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Abstract: One of the main decisions when making a digital design is which arithmetic is going
to be used. The arithmetic determines the hardware resources needed and the latency of every
operation. This is especially important in real-time applications like HIL (Hardware-in-the-loop),
where a real-time simulation of a plant—power converter, mechanical system, or any other complex
system—is accomplished. While a fixed-point gets optimal implementations, using considerably
fewer resources and allowing smaller simulation steps, its use is very restricted to very specific
applications, as its design effort is quite high. On the other side, IEEE-754 floating-point may
have resolution problems in case of the 32-bit version, and excessive hardware usage in case of the
64-bit version. This paper presents LOCOFloat, a low-cost floating-point format designed for FPGA
applications. Its key features are soft normalization of the results, using significand and exponent
fields in two’s complement. This paper shows the implementation of addition, subtraction and
multiplication of the proposed format. Both IEEE-754 versions and LOCOFloat are compared in
this paper, implementing a HIL model of a buck converter. Although the application example is a
HIL simulator, other applications could take benefit from the proposed format. Results show that
LOCOFloat is as accurate as 64-bit floating-point, while reducing the use of DSPs blocks by 84%.

Keywords: emulation; floating-point arithmetic; fixed-point arithmetic; field programmable gate array

1. Introduction

Most FPGA (Field Programmable Gate Array) designs must meet some area or speed constraints.
Indeed, usually a trade-off between both requirements has to be reached. This compromise appears
especially in real-time applications, such as digital control, live audio and video processing and HIL
(Hardware-in-the-loop) applications. Apart from the algorithm complexity, the arithmetic plays a
leading role, because its complexity determines the latency of every mathematical operation and the
required area.

The arithmetics can be divided into two big groups: fixed-point and floating-point. Fixed-point
provides an optimal approach in FPGAs, minimizing area and maximizing speed, so many examples in
the literature use it [1–6]. However, floating-point provides a bigger dynamic range, adapting the point
location as it is required. Besides, for the designer it is easier to use floating-point, because it is not
required to think in advance the numeric range required by the application. Another important reason
to prefer floating-point over fixed-point is that the former optimizes its resolution using a couple of
fields that defines the mantissa and exponent along with normalization, based on scientific notation.
However, fixed-point has a fixed resolution defined at design time. Anyway, the total variable width
should be taken into account to prevent resolution issues in both cases.

Therefore, floating-point is the first choice when area and time constraints can be met, so many
proposals use it [7–9]. As the overhead of floating-point is high, several algorithms to implement
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floating-point operators in an optimized way—in area or latency—can be found in the literature,
for example [10,11]. In [10] an optimized multiplier architecture to be implemented in Xilinx FPGAs is
presented, and in [11] a quadruple precision divider architecture is shown. While those optimization
algorithms improve the default floating-point synthesis results, they are ad-hoc operators that have
to be integrated in the desired design, including the code, or instantiating external IP (Intellectual
Property) cores. Therefore, it is not a straightforward approach.

With the aim of reducing the floating-point latency, in the recent years, HFP (Hardened
Floating-Point) cores have been included in some FPGA families like in Intel Arria 10 [12], and some
works already use them [13,14]. The main advantage of HFP is that they are implemented in silicon,
offering optimal latency results, but it is a considerably more expensive approach and the number
of HFP cores is limited. When HFP cores are not available, which is at the moment, the common
case, floating-point is normally implemented using the standard HDL libraries. Until some years
ago, standard VHDL float package—based on the floating-point standard IEEE-754—included in
the standard VHDL-2008 [15] could not be synthesized in many synthesizers. Apart from that,
their implementation results were very poor, creating slow and big designs [16]. Recently, synthesis
tools have made optimized implementations of floating-point, reducing the speed gap between
both arithmetics. Where fixed-point arithmetic still gets much better results even now is regarding
hardware usage [17]. Therefore, the resource usage of IEEE-754 floating-point is still a bottleneck for
complex algorithms.

As can be seen, there is a trade-off between speed, area and design effort, so the requirements
of the application determine the choice of the arithmetic. This paper presents LOCOFloat (Low-Cost
Floating-point) format, which implements a floating-point arithmetic specially designed for FPGA
implementation. Avoiding the overhead of the IEEE-754 floating-point standard that implements a
lot of operators, with many special cases checking (e.g., NAN: Not a Number checks), rounding
and normalization, the proposed format requires much fewer resources, while keeping high
numerical accuracy.

In this paper, LOCOFloat is applied to an HIL simulator, but it can be used in many other
applications. HIL simulators allow for testing, in real-time, the controller along with a mathematical
model of the plant, instead of using the real power converter, meeting the requirements of safety, speed,
and reliability. The growth of HIL is summarized by Vijay et al. [18], who presented an extensive
review of simulation alternatives for microgrids, showing the consolidated use of HIL in power
electronics. Anyway, HIL is applied to many fields inside power electronics, with examples of Packed
U-Cell Converters (PUC) [19], resonant LLC models [20], battery management [21], renewable energy
plants [18], modular multilevel converters [22], simple power converters [23], etc.

Therefore, this paper presents the details of LOCOFloat format. Its key features are the use of 50-bit
mantissa in two’s complement and soft-normalization. This paper only shows the implementation
details of addition, subtraction and multiplication. Besides, in the proposed model, NaN and other
special cases are not needed, as only the aforementioned operations are implemented, and the inputs
are not expected to be NaN. This simplification provides better area and time results.

This paper also presents a thorough comparison with the standard 32-bit and 64-bit floating point.
For the comparison, a real-time mathematical model of a buck converter with electrical losses is used,
showing the hardware usage and accuracy results of all the arithmetics.

The rest of the article is organized as follows: Section 2 shows how to model a power converter
using Explicit Euler method. Section 3 details the available standard arithmetics that are available
for FPGAs. Section 4 shows the proposed arithmetic format. The experimental results are shown in
Section 5 and, finally, the conclusions are shown in Section 6.

2. Model of the Power Converter

In this paper, the proposed floating-point format is applied to model a synchronous buck converter,
as shown in Figure 1a. The modeling of electrical losses is not always critical for high-level simulations
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and many commercial tools and papers in the literature do not take them into account in order to
simplify the calculi. However, there is no doubt that the inclusion of electrical losses leads to more
accurate models. Therefore, in this paper, a model including electrical losses is presented, as shown in
Figure 1b.

vg

iL

-

+ C Rout

+

-

L

vC

voHSM

LSM

iin

(a) Ideal topology

vg

iL

-

+

C

Rout

+

-

L

vC
Rdson

RL

RC
voHSM

LSM

Rdson

iin

RD

vD

VD RD

(b) Including electrical losses

Figure 1. Topology of a synchronous Buck converter.

The converter can be modeled by analyzing its state variables. As there are two first-order
elements—inductor and capacitor—their behaviors can be analyzed to extract the equations of the
system. The voltage-current relationships of the inductors and capacitors are:

vL = L · δiL
δt

iC = C · δvc

δt

(1)

where vL and iL are the inductor voltage and current, respectively, iC and vC are the capacitor current
and voltage, respectively. These ordinary differential equations (ODE) can be translated into difference
equations using several numerical methods, for instance, Explicit Euler. Although there are more
accurate and stable methods, Explicit Euler does not present issues when the simulation time is
small enough [24]. The equations can be rearranged in order to extract the state variables, iL and vC,
as follows: 

iL(k) = iL(k− 1) +
∆t
L
· vL(k− 1)

vC(k) = vC(k− 1) +
∆t
C
· iC(k− 1)

(2)

In the previous equations, ∆t is the simulation step which is constant in the proposed system.
As the buck converter is a switched topology, the equations cannot be applied directly but after
evaluating the states of the switches. There are two main conduction states: the conduction of high
or low MOSFETs (HSM or LSM, respectively). Besides, complementary cases can be modeled when
both MOSFETs are not conducting, which is usual if the controller applies deadtimes. For every case,
the terms vL(k− 1) and iC(k− 1) are calculated before updating the state variables. In the case of the
ideal model (Figure 1a) , the terms vL(k− 1) and iC(k− 1) can be calculated as follows:

vL(k− 1) =



vg(k− 1)− vc(k− 1)⇒ HSM = on & LSM = o f f

−vc(k− 1)⇒ HSM = o f f & LSM = on

vg(k− 1)− vc(k− 1)⇒ HSM = o f f & LSM = o f f & iL(k− 1) < 0

−vc(k− 1)⇒ HSM = o f f & LSM = o f f & iL(k− 1) > 0

0⇒ HSM = o f f & LSM = o f f & iL(k− 1) = 0

iC(k− 1) = iL(k− 1)− iR(k− 1)

(3)
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When the electrical losses are included, the equations to be applied are:

vL(k− 1) =



vg(k− 1)− vo(k− 1)− iL(k− 1) ∗ (Rdson + RL)⇒ HSM = on & LSM = o f f

−vo(k− 1)− iL(k− 1) ∗ (Rdson + RL)⇒ HSM = o f f & LSM = on

vg(k− 1)− vo(k− 1)− iL(k− 1) ∗ (Rd + RL)− vD ⇒ HSM = o f f &

LSM = o f f & iL(k− 1) < 0

−vo(k− 1)− iL(k− 1) ∗ (Rd + RL)− vD ⇒ HSM = o f f &

LSM = o f f & iL(k− 1) > 0

0⇒ HSM = o f f & LSM = o f f & iL(k− 1) = 0

iC(k− 1) = iL(k− 1)− iR(k− 1)

(4)

The previous equation uses the output voltage (vo) instead of the capacitor voltage (vc) in order
to simplify the calculi. Taking into account that the output voltage should be an output of the model
anyway, no more calculi are needed. vo can be calculated with the following equation:

vo(k− 1) = vC(k− 1) + iC(k− 1) ∗ RC (5)

3. Available Standard Arithmetics for FPGAs

The equations presented in Section 2 must be applied to every simulation step. When the
simulation must be executed in real-time, the latency of those operations defines the smallest simulation
step that can be used. Likewise, the latency of the operations depends on the complexity of the model
but also on the arithmetic that is chosen. As in software, the FPGA-based HIL implementations can
use fixed-point or floating-point arithmetics. In the case of FPGAs and taking into account the VHDL
language, there are three main options:

1. Real type: The Real type is a non-synthesizable arithmetic which uses double-precision
floating-point. As it uses 64 bits for every signal, its accuracy is good enough for any HIL
simulation. However, as it cannot be synthesized into an FPGA, its use is only restricted to
software simulation, not achieving real time.

2. Fixed-point: Fixed-point simulations achieve optimized models in terms of latency (simulation
step) and the use of hardware resources. However, the cost, in terms of design time,
of implementing a model with fixed-point arithmetics is quite high, not being reasonable to
use it in many cases.

3. Synthesizable floating-point: This is a common choice as it is synthesizable while the design
effort is reasonably low. However, the resource usage is excessively high in many cases. It can be
implemented using the standard Float library included in the standard VHDL2008 [15].

As it can be deduced from the previous enumeration, standard synthesizable floating-point
should be the first option in any design, and fixed-point arithmetic will be taken into account only
if the user application has hard simulation step requirements. The aim of this paper is to define a
new floating-point implementation optimized to be used in FPGAs, reducing the hardware resources
usage. This can be achieved by removing significand roundings and normalizations, and the control of
special numbers such as infinite, NaN (Not a Number), etc, which are not needed in this and many
other applications.

3.1. IEEE-754 Floating-Point Basis

IEEE-754 floating-point numbers follow the format shown in Figure 2. In that standard, there is a
sign bit and two other fields: exponent and significand. Merging all of them, the number is interpreted
using scientific notation (±signi f icandx2exponent). IEEE-754 standard format is not optimized for FPGA
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implementation for several reasons. First of all, the number should be coded and decoded to perform
a numerical operation. Besides, the number is not formatted in fixed-point (two’s complement or
sign/magnitude notation), so the operations cannot take direct advantage of the embedded DSPs
(Digital Signal Processor) present in FPGAs. Finally, the special number detection (NaN, infinite, etc.)
adds some latency to every operation. While this detection is useful in many applications, in the case
of HIL simulations of power converters, the designer does not need it.

sign exponent significand

Single 1 bit 8 bits 24 bits

Double 1 bit 11 bits 53 bits

Quadruple 1 bit 15 bits 113 bits

Figure 2. IEEE-754 floating-point format.

3.2. IEEE-754 Addition, Subtraction and Multiplication

The IEEE-754 standard offers all the basic operations that can be done with real numbers:
addition/subtraction, multiplication/division, arithmetic comparison, etc. The IEEE-754 standard
hardware implementation is not trivial as it uses sign-magnitude notation. Besides, it is a very
sequential algorithm as the exponent bias, normalization, exception handling and other features,
are almost always executed in order, making it a robust but slower arithmetic. Figure 3 shows
an overview of the algorithm used to perform additions, subtractions and multiplications in the
IEEE-754 standard. The decomposition and composition of the number, the normalization and
rounding operations and the special number detection lead to a robust but slow arithmetic for
FPGA implementation.

Add implicit 
signi�cand bit

Signi�cand 
aligment 

(reading exp)

add/subtract
signi�cands

Signi�cand 
normalization

Special 
number

detection and 
compose

Signi�cand
Rounding

(a) IEEE-754 Addition/Subtraction

Add implicit 
signi�cand bit

Signi�cand 
normalization

Special 
number

detection and 
compose

Signi�cand
Rounding

- Multiply  
   signi�cands
- Add exponents
- Compute sign

Signi�cand 
renormalization

(b) IEEE-754 Multiplication

Figure 3. IEEE-754 algorithm for adding/subtracting and multiplying.

4. LOCOFloat: Low-Cost Floating-Point Format

The proposed floating-point format, LOCOFloat, contains just a couple of fields: the point
location—which plays the role of the exponent—and the significand, as seen in Figure 4. The former
defines how many fractional bits the significand has. The latter—significand—represents the number
and contains the integer and the fractional parts of the number. A higher point location field implies a
smaller absolute number, contrary to the exponent field in IEEE-754. Both fields are represented in
two’s complement, allowing positive and negative numbers and point locations. The width of the
significand is variable, as can be seen in Figure 4, but the point location field is always represented with
8 bits in our case. Internally, the significand is virtually considered as an integer number achieving
fast arithmetic operations. However, the significand indeed is a fixed-point number but with a
variable point location thanks to the second field. This is why this format uses hardware resources
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comparable to fixed-point and well below IEEE-754 floating-point, while maintaining the advantages
of floating-point.

point loca�on significand

8 bits 50 bits

8 bits 25 bits

State variables
Other variables

Figure 4. LOCOFloat floating-point format.

Table 1 shows several examples of the proposed format. The third example of the table shows a
number with a negative point location (-6) so there are six integer bits missing in the number, allowing
the number to get high values. Likewise, the fourth example shows a high positive point location (46)
so the number, in this case, is around 10−11.

Table 1. Examples of the proposed format.

Significand Point Location Binary Value Decimal Value

0100110010012 (122510) 00001012 (510) 0100110.01001 38.28125
11111110110010002 (−31210) 00001112 (710) 111111101.1001000 −2.4375

0110011010012 (164110) 11110102 (−610) 011001101001******. 105.024
0111111110012 (204110) 01011102 (4610) 0.00[..]011111111001 2.900435 · 10−11

LOCOFloat is based on floating-point but its implementation is based only on two parts
(significand and point location), both of them in two’s complement. Because of that, the format
can be used almost directly with adders and multipliers already embedded in FPGAs. The operators
defined in this paper are adapted to every possible signal width, and the width of both operands does
not need to match.

Figure 5 shows the internal architecture of an adder/subtractor and a multiplier. As can be
seen, all operators receive both parts of the number: significand and point location. In the case of
the addition and subtraction (Figure 5a), the inputs should be point-aligned before being operated.
This can be done with a barrel shifter which shifts to the right the operand with a greater number
of fractional bits. The number with more fractional bits is the one that is right-shifted so a right
shift aligns the point locations. A left shift of the number with fewer fractional bits cannot be done
because overflow may be produced. The barrel shifters are implemented with six conditional shifters
in series that provide 0–63 bit shifts controlled by six control bits called Shx, as it can be seen in
Figure 6. The barrel shifters are managed by the Shifter Controller seen in Figure 5a. For instance, if the
point location of OP1 is 15 while the point location of OP2 is 3, OP1 should be right shifted 12 places.
Therefore, the Shifter Controller will generate the following control command for the barrel shifter:
Sh5Sh4Sh3Sh2Sh1Sh0 = 001100.

OP1

OP2

Barrel
shifter

Barrel
shifter

sOP1

sOP2

Shifter
controller

Over�ow
controller

R

sR

(a) Adder/subtractor

OP1

OP2

eOP1

eOP2

R

eR

(b) Multiplier

Figure 5. Adder/Subtractor and multiplier for the proposed format.



Electronics 2020, 9, 81 7 of 15

After aligning the points, the numbers can be added or subtracted, and the resulting point location
is equal to the lowest operand point location. An overflow checking should be implemented after the
operation and, if needed, the result is right-shifted one bit, adjusting the point location. Finally, as it
will be seen at the end of this section, this method implements a soft-normalization, where the results
are shifted one bit every clock cycle instead of implementing a variable shift.

32-bit shifterEn 16-bit shifter En

8-bit shifter En4-bit shifterEn

2-bit shifterEn 1-bit shifter En

Input

Shifted output

Sh5

Sh3

Sh1

Sh4

Sh2

Sh0

Figure 6. Barrel shifter used to align the operand points.

Regarding the latency, the barrel shift to align the points before the operation is composed of
log2(n) multiplexers, where n is the number of bits of the operand. Apart from the multiplexers,
there are also log2(n) shifters with fixed shifting so they are quite fast. The arithmetic operation of
addition/subtraction can be done in the DSPs embedded in the FPGA or it can be implemented with
the logic resources of the FPGA which have also an optimized architecture for both operations. Finally,
the overflow controller only adds a multiplexer and a simple -1 adder in the case that an overflow is
detected—so the point should be adjusted. The latency and area results of the proposed operations are
shown in Section 5.

Figure 5b shows the proposed architecture of the multiplier, which is simpler. In the case of
the multiplication, the significands can be multiplied directly without any alignment. Likewise,
the numbers of fractional bits are added directly, obtaining the final point location. In this case,
overflow is not possible as the result size will be the sum of both input operands, so no control is
needed. Therefore, there are two arithmetic modules inside a multiplication. As both are executed in
parallel, their latencies are not added, but only the biggest is taken into account. The multiplication
can be also implemented using the DSPs embedded in the FPGA.

As it was mentioned before, the proposed architecture allows the user to decide the width of
every operand. However, those widths affect the latency of the blocks. If the designer chooses
operands which fit into the FPGA DSPs, the latency can be notably lower. For instance, the latency of
addition using the DSPs of a Xilinx Artix 7 FPGA (speed grade 1) is around 2 ns, while the latency
of multiplication is around 5 ns [25]. Those latencies only take into account the core addition or
multiplication of the module, without the rest of the logic of the proposed format, or the routing delay.

The point location checking of the addition and subtraction is conservative, just aligning the points,
and the last overflow control avoids that overflow condition but it does not guarantee that the result
is written in an optimal notation. In other words, one number can be written in many ways, like 4.5,
which can be written with “0001001” with 1 fractional bit, with “0010010” with two fractional bits,
or “0100100” with 3 fractional bits, for example. As in the next additions or subtractions, shift alignment
may be done, it is better to store the number with the highest possible number of fractional bits, in a
process similar to normalization. Instead of including this normalization in every operation, it is
included in the state variables storage. After some calculi, the value will be written in the state
variables, as it was shown in Equation (4). Just before that, this format applies a soft normalization.
Trying to obtain in one step a number starting with “01” for positive or “10” for negative values
would lead to many possible different shifts. In order to reduce resources and latency, LOCOFloat
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only shifts one position per clock cycle if the value to be stored in the register (state variable) is not
normalized, following Table 2. In the second and third examples of the table, the final normalization
is obtained in one single cycle. However, in the first example, several cycles will be necessary until
the optimum format is reached. As the normalization is applied only to state variables, which have
only smalls variations from cycle to cycle, this limitation does not affect the overall accuracy. The only
case in which the soft normalization is suboptimal is when the state variable value is changed by a
factor greater than 2 in a single cycle. Right shifters are not needed for soft normalization because the
proposed operations already make right shifts when it is necessary. The soft normalization is enough
in this application but other applications may require hard normalization. In that case, another barrel
shifter would be included instead.

Table 2. Soft normalization rules for LOCOFloat.

Number Leading with Action Explanation Example

Before soft-norm After soft-norm

00 Left shift Positive number with Mantissa: 00001010010 Mantissa: 00010100100

suboptimal notation Point location: 6 Point location: 7

11 Left shift Negative number with Mantissa: 110100101101 Mantissa: 10100101101

suboptimal notation Point location: 4 Point location: 5

Other Nothing No overflow risk Mantissa: 011100110101 Mantissa: 011100110101
possibilities Point location: 7 Point location: 7

The proposed implementation of this numerical format is without pipelining. In all equations
shown in Equation (4), the state variables need their previous value or the value from the other state
variable. Therefore, the pipeline approach is not useful in this application, where the latency, but not
the throughput, is important. Considering that no pipelining is used, the soft normalization in the
state variables can move the point location one place in every operation—which corresponds to one
clock cycle.

5. Experimental Results

In this section the implementation details of a synchronous buck converter with losses are
explained. Besides, a thorough comparison between 32-bit and 64-bit standard floating-point and
LOCOHIL is accomplished. The state variables should be updated every simulation step and, in the
proposed model, the simulation step is directly managed by the system clock.

Figure 7 shows the architecture of the proposed buck converter model with losses.
The implementation is a direct translation to digital electronics of the equation system (4). The choice
between different formulas is done with multiplexers, and the state variables are stored in registers.
All the signals but the state variables are represented in LOCOFloat with 25 bits for the significand
field and 8 for the exponent (8/25 signals marked with continuous line in Figure 7). The state variables,
as they need much more resolution, as explained in [16], have 50 bits for the significand and 8 for the
exponent (8/50 signals marked with dashed lines in Figure 7). Therefore, the accuracy obtained is
equivalent to IEEE-754 with a custom format of 1 sign bit, 8 exponent bits and 48 significand bits in the
state variables, and 23 significand bits for the rest of variables. The two-bit difference in the significand
field between LOCOFloat and IEEE-754 comes from the sign bit—embedded in LOCOFloat—and that
LOCOFLoat does not have any implicit “1” in the most significant bit of the significand.

The minimum simulation step that can be achieved depends on the complexity of the model
and the arithmetic that is used. In particular, the minimum simulation step is defined by the critical
path, that is, the path with the longest delay between two registers. In the proposed implementation,
the critical path starts in the register that outputs the capacitor voltage value (vC) and finishes in
the input of the register that stores the inductor current (iL). This critical path has been marked in
the figure.
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The 32-bit and 64-bit standard floating-point and LOCOFloat models have been implemented
in a Xilinx FPGA Zynq 7 (XC7Z010-1CLG400C) in order to get the utilization of the device and the
minimum simulation step. All models have been implemented using the standard VHDL-2008 and
the IDE Vivado 2018.3 with the standard Xilinx synthesizer. Table 3 shows the synthesis results of the
model using all the considered arithmetics. Although it is not the main aim of this paper, a fixed-point
implementation has been also included in Table 3 to compare it with the LOCOFloat and floating-point
approaches. For the fixed-point design, the standard fixed_pkg of VHDL-2008 is used and the widths
in the state variables are 50 bits while the inputs are 25-bit wide, like in LOCOFloat. It can be shown
that LOCOFloat is slower than the standard floating-point arithmetic and it uses more LUTS, but the
DSP usage is drastically reduced, especially when it is compared with 64-bit floating point (84% fewer
DSPs). It should be noticed that DSP usage is the first limit reached by these arithmetic-based designs.
Hence, the 64-bit floating-point model will be constrained by the number of DSPs available in the
FPGA, not allowing the designer to implement complex power converter models. On the other hand,
the hardware usage of LOCOFloat and 32-bit floating point is reasonable, so both could be used in
HIL modeling for power converters. Regarding latency, it can be seen that standard floating-point is
faster than LOCOFLoat, but it is mainly due to the extensive DSP usage, which noticeably accelerates
the operations.

vin

dt/L

iL

Inductor and 
switch losses

Ideal 
inductor 
voltage

closed
switch 

Up

Down

Up

Down

Real 
inductor 
voltage

∆iL

iR

dt/C

capacitor
current

∆vC

RC

vC

vout

iL

vC

RL+Rdson2

RL+Rdson1

Critical path
8/25 signal
8/50 signal

Figure 7. Schematic of a synchronous buck converter with electrical losses.

Compared with fixed-point, LOCOFloat needs considerably more LUTs, because of the barrel
shifters and normalization process, and almost the same DSPs. The latency is very similar using the
standard fixed_pkg or LOCOFloat. Although LOCOFloat includes soft normalization and barrel shifters,
the fixed_pkg also includes rounding and some extra checking that increase the latency. Taking all into
account LOCOFloat is a good choice as it uses a small number of DSPs, with the flexibility of variable
point location.

Table 3 also shows the synthesis results without using DSP blocks, so the global combinational
logic required by all the implementations can be compared. Disabling DSP usage is not recommended
because the simulation step increases, but it helps the comparison. The difference between the
minimum simulation steps still remains, but in terms of LUTs, LOCOFloat provides much better
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results than floating point. For instance, LOCOFloat uses 58.38% fewer LUTs than 64-bit floating-point.
These synthesis results show the area optimization of the proposed numerical system.

The implementation results of the main components of LOCOFloat are shown in Table 4.
The results have been calculated for 25 × 25 bit multipliers and 50 + 50 bit adders/subtractors.
As it can be seen, the multiplier is more optimized because the synthesizer uses DSPs to perform the
operation. The chosen FPGA has 25 × 25 18 multipliers that almost can handle one multiplication,
which in this example contains 25-bit operands. Therefore, the additional logic because of the extra
length of just one operand is not so big. The addition and subtraction latencies are noticeable higher
because the operand lengths are very high and because of the point alignment and overflow control,
as it was shown in Figure 5. This point alignment is done with a barrel shifter, so its latency—also
shown—is also included in the adder/subtractor latency.

Table 3. FPGA (Xilinx XC7Z010-1CLG400C) resources used by the design, and percentage value with
respect to the available resources in the FPGA.

System Min Simulation Step 6-Input LUTs FFs DSPs

LOCOFloat 38.973 ns 2017 150 8
11.5% 0.4% 10%

32-bit Floating-point 19.778 ns 306 112 12
1.7% 0.3% 15%

64-bit Floating-point 28.178 ns 614 192 50
3.5% 0.5% 62.5%

Fixed-Point 35.339 ns 586 98 7
3.3% 0.3% 8.7%

LOCOFloat 42.433 ns 4693 150 0
no DSPs 26.7% 0.4% 0%

32-bit Floating-point 22.943 ns 3147 115 0
no DSPs 17.9% 0.3% 0%

64-bit Floating-point 31.452 ns 11277 212 0
no DSPs 64.1% 0.6% 0%

Fixed-Point 37.730 ns 1536 98 0
no DSPs % % 0%

Regarding the accuracy results, this section presents a comparison between the proposed
format and 32-bit and 64-bit floating-point arithmetics. In order to get a wide view of applications,
six different configurations of the buck converter are considered in this section, as Table 5 shows.
These configurations are recommended in the application notes of the following commercial buck
controllers from Maxim [26], Linear Technology [27,28] and Analog Devices [29–31]. It is important to
mention that the models should be tested in open loop, without any controller. If a controller were
present, moderate errors in the model would be compensated by the regulator, making the regulator
change its actuation but getting the expected results in the state variables of the model.

Table 4. Latency and hardware utilization of the main components of LOCOFloat.

Latency LUTS 6-Input DSPs

64-bit Barrel shifter 2.178 ns 128 0
25 × 25 Multiplier 5.554 ns 24 2

50 + 50 Adder/Subtractor 13.165 ns 460 0

Every case in Table 5 has been simulated using LOCOFLoat, the 32-bit and 64-bit floating-point
(FP) arithmetics and also a reference model. The reference model implements the same equations but
using the VHDL real type, which uses double-precision floating-point (variables of 64 bits), and using
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a much smaller simulation step (1 ns) so its accuracy is much better. All the arithmetics have been
simulated using the same simulation step: 40 ns, which is the minimum simulation step that can be
executed in all the arithmetics. Figure 8 shows the simulations that have been carried out related to the
cases shown in Table 5. In all of them, a transient from switch-off to the nominal state has been executed.
As it can be noticed, the chosen cases have very different dynamics, having a wide range of simulations
to test. All the methods have been simulated and their outputs have been sampled every 10 ns and
their averages in every switching cycle have been extracted. Finally, the average values have been
compared to the reference model done with real type. Figure 9 shows the percentage error—related to
the steady state values of inductor current (iL) and output voltage (vout) in the reference model—of
every method for the 6 cases. The figure shows that all the arithmetics get almost the same results
during the transient. However, in steady state 32-bit floating-point gets slightly more error in cases 1, 4,
5 and 6, and a big noticeable error in cases 2 and 3. This is due to resolution issues with that arithmetic.
While in the transients, the incremental values are bigger, so those increments are nearer to the present
current/voltage, in steady state those increments are much smaller, so a longer significand field is
required to store simultaneously the present value and its increment. The numerical issues in 32-bit
floating-point reach an inductor current error around 0.012% in steady state in case 2. Although this
error is not so high, examples of low-resolution problems with big impact using 32-bit floating point
can be found in the literature, like in [16], where a boost converter using PFC (Power Factor Correction)
was modeled. Therefore, 32-bit floating-point cannot be used in some applications and, as the user
application is not known a priori, the most conservative choice is not to use it anyway. However, 64-bit
floating-point (which has 53 bits for the significand) and LOCOFloat (which uses 50-bit state variables)
can be used with guarantees.

Table 5. Buck parameters used in the Results section.

Case C L Vin Vout P Fsw
1 [27] 100 µF 22 µH 62 V 5 V 10 W 210 kHz
2 [26] 220 µF 22 µH 3.3 V 2.8 V 0.27 W 300 kHz
3 [28] 8.8 mF 40 µH 12 V 5.2 V 250 W 150 kHz
4 [29] 94 µF 1 µH 5.4 V 4.5 V 20 W 700 kHz
5 [30] 100 µF 2.2 µH 5.5 V 4.7 V 40 W 550 kHz
5 [31] 66 µF 0.33 µH 3.9 V 3.25 V 33 W 700 kHz

The previous simulation was done using the same simulation step for all the arithmetics (40 ns).
However, Table 3 showed that the minimum achievable simulation step for each arithmetic is different.
Consequently, the arithmetics have been also simulated using the minimum simulation steps that
they can get, i.e., 20 ns, 30 ns and 40 ns for 32-bit FP, 64-bit FP, and the proposed format, respectively.
It should be noticed that the sources of error in the simulation may be produced by two main factors:
simulation step and numerical resolution. As it was seen, the chosen arithmetic obviously determines
the numerical resolution of the method. On the other hand, the error made by the ODE solver is linearly
proportional to the simulation step, as Explicit Euler is used [24]. The percentage error—also related to
the steady state values of iL and vout of the reference model—of the methods is shown in Figure 10.
If there were no resolution problems, all the methods would behave as expected, where the error is
proportional to the simulation step, so the best method should be the 32-bit FP, as it has the smallest
simulation step. However, it can be seen that the resolution problems in 32-bit floating-point become
more noticeable. The reason is that now the simulation step for that model is 20 ns, so the increments
are even farther than the present state variable values. The other methods (64-bit floating-point and
LOCOFloat) do not present resolution problems. To help the comparison, horizontal lines have been
added taken the 64-bit FP as the reference, and showing the error that 32-bit FP and LOCOFloat are
supposed to have—32-bit FP error should be around 33% lower, and LOCOFloat should be around
33% higher. As can be seen, the 32-bit floating-point has resolution problems not only in cases 2 and 3,
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so these proportions are almost never met. However, for LOCOFLoat this proportion is met, showing
that the difference of error is caused only by the simulation step and not because of resolution problems.
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Figure 9. Accuracy results for all the arithmetics using a simulation step of 40 ns. Percentage error
related to the reference model.

Taking the synthesis and accuracy results, some considerations can be obtained.
A 32-bit floating-point is the fastest arithmetic (Tclk = 20 ns) while it does not use so many resources
(12 DSPs, 15% of available ones). However, its accuracy problems appear in several cases and they
are difficult to predict, so this architecture is not reliable when small simulation steps are used.
A 64-bit floating-point is still quite fast (Tclk = 30 ns) but it uses a huge number of DSPS (50) which
are the 62.5% of DSPs available in the FPGA that has been used. It makes the 64-bit floating-point an
unfeasible arithmetic for complex HIL models, especially in low-cost HIL systems, as the model has
to fit in the FPGA. LOCOFloat is slower (Tclk = 40 ns) and it uses more LUTs (11.5% of the FPGA),
but the use of DSPs is very moderated (eight DSPs, 10%). Therefore LOCOFloat is a real alternative to
be used for low-cost HIL applications.
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Figure 10. Accuracy results for all the arithmetics using their corresponding simulation step (20 ns,
30 ns and 40 ns, respectively). Percentage error related to the reference model.

6. Conclusions

This paper has proposed a format called LOCOFloat: Low-Cost Floating-point. The proposed
format implements a floating-point library that offers the simplest operations needed in HIL: addition,
subtraction and multiplication and soft normalization, with the aim of reducing the hardware
requirements. It has been designed reducing the overhead of IEEE-754 floating-point standard which
implements a lot of operators, with many special cases checking (e.g., NaN: Not a Number checks),
rounding and hard normalization. An application example of a buck converter model with electrical
losses has been used to extract the hardware usage of the proposed format, and 32-bit and 64-bit
versions of IEEE-754 floating-point. Results have shown that the standard 32-bit floating-point is
not reliable with small simulation steps because it suffers resolution problems. On the other hand,
LOCOFloat, which uses a 50-bit mantissa field, and 64-bit floating-point are both very accurate but they
offer very different hardware resources. While IEEE-754 64-bit floating-point is faster (TCLK = 30 ns
instead of TCLK = 40 ns in the case of LOCOFloat), it uses many more DSPs (50 instead of eight DSPs
used by LOCOFloat). Taking into account that the model of the application example is quite simple,
the conclusion is that the 64-bit floating-point could not be used in many applications. Therefore,
LOCOFloat is a good alternative to be used when both accuracy and low-area implementation
are important.

Author Contributions: Conceptualization, A.S. and A.d.C.; methodology, A.S., M.S.M.-G., A.d.C. and J.G.;
software, A.S. and M.S.M.-G.; validation, J.G.; Writing—Original Draft preparation and Writing—Review
and Editing, A.S., M.S.M.-G., A.d.C. and J.G. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Rodríguez-Orozco, E.; García-Guerrero, E.E.; Inzunza-Gonzalez, E.; López-Bonilla, O.R.; Flores-Vergara, A.;
Cárdenas-Valdez, J.R.; Tlelo-Cuautle, E. FPGA-based Chaotic Cryptosystem by Using Voice Recognition as
Access Key. Electronics 2018, 7, 414, doi:10.3390/electronics7120414. [CrossRef]

https://doi.org/10.3390/electronics7120414
http://dx.doi.org/10.3390/electronics7120414


Electronics 2020, 9, 81 14 of 15

2. De Souza, A.C.D.; Fernandes, M.A.C. Parallel Fixed Point Implementation of a Radial Basis Function
Network in an FPGA. Sensors 2014, 14, 18223–18243, doi:10.3390/s141018223. [CrossRef] [PubMed]

3. Yang, C.; Li, B.; Chen, L.; Wei, C.; Xie, Y.; Chen, H.; Yu, W. A Spaceborne Synthetic Aperture Radar
Partial Fixed-Point Imaging System Using a Field-Programmable Gate Array-Application-Specific Integrated
Circuit Hybrid Heterogeneous Parallel Acceleration Technique. Sensors 2017, 17, 1493, doi:10.3390/s17071493.
[CrossRef] [PubMed]

4. Lopes Ferreira, M.; Canas Ferreira, J. An FPGA-Oriented Baseband Modulator Architecture for 4G/5G
Communication Scenarios. Electronics 2019, 8, 2, doi:10.3390/electronics8010002. [CrossRef]

5. Solovyev, R.; Kustov, A.; Telpukhov, D.; Rukhlov, V.; Kalinin, A. Fixed-Point Convolutional Neural Network
for Real-Time Video Processing in FPGA. In Proceedings of the 2019 IEEE Conference of Russian Young
Researchers in Electrical and Electronic Engineering (EIConRus), Saint Petersburg and Moscow, Russia,
28–31 January 2019; pp. 1605–1611, doi:10.1109/EIConRus.2019.8656778. [CrossRef]

6. Libessart, E.; Arzel, M.; Lahuec, C.; Andriulli, F. A Scaling-Less Newton–Raphson Pipelined
Implementation for a Fixed-Point Reciprocal Operator. IEEE Signal Process. Lett. 2017, 24, 789–793,
doi:10.1109/LSP.2017.2694225. [CrossRef]

7. Lian, X.; Liu, Z.; Song, Z.; Dai, J.; Zhou, W.; Ji, X. High-Performance FPGA-Based CNN Accelerator with
Block-Floating-Point Arithmetic. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2019, 27, 1874–1885,
doi:10.1109/TVLSI.2019.2913958. [CrossRef]

8. Salcic, Z.; Cao, J.; Nguang, S.K. A floating-point FPGA-based self-tuning regulator. IEEE Trans. Ind. Electron.
2006, 53, 693–704, doi:10.1109/TIE.2006.871702. [CrossRef]

9. Sanchez, A.; Todorovich, E.; De Castro, A. Exploring the Limits of Floating-Point Resolution for
Hardware-In-the-Loop Implemented with FPGAs. Electronics 2018, 7, 219, doi:10.3390/electronics7100219.
[CrossRef]

10. Jaiswal, M.K.; So, H.K. DSP48E efficient floating point multiplier architectures on FPGA. In Proceedings of
the 2017 30th International Conference on VLSI Design and 2017 16th International Conference on Embedded
Systems (VLSID), Hyderabad, India, 7–11 January 2017; pp. 1–6, doi:10.1109/ICVD.2017.7913322. [CrossRef]

11. Jaiswal, M.K.; So, H.K. Taylor Series Based Architecture for Quadruple Precision Floating Point Division.
In Proceedings of the 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Pittsburgh, PA,
USA, 11–13 July 2016; pp. 518–523, doi:10.1109/ISVLSI.2016.10. [CrossRef]

12. Tyhach, J.; Hutton, M.; Atsatt, S.; Rahman, A.; Vest, B.; Lewis, D.; Langhammer, M.; Shumarayev, S.; Hoang, T.;
Chan, A.; et al. ArriaTM 10 device architecture. In Proceedings of the 2015 IEEE Custom Integrated Circuits
Conference (CICC), San Jose, CA, USA, 28–30 September 2015; pp. 1–8, doi:10.1109/CICC.2015.7338368.
[CrossRef]

13. Langhammer, M.; Pasca, B. Single Precision Natural Logarithm Architecture for Hard Floating-Point and
DSP-Enabled FPGAs. In Proceedings of the 2016 IEEE 23nd Symposium on Computer Arithmetic (ARITH),
Santa Clara, CA, USA, 10–13 July 2016; pp. 164–171, doi:10.1109/ARITH.2016.20. [CrossRef]

14. Sanchez, A.; Todorovich, E.; de Castro, A. Impact of the hardened floating-point cores on HIL technology.
Electr. Power Syst. Res. 2018, 165, 53–59, doi:10.1016/j.epsr.2018.08.011. [CrossRef]

15. IEEE. 1076-2008—IEEE Standard VHDL Language Reference Manual; IEEE: New York, NY, USA, 2008.
16. Sanchez, A.; de Castro, A.; Garrido, J. A Comparison of Simulation and Hardware-in-the-loop Alternatives for

Digital Control of Power Converters. IEEE Trans. Ind. Inform. 2012, 8, 491–500, doi:10.1109/TII.2012.2192281.
[CrossRef]

17. Sanchez, A.; de Castro, A.; Garrido, J. Parametrizable fixed-point arithmetic for HIL with small simulation
steps. IEEE J. Emerg. Sel. Top. Power Electron. 2018, doi:10.1109/JESTPE.2018.2886908. [CrossRef]

18. Vijay , A.S.; Doolla, S.; Chandorkar, M.C. Real-Time Testing Approaches for Microgrids. IEEE J. Emerg. Sel.
Top. Power Electron. 2017, 5, 1356–1376, doi:10.1109/JESTPE.2017.2695486. [CrossRef]

19. Grégoire, L.; Al-Haddad, K.; Nanjundaiah, G. Hardware-in-the-Loop (HIL) to reduce the development cost of
power electronic converters. In Proceedings of the India International Conference on Power Electronics 2010
(IICPE2010), New Delhi, India, 28–30 January 2011; pp. 1–6, doi:10.1109/IICPE.2011.5728153. [CrossRef]

20. Ji, F.; Fan, H.; Sun, Y. Modelling a FPGA-based LLC converter for real-time hardware-in-the-loop (HIL)
simulation. In Proceedings of the2016 IEEE 8th International Power Electronics and Motion Control
Conference (IPEMC-ECCE Asia), Hefei, China, 22–26 May 2016; pp. 1016–1019.

https://doi.org/10.3390/s141018223
http://dx.doi.org/10.3390/s141018223
http://www.ncbi.nlm.nih.gov/pubmed/25268918
https://doi.org/10.3390/s17071493
http://dx.doi.org/10.3390/s17071493
http://www.ncbi.nlm.nih.gov/pubmed/28672813
https://doi.org/10.3390/electronics8010002
http://dx.doi.org/10.3390/electronics8010002
https://doi.org/10.1109/EIConRus.2019.8656778
http://dx.doi.org/10.1109/EIConRus.2019.8656778
https://doi.org/10.1109/LSP.2017.2694225
http://dx.doi.org/10.1109/LSP.2017.2694225
https://doi.org/10.1109/TVLSI.2019.2913958
http://dx.doi.org/10.1109/TVLSI.2019.2913958
https://doi.org/10.1109/TIE.2006.871702
http://dx.doi.org/10.1109/TIE.2006.871702
https://doi.org/10.3390/electronics7100219
http://dx.doi.org/10.3390/electronics7100219
https://doi.org/10.1109/ICVD.2017.7913322
http://dx.doi.org/10.1109/ICVD.2017.7913322
https://doi.org/10.1109/ISVLSI.2016.10
http://dx.doi.org/10.1109/ISVLSI.2016.10
https://doi.org/10.1109/CICC.2015.7338368
http://dx.doi.org/10.1109/CICC.2015.7338368
https://doi.org/10.1109/ARITH.2016.20
http://dx.doi.org/10.1109/ARITH.2016.20
https://doi.org/https://doi.org/10.1016/j.epsr.2018.08.011
http://dx.doi.org/10.1016/j.epsr.2018.08.011
https://doi.org/10.1109/TII.2012.2192281
http://dx.doi.org/10.1109/TII.2012.2192281
https://doi.org/10.1109/JESTPE.2018.2886908
http://dx.doi.org/10.1109/JESTPE.2018.2886908
https://doi.org/10.1109/JESTPE.2017.2695486
http://dx.doi.org/10.1109/JESTPE.2017.2695486
https://doi.org/10.1109/IICPE.2011.5728153
http://dx.doi.org/10.1109/IICPE.2011.5728153


Electronics 2020, 9, 81 15 of 15

21. Barreras, J.V.; Fleischer, C.; Christensen, A.E.; Swierczynski, M.; Schaltz, E.; Andreasen, S.J.; Sauer, D.U.
An Advanced HIL Simulation Battery Model for Battery Management System Testing. IEEE Trans. Ind. Appl.
2016, 52, 5086–5099, doi:10.1109/TIA.2016.2585539. [CrossRef]

22. Lee, J.; Kang, D.; Lee, J. A Study on the Improved Capacitor Voltage Balancing Method for
Modular Multilevel Converter Based on Hardware-In-the-Loop Simulation. Electronics 2019, 8, 1070,
doi:10.3390/electronics8101070. [CrossRef]

23. Yushkova, M.; Sanchez, A.; de Castro, A.; Martínez-García, M.S. A Comparison of Filtering Approaches
Using Low-Speed DACs for Hardware-in-the-Loop Implemented in FPGAs. Electronics 2019, 8, 1116,
doi:10.3390/electronics8101116. [CrossRef]

24. Butcher, J.C. The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods;
Wiley-Interscience: New York, NY, USA, 1987.

25. Xilinx. Artix-7 FPGAs Data Sheet: DC and AC Switching Characteristics; Xilinx: San Jose, CA, USA, 2018.
26. Maxim. Low-Noise, 14V Input, 1A, PWM Step-Down Converters MAX1685; Maxim: San Jose, CA, USA, 2001.
27. Linear Technology. High Voltage, 3A, 200kHz/100kHz Step-Down Switching Regulators LT3430-1;

Linear Technology: Milpitas, CA, USA, 2006.
28. Linear Technology. High Power Synchronous DC/DC Controller LT1339; Linear Technology: Milpitas, CA, USA, 1997.
29. Analog Devices. Dual Channel 4A, 42V, Synchronous Step-Down Silent Switcher 2 with 6.2 uA Quiescent Current

LT8650S; Analog Devices: Norwood, MA, USA, 2017.
30. Analog Devices. 65V, 8A Synchronous Step-Down Silent Switcher 2 with 2.5 uA Quiescent Current LT8645S;

Analog Devices: Norwood, MA, USA, 2017.
31. Analog Devices. Low IQ, 60V, High Frequency Synchronous Step-Down Controller LTC7800; Analog Devices:

Norwood, MA, USA, 2017.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1109/TIA.2016.2585539
http://dx.doi.org/10.1109/TIA.2016.2585539
https://doi.org/10.3390/electronics8101070
http://dx.doi.org/10.3390/electronics8101070
https://doi.org/10.3390/electronics8101116
http://dx.doi.org/10.3390/electronics8101116
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Model of the Power Converter
	Available Standard Arithmetics for FPGAs
	IEEE-754 Floating-Point Basis
	IEEE-754 Addition, Subtraction and Multiplication

	LOCOFloat: Low-Cost Floating-Point Format
	Experimental Results
	Conclusions
	References

