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Abstract

Meta-modelling is central to Model-Driven Engineering. Many meta-modelling
notations, approaches and tools have been proposed along the years, which
widely vary regarding their supported modelling features. However, current
approaches tend to be closed and rigid with respect to the supported concepts
and semantics. Moreover, extending the environment with features beyond those
natively supported requires highly technical knowledge. This situation hampers
flexibility and interoperability of meta-modelling environments.

In order to alleviate this situation, we propose open meta-modelling frame-
works, which can be extended and configured via meta-object protocols (MOPs).
Such environments offer extension points on events like element instantiation,
model loading or property access, and enable selecting particular model elements
over which the extensions are to be executed. We show how MOP-based mecha-
nisms permit extending meta-modelling frameworks in a flexible way, and allow
describing a wide range of meta-modelling concepts. As a proof of concept, we
show and compare an implementation in the MetaDepth tool and an aspect-
based implementation atop the Eclipse Modelling Framework (EMF). We have
evaluated our approach by extending EMF and MetaDepth with modelling
services not foreseen initially when they were created. The evaluation shows
that MOP-based mechanisms permit extending meta-modelling frameworks in
a flexible way, and are powerful enough to support the specification of a broad
variety of meta-modelling features.

Keywords: Model-Driven Engineering; Flexible Meta-Modelling; Meta-Object
Protocol; Aspect Orientation; Multi-level Modelling; Extensibility
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1. Introduction

Model-Driven Engineering (MDE) is based on models to capture the essential
properties of systems, and on their automated processing to support all kinds
of development activities, including model analysis, execution and code gener-
ation [1, 2]. The abstract syntax of models is described through a meta-model,
and hence meta-modelling becomes recurrent in MDE.

Meta-modelling systems should offer appropriate meta-modelling primitives
and services for the problem at hand. Many meta-modelling languages – like the
Meta-Object Facility (MOF) [3], ConML [4], the Unified Modelling Language
(UML) [5] or GOPRR [6] – frameworks – like the Eclipse Modelling Framework
(EMF) [7] – and tools [6, 8, 9, 10] have been proposed along the years. While
most of them are based on object-oriented concepts, their features and supported
meta-modelling facilities widely vary. For example, some are based on two-
level modelling [3, 5, 7] while others [9, 10] permit arbitrary meta-levels. Some
support class cardinalities, or prototype-based modelling [9, 11], while others
lack these features, but users would benefit from them in different scenarios.

The meta-modelling facilities that each approach offers are typically fixed,
with few possibilities for extension or adaptation. This means that providing
support for functionalities beyond those offered natively becomes a costly ac-
tivity, which only experts in the meta-modelling framework can accomplish.
This is typically performed by either explicitly modelling those facilities (i.e.,
by creating a customized meta-model and supporting operations), or by some
problem-specific hack.

For example, should we like to support prototype-based modelling within the
EMF1, a possibility would be to create a specific meta-model with a number of
operations to emulate cloning and slot access (so that, if a value is not provided
in a clone, the slot value is retrieved from the prototype). This solution is not
optimal because one cannot use prototype-based modelling in combination with
standard domain meta-modelling. This is so as it would not be possible to
use a domain meta-model, but only the prototype-based meta-model. Another
typical issue is that some design decisions of the meta-modelling framework
lead to good performance for many cases, but are not optimal for others. For
example, in EMF it is efficient to retrieve the superclasses of a given class, but it
is less efficient to retrieve the subclasses. In scenarios with frequent downwards
navigation through inheritance hierarchies, this may be problematic. In this
case, a specific hack, like the creation and maintenance of an index every time
a class is connected via inheritance, would be needed.

In order to improve this situation, we propose using the concept of meta-
object protocol [12, 13] in meta-modelling environments. A meta-object protocol
(MOP) is a technique developed in the Object Oriented Programming (OOP)
community (originally for CLOS [14]) to open a language infrastructure so that

1In prototype-based languages, like Javascript, objects are created by cloning other objects
(called prototypes).
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it can be extended and customized. The key point is to enable language users to
add behaviour at certain points (e.g., when instantiating an object) and exposing
the essential structure of the language so that it can be queried and manipulated.
We call open to meta-modelling frameworks that enable their extension through
a MOP. In contrast closed frameworks do not permit extending the semantics
or implementations of their abstractions, or the services they offer.

In this paper, we argue that open meta-modelling frameworks present ben-
efits due to their enhanced flexibility. Ideally, such frameworks could be con-
structed by a small core of meta-modelling abstractions and operations, which
can then be extended via libraries accounting for different semantics, like prototype-
based modelling, or multi-level modelling. Moreover, those libraries can pro-
vide support for facilities like visualization, a high-level constraint catalogue, or
model/meta-model co-evolution, among many others.

As a proof of concept, we present an implementation of MOPs over Meta-
Depth [9] and another over EMF. The purpose is to show how our general
architecture can be realized for two different frameworks: one built by us, and
another developed by a third party. We compare both approaches by means of
examples, and evaluate them through case studies against a set of requirements,
demonstrating the benefits of MOPs for meta-modelling.

The rest of the paper is organized as follows. Section 2 motivates the need
for open meta-modelling frameworks and introduces some background. Sec-
tion 3 describes the main elements of an open meta-modelling framework. The
next three sections detail its main parts. Section 4 describes the requirements
for open meta-modelling APIs, and typical event types they may expose. Sec-
tion 5 explains approaches to identify the model elements subject to extensible
semantics and Section 6 shows how these semantics can be described. Section 7
describes two implementations: one over MetaDepth and another over EMF.
Section 8 evaluates both approaches through case studies. We relate our work
with the existing literature in Section 9 and conclude the paper in Section 10.

2. Motivation and background

This section motivates the need for adaptation and extensibility mechanisms
in meta-modelling frameworks, formulating some requirements to cover such
needs (Section 2.1). Then, we review some basic notions of MOPs and aspect
orientation that we have adapted to work within meta-modelling frameworks in
order to satisfy the stated requirements (Section 2.2).

2.1. Motivation

Meta-modelling frameworks are built around a fixed set of meta-modelling
constructs (e.g., classes, attributes) and facilities (instantiation, validation of
integrity constraints, feature inheritance, field access, model load) with fixed
semantics, which are typically hard to extend. However, in many cases, one
would like to add specific behaviour to be executed on certain events to change
the default semantics or contribute with additional behaviour. For example, in a
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meta-model to create expressions, we would like to automatically instantiate the
supported data types (like Integer or Boolean) and some special values (like True

and False, which would become singleton objects) every time the meta-model is
instantiated. Without such automation, the user needs to manually instantiate
these elements every time s/he instantiates the meta-model.

Other times, one would like to add special semantics to some existing meta-
modelling construct. For example, in MetaDepth, there is no notion of com-
position reference. Instead, the composition semantics needs to be emulated by
adding OCL constraints on specific references. Similarly, EMF does not support
cardinalities for classes, which should be emulated via constraints. Having the
possibility to extend the framework with support for these concepts would save
effort to the developers since they can simply reuse the extensions as libraries.

More advanced scenarios like adding new concepts to the meta-modelling
language or changing between modelling paradigms can also be implemented if
the meta-modelling framework is externally configurable. For example, while
EMF supports a two meta-level approach, in some cases, it might be more
appropriate to use (potency-based) multi-level modelling [15], prototype-based
modelling [16] or powertype-based modelling [17]. Of course, one could use
different tools depending on the problem at hand, but being able to configure the
environment in different ways promotes flexibility by enabling mixing paradigms
and facilitates experimentation. For example, in [18] a language design was
evolved from an initial prototype-based concept to powertype modelling until
the final multi-level design. A configurable meta-modelling environment could
have facilitated this experimentation task before building the actual language.

Another setting in which configurable meta-modelling environments would
be beneficial is within multi-level modelling [15]. In this context, several con-
cepts, like potency [19, 20] have been proposed to control the instantiability
of classes, and the features of their instances beyond the immediate meta-level
below. These concepts have evolved and have been refined along the years, for
example, introducing the notions of mutability and durability for fields [21], dual
potencies for connectors [22], connector cardinalities [23] or different semantics
of potencies for constraints. This means that different tools currently imple-
ment slight variations of core multi-level modelling concepts, with the result of
being incompatible to each other [24]. The availability of meta-modelling ex-
tension mechanisms would have enabled to experiment with variations of these
notions without changing the internals of the meta-modelling framework. This
way, these concepts could have been extracted into a separate library, whose
elements could be selected and combined by the final users. Hence, the same
tool could be customized with different multi-level semantics.

Altogether, we call “open” to meta-modelling frameworks that permit the
external configuration of meta-modelling facilities with user-defined behaviour.
From the described scenarios, we can enumerate a number of requirements for
open meta-modelling frameworks:

R1 Exposing a well-defined meta-modelling API that can be accessed from
user extensions.
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R2 Opening up relevant meta-modelling actions, like class instantiation or
model load. The user should be able to extend the standard behaviours
of these actions, override them, or forbid their ocurrence.

R3 Offering a mechanism to load user extensions on demand.

R4 Supporting mechanisms to select the model elements (e.g., a particular
class, or a set of features) that are affected by the user extension.

R5 Provide suitable high-level languages to describe the user extensions. Ide-
ally, those languages could be model management languages the user
knows about.

Once we have analysed the required features, next we provide background on
some techniques from programming that we propose to adapt to meta-modelling
in order to tackle these requirements.

2.2. Meta-Object Protocols and Aspect Orientation

MOPs were devised by the OOP community in response to similar prob-
lems as we have described in the previous subsection [12, 13]. In particular, for
the need to support different variants of a language (e.g., different strategies
to order the priority of superclasses in case of multiple inheritance), and per-
formance issues (e.g., different ways to represent slots in objects depending on
the expected number of objects and slot access). MOPs offer the possibility to
provide user code overriding the default behaviour of the framework when cer-
tain actions are performed, like instantiating a class or accessing an attribute.
Typically, the code can be executed before, after or around the infrastructure
action. Not only such behaviour can be overridden, but (if executed before or
around) the user code may prevent the execution of the infrastructure code.
Hence a MOP reifies language notions (e.g., classes, inheritance, methods) in
meta-objects [25]. These are regular objects with an API that is exposed to
the language user. The user can then define subclasses of the meta-object, or
provide code to override its default behaviours. This results in an adaptation
of the behaviour of the base language itself.

Related to MOPs, aspect-oriented programming (AOP) [26] is a program-
ming technique that aims at increasing program modularity, by modularizing
cross-cutting concerns. These are concerns that are scattered throughout the
code (e.g., like a logging functionality that is needed in every public method).
This way, these scattered concerns are modularized in advices that modify the
behaviour of the base code. Advices are applied to the base code at particular
join points. The selection of joint points is typically performed by specifiying
a pointcut, which is a predicate of some kind that matches join points. The
concepts of AOP have been lifted to models and modelling giving rise to aspect-
oriented modelling (AOM) [27]. Hence, AOM approaches enhance modularity
of crosscutting concerns by using aspect-orientation at the level of models.

While we take terminology and ideas from AOM, our goals differ, as our
aim is to adapt the semantics of the meta-modelling facilities offered by the

5



meta-modelling framework. Instead, in AOM the goal is to construct models
using advanced modularity mechanisms based on concerns. This way, com-
monly, pointcuts in AOM refer to specific points in the model, over which ad-
vices (typically model fragments) are to be applied. This application is gen-
erally done using model weaving [28] or model transformation techniques [29],
resulting in a model that contains the base model enriched with the advice mod-
els. In contrast, in our approach pointcuts should also consider meta-modelling
events, like creating or deleting an object. In our setting, advices will typically
contain behaviour specification which modifies the standard execution of the
meta-modelling framework over the selected modelling elements. Hence, a key
difference between AOM and our approach, is that, while AOM focusses on
model construction by composing concerns, we focus on extending or adapting
the meta-modelling facilities which are used in the modelling process.

The OOP community [30, 31] has identified several useful dimensions of con-
trol for MOPs, like temporal control, which refers to the possibility to activate
and deactivate user extensions (which we call advices using AOP terminology)
and level control to allow knowing whether certain code is executed due to a
regular program or due to an advice, which is sometimes needed to avoid the
same advice to be executed again (e.g., an advice that creates objects and is
activated upon the creation of objects), leading to an infinite recursion. Place-
ment control refers to the need to activate advices for a particular class, object
or method. This is similar to pointcut selection in AOP. Therefore, a MOP
needs a mechanism to indicate for which elements an advice is applicable.

Next, we show how MOPs can be integrated into meta-modelling environ-
ments to enhance their extensibility.

3. The ingredients of open meta-modelling frameworks

Open meta-modelling frameworks must provide mechanisms to extend their
behaviour in unforeseen ways. Figure 1 shows a conceptual model with their
main ingredients, and an indication on the sections of this paper where we
address them in detail.

In the first place, an open meta-modelling framework should make available
an API that can be used externally. Such an API should expose a set of Event-

Types (join points in AOP terminology) which occur during its operation, like
validating a model or instantiating a class. These events can be captured and
processed in an Extension. An extension is triggered by one or more event types
(e.g., if the same behaviour is to be executed on different events like object
creation or update).

The extension behaviour is implemented by an Advice, which may perform
any kind of model manipulation by accessing the meta-modelling API. We pro-
pose two alternative means to access the meta-modelling API: by means of
model management languages, and by using a general purpose programming
language (GPL). The first alternative may be more familiar to the engineer, as
s/he can use model management languages to express advices, in the form of
a model-to-model transformation, code generation, an in-place transformation,
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Figure 1: Conceptual model with the elements of an open meta-modelling framework. Labels
on the dashed rectangles indicate the section where the contained elements are discussed

or a constraint execution. However, this requires the model management lan-
guages to have mechanisms to interact with the meta-modelling API (e.g., to
create a field reflectively, or to delete an object). In the second case, advices
are specified using a general purpose programming language, typically the one
used to create the meta-modelling framework. This solution is lower level and
may be more verbose to perform common actions.

Similar to AOP [26], the advice associated to an extension can be processed
before the joint point operation is executed (Pre in the When enumeration),
afterwards (Post) or can be intercepted so that the handling code decides when
to forward its execution (Around). Moreover, the triggering of the advice may
contain additional conditions.

In addition to join points in the meta-modelling API, we need to identify
the model elements over which the advice will be executed. Therefore, similar
to AOM techniques, we also have structural join points like model, entity (i.e.,
a class or an object), field and reference. Hence, a mechanism is needed to
indicate the placement of the extension, which is called placement control in
MOP approaches [30], and are similar to the pointcuts of AOM approaches.

Placement control can be done programmatically e.g., by a piece of code that
searches in the model the elements to be considered in the advice. Alternatively,
we also propose the use of annotations. These are typically a set of related tags
to be placed in model elements, which help in directing the execution of their
associated advice when the given EventType(s) occur. For example, to enable the
automatic instantiation of specific elements in a meta-model, we may introduce
an annotation @autoInstantiate applicable over meta-models, and an annotation
@auto applicable over classes. An associated advice will be executed when the
annotated meta-model is instantiated, and will create an instance of every class
annotated with @auto.
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Finally, related extensions can be packaged in libraries, containing both the
advices and the configuration of these via placement control mechanisms.

The next sections describe typical requirements and styles of meta-modelling
APIs and the event types they should expose (Section 4), the placement control
mechanisms we propose (Section 5), and the advice mechanisms (Section 6).

4. Designing open meta-modelling APIs

Figure 2 depicts a feature model which describes the design space and the
main features of open meta-modelling APIs.

optional mandatoryalternative or

Open meta-modelling
API

Reification

Structure Typing

Model Node Feature

Approach

Compiled Interpreted Events

Join points

Base API 
methods

Base API

Internal External

Level
agnostic

requires

MOP API API Access

GPLModel
management

language

Figure 2: Feature model of an open meta-modelling API

In the first place, an open meta-modelling framework should make available
a base API that permits its use programmatically, e.g., to instantiate classes
or assign field values. The programmatic use of a base API is needed to define
external advices that can adapt or extend the meta-modelling features (see
Section 6).

MOP techniques require reifying the language concepts in terms of meta-
objects, so that they can be queried and manipulated from advices. In meta-
modelling frameworks this is normally granted, as models and meta-models
are explicitly represented using the meta-modelling facilities of the framework.
Typically these include structural notions like model/meta-model, class/object,
attribute/slot and reference/link and also the typing relationship between them.
Moreover, the base API usually consists of methods attached to these meta-
objects. Some frameworks (like MetaDepth) are level-agnostic, so that they
represent uniformly these concepts at any meta-level. While this feature is not
essential for open frameworks, it simplifies creating extensions, as the number
of join points to consider is lower.

The support and flexibility of meta-modelling frameworks for reflection varies,
but at the bare minimum we require the ability to reify nodes (classes/objects)
and features (attributes/slots/references/links). For example, the EMF does
not explicitly provide a notion of model or meta-model (but of Package, which
exists at the meta-model level only, and is a container gathering related classes),
but offers elements to represent classes and features. EMF is not level agnostic,
and so it represents differently elements at the meta-model and model levels.
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Meta-modelling frameworks can follow a compiled or an interpreted ap-
proach. A compiled approach produces code in an implementation language
(Java in case of EMF). The generated code typically extends runtime infras-
tructure of the meta-modelling framework. For example in EMF, the generated
interfaces extend EObject, which provides reflective capabilities to navigate to
the meta-class. Compiled approaches limit and complicate user extensions, as
the reflection possibilities are reduced. For example, advices modifying the
meta-model transparently would become more challenging.

Some meta-modelling frameworks work in an interpreted mode, where the
meta-model is not compiled. This provides more flexibility as e.g., the meta-
model can be modified programmatically, and then instantiated. EMF supports
both a compiled and an interpreted mode. Frameworks like MetaDepth sup-
port interpreted mode only. This allows richer reifications and reflection ca-
pabilities. For example, MetaDepth explicitly represents the typing relation
between elements and their type (instead of relying on the instantiation pro-
vided by a programming language), which then can be queried and modified at
run-time [32].

Open frameworks should be extensible. One lightweight extension mecha-
nism is through event notifications (feature JoinPoints.Events in Figure 2). Hence,
facilities like class instantiation generate notifications, which can then be cap-
tured by callback functions to execute custom code. Both EMF and MetaDepth
support event-based notifications. Nonetheless, we consider this a weak exten-
sion mechanism, because the code cannot for example forbid the action associ-
ated to the occurrence of the event, and there may be actions (e.g., getting the
superclasses of a class) for which no events may be produced.

A stronger extension mechanism is based on instrumenting the meta-modelling
API. This can be supported by design in the API, for example by adding appro-
priate hooks on selected methods of the base meta-modelling API. These would
become join points to which advices can be attached. This approach is illus-
trated in our MetaDepth implementation. Another possibility for enabling
internal instrumentation is to profit from extension points of component-based
technologies, like Eclipse [33]. An internal approach requires having control of
the meta-modelling framework source code. This may not be possible if reusing
a meta-modelling framework built by third parties. Hence, alternatively, one
can use an external mechanism, based on AOP. This approach will be illustrated
in our EMF implementation. While external mechanisms are unobtrusive, they
may be limited by the aspect-oriented technology used.

Regardless of the join point mechanism used, a helper MOP API is needed
to define the extensions. This MOP API is responsible for selecting pointcuts
and execute advices on them; and should offer facilities e.g., to track whether
base API code, or advice code is being executed. If join points are internal
API methods, the MOP API will typically be integrated within the base API.
Instead, with an external approach to join points, the MOP API will be sepa-
rated from the base API, in a different library. The base and MOP API may
be accessible using GPLs, or through model management languages.

Table 1 shows the set of meta-modelling join points that we consider, to-
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Table 1: Meta-modelling join points, and example advices

Name Example Advice
M

o
d
e
l Create model Automatic model population with predefined objects

Load model Automatic model visualization using external diagramming libraries
Save model Serialize additional artefacts (e.g., creating HTML documentation)
Validate model Extend basic validation to provide semantics of e.g., composition

O
b
je
c
t Instantiate object Automatically create inheritance to powertype object

Delete object Create execution trace object
Validate object Mark object as draft, so that its validation is deferred
Set inheritance rel. Disallow multiple inheritance, or inheritance at the object level

F
e
a
t
u
r
e Instantiate feature Support for field/reference redefinition

Set value Unit conversion (e.g., yards to meters)
Get value Default values different from standard ones (e.g., get value from

prototype object)

gether with some example advices. Please note that in our approach meta-
modelling joint points are fixed, and thus there is no pointcut language but the
events are exposed through an API.

Meta-modelling join points include those at the feature level (set, get, in-
stantiation), object/class level (instantiation, deletion, validation), and model
level (create, load, save, validate). Depending on the reification capabilities of
the framework, some join points may not be directly available. For example, in
EMF there is no first-class notion of model, so detecting meta-model instantia-
tion is not possible unless EMF is instrumented using e.g., AspectJ, as we do in
our implementation. In MetaDepth inheritance is a built-in concept (available
at any meta-level), so that one can capture the creation of such relations, e.g.,
to forbid multiple inheritance.

5. Placement control

In addition to join points offered by the meta-modelling API, our approach
needs join points in modelling elements, and pointcuts to select them. Following
MOP terminology, we call this placement control [30], and propose two mecha-
nisms. The first one is based on a programmatic API (Section 5.1), while the
second one is based on annotating the model elements (Section 5.2).

5.1. Programmatic MOP configuration

Extension libraries need to configure the meta-modelling framework with
their particular behaviour. One way to perform this task is by providing pro-
grammatic access to the MOP, in the style of MOPs for OOP [12].

A meta-modelling MOP API must provide a way to install callbacks on
meta-modelling events as well as a filtering mechanism to emit only the concrete
events a particular extension wants to process. There are many ways to define
such an API. Figure 3 shows a class diagram describing the fluent API that
we have designed for our EMF implementation. The EMOP class defines one
“on” method for each kind of supported meta-modelling event. These methods
return an object providing access to a simple API (e.g., an object of type OnSet)
to install callbacks before, after or around the selected event and take the callback
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as a Java 8 lambda. The around method allows us to cancel the execution of
the event by throwing an InterruptAround exception or to return a different
value (e.g., overriding onGet semantics). In addition, it is possible to install
filters to rule out certain events we are not interested in. These methods are
a fluent API, which internally packages the configured callbacks into an advice
object which is installed into the AdviceRepository. We have instrumented EMF
(see Section 7) to notify about meta-modelling events to the advice repository,
so that the callbacks are invoked when certain points of the EMF framework
are executed. Finally, we have considered three variants of the EMOP class.
The global EMOP is intended to notify about any event. The resource EMOP
restricts events to those happening in a certain resource, whereas the thread
EMOP restricts events to those happening within the execution of a certain
thread. The intention of this variant to a allow the MOP configuration to be
active only during certain execution scope (e.g., during the execution of an
specific model transformation).

EMOP

onSet() : OnSet
onGet() : OnGet
onInstantiate() 
onValidate()
onModelCreate()
onModelLoad()
onModelSave()

Global
EMOP

Resource
EMOP

Thread
EMOP

OnSet

before(callback) : OnSet
around(callback) : OnSet
after(callback) : OnSet
filter(predicate) : OnSet

* Instrumented version of EMF 
emitting events on
designated join points

EMF

AdviceRepository
setAPI

installSetAdvice(advice)
installGetAdvice(advice)

…

installs

eventNotification

OnModelSave

…
saveAPI

Figure 3: Class diagram describing the EMOP API

Example. ResourceType – Detecting conformance relationships. In
EMF there is no explicit notion of model or meta-model2, hence we may be
interested in building a facility to make explicit the conformance relationship
between an EMF resource and the EPackages containing the types of the re-
source’s objects. A simple implementation could place an advice on model load
to compute the conformance relationship for each loaded model.

Listing 1 shows how to configure the MOP using our implementation on
EMF. First, we obtain a handle to the global MOP (line 1) through the call
to the global static method. Then, we use the fluent API to configure the
onModelLoad event, so that our callback (defined using a Java 8 lambda; lines
3–6) is invoked each time a resource is loaded and has been populated with
elements. The behaviour in this case is to compute the set of EPackages which
the EClasses used by the resource’s objects belong to (method getAllPackages;
line 12). Then, we use a model index (implemented as a singleton) to register
the conformance relationship. This index can be queried by other extensions

2In EMF a resource holds any kind of object. A resource’s meta-model can be seen as the
set of packages defining the types of the resource objects.
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or by some user interface component to determine the type of a resource, or
conversely, which loaded resources are instances of a given EPackage.

1 EMOP.global().
2 onModelLoad().
3 after(resource −> {
4 Set<EPackage> pkgs = getAllPackages(resource);
5 ModelIndex.instance().register(resource, pkgs);
6 });
7

8 /∗∗
9 ∗ Helper method to determine the ”meta−model” of a resource as a set of

10 ∗ EPackages which hold the EClasses of the resource’s objects (code omitted)
11 ∗/
12 Set<EPackage> getAllPackages(Resource r) { /∗...∗/}

Listing 1: Programmatic configuration to determine the conformance relationship of a model

Example. AutoInst – Automatic instantiation of model elements. In
this example we aim at automatically instantiate certain model elements when a
model or certain model element is created. This need arises in scenarios in which
there are default objects which must be present in any model conforming to
some meta-model. As a concrete example Figure 4(a) shows the meta-model of a
simple programming language that supports the definition of functions, and also
allows functions from other programs to be imported via an import statement.
Figure 4(b) shows an example of this language using a textual concrete syntax.
We want the stdlib module to be automatically added to any program, without
requiring the user to write an explicit import statement.

imports *
ImportLib

name : String

Function

name : String

* functions

Program

name : String

program ‘example’

import stdlib

import http

function send() { ... }

This import should be 
transparent to the user

a) b)

name: SFun
nsURI: http://sfun.ecore

Figure 4: (a) Meta-model of a simple language supporting functions and import statements.
(b) Example program in which the standard library is automatically imported

We can use our MOP facility to describe an extension which detects when
a Program object is created in order to automatically instantiate an ImportLib

object, setting its name to “stdlib”. Listing 2 shows how the extension could be
configured programmatically with EMOP. We extend the regular EMF instan-
tiation using the onInstantiate method, selecting only those objects belonging to
the SFun package and when the object in question represents a program (filter

method, lines 3–6). Then, we use the regular EMF dynamic API to create the
corresponding ImportLib object and add it to the program object.

1 EMOP.global().
2 onInstantiate().
3 filter(obj −>
4 ”http://sfun.ecore”.equals(obj.eClass().getEPackage().getNsURI())
5 &&
6 ”Program”.equals(obj.eClass().getName())).
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7 after(progObj −> {
8 // Access the meta−model to get relevant meta−elements
9 EPackage sfunPkg = progObj.eClass().getEPackage();

10 EClass importClass = (EClass) sfunPkg.getEClassifier(”ImportLib”);
11 EStructuralFeature nameAtt = importClass.getEStructuralFeature(”name”);
12 EStructuralFeature importRef = progObj.eClass().getEStructuralFeature(”imports”);
13

14 EList<EObject> allImports = (EList<EObject>) progObj.eGet(importRef);
15 for(EObject o : allImports)
16 if ( ”stdlib”.equals(o.eGet(nameAtt)) ) return; // The program already has an stdlib import
17

18 // Create and configure the import object
19 EObject importObj = EcoreUtil.create(importClass);
20 importObj.eSet(nameAtt, ”stdlib”);
21 allImports.add(importObj);
22 });

Listing 2: Programmatic configuration to automatically instantiate import statements

The programmatic configuration approach has two main issues. Firstly, fa-
cilities like this one (i.e., automatic instantiation of model elements) are not
reusable across meta-models since the placement of the extension (i.e., the Pro-

gram class) is hardcoded in the extension. Secondly, the code to establish the
placement of the extension can be cumbersome, as it requires programming at
the meta-level3. To address these issues we propose an alternative placement
control mechanism based on annotations.

5.2. Annotation-based MOP configuration

As an alternative mechanism to programmatic placement, we propose us-
ing annotations to identify the concrete model elements over which a partic-
ular advice needs to be executed. For illustration, we use the MetaDepth
textual language [9], but annotation-based configuration is applicable to other
meta-modelling frameworks supporting some kind of annotation mechanism, like
EMF. In fact, to demonstrate the generality of the approach we have also imple-
mented it for EMF by using promotion transformations. To avoid repetition, it
is available as supplemental material available at http://miso.es/tools/mop.

Following the example of the automatic instantiation used before, Listing 3
shows a meta-model described in MetaDepth to represent a language for ex-
pressions.

1 @autoInstantiate
2 Model Expressions {
3 abstract Node BooleanValue{}
4 @auto(name=”trueValue”)
5 Node TrueVal[1] : BooleanValue{}
6 @auto(name=”falseValue”)
7 Node FalseVal[1] : BooleanValue{}
8 ...
9 }

Listing 3: Annotation-based configuration in MetaDepth (automatic-instantiation)

3We have used dynamic EMF in the example because it is more general, since it works
both with generated and not generated meta-models
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The Expressions meta-model is tagged as autoInstantiate, while the TrueVal and
FalseVal classes are tagged as auto. The objective is that, by such annotations,
every time we instantiate the Expressions meta-model, one instance of TrueVal

and another of FalseVal are automatically created, with identifiers trueValue and
falseValue respectively. MetaDepth supports class cardinality (indicated by the
[1] intervals in lines 5 and 7), so trueValue and falseValue become singleton objects.
In both lines, “:” is used to indicate inheritance, therefore both TrueValue and
FalseValue inherit from BooleanValue.

Many meta-modelling frameworks (like the EMF) have built-in support for
annotations but they are just informal notes that can be attached to arbitrary
modelling elements. For example, while in EMF, tools for textual modelling like
Xcore4 facilitate adding annotations to model elements, they are not subject to
a predefined syntax, and cannot be applied at the model level. Instead, we need
annotations that can be applied at any meta-level and have a formal syntax,
so that they can be processed in a type-safe way. Hence, our solution involves
defining a meta-model for annotations.

Annotations
meta-model

@2

Annotation
definition

@1

Annotation
usage

@0

«instance of»

«instance of»

Figure 5: Annotation meta-
levels

Conceptually, defining and instantiating annota-
tions spans three meta-levels, as seen in Figure 5.
The top-level contains the meta-model for annota-
tions, which is used to define particular annotations
at the middle level, while these are used to annotate
particular model elements at the bottom level. In the
Figure, we decorate each model with its potency [34]
(shown after the “@” symbol). The potency (which
in MetaDepth is applicable to models, classes and
fields) is an integer number that indicates how many
meta-levels the element can be instantiated. At ev-
ery instantiation, the potency decreases, and when
it reaches 0, the element cannot be instantiated any-
more, becoming a pure instance. The elements at intermediate levels retain
both a type and an instance facet, hence they are called clabjects (contracting
the words class and object) [19]. This way, a clabject is an element that both has
a type at an upper meta-level (just like objects in two-level modelling) and can
be instantiated at a lower meta-level (just like classes in two-level modelling).

An excerpt of our meta-model for annotations is shown in Figure 6. It
defines a hierarchy of annotation types, depending on the target element to
be annotated: the Model, a Node (corresponding to clabjects), an Edge, or a
Field. While we take as targets the meta-modelling elements of MetaDepth,
this is easily adaptable to other meta-modelling environments. As previously
mentioned, MetaDepth is a meta-level agnostic language, so that modelling
concepts are uniform at every level. Hence, Model refers both to meta-models
and models, Node refers to classes and objects (i.e., to clabjects), PrimField refers
to attributes and slots, while References refers to both references and links. Finally,

4https://wiki.eclipse.org/Xcore
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Edge refers to associations (which may hold fields).

Annotation 

reqs@1 

forbids@1 

*

* 

Model 
Annotation 

Node 
Annotation 

Edge 
Annotation 

Field 
Annotation 

PrimField 
Annotation 

Reference 
Annotation 

Node Model Edge 

Element 

Linguistic MM Annotations@2 

… 

target@(2) 

potency: int applicPotency@1: int=1 

correctTargetType inv:  
  self.target.isKindOf(Model) 

correctTargetType inv:  
  self.target.isKindOf(Node) 

… 

validTargetPot inv:  
  self.target.^potency >=  

  self.applicPotency 

Field 

Figure 6: Annotation meta-model

We model incompatibility of annotations (i.e., annotations that cannot be
placed on the same element) with the forbids relation. Additionally, annotations
may require each other (reqs relation). In our example, we require an autoInstan-

tiate annotation over a Model in order to allow an auto annotation over a Node.
This means that auto requires autoInstantiate.

Annotations may declare expectations on the potency of the target element
they annotate. This is done with field applicPotency. As this field has potency
1, it needs to be given a value at the next meta-level (when specific annota-
tions are declared). A value of 1 for applicPotency means that the target element
should be instantiable at least once. A value of 0 means that there is no need
for the target element to be instantiable. Checking that the potency of the
target is bigger or equal than the value of applicPotency is performed with the
constraint validTargetPot. This constraint has potency 2, and is evaluated two
levels below. Constraints in MetaDepth are expressed using the Epsilon Ob-
ject Language (EOL) [35]. MetaDepth exposes a meta-modelling API (the
linguistic meta-model), which can be transparently accessed through EOL (and
in fact through any Epsilon model management language [36]). This way, the
expression self.target.ˆpotency traverses reference target and accesses property po-

tency, which is defined in the linguistic meta-model. We use the escape character
ˆ to signal access to the linguistic layer, but its use is optional. However, it needs
to be used if there are collisions with equally named properties in the ontological
(domain) meta-model.

As seen in Figure 5, the Annotations meta-model is expected to be instantiated
at the two next meta-levels. For this purpose, we use the multi-level modelling
capabilities of MetaDepth [9], and label the model as having potency 2 (i.e.,
can be instantiated twice). All clabjects inside the Annotations meta-model have
potency 2 as well.

Figure 7 shows a simplified excerpt of the definition of the annotations for
automatic instantiation. These definitions are included in model AutoInstantiate,
which is an instance of the Annotations meta-model of Figure 6. The AutoInstan-
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tiate model has potency 1, so it can be instantiated once more, at the lower
meta-level. The model contains two concrete annotations: an annotation (au-

toInstantiate), applicable to models (an instance of ModelAnnotation), and another
one (auto) applicable to nodes (an instance of NodeAnnotation). As previously
mentioned, auto requires autoInstantiate.

AutoInstantiate@1

autoInstantiate
:ModelAnnotation

:autoInstantiate

ExpressionsAnnotation_Model@0

Boolean
Value

targetExpressions@1

MyExpressions@0

Annotations@2

trueValue:TrueVal

reqs

auto
:NodeAnnotation

name: String
vals: String[*]
applicPotency=1

TrueVal [1]

FalseVal [1]

:auto

name=“trueValue”

:auto

name=“falseValue”

target

falseValue:FalseVal

…

…

target

«instance of»

«instance of»

«instance of»

applicPotency=1

Figure 7: Annotations for auto-instantiation (excerpt)

Annotation definitions, like auto, may define fields. For this purpose, we
rely on MetaDepth’s support for linguistic extensions [9]. These are elements
with no ontological type (but with linguistic type only). This permits extending
nodes with new fields, as shown in Figure 7. In the example, auto declares two
new fields: name and vals. The former specifies the identifier of the instantiated
element, while the latter holds initialization values for the attributes of the
instantiated element.

An annotation meta-model like AutoInstantiate can be instantiated in two
ways. The first one is using the concrete syntax of the meta-modelling frame-
work, as shown in Listing 3. MetaDepth has a textual syntax, which allows
placing annotations on arbitrary elements. These are type-checked with re-
spect to the corresponding annotation meta-model. When parsed, a model
is produced, instance of the annotation meta-model (model ExpressionsAnnota-

tion Model in Figure 7). Alternatively, this model can be input directly, without
resorting to the concrete syntax. The elements inside this model contain ref-
erences, called target, to the annotated elements in model Expressions. These
references are automatically set when parsing the concrete syntax representa-
tion. Reference target was declared in the Annotation meta-model of Figure 6, as
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having potency 2 of type leap [37]. Leap potency is indicated between paren-
thesis (target(2) in Figure 6) and means that it has to be instantiated two levels
below, but not at intermediate meta-levels. Please note that in the meta-model
of Figure 6, we ensure that the target has correct type by the use of constraints
named correctTargetType, placed on the subclasses of Annotation (some of them
have been omitted for clarity).

Listing 4 shows the annotations meta-model and the complete definition of
the annotations for auto-instantiation using MetaDepth syntax.

1 Model Annotations@2 {
2 abstract Node Annotation {
3 reqs@1 : Annotation[∗];
4 forbids@1: Annotation[∗];
5 applicPotency@1 : int = 1;
6 target@(2): Node[0..1];
7

8 validTarget : $self.target.ˆpotency >= self.applicPotency$
9 }

10

11 Node ModelAnnotation : Annotation {
12 correctTargetType: $self.target.isKindOf(Model)$
13 }
14

15 Node NodeAnnotation : Annotation {
16 correctTargetType: $self.target.isKindOf(Node)$
17 }
18 ...
19 }
20

21 Annotations AutoInstantiate {
22 ModelAnnotation autoInstantiate {}
23

24 abstract Node AutoAnnotation {
25 name : String[0..1]; // The name of the created instance
26 vals : String[∗]; // The initialization values
27 duplicate : boolean = false; // Whether we allow object duplication
28 }
29

30 NodeAnnotation auto : AutoAnnotation {
31 reqs = [autoInstantiate]; // using auto requires the model using autoInstantiate
32 }
33

34 NodeAnnotation populated {} // Marks nodes owning a reference that needs to be populated
35

36 ReferenceAnnotation populate : AutoAnnotation {
37 obj : Node[0..1]; // The node that needs to be instantiated
38 reqs = [populated];
39 }
40 }

Listing 4: Annotations meta-model in MetaDepth (excerpt) and annotations for automatic-
instantiation

Lines 21–40 shows a more complete version of the annotations for auto in-
stantiation. In addition to auto, we define an annotation populate applicable to
references. They indicate objects that need to be created and added to such
reference. Both auto and populate share three parameters (name, vals and dupli-

cate) and so they inherit from the abstract node AutoAnnotation. The duplicate

flag signals whether existing objects may be reused or they need to be newly
created. Annotation populate needs to indicate the node that is to be instanti-
ated (field obj in line 37), and the container class needs to be annotated with
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populated. This annotation simply marks that some owned reference needs to be
populated upon instantiation of the class.

Looking back at the example in Listing 2 we rewrite it in MetaDepth
using annotations (Listing 5). The populate annotation would allow creating an
ImportLib object with name “stdlib”, in the imports reference of a newly created
Program object. This would be done by annotating the Program.imports with
@populate(obj=ImportLib, vals=[”stdlib”]), and the class Program as @populated. In
this case, the duplicate flags avoids re-creating unnecessary stdlib ImportLib objects
when e.g., loading an existing model where the stdlib ImportLib has already been
created.

1 @autoInstantiate
2 Model SFun {
3 @populated
4 Node Program{
5 name : String;
6 functions : Function[∗]
7 @populate(obj=ImportLib, vals=[”stdlib”])
8 imports : ImportLib[∗]
9 }

10

11 Node ImportLib {}
12 Node Function {}
13 ...
14 }

Listing 5: Example of automatic instantiation for import statements MetaDepth

This approach to define annotations greatly benefits from a multi-level frame-
work, but it could also be emulated in a two-level framework like EMF. In this
case a mechanism, like promotion transformations, would be needed [15] to em-
ulate the three meta-levels that Annotations span. A promotion transformation is
a model-to-model transformation that takes a model and outputs a meta-model
(so that it can be instantiated again).

5.3. Comparison of approaches

As a summary, next we briefly discuss on strengths and limitations of both
approaches to placement control, in order to clarify for which scenarios each one
works better.

The programmatic API is the right choice when the extension needs to act
over all model elements affected by a given event, independently of their type.
For example the ResourceType extension in Listing 1 cannot be configured using
annotations, since it acts over all elements in a model.

The programmatic access is also useful when the meta-model to be anno-
tated is not available for modification. For example, we may want to apply
the automatic instantiation scenario to UML, in order to automatically import
the primitive types library. This cannot be done using annotations because the
UML meta-model is standard, and is frequently made available to tools in a
read-only way. The programmatic API is the most general mechanism, as one
can always hard-code the placement control, although it is likely that this kind
of usages are only accessible to advanced programmers, while it may result in
meta-model specific, non-reusable code.
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The placement control based on annotations is more appropriate when the
model elements that need to be exposed to the MOP are known at design
time. By annotating these elements we can configure the extension to make it
reusable, because the annotated elements act as parameters for the advice. In
comparison, in a programmatic approach like the one in Listing 2, the advice
code is dependent on the specific elements to be instantiated, like ImportLib.
This means, the advice cannot be reused for other meta-models.

Overall, while annotations lead to an extensional placement control approach
(each element must be manually annotated), the programmatic access is inten-
sional (a query is written to select them). Both approaches are useful and serve
complementary purposes. In general, the programmatic API approach should
be used when the configuration is global (i.e., for any model or meta-model),
whereas annotations should be used to define reusable extensions for different
meta-models by defining the model joint points as annotations.

6. Advice mechanisms

Advices can be attached to the meta-modelling join points explained in Ta-
ble 1, and be executed on selected modelling elements, using the placement
control mechanisms described in Section 5. As seen in Figure 1, we consider
two styles of advices: using general purpose languages and using model man-
agement languages. They are explained in Sections 6.1 and 6.2.

6.1. Programmatic advices

A programmatic advice is written in the programming language in which
the meta-modelling framework is implemented. For instance, in our EMF im-
plementation we write programmatic advices in Java. The advice written in
Listing 1 (lines 4–5) makes use of an auxiliary Java method (getAllPackages) and
also uses the ModelIndex class to make the result available to other MOP ex-
tensions or Eclipse plug-ins. In this case, a programmatic advice is adequate
because the extension does not perform a “pure” model management task (i.e.,
like a model-to-model transformation, or an in-place model modification).

In contrast, the advice presented in Listing 2 (lines 8–21) is a model man-
agement operation (an in-place model modification) written in Java using the
EMF dynamic API. For this kind of model manipulation it is more adequate to
use a dedicated model management language. Hence, our approach considers
the integration of this type of languages in the MOP.

6.2. Model management advices

Depending on the action to be performed by the advice, using a model man-
agement language may be more appropriate than an advice written using a GPL.
Figure 8 shows a meta-model for advices, which complements the annotation
based-placement mechanism described in Figure 6. The figure also shows how
advices are instantiated, using the auto instantiation example as illustration.
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The meta-model (named Advices) is aimed to be instantiated once, hence it
has potency 1. Advices can be implemented using different model management
languages, shown by the Advice subclasses. An Advice has a reference to the
associated annotation, some triggering EventType, an indication of its execution
point (when), and the file where the model management operation is located.

Advice
advices@1

*

Advices@1

Annotation

level: int = 0
trigger:EventType[1..*]
codeFile: String

«enum»

When

pre
post
around

«enum»

EventType

create
delete
…

InPlaceTrafoConstraintSpec

msgIfFail:String

CodeGen

genFileExtension:String
systCommands: String[*]

ModelToModel

:InPlaceTrafo
autoInstantiate

:ModelAnnotationwhen= post
level=1
trigger=createModel
codeFile= “auto.eol”

AdvicesInst@0 AutoInstantiate@1

customAdvice@2: String

: autoInstantiate

Annotations@2
annots@1

ExpressionsAnnotation_Model@0

Model
Annotation

«instance of» «instance of»

Expressions@1

:target
customAdvice=“exp.eol”

«instance of»

:advices

…

*

:annots

modelName: String
MetaModel

name: String
file: String

when

metaModels

*

Figure 8: Meta-model for advices, interaction with Annotations, and overriding a default
advice

Advices implemented with different model management operations need dif-
ferent properties. For example a ConstraintSpec advice is specified using a con-
straint language (e.g., OCL, EOL) and provides a message if the constraint
fails. A code generation advice (CodeGen) is specified using a template language
(e.g. Acceleo, EGL) and holds the extension of the file to be generated, and
further system commands (e.g., for compiling the generated code). A model-to-
model transformation advice is specified using a model-to-model transformation
language (e.g., ATL, ETL) and needs the name of the model to be created,
and information of any further meta-model required by the transformation (so
that they can be loaded if not in memory). In MetaDepth, all Epsilon lan-
guages [36] for model management are available, and can be used to specify
advices. This way, we use the Epsilon Object Language (EOL) [35] for specify-
ing constraints and in-place transformations; the Epsilon Generation Language
(EGL) [38] for code generation advices, and the Epsilon Transformation Lan-
guage (ETL) [39] for model-to-model transformation advices.

Additionally, advices have a level. This number indicates at how many meta-
levels below the advice has to be executed. If 0 (the default) it will be executed
over the elements the annotation is attached to. In the figure, it means the
advice would be executed over the Expressions model, because it has been anno-
tated with autoInstantiate. However in our case we need to execute the advice on
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instances of Expression, and so the advice has level 1.
Listing 6 shows the advice attached to the auto annotation. The advice is

expressed in EOL and performs the automatic instantiation of the annotated
node. The main operation is to be executed on instances of Expression. In line 5,
the advice iterates over all nodes that need to be instantiated. Such nodes are
obtained through operation annotatedNodes (lines 12-14). This operation selects
the nodes that are annotated with auto, and which need to be instantiated (op-
eration needsCreating, whose code is not shown). Model represents the current
model, while type accesses the model type. For each node that requires instan-
tiation, an instance is created (line 6), then its identifier (line 7) and the initial
attribute values (line 8) are set.

1 // auto.eol (default advice for the auto annotation)
2 import ’InstCommon.eol’
3

4 operation main() : Boolean {
5 for (n in annotatedNodes()) {
6 var node = Model.createInstance(n.ˆname);
7 node.ˆname = n.getAnnotation(’auto’).get(’name’);
8 node.setValues(n.getAnnotation(’auto’).get(’vals’));
9 }

10 }
11

12 operation annotatedNodes() : Sequence(Node) {
13 return Model.ˆtype.children−>select( c | c.hasAnnotation(’auto’) and needsCreating(c, ’auto’));
14 }

Listing 6: Default advice for automated instantiation (auto annotation)

Please note that EOL allows mixing both imperative constructs (e.g., the
for loop in line 5) with declarative iteration (e.g., the select construct in line
13). EOL can be used as an advice language as it can reflectively access the
MetaDepth API to e.g., obtain the type of a model (line 13), create a node
instance using a String containing its type name (line 6), change the identifier
of a node (line 7), and obtain the annotations of an element (lines 7 and 8).
Moreover, EOL permits the user to enrich the API offered by MetaDepth
by adding new methods on classes of its API. Both operations main and anno-

tatedNodes are declared on a global scope, but they could also be declared on
classes of the domain meta-models involved, or on the classes of MetaDepth’s
base API. For example the method setValues (line 8, code not shown) has been
declared on the context of the Node class, part of the MetaDepth API. This
reflective capability is present in all Epsilon languages through Java reflection.
Please note that common operations for the auto and the populate annotations
have been extracted to the InstCommon.eol library, imported in line 1.

If we need more sophisticated instantiation mechanisms or we require some
kind of interconnection between objects, the @auto annotation and the default
advice of Listing 6 may not be enough. Therefore, the developer of a certain
meta-model has the option to provide its own in-place transformation code as an
advice, so that it overrides the default advice. Hence, every model annotation
can include the parameter customAdvice=..., pointing to a model management
program. In Figure 8, this is realized with field customAdvice in ModelAnnotation.
The field has potency 2, so that a value can be given on particular usages of the
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model annotation.
As an example, let us assume we need to instantiate both TrueVal and FalseVal

and connect them to the instance of BooleanType. Then, the meta-model designer
would specify the custom advice shown in Listing 7.

1 // exp.eol (custom advice), overrides auto.eol (default advice)
2 operation main() {
3 var tv = new TrueVal;
4 var fv = new FalseVal;
5 var bt = new BooleanType;
6 tv.dataType := bt;
7 fv.dataType := bt;
8 ...
9 }

Listing 7: Custom advice for automated instantiation of Expressions

7. Implementation approaches

This section describes implementations of our proposed MOP concept using
MetaDepth (Section 7.1) and EMF (Section 7.2). We use the feature model
in Figure 2 as a guide to present both approaches. Implementation artefacts for
MetaDepth and EMF, as well as screencasts and installation instructions are
available at http://miso.es/tools/mop.

7.1. Implementation in MetaDepth

For the implementation of MOPs in metaDepth, we have relied on the pos-
sibility to modify its source code (feature JoinPoints.BaseAPIMethods.Internal in
the feature model of Figure 2). MetaDepth already produced meta-modelling
events, using the command design pattern, but no custom code could be at-
tached on them. Therefore, we enhanced its extensibility by identifying join
points in its codebase, and taking the Advices meta-model of Figure 8 as a basis
for its identification, which relies on the Annotations meta-model of Figure 6.
As previously mentioned, MetaDepth is integrated with the Epsilon model-
management languages [36], which we use to specify advices.

Figure 9 shows a scheme of how we incorporated MOPs within MetaDepth.
MetaDepth follows an interpreted approach and is level agnostic, reifying uni-
formly the meta-modelling concepts at any meta-level (see the linguistic meta-
model in the figure). This meta-model contains notions like Model, which can
be nested, Node (elements with both type and instance facet), and Edge (bi-
directional associations). All elements inherit from abstract class Element, which
defines the potency, cardinality (minimum, maximum), name, and optional type of
the element.

The base API includes the linguistic meta-model and a set of additional
classes (marked as “runtime”; bottom-left corner). The figure shows some meth-
ods of the API that are used as join points to produce events (marked with the
jp stereotype), like createNode (in ModelFactory), execute (in Verify) or setValue (in
QualifiedElement). The list of join points is shown in Table 1. Please note that, as

22

http://miso.es/tools/mop


Node

Field

Model Edge

QualifiedElement

Element

0..1 type

potency: int

maximum: int

minimum: int

name: String

*

fields

Classifier

general

specific

*

*

co
n
ta
in
er

extended: Model[*]

imported: Model[*]

value(f: Field): Object «jp»

setValue(f: Field, v: Object) «jp»
getValue(): Object

*

/allFields*

abstract: boolean

domain
meta-model

domain
model

«instance of»
(linguistic)

«instance of»
(ontological)

«instance of»
(linguistic)

Linguistic MM

“Runtime”

MetaDepth meta-modelling API

ModelFactory

createNode(t: String) : Node «jp»

…

+MOPHelper

MOP API

-AdviceExecutor

-Constraint

Advice
-InPlaceAdvice…

*

adviceStack

Advice
Model

deactivatedAdvices: String[*]

.eol

Annotation
Model

.egl

.etl

model management
program

«instance of»
(linguistic)

«singleton»

advice

«annotates»

«refers to»
«instance of»
(linguistic)

factory 0..1

…

Verify

execute() «jp»

Command

…

elements

Figure 9: Scheme of the MetaDepth open meta-modelling framework

we use a meta-model for advices, which has enumerations for the meta-modelling
event to be captured, the user making the extension does not need to know the
specific API method that needs to be adviced. Instead, as explained before, the
meta-modelling joint points are fixed and are made available as event types.

Advices can be written using the Epsilon languages. This is possible because
those languages rely on Java reflection when using methods which do not belong
to the Epsilon framework itself. Hence, the MetaDepth API is implicitly
exposed.

The MOP API includes infrastructure to execute advices of different types,
as well as a singleton class MOPHelper, which maintains an index with the active
advices, and offers an API for level and temporal control of the MOP. Such
API permits to activate/deactivate an advice, or to check whether the system is
executing an advice. Such object is exposed and can be used from the Epsilon
languages, while the classes to execute the different types of advices are hidden
to the user.

7.2. An EMF-based implementation

We have also implemented the architecture described in the previous sections
for EMF. To this end we have used AspectJ to inject the behaviour required to
make explicit the occurrence of the events of interest. Alternatively, we could
have modified EMF’s source code, but this would make our implementation
incompatible with most EMF installations. Please note that the built-in noti-
fication mechanism of EMF is not enough to implement a MOP since only a
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few events are available (e.g., instantiation and model loading notifications are
not considered in EMF) and they are only notified after they have happened.
Moreover, it would not be possible to install event handlers globally (e.g., for
any feature set) since notification listeners are installed per model element or
EMF resource.

«interface»

EObject

eClass(): EClass

Object eGet(EStructuralFeature)

void eSet(EStructuralFeature, Object)

«interface»

EFactory

create(EClass): EObject

…

onSet
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load(InputStream, …)
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Resource
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onModelLoad

onModelSave
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getResource(URI, …)

createResource(URI, …)
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*
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eSuperTypes
*
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…
eOpposite
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EPackage
*
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notifySet(…)
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«singleton»
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Library
Eclipse

Extension Point

configures

loads

Figure 10: Architecture of our implementation for EMF

Figure 10 shows the architecture of our solution. We package a concrete
MOP configuration into a library. A library is integrated into Eclipse using an
extension point, and can be activated or deactivated by the user. The library
is in charge of checking the presence of annotations if needed and setting up
the EMOP object on the required events using the fluent API presented in
Section 5.1. The advices configured with the EMOP API are installed in a
global context (AdviceRepository). To enable the notification of events to the
AdviceRepository we have instrumented relevant parts of EMF using AspectJ. The
“Runtime” part of Figure 10 shows some of the methods that we have advised
with additional behaviour to notify about the execution of the meta-modelling
events.

8. Evaluation

We have evaluated our approach by extending EMF and MetaDepth with
modelling services not foreseen initially when they were created. A summary of
them is shown in Table 2. The table lists the extension name, a brief description,
the approach used for the advice (programmatic, in place, code generation,
constraint, model-to-model) the meta-modelling join point where the advices
are activated, and the platform where they are available.
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Table 2: Extension libraries available in our implementations

Name Description Type Join Point Platform
Auto-
instantiate

Provides annotations to indicate
that some classes have to be au-
tomatically instantiated

In-place Create
Model, In-
stantiate
object

EMF,
MetaDepth

Class cardinal-
ity

Provides annotations to set the
maximum number of instances of
a type

Constraint Validate,
Instantiate
object

EMF

Disable valida-
tion

Removes diagnostics related to an-
notated elements

Program. Validate EMF

Prototype Enables a form of prototype-based
modelling

Program. Get feature EMF

Resource type Maintains an index of loaded
meta-models and their meta-
models

Program. Load model,
Set feature

EMF

Compute sub-
types

Fills a ”subclasses” reference for
each EClass

In-place Set feature EMF

Static seman-
tics library

Library of OCL constraints ex-
pressed as annotations, e.g., to
model composition, link commuta-
tivity, xor of links, etc.

Constraint Validate MetaDepth

Meta-
model/model
co-evolution

Signals if changes in a meta-model
affect the conformity of existing
models and fixes the models

Program. Load/save
model, Set
feature

EMF

Multi-level fa-
cilities library

Library of different multi-level
modelling facilities (powertypes,
deep cardinalities, etc)

In-place,
Con-
straint

Create
model, in-
stantiate
object

MetaDepth

Bottom-up
modelling

Permits creating untyped objects,
and construct their types a-
posteriori

In-place Create
model, in-
stantiate
object

MetaDepth

Type object Annotations to indicate the roles
of the type-object pattern and
automatic promotion transforma-
tions

M2M Model save,
Validation

EMF

Visualization Visualizes a model using graphviz Code gen. Create
Model

MetaDepth

The implementation of these services demonstrates the usefulness of our
proposal to address unforeseen extensions. In the following we describe in more
detail some representative extensions for MetaDepth (Section 8.1) and EMF
(Section 8.2), and finish in Section 8.3 with a comparison of the techniques used,
a discussion of strengths and limitations of the approach and the degree of the
fulfilment of the requirements for open meta-modelling frameworks suggested
in Section 2.1.

8.1. Extending MetaDepth

We illustrate advices using different model management languages, selected
among those of Table 2. In particular, we show a bottom-up meta-modelling
facility that permits generating types after the instances using in-place trans-
formation advices (Section 8.1.1), and a deep cardinality facility that extends
cardinality checking to several meta-levels below using a constraint advice (Sec-
tion 8.1.2).
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8.1.1. Bottom-up meta-modelling (an in-place transformation advice)

In mainstream meta-modelling, types are created before their instances.
However, some modelling scenarios would benefit from creating example in-
stances first, and then deriving types from the shape of those instances. This
approach is called bottom-up or example-based meta-modelling [40]. While
MetaDepth permits creating untyped objects (so called linguistic extensions),
it does not natively support the automated creation of a type given a prototype
instance. Our goal with this extension is to enable this functionality.

Listing 8 shows on the left (lines 1-18) a meta-model and an instance model.
The instance model has an untyped object named Pet (lines 9–11), for which we
want to create a type. Similarly, the object Juan has an untyped field age (line
16), for which we want to create a field type, too. Fields with no type (at the
higher meta-level) but just a value can be created by declaring a datatype the
value is expected to conform to, and a value. Our approach is to create a set of
annotations (createType, createFieldType) applicable to nodes and fields. An ad-
vice will then become activated on such annotations, creating the corresponding
types (see lines 22-31 of the Listing) and removing the original annotations.

1 Model Persons {
2 Node Person {
3 name : String;
4 }
5 }
6

7 Persons MyModel {
8 @createType
9 Node Pet {

10 kind : String = ”canary”;
11 }
12

13 Person Juan {
14 name = ”Juan”;
15 @createFieldType
16 age : int = 25;
17 }
18 }
19

20

21

22 // Models after advices are processed
23 Model Persons{
24 Node Person {
25 name:String;
26 age:int=25;
27 }
28 Node Pet {
29 kind:String=”canary”;
30 }
31 }
32

33 Persons MyModel{
34 Pet PetInst {
35 kind=”canary”;
36 }
37 Person Juan {
38 name=”Juan”;
39 age=25;
40 }
41 }

Listing 8: Example model (left). Model after advices are processed (right)

The right of Listing 8 shows the models once the advice has been processed.
As a result, a new node Pet is created in the meta-model (lines 28-30) with a
kind field, which takes the default value from the instance. Similarly, an age

field is created in node Person (line 26). At the model level, Pet is automatically
renamed to PetInst and made an instance of Pet, while Juan.age becomes an
instance of Person.age.
The advice is expressed as an in-place transformation with EOL, an excerpt of
which is shown in Listing 9. Operation main is the advice entry point, which
is called when a node is annotated with createType. The annotation clones the
node using the createType helper operation, defined in lines 10-16 in the context
of Node, and then sets the type of the instance to the created node (line 6),
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removes the annotation (line 7) and changes the identifier of the instance. The
createType operation (lines 11-16) clones the node and its fields, increasing their
potency; while operation setTypeTo (code omitted) sets the type of the context
node, including all its fields. The advice illustrates the transparent access to the
methods of the MetaDepth API (e.g., operation clone() and removeAnnotation())
and the features of the meta-classes of the linguistic meta-model (e.g., features
potency and container).

1 /∗ Advice attached to createType annotation ∗/
2 operation main(node: Node) {
3 var clone := node.createType();
4 var modelType := node.container.type;
5 modelType.addChildren(clone);
6 node.setTypeTo(clone);
7 node.removeAnnotation(’createType’);
8 node.name(node.name+’Inst’);
9 }

10

11 operation Node createType() : Node {
12 var clone := self.clone();
13 clone.potency := self.potency+1;
14 for (f in clone.fields)
15 f.potency := f.potency+1;
16 return clone;
17 }

Listing 9: EOL advice (excerpt) for bottom-up meta-modelling

The alternative to a MOP-based mechanism to implement this facility would
have been to extend MetaDepth with a new console command. However, this
approach is intrusive, requiring the modification of MetaDepth itself. Instead,
using a MOP approach, the extension can be defined externally, using EOL, and
shared with other engineers.

8.1.2. Deep cardinality checkings (a constraint advice)

In standard two-level modelling, reference cardinalities apply to the next meta-
level below. In multi-level modelling, we might be interested in defining car-
dinalities applicable to instances of instances of a reference, i.e., to meta-levels
beyond the next one. Some works, like [23] have recently proposed a notion of
cardinality that is decorated with a potency, indicating at which meta-level the
constraint needs to be evaluated. This feature is not available in MetaDepth,
and hence will be defined as an extension.
The models in Listing 10 illustrate the need for this feature. This example is a
slight variation of the example presented in [23]. This way, the top-most model
(named CarTypesModel) is used to define types of cars, which then can be subse-
quently instantiated to define specific cars. Hence, we declare a CarType which
has two WheelTypes. A specific CarType can be automatic (line 6), while instances
of instances of WheelType have a serial number (line 9). The CarTypesModel is
instantiated in lines 13-21. The SomeCarTypes model declares a Beetle car type,
which is not automatic and which instantiates reference wheel twice: front and
rear. Please note that the default cardinality of wheel (2..2) applies to this level,
and is satisfied. In their turn, front and rear define their own cardinality (2..2).
Both front and rear refer to SteelWheel, which is an instance of WheelType. A
Beetle car may have a flowerHolder, which is declared as an untyped field in line
18.
Finally, the bottom-most model (named MyCar, in lines 23-42), defines a specific
Beetle car, named B53, which has a flowerHolder and two specific SteelWheels
instances (each with a specific serial number) at the front and the rear.
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1 Model CarTypesModel@2 {
2 Node CarType {
3 @deepCardinality(potMin=2, potMax=2,
4 min=4, max=4)
5 wheel : WheelType[2];
6 automatic@1: boolean;
7 }
8 Node WheelType {
9 serialNo : String;

10 }
11 }
12

13 CarTypesModel SomeCarTypes {
14 CarType Beetle {
15 automatic = false;
16 front : SteelWheel[2] {wheel};
17 rear : SteelWheel[2] {wheel};
18 flowerHolder : boolean;
19 }
20 WheelType SteelWheel {}
21 }
22

23 SomeCarTypes MyCar {
24 Beetle B53 {
25 flowerHolder = true;
26 front = [w1, w2];
27 rear = [w3, w4];
28 }
29

30 SteelWheel w1 {
31 serialNo = ”FSTN2017 3141516”;
32 }
33 SteelWheel w2 {
34 serialNo = ”FSTN2017 3141517”;
35 }
36 SteelWheel w3 {
37 serialNo = ”FSTN2016 3141516”;
38 }
39 SteelWheel w4 {
40 serialNo = ”FSTN2016 3141517”;
41 }
42 }

Listing 10: Models with deep cardinality annotations

At the top-most level, we would like to express that, two levels below, every
instance of instance of CarType needs to have exactly four wheels. However,
this cannot be ensured by standard cardinalities, since they apply to the next
level below only. Hence, we have designed annotation deepCardinality to perform
this task. It defines an interval of levels potMin...potMax where the cardinality
should be applicable, and a cardinality interval min...max. A level interval 1..1

is equivalent to standard potency. The interval of the listing (2..2) checks that
collectively, all instances of instances of wheel have 4 elements, which is satisfied
by the example. Alternatively, the parameter collective=false in the annotation
would make the check individually on B53.front and B43.rear.
Listing 11 shows an excerpt of a constraint advice, expressed with EOL. The
entry point is operation main, which receives the node in which the annotation is
placed (parameter target) and the field name (parameter refName). The operation
obtains the annotation (which is not located in the direct type, but several
levels above) using method getOwnedIndirectAnnotation, and then the value of
each annotation parameter. Then, if the level of the target node is between
the expected interval, it checks the cardinality either collectively (line 14) of
individually (line 15). The code for these methods is omitted for simplicity.

1 operation main(target: Node, refName : String) : Boolean {
2 var annotation = target.getOwnedIndirectAnnotation(’deepCardinality’, refName);
3 var potMin = annotation.get(’potMin’);
4 var potMax = annotation.get(’potMax’);
5

6 var min = annotation.get(’min’);
7 var max = annotation.get(’max’);
8

9 var collective = annotation.get(’collective’);
10

11 var levels = target.getLevelsFromOwningAnnotationDefi(’deepCardinality’, refName);
12

13 if ( potMin<=levels and (levels<=potMax or potMax==−1) ) {
14 if (collective) return target.checkCardinalityCollective(refName, min, max);
15 else return target.checkCardinalityIndividual(refName, min, max);
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16 }
17 return true;
18 }

Listing 11: EOL constraint advice (excerpt) for deep cardinalities

The alternative to a MOP-based mechanism to implement this facility would
have been to modify MetaDepth’s textual language syntax and semantics, to
incorporate deep constraints. This would require complex modifications within
MetaDepth’s source code, and might even cause (syntactical) incompatibilities
with previous MetaDepth’s versions. Instead, a MOP mechanism permits an
external implementation of the semantics, and the syntactical expression of
the new facility using annotations (and hence avoiding the modification of the
language syntax). This way, a core meta-modelling language can be grown and
adapted by incorporating new annotations.

8.2. Extending EMF

This section presents a case study related to the use of a MOP to extend EMF
with support for (meta-)model co-evolution. As an additional example, the
supplemental material contains the full description of the use of our MOP to
implement multi-level modelling in EMF via the type-object pattern and pro-
motion transformations (see http://miso.es/tools/mop).

8.2.1. Extending EMF with co-evolution capabilities

Model co-evolution upon meta-model changes is a widely studied theme in MDE
research [41]. Actually, it is a recurring theme in other areas, like object-oriented
databases [42], relational databases, ontologies and XML schemas [43], where
long-lived data needs to become consistent with their types when these evolve.
There exists a variety of tools which target the migration of models or other
MDE artefacts when a meta-model changes [44]. However, these tools are not
automatic. They require copies of both the original meta-model and evolved
metamodels and need to be activated on demand by the user, on each non-
evolved model.
As a concrete example, a well-known annoyance of EMF is that deleting an
EClass in an .ecore meta-model invalidates all .xmi files containing instances of
such an EClass. As noted before, migration tools are useless if the user does not
take care of having copies of the meta-model and every possibly affected model.
Thus, there is an underlying technical problem related to the fact that EMF
does not have any service to perform automatic co-evolution.
In this scenario a MOP facility like ours enables the creation of migration ser-
vices without the need of modifying the meta-modelling framework, EMF in
this case. In order to assess the usefulness of our approach to design complex
services like this, we have implemented a co-evolution prototype for EMF. This
case study describes the design space for this problem and the implementation
on top of EMOP. Please note that the purpose of the case study is not to provide
a complete solution to the co-evolution problem, but to show how a MOP-based
approach facilitates its implementation and integration within EMF.
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To create the co-evolution library we need to take into account the following
concerns.

• EMF does not have a specific notion of model or meta-model, but there are
just resources containing model elements. Thus, a mechanism is needed
to relate resources according to their conformance relationship.

• A resource can be loaded in memory or serialized. The same serialized
(meta-)model can be loaded multiple times in memory at the same time.

• Changes between two versions of the same resource can be gathered by
tracking editing changes to the resource or by comparing the new and the
old version of a resource using comparison tools like EMF Compare.

<<library>>
ResourceType

<<library>>
Co-evolution

depends on
MOP

onModelCreate

onModelLoad

onSet

<<library>>
ChangeTracking

register on

onGet

onInstantiate

.

.

.

onModelSave

maintains

Model index

queries

Co-evolution
rules

apply

Figure 11: Architecture of the co-evolution library

Given these constraints we opt for splitting the problem into three MOP li-
braries. The architecture is depicted in Figure 11. We define a library called
ResourceType which detects which resources contains the EClasses required by a
loaded or newly created resource. This library maintains a model index that
describes the conformance relationship between resources. Such model index
can be queried by other libraries to determine which is the meta-model of a
given model, or which models conform to a given meta-model. We also define
another library called ChangeTracking that detects modifications in a resource
and allow listeners to be notified about them. This library uses around to ex-
tend the onSet event so that a client can decide to reject a change (e.g., in our
case when a change breaks conformance). Please note that both ResourceType

and ChangeTracking are useful libraries on their own and can be used to build
other services on top of them.
The co-evolution library is built on top of these two reusable libraries. In addition
the library makes use of an extensible repository of co-evolution rules. Given a
meta-model change notified by ChangeTracking the library behaves as follows:

1. Select co-evolution rule. The system looks up the rule repository in order
to identify a suitable co-evolution rule. We classify rules as non-breaking,
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breaking and resolvable and breaking and non-resolvable (i.e., when user
intervention is required) as in the taxonomy of Cicchetti and collabora-
tors [41].

2. Handle loaded models. Query the model index to get all models conforming
to the changed meta-model which are currently loaded. For each model, we
identify elements affected by the co-evolution rule. For each element, the
rule generates one or more change proposals. If there is only one proposal
and can be automatically applied, the system does so. If there are more
than one or requires user intervention, the user is asked for information.

3. Handle persisted models. This step is similar to the previous one, but now
the system looks in the workspace for .xmi files conforming to the changed
meta-model. Then, it loads the file with the old meta-model and performs
the co-evolution as before. An alternative is to generate an update script
so that the user can apply it manually, for instance to other models not
stored in the workspace.

Listing 12 shows an small excerpt of the implementation of the live co-evolution
scenario, focussing on how the MOP is used to install the main co-evolution
callback (lines 5–7), which delegates the task of detecting changes to the
ChangeTracking library (lines 17–19). This library notifies about model changes
which are used by processChange method (lines 25–27) to perform the actual
co-evolution task. The implementation of ChangeTracking consists of installing
a callback around set events, so that each time a model feature changes the
corresponding change object is computed and the MetamodelEvolution library is
notified.

1 public class MetamodelEvolution extends GlobalLibrary {
2

3 /∗∗ Process is called automatically when the library is activated
4 by the user ∗/
5 @Override public void process(EMOP mop) {
6 mop.onModelLoad().after(r −> load(r));
7 }
8

9 private void load(Resource r) {
10 if ( ! isMetamodel(r) )
11 return;
12

13 /∗ Create a new MOP specific to the source ∗/
14 EMOPResource emop = EMOP.resource(r);
15

16 /∗ Activate the change tracking library for the resource ∗/
17 new ChangeTracking().
18 onChange(this::processChange).
19 process(emop);
20 }
21

22 /∗ Given a change, locates all models affected by the change
23 using a query over the ModelIndex provided by the ResourceType
24 library, and then apply co−evolution rules ∗/
25 private boolean processChange(Change change) {
26 ...
27 }
28 }
29
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31 public class ChangeTracking extends LocalLibrary {
32 private ArrayList<ChangeCallback> callbacks = new ArrayList<>();
33

34 public ChangeTracking process(EMOPResource mop) {
35 mop.onSet().around(this::notifyChanged);
36 return this;
37 }
38

39 private void notifyChanged(EStructuralFeature f, EObject obj, Object new , Object old ) {
40 Change c = computeChange(f, obj, new , old );
41 for (ChangeCallback callback : callbacks) {
42 if ( ! callback.apply(c) ) {
43 throw new InterruptAround();
44 }
45 }
46 }
47 }

Listing 12: Definition of the co-evolution library

Figure 12 shows a screenshot of the tool. It records the changes made to the
meta-model and computes co-evolution proposals, so that the user can interac-
tively select how to fix the co-evolution issue.

Modify cardinality1

Apply co-evolution rules2

The user selects a co-evolution
proposal interactively3

The change is propagated
to the models

4

Figure 12: Screenshot of the prototype co-evolution tool

In order to assess the practical applicability of our implementation, we have
applied it to simulate the evolution of the AUTOSAR meta-model implemented
by Artop (AUTOSAR Tool Platform User Group; https://www.artop.org/)
between versions 2.2.0 and 3.0.0. These are large meta-models, with 746 and
675 classes respectively, more than 1,500 features and around 10,000 EAnno-
tations. Version 3.0.0 is a refactored version to make the meta-model smaller,
which required 8,642 changes (according to EMF Compare). It introduces many
non-breaking changes (i.e., the modification or deletion of EAnnotations which
describe meta-data) but it also contains a number of breaking and resolvable
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changes like the removal of classes (e.g., SwCalprm and SwCalprmRef which are
classes to represent calibration parameters). To keep models consistent with the
new version, we implemented a rule to automatically remove the corresponding
EObjects, and another rule to handle meta-property modifications. Overall, our
MOP was able to handle the evolution of real-world meta-models seamlessly,
since it is built by intercepting calls to the regular EMF infrastructure.
In conclusion, the implementation of this case study required developing all the
co-evolution machinery (the essential complexity of the problem), but our MOP
approach made it possible to integrate it with EMF smoothly in a way that was
not possible before.

8.3. Discussion

In this subsection we first evaluate our implementations against the require-
ments set in Section 2.1 (Section 8.3.1), discuss on efficiency considerations
(Section 8.3.2) and argue on workarounds and effort needed to achieve similar
functionality without MOPs (Section 8.3.3).

8.3.1. Summary and lessons learnt

We have realized the concept of open meta-modelling framework with two dif-
ferent implementations, and we have used them to create several MOP-based
facilities. Based on this experience, we can now evaluate the implementations
against the requirements set in Section 2.1, and reflect on the lessons learned
which we hope are useful for the reader. The way the requirements have been
addressed is explained in Table 3.

Table 3: Approaches to address the requirements for open meta-modelling frameworks
MetaDepth EMOP

Implement. Remark Implement. Remark

R1:
API

MetaDepth
API, in-
tegrated
MOPHelper

Source code modi-
fied

EMF API,
Fluent EMOP
API

Created external li-
brary, which used
AOP

R2:
Events

Internal Instrumented code
so that advices can
be added

External,
AOP

Based on AOP
mechanisms

R3:
Extensions

Implicit, an-
notations.
Model-based

Advices are acti-
vated by annota-
tions

User Interface Explicit manual ac-
tivation

R4:
Selection

Annotations Native Programmatic,
annotations

Combination of
EAnnotations and
promotion transfor-
mation

R5:
Advice
Languages

Model man-
agement
(Epsilon)

Access to the API
through reflection

Java Languages like
ATL, Acceleo or
Epsilon could be
integrated if the
developer writes the
appropriate glue
code
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Both implementations realize the same conceptual model but in different ways.
Regarding the meta-modelling API, both are built on top of existing APIs.
However, while the MetaDepth source code was modified to integrate MOP
facilities, the EMF framework was left untouched and the EMOP was imple-
mented externally using AspectJ.
Regarding requirement 2 (events), both implementations offer mechanisms to
add advices on relevant events. In the case of MetaDepth, these are selected
using the EventType enumeration (see Figure 8), while in EMOP they are selected
based on the on〈event〉 methods of the EMOP API (see Figure 3).
Extensions (requirement 3) can be loaded on demand in both cases: explicitly
in the case of EMOP (through a user interface), or implicitly (due to annotated
models) in the case of MetaDepth. The way to configure an extension is
model-based in case of MetaDepth (i.e., using the Advices and Annotations

meta-models), while a Java fluent API must be used in case of EMOP.
The elements over which the extensions need to be executed (requirement 4)
are selected through native annotations, and also programmatically in case of
EMOP. Annotations are native in MetaDepth (but built explicitly for this
work), while they have been emulated in EMF through promotion transforma-
tions. One limitation of the EMF solution is that models can only be annotated
via external models (i.e., a regular EObject does not support EAnnotations). An-
other drawback of using a promotion-based approach is that it requires code
generation to enable the manipulation of the promoted model. On the other
hand, a current limitation of MetaDepth is the lack of an API that permits
global advices. As presented in Section 5 both approaches, annotation-based
and programmatic, are useful and required in a complete MOP.
Regarding languages to specify advices (requirement 5), they are natively im-
plemented in MetaDepth using MDE artefacts like transformations and code
generators. This is possible because it is an integrated environment, and the
Epsilon languages can resort to (Java) reflection to transparently access the
MetaDepth API from them. In contrast, in the EMF ecosystem there is no
standard way of integrating tools. Thus, we need to give explicit support for
each tool of interest in order to use their model management operations as part
of the MOP or if we want to use the MOP to configure the tool. So far have
experimented with support for ATL for model transformations and a specializa-
tion of the MOP for Xtext to activate libraries only when the text is processed
by an Eclipse job.
Some of the libraries implemented for EMF are facilities already available in
MetaDepth, like support for the type-object pattern, class cardinalities and
explicit conformance relationships between (meta-)models. Our experience im-
plementing them shows how a MOP can be useful to overcome certain limita-
tions of a meta-modelling framework. Moreover, this experience provides some
insight on the idea of having a minimal meta-modelling framework plus a MOP
to support the different modelling styles and requirements as extensions.
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8.3.2. Efficiency

MOPs may cause performance penalties as modelling operations need to be in-
tercepted to check for attached advices. To evaluate this aspect, we performed
some experiments to assess the penalties incurred by MOPs. The first experi-
ment evaluates the MOP implementation in MetaDepth, while the second one
deals with EMOP. Interestingly, in both experiments we encountered similar ef-
fects.
Fig. 13 shows a comparison of efficiency for the deep cardinality MOP presented
in Section 8.1.2, with respect to an ad-hoc implementation using pure EOL con-
straints and no MOP mechanism. In both cases, we performed experiments with
models ranging from 10 to 16,000 objects (repeating 8 times each experiment
and taking the median time), where half the objects had cardinality errors. The
experiments were performed on a Windows 10 computer with i7-6500U proces-
sor and 16Gb of RAM memory. It can be seen that EOL constraints are more
efficient for small-to-medium models (up to sizes of around 10,000 objects), while
for larger models the MOP mechanism becomes more scalable. This effect may
be attributed to the overhead that the MOP mechanism introduces, which only
pays off for larger model sizes.
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Figure 13: Comparing efficiency of MetaDepth implementations of deep-cardinality checks
using MOPs and EOL constraints over models of increasing size

A similar experiment has been performed for EMOP, our implementation of
top of EMF, in this case for the prototype extension. We created models of
increasing size in which objects are a prototype of another object, and then
we accessed to values from such objects in order to exercise obtaining values
from the prototype. In the case of EMF we simulate this by having a hash map
linking an object with its prototype, and copying values from the prototype
as required. The results are consistent with the first experiment, as shown in
Fig. 14. As the size increases, the MOP overhead pays off since it internally
implements a more sophisticated prototype resolution mechanism, based on lazy
loading to retrieve values from a prototype.
Overall, our prototypes have not been implemented with performance as the
main design criterion, but we aimed at flexibility. It is future work to analyse
optimization possibilities, for example taking inspiration of recent advances in
virtual machines [45].
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Figure 14: Comparing efficiency of EMF implementations of the prototype extension using
EMOP and bare EMF over models of increasing size

Table 4: Mechanisms needed to implement the extensions without MOPs
Name Modify

environ-
ment

Modify
Ling.
MM

Add
com-
mand

Manual
execu-
tion

AOP Framework
exten-
sions

Auto-instantiate ×
Class cardinality × ×
Disable validation ×
Prototype ×
Resource type ×
Compute subtypes × ×
Static semantics li-
brary

× ×

Meta-model/model
conformance recon-
ciliation

× ×

Multi-level facilities
library

× ×

Bottom-up modelling × ×
Type object ×
Visualization ×

8.3.3. MOPs vs. manual implementation

Overall, creating the services described in Table 2 without MOP support would
have involved several workarounds, discussed next and summarized in Table 4.

• Modification of the source code of the meta-modelling environment. In the
case of MetaDepth, implementing some extensions, like the facilities
for bottom-up meta-modelling, would require the modification of the tool
source code. In contrast, a MOP-based mechanism permits adding such
functionality in an external way.

• Creating framework extensions. Frameworks like EMF allow developers to
create custom extensions. For instance, in EMF one can create particular
types of resources to implement special loading or serialization capabilities.
That is, one can use subclassing and method overriding to modify the
default behaviour. This solution is possible for infrastructure elements
(like resources), or to customize framework implementation classes when
using the compiled approach (i.e., a custom implementation of the EObject
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interface from which the code of generated classes are set to inherit). This
strategy can be used to implement the auto-instantiation example.

• Aspect oriented programming. In case the source code is not available or
cannot be modified (as in EMF), one would need to resort to AOP. This
solution is generally applicable, but it requires knowledge of both EMF
internals to define join points and some AOP technology like AspectJ,
which may be beyond the skills of normal modelling users.

• Modification of the linguistic meta-model. Without MOPs or annotations,
one would typically need to modify the linguistic meta-model to include
such extra information. In the case of the deep cardinalities, the linguistic
meta-model would be modified to include the range of potencies associated
to a cardinality. In the case of MetaDepth, this solution implies in
addition modifying the textual concrete syntax of the language.

• Adding a command. MOP extensions are triggered on the occurrence of
events. Hence, without MOPs a mechanism to activate the extensions is
needed. In EMF, this requires adding a menu in the Eclipse user interface,
while in MetaDepth it requires creating a new console command.

• Manual execution of transformations. Advices can be expressed using
model management languages, which in case of MOPs are automatically
triggered. Without MOPs, they should be manually executed.

Hence, we see that without MOPs one needs to rely on suboptimal solutions,
like the need to modify the internals of the environment, obtain lower-quality
solutions (e.g., implying manual execution of transformations) or resort to com-
plex alternatives based on AOP. Creating a framework extension is often the
solution of choice (e.g., for persistence [46]). However, this is not the best ap-
proach when one needs to mix several extensions together (e.g., two extensions
which define their own EMF resources are incompatible) or when the compiled
approach is too heavyweight. In addition, framework extensions may not be
reusable across several meta-models if a placement mechanism, like our anno-
tations, is not implemented as well. Instead, using a MOP it has been possible
to focus on the essential complexity of the problem, that is, identify the meta-
modelling events on which advices must be added and then implementing the
extension itself. In case of MetaDepth these advices can be implemented using
model management languages. Moreover, advices were organized into reusable
libraries, which can be used to build further services.
To have an indication of the effort needed by a manual implementation to emu-
late a MOP-based facility, we re-implemented the MOP for bottom-up modelling
(see Section 8.1.1) as a new console command of MetaDepth. The results are
summarized in Table 5, using Lines of Code (LOC) as an (indirect) measure-
ment of effort. For the manual implementation, we had to extend the base code
of MetaDepth with two new commands (to create node types and attribute
types). This resulted in around 450 LOC of Java. Defining a MOP for the
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same functionality can be done externally using EOL as we have shown in Sec-
tion 8.1.1. Both extensions resulted in around 45 lines of EOL code, and the
annotation definition in around 30 lines of MetaDepth code.

Table 5: LOC for a manual vs. MOP-based implementation of the bottom-up modelling
functionality in MetaDepth.

Manual Implementation MOP-based implementation
Artefact LOCs Language Artefact LOCs Language
Refactoring.java 121 Java pullUp.eol 36 EOL
CreateType.java 130 Java pullUpField.eol 9 EOL
CreateAttribType.java 126 Java pullUp.annotations 27 MetaDepth
AttribRefactoring.java 78 Java
Total 455 Total 72

While comparing effort by LOC (of heterogeneous technologies) may be mis-
leading, we just use them as an indication of a typical size of an extension, to be
performed by environment extenders (with or without MOP-based mechanisms).
A conclusion is that sophisticated extensions can be defined in a succinct way
using MOPs, as extenders may use a model management language for model
manipulation, while a Java implementation may become more verbose (as the
table shows). Moreover, the Java implementation is intrusive, requiring chang-
ing the MetaDepth code base. This means creating a new distribution of the
tool itself. In contrast, a MOP implementation is totally external. Users can
make available these extensions by means of libraries, which do not require a
new tool version. An intrusive solution requires good knowledge of the code
organization and internal working scheme of the meta-modelling tool. In con-
trast, a MOP implementation is external, and requires knowing the MOP API
exposed by the meta-modelling tool. If well designed, such API will be smaller
and easier to learn than the complete code base of the meta-modelling tool.
Altogether, we claim that an open design for a meta-modelling framework based
on the notion of MOP is a way to improve the flexibility and extensibility of
current, closed approaches which is worth pursuing by the MDE community.

9. Related work

We organize the review of related research in two parts. First, Section 9.1
overviews existing (meta-)modelling frameworks and tools, analysing the degree
in which a MOP-based mechanism could be applicable and useful.
In a second part (Section 9.2), we revise works that have inspired us, in areas of
programming and modelling including reflection, meta-object protocols, aspect-
oriented programming and aspect-oriented modelling.

9.1. Extensibility in meta-modelling frameworks and tools

Many meta-modelling tools [6, 8, 9, 10], languages [3, 4, 5] and frameworks [7]
have been proposed along the years, each one of them supporting different func-
tionalities. These have greatly influenced the effort needed to build tools and
services on top of them for specific purposes, like co-evolution [41], meta-model
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Table 6: Existing tools and approaches which could have been benefited from using a MOP
Name References Observations
Auto-instantiate [7, 5] • The UML plug-in automatically creates objects

upon profile loading [5].
• EMF [7] could use this functionality to automati-
cally instantiate root classes.

Class cardinality [7, 49] • In EMF [7], root classes have by convention a [1..1]
cardinality.
• Model finders [49] need to define a global search
scope that could be specified by cardinality intervals.

Disable validation [47, 50, 11] • Meta-model testing frameworks need to accept in-
valid models[47].
• Flexible modelling environments [50, 11] need to
relax conformance in early phases of modelling.

Prototype-based
modelling

[18, 50, 11] • An initial design based on prototypes could have
been tested using MOPs [18].
• Proptotype-based meta-modelling tools could have
used this facility to keep compatibility with EMF [50,
11].

Resource type [51] • Keeping track of referenced meta-models is useful
for composing meta-models, like in Melangue [51].

Efficient subtype
computation

[52, 53, 54] • Useful for any analysis tool handling meta-models,
model-based metric tools, or model-based refactoring
tools.

Static semantics li-
brary

[40, 55] • Useful to externally define libraries of constraints,
which then can annotate model elements.

Meta-model/model
co-evolution

[41, 56] • Useful to enhance any migration tool to provide live
co-evolution.

Multi-level facilities
library

[57, 58, 59, 60] • Multi-level modelling tools, like Melanee, XMF,
Xmodeller, MultEcore, would benefit from MOPs to
permit interoperability and adaptation.

Bottom-up mod-
elling

[40, 61] • Flexible modelling approaches and tools could use
this facility to create types from objects.

Type-object [60, 62, 63] • Any promotion-based approach would benefit
(see [15] for additional examples).

Visualization [48, 64] • Automated synchronization of textual and graphical
concrete syntaxes.

testing [47], or synchronization of visual and textual concrete syntaxes [48]. Our
purpose in this section is to analyse the benefits that extensibility mechanisms,
like those based on MOP would have brought to users of these systems. To
focus our comparison, we base on the functionalities offered by the MOPs we
have developed, indicating meta-modelling tools that would have benefited from
having them available. A summary is shown in Table 6, and we discuss them
next:

• Auto-instantiate. Several modelling applications require the automatic
instantiation of objects. For example, UML needs to create objects when
a profile is loaded [5], while languages for (algebraic, boolean) expressions
may need to create objects representing constants, as we have seen in
this paper. Moreover, in frameworks like the EMF [7], there is the tacit
convention of having a root class in meta-models, an object of which needs
to contain directly or indirectly all other objects in the model. Currently
such class needs to be instantiated manually, but an extension like ours
could make this automatic. While automatic instantiation seems to be
a recurring need, we are not aware of meta-modelling frameworks with
native support for it. Hence, a MOP extension like the one we have
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defined could provide this automation.

• Class cardinality. Related to the previous functionality, we may want to
provide an instantiability interval to classes. Some frameworks, like the
EMF, rely on cardinality of container references for this. However, this
is not enough when we need to restrict globally the instances of a class
(e.g., to define a search scope in model finding applications [49]), or when
the class is the root (and hence it is not contained in any composition
reference). Some meta-modelling frameworks, like MetaDepth [9] or
MetaEdit+ [6] natively support class instantiation cardinalities. Some
model finders like the USE validator [49] are based on UML, and hence
need to extend the language with class cardinalities. These could have
been externally defined with a MOP mechanism.

• Disable validation. Meta-modelling frameworks typically enforce the con-
formance relation between models and meta-models at all times. Some
of them, like the EMF take this to the extreme, so that they may not
even be able to persist incorrect models. Being able to defer validation
is necessary for meta-modelling testing frameworks, where incorrect mod-
els need to be input as test cases [47]. The workaround proposed in [47]
to solve this lack of support in EMF is the creation of a custom meta-
modelling language. Another scenario for tolerating inconsistencies is in
early phases of modelling, where support for discussions between devel-
opers are more important than model correctness, which can be achieved
at a later stage [50, 11]. Again, the workarounds proposed in [50, 11] was
the construction of custom meta-modelling languages. MOP mechanisms
could make EMF fit for this purpose, though.

• Prototype-based modelling. Most meta-modelling approaches follow a
class-based approach [7, 6, 8, 9, 10, 3, 5, 7] while just a few have adopted
a prototype-based approach [50, 11]. The latter typically results in more
flexible systems, which may be needed for some scenarios [18]. A MOP
mechanism would permit enjoying the flexibility of prototype-based so-
lutions in class-based systems (e.g., in EMF for compatibility), and the
combination of both modelling styles.

• Resource type. Some frameworks, like the EMF, lack the concept of model,
and hence complicate keeping track of what is the meta-model(s) a set of
objects in a resource conform to. This is especially important in sys-
tems aiming at the composition of domain-specific languages (DSLs), like
Melange [51]. A MOP-based approach on top of EMF could have helped
in the construction of this kind of systems.

• Efficient subtype computation. In some systems, like the EMF, classes
store their direct supertypes. Other systems [4, 5], use an intermediate
class Generalization. Hence, meta-modelling systems have typically a pre-
ferred inheritance navigation direction, which is more efficient than the
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other: from subtypes to supertypes [5, 7], or from supertypes to sub-
types [4]. However, some applications may need to traverse frequently the
inheritance relations in both directions, like static analysis systems [52],
systems to calculate metrics [53], or model-based refactoring tools [54].
MOPs to cache (direct and indirect) super- or sub-types would make these
systems more efficient and easier to build.

• Static semantics library. Most meta-modelling systems support auxiliary
languages to express constraints, like OCL [65] or EOL [35]. Writing these
constraints is sometimes hard, while some of them are recurring (e.g., to
express reflexivity or acyclicity of relations, or to enforce commutativity of
references). Systems like the Diagram Predicate Framework (DPF) [55] or
metaBUP [40] support the creation of constraint libraries, which can then
be applied to meta-model elements via annotations. This mechanism could
have been more easily built using a MOP mechanism with annotation-
based placement.

• Meta-model/model co-evolution. A few meta-modelling systems have
built-in capabilities to tackle the meta-model/model co-evolution prob-
lem [6], while most don’t [7, 9, 8, 10]. A considerable amount of research
efforts have been conducted to automate model co-evolution upon meta-
model changes [56, 41]. While these typically target off-line co-evolution,
on-line co-evolution is a typical scenario e.g., in database systems [66].
As we have seen in Section 8.2, MOP mechanisms could be used to per-
form live meta-model/model co-evolution, and could have simplified and
enhanced the construction of those systems.

• Multi-level facilities library. Several multi-level modelling primitives, like
potency [19], dual potencies [22], durability and mutability [21], and deep
association cardinalities [23] have been proposed in the literature, while a
few multi-level modelling flavours exists (e.g., based on powertypes [17],
based on deep characterization [67]). These primitives and approaches
could be defined using a MOP-based mechanism, facilitating tool interop-
erability, and a more flexible experimentation.

• Bottom-up modelling. Most meta-modelling approaches follow a top-down
approach: types are created first, and then instantiated. However, some
approaches favour the creation of example models even before the meta-
model is built [40, 61]. Then, these examples are used to drive and auto-
mate meta-model construction. As we have seen in Section 8.1.1, MOPs
could have been used to automate this process and simplify the construc-
tion of these systems.

• Type-object. Several applications emulate multiple meta-levels using pro-
motion transformations, which transform objects into types [62, 63]. Pro-
motion transformations are also the basis of some meta-modelling tools,
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like Multecore [60]. A MOP mechanism could add facilities to automati-
cally trigger the transformation of objects into types for frameworks lack-
ing multi-level support, like EMF.

• Visualization. The need to update concrete syntax upon changes in the
model is a common need. Some systems support several concrete syntaxes
(e.g., graphical and textual) [64], but many times specific synchronization
functionality needs to be developed [48]. A MOP can simplify the con-
struction of this synchronization service by taking care of concrete syntax
updates.

9.2. Meta-Object protocols and aspect orientation

Our work takes inspiration from meta-object protocols, reflection, aspect-
oriented modelling and aspect oriented programming, areas which are reviewed
next.

9.2.1. Meta-object protocols and reflection

MOPs originated in the OOP community, as a way to open language imple-
mentations, so that they become more flexible and extensible [12, 13]. Today
languages like Groovy have native support for MOPs, while it is common for
languages to allow some weak form of MOP.
We have taken inspiration from works of the OOP community. For example,
in [30] the authors suggest making a singleton object available, exposing an
API to configure extensions with placement control, and the possibility to ac-
tivate/deactivate them. We took this idea in MetaDepth to implement the
MOPHelper object. Such object is also accessible from model management lan-
guages. Reflection and MOPs provide flexibility, at the cost of performance.
Hence, some works [45, 31] are directed to perform optimizations for meta-
programming. In MetaDepth, we just permit enabling or disabling the MOP
mechanism, but optimizations are left to future work. Similarly, the activation
of extensions is manual in EMOP.
MOPs have been recently proposed for language interpreters by Cazzola and
collaborators [68], and realized in the Neverlang tool. Neverlang permits the
modular definition of the syntax and semantics of programming languages. A
MOP mechanism enables the user to override the default semantics of the in-
terpreter. A DSL was designed for placement control (based on tree pattern
matching) and specifying the overriding semantics by accessing the Neverlang’s
exposed API. While this approach adapts specific interpreters, our proposal
works at a higher meta-level, extending and adapting the meta-modelling facil-
ities themselves. This way, Neverlang extensions are interpreter-specific, while
in our case extensions are typically meta-model independent and hence can be
reused across domain meta-models.
Some works have addressed reflection in the context of meta-modelling. In [69]
the authors signal some drawbacks in the MOF, like the lack of explicit notions
of model and meta-model, and the lack of explicit instance-of relations. For
this purpose, they propose sNets, a meta-modelling formalism that incorporates
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the notion of model/meta-model and reifies the instance-of relation between
nodes. However, their proposal is still tied to two-level modelling, and does
not consider the possibility of adding a MOP. Instead, MetaDepth’s linguistic
meta-model contains the notion of (nested) model, and explicitly reifies the
instance-of relation between fields, objects and models.
The Open Meta-Modelling Environment (OMME) [70] proposes a more flexible
meta-modelling approach than standard ones like MOF, by permitting multi-
level modelling and advanced constructs like powertypes. Despite the name,
OMME is not open in the sense defined in this paper as it does not allow user
extensions of the offered meta-modelling facilities. Overall, we could not find
works on using MOPs within meta-modelling environments. Please note that
EMF supports event notifications, but it only covers a subset of the events that
we consider in Table 1, and as mentioned in Section 4, this constitutes only a
weak extension mechanism. Essentially, the EMF notification mechanism covers
setting properties (directly setting a mono-valued property or adding elements
to a multi-valued property), querying the original and the old value in a setting
and watching if elements has been removed from a property. Events like getting
a property value or object instantiation are not covered. Moreover, advices can
only be executed after the event has occurred. The EMOP API provides a
common and simpler access mechanism for a wider range of events than EMF
notifications, although internally uses notifications when possible.
OpenPonk is a modelling tool based on Pharo Smalltalk [71]. Being based
on Smalltalk it inherits its reflective capabilities, like for instance the ability
to configure model notifications by intercepting calls to infrastructure meth-
ods. Similarly, Moose is a Smalltalk-based reengineering platform based on the
FAME meta-modelling framework [72]. Both OpenPonk and FAME do not de-
fine a MOP, but given Smalltalk support for reflection, our approach could be
integrated there as well.
Some model transformation languages have exploited reflection to some extent,
or allow extensibility using MOP-like techniques. RubyTL [73] was a trans-
formation language in which extensions were created by implementing advices
attached to pre-defined extension points. Mistral [74] reifies a set of transfor-
mation events like rule execution, or slot assignment. They are handled by
meta-rules and mechanisms for meta-rule ordering are available. Our aspect-
based implementation approach could be used to implement similar extensions
for existing languages, like ATL. Finally, event-driven grammars [75] extended
graph transformation with the possibility to match meta-modelling events like
creating or connecting elements, and be triggered by those events.

9.2.2. Aspect-oriented modelling

Aspect-oriented modelling lifts ideas from AOP to modelling [27]. Hence, the
objective is to identify crosscutting concerns at the model level, specifying them
in a separate way, and then weave those aspects with the base model [29].
This way, both the base model and the advice are models. Alternatively, some
approaches to AOM rely on generating code targeting an aspect-oriented lan-
guage (like AspectJ), and then rely on weaver provided by the target language
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to deal with crosscutting aspects [76]. Some approaches to AOM are related to
a systematic identification of early aspects – already in the requirements and
design phases – which then need to be expressed in notations for requirements,
architecture and design [77, 78]. In our case, advices are expressed either pro-
grammatically or using model management languages. This is needed because
our advices effect both on structural join points (just like AOM), and on the
occurrence of designated meta-modelling events. The latter is the distinctive
feature of our approach with respect to AOM.
Several approaches have been proposed for weaving the aspect model into the
base model. In [29] it is done by expressing the advice using graph transforma-
tion rules. This way, the pointcut is expressed by pattern matching. In [79] it
is based on explicitly marking the UML models involved. In our case we use
both a programmatic and annotation-based approach. We leave for future work
a declarative expression of pointcuts, e.g., based on OCL expressions.
Cazzola et al. proposed the reflective object oriented analysis [80] (ROOA)
as a way to allow the non-functional properties of a model to be moved into
a “meta-object” (i.e., objects describing properties of another objects). This
approach can also be applied at the architectural level [81]. In MetaDepth
it would be possible to imitate ROOA by combining multi-level modelling (to
define the analysis meta-level) and our MOP approach to inject the behaviour
at this meta-level.

9.2.3. Aspect-oriented programming

Aspect-oriented programming (AOP) [26] aims at the modularization of cross-
cutting concerns by allowing custom actions (advices) to be plugged into des-
ignated execution points (join points). Typically, AOP frameworks provide
languages to describe join points by means of pointcuts. In our case, we use
AOP as an implementation mechanism in the case of our EMF-based prototype,
EMOP.
A variant of AOP is event-based aspect oriented programming [82], in which the
possible pointcuts are predefined as a set of event types. Our implementation
is similar, as our MOP also exposes a fixed set of events.
In [83] the authors propose Meta-AspectJ (MAJ), a language for generating
AspectJ programs using code templates. One of the applications of MAJ is
to design small domain-specific extensions of Java based on annotations. The
annotations trigger the execution of MAJ generators, which produce aspect code
woven with the base program. In our case, annotations may have associated
modelling advices, but these are not restricted to be code generators. Moreover,
the trigger of those advices is associated with events exposed by the meta-
modelling framework.
Aspect orientation has pervaded different domains, leading to the proposal of
Domain-Specific Aspect Languages (DSALs) [84]. For example, DSALs have
been proposed to optimize image processing systems, to create design rule check-
ers for .Net, or to attach transactional properties to an application. Different
parts of an aspect may have domain-specific concepts, like the join points, point-
cuts or the advices. In our case, our join points are specific to meta-modelling
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and include both events like model load, and structure like an object or a feature.
Pointcuts are expressed either using annotations or programmatically, while ad-
vices can be express using general purpose languages or model management
languages.
Related to annotations, in [85] an approach to derive a language to specify types
of tags for a given DSL is presented, focussing on the generation of a specific
textual syntax. Our proposal is agnostic of the concrete syntax and if used
with a multi-level framework, does not require a generation step. In [86], we
proposed a DSL to describe the syntax of Java annotations. From such work, we
took the idea of the requires and forbids relations between annotations. In [87],
the authors produce custom visualization for Java annotations, using a MOP
approach.
Hence, altogether, the use of MOPs as a way to extend meta-modelling frame-
works is novel. While some ideas were taken from the OOP community, the ap-
plication to the context of meta-modelling required several adaptations. First,
the placement mechanism based on annotation proved to be very adequate. In
contrast, in OOP, the placement mechanism is normally based on naming spe-
cific methods or classes, perhaps resorting to regular expressions. Second, we
could resort to model management languages to implement advices. Finally, we
had to consider join points in meta-modelling frameworks.

10. Conclusions and future work

In this paper, we have presented the architecture of an open meta-modelling
framework, a design approach which enables framework extensions through a
MOP. We have shown its main elements, including a novel annotation-based
approach for placement control. The concepts presented in this work have
been validated by two implementations and several ready-to-use libraries built
with them, which altogether show the feasibility and generality of our pro-
posal. To the best of our knowledge this is the first proposal for open meta-
modelling frameworks and change the common way of implementing them. The
insights provided by this work are useful for designers and implementors of
meta-modelling frameworks.
As future work we plan to improve our support for EMF and MetaDepth
(e.g., by providing better support for transactions) and look into how to deal
with the ordering and potential conflicts of extensions. We plan also to add
support for OCL expressions as a means to express structural pointcuts. In
the long term we plan to build a minimal meta-modelling framework extensible
through a built-in MOP. A related topic is to explore the use of aspect-oriented
techniques to the extensibility of model management languages. While this was
studied in Mistral for the case of model-to-model transformation, our aim is to
extend this idea to model management language families like Epsilon.
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[60] F. Maćıas, A. Rutle, V. Stolz, Multecore: Combining the best of fixed-level
and multilevel metamodelling, in: MoDELS, Vol. 1722 of CEUR Workshop
Proceedings, CEUR-WS.org, 2016, pp. 66–75.

[61] F. R. Golra, A. Beugnard, F. Dagnat, S. Guerin, C. Guychard, Using
free modeling as an agile method for developing domain specific modeling
languages, in: MoDELS, ACM, 2016, pp. 24–34.

[62] J. Steel, K. Duddy, R. Drogemuller, A transformation workbench for build-
ing information models, in: ICMT, Vol. 6707 of Lecture Notes in Computer
Science, Springer, 2011, pp. 93–107.

[63] N. Drivalos, D. S. Kolovos, R. F. Paige, K. J. Fernandes, Engineering a DSL
for software traceability, in: SLE, Vol. 5452 of Lecture Notes in Computer
Science, Springer, 2008, pp. 151–167.

[64] M. Garzón, H. I. Aljamaan, T. C. Lethbridge, Umple: A framework for
model driven development of object-oriented systems, in: SANER, IEEE
Computer Society, 2015, pp. 494–498.

[65] OCL, http://www.omg.org/spec/OCL/ (2014).

50

http://www.omg.org/spec/OCL/


[66] G. H. Sockut, B. R. Iyer, Online reorganization of databases, ACM Com-
put. Surv. 41 (3) (2009) 14:1–14:136.

[67] C. Atkinson, T. Kühne, Model-driven development: A metamodeling foun-
dation, IEEE Software 20 (5) (2003) 36–41.

[68] W. Cazzola, A. Shaqiri, Open programming language interpreters, The Art,
Science, and Engineering of Programming Journal 1 (2017) 1–34.
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