal problem to the dual problem in order to understand the formula in the

dual space. Later, we start from this formula and we can add a new regularization Laplacian term to

penalize the differences of the dual coefficients, following the idea of Fused Lasso. As a result, we

finally obtain the formulas of the new methods proposed to improve the standard classification and

regression SVM formulations.

3.1 Preliminaries: duality of the SVM problems

We are going to review the procedure to convert the primal problem into the dual problem, both in

Support Vector Classifier (SVC) and in Support Vector Regressor (SVR). We use the notation defined

in Section 2.1.

3.1.1 Support Vector Classifier

In the case of a binary classification problem, SVC tries to find a vector w P Rp and a bias b P R
such that the prediction given by sign

`

wTϕpxq ` b
˘

is correct for most samples. The classifier has the

following constraints:

wTϕpxkq ` b ě `1 if yk “ `1,

wTϕpxkq ` b ď ´1 if yk “ ´1,
(3.1)

and in an equivalent form:

ykpw
Tϕpxkq ` bq ě 1 k “ 1, ..., N, (3.2)

where ϕ is a nonlinear function that transforms the original space into a higher dimension space. How-

ever, this function is not explicitly constructed, thanks to the kernel trick, Kpxi,xjq “ ϕpxiq
Tϕpxjq. To

allow certain errors, the slack variables ξk are introducted.
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Fig. 2 SVM classification function: the hyperplane maximizing the margin in a two-dimensional
space

because whenxi are the closest vectors,F(x) will return 1 according to Eq.(4). The
closest vectors, that satisfy Eq.(4) with equality sign, are calledsupport vectors.

Maximizing the margin becomes minimizing||w||. Thus, the training problem in
SVM becomes a constrained optimization problem as follows.

minimize: Q(w) = 1
2||w||2 (6)

subject to:yi(w ·xi −b) ≥ 1, ∀(xi ,yi) ∈ D (7)

The factor of12 is used for mathematical convenience.

2.1.1 Solving the Constrained Optimization Problem

The constrained optimization problem (6) and (7) is calledprimal problem. It is
characterized as follows:

• The objective function (6) is aconvexfunction ofw.
• The constraints arelinear in w.

Accordingly, we may solve the constrained optimization problem using the
method of Largrange multipliers [3]. First, we construct the Largrange function:

J(w,b,α) =
1
2

w ·w−
m

∑
i=1

αi{yi(w ·xi −b)−1} (8)

Figure 3.1: Figure 2 of [32]. SVC problem: the hyperplane maximizing the margin in a two-

dimensional space.

The margin is defined to be the distance between the hyperplane wTϕpxq ` b “ 0 and the hyper-

plane wTϕpxq` b “ 1. Reviewing the formula for the distance d between two parallel hyperplanes with

b1 and b2 constant terms, we get

d “
|b2 ´ b1|

}w}
“
|1|

}w}
. (3.3)

Therefore, we want to maximize the margin 1
}w} that is equivalent to minimizing }w}. Figure 3.1 illus-

trates the geometry of a binary SVC problem. In addition, we want to penalize the errors with a constant

C, obtaining the classification primal problem:

min
w,ξk

J1pw, ξkq “
1

2
wTw ` C

N
ÿ

k“1

ξk,

subject to

$

&

%

ykpw
Tϕpxkq ` bq ě 1´ ξk, k “ 1, ..., N,

ξk ě 0, k “ 1, ..., N.

(3.4)

With the objective function and constraints, we can construct the Lagrangian

L1pw, b, ξk;αk, νkq “ J1pw, ξkq ´
N
ÿ

k“1

αkrykpw
Tϕpxkq ` bqs ´ 1` ξks ´

N
ÿ

k“1

νkξk, (3.5)

where αk, νk ě 0. The solution is given by the saddle point,

max
αk,νk

min
w,b,ξk

L1pw, b, ξk;αk, νkq. (3.6)
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We construct the critical points by equating the derivates to 0 with respect to the primal variables,

obtaining the optimality conditions

∇wL1 “ 0 Ñ BwJ1pw, ξkq ´
N
ÿ

k“1

αkyk “ 0 Ñ w “

N
ÿ

k“1

αkykϕpxkq,

BbL1 “ 0 Ñ
N
ÿ

k“1

αkyk “ 0,

BξkL1 “ 0 Ñ BξkJ1pw, ξkq ´ αk ´ νk “ 0 Ñ αk “ C ´ νk, 0 ď αk ď C, k “ 1, ..., N.

(3.7)

Substituting the previous results in the Lagrangian,

L1pw, b, ξk;αk, νkq “
1

2
p

N
ÿ

k“1

αkykϕpxkqq
T p

N
ÿ

k“1

αkykϕpxkqq ` C
N
ÿ

k“1

ξk´

´

N
ÿ

k“1

αkrykpp
N
ÿ

k“1

αkykϕpxkqq
Tϕpxkq ` bqs `

N
ÿ

k“1

αk ´
N
ÿ

k“1

αkξk ´
N
ÿ

k“1

νkξk “

“
1

2

N
ÿ

k,l“1

ykylϕpxkq
Tϕpxlqαkαl ´

N
ÿ

k,l“1

ykylϕpxkq
Tϕpxlqαkαl `

N
ÿ

k“1

αk´

´ b
N
ÿ

k“1

αkyk ` C
N
ÿ

k“1

ξk ´
N
ÿ

k“1

pαk ` νkqξk “

“ ´
1

2

N
ÿ

k,l“1

ykylϕpxkq
Tϕpxlqαkαl `

N
ÿ

k“1

αk.

(3.8)

Now, we can apply the kernel trick and we obtain the classification dual problem:

min
α

Q1pα;Kq “
1

2

N
ÿ

k,l“1

ykylKpxk,xlqαkαl ´
N
ÿ

k“1

αk,

subject to

$

&

%

řN
k“1 αkyk “ 0, k “ 1, ..., N,

0 ď αk ď C, k “ 1, ..., N.

(3.9)

Finally, the prediction of the model is:

ypxq “ sign

˜

N
ÿ

k“1

αkykKpx,xkq ` b

¸

, (3.10)

because w “
řN
k“1 αkykϕpxkq and Kpxi,xjq “ ϕpxiq

Tϕpxjq as we have seen before.

3.1.2 Support Vector Regressor

In the ε-SVR the goal is to find a function fpxq that has at most ε deviation of the targets yk, and if it is

greater than ε it will be penalized, so we allow certain errors by the slack variables ξ, ξ˚, depending on
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whether their predictions lie above or below the ε-tube. We start with the linear functions f of the form

fpxq “ wTϕpxq ` b, where w P Rp and b P R. Again, we want to maximice the margin or equivalently,

minimize }w}, obtaining, as a result, the regression primal problem:

min
w,ξk,ξ

˚
k

J2pw, ξk, ξ
˚
k q “

1

2
wTw ` C

N
ÿ

k“1

pξk ` ξ
˚
k q,

subject to

$

’

’

’

’

&

’

’

’

’

%

yk ´wTϕpxkq ´ b ď ε` ξk,

wTϕpxkq ` b´ yk ď ε` ξ˚k ,

ξk, ξ
˚
k ě 0,

(3.11)

where the constant C ą 0 determines the balance between the margin and the errors. Notice that the

error term corresponds to the ε-insensitive loss function |ξ|ε defined as

|ξ|ε “

$

&

%

0 if |ξ| ď ε,

|ξ| ´ ε otherwise.
(3.12)

As in classification, the problem can be more easily solved in the dual space, by the Lagrangian

L2pw, b, ξk, ξ
˚
k ;αk, α

˚
k , νk, ν

˚
k q “ J2pw, ξkq ´

N
ÿ

k“1

pνkξk ` ν
˚
k ξ
˚
k q ´

N
ÿ

k“1

αkpε` ξk ´ yk `wTϕpxkq ` bq

´

N
ÿ

k“1

α˚kpε` ξ
˚
k ´ yk `wTϕpxkq ` bq,

(3.13)

where αk, α˚k , νk, ν
˚
k ě 0. The solution is given by the saddle point problem

max
αk,α

˚
k ,νk,ν

˚
k

min
w,b,ξk,ξ

˚
k

L2pw, b, ξk, ξ
˚
k ;αk, α

˚
k , νk, ν

˚
k q. (3.14)

Again, we calculate the critical points with respect to the primal variables and we define ξp˚qk to refer to

ξk and ξ˚k ,

∇wL2 “ 0 Ñ BwJ2pw, ξk, ξ
˚
k q ´

N
ÿ

k“1

αkϕpxkq ´
N
ÿ

k“1

α˚kϕpxkq “ 0 Ñ w “

N
ÿ

k“1

pαk ´ α
˚
kqϕpxkq,

BbL2 “ 0 Ñ ´

N
ÿ

k“1

αk `
N
ÿ

k“1

α˚k “ 0 Ñ
N
ÿ

k“1

pα˚k ´ αkq “ 0,

Bξp˚qk
L2 “ 0 Ñ Bξp˚qk

J2 ´ ν
p˚q

k ´ α
p˚q

k “ 0 Ñ α
p˚q

k “ C ´ ν
p˚q

k , 0 ď α
p˚q

k ď C, k “ 1, ..., N.

(3.15)

Now, we substitute in the Lagrangian:
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L2 “
1

2
p

N
ÿ

k“1

pαk ´ α
˚
kqϕpxkqq

T p

N
ÿ

k“1

pαk ´ α
˚
kqϕpxkqq ` C

N
ÿ

k“1

pξk ` ξ
˚
k q´

´

N
ÿ

k“1

ppC ´ αkqξk ` pC ´ α
˚
kqξ

˚
k q´

´

N
ÿ

k“1

αkpε` ξk ´ yk ` p
N
ÿ

k“1

pαk ´ α
˚
kqϕpxkqq

Tϕpxkq ` bq´

´

N
ÿ

k“1

α˚kpε` ξ
˚
k ´ yk ` p

N
ÿ

k“1

pαk ´ α
˚
kqϕpxkqq

Tϕpxkq ` bq “

“
1

2

N
ÿ

k,l“1

pαk ´ α
˚
kqpαl ´ α

˚
l qϕpxkq

Tϕpxlq ` C
N
ÿ

k“1

pξk ` ξ
˚
k q ´ C

N
ÿ

k“1

pξk ` ξ
˚
k q`

`

N
ÿ

k“1

αkξk `
N
ÿ

k“1

α˚kξ
˚
k ´

N
ÿ

k“1

αkξk ´
N
ÿ

k“1

α˚kξ
˚
k´

´ ε
N
ÿ

k“1

pαk ` α
˚
kq `

N
ÿ

k“1

ykpαk ´ α
˚
kq ´

N
ÿ

k“1

pαk ´ α
˚
kqb´

´

N
ÿ

k,l“1

pαk ` α
˚
kqpαl ` α

˚
l qϕpxkq

Tϕpxlq “

“ ´
1

2

N
ÿ

k,l“1

pαk ´ α
˚
kqpαl ´ α

˚
l qϕpxkq

Tϕpxlq ´ ε
N
ÿ

k“1

pαk ` α
˚
kq `

N
ÿ

k“1

ykpαk ´ α
˚
kq.

(3.16)

Finally, using the kernel trick we obtain the regression dual problem:

min
αp˚q

Q2pα
p˚q;Kq “

1

2

N
ÿ

k,l“1

pαk ´ α
˚
kqpαl ´ α

˚
l qKpxk,xlq ` ε

N
ÿ

k“1

pαk ` α
˚
kq ´

N
ÿ

k“1

ykpαk ´ α
˚
kq,

subject to

$

&

%

řN
k“1pαk ´ α

˚
kq “ 0, k “ 1, ..., N,

0 ď α
p˚q

k ď C, k “ 1, ..., N.

(3.17)

We know that the function of the regressor is fpxq “ wTϕpxq ` b, so we can substitute the result

obtained before, w “
řN
k“1pαk´α

˚
kqϕpxkq and use the kernel definition Kpxi,xjq “ ϕpxiq

Tϕpxjq. As

a result, the prediction of the regressor is:

ypxq “
N
ÿ

k“1

pαk ´ α
˚
kqKpx,xkq ` b. (3.18)

3.2 Laplacian regularization

We have seen the standard SVM and now we are going to introduce a new proposal based on a penalty

similar to the Fused Lasso in the dual space.
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Fused Lasso uses a difference matrix of adjacent coefficients. In our case, for the Laplacian reg-

ularization in the dual space, we want to penalize the differences of all the coefficients (pairwise). We

take the elements of the kernel matrix into account for the weights, because nearby samples will have

a larger kernel, so the difference between them should be small, that is, more penalized. In this way,

we build the difference matrix:

A “

¨

˚

˚

˚

˚

˚

˝

a

k1,2 ´
a

k1,2 0 ¨ ¨ ¨ 0 0
a

k1,3 0 ´
a

k1,3 ¨ ¨ ¨ 0 0
...

...
...

. . .
...

...

0 0 0 ¨ ¨ ¨
a

kN´1,N ´
a

kN´1,N

˛

‹

‹

‹

‹

‹

‚

, (3.19)

with size
`

N
2

˘

ˆN “
NpN´1q

2 ˆN , where N is the number of patterns.

Notice that, unlike Fused Lasso, the norm used in this case is the `2 norm,

}Aα}22 “ pAαqT pAαq “ αTATAα. (3.20)

One reason to use the `2 norm is that the problem is much simpler, because using the `1 norm the

optimization would be much more computationally complex. In addition, we use this norm because if

we calculate the product ATA we can obtain:

ATA “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

a

k1,2
a

k1,3 ¨ ¨ ¨ 0

´
a

k1,2 0 ¨ ¨ ¨ 0

0 ´
a

k1,3 ¨ ¨ ¨ 0
...

...
. . .

...

0 0 ¨ ¨ ¨
a

kN´1,N

0 0 ¨ ¨ ¨ ´
a

kN´1,N

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˝

a

k1,2 ´
a

k1,2 0 ¨ ¨ ¨ 0 0
a

k1,3 0 ´
a

k1,3 ¨ ¨ ¨ 0 0
...

...
...

. . .
...

...

0 0 0 ¨ ¨ ¨
a

kN´1,N ´
a

kN´1,N

˛

‹

‹

‹

‹

‹

‚

“

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

ř

j‰1 k1,j ´k1,2 ´k1,3 ¨ ¨ ¨ ´k1,N

´k2,1
ř

j‰2 k2,j ´k2,3 ¨ ¨ ¨ ´k2,N

´k3,1 ´k3,2
ř

j‰3 k3,j ¨ ¨ ¨ ´k3,N
...

...
...

. . .
...

´kN,1 ´kN,2 ´kN,3 ¨ ¨ ¨
ř

j‰N kN,j

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

“ D´K,

(3.21)

where K is the kernel matrix and D the diagonal matrix such that

D “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

řN
j k1,j 0 0 ¨ ¨ ¨ 0

0
řN
j k2,j 0 ¨ ¨ ¨ 0

0 0
řN
j k3,j ¨ ¨ ¨ 0

...
...

...
. . .

...

0 0 0 ¨ ¨ ¨
řN
j kN,j

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

. (3.22)

26 Laplacian regularization in the dual space for SVMs



3.2. Laplacian regularization

We see that expression (3.21) is exactly the Laplacian matrix L [33], which is a matrix representation

of a graph, in this case, the one induced by the kernel matrix computed over the problem samples.

The Laplacian of a graph is defined as L “ D ´A, where D is the diagonal degree matrix and A is

the adjacency matrix. Each graph vertex eij has a weight wij , which in our case is the element kij of

the kernel matrix K, which now is the adjacency matrix. If we apply this operator L to a vector α of

coefficients as a quadratic form, the operation is defined by

αTLα “
ÿ

eij

kijpαi ´ αjq
2. (3.23)

So we can see that expression (3.23) is equivalent to αTATAα, the one obtained in (3.20). Therefore,

the Laplacian can be expressed as L “ ATA and the dual regularization takes the form αTLα, where

α are the dual coefficients.

Now, we can build the function to be maximized in the dual space, starting from the well-known

formulas for classification and regression SVM, to which we add the Laplacian term.

3.2.1 Fused Support Vector Classifier

To obtain the formulation of the new proposal for classification, we include the dual regularizer adapting

the kernel matrix, using

K̄ “ K` βL, (3.24)

where L is the Laplacian matrix and β is its regularization parameter. As a result, we define the new

training kernel as

K̄pxi,xjq “ Kpxi,xjq ` βLpxi,xjq “

$

&

%

kij ` βdpxiq ´ βkij if xi “ xj ,

kij ´ βkij if xi ‰ xj ,
(3.25)

where dpxiq is the degree of sample (node) xi.

We know that the dual problem for SVC is:

Q1pαq “
1

2
αTyTKyα´ 1Tα. (3.26)

Therefore, we can substitute the original kernel in the formula with the new term K̄:

Q̄1pαq “
1

2
αTyT K̄yα´α1 “

1

2
αTyTKyα`

β

2
αTyTLyα´ 1Tα. (3.27)

Finally, we have the classification dual problem with Laplacian regularization, from now on called

Fused Support Vector Classifier (FSVC):
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min
α

Q̄1pαq “
1

2

N
ÿ

k,l“1

ykylKpxk,xlqαkαl `
β

2

N
ÿ

k,l“1

ykylLpxk,xlqαkαl ´
N
ÿ

k“1

αk,

subject to

$

&

%

řN
k“1 αkyk “ 0, k “ 1, ..., N,

0 ď αk ď C, k “ 1, ..., N.

(3.28)

It is clear to see in (3.28) that we have the same original problem but with the addition of the new

Laplacian regularization αTLα (and its corresponding β weight), as we mentioned before. In this way,

the coefficients will change smoothly in the dual space, and there will not be very different coefficients

between similar patterns.

3.2.2 Fused Support Vector Regressor

In the case of a regression problem, the kernel extension takes the same form as in classification:

K̄ “ K` βL, (3.29)

with L the Laplacian matrix and β its regularization parameter. So, the training kernel is the same as in

expression (3.25).

Again, we start from the formula for SVR formulation

Q2pαq “
1

2
pα´α˚qTKpα´α˚q ` ε1T pα`α˚q ´ ypα´α˚q. (3.30)

With the addition of the new term K̄:

Q̄2pαq “
1

2
pα´α˚qT K̄pα´α˚q ` ε1T pα`α˚q ´ ypα´α˚q “

“
1

2
pα´α˚qTKpα´α˚q `

β

2
pα´ α˚qTLpα´α˚q ` ε1T pα`α˚q ´ ypα´α˚q.

(3.31)

Therefore, we obtain the regression dual problem with Laplacian regularization, from now on called

Fused Support Vector Regressor (FSVR):

min
αp˚q

Q̄2pα
p˚qq “

1

2

N
ÿ

k,l“1

pαk ´ α
˚
kqpαl ´ α

˚
l qKpxk,xlq `

β

2

N
ÿ

k,l“1

pαk ´ α
˚
kqpαl ´ α

˚
l qLpxk,xlq

` ε
N
ÿ

k“1

pαk ` α
˚
kq ´

N
ÿ

k“1

ykpαk ´ α
˚
kq,

subject to

$

&

%

řN
k“1pαk ´ α

˚
kq “ 0, k “ 1, ..., N,

0 ď α
p˚q

k ď C, k “ 1, ..., N.

(3.32)

Again, we can see in (3.32) that the problem is the same as the original but including the dual regular-

ization. As a result, the coefficients will vary smoothly in the dual space and will tend to be similar in
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3.3. Implementation details

close samples.

3.3 Implementation details

We use Python as a development language, because of its flexibility, and also because it has libraries

adapted to ML, such as Scikit-learn [34]. Specifically, we will use the SVC 1 and SVR 2 classes to

create classification and regression support vector machines, respectively.

The first idea to implement the new FSVC and FSVR proposals is to create classes that inherit from

the Scikit-learn SVC and SVR classes. In this way, we can add the Laplacian regularizer to the kernel

matrix used in the training, overriding the fit function. After training the model, we can reset the

original kernel matrix to use it for prediction, since we want the Laplacian term to be taken into account

only during fitting. We can see this procedure in Algorithm 3.1. The implementation of the new classes

can be found in Appendix A.

input : params of SVM and the Laplacian parameter beta
output: trained FSVM

1 compute the original kernel;

2 KÐ computeKernel( params );

3 compute the degree matrix with the kernel as weights;

4 DÐ diagonal( sumRows( K ) );

5 compute the Laplacian matrix;

6 LÐ D ´ K;

7 compute the train kernel;

8 FSVM KernelÐ K ` beta ˚ L;

9 call SVM fit ;

10 super( fit( ) )
11 restore original kernel for predict ;

12 FSVM KernelÐ K

Algorithm 3.1: Training Algorithm of FSVM.

The implemented method has some limitations. For example, it forces us to calculate the com-

plete kernel matrix (LIBSVM calculates only the columns that it needs), but this way is valid for a first

approximation, which can be extended in the future by modifying the C code of LIBSVM.

1https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
2https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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4
Experiments

In this chapter we test the performance of the new Laplacian-regularized SVMs: the FSVC and the

FSVR. First, we create some synthetic datasets in which we are going to see graphically and numeri-

cally the effect of this regularizer. Finally, using real datasets, we perform comparative tests between

the standard SVM model and the new Fused Support Vector Machine (FSVM) proposals, including a

hard-margin FSVM with C tending to infinity to take into account only the Laplacian term.

4.1 Synthetic datasets

To show the effect of Laplacian regularization, we create synthetic datasets and see how predictions

and scores behave based on the parameter β. We focus on the FSVM model but we set the parameter

C large enough so that the solution depends only on the Laplacian penalty. We will call this model the

Hard Margin Fused Support Vector Machine (HM-FSVM). The parameter γ of the rbf kernel is fixed

to 1 in this set of experiments.

4.1.1 Classification

First, we build a random classification problem with different classes to test the performance of Hard

Margin Fused Support Vector Classifier (HM-FSVC), with make_classification 1 function of

Scikit-learn with 325 samples, 2 classes, 2 features and 0.7 of separation between classes, obtaining

the predictions of Figure 4.1. In particular, in Figure 4.1(a) we can see how we start from β “ 0 (top left)

and we are increasing the regularization, in such a way that we reduce the overfitting and we manage

to improve the level of prediction in the test, since the model does not learn the training noise by heart.

If the parameter β is too small we have overfitting (top row) and if β is too large we have underfitting

(bottom row). In Figure 4.1(b) we can see the corresponding dual coefficients for each value of β.

Here, we can observe clearly how the Laplacian regularization reduces the dual coefficients towards a

constant value while reducing the differences between those corresponding to the closest points.

1https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
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(a) Decision boundary for a binary classification problem with different values of β.
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(b) Dual coefficients in classification changing the parameter β.

Figure 4.1: Synthetic classification problem for differents values of β, the Laplacian regularization

parameter.
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4.1.2 Regression

Next, we test the performance of Laplacian regularization in Hard Margin Fused Support Vector Re-

gressor (HM-FSVR), creating a noisy sinusoidal signal, as shown in Figure 4.2. As in the classification

case, in Figure 4.2(a) we see that we can sacrifice a bit of score in train (left), to obtain a better perfor-

mance when we evaluate the test points (right), that is, we are avoiding overfitting by increasing the β

regularization parameter. In Figure 4.2(b) we see again how the dual coefficients (in this case α´ α˚)

tend to a constant value as we increase the Laplacian parameter.
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(a) Train (left) and test (right) data for a sinusoidal signal fit with different β.
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(b) Dual coefficients in regression changing the parameter β.

Figure 4.2: Synthetic problem of sinusoidal signal with noise for differents values of β, the Laplacian

regularization term.
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4.2 Real datasets

In this part, we carry out experiments in which we compare the standard SVM with the new FSVM

proposal. In addition, in the comparison we also add the HM-FSVM model. It is clear to see that FSVM

includes the case of SVM (with β “ 0) and the case of HM-FSVM (model with sufficiently high C fixed).

The datasets we use are from the LIBSVM repository [30], where we obtain a total of 20 classification

and 7 regression datasets.

For greater reliability in the comparison, we use cross-validation with Sklearn’s gridsearchCV 2

function, which uses the hyper-parameters grid that we pass to optimize and returns the model with

the best cross-validation score and the best parameters. In addition, we perform an external cross-

validation with 5 folds, using different splits of train and test, with the aim of increasing the differences

in the scores and trying to make them depend as little as possible on the patterns intended for testing

(since in classification very differtent models may have the same hits and misses). Therefore, at the

end of the training, for each of the three models we have 5 cross-validation scores and 5 test scores,

which we can average to make comparisons between them.

We use the gaussian (rbf) kernel. We have a total of 4 hyper-parameters: two of the SVM (although

the parameter ε is only used in regression problems), one of the kernel and the other one of the

Laplacian. Names, range of values used in the grid search and definitons of each of them are the

following:

‚ C (C) P t10i : i P r´3, 5su: Penalty parameter for the error term.

‚ gamma (γ) P t10i : i P r´2, 2su: Kernel coefficient.

‚ epsilon (ε) P t10i : i P r´3,´2su: Width of insensitivity.

‚ beta (β) P t10i : i P r´6,´1su Y t0u: Laplacian regularization parameter.

The results of the (double) cross-validation for classification are found in Table 4.1. Here, we can

see that the average score obtained by FSVC is, in general, better than the standard SVC, except in

some ties, obtaining a better average performance of all datasets. The validation errors do not give an

idea of how the model will work in general, but it allows us to check how the FSVM contains the others

as a particular case. Looking at Table 4.2, we can see that the test results are similar to those of the

validation, but in this case the one that obtains the best average performance among all the datasets

is the HM-FSVC model, followed by FSVC. It seems that when optimizing a hyperparameter less the

difference between validation and test is smaller than in the case of the complete FSVM. Again, both

proposals improve the test score on average and on most of the datasets to the standard SVC.

In the case of regression, the cross-validation results are collected in Table 4.3, where we can see

a similar behavior to classification: on average, FSVR again achieves the best performance (because it

2https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
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Dataset CV mean FSVC (std) CV mean SVC (std) CV mean HM-FSVC (std)

a1a 0.833116 (0.0040) 0.828837 (0.0056) 0.833116 (0.0040)

a2a 0.822147 (0.0040) 0.817933 (0.0053) 0.820831 (0.0056)

a3a 0.838063 (0.0068) 0.836093 (0.0081) 0.836655 (0.0074)

australian 0.867078 (0.0088) 0.864044 (0.0079) 0.863619 (0.0090)

breast-cancer 0.978987 (0.0047) 0.977668 (0.0047) 0.978113 (0.0050)

diabetes 0.776250 (0.0082) 0.773520 (0.0108) 0.773547 (0.0073)

dna 0.938591 (0.0027) 0.937522 (0.0026) 0.937315 (0.0045)

german-numer 0.762388 (0.0125) 0.752836 (0.0092) 0.762388 (0.0125)

ionosphere 0.947234 (0.0079) 0.939574 (0.0083) 0.946383 (0.0064)

letter 0.917194 (0.0027) 0.915045 (0.0035) 0.917194 (0.0027)

leukemia 0.768000 (0.0588) 0.768000 (0.0588) 0.768000 (0.0588)

satimage 0.910871 (0.0028) 0.908717 (0.0040) 0.910669 (0.0026)

segment 0.969879 (0.0033) 0.968197 (0.0027) 0.969750 (0.0033)

sonar 0.858466 (0.0165) 0.858466 (0.0165) 0.854339 (0.0138)

splice 0.846567 (0.0109) 0.844478 (0.0108) 0.844179 (0.0095)

svmguide2 0.839071 (0.0146) 0.829942 (0.0162) 0.834470 (0.0206)

svmguide3 0.849059 (0.0088) 0.846668 (0.0080) 0.844965 (0.0087)

usps 0.931105 (0.0033) 0.928127 (0.0024) 0.931105 (0.0033)

vehicle 0.839910 (0.0118) 0.833579 (0.0134) 0.835308 (0.0091)

vowel 0.960370 (0.0078) 0.960370 (0.0078) 0.959227 (0.0063)

avg datasets 0.872717 0.869481 0.871059

Table 4.1: Table of cross-validation scores for classification datasets. In bold best score, in italics

second best.
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Dataset Test mean FSVC (std) Test mean SVC (std) Test mean HM-FSVC (std)

a1a 0.830943 (0.0080) 0.828679 (0.0079) 0.830943 (0.0080)

a2a 0.816578 (0.0114) 0.814171 (0.0152) 0.818182 (0.0123)

a3a 0.834030 (0.0172) 0.832510 (0.0136) 0.834221 (0.0161)

australian 0.848246 (0.0066) 0.845614 (0.0102) 0.861404 (0.0116)

breast-cancer 0.951327 (0.0074) 0.952212 (0.0090) 0.948673 (0.0127)

diabetes 0.773228 (0.0144) 0.766929 (0.0107) 0.774016 (0.0224)

dna 0.940693 (0.0035) 0.933333 (0.0073) 0.941126 (0.0037)

german-numer 0.761212 (0.0173) 0.758182 (0.0166) 0.760606 (0.0174)

ionosphere 0.936207 (0.0103) 0.927586 (0.0229) 0.936207 (0.0169)

letter 0.930667 (0.0051) 0.928606 (0.0042) 0.930667 (0.0051)

leukemia 0.600000 (0.1131) 0.600000 (0.1131) 0.600000 (0.1131)

satimage 0.917486 (0.0066) 0.911749 (0.0038) 0.918169 (0.0062)

segment 0.969069 (0.0062) 0.968021 (0.0051) 0.969069 (0.0062)

sonar 0.843478 (0.0462) 0.843478 (0.0462) 0.866667 (0.0108)

splice 0.870909 (0.0099) 0.867273 (0.0120) 0.868485 (0.0118)

svmguide2 0.841538 (0.0210) 0.821538 (0.0335) 0.835385 (0.0310)

svmguide3 0.834063 (0.0182) 0.834063 (0.0142) 0.831630 (0.0171)

usps 0.941780 (0.0031) 0.942081 (0.0034) 0.941780 (0.0031)

vehicle 0.830714 (0.0107) 0.830000 (0.0173) 0.822857 (0.0180)

vowel 0.984000 (0.0098) 0.984000 (0.0098) 0.984000 (0.0067)

avg datasets 0.862809 0.859501 0.863704

Table 4.2: Table of test scores for classification datasets. In bold best score, in italics second best.
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includes other ones), followed by HM-FSVR, both methods outperforming the standard SVR. Regarding

the test results in Table 4.4, we see that on average the HM-FSVR model obtain the best score, ahead

of FSVR and SVR, as was already the case in classification, since this regularization does not optimize

the C hyper-parameter. Both methods beat SVR on most of the cases.

Dataset CV mean FSVR (std) CV mean SVR (std) CV mean HM-FSVR (std)

abalone 0.574635 (0.0056) 0.561273 (0.0057) 0.574266 (0.0057)

bodyfat 0.972212 (0.0124) 0.972212 (0.0124) 0.959162 (0.0182)

eunite2001 0.837152 (0.0122) 0.829336 (0.0091) 0.837152 (0.0122)

housing 0.846917 (0.0163) 0.828358 (0.0178) 0.846595 (0.0168)

mg 0.711994 (0.0161) 0.697568 (0.0160) 0.711994 (0.0161)

mpg 0.884043 (0.0078) 0.877841 (0.0099) 0.883855 (0.0078)

pyrim 0.613715 (0.0986) 0.611296 (0.0995) 0.581545 (0.1099)

avg datasets 0.777238 0.768269 0.770653

Table 4.3: Table of cross-validation scores for regression datasets. In bold best score, in italics

second best.

Dataset Test mean FSVR (std) Test mean SVR (std) Test mean HM-FSVR (std)

abalone 0.560079 (0.0099) 0.541139 (0.0131) 0.559599 (0.0102)

bodyfat 0.978997 (0.0199) 0.978997 (0.0199) 0.969016 (0.0155)

eunite2001 0.826597 (0.0280) 0.817828 (0.0201) 0.826597 (0.0280)

housing 0.882388 (0.0225) 0.854382 (0.0323) 0.882406 (0.0225)

mg 0.716632 (0.0199) 0.694740 (0.0276) 0.716632 (0.0199)

mpg 0.872871 (0.0128) 0.872423 (0.0152) 0.872657 (0.0126)

pyrim 0.506383 (0.1577) 0.508999 (0.1581) 0.540581 (0.2298)

avg datasets 0.763421 0.752644 0.766784

Table 4.4: Table of test scores for regression datasets. In bold best score, in italics second best.

Regarding the obtained results, the datasets in which the standard SVM obtains a similar or better

test performance to HM-FSVM are where the β hyper-parameter chosen in cross-validation (see Ap-

pendix B) by FSVM is 0 (the particular case of standard SVM) or is the lower limit set in the gridsearch,

a value very close to 0. Therefore, when the problem data does not tend to produce overfitting and

the Laplacian regularization is not useful, it is the only case where the new FSVM proposal does not

produce an advantage.

In summary, we can see the comparisons between the methods in Table 4.5. Here, we can see that

FSVM and HM-FSVM have better test performance than SVM in 19 of 27 (Subtable 4.5(a)) and 20 of 27

(Subtable 4.5(b)) datasets, respectively. Regarding the comparison between FSVM and its particular
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case HM-FSVM (Subtable 4.5(c)), we see a total tie between wins, draws and losses, recalling the

slightly better HM-FSVM test average mentioned above.

Problem Wins FSVM Draws Wins SVM

Classification 14 4 2

Regression 5 1 1

Total 19 5 3

(a) FSVM vs SVM.

Problem Wins HM-FSVM Draws Wins SVM

Classification 14 2 4

Regression 6 0 1

Total 20 2 5

(b) HM-FSVM vs SVM.

Problem Wins FSVM Draws Wins HM-FSVM

Classification 6 7 7

Regression 3 2 2

Total 9 9 9

(c) FSVM vs HM-FSVM.

Table 4.5: Comparison of wins, draws and losses between models: FSVM, HM-FSVM and SVM.

Finally, Table 4.6 shows the ranking means of the models across the 27 datasets. We can see that

the new FSVM proposals have a similar performance, while the standard SVM clearly performs worse

in ranking. Furthermore, in Figure 4.3 we can see the ranking graph of the models, where it is illustrated

that the Critical Difference (CD) (using the Nemenyi test [35]) between two means is CD“ 0.6378. So, if

the difference between two means is greater than CD then it is significant. Therefore, we can conclude

that the ranking difference is significant between the SVM and the FSVM models and also between the

SVM and the HM-FSVM, but not between FSVM and HM-FSVM.

FSVM SVM HM-FSVM

avg ranking 1.6851 2.5740 1.7407

Table 4.6: Mean rankings obtained by the different models.
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Figure 4.3: Critical difference graph of models ranking.
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5
Conclusions and future work

In this chapter we explain the conclusions obtained from the comparative experiments between the

standard SVM and the new proposal with Laplacian regularization. Finally, a series of tasks that could

be carried out in the future are presented.

5.1 Conclusions

The objective of this Master Thesis was to introduce a Laplacian regularizer in the dual space for a

Support Vector Machine (SVM). The idea was to penalize the differences of the dual coefficients based

on their proximity, taking into account the kernel function as the weight for the Laplacian, because close

patterns should also have close coefficients, as this would give the model a feeling of stability. To

include this new regularizer, we have added a kernel extension in the dual formulation of the standard

SVM, so that we obtain a dual expression that depends on the original kernel and the Laplacian term.

We have checked the performance of this approach in synthetic datasets. First, we have created

some synthetic datasets for classification and regression. With them we could observe the effect of the

new regularizer to avoid overfitting and improve test prediction, using the Hard Margin Fused Support

Vector Machine (HM-FSVM) model, where C is set high enough to only take into account the Laplacian

term. We have also observed how the differences of the dual coefficients decrease to 0 (that is, the

coefficients tend to be constant) as the regularized parameter β increases, as it was to be expected.

We have also worked with real datasets from the LIBSVM repository, which we have used to com-

pare the new proposal with dual regularization, the Fused Support Vector Machine (FSVM), against the

standard SVM. In this comparison we have also included the particular case HM-FSVM to see if it was

enough just to use the Laplacian term. After performing a double cross-validation (internal and external)

to adjust the hyperparameters, we have observed that the new FSVM and HM-FSVM approaches beat

the standard SVM in test in more than 70% of the cases, while SVM only beat the new proposals in less

than 15% of the datasets. Regarding the averages, the HM-FSVM model is the one that obtains the

best average test score in both classification and regression problems, closely followed by the FSVM.

This seems to be due to the fact that when optimizing one hyperparameter less, the difference between
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validation and test is smaller than in the case of the complete FSVM.

Closely examining the cross-validation results, we have been able to observe that in the datasets

where the standard SVM equals or improves on our proposals, it is because the beta parameter chosen

is 0 or a value very close to 0, corresponding to the lowest value set in the gridsearch. Therefore, in

these cases the Laplacian regularizer was not useful, as the problem did not tend to cause overfitting,

so adding the additional regularizer was not helpful. In all other cases, it can be concluded that the

Laplacian regularizer in the dual space is quite useful to avoid overfitting and to improve the prediction

in test. An important detail is that FSVM has one more hyperparameter than the standard SVM, so it is

more computationally expensive, but HM-FSVM has the same number of parameters as SVM, therefore

it gets better performance without having a larger computational cost.

5.2 Future work

We have used a total of 27 classification and regression datasets and with a moderate size of both

characteristics and samples. Experiments could continue to be carried out by increasing the collection

of datasets, testing for example with different types of problems: with a considerably greater number of

predictors than patterns, with several thousand samples to train, etc.

A more exhaustive comparison could also be made between FSVM and HM-FSVM, as they have

performed very similarly in experiments. In this way, it could be analyzed if it compensates the effort

of optimizing the extra parameter of FSVM, or if, on the contrary, the performance in general is usually

comparable or even worse than HM-FSVM.

Another option that could be carried out in the future is the implementation directly in the LIBSVM

library, to avoid having to pre-calculate the training kernel with the Laplacian term and later redefine it

as the original kernel to predict.

Finally, it may be interesting to study the relationship between the Laplacian regularizer and the

number of support vectors. For example, if β is very large, the dual coefficients will tend to be constant

but they will all be support vectors if C is large enough or perhaps there will be no support vectors (every

α will be 0) if C is too small. In general, with β tending to infinity it should give a weighted average of

the coefficients.
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Acronyms

CD Critical Difference.

CNN Convolutional Neural Network.

DNN Deep Neural Networks.

FSVC Fused Support Vector Classifier.

FSVM Fused Support Vector Machine.

FSVR Fused Support Vector Regressor.

GFL Graph Fused Lasso.

HM-FSVC Hard Margin Fused Support Vector Classifier.

HM-FSVM Hard Margin Fused Support Vector Machine.

HM-FSVR Hard Margin Fused Support Vector Regressor.

LARS Least Angle Regression.

LS-SVM Least Squares Support Vector Machine.

ML Machine Learning.

MLP Multilayer Perceptron.

MSE Mean Squared Error.

NN Neural Networks.

QP Quadratic Programming.

RKHS reproducing kernel Hilbert space.

RL Regularized Learning.

RSS Residual Sum of Squares.

SMO Sequential Minimal Optimization.

SVC Support Vector Classifier.

SVM Support Vector Machine.

SVR Support Vector Regressor.

VC Vapnik-Chervonenkis.
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Code

Code A.1: Code of Fused SVC class that inhterits from standard SVC.

1 class FusedSVC(SVC):
2 """Fused-Support Vector Classification.
3 Similar to SVC but uses a parameter beta to control the differences of dual coefficients.
4 Parameters
5 ----------
6 beta : float, default=0.
7 Control the penalty term of differences of dual coefficients.
8 """
9 def __init__(self, *, beta=0., C=1.0, kernel='rbf', degree=3, gamma='scale', coef0=0.0,

10 shrinking=True, probability=False, tol=1e-3, cache_size=200,
11 class_weight=None, verbose=False, max_iter=-1, decision_function_shape='ovr',
12 break_ties=False, random_state=None):
13

14 #add new parameter
15 self.beta = beta
16 #copy of original kernel
17 self.svc_kernel = kernel
18

19 super().__init__(
20 C=C, kernel=kernel, degree=degree, gamma=gamma, coef0=coef0, shrinking=shrinking,
21 probability=probability, tol=tol, cache_size=cache_size, class_weight=class_weight,
22 verbose=verbose, max_iter=max_iter, decision_function_shape=decision_function_shape,
23 break_ties=break_ties, random_state=random_state)
24

25 def fit(self, X, y=None, sample_weight=None, **params):
26 """ Override fit function with laplacian train kernel
27 """
28

29 def fused_kernel(X, Y=None):
30

31 if(self.svc_kernel == 'linear'):
32 K = pairwise_kernels(X=X, Y=Y, metric=self.svc_kernel)
33 elif(self.svc_kernel == 'rbf'):
34 K = pairwise_kernels(X=X, Y=Y, metric=self.svc_kernel, gamma = self.gamma)
35 elif(self.svc_kernel == 'poly'):
36 K = pairwise_kernels(X=X, Y=Y, metric=self.svc_kernel, gamma = self.gamma,
37 degree = self.degree, coef0 = self.coef0)
38 D = np.diag(K.sum(axis=0))
39 L = D -K
40 kernel_train = K + self.beta*L
41

42 return kernel_train
43

44 #save and calculate the original kernel
45 self.kernel = fused_kernel
46 #fit parent SVC
47 super().fit(X=X, y=y)
48 #restore the original kernel for predict
49 self.kernel = self.svc_kernel
50 #set support_vectors attribute
51 self.support_vectors_ = np.float64(X[self.support_])
52 self._gamma = self.gamma
53

54 return self
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Code A.2: Code of Fused SVR class that inhterits from standard SVR.

1 class FusedSVR(SVR):
2 """Fused-Support Vector Regression.
3 Similar to SVR but uses a parameter beta to control the differences of dual coefficients.
4 Parameters
5 ----------
6 beta : float, default=0.
7 Control the penalty term of differences of dual coefficients.
8 """
9 def __init__(self, *, beta=0., C=1.0, kernel='rbf', degree=3, gamma='scale',

10 coef0=0.0, shrinking=True, tol=1e-3, cache_size=200, epsilon=0.1,
11 verbose=False, max_iter=-1):
12

13 #add new parameter
14 self.beta = beta
15 #copy of original kernel
16 self.svr_kernel = kernel
17

18 super().__init__(
19 C=C, kernel=kernel, degree=degree, gamma=gamma, epsilon=epsilon,
20 coef0=coef0, shrinking=shrinking, tol=tol, cache_size=cache_size,
21 verbose=verbose, max_iter=max_iter)
22

23

24 def fit(self, X, y=None, sample_weight=None):
25 """ Override fit function with laplacian train kernel
26 """
27

28 def fused_kernel(X, Y=None):
29

30 if(self.svr_kernel == 'linear'):
31 K = pairwise_kernels(X=X, Y=Y, metric=self.svr_kernel)
32 elif(self.svr_kernel == 'rbf'):
33 K = pairwise_kernels(X=X, Y=Y, metric=self.svr_kernel, gamma = self.gamma)
34 elif(self.svr_kernel == 'poly'):
35 K = pairwise_kernels(X=X, Y=Y, metric=self.svr_kernel, gamma = self.gamma,
36 degree = self.degree, coef0 = self.coef0)
37 D = np.diag(K.sum(axis=0))
38 L = D -K
39 kernel_train = K + self.beta*L
40

41 return kernel_train
42

43 #save and calculate the original kernel
44 self.kernel = fused_kernel
45 #fit parent SVR
46 super().fit(X=X, y=y)
47 #restore the original kernel for predict
48 self.kernel = self.svr_kernel
49 #set support_vectors attribute
50 self.support_vectors_ = np.float64(X[self.support_])
51 self._gamma = self.gamma
52

53 return self
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B
External cross-validation
parameters

Dataset β CV1 β CV2 β CV3 β CV4 β CV5

a1a -3 -4 -2 -4 -3

a2a -4 -4 -3 -4 -3

a3a -4 -5 -4 -4 -6

australian -6 -6 -5 -6 -2

breast-cancer -2 -6 -6 -3 -2

diabetes -6 -3 -6 -6 -3

dna -3 -4 -4 -6 -6

german-numer -3 -3 -3 -4 -6

ionosphere -3 -2 -2 -6 -3

letter -4 -4 -4 <NA> -4

leukemia -6 -6 -6 -6 -6

satimage -3 -6 -3 -3 -3

segment -4 -5 -6 -4 -5

sonar -6 -6 -6 -6 -6

splice -4 -4 -4 -6 -5

svmguide2 -2 -3 -2 -4 -2

svmguide3 -4 -5 <NA> <NA> -4

usps -3 -3 -3 -4 -3

vehicle <NA> -5 -5 -4 -5

vowel -6 -6 -6 -6 -6

Table B.1: Table of best Laplacian parameter β chosen by cross-validations for Fused Support Vector

Classifier (FSVC). The results are in log scale, so the cells with <NA> correspond to β “ 0.
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External cross-validation parameters

Dataset β CV1 β CV2 β CV3 β CV4 β CV5

a1a -3 -4 -2 -4 -3

a2a -4 -4 -3 -4 -3

a3a -4 -4 -4 -4 -4

australian -4 -3 -4 -4 -4

breast-cancer -1 -2 -4 -3 -2

diabetes -5 -3 -4 -1 -5

dna -3 -4 -4 -6 -3

german-numer -3 -3 -3 -4 -3

ionosphere -3 -4 -2 -2 -3

letter -4 -4 -4 <NA> -4

leukemia -6 -6 -6 -6 -6

satimage -3 -3 -3 -3 -3

segment -4 -5 -4 -4 -5

sonar -6 -6 -6 -6 -6

splice -4 -4 -4 -6 -4

svmguide2 -4 -3 -2 -4 -3

svmguide3 -4 -5 -5 -5 -4

usps -3 -3 -3 -4 -3

vehicle -4 -4 -5 -4 -5

vowel -6 -6 -6 -6 -3

Table B.2: Table of best Laplacian parameter β chosen by cross-validations for Hard Margin Fused

Support Vector Classifier (HM-FSVC). The results are in log scale, so the cells with <NA> correspond

to β “ 0.

Dataset β CV1 β CV2 β CV3 β CV4 β CV5

abalone -4 -5 -6 -3 -3

bodyfat <NA> <NA> <NA> <NA> <NA>

eunite2001 -5 -5 -5 -5 -5

housing -4 -4 -4 -4 -4

mg -2 -3 -3 -3 -3

mpg -2 -2 -4 -4 -5

pyrim <NA> -3 -5 <NA> <NA>

Table B.3: Table of best Laplacian parameter β chosen by cross-validations for Fused Support Vector

Regressor (FSVR). The results are in log scale, so the cells with <NA> correspond to β “ 0.
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Dataset β CV1 β CV2 β CV3 β CV4 β CV5

abalone -4 -5 -6 -3 -3

bodyfat -4 -5 -4 -5 -4

eunite2001 -5 -5 -5 -5 -5

housing -4 -4 -4 -4 -4

mg -2 -3 -3 -3 -3

mpg -2 -2 -4 -4 -5

pyrim -3 -3 -4 -2 -6

Table B.4: Table of best Laplacian parameter β chosen by cross-validations for Hard Margin Fused

Support Vector Regressor (HM-FSVR). The results are in log scale, so the cells with <NA> corre-

spond to β “ 0.
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