

 Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

 Esta es la versión de autor del artículo publicado en:
 This is an author produced version of a paper published in:

Information Processing and Management 56.1 (2019): 192 – 211

DOI: https://doi.org/10.1016/j.ipm.2018.10.003

Copyright: © 2018 Elsevier B.V. All rights reserved

 El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
https://doi.org/10.1016/j.ipm.2018.10.003

Building user profiles based on sequences for content and
collaborative filtering

Pablo Sánchez, Alejandro Bellogı́n

Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain

Abstract

Modeling user profiles is a necessary step for most information filtering systems – such
as recommender systems – to provide personalized recommendations. However, most
of them work with users or items as vectors, by applying different types of mathemat-
ical operations between them and neglecting sequential or content-based information.
Hence, in this paper we study how to propose an adaptive mechanism to obtain user
sequences using different sources of information, allowing the generation of hybrid
recommendations as a seamless, transparent technique from the system viewpoint. As
a proof of concept, we develop the Longest Common Subsequence (LCS) algorithm as
a similarity metric to compare the user sequences, where, in the process of adapting
this algorithm to recommendation, we include different parameters to control the effi-
ciency by reducing the information used in the algorithm (preference filter), to decide
when a neighbor is considered useful enough to be included in the process (confidence
filter), to identify whether two interactions are equivalent (δ-matching threshold), and
to normalize the length of the LCS in a bounded interval (normalization functions).
These parameters can be extended to work with any type of sequential algorithm.

We evaluate our approach with several state-of-the-art recommendation algorithms
using different evaluation metrics measuring the accuracy, diversity, and novelty of the
recommendations, and analyze the impact of the proposed parameters. We have found
that our approach offers a competitive performance, outperforming content, collabo-
rative, and hybrid baselines, and producing positive results when either content- or
rating-based information is exploited.

Keywords: Hybrid recommender systems, Preference filtering, Content-based
filtering, Collaborative filtering, Longest Common Subsequence

1. Introduction

Recommender Systems, even though they have been studied in depth during the
last decade, remain a constant source of innovation. With the global growth of the
Internet, they have become a necessary tool for a large number of online applications
due to their ability to make personalized recommendations by adapting to different5

types of user profiles aiming to achieve better customer satisfaction [1]. In order to
produce interesting and personalized suggestions, it is usually necessary to work with

large amounts of data [1, 2], and depending on how this information is exploited and the
type of strategy developed, several types of recommender systems can be distinguished,
although the two most classical and widespread techniques are the content-based (CB)10

and collaborative filtering (CF) ones. The former learns to recommend items similar
to the ones the user liked before [3], whereas the latter suggests items that users with
similar tastes liked in the past [1].

However, both techniques present issues in some situations. Content-based algo-
rithms have difficulties making serendipitous recommendations, as they suggest items15

that are very similar to the ones the user liked in the past, especially when the recom-
menders are more focused on producing accurate recommendations leaving aside other
aspects like novelty or diversity [4]. Collaborative filtering techniques are less likely
to have this problem, but when the user-item matrix has many rows or columns – users
or items – without any rating, they will not be able to generate recommendations for20

those cases, which in the end may deteriorate the user experience with the system (an
issue known in the community as cold-start [5]). A typical alternative to avoid these
individual drawbacks is to use hybrid recommender systems, where different strategies
are combined to improve the performance of separate systems [6, 7].

In this context, it is possible and desirable to innovate and improve both CF and25

CB techniques. Normally, most of these approximations work by transforming users
or items into vectors and then applying some kind of similarity metric like Cosine sim-
ilarity or Pearson Correlation [8, 9]. In this paper, we assume that sequences might be
useful to build the user profiles that will be considered when computing the similarities.
Thus, we propose to generate sequences of interactions from the user profiles under30

different assumptions and using different sources of information, to later exploit these
sequences using pattern matching techniques. In particular, we compute the Longest
Common Subsequence (LCS) between user sequences, by extending the standard al-
gorithm to the recommendation context and use it as a new similarity metric, although
the proposed transformation may also work for other string similarity algorithms.35

Our work. In this paper, we present a framework to generate user profiles based on
sequences by taking ratings or item features as input, producing similarities between
users transparently and efficiently. Our approach thus operates with any user sequence
generated according to the proposed framework, focusing on similarities based on an
extension of the LCS technique for recommendation, where several configurations or40

settings become available, depending on the assumptions or necessities inherent in the
system. In this work we explore three data transformation functions to take different
sources of information into account (ratings, genres, and directors) and generate user
sequences based on this information; once these sequences have been built, we allow
the use of a threshold to determine when a matching is found between two users; we45

also experiment with two parameters that filter out low interactions (preference filter)
and not valid neighbors (confidence filter); on top of this, we propose four possible
normalizations to bound the result obtained from the LCS technique into the [0, 1]
interval.

Research questions. To better understand the behavior of our proposed approach,50

we formulate and address the following research questions: (RQ1) Which information
source (between pure collaborative filtering or content-based with genres and direc-
tors) performs the best in terms of ranking quality (e.g., nDCG) when creating user se-

2

quences? (RQ2) Which combination of parameters of confidence, preference, thresh-
old, and normalizations achieve better results? (RQ3) What is the performance of our55

approach on beyond-accuracy metrics (i.e., diversity and novelty)? (RQ4) How does
this approach compare against other state-of-the-art algorithms?

With these goals in mind, we experiment with and analyze the proposed technique
using a popular dataset in the recommender systems community that contains content-
based information together with user-item interactions. In summary, the main contri-60

butions of this work are:

• A generic framework to generate interaction sequences of user profiles, by means
of different transformation functions (with additional configuration parameters)
that can deal with heterogeneous information sources.

• The use of the Longest Common Subsequence (LCS) technique as a similarity65

metric to compare two users in a recommender system, once they have been
transformed into interaction sequences.

• A thorough comparison between different versions of the algorithm and standard
recommendation techniques using both ranking quality and novelty and diversity
metrics.70

The reminder of the paper is organized as follows: in Section 2 we provide a de-
tailed explanation of actual approaches about content-based and collaborative filtering
recommender systems. Section 3 presents our proposal to generate user profiles based
on sequences, where we integrate LCS as a similarity metric to be used as a hybrid
content-based and collaborative filtering recommender system as well as the different75

parameters and configurations allowed in our model. In Section 4 we show the results
of the proposed approach and its comparison with other known algorithms in terms
of novelty, diversity, and ranking quality evaluation. Then, Section 5 presents some
works where similar techniques have been explored, and we end in Section 6 with
some conclusions and possible extensions for the future.80

2. Background

As introduced before, the purpose of a recommender system is to make recommen-
dations to users by analyzing their tastes, preferences, and interests. Content-based
(CB) and collaborative filtering (CF) are the two most popular recommendation ap-
proaches. Collaborative filtering techniques suggest items to users based on the prefer-85

ences of similar users [9], while content-based approaches recommend items to users
that are similar to the ones they liked in the past [3]. To clarify our notation in the
paper, we will use symbols I,U, and R to denote the items, users, and ratings (usually
in the [1, 5] range) available in the system.

In CB, recommendations are made normally in three steps using independent com-90

ponents [3]: first, the content analyzer, which makes the data pre-processing by ex-
tracting the relevant information about the items. Then, the profile learner that builds a
user profile using the user’s preference, and, third, the filtering component that exploits
the user’s profile and suggest items by matching them against the profile.

3

On the other hand, CF is usually divided in two categories: memory-based and95

model-based techniques. Memory-based algorithms make predictions using the stored
interactions of the users directly. They normally compute similarities between users
and items to generate the recommendations. Model-based techniques, in contrast, learn
a predictive model, for instance, by transforming users and items into a latent factor
space [9, 10].100

In this paper, we focus on memory-based algorithms – also known as “k-nearest
neighbors (kNN)” – which are further divided into user-based and item-based kNNs.
The standard definition of a user-based kNN algorithm is:

s(u, i) ∝
∑

v∈Ni(u)

rviwuv (1)

In this case, s(u, i) denotes the predicted score for user u and item i, wuv is the weight
(or similarity) between users u and v, whereas Ni(u) denotes the neighbors (closest105

users with respect to a similarity metric) of user u that have rated item i. Equation 1 is
usually normalized when rating accuracy is optimized (i.e., we aim to reduce the system
error); however, when the system is evaluated with ranking metrics such as precision
or nDCG, ignoring the similarity weights in the normalization tends to produce better
results [11].110

Three popular similarity metrics to compute wuv = sim(u, v) between users are
Cosine similarity, Pearson correlation, and Jaccard coefficient:

cos(u, v) =

∑
i∈Iuv

ruirvi√∑
i∈Iu

r2
ui
∑

j∈Iv
r2

v j

(2)

PC(u, v) =

∑
i∈Iuv

(rui − r̄u)(rvi − r̄v)√∑
i∈Iuv

(rui − r̄u)2 ∑
i∈Iuv

(rvi − r̄v)2
(3)

Jaccard(u, v) =
|Iuv|
|Iu ∪ Iv| =

|Iu ∩ Iv|
|Iu ∪ Iv| (4)

where Iu denotes the items rated by u, Iuv the items rated by both u and v, and r̄u is
the average rating of user u. These traditional similarity metrics have some drawbacks
that make them not suitable under some situations and have led to the emergence of115

other similarity metrics [12]. Normally, most of them are only useful when the number
of items rated by both users is large [13]. Cosine similarity does not consider the
users’ mean nor their variance and the Jaccard coefficient does not work with the rating
values. Besides, all of them are undefined when working with repetitions1 and it is not
easy to add a temporal dimension to them either. In the following section, we propose120

a novel similarity metric that aims to address some of these issues while, at the same
time, achieves competitive performance.

1Traditionally, it has been considered that a user can only consume each item once, however, in the real
world, there are many users who tend to consume several times the items they liked.

4

3. On generating sequences of user profiles

We propose to use the Longest Common Subsequence (LCS) as a similarity metric
that can be integrated in a generic recommender system (either using a content-based125

or a collaborative filtering technique). In the following, we will consider the case of
user similarity, that is, sim(u, v), although equivalent formulations could be derived for
the case of item similarity. For that, in this section, we first describe how user profiles
can be generated based on sequences in a generic, formal way (Section 3.1). We then
describe in Section 3.2 how we adapt LCS to recommendation based on how it works130

for strings, extending the approach presented in [14] that only worked in a collaborative
filtering scenario – where users are represented as ratings. Finally, Sections 3.3 and 3.4
present two additional procedures that can be applied to almost any user similarity
metric to enhance its performance: preference and similarity filtering and similarity
value normalization.135

3.1. A framework to generate user profiles based on sequences
In our approach, we propose to generate sequences – defined as a collection of

elements where repetitions may exist – from the information related to a user, so that
sequence similarity functions can be defined and applied to two such sequences, in
order to derive how close/different those two users are. With this goal in mind, we140

shall define a transformation function f as follows. Assuming the user is described
as a set of items and ratings (or any other numerical information related to the items,
such as click counts, access frequency, or binary interaction), the following steps are
necessary to generate a sequence in a generic way:

1. Extend any information about the items rated by the user. This is typical of145

content-based algorithms [3], but collaborative filtering algorithms can also ex-
ploit side information from items or even extend the user profile using other
techniques [15, 16]. Formally, we need a function that, for every item, returns a
set of elements associated to such item; that is: e : I×R → I×T k, where k > 0
denotes the number of those elements that function e is able to associate with150

every item, and T represents those elements, modeled in general as tuples. Clas-
sical CF would use the identity function in this step: eir(i, r) = (i, {i, r}). On the
other hand, content-based methods would exploit the feature space so that every
item is linked to their corresponding features: eAr(i, r) = (i, {A j(i), r} j), where the
feature space A could be genres, directors, or actors in the movie domain, text155

features in news recommendation, and the rhythm pattern or the spectogram in
music.

2. Represent the tuples created above as symbols interpretable by the sequence
similarity function. Although this step is not really needed (we can move this
knowledge to the similarity) it also helps to increase the efficiency of the whole160

process, as we shall see later. Hence, we propose to use t : I × T k → I × Zk,
where a proper transformation between T and Z (the set of integer numbers) is
required. We propose to work with integer sequences because they are equivalent
to character sequences (strings, where many sequence similarity functions have
been defined [17]) while they allow comparisons to be more computationally165

tractable.

5

As a simple example, associated to the function eir we would have a transforma-
tion function tir(i, r) = 10 · id(i) + r in such a way that we can also recover the
original elements of the tuple (the item id and its corresponding rating) given its
output. The factor of 10 that multiplies the id helps us to separate the item id170

and the rating while combining them into a single “character”. In fact, another
possible function is defined by only using the ratings, as we can directly set
ti(i) = id(i). Nonetheless, if we decide to use them, note that if the ratings are in
the [0, 10] interval, the transformation function should be modified accordingly,
i.e., tir(i, r) = 100 · id(i) + r, in order to make that recovery possible – i.e., to have175

a bijective function.
3. Arrange the symbols into a sequence. In string matching, the ordering of the se-

quence is important, and it is an aspect that some sequence similarity functions
are able to exploit. In this paper, we will simplify this step and sort the items in
the sequence according to their item id, although it is worth noting that any other180

global ordering of the items would be equivalent to this one, for example, item
popularity – we leave as future work sorting the items in a user basis (like order-
ing the items rated by timestamp, from the oldest to the most recent ones). In this
way, the sequence arranging function we propose will take several pairs of items
and tuples generated as described before and will output a sequence of symbols,185

prepared to be processed by any sequence similarity algorithm. Formally, such a
function will be defined as s({i j, (n jk)k} j) = ((n jk)k)|I|j=1.

Finally, the sequence generation function f could be seen as a composition of the
three functions presented above: f = s ◦ t ◦ e.

To clarify the process of sequence generation explained before, let us present an190

example considering a dataset based on movies, which usually have some content-
based information associated like actors, directors, or genres. We have the film Star
Wars IV, with id 1, and a user u who has rated it with a 5 as rating value. If we
use function egr to extend this information based on genres – i.e., A = G and then
egr(i, r) = (i, {G j(i), r} j) – we could find that item 1 has two genres: Sci-Fi (id 7) and195

Adventure (id 10). According to the definition of egr, this function leads to the tuple
(1, {{Sci-Fi, 5}, {Adventure, 5}}). After that, we would represent these tuples as useful
symbols for the sequence similarity function (LCS, in our case) using a reasonable tgr
function. By taking a similar one to tir, we could transform each genre into its id and
use that value in combination with its associated rating, creating the tuple (1, {75, 105}).200

Finally, to generate the sequence corresponding to this user, we simply take the tuples
associated to the only item this user has rated: (75, 105). However, if the user had also
rated The Godfather (with a rating value of 4 and whose id is 15), then the output would
be slightly different. This movie has Drama (id 2) and Crime (id 6) as genres. The tuple
related to this second movie would be (following the same steps as before, i.e., using205

tgr ◦ egr): (15, {24, 64}). The final step would produce the sequence (75, 105, 24, 64),
since the id of Star Wars is lower than the one for The Godfather. Note that if eir and tir
functions are used, that is, pure collaborative filtering information is being exploited,
then each item will only generate one tuple and the final generated sequence will be
shorter: (15, 154).210

6

Algorithm 1 Longest Common Subsequence
1: procedure LCS(x, y) . The LCS of x and y
2: L[0 · · ·m, 0 · · · n]← 0
3: for i← 1,m do
4: for j← 1, n do
5: if xi = y j then
6: L[i, j]← L[i − 1, j − 1] + 1 . It is a match
7: else
8: L[i, j]← max(L[i, j − 1], L[i − 1, j])
9: end if

10: end for
11: end for
12: return L[m, n] . L[m, n] is the length of the LCS between x and y
13: end procedure

3.2. A sequence similarity metric: the Longest Common Subsequence
As defined before, a sequence is a collection of elements where repetitions may ex-

ist. Consequently, the Longest Common Subsequence (LCS) problem consists in find-
ing the longest subsequence among n given sequences over an alphabet Σ = (σ1, · · · , σs).
A subsequence β of a sequence α is another sequence composed of [1, |β|] elements of
α without changing the order. The LCS problem is usually computed between two
sequences (n = 2) and it can be solved by applying dynamic programming as shown in
Algorithm 1. The procedure is to fill an (m + 1) × (n + 1) matrix initialized to 0, where
m and n are the lengths of each of the sequences x and y involved in the computation,
following this formula:

L[i, j] =


0 if i = 0 or j = 0
L[i − 1, j − 1] + 1 if i, j > 0 and xi = y j

max(L[i, j − 1], L[i − 1, j]) if i, j > 0 and xi , y j

(5)

The final position L[m, n] contains the length of the LCS between the two sequences.
It is important to state that sometimes the longest common subsequence is not a unique
string, although the length of such sequence is unique. Note that we need an extra
row and column in the matrix in order to start the loop iterations with a default length215

value of 0, equivalent to the base case of the recursion described by Equation 5. As
an example, we show in Table 1 the matrix L between sequences AGGT and GCGT,
whose LCS is 3 (for the subsequence GGT), as can be seen in the circled value.

Table 1: Example of computation of LCS between sequences AGGT and GCGT.
∅ A G G T

∅ 0 0 0 0 0
G 0 0 1 1 1
C 0 0 1 1 1
G 0 0 1 2 2
T 0 0 1 2 3

7

Algorithm 2 Longest Common Subsequence for Recommender Systems
1: procedure LCS Recsys(u, v, f , δ) . The LCS of users u and v applying

transformation f
2: (x, y)← (f (u), f (v)) . String x contains m symbols
3: L[0 · · ·m, 0 · · · n]← 0
4: for i← 1,m do
5: for j← 1, n do
6: if match(xi, y j, δ) then . There is a δ-matching
7: L[i, j]← L[i − 1, j − 1] + 1
8: else
9: L[i, j]← max(L[i, j − 1], L[i − 1, j])

10: end if
11: end for
12: end for
13: return L[m, n]
14: end procedure

In this case, both time and space complexity are O(mn). However, space complexity
can be reduced to O(m) or O(n) if only the length of LCS is needed as we do not need220

the previous rows. This algorithm is often used to compare DNA strings and in version
control systems [18], but it has not been extended – to the best of our knowledge – to
the Recommender Systems area, besides our previous work presented in [14].

In this paper, we propose a user similarity metric sim(u, v) that is able to deal with
users represented as content features (content-based scenario) or as ratings (collabo-225

rative filtering scenario) in a simple, coherent way under a formulation based on the
Longest Common Subsequence (LCS) algorithm. As the Longest Common Subse-
quence problem is defined between two sequences, in order to apply such algorithm
to recommendation, a transformation between the information available in the recom-
mender system and sequences is needed first – i.e., a function f as defined by the230

framework presented before.
For the sake of simplification, we aim to use the length of the longest common

subsequence as a proxy for the similarity between two users in a recommender system,
we leave as future work exploiting the LCS algorithm to explore patterns from the data
through combining different elements of the recommender systems. Additionally, it235

should be noted that, once users or items are represented as sequences, other string dis-
tance or alignment algorithms such as Jaro (and Jaro-Winkler) or Smith-Waterman [19]
could be applied to such sequences, by following a similar development to the one pre-
sented here; however, we believe this task is out of the scope of this paper and leave
this analysis for the future.240

As we present in Algorithm 2, it is possible to adapt the LCS algorithm from string
matching to recommendation with only two modifications: a transformation function
f (from users to sequences) and a δ-matching allowing us to configure when two sym-
bols of the alphabet are considered equal. We introduce this latter modification – fol-
lowing the methodology proposed in [14] – to address the inherent fuzziness of user245

preferences. Classical similarity metrics like Pearson correlation (see Equation 3) per-

8

form comparisons of user ratings with respect to the user’s mean, other metrics and
algorithms do this in relative terms; this matching threshold δ softens the matching
condition of the LCS algorithm by deciding that two symbols are equivalent whenever
their difference is below such threshold δ. Hence, higher values of δ model that we250

allow larger differences between ratings so they are still considered as “equal” (i.e.,
they represent the same symbol).

The transformation function f is the most critical component of our approach,
since, depending on its definition, it could generate different sequences – with differ-
ent resulting evaluation performance – using the same information about users. These255

sequences (generated either using content-based or collaborative information) will be
then transparently used by the LCS algorithm to find similarities between users which,
in turn, will be integrated in a technique based on nearest neighbors, so that recommen-
dations can be generated in the classical way. As we shall see, the way these sequences
are generated has a critical impact in the final performance of the recommendation260

algorithm.

3.3. Preference and similarity filtering
The LCS algorithm has a complexity of O(mn), with m and n being the length of the

sequences to compare. When receiving very large sequences, computing LCS between
all users may become too expensive in terms of computational cost. We can reduce the265

length of both sequences by filtering out the less important preferences. We introduce
a parameter, denoted as γ (we name it as preference filter) to indicate which items will
be considered when computing the LCS algorithm. The idea is that items with low
ratings may not be interesting when finding neighbors of a particular user, an issue
derived by the missing-not-at-random problem, that states that users tend to rate what270

they prefer [20, 21].
This filter can be introduced as a prefiltering step, where low preferences from users

are filtered out, and these processed users are the input for the transformation function
f ; this would introduce a fourth component in the definition of the transformation
function: f γ = s ◦ t ◦ e ◦ γ. Another possibility for modeling this step is to modify275

one of the functions involved in the definition of f so that the input to the function
remains the same. In that case, it would be enough to have an extending function eγ

that only outputs values whenever the associated rating is above the γ threshold; hence,
the corresponding f γ = s ◦ t ◦ eγ would work as explained in the previous section. In
both cases, Algorithm 2 would work unaware of this filter.280

On the other hand, while obtaining similar users to a target one, we can set a min-
imum value of similarity to consider another user as a (valid or useful) neighbor. This
parameter can be seen as the number of items that both users have rated in a similar
way (or depending on the threshold δ, with a value ≤ δ). We have added this parameter
naming it as confidence filter, represented by τ. This parameter imposes a harder con-285

straint on the potential neighbor, and hence it reduces the number of possible neighbors
that a user may have.

It is important to note that, although these two filtering approaches aim at increasing
the accuracy of the discovered neighbors (because only important preferences are being
considered or only the highest similarities are taken into account), the final coverage290

of the algorithm can be damaged if these parameters are very restrictive, since less

9

neighbors will satisfy these constraints, which may produce less recommendations for
each user.

3.4. Similarity normalization
The LCS algorithm obtains a value in the interval [0,min(| f (u), f (v)|)]. However,295

in neighbor-based recommendation similarity metrics are usually normalized to have
a range in [−1, 1] or [0, 1], and different normalization techniques are then applied
in order to estimate the predicted score s(u, i) [9]. Following the same rationale, we
propose four different normalizations for our LCS-based similarity metric:

sim f ,δ
1 (u, v) = LCS Recsys(u, v, f , δ) (6)

sim f ,δ
2 (u, v) =

sim f ,δ
1 (u, v)2

| f (u)| · | f (v)| (7)

sim f ,δ
3 (u, v) =

2 · sim f ,δ
1 (u, v)

| f (u)| + | f (v)| (8)

sim f ,δ
4 (u, v) =

sim f ,δ
1 (u, v)

max (| f (u)|, | f (v)|) (9)

sim f ,δ
5 (u, v) =

sim f ,δ
1 (u, v)

min (| f (u)|, | f (v)|) (10)

Except for Equation 6, that produces the LCS-based similarity with no normaliza-300

tion, that is, as calculated by the Algorithm 2, the other equations present different
normalizations of Equation 6, producing values in the [0, 1] interval. It is important
to note that although the computational cost of the LCS algorithm may be high, once
sim1 is computed, the other normalizations can be obtained straightforward, with al-
most no extra cost. In general, these normalizations favor longer subsequences found305

inside short sequences, as they include the sequence lengths in the denominator as a
penalization. These functions were proposed in [22] to compare the output of the LCS
algorithm, in a similar way as we aim to do here.

Finally, although the LCS algorithm is an NP-hard problem, this is not necessarily
a critical aspect when applied to recommendation due to the following reasons:310

• The computation of LCS similarities can be done offline, before the actual rec-
ommendations are requested.

• The computed similarities can be stored at training time, just as we would do with
other similarity metrics. Once the similarities are stored, they can be used in a
nearest-neighbor recommender transparently, without knowing if the similarity315

weight comes from an LCS-based measure or a classical one.

• The normalized versions of the LCS-based similarities can be computed based on
the value obtained by the sim1 metric; therefore, the use of these normalizations
do not increase the execution or training times (we can create five recommenders
by the cost of one).320

10

Table 2: Items consumed by users u1 and u2.

Movie (id) Director (id) Genres (ids) u1 u2

The Wild Bunch (M1) Sam Peckinpah (D1)
Western (G1)
Robbery (G2)

}
5

Seven Samurais (M2) Akira Kurosawa (D2)
Action (G3)
Drama (G4)
Adventure (G5)

 4 5

The Iron Cross (M3) Sam Peckinpah (D1) War (G6)} 3

Gladiator (M4) Riddley Scott (D3)
Action (G3)
Drama (G4)
Adventure (G5)

 4 2

Alien (M5) Riddley Scott (D3) Sci-Fi (G7)
Terror (G8)

}
5

The Magnificent Seven (M8) John Sturges (D4) Western (G1)
Adventure (G5)

}
4

• As with other similarity metrics, the computation can be easily parallelized by
distributing the load in a user basis (for instance, the similarities associated to a
particular user could be calculated in a specific thread, since there is no inter-user
dependency).

• The proposed method to generate the sequences can be applied to any other algo-325

rithm like the Levenshtein distance, the Jaro-Winkler similarity or even approx-
imation algorithms of LCS.

3.5. Toy example
To better understand how the proposed similarity function works under different

transformation functions, we show in this section a toy example where two users have330

rated four movies each. Table 2 shows the items consumed by the first user, u1, and
the second user, u2. In this table, content features such as genres and directors are also
present, together with their corresponding ids, to understand how the transformation
function generates the sequences in each situation. Table 3 shows the sequences ob-
tained for each definition of transformation function f , and the result computed by the335

LCS-based similarity function. We denote this transformation function as fi when the
transformation only uses the ids of the items, without the ratings, whereas we use fir,
fdr, and fgr when we use ratings with items, directors, and genres, respectively.

The first thing we notice in Table 3 is that the matching threshold does not affect the
user representation, which allows us to separate the process in two steps: we generate as340

many user sequences as transformation functions we want to test, and then we compute
the LCS-based similarity according to different parameters. It is important to note,
however, that different preference filters γ generate different sequences. The confidence
filter, on the other hand, only affects the final output of the comparison. In the examples
presented here, the same similarity value is obtained when the preference filter is used345

(γ > 0) and when it is ignored, although this will not be true in general; it is interesting
to observe, nonetheless, that the application of the preference filter produces shorter
sequences, hence allowing for more efficient computation of the LCS algorithm.

We also observe that different representation spaces (items, directors, genres) create
shorter or longer user sequences, which, in the end, affect the final similarity value.350

11

Table 3: User representation as sequences and LCS-based similarity for different transformation functions,
matching thresholds (δ), and preference (γ) and confidence (τ) filters.

f δ γ τ f (u1) f (u2) sim f ,δ
1 (u1, u2) sim f ,δ

2 (u1, u2)

fi 0 0 0 (1, 2, 3, 4) (2, 4, 5, 8) 2 1/4

fir
0 0 0 (15, 24, 33, 44) (25, 42, 55, 84) 0 0
1 0 0 1 1/16
1 4 0 (15, 24, 44) (25, 55, 84) 1 1/9

fdr

0 0 0
(15, 24, 13, 34) (25, 32, 35, 44)

0 0
1 0 0 2 1/4
1 0 3 0 0
0 5 0 (15) (25, 35) 0 0

fgr

0 0 0 (15, 25, 34, 44, 54, (35, 45, 55, 32, 42, 1 1/90
1 0 0 63, 34, 44, 54) 52, 75, 85, 14, 54) 4 2/45
1 4 0 (15, 25, 34, 44, (35, 45, 55, 75, 4 1/14
1 4 2 54, 34, 44, 54) 85, 14, 54) 4 1/14

Because of this, to allow fair comparisons of similarities without having to tune or
analyze each of them separately, the use of normalization functions is key.

4. Empirical evaluation

In this section, we show several experiments to analyze the proposed similarity
metric using the LCS algorithm, based on both rating and content information. In355

Section 4.1 we present the dataset used in this work together with the evaluation metrics
that will be reported later and other experimental settings. Then, Section 4.2 describes
the baselines that will be used to compare against the proposed method; and finally, in
Section 4.3 we present the results obtained for different experiments.

4.1. Experimental setup360

In this paper, since we want to test the similarity metric proposed in Section 3, we
work with a dataset where ratings and content-based features are available at the same
time. The HetRec version of the MovieLens dataset (described in [23] and available
from the GroupLens website2) fits these requirements. This dataset is a subset of the
Movielens10M release of the MovieLens datasets, where only users that have both365

ratings and tags are included. This dataset is composed by 2,113 users, 10,197 movies,
4,060 directors, 20 movie genres, and 855,598 ratings. The ratings are made on a
5-star scale with half-star ratings (from 0.5 stars to 5.0 stars). Because of this, every
transformation function that concatenates the rating of the users to items representation
will be done by multiplying the item id by 100 and the rating value by 10, in order to370

support the half stars. For example, if user u has rated item 1 with a 3.5 rating, the
representation using fir transformation will be 135.

2http://grouplens.org/datasets/hetrec-2011/

12

http://grouplens.org/datasets/hetrec-2011/

All the recommenders have been implemented on top of the RankSys framework3.
We focus our evaluation on ranking-based metrics, hence no error metrics (such as
MAE or RMSE) will be reported. The rankings are generated following the TrainItems375

methodology described in [24], where every item in the training split, except the ones
already seen by the user in training, is considered as a possible candidate to be part of
a user’s final ranking. Additionally, we include novelty and diversity metrics available
in the RankSys framework using movie genres as item features.

More specifically, we report the nDCG metric (normalized Discounted Cumulative380

Gain) as a proxy of the ranking quality produced by different configurations of the rec-
ommenders evaluated. In some situations, we also report precision (amount of returned
relevant items), recall (ratio of relevant items that are returned by the algorithm), and
MAP (Mean Average Precision) – all of them as implemented in the RiVal4 library.
For novelty and diversity, the metrics that we have used are the following (described385

in [25, 26]):

• α-nDCG: a diversity-aware ranking metric where the score of retrieved docu-
ments is penalized if they share features with documents ranked higher. The
reported values use α = 0.5.

• Aggregate diversity (AD): it returns a value proportional to the total number of390

items that the system recommends.

• EILD (expected intra-list diversity): rank-sensitive and rank-aware expected intra-
list diversity metric.

• EPC (expected popularity complement): expected number of seen relevant rec-
ommended items not previously seen.395

• EPD (expected profile distance): expected distance between the recommended
items and the items in the user profile using a provided feature scheme for each
item.

• Gini: it takes into account not only whether items are recommended to some-
one, but to how many people and how even or unevenly distributed. Following400

standard procedures in the literature, we report the complement of the original
Gini Index so that higher results indicate more balanced and diverse recommen-
dations.

Besides, these results have been obtained taking only into account the items in
test that have been rated with 5 stars, as we consider that recommending items with405

lower ratings are not good recommendations. Unless stated otherwise, all these met-
rics (ranking quality metrics and diversity and novelty metrics) have been computed
at cutoff 5, that is, only considering the top 5 items in every ranking returned by a
recommender. Finally, all results have been generated using a 5-fold cross-validation
evaluation, where we use 80% of the data to train the recommenders, and the remaining410

20% is used for evaluation.

3https://github.com/RankSys/RankSys
4http://rival.recommenders.net/

13

https://github.com/RankSys/RankSys
http://rival.recommenders.net/

4.2. Baselines
In this article, since we are proposing a new user similarity based on the LCS

algorithm that can use content-based information, one of our main goals is to compare it
against other state-of-the-art recommenders. We will not only compare it against other415

similarities like Cosine or Jaccard but also against other recommenders like matrix
factorization and item popularity. Thus, the baselines used in the experiments are:

• Random: a random recommender that returns scores randomly for each user-
item pair.

• Pop: popularity recommender. The items with more ratings will be recom-420

mended to users.

• IB: a pure collaborative filtering using a rating-based similarity between items.
We experimented with Cosine and Jaccard similarity measures.

• UB: a pure collaborative filtering using a rating-based similarity between users.
Besides the classical Cosine and Jaccard similarity measures, we also include in425

the comparison a combination of the Jaccard index and mean squared differences
(MSD) proposed in [27] (JMSD).

• LDA: Latent Dirichlet Allocation for collaborative filtering recommenders. This
one refers to LDARecommender from RankSys and originally proposed in [28].

• MF: a matrix factorization recommender. This one refers to MFRecommender430

with the PLSAFactorizer from RankSys, proposed in [29].

• PureCB: a pure content-based recommender using a Vector Space Model (VSM)
with binary weights. This means that the coordinates of the vectors contains a 1
if the item has that feature and zero otherwise. Then, for each item, we compute
the Cosine similarity between the user and the item. Directors and genres are435

tested as features.

• CBCF: a hybrid recommender system in which we take the classical user-based
collaborative filtering formulation but instead of using rating-based similarities,
content-based similarities are generated – using genres and directors like for
PureCB – between users by transforming them into a VSM and then computing440

the Cosine similarity. This corresponds to the collaborative-via-content method
proposed in [30], also described in [31].

Unless stated otherwise, the parameters of these baselines are: 100 neighbors and a
TF-IDF representation for the CBCF recommender, the feature vector contains direc-
tors for CBCF and PureCB, 5 neighbors for IB and 100 neighbors for UB with JMSD445

and Jaccard similarities and 90 neighbors with Cosine; MF and LDA are computed
with 50 factors and using default values for other parameters5. These parameters were

5Specifically, for MF we used 20 iterations and for LDA we set alpha=1, beta=0.01, burninPeriod=50,
and 20 iterations.

14

20 40 60 80 100
0.05

0.10

0.15

0.20

Neighbors

nD
C

G

Item id and rating (f = fir)

20 40 60 80 100
0.05

0.10

0.15

0.20

Neighbors

Director and rating (f = fdr)

20 40 60 80 100
0.05

0.10

0.15

0.20

Neighbors

Genres and rating (f = fgr)

(f , δ = 0) (f , δ = 10)

Figure 1: Results with transformations based on items (pure collaborative filtering), directors, and genres.

selected according to a preliminary test where the best configurations with respect to
the nDCG@5 metric were chosen, where the optimal parameters were obtained after a
grid search with the values 5, 10, 20, . . . , 100 for the neighborhood size (UB, IB, and450

CBCF).

4.3. Results
In this section, we present several results to answer the research questions presented

at the beginning of the paper: (RQ1) Which LCS approach (between pure collabora-
tive filtering or content-based with genres and directors) performs the best in terms455

of ranking quality (e.g., nDCG)? (Section 4.3.1) (RQ2) Which combination of param-
eters of confidence, preference, threshold, and normalizations achieve better results?
(Section 4.3.2) (RQ3) What is the performance of this approach on beyond-accuracy
metrics (i.e., diversity and novelty)? (Section 4.3.3) (RQ4) How does this approach
compare against other state-of-the-art algorithms? (Section 4.3.4)460

4.3.1. Performance of LCS as user similarity
In this section we explore how, depending on the function used to extend the rating

information to build the user sequences, the proposed similarity metric based on LCS
may perform differently, and analyze which transformation is better suited for recom-
mendation. More specifically, and using the notation from Section 3.1, we exploit three465

sequence generation functions f = s ◦ t ◦ e, composed of the same sequence ordering
function s and transformation function t. We shall denote as fir the pure collaborative
filtering approach, that is, where function e is the identity and users are composed of a
combination of the rated item and the rating value. Two content-based approaches are
explored by considering fdr and fgr as transformation functions, the latter uses function470

egr as introduced in Section 3.1 (where each item is represented as its corresponding
genres), and the former uses a similar function that represents the items according to
their directors.

Figure 1 shows the results obtained when these three different transformation func-
tions are used together with two δ-matching thresholds: exact matching (δ = 0) and475

matchings allowing a difference of ±1 in the rating value (using δ = 10 as explained
before because of the presence of half-star ratings in this dataset). It is interesting to
observe that results are the same or worse when exact matchings are not used. We

15

shall show later that this trend depends on the specific configurations used regarding
the other parameters available in the model. Our hypothesis in this case is that worse480

neighbors are found when non-exact matchings are allowed, probably due to an ill-
defined neighborhood caused by considering users that share similar preferences closer
than users with the same preferences.

Furthermore, we also observe from the same figure that content-based information,
when integrated into our LCS-based similarity metric, performs equally or worse than485

applying a pure collaborative filtering: compare fdr and fgr against fir. In this case,
the worst recommender is always the one that uses genre information. This may be
an expected result since genres in films are sometimes very subjective – it is actually
difficult to define the genres of movies, since even if two movies have the same genres,
they could be totally different. This is not the case, on the other hand, of using directors490

as a feature, as each director may have their own style that is evident in the films they
make. We can see that this approach remains as competitive as the pure collaborative
filtering one, and from now on, we will omit the results using the genre feature.

At this point, we can answer the first research question. Since in the configurations
tested so far the transformation using genres performs the worst, we can say that in this495

dataset, using content-based information on top of the LCS-based similarity does
not outperform a pure collaborative filtering recommendation using the same sim-
ilarity, although one particular transformation (directors) remains a competitive
approach.

4.3.2. Sensitivity to confidence, preference, and normalization parameters500

In this section we analyze how the different parameters of the proposed user sim-
ilarity affect its performance. That is, we shall compare whether the recommendation
performance changes when the three variations of the proposed metric introduced be-
fore are included in the approach one at a time. Let us start with the confidence filter
parameter τ. Recall that this parameter acts as a neighbor filter, where each candidate505

neighbor needs to have rated “in the same way” as the target user a configurable num-
ber of items in order to be considered as a neighbor. In our experiments, we have used
many different values, but we only report three: 30, 50, and 70; smaller and larger val-
ues had almost no effect, due to sparsity reasons. Of course, the range of this parameter
will always depend on the data and, hence, it will have to be tuned in consequence.510

Figure 2 shows the performance of the recommenders for two transformation func-
tions (directors and item) using the three different values of confidence mentioned be-
fore. We include in dashed lines the same recommenders with a δ-matching threshold
of 10. We observe that using some kind of confidence filter entails better results. In
contrast with the previous experiment (Figure 1) where no configuration reached a 0.2515

value of the evaluation metric being used (nDCG@5), now by using any confidence
value we raise the performance of all the configurations with respect to when no con-
fidence (τ = 0) is used. Therefore, consistent with previous results in the literature
(see [8]), we find that a posterior neighbor filtering can improve the results ob-
tained by our approaches. Nonetheless, better results are still obtained for the pure520

collaborative filtering representation of the user sequences (f = fir) and, at the same
time, exact matching produces higher improvements than non-exact matching (δ = 10).

The second parameter we analyze is the preference filter parameter γ. This param-

16

20 40 60 80 100
0.10

0.15

0.20
nD

C
G

Item id and rating (f = fir)

20 40 60 80 100
0.10

0.15

0.20

Director and rating (f = fdr)

20 40 60 80 100
0.10

0.15

0.20

Neighbors

nD
C

G

20 40 60 80 100
0.10

0.15

0.20

Neighbors

(f , δ = 0, τ = 30) (f , δ = 10, τ = 30)
(f , δ = 0, τ = 50) (f , δ = 10, τ = 50)
(f , δ = 0, τ = 70) (f , δ = 10, τ = 70)

Figure 2: Results with the confidence filter parameter τ.

eter allows us to consider in the user sequences only those items having a rating value
higher than a particular value. In our experiments we consider the following possibili-525

ties: larger than 3 (γ = 3), larger than 4 (γ = 4), and larger than the user mean (γ = u).
Figure 3 shows the results for this experiment.

In this case, although there is some improvement with respect to the basic model
without preference filter (γ = 0 depicted in Figure 1), the change in performance is
lower than the one achieved with the confidence parameter. However, it should be530

noted that the lack of a performance degradation is a very positive result, since in
this situation the model is computing the user similarities with less data, and hence,
its efficiency improves with, according to these results, no expenses in performance.
Furthermore, although in some situations the results for different γ values are very
close to each other, we can conclude that the best one is γ = u, that is, the one that uses535

the user mean rating. This is reasonable, since only considering the values higher than
a predefined threshold – such as 3 or 4 – could make us lose important information due
to the inherent bias of each user when rating items.

In light of the previous results, it makes sense to explore and combine these two
parameters (confidence and preference filtering) together, and see how they may affect540

17

20 40 60 80 100

0.10

0.15

0.20
nD

C
G

Item id and rating (f = fir)

20 40 60 80 100

0.10

0.15

0.20

Director and rating (f = fdr)

20 40 60 80 100

0.10

0.15

0.20

Neighbors

nD
C

G

20 40 60 80 100

0.10

0.15

0.20

Neighbors

(f , δ = 0, γ = 3) (f , δ = 10, γ = 3)
(f , δ = 0, γ = 4) (f , δ = 10, γ = 4)
(f , δ = 0, γ = ū) (f , δ = 10, γ = ū)

Figure 3: Results with the preference filter parameter γ.

the algorithm performance. In such a case, this means that we are filtering neighbors
(according to some confidence value) using only the items that have been rated with a
higher rating than the preference value. We restrict this analysis to γ = u since it shows
better properties to model the user in a generic way, as discussed before.

When using these two parameters combined, a general improvement is achieved,545

as shown in Figure 4. Interestingly, in this situation larger improvements are found
when a non-exact matching is allowed (δ = 10). Actually, only under this setting,
an improvement with respect to using only the confidence filter is obtained, hence,
producing the highest performance among the different instantiations of the recom-
menders analyzed so far. We observe in this figure that, when combining preference550

and confidence filtering and a threshold of δ = 0, the performance of the recommender
remains constant after a number of neighbors are considered. This is because these
two parameters reduce the number of possible neighbors; without using a proper value
of the δ-threshold that palliates this effect, the number of neighbors will be reduced
dramatically, preventing an improvement in the recommender.555

Finally, we analyze the results for the third parameter of the proposed user sim-
ilarity metric, the similarity normalization functions. Following the notation used in

18

20 40 60 80 100
0.10

0.15

0.20
nD

C
G

Item id and rating (f = fir)

20 40 60 80 100
0.10

0.15

0.20

Director and rating (f = fdr)

20 40 60 80 100
0.10

0.15

0.20

Neighbors

nD
C

G

20 40 60 80 100
0.10

0.15

0.20

Neighbors

(f , δ = 0, τ = 30, γ = ū) (f , δ = 10, τ = 30, γ = ū)
(f , δ = 0, τ = 50, γ = ū) (f , δ = 10, τ = 50, γ = ū)
(f , δ = 0, τ = 70, γ = ū) (f , δ = 10, τ = 70, γ = ū)

Figure 4: Results with a combination of preference and confidence filtering.

Section 3.4, we show in Figure 5 the results of the simple model when no confidence
(τ = 0) and preference (γ = 0) filtering is used and compare the not normalized values
presented so far (that is, using sim1) against the results when the other four normaliza-560

tion functions are used. Interestingly, we observe that this parameter has a huge (posi-
tive) effect in performance, since sim1 is the worst performing normalization function
in every situation. This behavior might be attributed to larger weights given to neigh-
bors in the standard user-based recommendation formulation when the similarity is too
high, which might occur too often when the similarity is not bounded, as is the case for565

the sim1 function. Another important point is that the best two normalization functions
are sim2 and sim3, which are the only ones that consider the length of both users when
normalizing the original value. This is a clear indicator that this information is critical
and should be used by any similarity normalization function based on LCS. We hope
to explore in detail this aspect in the future.570

Considering the results from the last experiment, we can conclude that most of the
performance values reported in the previous experiments are far from optimal, which
means that there should be some room for improvement, since we have shown that
our model improves its performance when using normalization functions (more specif-

19

20 40 60 80 100

0.10

0.15

0.20

nD
C

G

Item id and rating (f = fir)

20 40 60 80 100

0.10

0.15

0.20

Director and rating (f = fdr)

20 40 60 80 100

0.10

0.15

0.20

Neighbors

nD
C

G

20 40 60 80 100

0.10

0.15

0.20

Neighbors

(sim1, f , δ = 0) (sim1, f , δ = 10)
(sim2, f , δ = 0) (sim2, f , δ = 10)
(sim3, f , δ = 0) (sim3, f , δ = 10)
(sim4, f , δ = 0) (sim4, f , δ = 10)
(sim5, f , δ = 0) (sim5, f , δ = 10)

Figure 5: Results for different normalization functions.

ically, when using sim2 and sim3) and all the results reported were using no normaliza-575

tion, i.e., sim1. Figure 6 shows the effect of all these parameters when used in combi-
nation compared against the setting when only one of the filters are used; in every case,
the best value of each parameter is used (denoted, as mentioned in the caption, with the
symbol ∗). From the figure, we make three observations: (a) the performance improve-
ment between no normalization (sim1) and normalization (sim∗) is always significant,580

as already shown in Figure 5; (b) the best performance is obtained when non-exact
matching (δ = 10) is allowed; (c) the optimal configurations are different depending on
whether exact matchings are allowed: whereas for δ = 0 the best configuration is us-
ing either the best confidence or preference filter value (very close to each other when
using ratings and directors), for δ = 10 the best configuration is consistently found for585

a combination of the best confidence and preference filter values.
At this point, we can provide the following answer to the second research question:

for pure collaborative filtering and content-based information, the best configu-
ration in terms of ranking quality is achieved by combining the three best values

20

20 40 60 80 100

0.10

0.15

0.20

0.25

Neighbors

nD
C

G

Item id and rating (f = fir)

20 40 60 80 100

0.10

0.15

0.20

0.25

Neighbors

Director and rating (f = fdr)

(sim1, f , δ = 0, τ∗) (sim∗, f , δ = 0, τ∗)
(sim1, f , δ = 0, γ∗) (sim∗, f , δ = 0, γ∗)

(sim1, f , δ = 0, τ∗, γ∗) (sim∗, f , δ = 0, τ∗, γ∗)

20 40 60 80 100

0.10

0.15

0.20

0.25

Neighbors

nD
C

G

20 40 60 80 100

0.10

0.15

0.20

0.25

Neighbors

(sim1, f , δ = 10, τ∗) (sim∗, f , δ = 10, τ∗)
(sim1, f , δ = 10, γ∗) (sim∗, f , δ = 10, γ∗)

(sim1, f , δ = 10, τ∗, γ∗) (sim∗, f , δ = 10, τ∗, γ∗)

Figure 6: Results with the best confidence and preference filters and normalizations. Top row shows results
using δ = 0, bottom row using δ = 10. The ∗ symbol denotes the best value among the previously reported
ones is being used in the combination.

of normalization, preference, and confidence. More specifically, we achieve a 25%590

of improvement over the same recommender in nDCG without any of these variables,
where the normalization function plays a critical role in this improvement.

Based on this, some general guidelines to select these different parameters can be
derived, at least for rating-based datasets similar to the one used in the paper: nor-
malization sim2 always improves the results, exact matching (δ = 0) works well with595

collaborative data whereas not exact matching shows better results for content-based
data, and confidence and preference filters tend to improve the performance, although
the actual value for the confidence filter should be tuned to the specific dataset (the
preference filter can be automatically set to the user’s mean for further generality).

21

Table 4: Performance of some of the most representative configurations of the proposed approach in terms
of ranking quality (nDCG, P, R, MAP), novelty (EPC, EPD), and diversity (AD, α-nDCG, EILD, and Gini)
at cutoff 5. The configuration for each recommender is denoted following the order (sim, f , δ, τ, γ), that is:
normalization function, transformation function, threshold for δ-matching, confidence filter, preference filter.
The neigborhood size in every case is k = 100.

Recommender nDCG P R MAP EPC EPD AD α-nDCG EILD Gini

(sim1, fir , 0, 0, 0) 0.196 0.130 0.135 0.086 0.495 0.736 1.06% 0.146 0.693 0.003
(sim1, fir , 10, 0, 0) 0.191 0.128 0.131 0.082 0.506 0.734 1.00% 0.143 0.690 0.003
(sim1, fdr , 0, 0, 0) 0.192 0.128 0.130 0.083 0.501 0.737 1.05% 0.142 0.697 0.003

(sim1, fdr , 10, 0, 0) 0.190 0.128 0.130 0.081 0.508 0.735 0.99% 0.142 0.692 0.003
(sim1, fir , 0, 0, ū) 0.200 0.133 0.136 0.087 0.493 0.735 1.09% 0.149 0.697 0.003

(sim1, fdr , 10, 0, ū) 0.199 0.133 0.137 0.086 0.509 0.732 1.04% 0.148 0.698 0.003
(sim1, fir , 0, 50, 0) 0.218 0.176 0.106 0.069 0.237 0.300 3.99% 0.066 0.284 0.010
(sim1, fdr , 0, 50, 0) 0.213 0.171 0.108 0.069 0.258 0.328 4.05% 0.071 0.311 0.009
(sim2, fir , 0, 0, 0) 0.225 0.146 0.154 0.102 0.476 0.730 1.19% 0.170 0.691 0.003

(sim2, fdr , 10, 0, 0) 0.232 0.152 0.159 0.105 0.484 0.724 1.32% 0.175 0.683 0.003
(sim1, fir , 10, 70, ū) 0.219 0.172 0.114 0.074 0.288 0.370 3.30% 0.083 0.356 0.007
(sim1, fdr , 10, 50, ū) 0.219 0.166 0.127 0.082 0.350 0.470 2.98% 0.108 0.451 0.005
(sim2, fir , 10, 50, ū) 0.245 0.187 0.140 0.093 0.338 0.457 3.29% 0.119 0.433 0.007
(sim2, fdr , 10, 30, ū) 0.246 0.179 0.152 0.101 0.406 0.571 2.76% 0.150 0.538 0.005

4.3.3. Impact on beyond-accuracy metrics600

It is a well-known issue in the recommender systems literature that high accuracy or
effectiveness in ranking metrics is difficult to balance with other dimensions of evalua-
tion such as diversity and novelty [32]. One paradigmatic example of this behavior is a
recommender that suggests the most popular items: it usually shows high effectiveness
but at the expense of producing not diverse (always the same items are recommended)605

and not novel (novelty is usually defined as the inverse function of popularity) recom-
mendations.

Table 4 shows some of the most representative configurations of the user similarity
proposed and analyzed in previous sections. The tradeoff between diversity or novelty
and accuracy is obvious from the table: it is not possible to find a configuration that610

optimizes at the same time novelty (EPC and EFD metrics) or diversity (AD, α-nDCG,
EILD, and Gini) and accuracy (nDCG, precision, recall, and MAP). Nonetheless, we
observe some interesting patterns from these results. First, the confidence filter τ af-
fects negatively the novelty of the recommendations. This might be attributed to less
long-tailed items being recommended because users with more items in common with615

the target user are preferred, hence leaving less room for novel items with respect to
the target user. At the same time, this parameter seems to produce more globally di-
verse recommendations, evidenced by the highest value achieved in AD and Gini for
a configuration using τ = 50, especially when compared against the same configura-
tion using τ = 0, where AD is only 1.06% and Gini has a value of 0.003. This is not620

the case, however, for those metrics that measure the diversity between the items in
the recommended list (i.e., α-nDCG and EILD), since higher values of τ will consider
neighbors more similar to the target user, reducing the potential to recommend diverse
items.

Second, the preference filter parameter seems to have no effect on the diversity and625

novelty aspects of the recommendation lists being generated. As already discussed in
previous sections, where we found that this parameter does not change significantly
the quality of the recommendations, this is not a negative aspect per se, since it means

22

Table 5: Performance of baselines and representative configurations of the proposed approach following the
notation introduced in Table 4 in terms of ranking quality (nDCG, P, R, MAP), novelty (EPC, EPD), and
diversity (AD, α-nDCG, EILD, and Gini). Statistical significant improvements (according to Wilcoxon test,
p < 0.05) between the proposed approaches and each baseline with nDCG is denoted as a superscript.

Recommender nDCG P R MAP EPC EPD AD α-nDCG EILD Gini

1-Random 0.000 0.000 0.000 0.000 0.972 0.756 63.47% 0.001 0.745 0.478
2-Pop 0.160 0.105 0.112 0.069 0.444 0.741 0.48% 0.123 0.700 0.002

3-IB-Cos 0.179 0.119 0.126 0.077 0.508 0.710 2.99% 0.145 0.672 0.004
4-IB-Jac 0.162 0.109 0.116 0.069 0.521 0.712 3.35% 0.132 0.660 0.004

5-UB-Cos 0.235 0.153 0.161 0.107 0.490 0.722 1.46% 0.177 0.678 0.004
6-UB-Jac 0.233 0.152 0.161 0.106 0.484 0.723 1.35% 0.176 0.682 0.003

7-UB-JMSD 0.222 0.145 0.154 0.101 0.482 0.724 1.39% 0.169 0.685 0.003
8-LDA 0.216 0.142 0.150 0.097 0.548 0.713 4.80% 0.165 0.650 0.010
9-MF 0.184 0.124 0.128 0.079 0.570 0.713 5.72% 0.140 0.644 0.012

10-PureCB 0.010 0.007 0.010 0.005 0.853 0.739 10.09% 0.028 0.657 0.020
11-CBCF 0.237 0.155 0.162 0.108 0.505 0.722 1.67% 0.179 0.666 0.004

(sim1, fir , 0, 0, 0)1−4,10 0.196 0.130 0.135 0.086 0.495 0.736 1.06% 0.146 0.693 0.003
(sim1, fdr , 0, 0, 0)1−4,10 0.192 0.128 0.130 0.083 0.501 0.737 1.05% 0.142 0.697 0.003
(sim2, fdr , 10, 30, ū)1−11 0.246 0.179 0.152 0.101 0.405 0.570 2.67% 0.150 0.535 0.005

that equivalent suggestions might be generated with a fraction of the information being
processed, allowing more efficient computations, producing more recommendations630

per cycle in real-time environments.
Third, the normalization functions produce a significant improvement in accuracy

(as already discussed), and as we observe in this table, they do not seem to affect other
metrics, since we can compare the same configuration with and without normalization
and realize that only the ranking quality metrics are modified. This is a very interesting635

result regarding the diversity-accuracy tradeoff, since we can conclude that by chang-
ing the normalization function we can improve one of the dimensions (in this case,
accuracy) without altering the others (diversity and novelty).

Therefore, we can finally answer the third research question by stating that, even
though there is no single solution that solves the diversity-accuracy tradeoff, some640

configurations evidence high values of novelty and diversity, while maintaining
decent levels of accuracy. In the next sections we extend this comparison with other
algorithms from the state-of-the-art and discuss how competitive these results really
are.

4.3.4. Performance comparison with other algorithms645

To properly contextualize the results presented in the paper, we show in Table 5 the
results for each of the baselines presented in Section 4.2. We observe that one of the
content-based baselines (PureCB) obtains a much worse performance than the other,
which is the best performing recommendation technique from the rest of the base-
lines (although the UB with Cosine achieves a similar performance). Consistent with650

previous results, content-based techniques produce more novel (less popular) recom-
mendations, as evidenced by the higher values of EPC. Recall that this recommender
retrieves items that match the features that are most liked for the user, so even if an
item is not known, if its genres or directors are consumed by the user, the item will be
recommended. However, as discussed in the previous section, it is not easy to produce655

novel and accurate recommendations: for instance, the random recommender also ob-
tains very high values of novelty (and even diversity); this is probably the reason that

23

Table 6: Performance of baselines and representative configurations of the proposed approach following the
notation introduced in Table 4 in Movielens10M dataset in terms of ranking quality (nDCG, P, R, MAP),
novelty (EPC, EPD), and diversity (AD, α-nDCG, EILD, and Gini). Statistical significant improvements
denoted as in Table 5.

Recommender nDCG P R MAP EPC EPD AD α-nDCG EILD Gini

1-Random 0.000 0.000 0.000 0.000 0.989 0.755 62.16% 0.001 0.742 0.491
2-Pop 0.106 0.069 0.061 0.040 0.576 0.748 0.44% 0.078 0.749 0.001

3-IB-Cos 0.175 0.120 0.121 0.071 0.748 0.718 3.26% 0.137 0.643 0.005
4-IB-Jac 0.141 0.099 0.100 0.056 0.744 0.723 3.36% 0.111 0.637 0.005

5-UB-Cos 0.268 0.172 0.179 0.124 0.711 0.715 2.81% 0.200 0.662 0.005
6-UB-Jac 0.267 0.172 0.180 0.123 0.709 0.716 2.89% 0.199 0.667 0.005

7-UB-JMSD 0.106 0.072 0.068 0.040 0.616 0.753 1.73% 0.076 0.723 0.003
8-LDA 0.209 0.143 0.142 0.088 0.734 0.716 2.93% 0.157 0.660 0.007
9-MF 0.191 0.132 0.128 0.077 0.758 0.721 3.24% 0.146 0.654 0.008

10-PureCB 0.012 0.008 0.010 0.006 0.911 0.738 9.59% 0.030 0.659 0.020
11-CBCF 0.142 0.099 0.083 0.052 0.649 0.749 1.63% 0.100 0.703 0.004

(sim1, fir , 0, 0, 0)1−4,7−11 0.228 0.151 0.153 0.100 0.686 0.736 1.06% 0.164 0.680 0.003
(sim1, fdr , 0, 0, 0)1−4,7−11 0.224 0.148 0.149 0.098 0.685 0.738 1.02% 0.159 0.684 0.003
(sim2, fdr , 10, 30, ū)1−11 0.284 0.199 0.177 0.124 0.587 0.593 2.31% 0.179 0.551 0.005

the PureCB recommender obtains values so high of EPC. However, as we can see, very
high values in these metrics can lead to very low results in ranking evaluation.

Finally, regarding the diversity of the recommendations, PureCB outperforms the660

other techniques (if we do not take into account the random recommender as it obtains
a value of 0 in all ranking evaluation metrics) in terms of Gini and AD followed by MF,
the Popularity recommender achieves the highest value of EILD, and CBCF, followed
by UB, obtain the highest values of α-nDCG, which combines accuracy and diversity
into a single measure. These results make clear that it is very difficult to produce diverse665

recommendations under different definitions, since, like for novelty, each evaluation
metric measures a different nuance of the concept of diversity.

Now, if we compare the results from Table 4 with those of Table 5, we find that ev-
ery configuration of the proposed LCS-based user similarity outperforms some of the
baselines, namely, Pop, IB, and PureCB. Furthermore, some of the configurations also670

outperform MF and, more importantly, UB, which is the real baseline to beat, since the
proposed approach uses the same recommendation technique as UB but changing the
user similarity metric. We note that, for the subset of configurations included in Table 5
– the two most basic configurations of our approach and the best combination (with re-
spect to nDCG) –, the performance improvements are significant in every case. More675

specifically, the best LCS-based configurations outperform UB in terms of nDCG, pre-
cision, AD, and Gini, although this comparison might not be completely fair due to the
different number of parameters that can be configured in each method.

Moreover, let us analyze now why pure classic collaborative filtering algorithms
are not able to beat the best baseline, the hybrid CBCF. It is important to note that680

the HetRec dataset is biased to content-based information, since only users who have
provided both ratings and tags are considered. For this reason, these baseline rec-
ommenders have been tested in an additional experiment where a large subset of the
Movielens10M dataset – where the HetRec dataset was extracted from – was used in-
stead, including many more ratings than the HetRec dataset, and hence favoring the685

collaborative filtering algorithms. In particular, this dataset was obtained by removing
any item not included in the original HetRec dataset – which are the only ones with con-

24

tent features – to not put at an unnecessary strong disadvantage on the content-based
methods. Then, those users not in the HetRec dataset were included in the training
split, and for the remaining users, their ratings were randomly splitted following an690

80-20 training-test partition.
The results obtained in this experiment are shown in Table 6. We observe the

trend is clearly different: UB, IB, and MF algorithms outperform the hybrid baseline
CBCF, which no longer benefits from having as much content-based information as
before. Furthermore, when the same subset of configurations as before is compared695

in this context, we observe that our approaches are also able to outperform the hybrid
recommender by a large margin. Additionally, the optimal configuration in HetRec is
also comparable to the UB recommender – the best performing baseline in this case –,
showing better performance in terms of nDCG and precision, where this difference is
statistically significant at least for the nDCG metric.700

Regarding the efficiency comparison of our approaches, it should be noted that the
computational cost of LCS-based similarities is higher than classical user similarities
such as Cosine. However, as noted in Section 3.4, such difference in computation time
only affects the training time of the algorithms, which is possible to parallelize in any
case, and hence, the time can be greatly reduced. More specifically, we have obtained705

that a user similarity metric based on Cosine needs around 135.8 seconds to compute
all the similarities needed when training for the HetRec dataset, this time goes up to
2,304.5 seconds when using the most basic configuration of our LCS-based similarity.
Interestingly, by using the preference filter this training time can be reduced to 793.8
seconds, while, as discussed before, the performance remains the same even though710

less data is being used.
In summary, for the fourth research question, we can conclude that our approach is

very competitive against other state-of-the-art recommenders, both using a dataset
heavily biased towards content-based information or under a more typical situation
where more ratings are available. Specifically, very positive results have been found715

when the LCS-based user similarity uses either a pure collaborative filtering configu-
ration or when content-based information is exploited.

5. Related work

As we pointed out in Section 3.2, LCS is an algorithm that has an application in
biology [17] and file comparison [18]. However, researchers have not widely used720

it in recommendation. Notwithstanding this, there are some works where it is used
as a pattern finding algorithm, as in [33], where the authors analyzed the potential
of applying LCS in e-commerce applications by recommending items that might be
relevant for the users, reporting metrics like precision, recall, and F1. In [34], the
potential utility of LCS is introduced in an online Web Usage Mining system, obtaining725

a best case accuracy of 73%.
These are examples of applications of LCS in recommendation but, to the best

of our knowledge, there are no other references using this algorithm as a similarity
measure, as we propose in this paper. The only example we have found is our previous
work, where we introduced LCS as a similarity measure in a rating-based recommender730

system but only using it as a pure collaborative filtering approach [14]. As we have

25

shown in this paper, content-based information like directors or genres in the case
of movies, can easily be added due to the algorithm’s generality. Besides, we have
proposed four new normalization techniques to improve the recommendations and two
additional parameters were incorporated in the model that did not appear in that work.735

Furthermore, there are other techniques that can be applied for pattern matching in-
stead of LCS. Markov Chains seems to be a useful technique as shown in [35], achiev-
ing good performance under sparse conditions. In [36], the authors used personalized
Markov Chains (one for each user) over sequential data, outperforming matrix factor-
ization in both sparse and dense data.740

6. Conclusions and future work

In this paper we have presented a generic framework to define sequences from
the users’ interactions by exploiting both collaborative and content-based information,
allowing us to create hybrid recommender systems. We have also presented a user
similarity metric for collaborative filtering recommendation that can deal with these se-745

quences based on the Longest Common Subsequence (although our framework can also
work with any other sequence similarity algorithm such as those defined in the string
matching literature) and we have shown that it can produce competitive recommenda-
tions under many different contexts. Firstly, it produces better recommendations than
other collaborative filtering techniques when the dataset is too biased towards content-750

based information and secondly, when this information is closer to other rating-based
datasets, it outperforms both content-based and collaborative filtering algorithms.

Furthermore, by exploiting some of its parameters, the proposed approach could
find a good balance between execution time, diversity or novelty, and accuracy. Specif-
ically, we have improved the accuracy of our LCS similarity metric by introducing nor-755

malization functions without hurting the novelty and diversity and we have also found
that the preference filtering parameter shows a huge potential, since it does not decre-
ment the performance of the approach but it helps to reduce its computational load, im-
proving its efficiency. Nonetheless, considering the results obtained, we believe there
is still room for improvement by exploring additional contextual dimensions, which760

are straightforward to incorporate due to the generality of our sequence generation ap-
proach.

More importantly, we believe the proposed approach has further potential to be
generalized in other datasets besides those based on ratings, such as the one tested
here. As a matter of fact, both the confidence filter and the normalization functions765

can be applied to frequency-based datasets – where the interactions between the users
and the system are not bounded – and one-class datasets – where only one signal is
available in the dataset without repetitions or negative feedback. Additionally, simi-
larity metrics based on the LCS algorithm – or other string similarities or sequence
alignment algorithms such as Jaro similarity or Smith-Waterman [19] – naturally in-770

corporate sequences with repeated elements. Even though this aspect is not usually
taken into account in the recommendation field, in many cases (e.g., for music sug-
gestions or point-of-interest recommendation [37, 38]) it is common for the user to
consume the same item several times; thus, this can be an interesting characteristic of
this type of algorithms. Hence, we aim to explore these types of datasets in the future775

26

and analyze if these parameters are so beneficial in those contexts as they prove to be
in rating-based datasets.

Finally, the general model presented here might be further extended in the future
with more transformations – so that other features (like demographic information, tags,
etc.) can be exploited – and other methods to order the sequence, especially those780

using the temporal dimension whenever it is available, opening up new possibilities to
provide time-aware recommendations [39] under an integrated formulation that is not
possible with classical similarity metrics.

7. Acknowledgements

This article was supported by the Spanish Ministry of Economy, Industry and Com-785

petitiveness (TIN2016-80630-P).

References

[1] F. Ricci, L. Rokach, B. Shapira, Recommender systems: Introduction and chal-
lenges, in: F. Ricci, L. Rokach, B. Shapira (Eds.), Recommender Systems Hand-
book, Springer, 2015, pp. 1–34.790

[2] C. Xu, A novel recommendation method based on social network using matrix
factorization technique, Inf. Process. Manage. 54 (3) (2018) 463–474.

[3] M. de Gemmis, P. Lops, C. Musto, F. Narducci, G. Semeraro, Semantics-aware
content-based recommender systems, in: Recommender Systems Handbook,
Springer, 2015, pp. 119–159.795

[4] M. de Gemmis, P. Lops, G. Semeraro, C. Musto, An investigation on the serendip-
ity problem in recommender systems, Inf. Process. Manage. 51 (5) (2015) 695–
717.

[5] J. Xu, Y. Yao, H. Tong, X. Tao, J. Lu, Rapare: A generic strategy for cold-start
rating prediction problem, IEEE Trans. Knowl. Data Eng. 29 (6) (2017) 1296–800

1309.

[6] O. Kassák, M. Kompan, M. Bieliková, Personalized hybrid recommendation for
group of users: Top-n multimedia recommender, Inf. Process. Manage. 52 (3)
(2016) 459–477.

[7] R. D. Burke, Hybrid web recommender systems, in: P. Brusilovsky, A. Kobsa,805

W. Nejdl (Eds.), The Adaptive Web, Methods and Strategies of Web Personal-
ization, Vol. 4321 of Lecture Notes in Computer Science, Springer, 2007, pp.
377–408.

[8] J. L. Herlocker, J. A. Konstan, J. Riedl, An empirical analysis of design choices
in neighborhood-based collaborative filtering algorithms, Inf. Retr. 5 (4) (2002)810

287–310.

27

[9] X. Ning, C. Desrosiers, G. Karypis, A comprehensive survey of neighborhood-
based recommendation methods, in: F. Ricci, L. Rokach, B. Shapira (Eds.), Rec-
ommender Systems Handbook, Springer, 2015, pp. 37–76.

[10] Y. Koren, R. M. Bell, Advances in collaborative filtering, in: F. Ricci, L. Rokach,815

B. Shapira (Eds.), Recommender Systems Handbook, Springer, 2015, pp. 77–
118.

[11] P. Cremonesi, Y. Koren, R. Turrin, Performance of recommender algorithms on
top-n recommendation tasks, in: X. Amatriain, M. Torrens, P. Resnick, M. Zanker
(Eds.), Proceedings of the 2010 ACM Conference on Recommender Systems,820

RecSys 2010, Barcelona, Spain, September 26-30, 2010, ACM, 2010, pp. 39–46.

[12] H. Liu, Z. Hu, A. U. Mian, H. Tian, X. Zhu, A new user similarity model to
improve the accuracy of collaborative filtering, Knowl.-Based Syst. 56 (2014)
156–166.

[13] J. Niu, L. Wang, X. Liu, S. Yu, FUIR: fusing user and item information to deal825

with data sparsity by using side information in recommendation systems, J. Net-
work and Computer Applications 70 (2016) 41–50.

[14] A. Bellogı́n, P. Sánchez, Collaborative filtering based on subsequence matching:
A new approach, Inf. Sci. 418 (2017) 432–446.

[15] Y. Shi, M. Larson, A. Hanjalic, Collaborative filtering beyond the user-item ma-830

trix: A survey of the state of the art and future challenges, ACM Comput. Surv.
47 (1) (2014) 3:1–3:45.

[16] A. Bellogı́n, J. Wang, P. Castells, Structured collaborative filtering, in: C. Mac-
donald, I. Ounis, I. Ruthven (Eds.), Proceedings of the 20th ACM Conference on
Information and Knowledge Management, CIKM 2011, Glasgow, United King-835

dom, October 24-28, 2011, ACM, 2011, pp. 2257–2260.

[17] A. Apostolico, String editing and longest common subsequences, in: G. Rozen-
berg, A. Salomaa (Eds.), Handbook of Formal Languages, Vol. 2, Springer-Verlag
New York, Inc., New York, NY, USA, 1997, pp. 361–398.

[18] L. Bergroth, H. Hakonen, T. Raita, A survey of longest common subsequence840

algorithms, in: P. de la Fuente (Ed.), Seventh International Symposium on String
Processing and Information Retrieval, SPIRE 2000, A Coruña, Spain, September
27-29, 2000, IEEE Computer Society, 2000, pp. 39–48.

[19] A. K. Elmagarmid, P. G. Ipeirotis, V. S. Verykios, Duplicate record detection: A
survey, IEEE Trans. Knowl. Data Eng. 19 (1) (2007) 1–16.845

[20] B. M. Marlin, R. S. Zemel, S. T. Roweis, M. Slaney, Collaborative filtering and
the missing at random assumption, in: R. Parr, L. C. van der Gaag (Eds.), UAI
2007, Proceedings of the Twenty-Third Conference on Uncertainty in Artificial
Intelligence, Vancouver, BC, Canada, July 19-22, 2007, AUAI Press, 2007, pp.
267–275.850

28

[21] H. Steck, Training and testing of recommender systems on data missing not at
random, in: B. Rao, B. Krishnapuram, A. Tomkins, Q. Yang (Eds.), Proceedings
of the 16th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, Washington, DC, USA, July 25-28, 2010, ACM, 2010, pp.
713–722.855

[22] F. T. de la Rosa, M. T. G. López, R. M. Gasca, Analysis and visualization of the
DX community with information extracted from the web, in: K. V. Andersen,
J. K. Debenham, R. R. Wagner (Eds.), Database and Expert Systems Applica-
tions, 16th International Conference, DEXA 2005, Copenhagen, Denmark, Au-
gust 22-26, 2005, Proceedings, Vol. 3588 of Lecture Notes in Computer Science,860

Springer, 2005, pp. 726–735.

[23] I. Cantador, P. Brusilovsky, T. Kuflik, Second workshop on information hetero-
geneity and fusion in recommender systems (Hetrec2011), in: B. Mobasher, R. D.
Burke, D. Jannach, G. Adomavicius (Eds.), Proceedings of the 2011 ACM Con-
ference on Recommender Systems, RecSys 2011, Chicago, IL, USA, October865

23-27, 2011, ACM, 2011, pp. 387–388.

[24] A. Said, A. Bellogı́n, Comparative recommender system evaluation: benchmark-
ing recommendation frameworks, in: A. Kobsa, M. X. Zhou, M. Ester, Y. Koren
(Eds.), Eighth ACM Conference on Recommender Systems, RecSys ’14, Foster
City, Silicon Valley, CA, USA - October 06 - 10, 2014, ACM, 2014, pp. 129–136.870

[25] P. Castells, N. J. Hurley, S. Vargas, Novelty and diversity in recommender sys-
tems, in: F. Ricci, L. Rokach, B. Shapira (Eds.), Recommender Systems Hand-
book, Springer, 2015, pp. 881–918.

[26] S. Vargas, P. Castells, Rank and relevance in novelty and diversity metrics for rec-
ommender systems, in: B. Mobasher, R. D. Burke, D. Jannach, G. Adomavicius875

(Eds.), Proceedings of the 2011 ACM Conference on Recommender Systems,
RecSys 2011, Chicago, IL, USA, October 23-27, 2011, ACM, 2011, pp. 109–
116.

[27] J. Bobadilla, F. Serradilla, J. Bernal, A new collaborative filtering metric that im-
proves the behavior of recommender systems, Knowl.-Based Syst. 23 (6) (2010)880

520–528.

[28] D. M. Blei, A. Y. Ng, M. I. Jordan, Latent dirichlet allocation, Journal of Machine
Learning Research 3 (2003) 993–1022.

[29] T. Hofmann, Latent semantic models for collaborative filtering, ACM Trans. Inf.
Syst. 22 (1) (2004) 89–115.885

[30] M. J. Pazzani, A framework for collaborative, content-based and demographic
filtering, Artif. Intell. Rev. 13 (5-6) (1999) 393–408.

[31] M. Balabanović, Y. Shoham, Fab: Content-based, collaborative recommendation,
Commun. ACM 40 (3) (1997) 66–72.

29

[32] T. Zhou, Z. Kuscsik, J.-G. Liu, M. Medo, J. R. Wakeling, Y.-C. Zhang, Solving890

the apparent diversity-accuracy dilemma of recommender systems, Proceedings
of the National Academy of Sciences 107 (10) (2010) 4511–4515.

[33] Y. Sneha, G. Mahadevan, M. M. Prakash, An online recommendation system
based on web usage mining and semantic web using lcs algorithm, in: Electronics
Computer Technology (ICECT), 2011 3rd International Conference on, Vol. 2,895

IEEE, 2011, pp. 223–226.

[34] M. Jalali, N. Mustapha, M. N. Sulaiman, A. Mamat, A web usage mining ap-
proach based on LCS algorithm in online predicting recommendation systems,
in: 12th International Conference on Information Visualisation, IV 2008, 8-11
July 2008, London, UK, IEEE Computer Society, 2008, pp. 302–307.900

[35] T. Tran, D. Q. Phung, S. Venkatesh, Collaborative filtering via sparse markov
random fields, Inf. Sci. 369 (2016) 221–237.

[36] S. Rendle, C. Freudenthaler, L. Schmidt-Thieme, Factorizing personalized
markov chains for next-basket recommendation, in: M. Rappa, P. Jones, J. Freire,
S. Chakrabarti (Eds.), Proceedings of the 19th International Conference on World905

Wide Web, WWW 2010, Raleigh, North Carolina, USA, April 26-30, 2010,
ACM, 2010, pp. 811–820.

[37] Y. Liu, T. Pham, G. Cong, Q. Yuan, An experimental evaluation of point-of-
interest recommendation in location-based social networks, PVLDB 10 (10)
(2017) 1010–1021.910

[38] H. Wang, M. Terrovitis, N. Mamoulis, Location recommendation in location-
based social networks using user check-in data, in: SIGSPATIAL/GIS, ACM,
2013, pp. 364–373.

[39] P. G. Campos, F. Dı́ez, I. Cantador, Time-aware recommender systems: a compre-
hensive survey and analysis of existing evaluation protocols, User Model. User-915

Adapt. Interact. 24 (1-2) (2014) 67–119.

30

	plantilla_building
	building_sanchez_ipm_2019_ps
	Introduction
	Background
	On generating sequences of user profiles
	A framework to generate user profiles based on sequences
	A sequence similarity metric: the Longest Common Subsequence
	Preference and similarity filtering
	Similarity normalization
	Toy example

	Empirical evaluation
	Experimental setup
	Baselines
	Results
	Performance of LCS as user similarity
	Sensitivity to confidence, preference, and normalization parameters
	Impact on beyond-accuracy metrics
	Performance comparison with other algorithms

	Related work
	Conclusions and future work
	Acknowledgements

