
Multi-level Model Product Lines

Open and closed variability for modelling language families

Juan de Lara and Esther Guerra

Universidad Autónoma de Madrid (Spain)
{Juan.deLara, Esther.Guerra}@uam.es

Abstract. Modelling is an essential activity in software engineering processes. It
typically involves two meta-levels: one includes meta-models that describe mod-
elling languages, and the other contains models built by instantiating those meta-
models. Multi-level modelling generalizes this approach by allowing models to
span an arbitrary number of meta-levels.
A scenario that profits from multi-level modelling is the definition of language
families that become specialized by successive refinements at subsequent meta-
levels, hence promoting language reuse. This enables an open set of variability
options for the possible specializations of a given language. However, multi-level
modelling lacks the ability to express closed variability regarding the supported
language primitives and their realizations. This limits the reuse opportunities of
a language family. To improve this situation, we propose a novel combination of
product lines with multi-level modelling to cover both open and closed variability.
Our proposal is backed by a formal theory that guarantees correctness, and is
implemented atop the METADEPTH multi-level modelling tool.

Keywords: Meta-modelling, Multi-level modelling, Product lines, Domain-specific
languages, METADEPTH

1 Introduction

Modelling is intrinsic to most engineering disciplines. Within software engineering, it
plays a pivotal role in model-driven engineering (MDE) [43]. This is a software con-
struction paradigm where models are actively used to describe, analyse, validate, verify,
generate code and maintain the application to be built, among other activities.

Models are built using modelling languages, which can be either general-purpose,
like the UML [46], or domain-specific languages (DSLs) tailored to a specific con-
cern [25]. In MDE, the abstract syntax of modelling languages is defined through a
meta-model that describes the primitives that models can use one meta-level below.
This modelling approach, which is the standard nowadays, constrains engineers to con-
fine their models within one meta-level (the “model” level).

Some researchers have observed that domain modelling can benefit from the use
of more than one meta-level [6, 14, 17, 19, 29]. This way of modelling – called multi-
level modelling [4] or deep meta-modelling [12] – results in simpler models in scenar-
ios that involve the type-object pattern [6, 14, 30]. Moreover, it permits defining lan-
guage families (e.g., for process modelling), which can be specialized to specific do-
mains (e.g., software process modelling, industrial process modelling) via instantiation

c© The Author(s) 2020
H. Wehrheim and J. Cabot (Eds.): FASE 2020, LNCS 12076, pp. 161–181, 2020.
https://doi.org/10.1007/978-3-030-45234-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45234-6_8&domain=pdf
https://doi.org/10.1007/978-3-030-45234-6_8

TaskType

Coding:
TaskType

Design:
TaskType

…

TaskType

ActorKind

1 perfBy

Process
Language

actors init

[actors]

[actors]

[init] initial: bool TaskType
initial: bool

init
¬actors

(a) (b)

Fig. 1. (a) Open variability through instantiation. (b) Closed variability through product lines.

at lower meta-levels [15]. Instantiation is an open variability mechanism that permits
the language customization by specializing the language primitives for a domain, or
adding new ones via linguistic extensions [12]. Fig. 1(a) shows a tiny process modelling
language that defines the primitive TaskType, which is customized by instantiation in
the lower meta-level for the software process modelling domain (Coding and Design).
However, multi-level modelling lacks support for expressing optionality of language
primitives or alternative primitive realizations. This prevents wider language reuse and
customization possibilities.

Software product lines (SPLs) encompass methods, tools and techniques to engi-
neer collections of similar software systems using a common means of production [32,
35]. SPLs support closed variability, where a concrete software product is obtained
by selecting among a finite set of available features (i.e., by setting a configuration).
SPL techniques have been applied to language engineering to define product lines of
languages representing a close set of predefined language variants [20, 34, 47]. As an
example, Fig. 1(b) shows a process modelling language product line with two config-
urable features: actors and initial tasks. Selecting a configuration of features (in the
figure, initial tasks but no actors) yields a language variant. Languages so defined can
be configured with respect to the primitives they offer and their realization, but cannot
be specialized for specific domains as this requires from open variability mechanisms.

To improve current language reuse techniques, we propose combining multi-level
modelling and product lines. This allows the definition of highly configurable language
families that profit from both open variability (as given by instantiation) and closed
variability (as given by configuration). This way, this paper makes the following con-
tributions: (i) a novel notion of multi-level model product line; (ii) a theory that guar-
antees the correctness of (certain) interleavings of instantiation and configuration steps;
and (iii) an implementation of these ideas on top of the METADEPTH tool [12].
Paper organization. Section 2 introduces multi-level modelling and identifies the chal-
lenges tackled in this paper. Section 3 provides a light formalization of multi-level mod-
elling, which is extended with product line techniques in Section 4. Section 5 describes
tool support. Section 6 discusses related research, and Section 7 ends with the conclu-
sions and future work. An appendix includes the proofs of the theorems in the paper.

2 Multi-level modelling: intuition and challenges

In this section, we introduce the main concepts of multi-level modelling by example
(Section 2.1), and then discuss the challenges that we aim to tackle (Section 2.2).

162 J. de Lara and E. Guerra

ProductType
price : double
tax@1 : double

@2 Commerce

@1
Book:

ProductType
tax = 0,1
numPages: int

Food:
ProductType

tax = 0,04

Kiosk

@0
Othello: Book

price= 30
numPages=250

Banana:
Food

price=0,5

WHKiosk

ProductType
tax: double

Product
price: double 1

type

tax = 0,1

Food:
ProductType
tax = 0,04

Othello:
Product

price= 30

Banana:
Product

price=0,5

Commerce

Attribute
type: String

Slot
value: String

numPages:
Attribute

type=“int”

s: Slot
value=“250”

attrs * slots
type
1

:attrs
Book:

ProductType

:type

:slots

:type :type

Kiosk

WHKiosk
(a) (b)

Fig. 2. Commerce example using (a) standard modelling and (b) multi-level modelling.

2.1 Multi-level modelling, by example

Multi-level modelling permits the definition of models using multiple meta-levels [6,
14]. To understand its rationale, assume we would like to create a language to define
commerce information systems (a standard example often used in the multi-level mod-
elling literature [6, 14]). This language should allow defining product types (like books
or food) which have a tax, as well as products of the defined types (like Othello or ba-
nana) which have a price. Moreover, some product types may need to define specific
properties, like the number of pages in books.

Fig. 2(a) shows a solution using two meta-levels. In this solution, the meta-model
of the language uses the type-object pattern [30] to emulate the typing relation between
Product and ProductType. In addition, classes Attribute and Slot permit defining prop-
erties in ProductTypes and assigning them a value in Products (called dynamic features
pattern in [14]). The model in the bottom meta-level represents an information system
for Kiosks, and defines the product types Book and Food. The model also defines the
products sold by a particular kiosk: the Othello book and Bananas.

On reflection, one can realize that this solution emulates two meta-levels within one,
as we convey with the dashed line in Fig. 2(a). Therefore, Fig. 2(b) shows an alterna-
tive multi-level solution using three meta-levels. The top level defines just ProductType,
which is instantiated at the next level to create Book and Food product types, which
in turn are instantiated at the bottom level to create specific products. Hence, elements
in this approach are called clabjects [2] (from the contraction of the words class and
object), as they are types for the elements in the level below, and instances of the ele-
ments in the level above (see for instance Book).

The multi-level solution leads to a simpler model (with fewer elements) as it re-
quires just a clabject to represent both ProductType and Product. However, one needs
to control the properties of instances beyond the next meta-level. In the example, we
need to control that the direct instances of ProductType have a tax, and the instances of

Multi-level Model Product Lines 163

TaskType
Gateway

Type

src

tar

*
* duration : int

initial@1 : boolean

Requirements :
TaskType

initial = true

Design:
TaskType

initial = false
style : String

ReqDep:
GatewayType * DesignDep:

GatewayType

1..*

1..*
from: src

nxtDesign:
tar

BusinessReqs :
Requirements

MobileReqs :
Requirements

CoreDesign :
Design

CoreReqs:
ReqDep

:from

:nxtReq

:nxtDesign

duration = 4

duration = 2

duration = 3
style=“service”

@2 Process modelling

@1 Software process modelling

@0 Mobile HR project plan

1..*

*
from: src

nxtReq:
tar

nxtDesign:
tar

Fig. 3. Multi-level model for process modelling, and application to software process modelling.

its instances have a price. For this purpose, we use a deep characterization mechanism
called potency [2, 4]. This is a natural number, or zero, which governs the instantiation
depth of elements. Fig. 2(b) depicts the potency after the “@” symbol, and the elements
that do not declare potency take the potency from their container (e.g., attribute price

takes its potency from ProductType, and this from the Commerce model). When an el-
ement is instantiated, the instance gets the potency of the element minus 1. Elements
with potency 0 are pure instances and cannot be instantiated. This way, attribute Pro-

ductType.tax is instantiated into Book.tax and Food.tax, which therefore have potency 0
and can receive values. As model Commerce has potency 2, it can be instantiated at the
two subsequent meta-levels. The potency of a model is often called its level [6].

Sometimes, it is not possible to foresee every possible property required by clab-
ject instances several meta-levels below, like the number of pages in books. To handle
those cases, multi-level modelling supports linguistic extensions. These are clabjects
or features with no ontological type, but with a linguistic type which corresponds to
the meta-modelling primitive used to create it (see Orthogonal Classification Architec-
ture in [5] for more details). As an example, Book.numPages is a linguistic extension
modelling a property specific to Book but not to other product types. Instead, in the two-
level solution in Fig. 2(a), the properties of specific ProductTypes need to be explicitly
modelled by classes Attribute and Slot, leading to more complexity.

2.2 Improving reuse in multi-level modelling: some challenges

Multi-level modelling enables language reuse by supporting the definition of language
families. For example, Fig. 3 shows at the top a generic process modelling language
that can be used to define process modelling languages for different domains, like ed-
ucation, software engineering, or production engineering. The language is designed to
consider three levels. Level 2 contains the language definition, consisting of primitives

164 J. de Lara and E. Guerra

TaskType
@2

TaskType Gateway
Type

src

tar

*
*

next
* +

@2

initial@1 : boolean
duration : int
rDuration : int

n

(a) (b) (c)

@2
TaskType

ActorKind
1 perfBy

Fig. 4. Examples of variability needs: (a) optional attributes, (b) optional primitives, (c) alterna-
tive primitive realizations.

to define task and gateway types. Level 1 contains language specializations for specific
domains. The figure shows the case for the software engineering domain, which defines
the task types Requirements and Design, and two gateway types: ReqDep to transition
from requirement tasks to either design or requirement tasks, and DesignDep to declare
dependencies between design tasks. Finally, level 0 contains domain-specific processes.
The one in the figure declares three tasks and one gateway.

This example shows how instantiation permits customizing the language primitives
offered at the top level for particular domains, and how linguistic extensions (e.g., at-
tribute Design.style at level 1 in Fig. 3) allow adding domain-specific primitives to lan-
guage specializations. However, the following scenarios require further facilities that
enable a better fit for particular domains and increase language reuse.

– Alternative realizations. A language primitive may be realised in different ways,
each more adequate than the others depending on the domain. For example, in
Fig. 3, dependencies between task types are modelled by GatewayType. However,
in domains that do not require distinguishing gateway types, a simpler representa-
tion of dependencies as a reference between TaskTypes is enough (see Fig. 4(c)).
Unfortunately, multi-level modelling does not support this kind of variability.

– Primitive excess. Some offered language primitives may be unnecessary in simple
domains. This can be controlled by not instantiating the primitive, but still, with-
drawing the needless primitives to simplify the language usage may be a better
option. Moreover, there are problematic situations. First, if the primitive is an at-
tribute (like initial in Fig. 4(a)), then it becomes instantiated by force, polluting the
model with unnecessary information. Second, some mandatory primitives may not
be needed in certain domains. For example, in Fig. 4(b), the language designer as-
sumes that any TaskType (e.g., Requirements) will be performed by one ActorKind

(e.g., Analyst or DomainExpert). However, there may be domains that do not in-
volve actors (e.g., if tasks are automated), but the mandatory relation perfBy forces
having instances of ActorKind associated to instances of TaskType.

– Deferred variability resolution and exploratory modelling. The decision about
the inclusion or not of a primitive may not be clear when the language is instanti-
ated for a domain, but this is determined later at lower meta-levels. For example,
in Fig. 4(a), an engineer might hesitate whether, in addition to the expected task
duration (attribute duration), s/he may want to store the real task duration (attribute

Multi-level Model Product Lines 165

rDuration with potency 2), in which case, s/he may prefer deferring the decision to
levels 1 or 0. In general, resolving all variability in a language family at the top
level may be hasty in some cases, as the suitability of a primitive may become
evident only when a language has reached certain specificity (i.e., at lower meta-
levels). Moreover, enabling modelling before resolving the variability may be good
for exploratory purposes.

To tackle these challenges, we incorporate variability into multi-level models taking
ideas from SPLs. As a first step, next we formalize multi-level models.

3 A formal foundation for multi-level modelling

We start defining the structure of models equipped with deep characterization, which
we call deep models. We represent models at different meta-levels in a uniform way, in
order to cope with an arbitrary number of meta-levels. For simplicity of presentation,
we omit inheritance, cardinalities and integrity constraints in our formalization.

Def. 1 (Deep model) A deep model is a tuple M = 〈p, C, S,R, src, tar, pot〉, where:

– p ∈ N0 is called the model potency, or level.
– C, S and R are disjoint sets of clabjects, slots and references, respectively.
– src : S ∪R → C is a function assigning slots and references to clabjects.
– tar : R → C is a function assigning the target clabject to references.
– pot : C ∪ S ∪R → N0 is a function assigning a potency to each element, s.t.:

1. ∀e ∈ C ∪ S ∪R • pot(e) ≤ p
2. ∀s ∈ S ∪R • pot(s) ≤ pot(src(s))
3. ∀r ∈ R • pot(r) ≤ pot(tar(r))

In the previous definition, we assign a level p to deep models. Elements in a deep
model have a potency via function pot, which must satisfy three conditions: (1) the
potency of an element should not be larger than the model level, (2) the potency of slots
and references should not be larger than the one of their container clabject, and (3) the
potency of references should not be larger than the one of the clabjects they point to.

Next, we define a general notion of mapping (a morphism) between deep models
as a tuple of three (total) functions between the sets of clabjects, slots and references.
Each morphism has a depth (an integer or 0) controlling the distance between the levels
of the involved models. We use two particular types of mappings to represent the type
relation between deep models at adjacent meta-levels (when the morphism depth is 1),
and extensions of a deep model to add linguistic extensions (when the depth is 0).

Def. 2 (D-morphism, type and extension) Given two deep models Mi = 〈pi, Ci, Si, Ri,

srci, tari, poti〉 for i = {0, 1}, a deep model morphism (D-morphism in short) m =
〈d,mC ,mS ,mR〉 : M0 → M1 is a tuple made of a number d ∈ N0 called depth, and
three functions mC : C0 → C1, mS : S0 → S1 and mR : R0 → R1 s.t.:

1. p0 + d = p1
2. ∀e ∈ X0 • pot0(e) + d = pot1(mX(e)) (for X = {C, S,R})

166 J. de Lara and E. Guerra

S1
src1 �� C1 C1 R1

src1�� tar1 �� C1

S0

mS

��

src0 ��

=

C0

mC

��

C0

mC

��
=

R0
src0�� tar0 ��

mR

��
=

C0

mC

��

Fig. 5. Commutativity conditions for D-morphisms.

3. Each function mC ,mS ,mR commutes with functions srci and tari (see Fig. 5)

D-morphism tp = 〈d, tpC , tpS , tpR〉 : M0 → M1 is called type if d = 1, and is called
indirect type if d > 1. M1 is called the (indirect) model type of M0.
D-morphism ex = 〈d, exC , exS , exR〉 : M0 → M1 is called level-preserving if d = 0.
A level-preserving D-morphism ex is called extension if each exX (for X = {C, S,R})
is an inclusion. An extension is called identity if each exX is surjective.

In the previous definition, condition 1 ensures that the D-morphism connects models
of suitable levels, condition 2 checks that the potency decreases according to the depth
of the D-morphism, and condition 3 ensures that the D-morphism is coherent with the
source and target of slots and references (just like in standard graph morphisms [16]).
We use total functions to represent the type, which ensures that each element in a deep
model has a type. Linguistic extensions are not typed, but they are modelled as an exten-
sion D-morphism of a (typed) deep model into a larger model. This avoids resorting to
partial functions to represent the type, which would complicate the formalization [38].
Identity extensions map isomorphic deep models. D-morphisms can be composed by
composing the three mappings and adding their depths.

A multi-level model is made of a root deep model, and a sequence of instantia-
tions and extensions. The length of this sequence is equal to the root model level. The
extensions are allowed to be identity extensions.

Def. 3 (Multi-level model) A multi-level model MLM = 〈M ′
0,ML = 〈(M ′

i

tpi+1←−
Mi+1

exi+1−→ M ′
i+1)〉i=0..p′

0−1〉 is made of a deep model M ′
0 called the root and a se-

quence ML (of length p′0, the level of M ′
0) of spans of D-morphisms, where the left

D-morphism is a type and the right D-morphism a (possibly identity) extension.

Example. Fig. 6 shows a multi-level model (an excerpt of the one in Fig. 3) according
to Def. 3. Slots are represented as rounded nodes, instead of inside the owner clabject
box. In Fig. 3, we do not show slots with potency bigger than 0 that are typed, like
Design.duration at level 1, which is omitted. However, such instances do exist, and are
explicitly shown in Fig. 6 (see slot duration’@1 in models M1 and M’1). If a model
does not include linguistic extensions (like M2), then we use the identity extension D-
morphism. Finally, it would be possible to derive the (indirect) type of M2 w.r.t. M’0 by
defining a construction akin to a pullback that yields the part of M2 typed by M1 [28].

4 Multi-level model product lines

In order to solve the challenges identified in Section 2.2, we extend deep models with
closed variability options by borrowing concepts from product lines. We use feature
models [24] to represent the allowed variability.

Multi-level Model Product Lines 167

TaskType@2

Design@1

CoreDesign@0

M’0@2

M1@1

M2@0

duration@2 initial@1

duration'@1 initial'@0

tp1

Design@1 M’1@1
ex1

tp2

duration’’@0 style’@0

CoreDesign@0
M’2@0

duration’’@0 style’@0

ex2

style@1 duration'@1 initial’@0

Fig. 6. Multi-level model example, according to Def. 3.

ProcessLanguage

Gateways

FM =
 F = { ProcessLanguage,
 Gateways, actors, Tasks,
 simple, object,
 initial, enactment},

 = ProcessLanguage
 Gateways Tasks
 ((simple object)
 (simple object))

(a) (b)

object simple initial enactment

Tasks

Legend

alternative
(exactly one)

or
(at least one)

mandatory optional

actors

Fig. 7. Feature model for the example. (a) Feature diagram notation. (b) Using Def. 4.

Def. 4 (Feature model) A feature model FM = 〈F,Φ〉 is a tuple made of a set F of
features and a propositional formula Φ specifying the valid feature configurations.

Example. Fig. 7 shows the feature model for the running example using both the fea-
ture diagram notation (a), and our definition (b). The feature model permits choosing if
the process modelling language will have primitives to define actors (feature actors, cf.
Fig. 4(b)), initial tasks and their enactment at level 0 (features initial and enactment, cf.
Fig. 4(a)), as well as selecting whether gateways are to be represented either as refer-
ences or objects (features simple and object, cf. Fig. 4(c)). The feature model includes
the mandatory features ProcessLanguage, Gateways and Tasks as syntactic sugar to
obtain a tree representation, but they are not needed in our formalization.

The selection of one option within the variability space offered by a feature model
is done through a configuration. This assigns true to the selected features, and false to
the discarded ones. To enhance flexibility of use, we also support partial configurations,
where some features are not given any value. This will be used to allow deferring the
resolution of some variability options to lower meta-levels.

168 J. de Lara and E. Guerra

Def. 5 (Configuration) Given a feature model FM = 〈F,Φ〉, a configuration of FM
is a tuple C = 〈F+, F−〉 made of two disjoint sets F+ ⊆ F and F− ⊆ F , s.t.
Φ[F+/true, F−/false] � false. C is total if F = F+ ∪ F−, otherwise it is partial.

In the previous definition, F+ contains the selected features (i.e., given the value
true), F− the discarded features (i.e., given the value false), and F \ (F+ ∪ F−) is
the set of features whose value has not been set. A configuration must be compatible
with the feature model formula, so the definition demands that the formula Φ once we
substitute F+ by true and F− by false is not false. If the configuration is total, then the
condition entails that Φ must evaluate to true.

Next, we assign a level to feature models, and potencies to features, in order to
restrict the level at which features can be assigned a value.

Def. 6 (Deep feature model) A deep feature model DFM = 〈l, FM = 〈F,Φ〉, pot〉
is made of a level l ∈ N0, a feature model FM , and a function pot : F → N0 assigning
a potency to each feature, s.t. ∀f ∈ F • pot(f) ≤ l.

Next, we define a mapping between deep feature models, called F-morphism. Sim-
ilar to D-morphisms (cf. Def. 2), F-morphisms have a depth which can be positive or 0.
In addition, they include a configuration, and a mapping for the features excluded from
the configuration. There are two special kinds of F-morphisms: one representing a type
relationship between feature models (where the morphism depth is 1 and the configura-
tion empty), and the other expressing a specialization relationship between two feature
models via a total or partial configuration (where the morphism depth is 0).

Def. 7 (F-morphism, type and specialization) Given two deep feature models DFMi =
〈li, FMi, poti〉 (for i = {0, 1}), a deep feature model morphism (F-morphism in short)
m = 〈d,mF , C〉 : DFM0 → DFM1 is made of:

– a depth d ∈ N0 s.t. l0 + d = l1
– an injective set morphism mF : F0 → F1 s.t. ∀f ∈ F0 • pot0(f)+d = pot1(mF (f))
– a configuration C = 〈F+

1 , F−
1 〉 of FM1 s.t.:

1. mF (F0) = F1 \ (F+
1 ∪ F−

1)
2. Φ1[F

+
1 /true, F−

1 /false] ∼= Φ0[F0/mF (F0)]

F-morphism tp is a type morphism if d = 1 and C = 〈∅, ∅〉, and it is an indirect type
morphism if d > 1 and C = 〈∅, ∅〉. F-morphism sp is a specialization if d = 0.

The definition requires that the F-morphism depth fills the gap between the feature
model levels, and between the potencies of the mapped features. FM0 may have fewer
features than FM1, in case the configuration C assigns a value to features of FM1. In
particular, the injectivity condition of mF and requiring mF (F0) = F1 \ (F+

1 ∪ F−
1)

ensures that only the features left undefined by C are mapped from FM0. Moreover,
when the configuration C assigns a value to some feature, we require that the formula
Φ1, once we substitute the features in C by their value true or false, be equivalent to
Φ0, once we substitute the features in F0 by their mapping in F1. This corresponds to a
(partial) evaluation of the formula Φ1 as a result of a feature model specialization.

As a remark, F-morphisms so defined are composable by adding their depths and
making the union of the positive (resp. negative) features in the configurations.

Multi-level Model Product Lines 169

FM2 @2

tp

FM1 FM0 @1

sp
d=0
C= F+={object},
 F-={simple}

@1

DFM2 = 2,
 F2={Gwys, simple, object},
 2 = Gwys
 ((simple object)
 (object simple)),
 pot2={ (Gwys,2),
 (simple,1),
 (object,1)}

Gwys

object simple

@2

@1 @1

Gwys

object simple

@1

@0 @0

DFM1 = 1,
 F1={Gwys, simple, object},
 1 = Gwys
 ((simple object)
 (object simple)),
 pot1={ (Gwys,1),
 (simple,0),
 (object,0)}

DFM0 = 1,
 F0={Gwys},
 0 = Gwys,
 pot0={(Gwys,1)}

Gwys @1
d=1
C= ,

Fig. 8. Examples of F-morphisms.

Example. Fig. 8 shows two F-morphisms, with tp a type and sp a specialization. F-
morphism tp : FM1 → FM2 relates two deep feature models FM1 and FM2, where
the level and potencies of FM1 are one less than those in FM2, and the formulae
are the same modulo feature renaming. Specialization sp : FM0 → FM1 has depth 0
and partial configuration C = 〈F+ = {object}, F− = {simple}〉. Hence, the levels
and potencies are maintained, but the feature set F0 is decreased by removing from F1

the features that appear in C. According to condition 1 in Def. 7, {Gwys} = {Gwys,

simple, object} \ ({simple} ∪ {object}). According to condition 2 in the definition, the
formula Φ0 is equivalent to replacing object by true and simple by false in Φ1. If we
compose sp with tp, the resulting F-morphism tp ◦ sp has depth 1 and configuration
C = 〈F+ = {object}, F− = {simple}〉, which is neither a type nor a specialization.

Finally, we are ready to characterize deep model product lines (PLs) as a deep
model, a deep feature model with the same level as the deep model, and a mapping
of presence conditions (PCs) to deep model elements.

Def. 8 (Deep model PL) A deep model PL DM = 〈M,DFM,φ〉 is made of:

– A deep model M and a deep feature model DFM with the same level (p = l).
– A function φ : C ∪ S ∪ R → B(F) mapping each element in M to a (non-false)

propositional formula over the features in F , called presence condition (PC), s.t.:
1. ∀s ∈ S ∪R • φ(s) =⇒ φ(src(s))
2. ∀r ∈ R • φ(r) =⇒ φ(tar(r))
3. ∀e ∈ C ∪ S ∪R, ∀v ∈ V ar(φ(e)) • pot(v) ≤ pot(e)

Intuitively, given a configuration, we can derive a product (a deep model) of the
PL by deleting the model elements whose PC evaluates to false. To avoid dangling
references and slots, Def. 8 requires their PC not to be weaker than that of their owning
clabject (condition 1), and the PC of references not to be weaker than the one of their
target clabject (condition 2). In addition, the variability of an element must be resolved
in a level that contains the element. To this aim, condition 3 ensures that the potency of
the variables in the PC of an element is not higher than the element’s potency (we use
function Var to return all variables within a propositional formula).

170 J. de Lara and E. Guerra

@2
TaskType

initial@1 : boolean
duration : int
rDuration : int

ActorKind

perfBy

Gateway
Type

src

tar

ne
xt

[actors]

[actors]

[s
im

pl
e]

[object]
[object] [initial]

[enactment]

@2
ProcessLanguage

Gateways

object simple initial enactment

Tasks actors

@0 @0

@1

@1 @2

[object]

*
*

Fig. 9. Deep model PL example.

Example. Fig. 9 shows a deep model PL for process modelling languages. The left
compartment shows the deep feature model, and the one to the right the deep model
with its elements annotated with their PC between square brackets. If an element does
not show a PC (like TaskType), then its PC is true. The deep model PL permits select-
ing between two alternative realizations for gateways, either as the reference next or
the clabject GatewayType. This variability needs to be resolved before instantiating the
language for a specific domain, as features simple and object have potency 0. The PL
also offers the choice to add or not the primitive ActorKind to the language, but this de-
cision can be taken before specializing the language or at level 1 to enable exploratory
modelling. Finally, the PL allows selecting whether tasks can be initial and whether they
hold enactment information. Feature initial in the feature model cannot have potency
2 because the feature is used in the PC of attribute TaskType.initial, which has potency
1. The feature model shows features ProcessLanguage, Gateways and Tasks in colour
and without a potency; this is so as these features are mandatory (i.e., their value is true
in any valid configuration), and while they enable a hierarchical representation of the
feature model, the formalization of the example does not include them.

Next, we introduce mappings between deep model PLs (called PL-morphisms) as a
tuple of morphisms between their constituent deep models and deep feature models. As
in the previous cases, we are interested in type morphisms, linguistic extensions, and
specializations of deep model PLs via a (partial) configuration.

Def. 9 (PL-morphism, type, extension, specialization) Given two deep model PLs
DMi = 〈Mi, DFMi, φi〉 (for i = {0, 1}), a PL-morphism m = 〈mD,mF 〉 is made
of a D-morphism mD : M0 → M1 and an F-morphism mF : DFM0 → DFM1 with
configuration C = 〈F+, F−〉, s.t. ∀e ∈ C0 ∪ S0 ∪ R0 • φ1(e)[F

+
1 /true, F−

1 /false]
∼= φ0(e)[F0/m

F
F (F0)].

PL-morphism tp = 〈tpD, tpF 〉 is a type if both tpD and tpF are types.
PL-morphism ex = 〈exD, idF 〉 is an extension if exD is an extension and idF is an
identity.
PL-morphism sp = 〈mD, spF 〉 is a specialization if spF is a specialization and mD

is injective, level-preserving, and the elements e ∈ C1 ∪ S1 ∪ R1 s.t. φ1(e)[F
+
1 /true,

F−
1 /false] � false are in its co-domain.

Remark. No condition on the equality of depths of mD and mF is required, since the
levels of M0 and DFM0 are the same (and similar for the levels of M1 and DFM1).

Multi-level Model Product Lines 171

DM0@2

DM1@1 tp

Design:
TaskType

DM2@1

sp
C= F+={},
 F-={actors}

Task
Type

DM3@2

sp’

tp’

DM4@1

actors
@0

ex
Skill

progLang: String
experience: int exp

SoftEng:
ActorKind

 [actors]

Design:
TaskType

Task
Type

Actor
Kind

[actors]

[actors] perfBy C= F+={},
 F-={actors}

Requirements:
TaskType

[actors] :perfBy

[actors] :perfBy

Requirements:
TaskType

SoftEng:
ActorKind

 [actors]

Design:
TaskType

Requirements:
TaskType

[actors] :perfBy

[actors] :perfBy

actors
@1

actors
@0

Fig. 10. Examples of PL-morphisms and deferred configuration.

The condition for PL-morphisms demands that the PCs in the deep model M0 are mod-
ified according to the selection of features in configuration C of mF . In addition, in
specialization PL-morphisms, M0 should contain just the elements whose PC is not
false after substituting the features in F+ by true, and the ones in F− by false. There-
fore, in case of a specialization, the definition requires that, when the configuration C is
considered, exactly the elements in M1 whose PC is not false receive a mapping from
M0, while the mapping needs to be injective. Moreover, by Def. 8 of deep model PL,
no element in M0 can have a PC that is false.

Other kinds of PL-morphisms are possible, for example, adding features to a fea-
ture model in lower meta-levels to increase its variability. While this is an interesting
possibility to increase language reuse, we leave its formalization to future work.

Example. Fig. 10 shows four valid PL-morphisms (tp, tp′, sp, sp′) and an invalid one
(ex). Both tp and tp′ are types: they relate models at adjacent levels, where one is an
instance of the other. Types always use the empty configuration C = 〈∅, ∅〉 (cf. Def. 7),
and therefore, a model element and its instances have the same PC (see, e.g., ActorKind

and its instance SoftEng). Both sp and sp′ are specialization PL-morphisms. This is
so as they preserve level and potencies, and the deep models only contain elements
with non-false PC. As the configuration C of both PL-morphisms is total, the PC of
the elements in DM3 and DM2 evaluates to true, and hence, these models do not have
more closed variability options to configure (i.e., they are final products of the PL).
The figure also shows an attempt to extend DM1 by a linguistic extension made of the
clabject Skill connected to SoftEng through reference exp. However, the result is not a
valid deep model PL as the PC of SoftEng (actors) is stronger than the PC of exp (true).
This could be solved by adding actors as PC of exp (and Skill).

When the configuration C of a specialization PL-morphism sp is total, DM0 is a
product of DM1 with no variability, being equivalent to a deep model (cf. Def. 1). How-
ever, the question remains whether for any valid configuration C of a deep model PL
DM , we can find a deep model PL DM ′ and a specialization PL-morphism sp : DM ′ →
DM that uses C. This requires showing that any choice of F+ and F− results in a valid
deep model PL DM ′ as given by Def. 8. Theorem 1 captures this result.

172 J. de Lara and E. Guerra

Theorem 1 (Derivation through specialization morphisms). Given a deep model PL
DM = 〈M,DFM,φ〉 and any configuration C of DFM , there is one deep model PL
DM ′ and a specialization morphism sp : DM ′ → DM with configuration C.

Proof. In appendix.

Next, we look into the soundness of deferring the configuration of an element after
it is instantiated. The question is whether, in any situation that allows configuring an
element after its instantiation, we obtain the same result by resolving the element vari-
ability first and then instantiating. This result is important as, regardless of the order
in which configurations and instantiation are performed, we can calculate the language
that results of applying the configurations as the first step, by advancing the configura-
tion steps over the instantiations.

The next theorem captures the fact that if we can instantiate and then configure, then
we obtain the same result if we configure and then instantiate.

Theorem 2 (Specialization can be advanced to instantiation). Given three deep model
PLs DMi = 〈Mi, DFMi, φi〉 (for i = {0, 1, 2}), a type PL-morphism tp : DM1 →
DM0 and a specialization PL-morphism sp : DM2 → DM1, there is a unique deep
model PL DM3, a unique type PL-morphism tp′ : DM2 → DM3 and a unique spe-
cialization PL-morphism sp′ : DM3 → DM0 s.t. the diagram in Fig. 11 commutes.

DM0 DM3sp′��

DM1

tp

��

=

DM2sp��

tp′

��

Fig. 11. Deferred configuration: specialization can be advanced to instantiation.

Proof. In appendix.

Remark. Note that the converse is not true in general, that is, instantiation cannot be
advanced to specialization. The reason is that a type morphism is not allowed from
features with potency 0, meaning that they must be configured first.

Example. Fig. 10 shows a deferred configuration. Deep model PL DM0 is instantiated
into DM1, and then configured using C = 〈F+ = {}, F− = {actors}〉 to yield DM2.
Instead, we obtain the same result by first configuring DM0 to yield DM3, and then
instantiating DM3 into DM2. Deep model PL DM3 is relevant as it corresponds to the
fully-configured language (i.e., with no variability) employed to build DM2.

5 Tool support

We have implemented the notions presented so far atop METADEPTH [12]. This is a tex-
tual multi-level modelling tool which supports an arbitrary number of meta-levels and

Multi-level Model Product Lines 173

1 @Variability(model=”ProcessOptions”)

2 Model ProcessModel@2 {
3 Node TaskType {
4 @Presence(condition=”initial”)

5 initial@1 : boolean = false;

6 duration : int;
7 @Presence(condition=”enactment”)

8 rDuration : int;
9 @Presence(condition=”simple”)

10 next : TaskType;

11 @Presence(condition=”actors”)

12 perfBy : ActorKind;

13 }
14
15 @Presence(condition=”actors”)

16 Node ActorKind;

17
18 @Presence(condition=”object”)

19 Node GatewayType {
20 src : TaskType[∗];

21 tar : TaskType[∗];

22 }
23 }

Listing 1. Deep model with PCs.

1 FeatureModel ProcessOptions@2 {
2 ProcessLanguage : Gateways Tasks actors?@1;

3 alt Gateways : simple@0 object@0;

4 Tasks : initial?@1 enactment?@2;

5 }
Listing 2. Deep feature model.

1 config ProcessModel with { !simple }
Listing 3. Feature configuration.

ProcessModel@2 PCAnnotations@0 ProcessOptions@0

PCAnnotations@1 FeatureModelMM@1

TaskType :Presence

condition=“simple”

simple:Feature

val=false

«conforms to» «conforms to»

Feature

val: boolean[0..1]

Presence

condition: String

… … …
…

next

…

Fig. 12. Internal representation of deep model PL.

deep characterization through potency. It integrates the Epsilon family of languages for
model management [33], which permits defining code generators and model transfor-
mations for multi-level models.

METADEPTH was used to define language families via multi-level modelling in [15],
but it did not support the definition of closed sets of variability options by means of
PLs. For this work, we have extended the tool to allow creating deep feature models
and multi-level models with PCs, and specializing deep model PLs via configurations.
The extended tool is available at http://metadepth.org/pls.

Listing 1 specifies the deep model in the right part of Fig. 9, using METADEPTH’s
syntax. First, line 1 states the name of the deep feature model (defined in Listing 2) as-
sociated to the deep model. Then, line 2 declares the deep model, named ProcessModel,
with level 2. This contains three clabjects: TaskType (lines 3–13), ActorKind (lines 15–
16) and GatewayType (lines 18–22). PCs are specified as annotations. This is possible
as, similar to Java [10], METADEPTH permits defining annotation types by providing
their syntax, parameters, and kind of elements they can annotate (i.e., models, clabjects
or fields) [40]. This definition is a meta-model, and so, when annotations are parsed,
they are transformed into an annotation model that refers to the annotated model. Re-
garding the PC of fields, for usability reasons, our implementation internally conjoins
the PC of fields with the PC of their owner clabject. For example, the PC of reference
GatewayType.src is object because the PC of GatewayType is object.

Listing 2 shows the METADEPTH definition of the deep feature model in Fig. 9.
This conforms to a meta-model that we have created to represent deep feature models,

174 J. de Lara and E. Guerra

and to which we have assigned a concrete syntax similar to the FAMILIAR tool [1].
Line 1 declares a feature model called ProcessOptions with level 2. Line 2 declares the
root feature ProcessLanguage, and its children features Gateways, Tasks and actors.
Children features can specify a potency after the “@” symbol, and be declared optional
using the “?” symbol. Line 3 declares the children of Gateways, which are alternative as
specified by the keyword alt. Line 4 declares the children of Tasks, which are optional.

Fig. 12 shows the internal representation of a deep model PL in METADEPTH. The
PC annotations are automatically converted into an annotation model, which is also
linked to the deep feature model (ProcessOptions).

Annotations in METADEPTH can attach actions to be triggered upon certain mod-
elling events, like instantiation or value assignment. These actions are defined via a
meta-object protocol (MOP) [26, 40]. This way, we have defined a MOP with actions
for the PC annotations, to help instantiating deep model PLs. Specifically, when an ele-
ment of a model with variability is instantiated (like ProcessModel in Listing 1), its PC
is copied to the instance. Moreover, a constraint forbids instantiating a deep model PL
if the associated deep feature model has features with potency 0.

Finally, we have created a command called config to specialize a deep model PL
via a configuration (see Listing 3). When the command is applied, the PCs attached to
model elements are evaluated (partially if the configuration is partial), and then removed
if their value is false. The applied configuration (i.e., the boolean values assigned to the
features) is stored in the deep feature model itself (cf. model ProcessOptions in Fig. 12).
Overall, this simple example language already admits 16 total configurations, which can
be succinctly represented as a PL, increasing its reuse possibilities.

6 Related work

Next, we review related research coming from language PLs; variability in multi-level
modelling; and SPLs.

Language PLs. Some researchers have proposed increasing the reusability of mod-
elling languages by incorporating SPL techniques. For example, in [47], DSL meta-
models can be configured using a feature model. In [34], the authors propose featured
model types: meta-models whose elements have PCs, and with operations that are of-
fered depending of the chosen variant. In [20], meta-models can have variability, and
their instantiability is analysed at the PL level. However, all these works only consider
closed variability, while our work also supports open variability through instantiation.

Variability in multi-level modelling. A plethora of multi-level modelling approaches
and tools have emerged recently, like DeepTelos [22], FMMLx [18], Melanee [3], Mul-
tEcore [29], MLT [17] and OMLM [21]. Some of them are based on deep character-
ization through potency [3, 18, 21, 29], while others rely on powertypes [17] or most-
general instances [22]. None of them support variability based on feature models as we
describe here. However, there have been some attempts to improve multi-level mod-
elling with SPL techniques, which we describe next.

Reinhartz-Berger and collaborators [37] present a preliminary proposal to support
the configuration of classes with optional attributes. It is based on a kernel language

Multi-level Model Product Lines 175

which supports multiple meta-levels but not deep characterization. The proposal is in-
cipient as it is neither formalized nor implemented. In [9], the authors analyse the limi-
tations of feature models alone to describe a set of assets, and propose using multi-level
models instead. As multi-level models have limitations to express variability – as de-
scribed in Section 2.2 – we propose to combine feature models and multi-level models.

Nesic and collaborators [31] explore the use of MLT [17] to reverse engineer sets of
related legacy assets into PLs. MLT is a multi-level modelling approach based on pow-
ertypes and first order logic. In their work, the authors represent variability concepts like
PCs and product groups within MLT models. This embedding may result in complex
models where elements can represent either variability concepts or domain concepts.
Instead, we separate PCs and feature models to avoid cluttering the multi-level model.
Our goal is to define highly reusable language families, for which we provide feature
models to describe variability options, and offer the possibility to defer configurations;
instead, the approach in [31] lacks an explicit representation of feature models. Finally,
we provide both a theory and a working implementation.

Other formalizations of potency-based multi-level modelling exist, like [38]. That
theory does not account for variability, but it could be extended with feature models, in
a similar way as we do.

SPLs. Our deferred configurations can be seen as a particular case of staged con-
figurations [11]. These permit selecting a member of the PL in stages, where each
stage removes some choices. In our approach, the potency controls the level where
the variability can be resolved. Staged configurations are also useful in software design
reuse. In this setting, Kienzle and collaborators [27] propose Concern-Oriented Reuse,
a paradigm where reusable modules (called concerns) define variability interfaces as
feature models. The variability of a reused concern can be resolved partially, in which
case, the undefined features are re-exposed in the interface of the resulting concern.
We also support deferring the variability resolution, but composing deep model PLs is
future work.

Taentzer and collaborators [45] formalized model-based SPLs using category the-
ory. Different from ours, their formalization does not capture typing (it is within a single
meta-level), while their morphisms can expand the feature model but cannot be used to
model partial configurations. Borba and collaborators [8] have studied PL refinements
to add new products maintaining the behaviour of existing ones. In our case, we do
not increase variability, but it would be interesting to consider mechanisms to do so
combined with instantiation.

To cope with large variability spaces, partitioning techniques can be applied to fea-
ture models to yield so-called multi-level feature models [11, 36]. However, the term
multi-level does not refer to multiple levels of classification (as in our case), but to
multiple partitions of a feature model.

Other modelling notations support variability. For example, Clafer [23] is an ap-
proach that unifies feature and class modelling. It supports both class and (partial) ob-
ject models, feature models, (partial) configurations and logic constraints. However,
it does not support multi-level modelling or deep characterization. Similar to delta-
oriented programming [42], Δ-modelling [41] permits defining a set of products as a
core model plus a set of modification deltas to the core model according to given ap-

176 J. de Lara and E. Guerra

plication conditions. The approach has been combined with MDE, showing that model
configuration and refinement (e.g., a component being refined by a set of classes) com-
mute. This is in line with our Theorem 2, but we are interested in instantiation (instead
of refinement), and need to incorporate potency for deep characterization. Hence, in our
case, instantiation and specialization (configuration) do not commute, but the latter can
be advanced to former.

In the programming world, Batory [7, 44] proposes mixin layers, a composition
mechanism to add features to sets of base classes (so called two-level designs). Higher-
level designs can be obtained by applying the same techniques. In [7], these higher-level
designs are called multi-level models. Again, the use of the term multi-level is different
from ours, which refers to models related by classification relations.

Overall, our proposal is the first one adding variability to multi-level models with
support for deep characterization.

7 Conclusions and future work

In this paper, we have proposed a new notion of multi-level model PL to improve current
reuse techniques for modelling languages. This is so as it permits both open variability
(by successive instantiations leading to language refinements for specific domains), and
closed variability (by selecting among a set of variants). We have presented a theory,
with results ensuring the proper interleave of instantiation and configuration steps. The
ideas have implemented on top of the multi-level modelling tool METADEPTH.

In the future, we plan to provide a categorical formalization of the theory which
brings operations like intersection via common parts (pullbacks) and merging (pushouts)
of deep model PLs. We also want to offer the possibility of extending a deep model PL
with new features (i.e., extra variability) and move this variability to the top model
whenever possible. We would like to develop analysis techniques for multi-level model
PLs, e.g., to check instantiability properties in the line of [20]. Finally, our goal is
to make multi-level model PLs ready for MDE. This would entail the ability to de-
fine MDE services like transformations and code generators on multi-level model PLs.
Technically, our plan is to use the Epsilon languages supported by METADEPTH, and
follow ideas from existing works on PLs of transformations [13], and transformation of
PLs [39].

Acknowledgments. Work funded by the Spanish Ministry of Science (project MAS-
SIVE, RTI2018-095255-B-I00) and the R&D programme of Madrid (project FORTE,
P2018/TCS-4314). We thank the anonymous referees for their useful comments.

Appendix

Proof of Theorem 1: Given a deep model PL DM and a configuration C = 〈F+, F−〉,
we build DM ′ = 〈M ′, DFM ′, φ′〉 as follows:

– M ′ has the same level as M , and contains the elements e of M s.t. φ(e)[F+/true,
F−/ false] � false. Functions src′, tar′ and pot′ are restrictions of src, tar and
pot to the elements in M ′.

Multi-level Model Product Lines 177

– DFM ′ = 〈l, FM ′ = 〈F ′, Φ′〉, pot′〉, where F ′ = F\(F+∪F−), Φ′ = Φ[F+/true,
F−/false], and pot′ is the restriction of pot to F ′.

– ∀e ∈ C ′ ∪ S′ ∪R′ • φ′(e) = φ(e)[F+/true, F−/false].

Now we show that M ′ is a valid deep model according to Def. 1:

– To check that src′ is well formed, we show that ∀s ∈ S′∪R′, src(s′) is defined. By
condition 1 in Def. 8, φ(s) =⇒ φ(src′(s)). This precludes the source of any s ∈
S′ ∪ R′ to be absent from C ′, since if φ(src′(s))[F+/true, F−/false] = false,
then φ′(s)[F+/true, F−/false] = false.

– The well-formedness of tar′ is shown like in the previous case.
– Function pot′ satisfies conditions 1–3 of Def. 1, since pot satisfies them, and pot′

is just a restriction of pot.

Now we show that DM ′ is a valid deep model PL according to Def. 8:

– M ′ and DFM ′ have the same level (l).
– The three conditions over φ′ and pot′ hold, since they hold for φ and pot.

Finally, we build a specialization PL-morphism sp = 〈mM , spF 〉 : DM ′ → DM
as follows:

– mM = 〈0, incMC , incMS , incMR 〉, where X ′ incMX
↪−−−→ X (for X = {C, S,R}) are

inclusion set morphisms,

– spM = 〈0, incF , C〉, where F ′ incF

↪−−−→ F is an inclusion morphism.

We need to show that: (i) mF (F
′) = F ′ = F \(F+∪F−), which holds since F ′ was

defined above as F \(F+∪F−); and (ii) Φ[F+/true, F−/false] ≡ Φ′[F ′/incF (F ′)],
which holds since Φ′ was defined above as Φ[F+/true, F−/false]. �

Proof of Theorem 2: Let C = 〈F+, F−〉 be the configuration of the specialization PL-
morphism sp : DM2 → DM1. From DM0 and C, we construct a deep model DM3

and a specialization PL-morphism sp′ : DM3 → DM0 as described in the proof of
Theorem 1. Then, we build a type PL-morphism tp′ = 〈tp′D, tp′F 〉 : DM2 → DM3 as
follows:

– tp′D = 〈1, tpDC |C2
, tpDS |S2

, tpDR |R2
〉, with tpDX |X2

the restriction of tpDX to set X2

in DM2 (for X = {C, S,R}).
– tp′F = 〈1, tpFF |F2

, C〉 with tpFF |F2
the restriction of tpFF to set F2.

D-morphism tp′D is well defined because ∀c ∈ C2, ∃c′ ∈ C3 s.t. tpDC (spDC (c)) =
sp′DC (c′). This is so as φ1(sp

D
C (e))[F+/true, F−/false] � false due to Def. 9 of

specialization PL-morphism. And now, since the configuration of tp is empty, we have
φ0(tp

D
C (spDC (e))[F+/true, F−/false] � false. This means that, according to Def. 9,

this element is in the co-domain of sp′DC , and is assigned to c by tp′DC . The same rea-
soning applies to sets S2 and F2. Function tpFF |F2

is also well formed, since the same
configuration C was used to derive DM2 and DM3.

This reasoning also shows that tp ◦ sp = sp′ ◦ tp′, as Theorem 2 demands. �

178 J. de Lara and E. Guerra

References

1. M. Acher, P. Collet, P. Lahire, and R. B. France. FAMILIAR: A domain-specific language
for large scale management of feature models. Sci. Comput. Program., 78(6):657–681, 2013.

2. C. Atkinson. Meta-modeling for distributed object environments. In EDOC, pages 90–101.
IEEE Computer Society, 1997.

3. C. Atkinson and R. Gerbig. Flexible deep modeling with melanee. In Modellierung 2016,
2.-4. März 2016, Karlsruhe - Workshopband, pages 117–122, 2016.

4. C. Atkinson and T. Kühne. The essence of multilevel metamodeling. In UML, volume 2185
of LNCS, pages 19–33. Springer, 2001.

5. C. Atkinson and T. Kühne. Rearchitecting the UML infrastructure. ACM Trans. Model.
Comput. Simul., 12(4):290–321, 2002.

6. C. Atkinson and T. Kühne. Reducing accidental complexity in domain models. Software
and Systems Modeling, 7(3):345–359, 2008.

7. D. S. Batory. Multilevel models in model-driven engineering, product lines, and metapro-
gramming. IBM Systems Journal, 45(3):527–540, 2006.

8. P. Borba, L. Teixeira, and R. Gheyi. A theory of software product line refinement. Theor.
Comput. Sci., 455:2–30, 2012.

9. T. Clark, U. Frank, I. Reinhartz-Berger, and A. Sturm. A multi-level approach for supporting
configurations: A new perspective on software product line engineering. In ER Forum Demo
Track, volume 1979 of CEUR Workshop Proceedings, pages 156–164. CEUR-WS.org, 2017.

10. I. Córdoba-Sánchez and J. de Lara. Ann: A domain-specific language for the effective design
and validation of java annotations. Computer Languages, Systems & Structures, 45:164–190,
2016.

11. K. Czarnecki, S. Helsen, and U. W. Eisenecker. Staged configuration through specializa-
tion and multilevel configuration of feature models. Software Process: Improvement and
Practice, 10(2):143–169, 2005.

12. J. de Lara and E. Guerra. Deep meta-modelling with MetaDepth. In TOOLS, volume 6141
of LNCS, pages 1–20. Springer, 2010.

13. J. de Lara, E. Guerra, M. Chechik, and R. Salay. Model transformation product lines. In
MoDELS, pages 67–77. ACM, 2018.

14. J. de Lara, E. Guerra, and J. Sánchez Cuadrado. When and how to use multilevel modelling.
ACM Trans. Softw. Eng. Methodol., 24(2):12:1–12:46, 2014.

15. J. de Lara, E. Guerra, and J. Sánchez Cuadrado. Model-driven engineering with domain-
specific meta-modelling languages. Software and Systems Modeling, 14(1):429–459, 2015.

16. H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic Graph Transfor-
mation. Monographs in Theoretical Computer Science. An EATCS Series. Springer, 2006.

17. C. M. Fonseca, J. P. A. Almeida, G. Guizzardi, and V. A. de Carvalho. Multi-level conceptual
modeling: From a formal theory to a well-founded language. In ER, volume 11157 of LNCS,
pages 409–423. Springer, 2018.

18. U. Frank. Multilevel modeling - toward a new paradigm of conceptual modeling and infor-
mation systems design. Business & Information Systems Engineering, 6(6):319–337, 2014.

19. C. González-Pérez and B. Henderson-Sellers. A powertype-based metamodelling frame-
work. Software and Systems Modeling, 5(1):72–90, 2006.

20. E. Guerra, J. de Lara, M. Chechik, and R. Salay. Analysing meta-model product lines. In
SLE, pages 160–173. ACM, 2018.

21. M. Igamberdiev, G. Grossmann, M. Selway, and M. Stumptner. An integrated multi-level
modeling approach for industrial-scale data interoperability. Software and Systems Modeling,
17(1):269–294, 2018.

Multi-level Model Product Lines 179

22. M. A. Jeusfeld and B. Neumayr. Deeptelos: Multi-level modeling with most general in-
stances. In ER, volume 9974 of LNCS, pages 198–211, 2016.

23. P. Juodisius, A. Sarkar, R. R. Mukkamala, M. Antkiewicz, K. Czarnecki, and A. Wasowski.
Clafer: Lightweight modeling of structure, behaviour, and variability. Programming Journal,
3(1):2, 2019.

24. K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-oriented domain analy-
sis (foda) feasibility study. Technical Report CMU/SEI-90-TR-021, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA, 1990.

25. S. Kelly and J. Tolvanen. Domain-Specific Modeling - Enabling Full Code Generation.
Wiley, 2008.

26. G. Kiczales and J. D. Rivieres. The Art of the Metaobject Protocol. MIT Press, Cambridge,
MA, USA, 1991.

27. J. Kienzle, G. Mussbacher, P. Collet, and O. Alam. Delaying decisions in variable concern
hierarchies. In GPCE, pages 93–103. ACM, 2016.

28. S. M. Lane. Categories for the Working Mathematician. Springer, 1971.
29. F. Macı́as, A. Rutle, V. Stolz, R. Rodrı́guez-Echeverrı́a, and U. Wolter. An approach to

flexible multilevel modelling. EMISA, 13:10:1–10:35, 2018.
30. R. C. Martin, D. Riehle, and F. Buschmann. Pattern Languages of Program Design 3.

Addison-Wesley, 1997.
31. D. Nesic, M. Nyberg, and B. Gallina. Modeling product-line legacy assets using multi-level

theory. In SPLC, pages 89–96. ACM, 2017.
32. L. Northrop and P. Clements. Software Product Lines: Practices and Patterns. Addison-

Wesley Longman Publishing Co., Inc., 2002.
33. R. F. Paige, D. S. Kolovos, L. M. Rose, N. Drivalos, and F. A. C. Polack. The design of

a conceptual framework and technical infrastructure for model management language engi-
neering. In ICECCS, pages 162–171. IEEE Computer Society, 2009.

34. G. Perrouin, M. Amrani, M. Acher, B. Combemale, A. Legay, and P. Schobbens. Featured
model types: Towards systematic reuse in modelling language engineering. In MiSE@ICSE,
pages 1–7. ACM, 2016.

35. K. Pohl, G. Böckle, and F. J. v. d. Linden. Software Product Line Engineering: Foundations,
Principles and Techniques. Springer-Verlag, Berlin, Heidelberg, 2005.

36. D. Rabiser, H. Prähofer, P. Grünbacher, M. Petruzelka, K. Eder, F. Angerer, M. Kromoser,
and A. Grimmer. Multi-purpose, multi-level feature modeling of large-scale industrial soft-
ware systems. Software and Systems Modeling, 17(3):913–938, 2018.

37. I. Reinhartz-Berger, A. Sturm, and T. Clark. Exploring multi-level modeling relations using
variability mechanisms. In MULTI@MoDELS, volume 1505 of CEUR Workshop Proceed-
ings, pages 23–32. CEUR-WS.org, 2015.

38. A. Rossini, J. de Lara, E. Guerra, A. Rutle, and U. Wolter. A formalisation of deep meta-
modelling. Formal Asp. Comput., 26(6):1115–1152, 2014.

39. R. Salay, M. Famelis, J. Rubin, A. D. Sandro, and M. Chechik. Lifting model transformations
to product lines. In ICSE, pages 117–128. ACM, 2014.

40. J. Sánchez Cuadrado and J. de Lara. Open meta-modelling frameworks via meta-object
protocols. Journal of Systems and Software, 145:1–24, 2018.

41. I. Schaefer. Variability modelling for model-driven development of software product lines.
In Variability Modelling of Software-Intensive Systems (VaMoS), pages 85–92, 2010.

42. I. Schaefer, L. Bettini, V. Bono, F. Damiani, and N. Tanzarella. Delta-oriented programming
of software product lines. In SPLC, volume 6287 of LNCS, pages 77–91. Springer, 2010.

43. D. C. Schmidt. Guest editor’s introduction: Model-driven engineering. Computer, 39(2):25–
31, Feb. 2006.

180 J. de Lara and E. Guerra

44. Y. Smaragdakis and D. S. Batory. Mixin layers: an object-oriented implementation tech-
nique for refinements and collaboration-based designs. ACM Trans. Softw. Eng. Methodol.,
11(2):215–255, 2002.

45. G. Taentzer, R. Salay, D. Strüber, and M. Chechik. Transformations of software product
lines: A generalizing framework based on category theory. In MODELS, pages 101–111.
IEEE Computer Society, 2017.

46. UML 2.5.1 OMG specification. http://www.omg.org/spec/UML/2.5.1/, 2017.
47. J. White, J. H. Hill, J. Gray, S. Tambe, A. S. Gokhale, and D. C. Schmidt. Improving domain-

specific language reuse with software product line techniques. IEEE Software, 26(4):47–53,
2009.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/
4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not in-
cluded in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

Multi-level Model Product Lines 181

