

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor del artículo publicado en:
This is an author produced version of a paper published in:

Neurocomputing 275 (2018): 1921 – 1931

DOI: https://doi.org/10.1016/j.neucom.2017.10.029

Copyright: © 2017 Elsevier B.V. All rights reserved.

El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/

ν-SVM Solutions of Constrained Lasso and Elastic Net

Alberto Torres-Barrána,b, Carlos M. Aláıza,∗, José R. Dorronsoroa,c

aDpto. Ing. Informática, Universidad Autónoma de Madrid, 28049 Madrid, Spain
bInst. de Ciencias Matemáticas ICMAT, Campus Cantoblanco UAM, 28049 Madrid, Spain

cInst. de Ing. del Conocimiento, Campus Cantoblanco UAM, 28049 Madrid, Spain

Abstract

Many important linear sparse models have at its core the Lasso problem, for

which the GLMNet algorithm is often considered as the current state of the art.

Recently M. Jaggi has observed that Constrained Lasso (CL) can be reduced

to an SVM-like problem, for which the LIBSVM library provides very efficient

algorithms. This suggests that it could also be used advantageously to solve CL.

In this work we will refine Jaggi’s arguments to reduce CL as well as constrained

Elastic Net to a Nearest Point Problem, which in turn can be rewritten as an

appropriate ν-SVM problem solvable by LIBSVM. We will also show experi-

mentally that the well-known LIBSVM library results in a faster convergence

than GLMNet for small problems and also, if properly adapted, for larger ones.

Screening is another ingredient to speed up solving Lasso. Shrinking can be

seen as the simpler alternative of SVM to screening and we will discuss how it

also may in some cases reduce the cost of an SVM-based CL solution.

Keywords: Lasso, GLMNet, Nearest Point Problem, SVM

1. Introduction

The pervasiveness of Big Data is putting a strong emphasis in simple linear

sparse models as a way to handle large size and large dimensional samples. This

has led to position Lasso [1] and its Elastic Net generalization [2] among the

∗Corresponding author.
Email addresses: alberto.torres@uam.es (Alberto Torres-Barrán),

carlos.alaiz@inv.uam.es (Carlos M. Aláız), jose.dorronsoro@uam.es (José R. Dorronsoro)

Preprint submitted to Neurocomputing July 28, 2017

methods of choice in large-scale Machine Learning. The more general Elastic

Net is usually stated as the unconstrained problem of solving

min
β∈Rd

{
1

2
‖Xβ − y‖22 +

µ

2
‖β‖22 + λ ‖β‖1

}
, (1)

where for an N -size sample S =
{

(x1, y1), . . . , (xN , yN)
}

, X is an N × d data

matrix containing as its rows the transposes of the d-dimensional features xn,

y is the N × 1 target vector y = (y1, . . . , yN)
>

, β denotes the Elastic Net

coefficients, and the subscripts 1, 2 denote the `1 and `2 norms respectively.

We will call problem (1) (λ, µ)-Unconstrained Elastic Net (UEN). It has an

equivalent constrained formulation:

min
β∈Rd

{
1

2
‖Xβ − y‖22 +

µ

2
‖β‖22

}
s.t. ‖β‖1 ≤ ρ . (2)

As before, we will call (2) (ρ, µ)-Constrained Elastic Net (CEN). Problems

(1) and (2) obviously reduce to Lasso when µ = 0 and in a slight abuse of

language, we will also refer to them simply as λ-Unconstrained Lasso (UL) or

ρ-Constrained Lasso (CL), respectively.

When solving (1), the GLMNet algorithm [3], which uses cyclic coordinate

descent, stands out in terms of computational efficiency. On the other hand, (1)

and other problems that decompose as a sum of convex differentiable and non-

differentiable functions can be solved using the well-known FISTA algorithm [4],

based on proximal theory and that combines projected gradient descent with

Nesterov’s acceleration.

Recently M. Jaggi [5] has shown the equivalence between CL and SVMs

or, more precisely, a Nearest Point Problem (NPP), in the sense that given any

instance of either problem, one can construct an instance of the other having the

same optimal solution. This is relatively simple when going from Lasso to NPP

but more involved the other way around. As suggested in [5], this equivalence

opens the way for advances in one problem to be translated into advances on

the other and while the application of SVM solvers to Lasso is not addressed

in [5], prior work in parallelizing SVMs is leveraged in [6] to obtain a highly

optimized and parallel solver for Elastic Net taking advantage of existing work

2

on extending SVM solvers to GPUs, multi-core CPUs and distributed systems.

Lasso is not addressed in [6] but some of its authors have considered the Lasso-

only case in [7] relating it with a minimum norm problem that they solve using

Wolfe’s method.

In this work we will retake Jaggi’s approach, and simplify the Lasso and

Elastic Net reduction in [5] to yield a ν-SVM problem equivalent to initial (ρ,

µ)-CEN or ρ-CL ones. We shall then apply the LIBSVM solver for ν-SVM and

its underlying SMO algorithm, first in a straightforward way and then refining

it so that it takes advantage of the particular form of the kernel matrix of

the resulting ν-SVM problem. Furthermore, we shall consider shrinking as the

SMO alternative to the recently proposed screening methods [8, 9] for Lasso,

and discuss the reduction that it provides in training times. More precisely, our

contributions are:

• A proof of the explicit equivalence between unconstrained and constrained

Lasso. While a general equivalence can be derived using primal and dual

considerations in convex optimization (see Sect. 2 for details), these cannot

be used to establish explicitly the relationship between the constrained

constant ρ and the unconstrained one λ. Here we give this specific relation

between the regularization parameters of the unconstrained problem and

the equivalent constrained one.

• A refinement on M. Jaggi’s results reducing CL to NPP and its further

reduction to a ν-SVM problem solvable using LIBSVM.

• A comparison of number of iterations and execution times of the GLMNet

algorithm for UL and of two SVM-based solutions of CL, a first one where

LIBSVM is used with no changes, and a second one where we modify

the handling of the kernel matrix of LIBSVM to take advantage of its

particular structure on the Lasso-to-NPP reduction. As we shall see, both

approaches are competitive with GLMNet, currently the state-of-the-art

algorithm for Lasso, with the second one being faster on most of the

problems considered.

3

The paper is organized as follows. In Sect. 2 we first recall the easy reduction

of UEN and CEN to UL and CL over an extended sample, prove then the

equivalence between UL and CL and extend it to that between UEN and CEN.

In Sect. 3 we discuss the reduction of CL and CEN to NPP and ν-SVMs and we

briefly describe in Sect. 4 the FISTA, GLMNet and SMO algorithms and their

complexities. In Sect. 5 we give a relatively wide review of various screening

techniques that have been proposed to reduce the working set of Lasso (i.e., the

subset of active features) and we discuss the shrinking technique of SVM as a

counterpart to the screening of Lasso which may yield further computational

advantages. Section 6 contains experimental comparisons of the performances

of all the methods considered, and the paper closes with a brief discussion and

pointers to further work in Sect. 7.

2. Unconstrained and Constrained Lasso and Elastic Net

In this section we show that λ-CL and ρ-UL and also (µ, λ)-UEN and (µ, ρ)-

CEN are equivalent problems in the sense that they have the same β solution

for appropriate choices of λ and ρ. We will first reduce Elastic Net (EN) to a

pure Lasso problem over an enlarged data matrix and target vector; the basic

idea has been already used quite often, for instance, when reducing soft margin,

square hinge loss SVMs to hard margin SVMs. To do so, let’s consider in either

problem (1) or (2) the (N + d)× d matrix X and (N + d)× 1 vector Y defined

as

X =

 X
√
µId

 , Y =

y
0

 ,

with Id the d × d identity matrix and 0 the d-dimensional 0 vector. We then

have
1

2
‖Xβ − y‖22 +

µ

2
‖β‖22 =

1

2
‖Xβ − Y‖22 ,

where X and Y are the new data matrix and target vector. In other words, we

can rewrite (1) or (2) as Lasso problems over an extended sample of size N + d,

4

namely:

S =
((
x1, y1

)
, . . . ,

(
xN , yN

)
, (
√
µe1, 0), . . . , (

√
µed, 0)

)
,

with ei the canonical vectors for Rd. As a consequence, we limit from now on

our discussion to UL and CL, pointing when necessary to the changes needed to

deal with UEN and CEN. For simplicity we will revert to the X and y notation

instead of using X and Y when referring to the data matrix and target vector

of Lasso.

Turning our attention to the UL and CL equivalence, it is clear that, for a

fixed λ, a minimizer β(λ) of λ-UL is also a minimizer of ρ-CL for ρ = ‖β(λ)‖1,

as any better minimizer of (2) would also automatically be a better minimizer

of (1). On the other hand, given a general constrained (primal) convex problem

of the form

min
β
{f(β)} s.t. g(β)− ρ ≤ 0 ,

it is easy to see that its solution β∗ also solves its unconstrained version

min
β
{f(β) + λρg(β)}

for some λρ which depends on ρ. In fact, the Lagrangian of the unconstrained

problem is L(β, λ) = f(β) + λ(g(β)− ρ), λ ≥ 0, and if β∗ is its primal so-

lution and λ∗ is its dual one, under rather general conditions it follows [10,

Subsection 5.2.3] that the dual gap is 0 and thus

L(β∗, λ∗) = f(β∗) + λ∗(g(β∗)− ρ) = f(β∗) = min
{β:g(β)≤ρ}

{f(β)} .

Now, since the term −ρλ∗ is independent of β, it thus follows that β∗ also

minimizes the unconstrained problem for λ∗ = λρ, i.e.

min
β
{f(β) + λ∗g(β)} .

In particular, all this holds to the Lasso problem but, however, in this general

setting there is no way of explicitly deriving from β∗ and ρ the concrete λρ value

needed to write down the general unconstrained problem.

5

In order to do so for Lasso, let βLR be the minimum norm solution of Linear

Regression and set ρLR = ‖βLR‖1. Clearly the solution of CL is also βLR for

ρ ≥ ρLR, so we will assume ρ < ρLR, and hence the constraint is active. Let’s

denote by βρ a minimum of ρ-CL; we shall prove next that βρ solves λρ-UL with

λρ =
β>ρ X

>(y −Xβρ)
ρ

=
β>ρ X

>rβρ

ρ
, (3)

with rβρ denoting the residual y − Xβρ. To do so, let e2(β) = ‖Xβ − y‖22 /2

and g(β) = ‖β‖1 − ρ, let eρ2 = e2(βρ) be the optimal square error in ρ-CL, and

define

f(β) = max {e2(β)− eρ2, g(β)} .

Note that the convex function f verifies f(β) ≥ 0. In fact, if g(β) ≤ 0,

f(β) ≥ e2(β)− eρ2 ≥ 0 ,

since otherwise βρ would not be a solution of ρ-CL. On the other side, for

g(β) > 0,

f(β) ≥ g(β) > 0 .

Now, since f(βρ) = 0, it follows that βρ minimizes f and as a consequence,

0 ∈ ∂f(βρ). Moreover, the subgradient ∂f(βρ) is given by the convex hull

generated by ∂e2(βρ) = {∇e2(βρ)} and ∂g(βρ), that is,

∂f(βρ) = {γ∇e2(βρ) + (1− γ)h : 0 ≤ γ ≤ 1, h ∈ ∂g(βρ)} .

Thus, for some hρ ∈ ∂ ‖·‖1 (βρ) and γ, with 0 ≤ γ ≤ 1,

0 = γ∇e2(βρ) + (1− γ)hρ .

But γ > 0, otherwise we would have h = 0, i.e., βρ = 0, contradicting that

‖βρ‖1 = ρ since the constraint is active. Therefore, writing λρ = (1− γ)/γ, we

arrive at

0 = ∇e2(βρ) + λρhρ ∈ ∂[e2(·) + λρ ‖·‖1](βρ) ,

6

i.e., βρ minimizes λρ-UL. We finally derive the value for λρ in (3) by observing

that β>ρ h = ‖βρ‖1 = ρ and that

0 = ∇e2(βρ) + λρhρ = −X>rβρ + hρλρ

implies hλρ = X>rβρ . As a result,

λρ ‖βρ‖1 = β>ρ hλρ = β>ρ X
>rβρ ,

that is,

λρ =
β>ρ X

>rβρ

‖βρ‖1
=
β>ρ X

>rβρ

ρ
.

The corresponding λρ for (µ, ρ)-CEN would be

λρ =
(Xβρ) · (Y − Xβρ)

ρ
=
β>ρ X

>(y −Xβρ)− µ ‖βρ‖22
ρ

.

In summary, we have shown that λ-UL and ρ-CL are equivalent problems

but, before we finish, we point out that they are so in the sense that a solution

of one of them is also the solution of the other for an appropriate choice of either

the λ or ρ parameters. However, the optimal ρ can only be found after λ-UL

has been solved and vice-versa. Thus λ-UL and ρ-CL require each its own

algorithm; in particular, algorithms for, say, λ-UL such as FISTA or GLMNet

cannot be used to solve a given ρ-CL problem, since the equivalent λρ value will

only be known after the starting ρ-CL problem has already been solved.

3. From Constrained Lasso to NPP

This section reviews the connection between Lasso and NPP and discusses

the references [6, 7], which are closely related to this work.

3.1. Connection between Lasso and NPP

As mentioned in the introduction, M. Jaggi proposes in [5] a reduction of

ρ-CL to an SVM-like problem. Here we will initially follow [5], but making the

reduction more precise, going first from ρ-CL to a particular case of the Nearest

Point Problem (NPP) that we then rewrite as a ν-SVM problem.

7

We first rescale β and y by 1/ρ and work with β̃ = β/ρ and ỹ = y/ρ; then

ρ-CL on β and y becomes 1-CL on β̃ and ỹ, with the new constraint being

β̃ ∈ B1, the `1 unit ball. Now, since B1 is convex, any β ∈ B1 can be written

as a convex combination of B1’s extreme points, i.e., the canonical vectors ei

and their negatives −ej , 1 ≤ i, j ≤ d. Thus, we can further replace B1 by the

simplex ∆2d of 2d dimensional probability vectors, i.e.,

∆2d =

{
α ∈ R2d : 0 ≤ αi ≤ 1,

2d∑
1

αi = 1

}
,

by enlarging the original N × d data matrix X to an N × 2d dimensional one

that we denote as X̂, with its columns X̂j being the original Xj for j = 1, . . . , d,

and X̂j = −Xj−d = −X̂j−d for j = d + 1, . . . , 2d. Setting αj = β̃j if β̃j > 0,

αd+j = −β̃j if β̃j < 0 and the remaining αk = 0, we have Xβ̃ = X̂α and∥∥∥ỹ −Xβ̃∥∥∥2
2

=
∥∥∥ỹ − X̂α∥∥∥2

2
. (4)

In other words, ρ-CL is equivalent to finding the point nearest to ỹ in the convex

hull C spanned by (X1, . . . , Xd,−X1, . . . ,−Xd). Thus, solving ρ-CL is equiv-

alent to solving the Nearest Point Problem (NPP) between the N -dimensional

convex hull C and the singleton {ỹ}.

In turn, setting ν = 2/(2d+ 1), this NPP problem can be scaled [11] into

an equivalent linear ν-SVM problem over the sample S = {S+,S−}, where

S+ =
{
X1, . . . , Xd,−X1, . . . ,−Xd

}
and S− = {ỹ}, which can then be solved

using the LIBSVM library [12]. We get the optimal NPP αo from the ν-SVM

optimal solution γo by scaling it back as αo = (2d+ 1)γo.

Finally the ρ-CL solution βρ is obtained as (βρ)j = αj−αj+d. In particular,

observe that the NPP or ν-SVM problems do not have an unique solution,

something to be expected as the kernel matrix K of the ν-SVM problem is only

semidefinite positive (see (8) in Sect. 4.3). On the other hand, a unique NPP

solution could be achieved if we add the constraints αjαj+d = 0 for 1 ≤ j ≤ d.

We finally point out that the changes for (µ, ρ)-CEN are straightforward,

since we only have to add the d extra dimensions
√
µec and −√µec to the

column vectors Xc and −Xc.

8

3.2. Related Work

As mentioned in Sect. 1, after M. Jaggi’s observation relating Lasso to SVMs,

two other papers have addressed this link. The first one is [6], that centers itself

in Elastic Net and where the authors reduce constrained Elastic Net to a squared

hinged loss SVM which we discuss next in a simplified form. Using our notation

in (4), in [6] the ỹ term is moved into the X̂ matrix by defining X̃ = X̂ − ỹ1>,

where 1 denotes the all-ones vector. One then has
∥∥∥ỹ − X̂α∥∥∥2

2
=
∥∥∥X̃α∥∥∥2

2
and

the problem to be solved in [6] can now be written as

min
α

{∥∥∥X̃α∥∥∥2
2

+ µ

2d∑
1

α2
j

}
s.t.

2d∑
1

αj = 1 , (5)

with µ the Elastic Net penalty. The authors consider then the problem

min
β

{
1

2
β>Qβ +

µ

2

2d∑
1

β2
j −

2d∑
1

βj

}
s.t. βj ≥ 0 , (6)

where we write Q = X̃>X̃. Assuming that β∗ is a solution of (6), it is easy to

see that α∗ = β∗

‖β∗‖ is a solution of (5); thus, one can deduce a solution of (5)

from an appropriate solver for (6). In order to be able to use an SVM solver for

this, the authors in [6] introduce a two-class problem, using as patterns the 2d

columns in X̃ and the labels yj = 1 for 1 ≤ j ≤ d and yj = −1 for d+1 ≤ j ≤ 2d.

Then (6) is the dual of the following primal problem:

min
W

{
1

2
‖W‖2 +

1

2µ

2d∑
1

ξ2j

}
s.t. yjW · X̃j ≥ 1− ξj ,

i.e., the bias free, `2-regularized, `2-loss SVM problem. Several solvers are

available for this problem and the authors of [6] use their own implementation,

Support Vectors for Elastic Net (SVEN), based in O. Chapelle’s approach to

solve `2-loss SVMs [13], which they adapt for training in multicore and/or GPU

machines and that is able to solve both the lineal primal problem (when d �

N) or the dual one (when d ≤ N). The results in [6] show that the GPU

implementation is faster than the multicore one and that both are usually faster

than GLMNet (which in the standard implementation does not support either

9

multicore or GPU execution). SVEN also outperforms two other Elastic Net

specific algorithms, Shotgun and L1 LS.

Chapelle’s approach cannot be used with standard `1-loss SVMs and the

pure Lasso problem (i.e., with µ = 0) is not considered directly in [6]. Some of

its authors have addressed Lasso in [7], where they start at (5) with µ = 0, i.e.,

with the problem

min
α

{∥∥∥X̃α∥∥∥2
2

}
s.t.

2d∑
1

αj = 1 , (7)

which is the Minimum Norm Problem (MNP) for the points in the convex hull

of the X̃j column vectors. MNP is a well-known classical problem in compu-

tational geometry, and in [7] is solved using essentially Wolfe’s method. This

approach is compared with other alternatives such as Shotgun, L1 LS and an

implementation of the Least Angle Regression (LARS) algorithm of Efron et al.,

which preceded GLMNet in time and that has been superseded by it (GLMNet

is not included in the comparisons in [7]). In general, Wolfe’s method perfor-

mance for the MNP problem is sublinear and can be improved by other variants,

such as the MDM algorithm [14]. MDM is closely related to SMO and, in fact,

the MNP problem can be solved by LIBSVM just as done in our work: simply

observe that MNP can be seen as a particular case of the Nearest Point Problem

taking the singleton {0} as the second hull, just as we have done here with the

singleton {ỹ} (note that (7) is just a translation by −ỹ of (4)). Alternatively, it

is easy to see that (7) is the dual of the following one-class problem

min
W,ρ,ξ

1

2
‖W‖22 − ρ+

∑
j

ξj

 s.t. W · X̃j − ρ+ ξj ≥ 0, ξj ≥ 0 ,

which can also be solved by LIBSVM.

Summing things up, M. Jaggi’s link between the Lasso and SVM problems

has opened the way to consider new solvers to Lasso and, by extension, Elastic

Net, which complement (or compete) with the well-established Lasso solvers,

particularly, GLMNet, as of now the golden standard for solving Lasso on gen-

eral problems. The approach in [6] has the considerable advantage of working

10

on GPU architectures. In addition, it can solve either a primal or a dual SVM

problem, while LIBSVM only solves the dual one. On the other hand, the SVM

solver used deals with an `2-regularized, `2-loss SVM, which is equivalent to

Constrained Elastic Net but not to Lasso, and GPU-based implementations of

LIBSVM are starting to appear. Lasso is addressed in [7] but the Wolfe solver

proposed there should be less efficient than SMO (no GLMNet comparisons are

given in that paper). All in all, if an SVM solver is to be used for both Lasso and

Elastic Net, it seems that the ν-SVM solver in LIBSVM may give a balanced

option.

4. FISTA, GLMNet and SMO

In this section we will briefly describe the FISTA, GLMNet and SMO algo-

rithms and discuss their complexities.

4.1. FISTA

FISTA (Fast ISTA; [4]) combines the basic iterations in ISTA (Iterative

Soft-Thresholding Algorithm)

βk = softhγ
(
wk − γ

((
X>X + µI

)
wk −X>y

))
,

where softhγ (z) = sign (z)(|z| − γ)+, γ = 1/L and L is a Lipschitz constant for

∇e2, with a Nesterov acceleration step:

wk+1 = βk +
tk − 1

tk+1
(βk − βk−1) ,

tk+1 =
1

2

(
1 +

√
1 + 4t2k

)
.

Assuming X>X and X>y are precomputed at a fixed initial cost O(Nd2), the

cost per iteration of FISTA is O(d2), i.e., that of computing ((X>X + µI)wk),

which dominates the O(d) costs of the soft-thresholding and w updates.

In any case FISTA provides a general framework for projected gradient de-

scent, that can be used in many other problems besides Lasso. This flexibility

and wide applicability implies a computational trade-off with the efficiency of

11

problem-specific methods, that can usually take advantage of particular charac-

teristics of the problem at hand. Thus, in this vein, it is at a disadvantage with

respect to SMO and GLMnet; moreover, in [15] we have observed that FISTA

needs more iterations than GLMNet or SMO to achieve the same precision on

the objective function. If we add to this that the GLMNet and SMO iterations

are greatly tuned for efficiency, it is our belief that, after the results for FISTA

in [15], it is not competitive with them when applied to Lasso.

4.2. GLMNet

GLMNet performs cyclic coordinate subgradient descent on the Lasso cost

function. If βi 6= 0 for all i, the subgradient direction is

−X>rβ + λ sign (β) ,

and the βj update is given [3] as

β′j = softhλ

(
βj +

(
X>rβ

)
j

)
,

with softh again the soft-thresholding operator. Although GLMNet linear con-

vergence is not proved in [3], it is to be expected after the work in [16], perhaps

after some modifications [17].

To compute X>rβ efficiently, GLMNet carefully manages the computations

Xjy and XjXk needed in such a way that there is a cost O(N(d+ 1)) the first

time they are performed at a given coordinate j but afterwards their costs are

only O(d), and a full coordinate cycle has then a cost of O(d2) that can be

further reduced to O(dm) if only m components of β are non zero. This is

the goal of the screening methods we discuss below. We shall use the scikit-

learn Python implementation of GLMNet; while it does not allow for feature

screening, it has a very compact code free of calls to auxiliary functions and,

thus, very efficient.

4.3. SMO

To solve the equivalent ρ-CL, we will use the ν-SVC option in LIBSVM

(i.e., use -s 1 when calling svm-train). Its iterations are similar than those

12

of SMO and its complexity analysis is done in a pure SVM context in terms

of the sample size N . However, and as discussed above, sample size will be

N = 2d+1 in our particular case. Simplifying the discussion slightly, SMO has a

O(2d) = O(d) cost to compute the L and U indices that yield the patterns that

most violate the ν-SVC KKT conditions, and another O(d) cost to maintain

gradient information. To this we must add at least in the initial iterations

the O(2 · 2d ·N) = O(dN) cost of computing the required dot products that

LIBSVM performs to build the kernel matrix row by row.

Going back to the case of our NPP problem, note that LIBSVM makes

no assumptions on the particular structure of the kernel matrix, and since the

number of patterns is 2d+1, it may eventually compute (2d+ 1)
2

dot products.

However, when reducing ρ-CL to NPP the kernel matrix K has the following

structure:

K = X̂X̂> =

X>X −X>X X>ỹ

−X>X X>X −X>ỹ

ỹ>X −ỹ>X ỹ>ỹ

︸ ︷︷ ︸

2d+1

. (8)

As a result, we only need to compute X>X, ỹ>ỹ and X>ỹ and fill the kernel

matrix accordingly. In addition, the matrix X>X is also symmetric and only

half of the dot products are actually needed. In our experiments we have used

the original LIBSVM, without any modification, and we have also implemented a

slightly modified version, K-SVM, where we have exploited the specific structure

of the kernel matrix for this problem.

It is important to note that the kernel matrix is not precomputed before the

algorithm starts but instead the rows are computed only as needed, taking into

account the structure of the kernel to avoid computing the same dot product

twice. Newly computed rows are next cached so they can be reused if SMO

selects again the same pair of multipliers at a later iteration. It is also worth

mentioning that the changes to LIBSVM are minor and only involve the way

SMO gets the kernel row associated to each multiplier from the cache; no other

change is made in the LIBSVM code. Theoretically, these changes could perform

13

up to 8 times less dot products compared to the naive LIBSVM implementation

for this specific problem, although in practice we observe gains of about a factor

of 4 at least for problems where d ≤ N ; when N is small and d � N , the dot

product costs and, hence, the time savings here are also smaller and may not

compensate for the overhead that K-SVM imposes when handling the reduced

kernel matrix.

At first sight the cost of an SMO iteration is about twice of a GLMNet one,

as in SMO two coordinates change per iteration while one does so in GLMNet.

On the other hand, LIBSVM code aims to an efficient solution of a number

of different SVM-related problems; in particular, calls to several functions are

made at each iteration. Thus, while being by far the best general SVM solver

and one of the best publicly available codes in Machine Learning, its iterations

have a larger overhead than those of the GLMNet of scikit and, probably, also

longer running times. It has been proved that the convergence of SMO is linear

once the coefficients of the non-support and bounded vectors get to the optimal

values, which is achieved in a finite number of iterations, with at least about

O(d) being required [11]. Convergence afterwards is usually very fast, as its

usual stopping condition D < ε, with D a measure of the violation of the KKT

conditions (see [11, Sect. 2.2]), can then be achieved in O(log 1/ε) iterations.

5. Lasso Feature Screening and SVM Shrinking

5.1. Lasso Screening

As just mentioned, any Lasso algorithm will benefit from having a smaller

set of active features and, starting with the work of El Ghaoui et al. [8], there

has been quite a substantial amount of recent proposals to accelerate Lasso by

screening, i.e., removing those features that will result on zero Lasso coefficients;

see [18] for a good review. The main idea is to consider Lasso’s dual and

exploit the KKT conditions. More precisely, UL can be written as a constrained

problem, namely

min
β,z

{
1

2
‖y − z‖22 + λ ‖β‖1

}
s.t. z = Xβ ,

14

and its Lagrangian dual then becomes [19]

max
θ

{
1

2
‖y‖22 −

λ2

2

∥∥∥θ − y

λ

∥∥∥2
2

}
s.t.

∣∣Xj · θ
∣∣ ≤ 1 , (9)

for 1 ≤ j ≤ d. Now the KKT equations relate the primal and dual optimal

solutions β(λ), θλ as y = Xβ(λ) + λθλ, i.e., λθλ is the optimal residual, and

Xp · θλ = sign (β(λ))p if β(λ)p 6= 0 ,

Xp · θλ ∈ [−1, 1] if β(λ)p = 0 .

Notice that F = {θ : |Xp · θ| ≤ 1, 1 ≤ p ≤ d}, the feasible set of (9), is a closed,

convex polytope, and problem (9) can be interpreted as finding the projection

θλ = PF (y/λ) of y/λ on F . The general idea in screening is to exploit this by

identifying a convex region R = Rλ ⊂ F that contains θλ and then screen out

all features p for which supR |Xp · θ| < 1. This can be done taking R to be

an appropriate ball. More precisely, assume we know θλ0 for some λ0; then, if

λ < λ0, the non-expansiveness of the projection operator ensures that

‖θλ − θλ0
‖2 ≤

∥∥∥∥ yλ − y

λ0

∥∥∥∥
2

=

(
1

λ
− 1

λ0

)
‖y‖2 .

Thus, the ball B(θλ0
, Rλ0

λ) with Rλ0

λ = (1/λ− 1/λ0) ‖y‖2 is an example of a

screening region Rλ for any λ < λ0. An extra advantage of working with balls

is that their support function σB(c,R)(z) = maxX∈B X ·z has a simple analytic

form [20], namely σB(c,R)(z) = z · c+R ‖z‖2, and thus for B = B(θλ0
, Rλ0

λ),

sup
θ∈B
|Xp · θ| = max {σB(+Xp), σB(−Xp)}

= |Xp · θλ0 |+Rλ0

λ ‖X
p‖2 .

The slightly more complicated and more precise dome regions [18, 20] are also

used for screening, as their support functions are also relatively simple to com-

pute.

We briefly discuss now how to find a ball center θλ0 . Since 0 ∈ F , we have

y/λ ∈ F for λ big enough. In fact, setting λmax = maxp |Xp · y|, it is well known

that β(λmax) = 0, i.e., θλ = y/λ if λ ≥ λmax; therefore B(y/λmax, R
λmax

λ) is a

15

screening region for any λ < λmax. However it is easy to see [20] that a small

enough λ results in an empty test for the basic SAFE procedure in [8], as no

feature meets it. The same is true for the basic strong rule of [9] that for unit

norm features Xj screens out those j for which
∣∣Xj · y

∣∣ < 2λ − λmax, that

becomes empty if λ < λmax/2. Another drawback is that it may incorrectly

screen out a feature, as it is also a sphere test over B(y/λ,R) for an appropriate

R but θλ may not lie in that sphere; see [18, Sect. 4.2.2].

The usual way to get more precise regions is to work in a regularization

path setting where solutions θλk are successively computed over a sequence

λ0 = λmax > λ1 > . . . and (recursive) SAFE [8] or (sequential) strong [9] rules

are applied when computing θλk+1
once θλk is known. In fact, there has been

a substantial number of recent contributions [21, 22, 23] with great promise

and in some cases (for instance [23]) with publicly available Python–Matlab

implementations. However, note that full regularization paths have to be found

when looking for an optimal λ, but not so for the repeated construction of

models with a previously fixed λ.

Finally, perfect screening (i.e., training Lasso with only the non-zero coeffi-

cients) leads to a cost per GLMNet iteration of O(dm) = O(rd2) with r = m/d

the final sparsity of the model. Obviously, screening will be better for the more

sparse models induced by large λ penalties but possibly not so when the optimal

λ is rather smaller.

5.2. SVM Shrinking

A similar effect can be achieved in SVM training if we screen out of the active

set those patterns that won’t become support vectors. Some recent papers [19,

24] also deal with non-support vector screening for SVM classifiers; in any case,

we will concentrate here on the well-known shrinking technique for SMO [12].

Notice that when going from Lasso to NPP or ν-SVMs sample size of the positive

class becomes 2d and for a non-SV Xj we have αj = 0; in other words, to screen

out a βj is equivalent to remove both Xj and −Xj from the ν-SVM active set,

i.e., to shrink these non-SVs. SMO shrinking relies on the fact that after some

16

iteration T , the non-SVs coefficients do not change from their bound values.

Thus, after that T (provided it is guessed correctly) we can reduce the active set

to those Xj such that their αj are not bounded. The LIBSVM implementation

of shrinking [12, Sect. 5.1] selects non-SV candidates Xj according to whether

αkj is bounded and the j-th gradient component of the SVM dual function at αkj

goes “against” the bounding box constraint. This is done every min {N, 1 000}

iterations, i.e., min {2d+ 1, 1 000} in our case. Of course, this is not a “safe”

procedure in the Lasso terminology; to ensure it doesn’t lead to a wrong solution,

LIBSVM reconstructs the entire gradient once the stopping condition D ≤ 10ε

holds for the shrunk active set, and a more precise shrinking criterion is then

applied. This is done again when the condition D ≤ ε is met on the new shrunk

set. Obviously, over very large samples (or in our case, input dimensions) for

which the kernel matrix does not fit into memory, gradient reconstruction is

very expensive and SMO training with shrinking may actually be costlier. In

LIBSVM [12, Sect. 5.6] the sizes of the set F = {j : 0 < αj < ν} of unbounded

coefficients and of the active set A are compared and a warning is issued if

2|F| < |A|.

Shrinking will reduce the iteration cost of SMO, O(2d), by a fraction r '

m/2d, with m = |A|, the size of A, i.e., the number of non-zero features in the

final α solution. However, since this solution is not unique, the α sparsity does

not have to coincide with that of the Lasso solution: just notice that a fully

sparse β = 0 Lasso solution can be derived from a fully non-sparse αj = 1/2d,

αj+d = −1/2d NPP solution. Thus, here screening would be computationally

very effective but shrinking would not help at all. On the other hand, a fully

non-sparse Lasso may correspond with a NPP solution with a sparsity fraction

r = 1/2; thus, here screening would not help but shrinking would reduce the

cost of SMO iterations by half.

In any case, in all our experiments Lasso and ν-SVM sparsity coincide; this

is probably due to SMO’s initialization in LIBSVM, which is done [12, Sect.

4.2.3] giving to the multipliers of the first νN/2 elements of the positive and

negative samples the initial value of 1. Since here sample size N is just 2d + 1

17

and ν = 2/(2d+ 1), SMO will simply set α1 = 1 and all other multipliers equal

to 0. In other words, the initial solution is as sparse as possible and this seems

to be carried on to the final solution.

6. Numerical Experiments

6.1. Datasets and Methods

We compare next the performance of GLMNet and LIBSVM when solving

equivalent λ-UL and ρ-CL problems in eleven datasets. Of these, eight corre-

spond to regression problems: prostate, used in the original Lasso paper [1],

housing, year, ctscan and cpusmall from the UCI repository, trajectory,

from the Machine Learning Dataset Repository, ree, the problem of predicting

wind energy production over peninsular Spain using numerical weather fore-

casts, and mnist reg, a regression problem built from the MNIST dataset. In

this last problem we proceed as in [18], randomly selecting 500 feature images

from each digit as well as a random digit target image and building then 28×28

samples with feature dimension 5 000 by pairing the i, j pixels of the 5 000

feature images with the i, j pixel of the target image. The ree features corre-

spond to 8 weather variable forecasts at each point of a 57×35 rectangular grid

that encompasses the Iberian peninsula. In addition to the previous regression

datasets, we also considered three classification datasets for biomedical prob-

lems: leukemia, colon cancer and breast cancer, from the LIBSVM dataset

repository. These two-class datasets are transformed to a regression problem by

simply predicting the value of the -1/1 class label. The reason for this addition

is to further explore the case where the number of features is much greater than

the number of patterns, which is easier to find in classification problems from

the medical domain.

Table 1 summarizes in columns 4 and 5 the sample sizes and input dimensions

of all the previous datasets. It is worth mentioning that all of them correspond

to real-world problems with a wide variety of sizes. Some of them are also quite

18

Table 1: Initial and scaled λ values, sample sizes and input dimensions of the datasets

considered.

Dataset Optimal λ λ/λmax Size Dim.

prostate 2.035× 10−3 0.002 8 67 8

housing 8.186× 10−3 0.011 2 378 13

year 4.534× 10−4 0.002 1 46 215 90

ctscan 3.748× 10−3 0.006 8 53 500 385

cpusmall 1.631× 10−2 0.047 9 6 143 12

mnist reg 7.760× 10−3 0.036 4 784 5 000

trajectory 1.021× 10−2 0.129 2 20 000 298

ree 1.290× 10−1 0.164 1 5 698 15 960

leukemia 5.294× 10−3 0.497 0 72 7 129

colon cancer 6.191× 10−3 0.071 1 62 2 000

breast cancer 3.537× 10−2 0.347 0 44 7 129

big for a regression setting, either in number of patterns (ctscan, year) or input

dimension (mnist reg, ree, leukemia, breast cancer).

As it is well known, training complexity greatly depends on λ. We will

consider three possible λ values for UL: an optimal λ∗ obtained according to

the regularization path procedure of [3], a smaller λ∗/2 value which should

result in longer training and possibly a smaller sparsity, and a stricter penalty

2λ∗ value with the opposite effect. As discussed in [18], the ratio λ/λmax is

invariant to scaling and is thus a better measure of the regularization strength

being applied in Lasso. The optimal λ∗ and their λmax scalings for the problems

considered are given in the second and third columns of Table 1. Most problems

have small scaled λ values; they are higher and close to 0.5 in leukemia and

breast cancer. The corresponding ρ parameters are computed as ρ = ‖β(λ)‖1,

with β(λ) the optimal solution for λ-UL.

To make a balanced comparison, for each λ and dataset we first make a

long run of a given algorithm M so that it converges to a β∗M (λ) that we take

as its optimum. We then compare for each M the evolution of fM (βkM (λ)) −

fM (β∗M (λ)), with βkM (λ) the coefficients at the k-th iteration of algorithm M ,

19

until it is smaller than a threshold ε that we fix as 10−6 for all datasets.

As mentioned, we will use the scikit-learn implementations of GLMNet and

of ν-SVM, in itself a wrapper over the LIBSVM implementation, to which we

add the modified LIBSVM code described in Sect. 4.3 to reduce the number of

kernel operations. We denote these algorithms as GLMNet, SVM and K-SVM

respectively. Note that all methods have a compiled C core, so we may expect

time comparisons to be broadly homogeneous. As mentioned before, we do not

give results for FISTA.

6.2. Iterations and Running Times

All the experiments were run in an Intel(R) Xeon(R) server with 16 E5-2680

2.70GHz CPUs and 128 Gb of RAM. Table 2 shows in columns 3 to 5 the number

of iterations that GLMNet, SVM and K-SVM respectively require to arrive at

the ε = 10−6 threshold and in columns 6 to 8 the times needed to achieve the

same precision. We consider GLMNet and SVM iterations as equivalent: even

though GLMNet only changes one coefficient per iteration and SVM two, it

also works on a 2d-dimensional space when GLMNet does it in a d-dimensional

one. The table shows that K-SVM beats GLMNet for all datasets and λ values

except for the trajectory problem. Besides, for the regression datasets, K-

SVM improves SVM running times by a factor that approximately lies between

2 and 4, while both perform the same number of iterations in all problems, as it

should be. However, for the classification datasets, SVM is faster than K-SVM.

As mentioned before, we believe this is due to these datasets having a very small

number of patterns and dimensions between 40 and 100 times larger; therefore

the dot products computed are very cheap while the kernel matrix is rather

large. This, combined with the fact that the optimization finishes in very few

iterations (note that at most two dot products are computed in each iteration),

makes the overhead of taking into account the kernel matrix structure to be

worse than just computing the full dot products. As a conclusion, SVM may be

better suited for problems where the ratio p/N is very big. On the other hand,

for the three such classification datasets both SVM and K–SVM are faster than

20

Table 2: Sparsity of final solutions, number of iterations and running times.

Iterations Time (ms)

Dataset Spars. GLMNet SVM K-SVM GLMNet SVM K-SVM

prostate 8/8 102 40 40 0.051 0.030 0.023

8/8 103 35 35 0.052 0.026 0.020

7/8 93 28 28 0.048 0.023 0.017

housing 12/13 607 71 71 0.567 0.160 0.073

12/13 594 53 53 0.555 0.152 0.064

11/13 216 33 33 0.204 0.143 0.053

year 90/90 5 153 693 693 456.753 757.949 182.591

89/90 5 148 559 559 451.329 731.710 176.815

85/90 4 998 445 445 425.374 718.278 175.916

ctscan 273/385 101 130 944 944 8 371.474 11 334.768 3 707.740

226/385 78 710 629 629 5 949.542 9 316.175 3 354.670

165/385 53 630 387 387 3 488.810 6 755.625 2 702.005

cpusmall 9/12 135 21 21 1.126 1.363 0.366

8/12 144 13 13 1.150 1.201 0.338

6/12 45 11 11 0.337 0.896 0.308

mnist reg 40/5 000 1 040 395 87 87 1 451.346 371.682 217.461

22/5 000 635 452 42 42 940.499 185.491 106.909

13/5 000 550 356 24 24 694.931 109.587 63.693

trajectory 45/297 8 555 164 164 228.461 583.402 264.339

17/297 2 588 32 32 61.546 253.426 108.617

6/297 1 313 9 9 28.673 84.417 36.852

ree 73/15 960 1 784 764 185 185 9 949.901 17 033.588 9 386.198

43/15 960 1 385 271 108 108 7 058.281 8 691.214 5 078.536

23/15 960 1 114 658 52 52 5 541.830 5 097.402 2 789.337

leukemia 28/7 129 415 227 71 71 197.762 49.557 87.672

20/7 129 225 846 28 28 58.096 26.253 50.891

8/7 129 115 898 9 9 60.959 10.155 22.217

colon cancer 47/2 000 184 353 469 469 88.677 31.467 63.017

33/2 000 101 231 227 227 45.856 19.183 38.180

25/2 000 62 377 54 54 29.894 7.411 14.476

breast cancer 29/7 129 219 503 100 100 97.303 50.856 92.861

16/7 129 107 397 27 27 47.075 23.024 40.219

7/7 129 59 597 8 8 26.265 5.919 16.873

21

GLMNet in our experiments.

Problems with a large dimension, such as mnist reg, ree and the classifica-

tion datasets, do need very few SVM iterations. This is related to the sparsity

of the final solutions, that is given in the second column of Table 2, in the form

s/d, with s the number of non-zero coefficients and d the problem dimension.

As mentioned, the Lasso and SVM solutions might have different numbers of

non-zero coefficients; however, in our experiments, both are the same and so

we present the sparsity values in just one column. In particular, it seems that

SVM does not introduce artificial non-zero coefficients. This is probably due in

part to the initialization of SMO in LIBSVM, that sets all coefficients but one

to zero. As the table shows, the sparsities in mnist reg, 22 non-zero coefficients

out of 5 000 for λ∗, or ree, 43 out of 15 960, are very large. In the mnist reg

case this is due to the fact that many features correspond to zero pixels and

also that only 1/10 of the features correspond to images from the digit that we

are trying to predict. In ree it is possibly due to the large correlation between

weather variables at nearby grid points. The classification datasets also have a

very big sparsity factor, probably because the ratio p/N is huge and therefore

there are many irrelevant variables, as is usually the case in medical data.

This behavior is further illustrated in Fig. 1 that depicts for the λ∗ penalty

the evolution of running times until the ε threshold is reached. In the small

sample regression problems of housing, prostate and mnist reg, where kernel

operations are less costly, the running time of SVM is smaller than that of

GLMNet even for rather modest values of the objective function (about 10−3),

but consistently larger in all the others. On the other hand, K-SVM reaches

a value of 10−3 on the objective function faster than GLMNet in prostate,

housing, mnist reg and cpusmall, a value of 10−4 in year, and a value of

10−5 in ctscan and ree. GLMNet is the clear winner in trajectory.

Fig. 1 shows the same evolution for the three classification problems. As

mentioned, in this setting where p � N there are very few kernel operations

(because of the small number of iterations until convergence) and they are also

very cheap (because of a very small N), so the SVM without modifications

22

0.00 0.01 0.02 0.03 0.04 0.05 0.06

Time (ms)

10-6

10-5

10-4

10-3

10-2

10-1

100

O
b
je

ct
iv

e

prostate

K-SVM

GLMNet

SVM

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Time (ms)

10-6

10-5

10-4

10-3

10-2

10-1

100

101

O
b
je

ct
iv

e

housing

K-SVM

GLMNet

SVM

0 100 200 300 400 500 600 700 800

Time (ms)

10-6

10-5

10-4

10-3

10-2

10-1

100

101

O
b
je

ct
iv

e

year

K-SVM

GLMNet

SVM

0 2000 4000 6000 8000 10000

Time (ms)

10-6

10-5

10-4

10-3

10-2

10-1

100

101

O
b
je

ct
iv

e

ctscan

K-SVM

GLMNet

SVM

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Time (ms)

10-6

10-5

10-4

10-3

10-2

10-1

100

101

O
b
je

ct
iv

e

cpusmall

K-SVM

GLMNet

SVM

0 50 100 150 200 250 300

Time (ms)

10-6

10-5

10-4

10-3

10-2

10-1

O
b
je

ct
iv

e

trajectory

K-SVM

GLMNet

SVM

0 200 400 600 800 1000

Time (ms)

10-6

10-5

10-4

10-3

10-2

10-1

O
b
je

ct
iv

e

mnist_reg

K-SVM

GLMNet

SVM

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Time (ms)

10-6

10-5

10-4

10-3

10-2

10-1

100

O
b
je

ct
iv

e

ree

K-SVM

GLMNet

SVM

Figure 1: Time evolution of the objective function for the eight regression datasets with λ∗

as the penalty factor.

23

0 10 20 30 40 50 60

Time (ms)

10-6

10-5

10-4

10-3

10-2

10-1

O
b
je

ct
iv

e

leukemia

K-SVM

GLMNet

SVM

0 10 20 30 40 50

Time (ms)

10-6

10-5

10-4

10-3

10-2

10-1

O
b
je

ct
iv

e

colon_cancer

K-SVM

GLMNet

SVM

0 10 20 30 40 50

Time (ms)

10-6

10-5

10-4

10-3

10-2

10-1

O
b
je

ct
iv

e

breast_cancer

K-SVM

GLMNet

SVM

Figure 2: Time evolution of the objective function for the three classification datasets with

λ∗ as the penalty factor.

performs very well. Even though they are very sparse problems, the inner

loop of GLMNet still has to go through all coefficients and thus the number of

iterations for this algorithm is still very high. These problems could probably

benefit from some kind of feature screening which is not yet implemented in

scikit-learn GLMNet, although as discussed in Sect. 5, the ratio λ/λmax is < 0.5

which implies no gain when using the strong rules and probably not a large one

for other screening procedures. In addition, it is important to emphasize that

the shrinking feature of LIBSVM was also disabled for all the regression

and classification experiments, so we believe the comparisons reported to be

fair.

Even if we have not used it, recall that LIBSVM only applies shrinking after

the first min {2d+ 1, 1 000} iterations. Comparing the dimensions in Table 1

and the number of iterations in Table 2, this implies that it will have no effect

on the large dimensional ctscan, trajectory, mnist reg, ree and classification

24

0 10 20 30 40 50 60 70 80 90

Iteration

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

T
im

e

housing

No shrinking

Shrinking

0 500 1000 1500 2000 2500 3000

Iteration

0

100

200

300

400

500

600

700

800

T
im

e

year

No shrinking

Shrinking

Figure 3: Time versus iterations for the housing and year datasets with penalty 2λ∗ with

and without shrinking.

datasets. In the remaining datasets, we believe shrinking would have little to no

effect in prostate and cpusmall, most likely because the gradient conditions

for shrinking are not met, and a very small one in housing and year. The

evolution of training times versus iterations in these problems with and without

shrinking is given for the stronger sparsity inducing 2λ∗ case in Fig. 3; in them

we have used the standard version of LIBSVM. As it can be seen, the effect is

very modest, something to be partially expected given the small sparsity of the

optimal solutions.

7. Discussion and Conclusions

M. Jaggi’s recently observed that ρ-CL can be broadly reduced to an SVM

problem, opening the way to the application of SVM training methods as alter-

natives to GLMNet, a procedure that takes great advantage of the particular

structure of Lasso and that can be considered the current state of the art to

solve the Lasso problem. Here we have made that reduction more precise show-

ing that ρ-CL can be reformulated as a Nearest Point Problem which, in turn,

can be further reduced to ν-SVC, a variant of standard SV classification. The

straight use of the ν-SVC option of the well-known and widely used LIBSVM

library is competitive with GLMNet in six of our eleven problems. When it is

not, its running times remain close and, moreover, the particular form of the

kernel matrix of the equivalent ν-SVC problem makes clear how to adapt the

25

handling of kernel operation of LIBSVM to achieve further time gains. Fol-

lowing this path we have experimentally shown that this small modification

of LIBSVM results in a procedure that is faster than GLMNet in all of the

problems considered except trajectory.

Recently several screening procedures have been proposed to speed up solv-

ing Lasso by reducing the size of the active feature set. While very elegant and

powerful on concrete setups, screening procedures face two drawbacks. First,

one usually needs to know the solution of Lasso β(λ0) on a previous λ0 penalty

when applying screening over a new λ < λ0; this can be done advantageously

on a sequential, regularization path setting while looking for an optimal λ but

less so when that λ is already fixed and Lasso solutions have to be repeatedly

computed over it. The second drawback is that screening will reduce running

times more effectively the sparser a problem is. In fact, for the datasets consid-

ered in [18], screening in sequential strong Lasso only reduces training times for

penalty ratios λ/λmax larger than 0.5. Some of the sequential methods in [18]

offer in some problems time reductions for ratios as small as 0.05; in all our

experiments this ratio (computed for a λ∗ optimal for the problem at hand) was

below 0.165, in six of them below 0.05 and in four below 0.02. Besides, high

sparsity usually corresponds to large λ penalties but, on the other hand, large

penalties may result in poorer models; again, in our problems the optimal λ

values derived using the regularization path procedure of [3] yielded quite small

penalty ratios.

Although different in many aspects, shrinking is a natural counterpart to

screening when training SVMs. We have not used it in our comparisons with

GLMNet but have independently observed that it would have had only slight

effects on just two datasets. This may be partially due to the conservative way

shrinking is applied in LIBSVM. A conservative approach is certain sensible

when SVMs are to be trained using non-linear kernels such as Gaussian ones,

since shrinking is not a safe procedure and it may initially lead to wrong solu-

tions and a very costly reconstruction of the entire SVM gradient afterwards.

On the other hand, a more aggressive shrinking could be safer in the linear

26

SVM problems that arise from the ρ-CL reduction and thus effectively reduce

training times. Another way to speed up Lasso reductions to SVM could be

to replace LIBSVM with the LIBLINEAR library [25], specifically tailored to

linear homogeneous SVMs; however, as of now ν-SVMs is not included among

the problems LIBLINEAR solves.

In any case, and besides the references above, we also point out that there has

been lately a large research effort dealing with coordinate descent methods for

several problems, with Lasso among them (recall that GLMNet is also a coordi-

nate descent method). Among the many relevant papers (see [26] for a review up

to 2012) we can mention [27, 28] as good examples of the techniques considered

when dealing (as we do) with single CPU algorithms. But, as mentioned, work

is being increasingly done extending and parallelizing SVM solvers so that they

can take advantage of the many recent hardware advances in multiple core CPU

and general purpose graphics processing units (GPUs). An empirical analysis of

SVM parallelization for multi-core CPUs and GPU architectures is in [29] and

such settings are exploited in [6]. Parallelization requirements often entail work-

ing with specific solvers that may introduce problem simplifications (such as the

homogeneous model assumption of LIBLINEAR) which, in turn, may require

extra coding modifications so that ν-SVM fits in them. However, the analysis

in [29] suggests that simpler, implicit approaches to SVM parallelism may result

in substantial computational gains with a less costly programming effort, which

could be immediately exploited for a more efficient solution for Lasso. From the

more general point of view of distributed coordinate descent, the papers [30, 31]

are particularly noteworthy. In contrast with single CPU algorithms, these pa-

pers propose distributed multicore coordinate descent methods which rely on

very clever sub-block sampling techniques and can handle very efficiently data

matrices with 2× 109 rows, 109 features and up to 20× 109 non-zero entries.

Clearly, they will beat any single CPU algorithm.

Finally, we observe that the Lasso and related problems receive a constant

attention in many application areas [32, 33, 34] and, moreover, they are at

the core of many other problems in convex regularized learning, such as Fused

27

Lasso, wavelet smoothing or trend filtering, currently solved using specialized

algorithms. A ν-SVC approach could provide for them the same faster conver-

gence that we have illustrated here for standard Lasso. We are working on these

and other related questions.

Acknowledgments

With partial support from Spain’s grants TIN2013-42351-P, TIN2016-76406-

P, TIN2015-70308-REDT and S2013/ICE-2845 CASI-CAM-CM; work also sup-

ported by project FACIL–Ayudas Fundación BBVA a Equipos de Investigación

Cient́ıfica 2016 and the UAM–ADIC Chair for Data Science and Machine Learn-

ing. The first author is also supported by the FPU–MEC grant AP-2012-5163.

We gratefully acknowledge the use of the facilities of Centro de Computación

Cient́ıfica (CCC) at UAM and thank Red Eléctrica de España for kindly sup-

plying wind energy data.

References

[1] R. Tibshirani, Regression Shrinkage and Selection Via the Lasso, Journal

of the Royal Statistical Society and Series B 58 (1994) 267–288.

URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.

35.7574

[2] H. Zou, T. Hastie, Regularization and variable selection via the elastic net,

Journal of the Royal Statistical Society: Series B (Statistical Methodology)

67 (2) (2005) 301–320.

URL http://dx.doi.org/10.1111/j.1467-9868.2005.00503.x

[3] J. H. Friedman, T. Hastie, R. Tibshirani, Regularization Paths for General-

ized Linear Models via Coordinate Descent, Journal of Statistical Software

33 (1) (2010) 1–22.

URL http://www.jstatsoft.org/v33/i01

28

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.7574
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.7574
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.7574
http://dx.doi.org/10.1111/j.1467-9868.2005.00503.x
http://dx.doi.org/10.1111/j.1467-9868.2005.00503.x
http://www.jstatsoft.org/v33/i01
http://www.jstatsoft.org/v33/i01
http://www.jstatsoft.org/v33/i01

[4] A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for

linear inverse problems, SIAM J. Img. Sci. 2 (1) (2009) 183–202.

URL http://dx.doi.org/10.1137/080716542

[5] M. Jaggi, An equivalence between the lasso and support vector machines,

in: J. A. K. Suykens, M. Signoretto, A. Argyriou (Eds.), Regularization, op-

timization, kernels, and support vector machines, Chapman and Hall/CRC,

2014, pp. 1–26.

[6] Q. Zhou, W. Chen, S. Song, J. R. Gardner, K. Q. Weinberger, Y. Chen, A

reduction of the elastic net to support vector machines with an application

to GPU computing, in: AAAI, 2015, pp. 3210–3216.

[7] Q. Zhou, S. Song, G. Huang, C. Wu, Efficient lasso training from a geo-

metrical perspective, Neurocomputing 168 (2015) 234–239. doi:10.1016/

j.neucom.2015.05.103.

URL http://dx.doi.org/10.1016/j.neucom.2015.05.103

[8] L. E. Ghaoui, V. Viallon, T. Rabbani, Safe feature elimination in sparse

supervised learning, CoRR abs/1009.4219.

URL http://arxiv.org/abs/1009.4219

[9] R. Tibshirani, J. Bien, J. Friedman, T. Hastie, N. Simon, J. Taylor, R. J.

Tibshirani, Strong rules for discarding predictors in lasso-type problems,

Journal of the Royal Statistical Society: Series B (Statistical Methodology)

74 (2) (2012) 245–266.

[10] S. Boyd, L. Vandenberghe, Convex optimization, Cambridge university

press, 2004. doi:10.1017/cbo9780511804441.

[11] J. López-Lázaro, J. R. Dorronsoro, Linear convergence rate for the MDM

algorithm for the nearest point problem, Pattern Recognition 48 (4) (2015)

1510–1522.

URL http://dx.doi.org/10.1016/j.patcog.2014.10.015

29

http://dx.doi.org/10.1137/080716542
http://dx.doi.org/10.1137/080716542
http://dx.doi.org/10.1137/080716542
http://dx.doi.org/10.1016/j.neucom.2015.05.103
http://dx.doi.org/10.1016/j.neucom.2015.05.103
http://dx.doi.org/10.1016/j.neucom.2015.05.103
http://dx.doi.org/10.1016/j.neucom.2015.05.103
http://dx.doi.org/10.1016/j.neucom.2015.05.103
http://arxiv.org/abs/1009.4219
http://arxiv.org/abs/1009.4219
http://arxiv.org/abs/1009.4219
http://dx.doi.org/10.1017/cbo9780511804441
http://dx.doi.org/10.1016/j.patcog.2014.10.015
http://dx.doi.org/10.1016/j.patcog.2014.10.015
http://dx.doi.org/10.1016/j.patcog.2014.10.015

[12] C.-C. Chang, C.-J. Lin, Libsvm: A library for support vector machines,

ACM Trans. Intell. Syst. Technol. 2 (3) (2011) 27:1–27:27. doi:10.1145/

1961189.1961199.

URL http://doi.acm.org/10.1145/1961189.1961199

[13] O. Chapelle, Training a support vector machine in the primal, Neural Com-

putation 19 (5) (2007) 1155–1178. doi:10.1162/neco.2007.19.5.1155.

URL http://dx.doi.org/10.1162/neco.2007.19.5.1155

[14] A. Torres, J. R. Dorronsoro, Conjugate descent for the minimum norm

problem, in: OPT2015: Optimization for Machine Learning, NIPS 2015

Workshop, 2015.

URL http://opt-ml.org/papers/OPT2015_paper_29.pdf

[15] C. M. Aláız, A. Torres, J. R. Dorronsoro, Solving constrained lasso and

elastic net using ν-svms, in: Symposium on Artificial Neural Networks,

Computational Intelligence and Machine Learning - ESANN 2015, Presses

universitaires de Louvain, 2015, pp. 267–272.

[16] S. Yun, P. Tseng, K. Toh, A block coordinate gradient descent method for

regularized convex separable optimization and covariance selection, Math.

Program. 129 (2) (2011) 331–355.

URL http://dx.doi.org/10.1007/s10107-011-0471-1

[17] G.-X. Yuan, C.-H. Ho, C.-J. Lin, An improved GLMNET for l1-regularized

logistic regression, Journal of Machine Learning Research 13 (2012) 1999–

2030.

URL http://www.csie.ntu.edu.tw/~cjlin/papers/l1_glmnet/

long-glmnet.pdf

[18] Z. J. Xiang, Y. Wang, P. J. Ramadge, Screening tests for lasso problems,

IEEE Transactions on Pattern Analysis & Machine Intelligence (to

appear).

URL http://doi.ieeecomputersociety.org/10.1109/TPAMI.2016.

2568185

30

http://doi.acm.org/10.1145/1961189.1961199
http://dx.doi.org/10.1145/1961189.1961199
http://dx.doi.org/10.1145/1961189.1961199
http://doi.acm.org/10.1145/1961189.1961199
http://dx.doi.org/10.1162/neco.2007.19.5.1155
http://dx.doi.org/10.1162/neco.2007.19.5.1155
http://dx.doi.org/10.1162/neco.2007.19.5.1155
http://opt-ml.org/papers/OPT2015_paper_29.pdf
http://opt-ml.org/papers/OPT2015_paper_29.pdf
http://opt-ml.org/papers/OPT2015_paper_29.pdf
http://dx.doi.org/10.1007/s10107-011-0471-1
http://dx.doi.org/10.1007/s10107-011-0471-1
http://dx.doi.org/10.1007/s10107-011-0471-1
http://www.csie.ntu.edu.tw/~cjlin/papers/l1_glmnet/long-glmnet.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/l1_glmnet/long-glmnet.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/l1_glmnet/long-glmnet.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/l1_glmnet/long-glmnet.pdf
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2016.2568185
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2016.2568185
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2016.2568185

[19] J. Wang, B. Lin, P. Gong, P. Wonka, J. Ye, Lasso screening rules via dual

polytope projection, CoRR (2012) –1–1.

[20] O. Fercoq, A. Gramfort, J. Salmon, Mind the duality gap: safer rules for

the lasso, in: ICML, 2015.

URL http://arxiv.org/pdf/1505.03410v1

[21] J. Wang, B. Lin, P. Gong, P. Wonka, J. Ye, Lasso screening rules via dual

polytope projection, CoRR (2012) –1–1.

[22] J. Liu, Z. Zhao, J. Wang, J. Ye, Safe screening with variational inequalities

and its applicaiton to LASSO, CoRR abs/1307.7577.

URL http://arxiv.org/abs/1307.7577

[23] A. Bonnefoy, V. Emiya, L. Ralaivola, R. Gribonval, Dynamic screen-

ing: Accelerating first-order algorithms for the lasso and group-lasso,

IEEE Transactions on Signal Processing 63 (19) (2015) 5121–5132. doi:

10.1109/TSP.2015.2447503.

[24] K. Ogawa, Y. Suzuki, I. Takeuchi, Safe screening of non-support vectors

in pathwise SVM computation, in: Proceedings of the 30th International

Conference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21

June 2013, 2013, pp. 1382–1390.

[25] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, C.-J. Lin, LIBLIN-

EAR: a library for large linear classification, Journal of Machine Learning

Research 9 (2008) 1871–1874.

URL http://www.csie.ntu.edu.tw/~cjlin/papers/liblinear.pdf

[26] G. Yuan, C. Ho, C. Lin, Recent advances of large-scale linear classification,

Proceedings of the IEEE 100 (9) (2012) 2584–2603. doi:10.1109/JPROC.

2012.2188013.

URL http://dx.doi.org/10.1109/JPROC.2012.2188013

[27] R. Tomioka, T. Suzuki, M. Sugiyama, Super-linear convergence of dual

augmented lagrangian algorithm for sparsity regularized estimation, Jour-

31

http://arxiv.org/pdf/1505.03410v1
http://arxiv.org/pdf/1505.03410v1
http://arxiv.org/pdf/1505.03410v1
http://arxiv.org/abs/1307.7577
http://arxiv.org/abs/1307.7577
http://arxiv.org/abs/1307.7577
http://dx.doi.org/10.1109/TSP.2015.2447503
http://dx.doi.org/10.1109/TSP.2015.2447503
http://www.csie.ntu.edu.tw/~cjlin/papers/liblinear.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/liblinear.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/liblinear.pdf
http://dx.doi.org/10.1109/JPROC.2012.2188013
http://dx.doi.org/10.1109/JPROC.2012.2188013
http://dx.doi.org/10.1109/JPROC.2012.2188013
http://dx.doi.org/10.1109/JPROC.2012.2188013
http://dl.acm.org/citation.cfm?id=2021050
http://dl.acm.org/citation.cfm?id=2021050

nal of Machine Learning Research 12 (2011) 1537–1586.

URL http://dl.acm.org/citation.cfm?id=2021050

[28] S. Shalev-Shwartz, T. Zhang, Accelerated proximal stochastic dual coordi-

nate ascent for regularized loss minimization, in: Proceedings of the 31th

International Conference on Machine Learning, ICML 2014, Beijing, China,

21-26 June 2014, 2014, pp. 64–72.

URL http://jmlr.org/proceedings/papers/v32/shalev-shwartz14.

html

[29] S. Tyree, J. R. Gardner, K. Q. Weinberger, K. Agrawal, J. Tran, Parallel

support vector machines in practice, CoRR abs/1404.1066.

URL http://arxiv.org/abs/1404.1066

[30] P. Richtárik, M. Takáč, Iteration complexity of randomized block-

coordinate descent methods for minimizing a composite function, Math.

Program. 144 (1-2) (2014) 1–38. doi:10.1007/s10107-012-0614-z.

URL http://dx.doi.org/10.1007/s10107-012-0614-z

[31] P. Richtárik, M. Takáč, Parallel coordinate descent methods for big data

optimization, Math. Program. 156 (1-2) (2016) 433–484. doi:10.1007/

s10107-015-0901-6.

URL http://dx.doi.org/10.1007/s10107-015-0901-6

[32] D. Vidaurre, C. Bielza, P. Larrañaga, Classification of neural signals

from sparse autoregressive features, Neurocomputing 111 (2013) 21 – 26.

doi:http://dx.doi.org/10.1016/j.neucom.2012.12.013.

URL http://www.sciencedirect.com/science/article/pii/

S0925231213000271

[33] B. Xu, K. Huang, I. King, C.-L. Liu, J. Sun, N. Satoshi, Graph-

ical lasso quadratic discriminant function and its application

to character recognition, Neurocomputing 129 (2014) 33 – 40.

doi:http://dx.doi.org/10.1016/j.neucom.2012.08.073.

32

http://dl.acm.org/citation.cfm?id=2021050
http://jmlr.org/proceedings/papers/v32/shalev-shwartz14.html
http://jmlr.org/proceedings/papers/v32/shalev-shwartz14.html
http://jmlr.org/proceedings/papers/v32/shalev-shwartz14.html
http://jmlr.org/proceedings/papers/v32/shalev-shwartz14.html
http://arxiv.org/abs/1404.1066
http://arxiv.org/abs/1404.1066
http://arxiv.org/abs/1404.1066
http://dx.doi.org/10.1007/s10107-012-0614-z
http://dx.doi.org/10.1007/s10107-012-0614-z
http://dx.doi.org/10.1007/s10107-012-0614-z
http://dx.doi.org/10.1007/s10107-012-0614-z
http://dx.doi.org/10.1007/s10107-015-0901-6
http://dx.doi.org/10.1007/s10107-015-0901-6
http://dx.doi.org/10.1007/s10107-015-0901-6
http://dx.doi.org/10.1007/s10107-015-0901-6
http://dx.doi.org/10.1007/s10107-015-0901-6
http://www.sciencedirect.com/science/article/pii/S0925231213000271
http://www.sciencedirect.com/science/article/pii/S0925231213000271
http://dx.doi.org/http://dx.doi.org/10.1016/j.neucom.2012.12.013
http://www.sciencedirect.com/science/article/pii/S0925231213000271
http://www.sciencedirect.com/science/article/pii/S0925231213000271
http://www.sciencedirect.com/science/article/pii/S0925231213009843
http://www.sciencedirect.com/science/article/pii/S0925231213009843
http://www.sciencedirect.com/science/article/pii/S0925231213009843
http://dx.doi.org/http://dx.doi.org/10.1016/j.neucom.2012.08.073

URL http://www.sciencedirect.com/science/article/pii/

S0925231213009843

[34] Z. Ren, Y. Yang, F. Bao, Y. Deng, Q. Dai, Directed adaptive graphical

lasso for causality inference, Neurocomputing 173, Part 3 (2016) 1989 –

1994. doi:http://dx.doi.org/10.1016/j.neucom.2015.08.032.

URL http://www.sciencedirect.com/science/article/pii/

S0925231215011856

33

http://www.sciencedirect.com/science/article/pii/S0925231213009843
http://www.sciencedirect.com/science/article/pii/S0925231213009843
http://www.sciencedirect.com/science/article/pii/S0925231215011856
http://www.sciencedirect.com/science/article/pii/S0925231215011856
http://dx.doi.org/http://dx.doi.org/10.1016/j.neucom.2015.08.032
http://www.sciencedirect.com/science/article/pii/S0925231215011856
http://www.sciencedirect.com/science/article/pii/S0925231215011856

	plantilla_solutions
	solutions_torres_neuro_2018_ps
	Introduction
	Unconstrained and Constrained Lasso and Elastic Net
	From Constrained Lasso to NPP
	Connection between Lasso and NPP
	Related Work

	FISTA, GLMNet and SMO
	FISTA
	GLMNet
	SMO

	Lasso Feature Screening and SVM Shrinking
	Lasso Screening
	SVM Shrinking

	Numerical Experiments
	Datasets and Methods
	Iterations and Running Times

	Discussion and Conclusions

