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Abstract: Calcium homeostasis modulator 1 (CALHM1) is a calcium channel involved in the regulation
of cytosolic Ca2+ levels. From a physiological point of view, the open state of CALHM1 depends not
only on voltage but also on the extracellular concentration of calcium ([Ca2+]) ions. At low [Ca2+]e

or depolarization, the channel is opened, allowing Ca2+ influx; however, high extracellular [Ca2+]e

or hyperpolarization promote its resting state. The unique Ca2+ permeation of CALHM1 relates
to the molecular events that take place in brain ischemia, such as depolarization and extracellular
changes in [Ca2+]e, particularly during the reperfusion phase after the ischemic insult. In this study,
we attempted to understand its role in an in vitro model of ischemia, namely oxygen and glucose
deprivation, followed by reoxygenation (OGD/Reox). To this end, hippocampal slices from wild-type
Calhm1+/+, Calhm1+/−, and Calhm1−/− mice were subjected to OGD/Reox. Our results point out to a
neuroprotective effect when CALHM1 is partially or totally absent. Pharmacological manipulation of
CALHM1 with CGP37157 reduced cell death in Calhm1+/+ slices but not in that of Calhm1−/− mice
after exposure to the OGD/Reox protocol. This ionic protection was also verified by measuring
reactive oxygen species production upon OGD/Reox in Calhm1+/+ and Calhm1−/− mice, resulting in
a downregulation of ROS production in Calhm1−/− hippocampal slices and increased expression of
HIF-1α. Taken together, we can conclude that genetic or pharmacological inhibition of CALHM1
results in a neuroprotective effect against ischemia, due to an attenuation of the neuronal calcium
overload and downregulation of oxygen reactive species production.
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1. Introduction

Ischemic stroke is the most frequent cause of cerebrovascular disease [1]. It is the third leading
cause of death and the main cause of adult disability worldwide. Despite this high unmet medical
need, there is no current effective neuroprotective treatment [2]. To date, thrombolytic or mechanical
removal of the occlusion are the only therapeutic options. Mechanical thrombectomy complications
occur in 11% of the patients and the intravenous thrombolytic treatment, using recombinant tissue
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plasminogen activator (rt-PA), has limitations [3–5]. During ischemic stroke, the acute occlusion of a
vessel produces a rapid central core of brain infarct tissue where cells suffer necrosis. This core area is
surrounded by a hypoxic but potentially salvageable tissue—the ischemic penumbra, where the blood
flow reduction is not so drastic [6].

The drop in blood flow triggers a decrease of oxygen and glucose supply in the infarct area,
promoting a disruption in the electron transport chain that leads to mitochondrial failure and a
reduction of ATP levels. This decrease in ATP induces the malfunctioning of different membrane
pumps such as Na+/K+/ATPase and Ca2+/ATPase, promoting membrane depolarization due to Na+

influx. This depolarization provokes the opening of voltage-dependent calcium channels (VDCCs)
and makes the Na+/Ca2+ exchanger work in its reverse way; these two processes lead to intracellular
Ca2+ overload [7,8]. This massive entry of Ca2+ into the neurons induces glutamate excitotoxicity,
triggers the production of reactive oxygen species (ROS), and the release of inflammatory cytokines
that ultimately lead to neuronal death [9–12]. Therefore, maintenance of intracellular Ca2+ homeostasis
is crucial for cellular survival and function [11].

Considering the deleterious effect of Ca2+ dysregulation during ischemia, and the lack of efficacy
of voltage-dependent calcium channel inhibitors in stroke clinical trials [13], finding new molecular
targets that could be involved in modulating Ca2+ concentration in the neuron could provide a novel
neuroprotective strategy for brain ischemia conditions. Calhm1 is a gene discovered in 2008 in search
of human genes with enriched expression in the hippocampus, which has been linked to enhanced
risk for late-onset of Alzheimer’s disease (AD). This gene codifies a plasma membrane glycoprotein
called CALHM1, which allows Ca2+ influx into the cells. Due to its high permeability to Ca2+, this ion
channel turns out to be very important in cytosolic Ca2+ homeostasis regulation. CALHM1 ion channel
is widely located in the central nervous system (CNS), mainly in neurons in both plasma membrane
and endoplasmic reticulum (ER) [14].

CALHM1 is an octamer whose monomers form the functional ion channel [15]. CALHM1 opening
is regulated by membrane potential and extracellular Ca2+ concentration ([Ca2+]o). In the presence
of physiological [Ca2+]o (~1.5 mM), CALHM1 is closed at resting membrane potentials but can be
activated by strong depolarizations. On the contrary, hyperpolarization can trigger its inactivation,
which prevents Ca2+ entry into the cell [16,17]. Furthermore, removal of calcium from the extracellular
medium and subsequent Ca2+ add-back strongly elevates [Ca2+]i in CALHM1-transfected HT-22 and
N2A cells [14]. Finally, [Ca2+]o oscillations can also regulate the CALHM1 state.

Related to its physiological roles, CALHM1 contributes to enhanced neuronal excitability in
response to low [Ca2+]o. Reducing [Ca2+]o from 1.5 to 0.2 mM reduces the input resistance by ~50%
and increases excitability in neurons from wild-type mice but fails to enhance the excitability of
cortical neurons from Calhm1−/− mice [17]. Also, CALHM1 participates in taste perception, acting as
an ATP-releasing channel from type 2 taste bud cells [18].

CALHM1 is implicated in the Long-Term Potentiation (LTP) process, the molecular mechanism
involved in learning and memory formation in the brain. Its opening triggers an increase in the
phosphorylation of AMPA and NMDA receptors, promoting its trafficking to the plasma membrane,
making them functional [19].

Lastly, CALHM1 has been implicated in brain ischemia. In Calhm1−/− mice, the infarct volume
after middle cerebral artery occlusion (MCAO) is significantly lower compared to wild-type mice. Also,
its pharmacological blockade with Ruthenium Red (RuRed) or its silencing by using short hairpin RNA
specific for CALHM1 (sh-CALHM1) induces neuroprotection in cultured cortical neurons subjected to
oxygen and glucose deprivation (OGD) [20]. However, the molecular mechanisms underlying this
neuroprotective process is still unknown.

The benzothiazepine CGP37157 was the first organic compound shown to have the ability to
modulate the Ca2+ influx through CALHM1; at 1 µM, it reduces by over 50% the [Ca2+]i after the
removal and following the add-back of Ca2+ (conditions by which CALHM1 is activated) in Hela cells
overexpressing CALHM1 [21]. Alternatively, CGP37157 is recognized as a blocker of the Na+/Ca2+
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exchanger located in the mitochondrial membrane and partially blocks voltage-gated Na+ and L-type
voltage-dependent calcium channels. This compound, which is able to cross the BBB, has been shown
to exert neuroprotective properties in different oxidative stress models [22].

In this context, we aimed to identify by which molecular mechanisms the absence or blockade of
CALMH1 exerts a protective effect under brain ischemia conditions by using hippocampal slices of
Calhm1+/+, Calhm1+/−, and Calhm1−/− mice.

2. Materials and Methods

2.1. Animal Usage and Care

Native male and female mice (C57BL/6J) for CALHM1, Calhm1+/− and Calhm1−/− were used
in the experiments following The Guide for the Care and Use of Laboratory Animals and were
previously approved by the Institutional Ethics Committee of the Universidad Autónoma de Madrid,
Spain. Mice were housed under controlled lighting and temperature conditions, and water and food
were administered ad libitum. All efforts were made to minimize the number of animals used and
their suffering.

2.2. Isolation and Preparation of Mouse Hippocampal Slices

Adult mice (2–4 months) were used to obtain hippocampal slices (HSs). Mice were quickly
decapitated by cervical dislocation and brains were removed from the skull and placed into cold Krebs
bicarbonate dissection buffer (pH 7.4), containing: KCl 2 mM, NaCl 120 mM, NaHCO3 26 mM, CaCl2
0.5 mM, KH2PO4 1.18 mM, MgSO4 10 mM, sucrose 200 mM, and glucose 11 mM. The hippocampus
was placed in a McIlwain tissue chopper and was cut up in 300-µm-thick hippocampal slices. After
that, slices were introduced into a chamber at 34 ◦C and exposed to 95% O2/5% CO2 mixture for 45 min
stabilization period before the beginning of the ischemic procedure.

2.3. Oxygen and Glucose Deprivation in Mouse Hippocampal Slices

In order to perform the ischemic protocol, one group of hippocampal slices were incubated in a
Krebs solution named as control, composed by: NaCl 120 mM, NaHCO3 26 mM, MgSO4 1.19 mM,
KCl 2 mM, KH2PO4 1.18 mM, CaCl2 2 mM, and glucose 11 mM. This mixture was bubbled with 95%
O2/5% CO2. On the other hand, another pool of slices were subjected to oxygen-glucose deprivation
(OGD) for 15 min. For this, slices were incubated in a glucose-free Krebs solution, where glucose was
replaced by 2-deoxyglucose and equilibrated with a 95% N2/5% CO2 gas mixture. Thereafter, the OGD
solution was removed, and oxygenated Krebs solution with glucose (reoxygenation period) was added
and maintained for 2 h. When CGP37157 (10 and 30 µM) was used, it was added during the OGD and
Reox periods.

2.4. Glutamate Excitotoxicity in Mouse Hippocampal Slices

Apart from hypoxia, Ca2+ overload-induced by excessive glutamate release is one of the most
important molecular events that takes place during an ischemic insult. With the aim of mimicking this
process in vitro, we subjected the slices to an excitotoxicity protocol well described in the literature [23].
First, the hippocampal slices were subjected to a stabilization period in a solution composed of MgSO4

1.19 mM, CaCl2 2 mM, NaCl 120 mM, KH2PO4 1.18 mM, KCl 2 mM, glucose 11 mM and NaHCO3

26 mM, with 95% O2/5% CO2. After that, we immersed the slices in a culture media containing:
50% of Dulbecco’s Modified Eagle’s Medium (DMEM), 50% of Krebs–Ringer Bicarbonate Buffer,
100 units/mL penicillin and 100 mg/mL streptomycin, HEPES 20 mM and 1 mM glutamate for 4 h in a
CO2 atmosphere at 37 ◦C. CGP37157 (10 µM) was applied as a CALHM1 antagonist and co-incubated
for 4 h in the presence of glutamate.
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2.5. Determination of Hippocampal Viability by the MTT Assay

Cell viability was measured by adding the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide) to the hippocampal slices. This method is based on the ability of functional mitochondrial
dehydrogenases to reduce the tetrazolium ring of MTT in an insoluble salt called formazan; being
the amount of salt precipitate an indicator of cell viability. After incubation of hippocampal slices
for 30 min in the presence of MTT (0.5 mg/mL) in Krebs solution at 37 ◦C, the formazan salt was
solubilized with 200 µL of dimethyl sulfoxide (DMSO) for another 30 min, resulting in a purple-colored
substrate. Finally, we measured the absorbance at 540 nm wavelength in an ELISA microplate reader.
Absorbance values of control slices from wild-type mice were considered as 100% viability.

2.6. Quantification of Reactive Oxygen Species Production

To determine the production of reactive oxygen species (ROS) in hippocampal slices, we used
the fluorescent dye 2’,7-Dichlorofluorescein diacetate (H2DCFDA) purchased from Molecular Probes
(Invitrogen, Madrid, Spain). This compound crosses the plasma membrane and is cleaved by cytosolic
esterases from the non-fluorescent product dichlorodihydrofluorescein, which binds to intracellular
H2O2 generating dichlorofluorescein (DCF), a green fluorescent probe [24].

During the reoxygenation period, slices were loaded for 45 min with 10 µM H2DCFDA in Krebs
solution and to stain nuclei, Hoechst33342 at 1 µg/mL was added for 5 min. Then, hippocampal
slices were washed with the control Krebs solution. The fluorescence records were determined in a
fluorescence inverted NIKON eclipse T2000-U microscope. The excitation and emission wavelengths
were 485 and 520 nm, respectively and analysis was performed using the Metamorph program version
7.0

The area of interest was the CA1 region of the hippocampus, and images were obtained at
magnifications of 10×. ROS production was calculated as the ratio of the mean DCFDA intensity
divided by the mean Hoechst fluorescence. Data from control slices of wild-type were taken as 100%.

2.7. Western Blot Analysis

Slices of the different experimental groups were lysed in 100 µL cold lysis buffer (1% Nonidet P-40,
1 mM PMSF, 20 mM Tris-HCl pH 7.5, 10% glycerol, 20 mM NaF, 137 mM NaCl, 1 µg·mL−1 leupeptin,
1 mM Na3VO4 and 1 mM sodium pyrophosphate) and disaggregated with Sonicator Ultrasound.
The resulting tissue mixture was centrifuged at 13,000 rpm for 5 min at 4 ◦C, and the supernatant
was collected. From each supernatant, 30 µg of protein were resolved by SDS-PAGE and transferred
to Immobilon-P membranes (Millipore Corp.GE). Membranes were incubated with anti-HIF-1α at
1:500 (Cayman Chemical, Michigan, MI, USA). Seahorse peroxidase-conjugated secondary antibodies
(1:10,000) were used to detect proteins by chemiluminescence. Protein bands density was analyzed
using the ImageJ analysis software (National Institutes of Health, USA).

2.8. Statistical Analysis

Results are represented in bars as mean ± S.E.M. Statistical differences were determined by
one-way ANOVA test followed by Newman Keuls post hoc and paired t-test. The program used for the
analysis was GraphPad Prism 5.00. The threshold of statistical significance was established at p < 0.05.

3. Results

3.1. Partial or Total Molecular Ablation of CALHM1 Results in a Protective Effect in Hippocampal Slices
Exposed to OGD/Reox

Hippocampal slices from Calhm1+/+, Calhm1+/− and Calhm1−/− mice were subjected to the
OGD/Reox protocol previously described. Considering the high Ca2+ permeability of CALHM1,
and the excessive release of this cation to the synaptic cleft during an ischemic insult, it is presumable
that the lack of the channel exerts a beneficial effect against ischemic damage. The OGD/Reox protocol
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was carried out and cell viability was determined by the MTT method in hippocampal slices from each
group. Figure 1A, illustrates the cell viability of hippocampal slices from Calhm1+/+ and Calhm1+/−

mice. Slices from animals with deletion of one allele of CALHM1 showed significantly higher viability
(74.2% ± 6.2) compared to wild-type (58.4% ± 2.7) when subjected to OGD/Reox condition. Following
the same experimental approach, we also observed that slices from animals with total ablation of
Calhm1−/− showed less toxicity in comparison to those from Calhm1+/+ mice (60.4% ± 2.3 vs. 72.5% ± 4,
respectively) (Figure 1B). These results indicate that either partial or total genetic deletion of CALHM1
exerts a neuroprotective effect against OGD/Reox damage in our ex-vivo model of brain ischemia.
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Figure 1. Calhm1−/− mice present neuroprotection against cell death elicited by oxygen and glucose
deprivation followed by reoxygenation (OGD/Reox) in hippocampal slices. The top part of the figure
shows a schematic representation of the OGD/Reox protocol used, as described in materials and methods.
(A) Represents cell viability measured by MTT reduction in hippocampal slices from Calhm1+/+ and
Calhm1+/− mice under basal conditions or exposed to the OGD/Reox protocol. OGD/Reox-induced
cytotoxicity is prevented in Calhm1+/− hippocampal slices. Data are the mean ± S.E.M of seven different
animals; all variables were run in parallel. *** p < 0.001 and ** p < 0.01 in comparison to basal; # p < 0.05
respect to Calhm1+/+ OGD. (B) Hippocampal slices from Calhm1−/− mice subjected to OGD/Reox show
higher cell viability when compared to those obtained from Calhm1+/+ mice. Data represent the mean
± S.E.M of 7 different animals; all variables were run in parallel. *** p < 0.001 versus basal; # p < 0.05
respect to Calhm1+/+ OGD. One-way ANOVA followed by Newman–Keuls was performed. Data were
normalized to Calhm1+/+, which was considered as 100% of viability.

3.2. Genetic Ablation of CALHM1 Promotes Neuroprotection in the Glutamate Excitotoxicity Model

Due to the fact that the absence of CALHM1 proved to be neuroprotective in the OGD/Reox model,
new experiments were performed, but this time focusing on the neurotransmitter glutamate, known to
be cytotoxic during brain ischemia. As previously described, glutamate induces neurotoxic effects due
to activation of NMDA and metabotropic receptors, leading to massive Ca2+ entry and cell death.

Exposure of Calhm1+/+ hippocampal slices to 1 mM glutamate during 4 h, reduced cell viability to
59.9% ± 3.8; however, slices from Calhm1−/− were significantly protected (70.5% ± 6).

As previously described in our laboratory [21], CGP37157 reduces Ca2+ influx through CALHM1
in Hela cells. Hela cells lack L-type VDCCs, and when transiently transfected with CALHM1, the only
Ca2+-permeant channel expressed in the plasma membrane is CALHM1. So, according to our previous
results, CGP37157 blocks CALHM1 since in control Hela cells, the contribution of the Na+/Ca2+

exchanger upon Ca2+ add-back protocol seems to be insignificant compared with the Ca2+ entry
in those cells overexpressing CALHM1. Therefore, we carried out experiments to determine the
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protective role of this compound in our models. The addition of the CGP37157 (10 µM) to the medium
during the glutamate incubation period increased cell viability significantly in hippocampal slices
from Calhm1+/+ mice, but it did not provide significant protection in Calhm1−/− slices. The increase in
cell survival in Calhm1+/+ slices may be related to the blocking action on NMDAR, VDCCs and sodium
calcium exchanger (NCX) reported for CGP37157, preventing the Ca2+ overload upon exposure to
high glutamate concentrations [22]. This effect is higher in Calhm1+/+ slices because CGP37157 is also
blocking Ca2+ influx through CALHM1, which is not present in Calhm1−/− slices (Figure 2). These
findings highlight the idea that in hippocampal slices from Calhm1−/− mice, CGP37157 is not exerting
neuroprotection mediated by blockade of CALMH1 channels. Taken together, these results support
that the genetic deletion or the pharmacological blockade of CALHM1 attenuates the massive release
of glutamate and Ca2+ overload to provide neuroprotection. However, the effects of CGP37157 on
voltage dependent calcium channels (VDCCs) in CALHM1 mouse models have still not been reported,
but further investigations are required to solve this crucial point.
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Figure 2. CALHM1 ablation results beneficial against glutamate-induced excitotoxicity and abolishes the
neuroprotective properties of CGP37157. The top part of the figure illustrates a schematic representation
of the glutamate induced excitotoxicity protocol. Excitotoxicity mediated by glutamate (1 mM, 4 h) in
hippocampal slices was measured by the MTT method. As represented, slices from Calhm1−/− mice
showed significantly less cell damage than Calhm1+/+ slices. Moreover, the neuroprotective profile
described previously for CGP37157 (10 µM) in the glutamate model of ischemia was partially lost
when CALHM1 was not present. Data correspond to the mean ± S.E.M of five different mice; all
conditions were performed in parallel. *** p < 0.001 and ** p < 0.01 compared to basal; # p < 0.05 versus
Calhm1+/+ glutamate; $ p < 0.05 respect to Calhm1+/+ glutamate. Paired T-Test was performed. Data
were normalized to Calhm1+/+, considering it as 100% of cell viability.

3.3. CGP37157 Requires CALHM1 to Exert Neuroprotection under OGD/Reox Conditions

As mentioned above, previous findings from our laboratory [21] demonstrated that CGP37157
modulated massive Ca2+ entry through CALHM1 by blocking it. Due to the properties of CGP37157,
new experiments were performed in Calhm1+/+, Calhm1+/−, and Calhm1−/− mice hippocampal slices
exposed to OGD/Reox in the presence or absence of CGP37157 at 10 µM. The OGD/Reox protocol
induced 51.9% ± 4.3 cell death in Calhm1+/+ hippocampal slices, while the incubation of CGP37157 (10
µM) reverted the cytotoxic effect to 76.3% ± 5.3 (Figure 3A). Incubation with 10 µM of CGP37157 of
Calhm1+/− or Calhm1−/− hippocampal slices per se did not induce an observable neuroprotective effect.
Despite not observing a significant effect, cell viability was increased in the presence of CGP37157
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(10 µM) compared to non-treated hippocampal slices of Calhm1+/− and Calhm1−/− mice (Figs. 3B and
3C). This increase in cell survival could be attributed to the blocking action of CGP37157 on NMDAR,
VDCCs, and NCX, preventing the Ca2+ overload upon exposure to ischemic conditions [22]. Moreover,
CGP37157 (30 µM) was neuroprotective in the OGD/Reox protocol in Calhm1+/+ slices (Figure 3D),
but not in Calhm1−/− mice (Figure 3E). These results indicate that the pharmacological modulation of
CALHM1 could be a novel neuroprotective mechanism under ischemic brain conditions.Cells 2020, 9, 664 8 of 13 
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Figure 3. CALHM1 is required for the protective effect of CGP37157 in the model of oxygen and
glucose deprivation followed by reoxygenation (OGD/Reox). Representation of the OGD/Reox protocol
used on the top of figures A-E. (A–C) Cell viability in hippocampal slices of Calhm1+/+, Calhm1+/− and
Calhm1−/− mice was determined through the MTT method. Treatment with CGP37157 (10 µM) during
the OGD/Reox protocol only provided neuroprotection in Calhm1+/+ slices (A), while this effect was
not observed in Calhm1+/− (B) or Calhm1−/− (C) genotypes. (D–E) CGP37157 (30 µM) only exerted
benefits in Calhm1+/+ slices (D), without having an effect on Calhm1−/− samples (E). Data represent the
mean ± S.E.M of 3–5 different animals; all variables were run in parallel. *** p < 0.001, ** p < 0.01 and
* p < 0.05 compared to basal; ## p < 0.01 and # p < 0.05 respect to OGD. One-way ANOVA followed by
Newman–Keuls was performed. Data were normalized to the basal condition which was considered as
100% of viability.

3.4. The Production of Free Radicals Induced by OGD/Reox is Prevented when CALHM1 Is Absent

It is well described that under hypoxic conditions, such as ischemia, there is intracellular Ca2+

overload and ROS production. Those pathological conditions induce overactivation of astrocytes and
microglia. These two cell types in brain parenchyma under pathological situations lead to an increase
in the production and release of ROS and inflammatory mediators, worsening neuronal damage [25].
Once demonstrated that CALHM1 ablation has a neuroprotective profile, we decided to go further by
measuring ROS production in hippocampal slices from each experimental group. Figure 4A illustrates
the production of ROS in the CA1 region of hippocampal slices of both, Calhm1+/+ and Calhm1−/−

mice measured by the fluorescent probe DCFDA (green). In basal conditions Calhm1+/+ and Calhm1−/−

showed similar ROS release as represented in the Figure 4B; however, after exposure to OGD/Reox,
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slices from Calhm1+/+ mice showed significantly higher levels of free radical production in comparison
with those from Calhm1−/− (178.1% ± 17.01 vs. 132.6% ± 1.97, respectively). These findings support
the idea that the absence of CALHM1 not only decreases [Ca2+]c entry but, in addition, contributes to
lowering ROS production, opening a new neuroprotective pathway for CALHM1.
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Figure 4. ROS production is attenuated in Calhm1−/− hippocampal slices upon OGD/Reox. (A) Images
on the top show DCFDA fluorescence for ROS production and images on the bottom show Hoechst
fluorescence as an indicator of nuclei density in the CA1 region of hippocampal slices from Calhm1+/+

and Calhm1−/− mice, under basal or after OGD/Reox exposure. (B) Quantitative analysis of ROS
production is indicated as the ratio of DCFDA/Hoechst fluorescence intensity. Bars represent the
means ± S.E.M of three different animals from each group; all variables were performed in parallel.
** p < 0.01 versus basal Calhm1+/+; ## p < 0.01 compared to OGD Calhm1+/+. One-way ANOVA followed
by Newman-Keuls was made. Data were normalized to Calhm1+/+, which was considered as 100%
of viability.

3.5. HIF-1α is Overexpressed under OGD/Reox Conditions when CALHM1 is Absent

To further understand the molecular mechanism by which the lack of CALHM1 induces
neuroprotection upon OGD/Reox conditions, new experiments were carried out, but this time we
searched for a Ca2+ dependent protein such as HIF-1α. Under hypoxic conditions, HIF-1α accumulates
and dimerizes with HIF-1β, and translocates into the nucleus where it binds to the hypoxic-response
elements (HREs), inducing the expression of genes that have been linked with the adaptation to
hypoxia, such as antioxidant genes, as well as genes involved in angiogenesis and glycolytic energy
metabolism. This metabolic adaptation decreases the formation of ROS and mitochondrial toxicity [26].
As illustrated in Figure 4, Calhm1−/− slices showed a reduction in the production of free radicals,
in consequence, some antioxidant or pro-survival pathways could be activated. Due to its role as a
master regulator in hypoxia, we decided to study HIF-1α levels in Calhm1+/+ and Calhm1−/− mice. As
shown in Figure 5, HIF-1α expression was significantly higher in Calhm1−/− hippocampal slices upon
OGD/Reox compared to Calhm1+/+ slices.
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of HIF-1α is represented in bars using β-actin for normalization. Data are the mean ± S.E.M of eight
different animals from each group. ** p < 0.01 versus basal Calhm1−/−; ## p < 0.01 compared to OGD
Calhm1+/+. Paired t-test was performed.

4. Discussion

In the present work, we have shown that the partial or total absence of CALHM1 results
neuroprotective against neuronal death in an ex vivo model of brain ischemia, mice hippocampal slices
subjected to OGD/reox. We hypothesized that the Ca2+ channel CALHM1 could worsen cell damage
upon ischemia-reperfusion due to its high Ca2+ permeability [17]. Recently, it has been established
that the CALHM1 channel is implicated in ischemia brain damage [20]. These previous findings were
focused on Calhm1−/− mice without explaining the effects of hypoxia in Calhm1+/− mice. In cortical
neurons transfected with an shRNA-CALHM1 [20] showed a 13% reduction in lactate dehydrogenase
release, indicating a mild contribution of CALHM1 to brain-ischemia neurotoxicity. Considering that
presumably, CALHM1 is exerting its cytotoxic effect during the reperfusion phase of brain ischemia,
due to its activation properties (Ca2+ add-back protocol), we hypothesize that the absence of one allele
of CALHM1 should be sufficient to reduce a large amount of Ca2+ influx into the neurons during
the reoxygenation period, exerting a similar neuroprotective effect to the total ablation of CALHM1
gene. Also, during a hypoxic insult in the brain, the depolarization wave and the excessive amount
of glutamate released to the synaptic cleft, activates VDCCs and NMDAR, respectively, being the
effects of these two types of channels predominant on CALHM1 participation [7–10]. As an example,
heterozygous mice of the aryl hydrocarbon receptor (AhR+/− mice) show a significant reduction in
infarct volume as well as an improvement of neurological deficits after a middle cerebral artery
occlusion (MCAO) in comparison to wild-type mice [27]. These results indicate that the deletion of
only one allele of AhR results in neuroprotectivity against brain ischemia, similar to our observations
with Calhm1+/− mice.

In view of the physiological role of CALHM1 in the regulation of AMPA and NMDA receptor
expression and its implication in memory consolidation in the hippocampus [19], as well as,
the participation of CALHM1 in the maintenance of neuronal excitability [17], we decided to perform
our experiments in brain hippocampal slices from Calhm1+/+, Calhm1+/− and Calhm1−/− mice. In this
study, we have performed experiments with Calhm1+/− mice, showing that the deletion of just one
allele of CALHM1 results neuroprotective in the OGD/Reox protocol. In addition, we have seen
that pharmacological treatment with CGP37157 resulted neuroprotective upon OGD/Reox conditions
in Calhm1+/+ mice, whereas this effect was reduced in Calhm1+/− or Calhm1−/− hippocampal slices;
however, protection elicited by CGP37157 in Calhm1+/+ mice did not reach basal condition values.
These finding could be related to the reported lack of protective effects of CGP37157 against oxidative
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stress cell damage; for example, in SHSY5Y neuroblastoma cells subjected to oxidative stress stimulus
such exposure to Oligomycin/Rotenone, CGP37157 was not neuroprotective [22]. OGD/Reox increases
oxidative stress, therefore, under these conditions, it would be expected that CGP37157 would not be
able to provide significant neuroprotection. These results indicate that the expression of CALHM1 seems
to be necessary to induce pharmacological neuroprotection with CGP37157 (Figure 3). As mentioned
earlier [21], it has been reported that CGP37157 can block Ca2+ flux through the mitochondrial
sodium/calcium exchanger (mNCX), L-type VDCCs, the plasmalemmal sodium/calcium exchanger
(pNCX), and voltage-gated sodium channels, being more selective at mNCX [28]. However, there is
currently no experimental evidence in the literature that describes any alteration in the expression or
functionality of mNCX, voltage-gated sodium channels, and L-type VDCC when CALHM1 is absent,
so it should not affect the expression or function of these channels.

CALHM1 controls [Ca2+]c [15–17], mitochondrial [Ca2+] [29] and ER [Ca2+] [30]. Now we have
more evidence that the opening of CALHM1 upon ischemia in the OGD/Reox model or glutamate
excitotoxicity, induces large amounts of Ca2+ entry and plasma membrane depolarization [15], but its
pharmacological blockade with CGP37157 reduced cell death in Calhm1+/+, but not in Calhm1+/− and
Calhm1−/− mice. In other words, in hippocampal slices from Calhm1+/+ mice, OGD/Reox-induced cell
death can be pharmacologically prevented by CGP37157 by a mechanism that implicates inhibition
of CALMH1 channels. These results demonstrate that the Ca2+ driven through CALHM1 plays a
neurotoxic effect and its blockade results neuroprotective. To further elucidate the neuroprotective
properties of CALHM1, we performed experiments with Calhm1+/− mice. Upon OGD/Reox, the
partial lack of CALHM1 exerts neuroprotective properties, pointing out that the possibility of only
the deletion of one allele of CALHM1 is enough to induce neuroprotection against brain ischemia.
However, in the model of glutamate toxicity, hippocampal slices from Calhm1+/− genotype did not
show the cytoprotective effect present in those from Calhm1−/− mice (data not shown). To go further,
we decided to investigate the molecular pathway by which the absence of CALHM1 resulted in
neuroprotection. Mitochondria efficiently buffer Ca2+ driven through CALHM1 channels [29]. Ca2+

entering through the mitochondrial uniporter is translated to more hyperpolarized mitochondrial
membrane potential and to more ATP production, but much more ROS production [31]. In fact, this
was the case in our experimental conditions; Calhm1+/+ hippocampal slices exposed to OGD/Reox
released higher amount of ROS than the Calhm1−/− ones. These findings highlight that the deletion of
CALHM1 results neuroprotective not only to the reduction of Ca2+ entry driven by the channel but
also to lower ROS production. Focusing on our results, CALHM1 absence results in high cell viability
upon exposure of hippocampal slices to ischemia-related protocols and less ROS production in the
CA1 hippocampal region.

Another key marker activated after exposure to OGD/Reox is HIF-1α. This protein is inducible upon
hypoxia and cytosolic Ca2+ elevation, triggering cell survival under low oxygen concentrations [32].
We found a strong elevation of HIF-1α in the hippocampus of Calhm1−/− mice, subjected to OGD/Reox,
compared to Calhm1+/+. An increase in HIF-1α levels might be beneficial because it could further induce
antioxidant protein expression [33]. The finding that HIF-1α is upregulated in Calhm1−/− samples is
conflicting. However, intracellular Ca2+ increase is not the only molecular mechanism that induces
HIF-1α expression and stabilization. HIF-1α stabilization in the cytosol promotes metabolic adaptation
to hypoxia, proliferation, survival, and resistance to apoptosis, although the lack of CALHM1 leads
to less Ca2+ entry into the cell, it is no surprising that the expression levels of HIF-1α protein are
increased in knock-out mice. Also, HIF-1α regulates the expression of some Ca2+ permeant channels,
such as the transient receptor potential (TRP) C1 (TRPC1), stromal interaction molecule-1 (STIM1),
or the Golgi Ca2+ pump secretory pathway Ca2+-ATPase 2 (SPCA2). Based on the latter observations,
we can hypothesize that the deletion of CALHM1 could trigger an elevation in HIF-1α levels as a
compensatory mechanism in order to restore Ca2+ signaling through other Ca2+ channels [34]

Although different CALHM1 antagonists have been described in the literature such as Ni2+ and
Co2+, their high toxicity and non-specificity make them inadequate for use in the clinic. Something
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similar occurs with 2-APB and Ruthenium Red [17], they block CALMH1 channels but at high
concentrations that could also be toxic. The organic properties of CGP37157 and its blocking action
on CALMH1 channels at the micromolar range, contrary to other CALMH1 blockers previously
described [17], indicate that it could be a druggable compound for stroke.

5. Conclusions

Genetic or pharmacological inhibition of CALHM1 in hippocampal slices from mice,
was neuroprotective in the ODG/Reox protocol, suggesting that Ca2+ entry through CALHM1
contributes to cell death upon ischemic conditions. The neuroprotective molecular pathway results
from lowering ROS production and activating of HIF-1α. Taken together, these results open a novel
neuroprotective pathway for ischemic stroke, which includes the inhibition of CALMH1.
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