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Abstract

Introns populate eukaryotic genes to a variable extent across species, being widespread in vertebrates

and mammals. While the evolutionary advantages, if any, of introns, remain unclear, their expansion

has provided the opportunity to splice genes in more than a single way, allowing the production of

different mRNAs from a single gene through Alternative splicing (AS). AS patterns change during the

development of complex organisms and diverge across different tissues and experimental conditions. These

highly reproducible changes evidences the existence of a regulatory network that ensures repeatable

responses to certain stimuli and suggest that, at least some of them, play a role in the overall physiological

response or adaptation. Not surprisingly, perturbation of some elements of this network is often associated

with pathological conditions. However, not only we are far from a complete characterization of the

molecular mechanisms that drive AS changes in most pathologies like those affecting the heart, but the

computational tools that are currently used to study these regulatory networks are limiting our ability

to extract all the information that is hidden in the data.

It has been long hypothesized that AS contributes to a great expansion of the proteome and facilitates

the evolution of new functions from pre-existing ones without gene duplication. While there are very

well known examples of how AS enables the production of different functional proteins or mRNAs, the

proportion of AS isoforms that are actually functional remains large unknown. Indeed, recent studies

from different perspectives, including both transcriptomic, proteomics and sequence evolutionary analysis

suggest that this percentage may be rather small and that much of the observed transcriptomic diversity

is driven by non-functional noise in the splicing process.

In this thesis, we have studied global AS patterns through computational analysis of large RNA-seq

datasets to characterize the causes and consequences of AS changes from different perspectives. First,

we have analyzed how AS global patterns change during heart development and disease using data from

a variety of mouse models. We found that AS changes modulate different biological processes than

gene expression ones and are associated to isoform specific protein-protein interactions. Disease patterns

partially recapitulate developmental patterns probably through the upregulation of PTBP1, which is

sufficient to induce pathological changes in the heart. Second, in an attempt to improve computational

tools for identification of regulatory elements, we have developed dSreg. This tool leverages the power of

bayesian inference and hierarchical models to pool information across the whole transcriptome to infer, not

only the changes in the activities of the underlying regulatory elements, but also the changes in inclusion

rates, outperforming competing methods and tools made for both purposes separately. Finally, we have

studied the evolutionary process driving AS divergence during mammalian evolution using models of

phenotypic evolution in a phylogenetic framework. We found that AS patterns have evolved under weak

stabilizing selection that allows widespread variability in AS patterns across species, with only about 5%

of the genes probably encoding AS isoforms with different functions. Rates of neutral evolution are high,

preventing the identification of adaptive changes at this long evolutionary scale. In summary, this thesis

provides new computational tools and knowledge about the evolution and regulation of AS in different

biological conditions and helps to better understand its relevance from different persepectives.
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Resumen

Una gran parte de los genes eucariotas están compuestos por exones e intrones. Aunque las ventajas

evolutivas de la fragmentación de los genes, en caso de haberlas, no se conocen del todo bien, su ex-

pansión ha permitido procesar los transcritos primarios de varias diferentes maneras, y por tanto, de

producir diferentes ARN mensajeros maduros. Potencialmente, esto permite la producción de protéınas

con diferentes funciones mediante splicing alternativo (SA) a partir de un único gen. Los patrones de

SA cambian de forma dinámica durante el desarrollo de los organismos complejos y se diferencian en

distintos tejidos y condiciones experimentales. Esto sugiere la existencia de un programa de regulación

espećıfico para la reproducción de estos cambios en diferentes individuos y en respuesta a est́ımulos con-

cretos, que dif́ıcilmente se habrá generado en ausencia de función y selección. De hecho, la perturbación

de algunos de los elementos que forman parte de esta red de regulación se asocia frecuentemente con

el desarrollo de diversas patoloǵıas. No obstante, estamos lejos de una completa caracterización de los

mecanismos de regulación que dirigen los cambios en los patrones de SA en la mayuŕıa de las patoloǵıas,

como las cardiacas. Además, las herramientas computacionales disponibles para estudiar estas redes de

regulación presentan una serie de limitaciones que reducen nuestra capacidad para extraer información

completamente fiable de los datos de transcriptómica.

Desde el descubrimiento de los intrones, se ha hipotetizado que el SA permite la expansión del pro-

teoma y facilita la evolución de nuevas funciones moleculares a partir de algunas ya existentes sin que

haya duplicación génica. Aunque se ha caracterizado una importante cantidad de genes que producen iso-

formas con diferentes funciones mediante SA, aún se desconoce cómo de general es este mecanismo a nivel

genómico. De hecho, estudios recientes desde diferentes persepectivas, incluyendo tanto transcriptómica

como proteómica y análisis evolutivo de las secuencias implicadas, parecen indicar que el porcentaje de

genes que generan diferentes isoformas funcionales mediante SA es más bien pequeño, y que por tanto

gran parte de la diversidad transcripcional se debe a errores en el proceso de splicing.

En esta tesis doctoral, se han estudiado los patrones globales de SA mediante análisis computacional

de grandes conjuntos de datos de RNA-seq. Esto ha permitido la caracterización tanto de las causas

como de las consecuencias del SA y sus cambios desde diferentes perspectivas. En primer lugar, se ha

analizado cómo estos patrones cambian durante el desarrollo y la enfermedad cardiaca, empleando datos

de ratón como modelo animal. Se ha visto que los cambios en los patrones de SA afectan a diferentes

funciones biológicas comparados con la modulación de la expresión génica. Estos cambios cuantitatives

suelen afectar a isoformas de SA con distintos patrones de interacción protéına-protéına. Los patrones de

SA en enfermedad recapitulan parcialmente los observados durante el desarrollo, posiblemente mediante

la re-expresión de la protéına reguladora PTBP1, cuya sobre-expresión en corazones de ratones sanos es

suficiente para inducir cambios patológicos. En segundo lugar, en un intento de mejorar las herramientas

computacionales disponibles para la identificación de las protéınas reguladoras actuando en diferentes

contextos, se ha desarrollado dSreg. Esta herramienta aprovecha el poder la inferencia bayesiana y los

modelos jerárquicos para aunar la información contenida a lo largo del transcriptoma e inferir, no sólo

los cambios cuantitativos en los niveles de inclusión de eventos concretos, sino también los cambios en la
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actividad de las protéınas reguladoras subyacentes a esos cambios de SA. dSreg funciona mejor en ambos

aspectos que los métodos previamente empleados para cada aplicación por separado. Finalmente, se han

estudiado las fuerzas genéticas que dirigen la evolución del SA como carácter cuantitativo empleando, por

primera vez, modelos de evoluci ón fenot́ıpica a lo largo de la historia evolutiva de diferentes especies de

mamı́feros. Estos resultados indican que los patrones de SA evolucionan bajo una selección estabilizadora

débil, que permite una gran variación en los patrones de SA entre diferentes especies. De este modo,

apenas un 5% de los genes codifican isoformas de SA con diferentes funciones. La tasa de evolución neutral

es tan alta que impide distinguir cambios aleatorios mediados por la mutación y la deriva genética de

aquellos que suponen una adaptación, al menos en esta escala evolutiva tan grande. En resumen, esta

tesis proporciona nuevas herramientas computacionales y conocimiento sobre la evolución y la regulación

del SA en diferentes condiciones biológicas, y ayuda a entender mejor su relevancia desde diferentes

perspectivas.
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propias ideas e intereses cient́ıficos más allá de los planteados inicialmente, y por haberme acompañado
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1. Introduction

1.1 Splicing: from prokaryotes to higher eukaryotes

1.1.1 Discovery of introns and splicing

Until the late 70’s, protein coding genes were thought to be contiguous fragments of DNA, also called

cistrons, that underwent transcription and translation to produce a single polypeptide. Thus, a gene

could encode only a single protein sequence. This idea was based almost entirely on data from prokary-

otic species, mainly Escherichia coli, and there was no reason to think eukaryotic genes would behave

differently [65]. This notion, however, was first challenged by the finding that primary nuclear RNA

transcripts appeared to be longer than messenger RNA (mRNA)s [61]; and second, by studies aiming

to map protein coding fragments to the genome of the lytic adenovirus type 2. They used electron mi-

croscopy to characterize DNA-RNA hybrids and that pairing in one of the moleculres was interrupted

by extra unpaired sequence, absent in the complementary chain. This suggested that some fragments of

viral RNA were removed and the remaining ones were joined together to form the final mRNA [55, 29].

Studies on other eukaryotic species suggested that not only coding sequences tended to be interrupted

in the genome by silent DNA, but also non-coding genes such as the transference RNA (tRNA) and

ribosomic RNA (rRNA)s. These silent DNA fragments were then called introns (intragenic regions) and

the flanking sequences that were kept in the mature mRNA were named exons (expressed) [90]. Years

later, it became widely accepted that coding or expressed regions are often interrupted in the genome by

introns across all eukaryotic lineages. At the same time, molecular biologists unveiled how these organ-

isms can remove introns before protein synthesis or final RNA maturation: first, both exons and introns

are transcribed into a primary o precursor mRNA; second, intron sequences are recognized and removed

in a complex process called splicing to finally produce functional mature mRNA [65]. Most eukaryotic

introns are spliced out by a large molecular complex known as spliceosome. The human spliceosome is

a large and highly conserved ribo-nucleoprotein complex including 5 different small RNAs and over 200

different proteins. This complex is sequentially assembled around 3 main signals in the pre-mRNA (splice

donor and acceptor sites and branch point (BP)), and catalyzes the intron removal process through 2

trans-esterification reactions [113].

1.1.2 Origin and evolution of introns

Some of the main questions raised by the discovery of introns regarded their origin and evolution, now

thought to be highly linked with the origin of eukaryotic cells [140]. Were introns present already in

the last universal common ancestor (LUCA)? To what extent? Have they been subsequently lost in

prokaryotes and archaea, or inserted and expanded in eukaryotes? During the early 80’s, the prevailing

notion was that eukaryotes emerged from endosymbiosis within prokaryotes. This, together with the

absence of spliceosomal introns across prokaryotic genes, suggested that they were introduced during or
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after evolution of eukaryotic cells (Introns-late view) [65, 140].

The introduction and expansion of introns into coding sequences in eukaryotic cells may have increased

the chances of recombination between different pre-existing functional protein elements to build more

complex protein functions [90]. Thus, the presence of introns would provide a way to greatly accelerate

protein evolution by allowing combination of pre-exisiting functions rather than by generating them de

novo by mutation of non-functional sequences. This idea, known as the domain shuffling hypothesis,

predicted that exons would encode for different isolated functional domains [33]. Such association, and

even evidence of exon shuffling, was found across a reduced number of proteins [65], including the LDL

receptor and EGF precursor [89], but the relative contribution of this mechanism to protein evolution

at a global scale has remained unclear for some time [263]. Latest studies using 88 complete eukaryotic

genomes already available found alignment of domains and exon boundaries more often than expected

by chance, particularly in chordates. However, not only this association was weak, but most domains

remain encoded by several exons, suggesting that the benefit of fragmentation may come from a further

division beyond functional domains into smaller functional elements [256].

The exon theory of genes

Despite the initial support for the introls-late hypothesis, as divergence of eukaryotic and prokaryotic

lineages became clear to be older than previously thought, the presence of introns in the LUCA and

their subsequent lost in procaryotes became a plausible hypothesis. This introns-early hypothesis was

supported by the idea that the introns-derived inefficiency could be a sign of archaic genome organization

that was negatively selected in prokaryotes and, to a minor extent, in early branching eukaryotes such as

S. cerevisiae (average of 0.05 introns per gene) [239].

The discovery of the replicating and autocatalyic introns in prokaryotic, archaeal and eukaryotic cyto-

plasmic genomes, such as that from ribosomic RNA (rRNA) 28S of Tetrahymena thermophila, suggested

that introns may pre-date, not only the origin of eukaryotes, but even perhaps the origin of cellular life

[140]. This type of introns, later known as group II introns [113], form very similar structures to those of

the hybrids between snRNA and splice sites [140], suggesting a potential common origin. Type II introns

inspired the theory of a primitive RNA world, in which the replicating ability of catalytic RNAs would

be under natural selection. With the appearance of the translation machinery, the exonic regions of these

RNAs could encode for proteins that might help the replicating activity and survival of the RNA, leading

to the differentiation between genomic and messenger RNAs. Intronic sequences would then be present

in the RNA ancestor and incorporated also to the first DNA genomes. Introns would be maintained in

the DNA genome, as this molecule lacks self-excision ability, and only removed when transcribed to pro-

duce a functional mRNA. Under this theory, introns may just be relics of a pre-cellular genome assembly

process but they ”were not introduced in response to any selection pressure for long-term evolutionary

flexibility experienced by individual organisms within population” [65]. Thus, introns could be considered

exaptations, this is, characters evolved from selection for some function different from their current use,

rather than adaptations for cellular species.

This primitive RNA world was the seed for the Exon theory of genes, which proposes that first genes

were assembled by recombination of sequences randomly encoding for short peptides (∼20 aminoacids)

that had evolved some minor structure and function. Hence, genes would naturally have arisen with

exons and introns. Introns could be occasionally removed from the gene by recombination with processed

mRNA, whereas more complex exons might arise by retro-transposition. These new longer exons may en-

code for larger functional structures, e.g. protein domains, and serve again as substrate for recombination

to form new and more complex proteins [89].

If exon shuffling was key to generate the basic protein repertoire of living cells but no longer required,
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as exon-intron structure is reorganized and modified through other mechanisms, the association between

exons and functional domains will become weaker with time. Thus, one would expect to find such

association mainly in highly conserved proteins with relatively unchanged exon-intron structure. On

the other hand, if exon shuffling has remained an active mechanism for protein evolution, new genes

assembled by exon shuffling will show more clear evidence of exon-domain association. Indeed, recent

studies support the ongoing domain shuffling idea, as the domain-exon association was stronger in more

recently re-arranged genes [256].

However, there are other processes that can explain, at least partially, the association of exon and

domain boundaries. If protein sequences are more constrained in the functional domains than in the

regions separating them, even with completely random insertion of introns, a higher proportion of these

insertions will be fixed in these inter-domain regions of the proteins, since potential changes in the protein

sequence derived from intron insertion may be less deleterious. Additionally, intron insertion may be not

completely random, but favored at some nucleotides contexts, specially if they carry specific machinery

of insertion. These regions with higher intron insertion probabilities may encode aminoacids with higher

chances of forming inter-domain regions, and thus provide an alternative explanation for the exon-domain

association [89, 65]. Thus, as our understanding about the molecular mechanisms for intron insertion and

their fitness effects increases, we may be able to tease appart the relative contribution of each process to

the exon-domain association.

Intron origin and expansion during eukaryogenesis

The study of the origin of introns is naturally linked to how they have evolved to the present patterns. If

introns were not present in the ancestral genes, then, they have been continuously acquired and spread

during eukaryotes diversification. On the other hand, if introns were ancestral to all live beings, they may

have been present only in a few genes as type II introns, and expanded in eukaryotes; or, alternatively,

introns were very abundant and were subsequently lost, not only in prokaryotes and archaea, but also

in many eukaryotic species, which show a wide variation in intron content [140]. Thus, the study of

intron evolution, not only is interesting per se, but also adds information about their origin. There have

been several attempts to fit evolutionary models to intron data, showing initially controversial results:

some models supported an scenario with massive intron loss, whereas others supported massive intron

gain, with the subsequent consequences in the estimated abundance of introns in the common ancestor.

There are, however, more known mechanisms of intron loss than for intron gain, suggesting that they

may actually be more common, at least a the mutational level [140].

These ideas about intron evolution challenged the Exon theory of genes, and links the origin of introns

with some of the key innovations of the eukaryotic cell. This modified introns-late theory proposes that

pre-existing type II introns in the α-proteobacteria endosymbiont invaded the archaeal host’s genome.

The host cell was highly unprotected from these retroelements, leading to an intron-rich last eukaryotic

common ancestor (LECA). Then, the self-splicing machinery was fragmented into different elements and

started to work in trans over the intron sequences. Introns lost the ability to replicate and self-splice

and kept only the cis-regulatory elements for being recognized by these new trans elements. This idea

is supported by the great biochemical and structural similarity between type II introns and spliceosomal

introns, and by the relative abundance of these retroelements in the α-proteobacteria compared with

archaea (closer to the protoeukaryotic host), in which they are nearly absent [113]. Thus, to prevent the

translation of the transcripts massively invaded by intronic sequences, there would be a great pressure for

compartmentalization of the splicing reaction within the nucleous or/and a more effective trans mechanism

for their catalysis. These mechanisms may not have been enough, and further mechanisms for controlling

mRNA and protein fidelity, like the non-sense mediated decay (NMD) and ubiquitin mediated proteolysis,
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could have been selected as a consequence. Whereas NMD possibly derived from a bacterial toxin-

antitoxin system containing nuclease domains similar to those employed in NMD; ubiquitin signaling

might derive from the biosynthesis pathways of molibdopterin and thyamin. The great movement and

expansion of these retroelements may have also driven the linearization and fragmentation of the DNA,

and even provided the solution for telomere shortening driven by replication: the catalytic subunit of the

telomerase seems to have evolved from the retrotranscriptase encoded by the invader group II introns

[140].

Type II introns are estimated to have invaded up to 70% of the host genome from the relatively

low abundance in α-proteobacteria (< 30 copies per genome) [139]. This expansion of retroelements is

much larger than any registered in prokaryotes, by orders of magnitude [113], and arguably possible in

an asexually reproducing host, raising doubts about the order of events in eukaryogenesis and about the

expansion of introns as main driver of every major eukaryotic innovation. This, together with the absence

of archaea carrying endosymbionts at the present, suggests that some of the eukaryotic features, such as

the nucleus, meiosis and linear chromosomes, may have pre-existed in the host cell, and have allowed the

expansion of introns rather than been driven by it [220].

An additional requirement for the massive expansion of type II introns, which at the time were likely

to be deleterious or, at most, neutral, is a small effective population size (Ne). One of the consequences

of the development of eukaryotic cells is the increase their cell size, and the subsequent slow-down on the

metabolism due to the limited exchange rates of nutrients and compounds with the external compartment.

As a consequence, not only higher eukaryotes, but also unicellular yeasts, show a reduction in Ne of several

orders of magnitude compared to prokaryotes and archaea [176], from Ne ∼ 109 to about Ne ∼ 106 in

LECA, which could have allowed the expansion of introns after the endosymbiosis in the LECA [139].

Differential retention and expansion of introns during eukaryotic diversification

Phylogenetic reconstruction of ancestral states suggests that LECA was relatively intron rich, comprising

up to 70% of the genomic DNA and possessed a complex spliceosome, even if there is a wide variability

in intron content in present eukaryotic species [139, 113]. Great differences can be observed between

unicellular and multicellular organisms (S.cerevisiae has a total of 253 introns in only 3% of its genes

compared with human genes, with about ∼7.8 introns per gene), but also within unicellular organisms

(43 % of S.pombe’s genes have introns) [14]. Thus, current hypotheses point towards a continuous net

intron loss since the intron-rich LECA, with punctual events of high intron gain. Interestingly, both rates

seem to have decelerated over time [139, 231, 113]. There have been, at least, 3 mayor episodes of massive

intron gain during the evolution of eukaryotes: at the root of the Metazoa, at the shared last common

ancestor between Metazoa and Choanoflagellata, and at the root of Ichthyosporea [231, 98] (See Figure

1.1)

The great variability in the rates of intron loss and gain during the evolution of eukaryotes has

puzzled scientist for a long time, who have come up with new molecular models able to explain such

complex mutations, including intronization of exonic sequences, intron transposition, insertion mediated

by transposon, insertion of group II introns, reverse splicing and retrotranscription and template switching

[116, 237, 238, 307, 306]. Among them, intronization of exonic sequences has been of particular interest,

as it provides a completely intrinsic and simple mechanism: single point mutations can easily create

new splice sites with low affinity, which can be maintained in the population as it has a very low fitness

cost, possibly invisible to an eukaryotic organism with low Ne. At the same time, a mutation creating

a new stop codon or frameshift in the coding sequence may take place. If the alternative splice site

allows skipping this new modification, it will be selected to avoid the potential deleterious effect of the

resulting truncated protein, by just removing a small exonic sequence. This model predicts some of
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A B

Figure 1.1: Intron evolution. A Hypothesis of invasion of type II introns accompanying the endosymbiosis
as a key step in eukaryogenesis (from [113]). B Reconstructed evolutionary history of intron content along
eukaryotic diversification [98]
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the observed biases in the gene structure such as the accumulation of new and shorter introns in the 5’

end of mRNAs, where protein truncation may have stronger fitness consequences and thus intronization

of short sequences may be more strongly selected [48, 49]. Cryptic splice sites play an important role

in the position in which introns appear in a gene, not only because they may allow production of a

minor alternative isoform after the appearance of premature stop codons; but also may favor spliceosome

dependent intron insertion [240]. However, these mechanisms fail to explain the origin of recently created

introns. As more and more genomes become available, the power to identify patterns that may contribute

to explain intron creation are expected to increase [307, 306, 316]. Recently, a great expansion of introns

mediated by non-autonomous DNA transposons has been reported in Micromonas pusilla and Aureococcus

anophagefferens. These transposable elements carry one splice site, whereas the other is co-opted after

transposon insertion allowing perfect splicing of newly created introns. Episodic expansion of this type of

transposable elements may explain the punctual expansions of introns during eukaryotes diversification

and some of the observed biases [108].

Population bottlenecks may have played a major role, not only for the early expansion of introns

in LECA, as previously proposed [140], but also for the selective maintenance and expansion of introns

during vertebrates diversification, since intron content is highly associated with small Ne in extant species

[176, 178, 180, 139, 231]. These events of large intron expansions, although potentially deleterious or

neutral in the first place, may have contributed to increase the genetic variability available to selection

to an extent unreachable by species with large Ne [176, 178, 180].

1.1.3 Origin and evolution of alternative splicing

Accompanying the first expansion of type II introns in the LECA, current hypotheses suggest that

trans-complementation of the splicing reaction into a major complex spliceosome composed by 5 small

nucleolar RNA (snRNA) and about 75 different proteins was required to relieve the selective pressure

from individual introns to this large and highly conserved molecular complex and allowed an increase in

the speed and fidelity of the splicing reaction [113]. Still, variation in the splicing process may occur,

allowing different types of Alternative splicing (AS) events, including intron retention (IR), exon skipping

(ES), alternative acceptor (AA) and alternative donor (AD) selection, mutually exclusive exons (MXE),

and many more complex combinations [99, 202].

The type and frequency of each type of event is naturally constrained by the gene architecture in each

species, e.g. very few genes have more than a single intron in S.cerevisiae, yielding ES events virtually

impossible. The simplest and most prevalent event across eukaryotes is IR, particularly in plants [97, 280,

226, 50], as it may happen with as few as 1 intron per gene. Despite the few hundred introns populating

S.cerevisiae genes, these are enriched in ribosomic proteins. Their retention increases upon aminoacid

depletion and, coupled with the NMD, mediates the downregulation of the translation machinery to

compensate the lack of nutrients in the media as a way to modulate the translation machinery [239].

Indeed, intron removal show little to no fitness effects in normal conditions, but introns provided resistance

to starvation by repressing ribosomal genes through TORC1 signaling [212]. These introns may even have

a role per se after being spliced out from the transcript, as their removal regulates cell growth in yeast

through TORC1 signaling [197]. S.cerevisiae has not only few, but short introns. In contrast, S.pombe,

diverged from S.cerevisiae 370 million years ago, has many more introns, with splicing signals more

similar to those of metazoa, but they remain as short as in S.cerevisiae. Splicing in this species takes

place through intron definition (ID), this is, by recognizing the signals defining an intron and splicing it

out. As S.pombe only shows IR events, not only intron number, but also intron length is thought to be

a key determinant of the splicing mechanism and of the type and prevalence of AS events that can be

produced [14].
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More complex eukaryotes, especially bilateria, and vertebrates within them, have more abundant and

longer introns. Recognition of splicing signals in such a long sequence may be more difficult, leading these

species to use a different splicing mechanism focused on the recognition of exons, known as embryonic

development (ED). This mechanism is associated with other types of AS events beyond IR; i.e. ES,

alternative splice donor and acceptor sites; now derived from variation in the recognition of whole exons

or exon boundaries by the splicing machinery [97]. These types of events are associated with weaker splice

sites and more conserved intronic sequences, to which regulatory proteins potentially bind to modulate

their recognition by the spliceosome [14]. Conservation of AS across highly diverged eukaryotic lineages,

together with the high intron density and relatively weak splice sites expected in the LECA, suggest that

alternative splicing may be ancestral to all eukaryotes, and that fast growing species, like S.cerevisiae,

have lost alternative splicing together with introns and the optimization of splicing signals for greater

mRNA processing efficiency [112, 115, 130, 113].

Regardless of whether AS was ancestral to all eukaryotes or not, alternative processing events have

been continuously evolving, leading to the observed patters in extant species. Thus, comparative studies

have allowed identification of mechanisms for the generation of alternative exons in a gene architecture

characterized by long introns and short exons [130]. One of such mechanisms is the alternativization

of constitutive exons. Accumulation of mutations weakening the splice sites (mainly the 5’ splice site)

lead to suboptimal recognition of the exons and partial ES. These mutations may or may not be main-

tained during evolution depending on the fitness consequences and the extent of partial ES. A different

mechanism, favored by long introns, is the exonization of intronic sequences de novo. Mutation may

create, by chance, over a long evolutionary times and sequence, the minimal splicing signals required for

partial recognition and splicing by the spliceosome. Whereas the first mechanism creates a new isoform

by removing part of the original protein, the former does so by adding a completely new coding sequence

[130]. Exonization of intronic sequences was thought to be the main mechanism generating new alterna-

tive exons across mammals, since most new exons have an homologous sequence in the intronic species

of closely related species [5]. These new alternative exons are mostly included at low rates [313], in a

tissue regulated manner, and are associated to changes in tissue regulated expression, upstream intronic

deletions and increased nucleosome occupancy [193]. Of them, an increase in nucleosome occupancy pre-

dates the exonization event, suggesting that transcription slowdown of the RNA pol II by nucleosomes

increases the chances of de novo exon formation [163]. Interestingly, exonization events are also associ-

ated to repetitive sequences: up to 45% of new human exons are associated to known repeats, mostly

of the Alu family [5]. Alu elements are primate-specific retroelements that have expanded to amount

more than 10% of the human genome. This element carries multiple sequences that are very similar to

splice sites, facilitating the creation of splice sites by random mutation, even if that may happen millions

of years after the insertion of the transposable element in the genome. These newly created exons are

also usually spliced at low rates [259]. Similar associations have been found in other lineages: 65% of

new exons in rodents also derive from repetitive elements [259]. Thus, transposable elements may have

played a key role in shaping intron insertions during eukaryotes evolution [108], but also for exonization

of intronic sequences into alternatively spliced exons [259, 5, 130].

1.1.4 Gene duplication and alternative splicing: interconnected mechanisms

generating new functions

Gene duplication has been known for a long time to be an important mechanism in evolution, as it

provides an opportunity to build new functions from an already existing one without losing it or having

to start from scratch. Thus, it is not surprising that gene duplicates are found across all domains of

life, and that a large percentage of genes in any genome are originated by gene duplication: estimates
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range from 17 to 65% depending on the species, suggesting rates of gene duplication similar to those of

nucleotide substitution. Gene duplicates, at the time of duplication, evolve neutrally and pseudogenize

most of the times; a few duplicates, however, can either maintain the original function thanks to an

increased gene dosage, evolve a new function, or subfunctionalize i.e. differential retention of ancestral

gene functions into the separate gene duplicates [205, 310, 177, 179].

Soon after the discovery of introns, it became clear that alternative splicing could be a complementary

mechanism, similar to gene duplication, for the generation of new protein functions. Gilbert already

proposed that the chances of retention of gene duplicates may be higher when the gene had two already

pre-existing functions e.g. generated by alternative splicing, to subfunctionalize into the different gene

copies [90]. Comparative studies, mainly performed on mouse and human genomes, showed an association

between the two mechanisms: the size of a gene family is inversely correlated with the frequency of

alternative splicing, specially in recent duplication events. At the same time, there is a positive correlation

between duplicates age and alternative splicing, suggesting that AS is slowly gained after gene duplication

[141, 53, 145]. Very recent duplicates, however, showed higher levels of AS, suggesting an early expansion

of splice isoforms after gene duplication, possibly due to relaxed selection, and thus increased ground for

subfunctionalization of splice isoforms into the different gene copies [120]. When restricted to genes with

highly alternative and ancestral MXE, some of them show clear subfunctionalization patterns, whereas

other seem to maintain both exons within the paralogs, suggesting that evolution of alternative gene

duplicates may be affected by gene properties or function [1]. A potential way of subfunctionalization

is through partitioning of expression patterns across tissues. In this sense, alternative duplicates tend

to show more specialized tissue-regulated gene expression patterns, as do gene duplicates with divergent

exon structure [266, 145]. Similar trends have been described in C.elegans, but not in plants, where

the opposite is actually found. This pattern suggests potential differences in the impact of AS on the

retention of duplicates depending on the type of AS, as ES is prevalent in animals but not in plants [111].

1.1.5 Function and fitness consequences of alternative splicing

The finding of introns and their distribution across the genomes of species populating the earth have

puzzled scientists since their discovery. One of the fundamental questions in the field, which is not

quite clear yet, is: what is the function, if any, of introns and splicing? In other words, what are the

fitness consequences of alternative splicing and its contribution to species evolution? Ever since their

discovery in the late 70’s [55, 29], scientists have proposed a plethora of reasons and theories of all

the possible benefits that may derive from dividing genes in pieces along the genome [90]. The first

hypothesis, as previously discussed, was the domain shuffling hypothesis and its developed version as

the Exon theory of genes to explain the early origin of life and the assembly of the first proteins from

smaller functional elements [90, 89]. This compartmentalization of protein information into different

units called exons may not only facilitate the recombination between different variants within the same

gene and re-organization of protein domains or functions into new proteins, but also accelerate protein

sequence evolution: mutations at splice sites can easily result in the partial or complete exclusion of exon

sequences from the mature mRNA and therefore in the removal of a stretch of aminoacids in a mutant

protein. This may increase the potential fitness effect or relax selection in the partially skipped protein

region [65]. A very special type of alternative splice acceptor involves the selection of splice sites that

are separated by only 3 nucleotides at the frequently observed NAGNAG sequences, which gave name

to this type of event. They have been associated to rapid changes in exon size during evolution and to

contribute to the biased codon composition at the beginning of exons. Thus, these highly variable AS

events may contribute to accelerate protein evolution at the beginning of the exons. These events allow

the introduction or removal of a single aminoacid into the protein, which is highly biased by the phase
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e.g. phase 2 exons are strongly enriched in adding serine and arginine residues to the protein, potential

phosphorylation targets [37].

Despite the early focus on the impact of introns in protein sequence evolution, Gilbert already noticed

that variation in the splicing process may allow one gene to simultaneously encode different functions

by selectively including in the final mRNA different functional elements [90]. Indeed, the first cases of

alternative splicing were characterized very soon after the discovery of introns. For instance, alternative

splicing of the µ chain of IgM produced two different mRNAs encoding functionally different proteins by

selectively including a domain that determines the IgM to be secreted to the media or kept as a membrane

protein [66, 7]. In the case of pyruvate kinase gene (PKM), alternative splicing enables the production of

a second isoform PKM2, which can specifically translocate to the nucleus and interact with transcription

factors to regulate changes in gene expression promoting the Warburg effect in cancer [304]. However, one

of the classical and most famous examples can be found in the sex determination system in Drosophila

melanogaster. In this species, sex is controlled by the switch gene Sex lethal (Sxl), which drives female

development. It is inactivated in males by including an exon whose inclusion produces an alternative

mRNA with an in frame stop codon that is subsequently degraded by NMD [28]. Sxl is itself an RNA

binding protein (RBP) and regulates its own splicing to ensure that the frame shifting exon is skipped in

females once Sxl is active. Although this exact mechanism is not widely conserved, different insects have

independently evolved splicing-regulated sex determination systems, including Apis mellifera and Musca

domestica [241].

Thus, alternative splicing enables one gene to encode different protein isoforms, but may work also as

a post-transcriptional regulatory mechanism to modulate mRNA levels in coordination with the NMD

pathway[151]. This process, named regulated unproductive splicing and translation (RUST), is used by

many RBPs to modulate their own and other RBPs’ and regulators, like CDC-like kinases mRNA levels

e.g. SRSF1, SRSF2, PTBP1/2, MBNL1, TRA2B [36, 151, 262]. RUST is widespread and conserved

among RBPs and has evolved independently for many of them, even within the same gene family. This

high prevalence of an apparently inefficient regulatory mechanism may be explained by the benefits of

self-regulation (protein levels act simultaneously as intrinsic sensor and regulator) and high evolutionary

accessibility: there are many possible splicing variants and at many regions of a gene leading to aberrant

mRNAs targeted by NMD [150]. Although RUST appears fundamental to form very interconnected

alternative splicing regulatory networks, it is not limited to RBPs self-regulation. Quite the opposite, it

appears to be relatively general: a good part of the products derived from alternative splicing events in

humans are predicted to be targeted by NMD [151]. In particular, IR has been associated with decreased

expression levels across tissues in mammals and appears to be a relatively conserved mechanism for fine-

tuning gene expression [280]. This regulatory mechanism requires the alternative splicing event to be

located in a protein coding region. However, a good part of alternative splicing events are found in the

UTRs of the mRNAs. These events may however retain regulatory potential, by including sequences with

subcelullar localization signals for mRNAs, or modulating stability (directly or through miRNA targets

inclusion) or translational efficiency [151]. For instance, regulation by alternative splicing of binding sites

in 3’UTR of SR proteins, which function as molecular adapters of the export machinery to mRNAs, may

affect their transport rate to the cytoplasm and, indirectly, the abundance of the encoded protein [198].

1.1.6 Debating functional alternative splicing and splicing noise

Since the discovery of introns and splicing, other scientist have been arguing against them playing a

fundamental role in evolution, at least, in general terms: ”Thus, in terms of beneficial effects on the

fitness of organisms, we almost certainly cannot account for the presence of the majority of individual

introns, nor for the propensity to have introns at all, even though introns may on the average represent
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as much as 90% of the length of a gene and perhaps as much as half of the total DNA in some complex

eukaryotes such as human” [65]. Thus, introns, rather than being kept and expanded in ”highly evolved”

or more complex organisms, may actually have negative or no fitness consequences whatsoever, and more

freely expand in those species with small effective population size (Ne), where selection is not sufficiently

efficient to remove them from the population [178, 175]. Indeed, the expansion of both introns and exons

associated to transposable elements [108, 259, 5, 130] suggest that, at least at their initial expansion,

have no major fitness consequences.

In the human genome, the percentage of genes with evidence of undergoing alternative splicing has

been increasing with the development of new technologies: from first estimates of about 74% based on

exon junction microarrays [122] to about 95% of genes based on RNA-seq data [209, 202]. Nowadays, it is

widely accepted that there is widespread variation in the splicing process leading to a plethora of splicing

variants that can be expressed in mammalian cells. During the last 40 years, the number of characterized

splicing isoforms with different functions has been increasing [99], but much more slowly. Thus, it raises

the question of how much of this transcriptome diversity is actually translated into protein or has any

other functional role, a topic under intense debate over the last years [202, 276, 277, 70, 34].

First transcriptome-wide studies struggled to consistently find gene categories associated to alternative

splicing, going from enzymatic to immune and neural functions [151]. This may have been limited by

data availability, as later studies on regulated alternative splicing seem to coincide in genes related with

cytoskeleton, ion channels and vesicle secretion [92, 221, 125]. Whereas associating up or down-regulation

of the expression of genes with certain categories provide information about the function of the gene

expression regulation in a particular scenario, it is more difficult for alternative splicing, as the impact

would greatly depend on the actual part of the protein that is affected and on the specifics of its molecular

function. Thus, it is more useful to associate alternative splicing events, not necessarily with genes, but

with functional domains. Such studies show an association with KRAB, ankyrin repeat and tubulin-

binding domains, which mainly mediate protein interactions [227]. Following this idea, several protein

properties or features have been associated with alternatively spliced exons: they are mainly associated

to predicted phosphorylation sites, disordered regions linking different functional domains, which tend to

remain mostly unaffected by AS, and small linear motifs that are potentially involved in protein-protein

interactions [194, 41, 296, 114, 87, 305]. Altogether, this suggests a non-random distribution of alternative

exons along protein regions and functions. Whether it is beneficial to have alternative exons encoding

protein sequences with certain properties, or it is detrimental to have them in sequences with opposite

properties remains an unsolved issue.

As any biochemical reaction, the splicing reaction is not 100% efficient [99]. This inefficiency could

explain, at least partially, the great variety of observed mRNA isoforms. Several sources of evidence point

in that direction, although counter-arguments have been made for some of them.

• Most of these isoforms are predicted to be targeted by the NMD pathway and therefore degraded

[151]. Although this suggests that few of these transcripts are actually translated into protein,

and most of them will be degraded by the NMD, they may still have an important regulatory role

through RUST, as previously described [150].

• Most genes have a single major isoform expressed at greater levels [70]. Although low abundance

of the alternative products is more parsimoniously explained by a relatively low error rate in the

splicing process, it does not necessarily imply that the low abundant transcripts are not important

[34].

• If splicing errors are a byproduct of optimizing global splicing efficiency, stronger selective pressure

will be placed on highly expressed genes to reduce error rates. Even if highly expressed genes
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provide higher power to detect more splicing variants, they showed, in average, lower transcript

diversity than lowly expressed genes [218]

• Another gene property that is expected to be negatively correlated with the number of transcript

isoforms derived from a single gene is the number of introns: the more introns, the more likely is

that at least one of the splicing reaction fails and generates a different isoform. A simple stochastic

noise model accounting for number of introns and expression predicts a great deal of the observed

transcript diversity [192]

• Proteomics fail to detect most of the predicted protein isoforms [276]. Nonetheless, high throughput

proteomics is known to suffer from technical limitations, and has many difficulties detecting low

abundant proteins. Although the authors estimated the proportion of estimated protein isoforms

that are detectable taking into account these limitations and was still much higher than the observed

ones, ribosome profiling experiments suggest that most of these isoforms are actually bound by the

ribosome, and thus potentially translated [297]. This is not incompatible with proteomics results if

most of these peptides are unstable or degraded, since NMD requires a pioneer translation round

for detecting premature stop codons [170].

• Alternative exons are under weaker purifying selection at the sequence level in human populations:

they show ratio of non-synonymous to synonymous substitutions (dN/dS) ratios and allele frequen-

cies similar to neutral expectation [277]. This is a direct consequence of the first argument: if a

good amount of them are not even protein coding, there would be no purifying selection operat-

ing on the protein sequence, but they may still have regulatory potential. Moreover, there may

be heterogeneity within alternative exons: while most alternative exons may evolve under weaker

stabilizing selection than constitutive ones in average, the same pattern may derive from a small

percentage of positively selected alternative exons within a larger set of negatively selected back-

ground. Indeed, previous studies show that about 27% of aminoacids substitutions between human

and chimp in alternative exons have been fixed by positive selection [224]. Thus, alternative splicing

may contribute to lineage specific adaptations.

One, maybe the most definitive, way to settle the debate is the characterization of the function the

alternative splicing isoforms, either at the regulatory mRNA level or at the protein function level, and

unify this information in a carefully curated database. Some efforts in this direction have already been

made, although mainly focused on human, mouse and other vertebrate species [268, 32]. This exhaustive

work, although necessary, will take a very long time to yield more accurate estimates of the proportion

of functional splicing variants in a given species.

1.1.7 Approaching AS function through comparative studies

The mere existence of many alternative splicing isoforms for most genes does not necessarily imply that

they are functional, nor does it its association with expression changes, which may not have any impact

themselves or changes in protein sequence with uncertain impact on the protein function most of the times.

Inferring functionality is therefore a rather difficult task. A way to approach this question indirectly is

to study the underlying evolutionary forces driving its evolution: functional features are more likely to

be maintained during evolution, whereas non-functional traits are more likely to diverge. Alternative

splicing conservation can be studied at different levels.

The first level regards the conservation of the alternative splicing event itself, this is, whether the

two or more ways to process a transcript is maintained in orthologous genes of different species, or

more precisely, if we have detected the different splice variants across these species. First studies during
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the early 2000’s seemed to obtain very variable estimates, from 8% to 98% conservation of alternative

splicing events were reported to be conserved between mouse and humans [151, 208]. These studies were

mainly based on EST information with uneven coverage across the different genomes, resulting in different

statistical power to detect such AS events and hindering the interpretation of the results. What this type

of approach allowed, however, was the discovery that most often the ancestral isoform was the longest,

suggesting that most of the alternative protein isoform derive from alternativization of constitutive exons

rather than exonization of intronic sequences. De novo exon formation seemed to be a minor but still

relevant mechanism for generation of new protein isoforms [137]. Although it is unlikely that newly arisen

exons provide novel functional sequence to a protein, it is more likely to produce a target of NMD, which

could be subject to selection if such regulation becomes beneficial [151].

Alternative splicing can be studied also quantitatively: instead of assessing whether a certain isoform

or just one more than one isoform can be produced in a certain species or scenario, one could aim to

quantify or estimate the proportion of each isoform Ψ. Microarray technologies using exon junction

sequences allowed for the first time to quantitatively study alternative splicing globally in a particular

sample. We obtained the first estimates of tissue-specificity of alternative splicing patterns and found

evidence for 74% of human genes to be alternatively spliced [122]. Using this technology in a comparative

setting, it was shown that Ψ patterns are dynamically regulated during C.elegans development, and highly

conserved when compared with C.briggsae. Similar trends were found when comparing Ψ values between

human and chimp in brain and heart tissues [117, 43]. However, the fact that microarrays had to be

designed a priori led to only examining a small amount of already known and conserved ES events in

these studies. With the development of RNA-seq techniques, it became possible to interrogate all splice

variants, known and unknown, across the whole transcriptome of several vertebrates species [194, 21].

These seminal studies showed an overall poor conservation of exon Ψs across the different species, down

to 15% of conserved events between human and frog. In contrast to gene expression patterns, which are

more similar within tissues than within species, AS patters are highly species-specific, except for a reduced

set of conserved alternative exons across all species, which are regulated in a tissue-dependent manner.

Moreover, Ψ values are more conserved in brain, which is also the tissue with more different splicing

profiles when compared with other tissues in the same species [194, 21]. Interestingly, introduction of

the human chromosome 21 into a mouse cell lines shows splicing patterns similar to those in human,

suggesting that divergence of AS patterns are mostly driven by changes in cis-regulatory elements [21].

Similar conclusions have been obtained in comparative studies with different sets of species, like Drosophila

and cichlids [88, 254].

Conservation per se, however, is insufficient to support the functionality of splicing rates, because we

do not know how splicing rates evolve under neutral evolution, and thus can not calculate the deviation

from this pattern. Although some have argued that these highly species-specific patterns suggest that

AS patterns may drive or be associated to phenotypic diversification [21, 88], these patterns are more

parsimoniously explained by an scenario of mostly neutral evolution of splicing rates Ψ in the absence of

more clear evidence. When studying selection at the sequence level, we compare the observed substitution

rate in a region of interest with some sequences that we expect to evolve neutrally, such as synonymous

sites. Unfortunately, there is not such a clear way to define AS variants evolving neutrally to approach

the problem with the same strategy. Alternatively, one can study the genetic forces shaping character

evolution using of models of phenotypic evolution in a phylogenetic framework [73, 42, 82, 58]. These

methods have been broadly applied to study macroscopic quantitative characters for a long time, and

started to be applied to model the evolution of molecular traits such as gene expression over the last

years [38, 26, 124, 233, 232, 47, 52]. These models allow, not only to estimate the strength of selection

constraining a particular trait in a certain clade, but also to infer changes in phenotypic optima along

the phylogeny. Using these models, it was shown that gene expression patterns evolve under a relatively
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Figure 1.2: Spliceosome assembly on the intron and steps through which the splicing reaction takes place.
Extracted from [80]

weak but clear stabilizing selection, and have proposed some interesting adaptive changes linked to diet

changes in humans [233]. This approach, however, has not been applied to study alternative splicing

evolution, in part due to the inherent difficulties introduced by the nature of AS data from RNA-seq

experiments as compared to gene expression.

1.2 Regulation of alternative splicing

The splicing machinery, a large molecular complex, assembles around the intron to remove it by recog-

nizing 4 main elements across the introns. In the first place, U1 snRNA binds to the 5’ splice site or

splice donor by base pairing of a few nucleotides. The SF1 and U2AF proteins bind to the BP and PPT,

together with the U2 snRNA. The interaction between U1 and U2 bound to the boundaries of an exon

allows the recruitment of the U4/5/6 complex and mediates the nucleophilic attack of the BP to the 5’

splice donor. The splice donor is then free to attack the 3’ splice acceptor to bind the two exons together

and release the intron lariat [80] (Figure 1.2). In exon definition, SR proteins bind to the exon body and

allow the interaction between the U2 complex and the U1 bound to the 5’ splice site of the exon to be

spliced. This interaction enhances the recognition of the exons within the long intronic sequences [14].

From now on, we will focus on the regulatory mechanisms as described.

In this reaction framework, one can imagine that the splicing reaction efficiency can be modulated by

interference with any step of the process, which can be classified in to major classes depending on their

nature: cis and trans. Cis-elements are located nearby the splice sites and are genetically linked to the

splicing outcome. Cis-elements in the RNA sequence are bound by trans-regulatory and mediate their

interaction with the spliceosomal machinery for modification of the splicing outcome, either enhancing it

or inhibiting it.
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1.2.1 Cis-regulatory mechanisms and the genetic architecture of splicing rates

Besides the 4 key regulatory elements present in every intron, there are other cis-acting elements on

the RNA sequence, known as splicing enhancers and silencers, to which different regulatory proteins,

including SR and hnRNP proteins, can bind to facilitate or block the recognition of exons or introns by

the spliceosome [51]. Naturally, cis-regulatory elements remain constant within an individual along the

developmental and differentiation trajectories and thus cannot account for differences between splicing

patters within a given individual in different environmental conditions. However, between individual

genetic variation in these cis-regulatory elements lead to differences in the splicing patterns and can

provide information about the genetic architecture of splicing rates i.e. how the DNA sequence determines

the phenotype.

Large studies genetic association studies in human populations, like GTex, have identified genetic

variants associated to changes in splicing rates. These variants are strongly associated with the splice

sites, but are found all along the transcripts, suggesting a complex genetic architecture. Moreover, the

effect of these variants was found to be mostly the same across tissues even if there was a relatively high

tissue-specific non-genetic variation in splicing rates [196, 3]. These association studies are an indirect

way of assessing the effect of genetic variants on the different traits. However, both the environment and

the genetic context, together with population structure, hinder the inference of causality. An alternative

approach to better understand how genetic variation controls splicing rates is deep mutational screening

(DMS). These assays test the effect of large number of mutations and their interactions on the splicing

rates of mini-gene constructs derived from real exon sequences in a more controlled biological context.

Mutations affecting Ψ are distributed all along the exon, most of them have a negative effect on splic-

ing rates and show extensive pairwise epistatic interactions between different genetic variants and gene

contexts [123, 299]. This highly epistatic landscape, in which the effect of a mutation depends on the Ψ

of the background sequence, can be easily explained by a competition model between splice sites with

different affinities for the spliceosome, which are affected by mutations or variants [16].

1.2.2 Splicing regulation by trans-acting factors

Cis-regulatory elements are bound by trans-acting factors through a RNA binding domain and modulate

the assembly or activity of some components of the spliceosome to enhance or prevent the splicing reaction.

This regulatory effect is mediated by protein-protein interaction domains that are also present in these

RNA binding protein (RBP)s. These elements can act at every step of the spliceosome assembly and even

during the conformation changes that mediate the catalysis of the trans-esterification reactions resulting

in intron removal [51]. Thus, changes in the activity of RBPs typically results in dynamic regulation

of splicing patterns. Splicing patterns dynamically change during embryonic development and across

different tissues like liver, brain, skeletal and cardiac muscles; suggesting the existence of an underlying

regulatory network driving them in a coordinated manner [18]. It is relatively well studied that regulated

alternative splicing requires relatively weak splice sites, such that modulation of the activity of splicing

regulators can effectively modify the splicing rates [14, 113, 19]. Interestingly, no association between

splicing and expression changes is generally found, suggesting the uncoupling of the two mechanisms,

except for IR events [19, 280].

Over the last years, much effort has focused on the identification of the binding targets of the RBPs

enconded in our genome, hoping to improve our understanding of the regulatory mechanisms behind these

dynamic changes in splicing rates. First large scale systematic assays of in vitro RBPs binding affinities

to different RNA sequences found a great conservation of these binding affinities of homologous proteins

across metazoan. Most RBPs showed binding to single stranded RNA with no apparent preference for

RNA secondary structures. Although they showed in vitro binding was a relatively good predictor of
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in vivo binding [225], several high-throughput techniques have been developed to examine the binding

specificity in vivo of some RBPs [265, 236, 281, 199, 13]. With time, the results of these experiments

have been collected in different databases, like DoRiNA, starBase2, CLIPdb or CLIPZ [301, 35, 131, 158].

Later, as part of ENCODE consortium, a much larger set of human RBPs have been characterized in

cell lines, showing a larger context and RNA structure dependent in vivo binding for most RBP than

previously anticipated. This greater dependency on RNA structure could explain most of the differences

from in vitro predictions [64, 267], leading to the development of complex tools that incorporate 2D and

3D RNA structure information for inference and prediction of binding preferences [311, 78, 187, 210].

Thus, RNA structure can play an important role in regulation by exposing or masking cis-regulatory

elements. However, it can also act directly by directly blocking the recognition of splice sites [251] or

whole exons e.g. exon 6b of chicken β-tropomyosin can form stem and loop secondary structures that

prevent its inclusion in the mature transcript [51].

RBPs, by definition, bind to RNA, but they can perform a wide variety of functions besides splicing

regulation, like mRNA transport, stabilization and degradation [198] e.g. by interacting and binding with

micro RNA (miRNA) to their targets [204]. These functions are probably not mutually exclusive, given

the conservation of motifs in different regions of the transcripts that are relevant to different processes [225]

e.g. CELF4 has been reported to regulate both splicing and translation [142, 143, 289], whereas MBNL1

can regulate both splicing and mRNA decay by binding to exons boundaries and 3’UTR, respectively.

To add more complexity, regulators may simultaneously act as inhibitors or activators depending on

the binding location [51] e.g. MBNL1 blocks splicing when binding to the upstream intronic flank, but

promotes it if binding to the downstream intron [186]. Competition for binding sites with other splicing

factors may explain the dual regulatory role of many RBPs, working both as activators and inhibitors

[51].

Although most of the research on splicing regulators has been naturally focused on RBPs, recent work

suggest that a good amount of transcription factor (TF)s can actually bind RNA and modulate splicing

rates [103]. Additionally, splicing regulators have been mostly studied in isolation, but there are well

known cases of interaction between the binding of different regulators e.g. SRSF7 and hnRNPF compete

for binding to the sample cis-regulatory element in exon 2 of α-tropomyosin [51]. Thus, little is known

about how different RBPs interact, coordinate and compete to create a more complex and rich regulatory

network modulating and maintaining splicing rates.

1.2.3 Kinetic model of co-transcriptional splicing and derived regulatory fea-

tures

Splicing takes place simultaneously to transcription by RNA polymerase II, 5’ capping and 3’ polyadeny-

lation, suggesting a potential interaction between these processes. A good number of proteins interacting

with the RNA polymerase II complex are known splicing regulators. These interactions are thought to

increase overall efficiency by enhancing binding of the spliceosome to the newly synthesized pre-mRNA

before its diffusion. Mutants of the RNA polymerase II with reduced elongation rates showed altered

the splicing rates, both in vivo and in vitro. This regulation can be easily explained by a competition

model between splice sites: high elongation rates will shorten the time a splice acceptor is not competing

with following ones, increasing the chances of alternative splicing [16, 251, 200]. During exon definition,

slow elongation may also favor the recruitment of factors to the upstream exon before the recognition of

the second one. However, not every exon is dependent on transcription elongation rates which can only

be explained by a mathematical models with 3, rather than 1, limiting steps in the splicing kinetics i.e.

transcription, assembly and catalysis [200].

There is a strong association between exons and nucleosomes across a wide range of animals, including
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C.elegans, D.melanogaster and M,musculus, possibly driven by GC content bias [243]. This association

appears to be not only at the positional level, as human exons have an average length of ∼150 nucleotides,

very similar to the amount of DNA that can be wrapped around nucleosomes [271, 243]. Interestingly,

changes in nucleosome occupancy are associated to changes in splicing rates, suggesting a potential

regulation of splicing rates [109, 110]. Indeed, nucleosome occupancy is associated to the repression of

pseudo-exons and its increase creation of new exons during evolution [271, 193, 163]. Current models

explain these observations as consequence of the slowdown of the transcription at nucleosomes, which

facilitates the recognition of the exon and delays the appearance of other competing splice sites [271, 110].

This association may be bidirectional, as modification of splicing patters seem to also induce changes in

nucleosome occupancy, potentially through interactions between RBPs and histone modifying enzymes

e.g. Hu splicing factors interact with HDAC2 and inhibit its acetylase activity [129, 200].

The kinetic model predicts that any local variation of the transcription rate by RNA polymerase II

or their interaction with splicing factors, including chromatin marks, DNA methylation or chromatin

remodelling proteins and complexes; can serve as indirect regulatory mechanisms for AS e.g. H3K36me3,

a modification in actively transcribed genes, can recruit PTBP1 through MRG15, which then binds to

their targets in pre-mRNA and modulate splice site selection [200].

1.2.4 Towards the splicing code

As more and more factors involved in regulation or associated with variation in splicing rates were

discovered, the idea of integrating all this knowledge in what came to be known as splicing code became

one of the most challenging and important tasks in the field. The splicing code would allow to interpret

the information stored in the genome and present in the pre-mRNA and their impact on relative isoform

abundances. It would imply the identification of cis-regulatory elements and how the context-dependent

trans-regulators interact with them to regulate the observed splicing patterns across different conditions

e.g. tissues, disease, mutations, etc; together with other features affecting splicing rates. First attempts

to decipher such code used only sequence information and Support Vector Machine (SVM) to identify

splicing enhancers and silencers, which, independently of splice sites, could explain differences in splicing

rates using pseudoexons i.e. intronic sequences with splice sites and branch points that are not recognized

as exons, as negative controls [76, 312]. Next steps required the identification of trans-factors binding to

these cis-regulatory elements to start building the regulatory networks driving splicing changes within an

individual e.g. during development, between tissues or different environmental conditions, and aiming

to integrate it with RNA polymerase II elongation speed [294]. The next version of the splicing code

aimed to predict tissue-specific AS patterns, and incorporated RNA structure and sequence conservation

information, as well as gene structure. This model was very accurate distinguishing tissue-regulated

exons from constitutive exons (area under the Receiver Operating Characteristic curve (AUROC)=0.94

in 5-fold Cross-Validation (CV)) in a set of mouse tissues[20]. These results were further improved using

deep learning to predict, not only tissue-regulated splicing, but quantitative changes in the Ψ, being

particularly good at predicting intermediate splicing rates. The improved performance of deep learning

over linear models suggests that there are widespread non-linearities in the regulatory system [156]. A

similar approach was taken with human samples from healthy donors across different tissues, showing

an overall r2 = 0.65 for prediction of Ψs, reaching r2 = 0.94 if training only with low variability exons.

Interestingly, this model allowed predicting the effect of genetic variants on splicing rates for known

mendelian diseases like spinar muscular atrophy (SMA) [300]. These models, however, provide an static

picture of tissue regulated splicing and ignore the potential interactions between cis and trans regulatory

elements. To tackle this issue, a new deep learning method was trained adding the information about the

expression of trans-regulators and data from knock-down experiments. This new model can now make
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predictions for a combination of cis and trans-regulatory elements specific for any condition, and even

serve as prior distribution for inference of splicing rates from RNA-seq data [315].

We have seen how, over the years, more known regulatory features are being incorporated into these

computational models for the splicing code. Although there are still some regulatory features that may

keep improving the results, like nucleosome positioning or transcriptional data, these increasingly complex

deep learning models are already relatively good at making predictions on splicing rates or differences

between tissues or different conditions. However, the interpretation of the results and the understanding

of the underlying regulatory mechanisms in more diverse environmental conditions and how the different

layers are coordinated remain a challenging task.

1.2.5 Computational methods for studying alternative splicing

The development of RNA-seq technologies was key to improve our understanding of the extent of alter-

native processing that takes places in a human cell [202]. It allowed us to estimate the Ψ across different

types of AS events in an unbiased manner, without having to define a priori a set of known events and

the sequences to quantify them. This new type of data, however, required new methods for estimation

of Ψs, which have been under continuous development since their birth.

The output of a RNA-seq experiment is a large collection of short reads corresponding to one or the 2

ends of fragments of a cDNA library. Thus, the first requirement is to guess the most likely position in the

genome that gave rise to each of the reads in the sequencing output. Optimal alignment techniques are

very computationally expensive for such a large amount of sequences. Given that one of the sequences to

align was very long and always the same (the genome), clever strategies to index the genome to accelerate

sequence search, like the Burrows-Wheeler transformation, were developed [274]. However, the presence

of introns in the eukaryotic genomes imposed further difficulties for mapping RNA-seq reads back to

the genome, as the observed reads may not be contiguous in the reference sequence but interrupted by

introns. With this aim, TopHat was the first developed program allowing alignment of reads across

the splice junctions [273], followed by other tools, like MapSplice, RUM, TopHat2 and STAR, whose

performance has been systematically evaluated over time [291, 96, 132, 63]. Latest benchmarking studies

point towards Hisat2 [217] and STAR as best RNA-seq aligners [Teng2016, 84, 23, 183].

Once the genomic position from which each read is known, one can start to build models that allow

inference of gene expression and relative transcript abundance based on the number of reads mapping to

each position in the transcriptome. MISO was the first program specifically designed to estimate splicing

rates. It models how reads can be generated from different splice isoforms or AS events taking into

account some of the known biases and the nature of RNA-seq data, and performs bayesian inference on

the underlying Ψ [128]. To check for differences in splicing rates across different samples, it uses Bayes

Factors to compare a model in which both samples show the same Ψ with a second model with a different

Ψ per sample. This approach not only limits the potential experimental designs that can be analyzed,

but more importantly, it does not take into account biological replicates and potential environmental

and biological variability within groups. Since then, a wide variety of tools have been developed, being

MATS and DEXseq some of the most popular [12, 248, 249] (reviewed by [4]). Some methods have

been developed to focus on different aspects of types of AS, e.g. vast-tools focuses on detection of very

small ES events [114, 268]; IRFinder focuses on IR events [195]. More recent tools like whippet and

MAJIQ aimed to identify and quantify more complex AS events [261, 287], even if interpretation of those

complex events remains challenging. Other methods have focused on improving estimations by building

an approximate informative prior distribution using event information: BRIE uses k-mer composition

as proxy of cis-regulatory elements to pool information across all events and be able to estimate Ψs

in single cell RNA-seq experiments [107]. DARTS, as previously mentioned, uses information about
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both cis and trans-regulatory elements to build a prior distribution that can be combined with RNA-seq

data to produce a posterior probability distribution of the inclusion rates and the differences between

experimental conditions [315].

1.2.6 Computational approaches to study alternative splicing regulation

When studying AS changes among different conditions e.g. different tissues, developmental stages, differ-

entiation processes, disease conditions, etc. it is generally assumed that observed changes are regulated

by variation in the activity of trans-regulatory elements that allow a common response among individuals

subjected to the same stimuli. Hence, one of the most relevant questions when studying AS dynamics is:

what are the regulatory proteins driving these changes?

If at least some of the identified AS changes are under the control of a regulatory network, one

expects a non-random association between the AS changes and the cis-regulatory elements bound by

the trans-acting factors with varying activities. As many of these cis elements are well characterized for

a number of proteins, as previously explained, and this information is available in different databases

[91, 301, 225, 64], one can count the number of AS events with and without the regulatory feature and

test if significantly changed AS have an over-representation of such features using a Fisher test (Over-

representation Analysis (ORA)). A sufficiently large set of significantly changed events is required to

reach enough statistical power to reliably detect enrichment of regulatory features. Therefore, as ORA

requires the categorization of splicing changes into different groups e.g. included or skipped, or clusters

with a given temporal trend, it ignores quantitative information about AS changes.

Several approaches have been developed to make use of quantitative information in the enrichment

procedure, including the widely known Gene Set Enrichment Analysis (GSEA) [264, 252]. Although these

tools were designed for functional analysis, they have been used to perform enrichment of known targets

of regulatory elements as the rationale behind the analysis is exactly the same [278, 246]. However,

the inherently noisier nature of the estimation of differences in AS compared to those of differential

gene expression may limit the applicability of GSEA-like methods. Moreover, an additional limitation

affecting both ORA and GSEA approaches lies on the high number of different features or binding sites

that we usually want to explore and on the potential co-linearities among them. Similar binding profiles

introduce confounding effects: RBPs with similar binding profiles to the actively regulatory factor would

also appear to be affected. Therefore, this issue is expected to introduce a high number of false positive

associations. Despite all these theoretical limitations, to our knowledge, there is no systematic evaluation

of the performance of these tools for the identification of trans-regulatory elements driving AS changes

1.3 Function and regulation of alternative splicing in health and

disease

Of particular interest is understanding the specific consequences and regulation of splicing across human

tissues and conditions. This is often approximated using animal models that facilitate the investigation

and study of different biological processes of interest, such as embryonic development, differentiation of

cell types or diseases conditions. Knowing when and where splicing changes take place may also help to

understand the potential function of those AS events and their implications for human physiology and

disease. Indeed, recent genetic studies suggest that splicing variation may be a key mediator between

genetic variation and disease [162].

First transcriptome-wide studies showed that a large amount of splicing transitions along different

developmental and differentiation processes take place simultaneously. The same has been described for

RBPs, potential candidates for splicing regulation. This coordination is highly suggestive of an underlying
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regulatory system driving most of AS changes [18]. Moreover, if such regulatory system has evolved during

mammalian diversification to control specific splicing changes, one can argue that these splicing changes,

individually or in coordination, must play a role in organ and tissue physiology. Malfunctioning of those

systems, on the other hand, may lead to pathological conditions.

1.3.1 Alternative splicing in neuron function and disease

Comparative studies showed that alternative splicing patterns are particularly conserved and specific in

a subset of tissues, including brain, muscle and heart [21, 194]. Thus, brain has been the preferred tissue

to study the global impact of AS over the last years. A large number of genes are regulated by AS during

neuron differentiation and across different subtypes of neurons [18]. These coordinated changes in AS

patterns take place in two main waves: an early switch, taking place at birth; and a late wave, after 2

weeks of life. These two switches, associated with overall increased exon inclusion, seem to be associated

with different biological processes and driven by different regulatory elements [298]. A subset of exons

that are particularly enriched in brain tissues are microexons i.e. very short exons, down to 3 nucleotides

[114, 161, 303, 242].

Members of the Nova, Celf, Mbnl, Rbfox and Ptb families have been characterized as important

regulators of neuronal differentiation [18]. Ptb proteins in particular inhibit, at least partially, the neuron

AS program in undifferentiated cells by binding to the upstream intronic flank and blocking the binding

of U2AF to the PPT [234]. As it is downregulated during differentiation, all the repressed exons and

start to be included in the corresponding transcripts, which is enough to drive neuron differentation from

fibroblasts [80]. Different Ptb genes show an interesting interplay in their regulatory program: Ptbp1

promotes the inclusion of exon 10, a cassette exon with an in frame stop codon, in Ptbp2 gene (also

known as nPTB) [260]. In presence of Ptbp1, Ptbp2 transcripts are degraded by the NMD pathway.

However, as Ptbp1 is downregulated during differentiation, Ptbp2 starts to be produced. Ptbp2 binds

to similar targets as its paralog, suggesting that Ptbp2 may be repressing Ptbp1 targets that are to

be kept repressed in later stages of differentiation [Vuong2016, 165, 166]. Indeed, Ptbp2 is required

for proper neuron maturation, by regulating genes related with neurite growth and synaptic assembly

and transmission [160]. One interesting target of Ptbp1 is the transcription factor Pbx1. As Ptbp1 is

downregulated, exon 7 in Pbx1 is included to produce a new isoform, which activates the transcription

of known neuronal genes [166]. Other important AS regulators for neuron function belong to the Rbfox

family. Rbfox1 is upregulated during neuronal differentiation and promotes exon inclusion by binding

to their downstream intronic flank [75]. Central nervous system specific knock-out of Rbfox1 in mice

drives multiple splicing changes in genes associated to synaptic transmission and epilepsy [85, 298].

Whereas Ptbp1 and Rbfox1 participate in AS regulation throughout neuronal differentation, the late AS

switch in neuron differentiation is probably mediated specifically by Mbnl [298]. Within neuronal AS

regulatory networks, microexons are regulated by a specific regulator called nSR100/Srmm4, essential

for differentiation, besides more general neural regulators Ptbp1 and Rbofx1. nSR100 binds is able to

outcompete Ptbp1 and instead promote the inclusion of their target exons [221, 114, 161, 223].

Both specific splicing changes that are regulated during neuronal differentiation and global changes

induced by changes and mutations in the AS neural regulatory program have been recurrently associated

with neurological disorders such as autism, epilepsy, Parkinson or Alzheimer [114, 161, 80, 18, 152]

1.3.2 Alternative splicing in cancer

Another widely studied human condition in which splicing is particularly altered is cancer. Mutation of

key cis-regulatory elements of the splicing reaction, like splice sites, is a common mechanism for gene loss

of function. As loss of function mutations in tumor suppressor genes lead to cancer development, one
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can expect that splicing alterations are relatively common causes of cancer. In this line, APC gene shows

recurrent mutation in splice sites in familial and sporadic cases of colon cancer, whereas a part of Brca1

loss of function mutations predisposing or causing cancer happen on splice sites [269]. Numa1 alternative

splicing is able to remove a potential phosphorylation site and lead to an increase in proliferation in

normal cells, and has been often characterized in cancer types, even if no clear mechanism as cancer

driver is known [246].

Thus, a part of cancer research has been focused on the characterization of global AS patters across

different cancer types. There is a subset of AS events that are recurrently altered across a wide variety

of cancers. These events tend to be differentially altered across cancer types, and can be used to predict

patient survival [279]. Following this idea, several studies have tried to build AS signatures to predict

survival across different cancer types: breast, prostate, melanoma, pancreatic ductal adenocarcinoma or

endometrial cancer [288, 44, 181, 302, 293]. Interestingly, AS patterns are reported to predict better

patient survival than do gene expression patterns across several cancer types [250]. To better understand

its predictive effect, several studies have focused on different aspects of the functional characterization of

the cancer related AS changes. In general terms, cancer associated splicing changes are associated with

protein domains that are frequently mutated in cancer and potentially disrupt protein-protein interac-

tions, but negatively correlated with the number of mutations in those genes. This observation suggests

that alternative splicing may provide an additional mutational path to loss of interactions leading cancer

development [57]. AS can not only have an important role at modulating and changing protein sequence,

but also at a regulatory level by coupling with the NMD pathway [150]. Indeed, cancer mutations

associated to IR are enriched in tumor suppressor genes [80].

Cancer associated AS changes can be driven by cis or trans regulatory somatic variation. Although

mutations affecting cis-regulatory elements, such as splice sites, are the most commonly studied ones,

there is increasing evidence of important contribution of trans-regulators to shape cancer AS patterns.

Alterations of specific RBPs, like Tra2b1 and Yb1, have been previously associated with cancer develop-

ment [269]. Their expression is often altered due to widespread variation in copy number variants and

the coordinated downregulation of a number of RBPs (including Mbnl1 Rbm20 and Rbfox1 and 2) is

speculated to be driven by mutations in common enhancers [246]. Srsf1, often upregulated in cancer, is

associated with a general increase in the complexity of splicing patterns in cancer, such that its over-

expression in cell lines partially recapitulates cancer patterns [261]. Overall, cancer splicing patterns are

more similar to those of undifferentiated cells, potentially driven by Mbnl1 [246], suggesting that cancer

can also make use of the existing regulatory networks to modulate their AS patterns globally. Moreover,

if there are splicing regulators modulating pro or anti-cancer AS patterns, cancer can evolve not only by

targeting the regulator, but also their cis-regulatory elements. Indeed, there are known RBPs, like Srsf10

or Pcbp1, whose targets are particularly enriched in cancer mutations [Singh2017a].

1.3.3 Alternative splicing in heart function and disease

Skeletal muscle and heart are, besides brain, the tissues with more specific and conserved AS patterns,

which suggests a particular implication of this regulatory mechanism in the physiology of the tissues

[21, 194]. There are very well cases of key genes for cardiac contraction that undergo AS: inclusion of

exon 5 of the cardiac troponin T is decreased in adult cardiac muscle compared with the embryonic one

[80]. Another sarcomeric protein undergoing AS is Tropomyosin. There are 4 genes encoding different

tropomyosin isoforms, which, at the same time, can be expanded through MXE for tuning the interaction

between actin and myosin during development [149]. But one of the most classical examples involves the

largest protein in the human genome: Titin. Titin is a protein formed by 363 exons, some of which encode

repeated Ig-like domains that fold and unfold in response to mechanical forces as a molecular spring. This
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protein is inserted in the sarcomere and is thought to provide mechanical resistance and stiffness to the

tissue. AS can be used to modulate the number of domains and therefore the passive stiffness of the

tissue. And this is what happens during post-natal heart development: AS changes produce shorter

isoforms and increase the passive stiffness of the tissue to better respond to the increased mechanical

stress after birth [144, 295]. Despite these and other very well known examples (reviewed by [149] and

[285]), it was not until the development of transcriptomics techniques that we started to have a glimpse

of the global impact of AS in heart physiology.

As with neurons, much of the research effort on transcriptome-wide AS dynamics has focused on

the study of the differentiation and development of the highly specialized cells composing most of the

tissue: the cardiac myocytes. First microarray results on developmental patterns also showed a biphasic

response, with a switch during late embryonic development, and a second late response after birth. This

program was conserved between mouse and chicken, suggesting that the AS changes are important for the

development of functional heart, and proposed to be under control of Celf and Mbnl gene families [126].

These studies, later expanded with RNA-seq to analyze many more AS events, show that genes involved in

vesicular trafficking are particularly regulated by AS during post-natal development, particularly affecting

cardiac myocytes. They hypothesize that AS changes are key for proper organization of ion channels and

distribution of cellular components in an increasingly hypetrophic cardiomyocyte as with their maturation

process. Indeed, Celf1 downregulation was shown to be required for proper establishment of t-tubules

[92]. Thus, as with neurons, the perturbation of the AS regulatory network, in this case Celf1, leads to

impaired tissue function. Loss of function models for Rbfox1 or Srsf3 led to the development of cardiac

hypertrophy, and severe cardiac disfunction, respectively [81, 207]. Rbfox1, in particular, modulates

the splicing of Mef2d, a key transcription factor for the activation of the late expression program during

myogenesis [80]. Ptbp1 downregulation promoted the trans-differentiation of fibroblast to cardiomyocytes,

and represents a critical barrier to acquire the cardiomyocyte-specific AS patterns [169].

Defects in the splicing of particular sets of proteins, including Tnnt-2 TnnI3, Myh7 and Flnc, have been

previously associated with ischemic cardiomyopathy in humans, and even predictive of the disease [138].

This is not limited to sarcomeric genes, as it also affects genes related to in ion handling, like Scn5a; and

cardiomyocytes identity, such as Gata4 or Tbx5. Modification of the splicing patterns of these genes have

been associated with cardiac diseases [285, 149], mostly by disrupting constitutive splicing and inducing

degradation by NMD. On the other hand, changes in the relative isoform abundance of genes known

to be alternatively spliced, have also been associated to cardiac diseases: patients with congestive heart

failure (HF) and dilated cardiomyopathy (DCM) showed changes in the ratios of Titin protein isoforms

[80]. Similarly, re-expression of the embryonic splicing isoform of EH-myomesin in adult hearts has been

described as a marker for HF and is strongly induced in patients with DCM. Mouse models lacking AS

isoforms for key genes involved in Ca2+ hanling i.e. Serca2 and RyR2 showed indeed contractility and

relaxation problems [149]. These examples suggest that re-expression of fetal patterns, besides disruption

of constitutive splicing, might drive cardiac disease. Even if transcriptome-wide analysis revealed a

partial re-expression of the fetal transcript and gene expression patterns [11], whether this happens also

for relative mRNA isoform abundances or at the AS event level remains unclear.

In this scenario, it is reasonable to think that, as with neurons, perturbation of the AS regulatory

networks involved in heart development and cardiomyocyte differentiation, controlling known events to

be associated to cardiac diseases, may have an impact on cardiac function and cause the disease. It is the

case of Rbm20, which modulates the AS patterns of Titin during development, and is itself associated

with increased risk of HF and sudden death in humans. Animal models lacking Rbm20 show defective

splicing patterns in Titin. Moreover, Rbm20 also modulates genes involved in Ca2+ handling, such as

CamkIId and RyR2, which activate a specific Ca2+ current in the mouse model and possibly explain

the association with arrhythmias observed in humans [286, 100]. KO mice for Srsf2, another regulator of
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RyR2 AS, also develop DCM, even if other downstream genes and isoforms may be involved [149]. An

interesting disease caused by the indirect loss of function of a splicing regulator is myotonic distrophy

(DM): even if the trans-regulator Mbnl1 remains unaltered itself, an expansion of CTG repeats in the

3’UTR of the Dmpk gene is thought to sequester this regulator and prevent the regulation of the AS

patters of other genes, potentially leading to cardiac dysfunction [149].

Most of the current knowledge on how AS patterns change in the heart and its underlying regulation

are derived human genetic studies of specific mutations or from mouse models defective in the expression

of a single RBP. While the latter allow the investigation of whether a particular AS regulator is involved

in the development, maintenance and proper functioning of the heart, few studies have profoundly charac-

terized the AS changes taking place in animal models of general heart diseases like myocardial infarction

(MI) or trans-aortic constriction (TAC) and how they are regulated in an unbiased manner.
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2. Objectives

In this thesis, we aimed to study transcriptome-wide AS from different perspectives to explore, not only

how specific AS events may impact the physiology of the heart, but also to understand what are the

mechanisms that underlie global dynamical changes across development and disease and the rules that

govern the quantitative evolution of exon inclusion rates. Under this general purpose, we specified the

following objectives:

1. To study the functional impact of the AS changes that take place during heart disease and compare

them to developmental transitions

2. To investigate the molecular mechanisms underlying these dynamic changes in both sets of con-

ditions, focusing on the identification of the trans-regulatory elements that modulate AS patterns

upon modification of their activity

3. To develop new computational tools to study AS regulatory patterns from RNA-seq data

4. To characterize the evolutionary process driving divergence of AS patterns during mammalian

evolution using models of phenotypic evolution.

5. To estimate the relative contribution of different evolutionary forces to this process and the degree

to which AS has contributed to lineage specific adaptations.
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3. Materials and methods

3.1 Functional impact and regulation of alternative splicing in

heart development and disease

3.1.1 Dataset

We collected a series of 21 RNA-Seq experiments related to the mouse heart. Table S1 summarizes the

main biological and technical characteristics of the samples used: run, experiment, paired-end, sample

type, condition, sample ID, sequencer and genetic background. These experiments included samples

from isolated cardiomyocytes, left ventricle, both ventricles, and the full heart at different developmental

stages (embryonic, neonatal, and adult). They also included border and remote-area samples from mouse

models of myocardial infarction (MI) and myocardial samples from the TAC model of pressure-overload-

induced cardiac hypertrophy (Table S1). We filtered out samples from tissues or cell types different from

those listed above as well as those from KO mice. Samples used as controls in the collected KO, TAC,

or MI experiments were added to the corresponding pool of adult, neonatal, or embryonic heart samples.

We additionally included data generated by our lab from infarcted mice at 7 days post-infarction (MI7d),

performed as previously described [72], resulting in a total of 136 samples.

3.1.2 Gene expression and alternative splicing analysis

GE and AS were quantified using vast-tools [113]. First, reads mapping to the genome were removed,

and unmapped reads were later mapped to a library of exon-exon and exon-intron junction sequences

to quantify inclusion levels for different AS event types. For Gene expression (GE) analysis, we filtered

out samples with less than 1M reads and selected as expressed genes those genes with at least 1 reads

per kilobasepair and million (RPKM) in at least 5 samples. We then used limma [229] with voom

normalization to find differentially expressed genes using the experiment as random effect in the linear

regression model. Since only one random variable is allowed, in most cases, the experiment included

simultaneously both tissue type and batch effect. Differentially expressed genes (DEG) were defined as

those with an adjusted p-value <0.01 and an absolute log(FoldChange)>1.

For AS analysis, we aimed to estimate the probability of inclusion of a particular event Ψ and to find

significant differences in inclusion probabilities ∆Ψ between conditions. We used corrected inclusion and

skipping reads from vast-tools results, and selected those events supporting alternative usage (defined

as having at least one read mapping to the alternative event) in at least 20% of the samples. We then

used a Generalized Linear Mixed Model (GLMM) in lme4 [25] with binomial likelihood and logit link

function to find differentially spliced events. As random effects, we added as covariates the experiment

ID, sample type, and individual. In this way, we added biological variability to the binomial variance in

the model. We used the adult stage as baseline and stored the p-value of coefficients corresponding to

the different conditions under study. Multiple test correction was applied using the Benjamini-Hochberg
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(BH) method. We considered as differentially spliced those events with a False discovery rate (FDR)

<0.01 and an estimated absolute |∆Ψ| > 0.1.

3.1.3 Principal component analysis

Principal Component Analysis (PCA) was performed using the prcomp function in R on the log trans-

formed normalized counts (adding a pseudocount) for expression. For AS, sample Ψ for each event was

estimated by dividing the number of reads supporting inclusion by the total number of reads mapping

to the event. We then used these estimated Ψ values as the input for PCA. Genes or exons with missing

entries were removed for this analysis. All PCAs were carried out without performing batch correction

to check whether the batch showed an important contribution to global variability.

3.1.4 Analysis of effect of alternative splicing changes on protein-protein in-

teraction networks

As protein-protein interaction (PPI) can not be directly inferred from protein sequences alone, to analyze

the impact of AS changes in the regulation of PPI networks, we took two different approaches. First,

we focused on interactions mediated by specic protein domains or domain-domain interaction (DDI).

DDI data were downloaded from [87], and only pairs with corresponding human-mouse one to one or-

thologs were used. Mouse-human orthologs were downloaded from Ensembl-Biomart and interactions

were transformed to mouse reference assuming that they will be mostly conserved. Exon domain data

was downloaded from VASTDB [268], and an interaction was considered to be potentially regulated by

Alternative splicing (AS) whenever it was mediated by a domain overlapping, at least partially, with an

alternative exon. We then tested for an enrichment of exons mapping to domains involved in PPIs in

exons that were either skipped or included in each comparison independently. This was done using a

GLM with logit link function: we defined as outcome whether the inclusion or skipping of an exon was

affecting a domain involved in a PPI, which can be modelled as a Bernoulli distribution, whose under-

lying parameter depended on the exon group (Included, Skipped or No-change, taking the last one as

baseline). We then extracted the estimates for each coefficient to estimate the probabilities for each group

and their p-values to test whether exons with increased or decreased inclusion rates were more or less

likely to be affecting PPIs than those exons without significant inclusion rate changes in each particular

transition. Secondly, as many PPIs are not necessarily mediated by structured protein domains but by

linear disordered regions of the protein structure, we performed a second analysis based on experimental

data on different protein isoforms. Isoform specific interactions were downloaded from [305]. Data was

collected at the isoform level, whereas our analysis was done at the exon level. To combine both, we

performed the analysis at the gene level, and could not identify exon inclusion or skipping with gain or

loss of interaction. Therefore, we could only test whether genes that were changing at the AS level had

also isoforms showing differential protein interaction patterns. Statistical analysis was now performed at

the interaction level: we modeled the probability of an interaction to be isoform specific as a function of

whether the tested gene was found to have significantly altered exons in the heart and whether it showed

changes in a particular contrast using again a GLM with logit link function. Estimations and significance

were calculated as previously described.

Finally, each dataset was used to build an undirected graph representing AS-dependent protein-

protein interaction networks. We then used Networkx python library to estimate edge betweenness for

each interaction. The betweenness measures how many of the shortest paths between pairs of nodes

in a graph go through a particular edge. Thus, edges connecting different modules will have a high

betweenness, whereas edges that do not affect network connectivity will show low betweenness. To test

for differences in betweenness, we used a Linear Model (LM) in R, assuming that the edge betweenness
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is normally distributed and is a function of whether the interaction is potentially regulated by AS (if

applicable) and whether significant changes were observed in each comparison performed.

3.1.5 Gene ontology category analysis

An L1-regularized logistic regression with Gene Ontology (GO) categories as group predictors was used

to select meaningful and independent categories in Scikit-learn [216]. Standard logistic regression in

statsmodels [245] was then used to find categories with an increased probability of being represented in

the selected gene set. BH multiple test correction was performed. We then selected the top 10 categories

for each comparison and calculated pairwise semantic similarity using GOSemSim [308]) for the Biological

Process ontology. A heatmap with hierarchical clustering was calculated using these distances and python

seaborn clustermap function.

3.1.6 CLiP-seq enrichment analysis

We extracted sequences corresponding to the 250 bp closest to the alternatively spliced exon in the

flanking introns and 50 bp at both ends of the alternative and flanking exons. We then downloaded

data on experimentally determined binding sites for mouse RBPs from doRiNA, Starbase, CLiPdb and

ENCODE [35, 158, 301, 64]. For each database, we considered any binding site detected in any sample.

Overlapping binding sites for the same protein were merged using bedtools [222]. CLiPdb data, provided

for reference mm10, were then transformed to mm9 coordinates using the liftOver utility. Since results

from the ENCODE database were obtained from human cell lines, coordinates were transformed to mm9

coordinates using liftOver. BED files were indexed with Tabix and used to find overlaps with selected

regions. We then used the one-tailed Fisher test to look for features that are over-represented in either

included or skipped exons compared with those with no significant change. RBPs binding to specific

regions showing significant enrichment (p-value < 0.01) in any of the groups of exons analyzed were

subsequently used in a multiple regression analysis using a GLM with logit link function and corrected

for co-linearities in binding profiles.

3.1.7 Analysis of interactions between pairs of RBPs binding sites

RBPs and regions selected for the regression analysis were subsequently tested for pairwise regulatory

interactions or synergistic effects i.e. whether co-binding of a pair of RBPs had an effect different from

the sum of the individual effects as if they were independent. To do so, we extended the set of indepen-

dent variables by adding all possible pairwise combinations RBPs pairs. We then used L1 regularized

logistic regression using scikit-learn [245] to predict belonging to a certain group (Included or Skipped

for each comparison under study: ED, PD, TAC, MI). To select the optimal regularizing constant we

first performed 10-fold cross validation, by splitting the total number of exons in two sets, one to fit

the model and one to evaluate its predictive power, over a range of regularizing constants (from 10−3 to

103). We used the AUROC to evaluate the predictive power for each model fitting and select the value

of the regularizing constant that provided better predictions on unseen data. This value was used to fit

a L1-logistic regression models will the full dataset. Coefficient values were extracted for further analysis

and classified in two types according to whether they represented single RNA binding protein (RBP)s or

combinations of them (also named as interactions).

3.1.8 Analysis of correlation among RBPs expression levels

To calculate condition-specific gene expression correlations among pairs of RBPs, we selected the samples

involved in each comparison and calculated the Pearson coefficient on the log transformation of the nor-
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malized counts. Since the number and nature of samples included in each comparison is different, they

were not directly comparable: correlation coefficients estimated from a reduced number of samples are

expected to be noisier. We then took samples of 5000 pairs of randomly selected genes to estimate the

expected mean and standard deviation of randomly selected genes, which we used to standardize correla-

tion coefficients among RBPs into z-scores. Therefore, we evaluated whether RBPs were more correlated

than expected from random genes. As a positive control, we calculated the z-score of the correlation for

genes encoding proteins that are known to physically interact from Intact database previously used.

3.2 dSreg: A Bayesian model to integrate changes in AS and

RBP activity

3.2.1 dSreg: a mechanistic probability model for differential splicing

dSreg models the AS changes between two different conditions, a and b, as a function of changes in the

activity of a few of the existing RBPs acting through their known binding sites. Given K AS events

detected across N samples, we observe Ik,i reads supporting exon inclusion out of a total of Tk,i reads

mapping to the kth exon skipping event in sample i, which depends on the unknown probability of

inclusion Ψk,i. The conditional probability of observing Ik,i reads given Tk,i and Ψk,i is given by the

binomial distribution.

p(Ik,i | Tk,i,Ψk,i) = Binomial(Ik,i | Tk,i, Ψk,i) (3.1)

Ψk,i is therefore different for each sample i, but depends on the condition or group to which it belongs.

Since probabilities are bound between 0 and 1, to model this dependency, we take the logit transformation

Xk,i,

Xk,i = log

(
Ψk,i

1−Ψk,i

)
(3.2)

We assume that Xk,i is drawn from a normal distribution with a common standard deviation σk and

different means per condition: αk for condition a; and αk + βk for condition b, such that βk represents

the difference between the two conditions. For simplicity, we assume here that the standard deviation is

the same across all K AS events (σk = σ) .

p(Xk,i | Di, αk, βk, σ) = Normal (Xk,i | αk +Diβk,i, σ) (3.3)

where Di is a constant that takes the value 1 when the sample belongs to condition b, and 0 when it

belongs to condition a:

Di =

1 if sample i in group a

0 if sample i in group b

So far, this model is a simple logistic regression for each event with the only assumption that the

within group variance is common across events and conditions. However, the changes in the probability

of inclusion of exon k between two conditions, indirectly modeled by βk, should depend on the change

in the activity θj of a particular regulatory RBP j and on whether it can bind to exon k. The binding

information is encoded in a matrix SK×J , with value 1 whenever the RBP j binds to the exon k and 0

otherwise. Position dependent effects can be easily included by considering RBP j binding to different

relative locations as different and independent RBPs. At the same time, the matrix S could also contain

continuous values such as the probabilities of binding, affinities or scores given by Position Weighted
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Matrices (PWMs) [225] or any other predictive tool [187, 6].

Sk,j =

1 if the combination of RBP-region j is present in event k

0 otherwise

Now we can model βk, the change in the logit-transformed inclusion rate of exon k, as a normal

distribution centered at a linear combination of regulatory effects ~θ and ~Sk (the binding profile of exon

k) with a given standard deviation ν. Adding variance ν to the distribution of βk some changes in AS

not to be explained by the regulatory features included in the model.

p(βk|~θ, ~Sk, ν) = Normal

βk | j=J∑
j=0

Sk,jθj , ν

 (3.4)

In this type of exploratory analysis, large numbers of regulatory proteins are usually tested. However,

we expect that AS changes are driven by only a few RBPs. We formalize this prior belief setting a

horseshoe prior for the change in the activity of regulator j θj [46]. The horseshoe prior, a member of

the family of hierarchical shrinkage priors, specifies a normal prior for θj with mean 0 and a standard

deviation τj , where τj is not a fixed value, but drawn from a common half Cauchy distribution with

mean 0 and ρ standard deviation. τj represents a local shrinkage parameter, as it only affects protein

j, whereas ρ can be understood as a global shrinkage parameter. We further set a half Cauchy prior

in ρ with mean 0 and standard deviation 1 as recommended [46]. Note that this prior can be adapted

according to the expected number of non-zero parameters [219].

p(θj | τj) = Normal(θj | 0, τj) (3.5)

p(τj | ρ) = Cauchy+(τj | 0, ρ) (3.6)

p(ρ) = Cauchy+(ρ | 0, 1) (3.7)

Finally, we need to specify prior distributions for the remaining parameters αk and σ. Since we expect

most of the exons to be included most of the times (Ψ ∼ 1) and αk is the logit transformation of the

inclusion rate in condition a, we set a normal prior centered at 3 (which reflects an expected Ψ = 0.95),

with standard deviation 3 for each exon k to enable some deviation from this expectation. Moreover,

as we expect little variation among samples, we set a half Cauchy prior distribution with 0 mean and

standard deviation 1 on σ.

p(αk) = Normal(α | 3, 3) (3.8)

p(σ) = Cauchy+(σ | 0, 1) (3.9)

The joint posterior probability of the parameters Θ given the data (I) is proportional to the joint

probability distribution of the data and Θ, since the marginal probability of obtaining the data p(I) is

constant for any Θ.

p(Θ|I) =
p(Θ, I)

p(I)
∝ p(Θ, I) (3.10)

Using the conditional probabilities and prior distributions that we have defined for each variable, we
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Figure 3.1: General and proposed work-flows for AS regulation analysis. A Schematic representation
of idealized model for the regulation of splicing rates by RBPs through direct binding to their binding
motifs in the pre-mRNA B. Diagram representing the different steps required for a classical analysis of
regulation of alternative splicing using RNA-seq data and the proposed model in dSreg. C. Directed
Acyclic Graph (DAG) representing the full probabilistic model integrating both differential AS analysis
with binding sites presence and changes in the activity of RBPs.

can calculate this joint probability distribution applying the chain rule.

p(Θ, I) = p(I, T, X, α, β, ν, θ, τ, ρ,D, S) = (3.11)

= p(Θ, I) = p(σ)p(ν)p(ρ)

J∏
j

[p(θj |τj)p(τk|ρ)]

K∏
k

[p(βk|S, θ, ν)p(αk)P (Ik)]

where,

P (Ik) =

N∏
i

(p(Ik,i|Tk,i, Xk,i)p(Xk,i|αk, βk, σ,Di)) (3.12)

Once the full posterior distribution is completely specified, it can be explored using Markov Chain

Monte Carlo (MCMC) algorithms. We implemented this model in stan [45], using a non-centered

parametrization whenever possible to alleviate sampling difficulties from hierarchical models [30]. The

full model is represented as a Directed Acyclic Graph (DAG) to show dependencies among parameters

in Fig. 3.1B.

3.2.2 Data simulation

Data can be simulated by setting fixed values on the parent nodes of the DAG (σ, ~α, ~θ, T and S)

representing the probabilistic model (Fig. 1C) and drawing samples from the corresponding distributions

for each parameter. We simulated 20 datasets for each initial set of conditions, all with K=2000 events,
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3 samples per condition (N=6) and J=50 potential regulatory elements with correlated binding profiles,

of which only 5 showed non-zero effects on splicing changes between the two conditions.

To simulate realistic values of inclusion rates for the condition a (Ψk,a) across the K=2000 exons,

we assumed that 20% of the exons are alternative, with inclusion rates following a uniform distribution

between 0 and 1; and 80% are consitutive, with inclusion rates drawn from a Beta(10, 1), to promote

generally high inclusion rates.

uk ∼ Uniform(0, 1) (3.13)

Ψk,a ∼

Beta(10, 1) if uk > 0.2

Uniform(0, 1) if uk < 0.2
(3.14)

αk = logit(Ψk,a) = log

(
Ψk,a

1−Ψk,a

)
(3.15)

We aimed to simulate matrices of correlated binding profiles to take into account that certain groups

of RBPs often bind to similar regions in the exons. To do so, we first simulated a covariance matrix Σ of

size J sampling from an inverse Wishart distribution,

ΣJ×J ∼ InvWishart

(
J + 1,

1

J
IJ

)
(3.16)

and used it to simulate K samples from a multivariate normal distribution using a mean of -2.5. This

value represents an expected 7.5% of events bound by a particular RBP.

~Mk ∼MvNormal(−2.5,Σ) (3.17)

Then, we took the inverse logit to transform M matrix into the probability matrix T and use these

probabilities to simulate binary binding profiles across exons (SK×J matrix) by sampling from a Bernoulli

distribution for each element in the TK×J matrix.

Pk,j = InvLogit(Mk,j) =
eMk,j

1 + eMk,j
(3.18)

Sk,j ∼ Bernoulli(Pk,j) (3.19)

We randomly drew a set A = {A1, A2, A3, A4, A5} of 5 active regulatory proteins (with non-zero

effects on changes in the inclusion rates) from the whole set of regulatory proteins R = {1, 2, ..., J}.
The regulatory effect for RBP j θj was then drawn from a uniform distribution between -2.5 and 2.5 if j

belonged to the set of active regulatory elements A and set to zero otherwise. These values of θj represent

the mean increase in the log(odds ratio) of exons having a binding site for that protein compared with

those without a binding site.

θj ∼

Uniform(−2.5, 2.5) if j ∈ A

0 otherwise
(3.20)

Once the parent nodes of the DAG were simulated, we could easily simulate the final data by sampling

parameter values along the graph according to our model. First, we drew changes in the logit-transformed

inclusion rates βk from a normal distribution with mean obtained from a linear combination of effects ~θ

and binding sites ~Sk and standard deviation ν = 0.1. This way we introduced noise with small random
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changes in inclusion rates of exons that were not targets of any of the differentially active RBP.

βk ∼ Normal

j=J∑
j=1

Sk,jθj , ν

 (3.21)

We then combined αk and βk to obtain the mean logit(Ψ) for condition b, and sample 3 samples from

each mean using σ = 0.2 to introduce some inter-individual variability. Being Di a variable that takes

value 1 when sample i belongs to condition b and 0 otherwise,

Xk,i ∼ Normal(αk +Dk,iβk, σ) (3.22)

The total number of reads mapping to each event Tk,i were drawn from a Poisson distribution with

log(λ) = 2 by default,

Tk,i ∼ Poisson(λ) (3.23)

They were subsequently used to sample the corresponding reads supporting inclusion Ik,i from the

binomial distribution with p = Ψk,i, obtained from the inverse logit transformation of Xk,i.

Ik,i ∼ Binomial (Tk,i, InvLogit(Xk,i)) (3.24)

Using these default parameter values, we additionally simulated data for increasing sequencing depths

(from log(λ) = 1 to log(λ) = 5.5) and with an increasing number of total regulatory proteins (from J=50

to J=250), maintaining a total of 5 differentially active RBPs to evaluate the effect of this variables on

the methods performance.

3.2.3 Bayesian inference

The probabilistic models were implemented in Stan [45] using non-centered parametrization, whenever

it was possible, to improve sampling efficiency [30]. The joint posterior distributions of the parameters

were approximated using No-U Turn Sampler (NUTS) as implemented in Stan [106], running 4 chains

along 4000 iterations, being 2000 of them for warming up. Convergence of the Markov Chain Monte

Carlo (MCMC) algorithm was checked in each case by means of the split Gelman-Rubin R (R̂) [86].

3.2.4 Differential splicing analysis

In order to identify exons with significant changes in inclusion rates, a GLM with binomial likelihood

was used to model the probability of inclusion of a particular exon using the sample condition Di as only

predictor. After fitting the model, we extracted the estimate and p-value for the coefficient representing

the condition of interest. We then obtained adjusted p-values by means of Benjamini-Hochberg (BH)

multiple test correction.

3.2.5 Over-representation analysis

We tested over-representation of binding sites for a particular RBP on the set of significantly changed

exons using a Generalized Linear Model (GLM) with binomial likelihood to model the probability of

being significantly changed as a function of the presence of a binding site for a particular RBP. We then

extracted the p-value for the coefficient for each RBP and applied BH multiple test correction.
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3.2.6 Gene set enrichment analysis

We implemented an in-house algorithm for GSEA in python following [264]. We sorted exons according

to the estimated coefficient representing log-transformation of change in exon inclusion odds between the

two conditions under study. We then used the matrix with binding sites for each exon and RBP and

subtracted the mean for each column. This way, we give weight to each binding site depending on the

number of binding sites present for a particular RBP. We then calculated the cumulative sum and took

the maximum and minimum values as enrichment scores. We permuted 10000 times the list of exons to

calculate a null distribution of enrichment scores, estimated p-values as the proportion of permutations

with bigger enrichment scores and performed BH multiple test correction.

3.2.7 Regulatory features: CLiP derived RBPs binding sites

CLiP-seq binding sites were collected from several databases and merged in a single BED file [35, 158,

301, 64]. Human binding sites and mouse binding sites in mm10 were transformed to mm9 coordinates

using liftOver tool for compatibility with vast-tools. For simplicity, only binding sites mapping to the

250bp upstream or downstream the alternative exons were included in the analyses.

3.2.8 Bench-marking of differential splicing methods using real data

In order to assess the performance of dSreg in real biological data, we used the GSE112037 dataset, which

contained an independent quantification of exon inclusion rates using RASL-seq for the quantitative

evaluation of the performance of different methods [315]. We also evaluated the impact of sequencing

depth on the performance of the different methods by serial down-sampling of sequencing up to 1/512

times the original depths ( 120M reads). dSreg was run using processed event counts as provided by

DARTS, which is itself based on rMATS [249, 315]. GLM analysis was also performed using the same

event counts. MISO and BRIE were run using their own event annotation, corresponding to hg19 genome

version and Ensembl annotation release 75 for all methods [128, 107]. An additional Nullmodel for dSreg

without regulatory information, as in the simulations, was run to test the improvement in detection of

splicing changes by including regulatory features. For evaluation, we selected events with at least 50

total reads in the RASL-seq experiment, and calculated the real inclusion rates as the proportion of reads

supporting exon inclusion. Real AS changes were defined as those with a |∆Ψ| > 0.05 and FDR < 0.05

using a basic GLM in R. Then, performance was evaluated by comparing the estimation of the ∆Ψ in the

down-sampled RNA-seq experiments and the ones derived from RASL-seq. We assessed the quantitative

estimation of inclusion rates by calculating the Pearson coefficient with the real ∆Ψ. AUROC was used

to asses the ability to identify differentially spliced. The scoring function for AUROC calculation were:

i) Bayes Factors for BRIE and MISO: 1 - FDR for GLM; ii) and P (|∆Ψ| > 0.05|data) for DARTS and

dSreg; and iii) MISO and BRIE were evaluated using only the subset of events that were also represented

in the RASL-seq experiments.

3.2.9 Assessment of the ability of dSreg to identify AS regulatory drivers

using ENCODE knock-down experiments

In order to evaluate the performance of dSreg in detecting the RBPs that drive AS changes between

two conditions, we used the data from systematic knock-down experiments of 206 RBPs in two different

human cell lines from the ENCODE project and their corresponding binding profiles [203, 64]. We

downloaded the rMATS processed files available from the website and analyzed their regulatory patterns

using GLM+ORA, GLM+GSEA and dSreg. Regulators were defined as differentially active if FDR<0.05
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for both ORA and GSEA; or if the posterior probability of the θj being different from 0 was higher than

95% (P (|θj | > 0|data) > 0.95) for dSreg. The performance was evaluated with 3 different measures.

First, we analyzed the number of times the RBP that was down-regulated was found among the driver

regulators of Alternative splicing (AS). This measure was normalized by the expected proportion of

matches if the regulatory elements were selected randomly from the set of available regulators. Second,

we measured the proportion of RBPs defined as differentially active were differentially expressed in in the

knock-down experiment. Third, we sorted by absolute differential activity (or FDR for ORA and GSEA)

the RBPs and calculated of RBP that was knocked-down.

3.2.10 Real data analysis

GSE59383 fastq data were downloaded and mapped using vast-tools 0.2.0 [114] to identify AS events.

We restricted our analysis to exon cassette events that showed at least 1 inclusion and skipping read in

at least one sample. Once extracted the number of inclusion and total counts for each event and sample,

we used all the methods described here (ORA, GSEA and dSreg) to analyze regulatory patterns using a

compendium of CLiP-seq binding sites.

3.3 Quantitative evolution of exon inclusion rates in mammals

Data

We used the European Nucleotide Archive browser to look for Paired-end RNA-seq data from livers of

mammalian species in adult stage without any particular treatment, reaching a total of 132 samples from

76 different mammalian species with known phylogenetic relationships [282] (see Figure 4.19) and char-

acterized gene orthologs in OrthoMaM.v10b database [244]. Liver was selected because of the abundance

of RNA-seq data across different species and its relatively low cell type complexity, as most of the liver

is formed by hepatocytes. This way, we should limit the influence of changes in cell populations on the

overall tissue AS patterns. Sample information can be found in Table S2. Samples from species missing

in OrthoMaM or unavailable genomic references were mapped against the closest genome, as indicated

in Table S2.

Reference genomes, annotation and indexes

Reference genomes, transcriptomes, and annotations were retrieved from Ensembl and GenBank, as shown

in Table S3 in detail for each species. Transcriptome fasta files were indexed with kallisto v0.43.0, using a

k-mer size of 27. To build genome indexes with inserted Splice Junctions (SJ) for mapping and estimating

AS events, we tried to correct at least some of the differential annotation biases by first extracting all

possible Splice Junctions (SJ) across the longest transcript for each of the genes, reaching about ∼2

million SJ per genome. These SJ were used to build a genome index with STAR v2.6.1 [63]. Thus, we

mainly assume that gene structure is well annotated and that main annotation biases between species

will be due to differential transcript and isoform coverage. Moreover, this way, we focus on studying

the Ψ of already annotated exons in a quantitative manner, rather than on a complete description and

enumeration of all AS events taking place in each of the species.

3.3.1 Counting reads supporting exon inclusion and skipping

Sequencing data were mapped with STARv2.6.1b [63] on the genome index built with customized sets

of SJs. Then, for each exon, we considered as inclusion reads all those mapping to annotated SJs going
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Figure 3.2: Schematic representation of the process to extend the sets of SJs supporting exon inclusion
or skipping overlapping with alternative splice site selection events AD, AA.

from or into the exon boundaries or the exon splice sites; and as skipping reads, all those mapping SJs

that join pairs of upstream and downstream splice sites.

Moreover, there may be simultaneous alternative splice site selection events (AD and AA)) and ES

events. If we only count the reads mapping to the predefined exon boundaries in the annotation, we are

missing some of the reads supporting inclusion, obtaining biased Ψ estimates. Thus, we assume that the

alternative splice site selection has no or only very minor impact on the function of the exon, e.g. for

instance NAGNAG events only modify 1 or 2 aminoacids of the protein sequence. In other words, there

may be equally valid splice sites within a certain neighborhood for the inclusion of a particular exon.

Thus, we tackle the issue of co-existence of these AS types by expanding sets of SJs supporting inclusion

and skipping. As inclusion SJs, we also considered SJs located within a window of 50bp of each splice

site. Skipping SJs were expanded to included any SJ mapping within the gene boundaries and going over

the target exon (Figure 3.2).

3.3.2 Systematic biases in estimation of exon inclusion rates

Even if we were able to fully identify the SJs that characterize each AS event and provide information

about the relative splicing rates Ψs, there are known technical biases that modify our ability to obtain

or detect reads from a particular region in the transcriptome, often introduced during the preparation of

the library e.g. fragmentation bias due to selection of cDNA fragment of certain sizes, GC and fragment

length amplification biases; or by the sequencing conditions or mapping procedure. Whereas the most

widely used tools for estimating GE explicitly model some of these biases [215, 39], most methods for AS

do not take some of them into account [248, 249, 114, 128]. In small scale experiments in which there is a

very homogeneous processing and handling of the samples in a single species, these biases may be rather

similar across all samples and thus, likely not to affect relative differences. However, biases that depend

at the same time on the genome properties, such as GC-dependent amplification biases or fragment

length selection, become worrying in a comparative study. As these genomic properties diverge, even

if library preparation was similar across samples, these differential properties would introduce artificial

differences between species, and hinder the study of the evolution of the quantitative trait of interest.

If, in addition, library preparation protocols are not homogeneous across samples included in the study,

as happens when collecting data from different comparative datasets, technical biases may even amplify

differences between species and thus hinder the interpretation of the results.

Fortunately, as we know how some of these biases arise, we can try to correct them by taking into

account the systematic deviations that they introduce from the real value. In other words, we need to

define a function that specifies the the expected observations from a given real value. In this specific

case, we need to define the expected number of reads from each SJ to correct Ψ estimations.
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Figure 3.3: Influence of read length and overhang on the number of mappable positions spanning a single
SJ

Read length

As we are going to base our analysis only on the reads that span the exon-exon junctions, one of the

first issues that need to be taken into account are the requirements for mapping reads across the SJ and

count them. Thus, we need to know the expected number of reads that can be generated from each SJ.

We assume that the total number of reads spanning a SJ is proportional to the number of mappable

positions across that SJ, which depends mainly on 2 parameters:

• Read length (L). Naturally, the number of different positions a read can map spanning the SJ

cannot exceed the length of the sequencing read, which must be located within the read.

• Minimum read overhang (R). It is the number of bases required for counting a read as spanning

the SJ. This parameter can be manually set in mapping tools like STAR [63], and is key to filter

out spuriously mapping reads. It is well known that mapping errors are more common when the

read overhang is small: if we require as low as a single base to allow mapping through an SJ,

there is about 1/4 probability to have a match just by chance. However, as the read overhang

increases, the probability of random matching decreases exponentially (4−R). Sequencing errors,

which accumulate at the end of the reads, nucleotide variants or just finding this sequence somewhere

else in the genome can increase the mapping error at positions with small R. We could try to

model this phenomenon explicitly allowing some error rate in these positions, to extract as much

information as possible from the data [84, 183], but it is simpler to just count only reads with a

relatively large minimum read overhang e.g. 8 nucleotides. Thus, the number of different reads

NSJ that can align to a SJ is

NSJ = L− 2R (3.25)

This effect is, in principle, independent the particular SJ. Thus, although it affects the absolute

number of reads that we will map to each SJ, as it is expected to affect all of them equally, the relative

number of reads supporting exon inclusion or skipping should remain mostly unaffected.

Transcript structure

However, this is not always the case, specially as the read length L becomes larger. If the SJ is close to the

transcript start or end, then the possible number of reads that span the SJ may be reduced. Assuming

that transcripts are always longer than the reads, we can only observe this effect on one side of the SJ.

Thus, the number of mappable positions N will be limited by the read length L, except if the distance

to either the end de or start ds of the transcript is shorter than L:

NSJ = min(L−R, ds, de)−R (3.26)

Thus, for most cases L >> ds and L >> de, such that N = L− 2R, as previously derived. However,

if, for instance, de = 50, and L = 100, we would only have at most, 50 mappable positions, to which we
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Figure 3.4: Influence of read length and overhang depending on the distance to the transcript start and
end
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Figure 3.5: Influence of read length and overhang in depending on the distance to the transcript start
and end and exon size and exon length

need to remove the R positions that are not taken into account (Figure 3.4).

Taking into account that we are interested in studying exons rather than isolated SJ, a similar scenario

arises depending on exon length, as some reads may overlap the two SJ at the same time. If we use the

SJ counts as directly provided by STAR, we should take into account that we are counting some reads

more than once, as if the SJ were independent. This is simpler, as we can directly use the independent

counts from each SJ and does not bias the estimations, but it does underestimate the uncertainty.

Exon size

However, the best approximation is to directly count each read only once and calculate the number of

mappable positions as a function of the exon length. For this, we can adjust the N for the second SJ by

counting only the reads starting in the same exon. Formally, this can be done using the exon length E

as distance to the ds. Thus, the number of mappable position for an exon of size E is

Nexon = NSJ1 +NSJ∗
2

= min(L−R, ds,1, E + de,2) +min(L−R,E, de,2)− 2R (3.27)

Fragment size distribution across a single SJ

Sequencing reads, however, are only at the ends of larger nucleotide fragments derived from the process of

fragmentation and size selection during the library preparation protocol. Again, depending on the relative

position of an SJ in the transcript, the selection of fragments with certain size may affect different SJs

to different extents (Figure 3.6).

If we assume that fragmentation is a random process, depending on the nature of the fragmentation

process, we may expect different size distributions e.g. a completely uniform fragmentation leads to a

Weibull distribution of fragment sizes given the the starting fragment size [270]. Thus, if the different
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Figure 3.6: Selection of fragment sizes influence the proportion of observable fragments with reads over-
lapping SJs resulting in biased estimations of exon Ψ. In this case, given the gene structure, more
fragments with reads mapping to the skipping SJ are lost during fragment size selection, introducing an
apparent increase in the exon Ψ.

positions along the transcript have the same probability of breaking, then we would not expect each

position to produce a different fragment size distribution. This fact is important, as it means that by

performing size selection of the resulting fragments, we are not enriching in particular breaking points. In

other words, the relative representation of the different positions along the transcript remains unchanged

after fragment size selection. More importantly, this allows us to calculate the proportion of fragments

that can be generated from each position depending on their size.

The correction that we need to make follows the same logic as for the read length: if the selected

fragments are longer that the ones we need for their ends to map across the SJ, then we will not be able

to recover those positions i.e. they are not mappable. However, in contrast to read length, which is fixed

in the sequencing conditions, we have a distribution of fragment sizes. Thus, in probability terms, we

previously had a probability 0 or 1 of observing a read from a position at a certain distance i of the SJ

depending on read length and overhang.

p(obs|L,R, i, de, ds) =

1 if (ds + i) > L or (de − i) > L

0 otherwise

For fragments, however, as the length is not fixed, but follows a certain probability distribution, we

now have to calculate the probability of obtaining a read at each distance i from the SJ, which depends

on the fragment size distribution p(f). Le ts assume that we know this fragment size distribution, either

from the library preparation stage, or the empirical distribution derived from mapping PE into long

exons. Now, a read spanning a SJ can actually come from two different types of fragments: when the

read is at the beginning or at the end of the fragment (relative to the transcript in 5’ to 3’ sense). Reads

mapping at distance i from the SJ may come from two types of fragments, depending on which end of

the fragment they are located, with different observation probabilities:

• For reads located at the beginning of the fragments, we will observe only fragments that are shorter

CHAPTER 3. MATERIALS AND METHODS 49



3.3. QUANTITATIVE EVOLUTION OF EXON INCLUSION RATES IN MAMMALS

than the distance from position i to the end of the transcript

p(obs|start, de, i) = p(f < de − i)

• For reads located at the end of the fragments, we will observe only those fragments that are shorter

than the distance from the SJ to the transcript start ds

p(obs|end, ds, i) = p(f < ds + i)

Generally, we can assume that we have an equal probability of sequencing each end of a fragment,

i.e. p(start) = p(end) = 0.5, which allow us to calculate the probability of observing a particular read at

distance i from the SJ given the fragment size distribution p(f)

p(obs|de, ds, i) = p(obs|start, de, i)p(start) + p(obs|end, ds, i)p(end) =
p(f < de − i) + p(f < ds + i)

2
(3.28)

Thus, if we want to calculate the full probability of observing a read across the whole SJ, independently

of the distance i, we can apply again the Total probability theorem to sum the probabilities across all

possible distances from the SJ, as previously derived (3.26). If we assume that each distance i has the

same probability of being sampled: p(i) = 1
NSJ

:

p(obs|de, ds) =

NSJ∑
i=0

p(obs|de, ds, i)p(i) =
1

NSJ

NSJ∑
i=0

p(f < de − i) + p(f < ds + i)

2
(3.29)

Marginalizing across fragment lengths

Alternatively, we can reformulate this probability as a function of fragment lengths:

p(obs|de, ds) =

∞∑
f=L

p(obs|de, ds, f)p(f) (3.30)

Now, instead of calculating the probability of observing reads starting at a certain distance from

the SJ i, we need to calculate the probability of observing reads given a specific fragment size f , which

corresponds to the proportion of mappable positions across the SJ that can generate a fragment of size

f , taking into account the equi-probable relative location of a read in a fragment.

p(obs|de, ds, f) = p(obs|de, ds, f, start)p(start) + p(obs|de, ds, f, end)p(end)

We can decompose these probabilities by summing over all possible distances from the read to the SJ

i, which go from R to R+NSJ .

p(obs|de, ds, f, start) =

R+NSJ∑
i=R

p(obs|de, ds, f, start, i)p(i)

p(obs|de, ds, f, end) =

R+NSJ∑
i=R

p(obs|de, ds, f, end, i)p(i)

for which we actually know whether a fragment of size f can or can not be generated given the specific

conditions:

p(obs|de, ds, f, start, i) =

1 if (de − i) > f

0 otherwise
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p(obs|de, ds, f, end, i) =

1 if (ds + i) > f

0 otherwise

Thus, the number of positions that follow these conditions in each case can be directly counted

depending on f, de, ds, being limited by the number of mappable positions NSJ and the number of

positions that allow a fragment of size f with certain read length L and overhang R, given by de − i and

ds − i for reads at the beginning and end of the fragment, respectively. Moreover, again, we can assume

that the probability of sampling any possible distance from the SJ is the same (p(i) = 1
NSJ

).

p(obs|de, ds, L,R, f, start) =
max(min(NSJ , de + L−R− f), 0)

NSJ

p(obs|de, ds, L,R, f, end) =
max(min(NSJ , ds + L−R− f), 0)

NSJ

p(obs|de, ds, L,R, f) =
max(min(NSJ , de + L−R− f), 0) +max(min(NSJ , ds + L−R− f), 0)

2NSJ
(3.31)

In practice, we can set a maximal value for the fragment length fmax, e.g. the maximal observed

value or the 99% percentile, to easily approximate p(obs|de, ds) and reduce computational cost.

Fragment size distribution across an exon

Again, if we have exons that are shorter than the read length, we need to re-adjust the probability of

observing a read derived from a fragment of particular size f p(obs|de, ds, f) to avoid double counting

the same reads that map across the 2 SJ supporting exon inclusion. We obtain a modified number of

mappable positions across SJ2, which is limited by the exon length E, since reads mapping beyond the

exon will have been counted already in SJ1:

N∗SJ2 = min(E,NSJ2) (3.32)

Thus, for a given fragment size f , the probability of observing reads supporting exon inclusion depends

also on exon length E.

p(obs|ds,1, de,1, E, ds,2, de,2, f) =

R+NSJ1∑
i=R

p(obs|ds,1, de,1, f, i)p(i) +

R+N∗
SJ2∑

i=R

p(obs|ds,2, de,2, f, i)p(i) (3.33)

where again we assume a common probability for observing reads across all mappable positions across

the 2 SJ.

p(i) =
1

NSJ1 +N∗SJ2
=

1

NSJ1 +min(E,NSJ2)

Fragment size distribution across an exon with multiple SJs

In the previous section, we have assumed that there is a single splicing path giving rise to the inclusion of

a particular exon, this is, with a unique combination of upstream and downstream exons. If exon skipping

is very rare, then we would not expect to have multiple skipping events taking place simultaneously in the

same transcript. However, as exon skipping becomes more frequent in a gene, or as the number of exons

per gene increases, so does the chance of having multiple exon skipping events in a single transcript and

this potentially different combinations of upstream and downstream exons. Thus, we need to update the
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probability of generating reads supporting exon inclusion to account for all these possible combinations

of splicing reactions.

Lets assume that for a given exon, there are U possible upstream exons and D possible downstream

exons. If we assume that they are independently selected during a splicing reaction with certain prob-

abilities, we can calculate easily the probability of a certain combination of SJ as the product of the

probabilities of selecting each upstream donor u and downstream acceptor d:

p(u, d) = p(u)p(d) (3.34)

Knowing their corresponding distances to transcript start ds,1,u, ds,2,u, and a common distance to

transcript end de,1,d, de,2,d, we can use the expression for a single combination previously derived (equation

3.33) to reconstruct again the probability of observing reads supporting exon inclusion given a certain

fragment size f .

p(obs| ~ds,1, ~de,1, E, ~ds,2, ~de,2, f) =

U∑
u=1

D∑
d=1

p(u, d)p(obs|ds,1,u, de,1,u, E, ds,2,d, de,2,d, f) (3.35)

However, to directly apply this a priori, we would need to know the relative usage of each of the SJ.

Ideally, we would perform inference of these basic probabilities using a more complex model taking into

account all these biases, and derive the exon Ψ from them. In practice, we can approximate these SJ

relative usage ratios assuming a multinomial distribution for reads sampled from each SJ without biases

and take the MLE of the parameters of this distribution as p(u), p(d).

p( ~obsU ) = Multinomial(~θ) (3.36)

θ̂u =
Nu∑U
k=1Nk

(3.37)

Incorporate known biases to models

We have seen along the last few sections that the probability of observing a sequencing read across a

specific SJ depends on a number of parameters i.e. read length, minimum overhang, distance to transcript

start and end and fragment size distribution, Thus probability can be calculated under some assumptions.

However, our aim is not calculating these technical biases, but estimating the real Ψ taking them into

account.

For that, we need a probability formula relating the observations (reads supporting inclusion I out of

T total reads) and the underlying real Ψ. We can understand the process of sampling reads supporting

exon inclusion as a coin tossing problem, such that the number of reads supporting inclusion out of the

total follows a binomial distribution depending on Ψ∗.

p(I|T,Ψ∗) ∼ Binomial(I|T,Ψ∗) (3.38)

This Ψ∗ is the probability of observing reads supporting exon inclusion when obtaining reads deriving

from this ES event. It can be formulated as the probability of observing reads supporting exon inclusion,

divided by the probability of observing any read across the ES event, which includes both inclusion and

skipping reads. These probabilities can be decomposed into the probability of observing a read given

that an inclusion or skipping event took place, p(obs|inc) and p(obs|skp), and the probability that the
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inclusion or skipping event took place, which is given by Ψ, and 1−Ψ, respectively

Ψ∗ =
p(obs|inc)p(inc)

p(obs|inc)p(inc) + p(obs|skp)p(skp)
=

p(obs|inc)Ψ
p(obs|inc)Ψ + p(obs|skp)(1−Ψ)

(3.39)

where the probabilities of observing reads of each type depend on the technical biases as previously

calculated for the SJs supporting exon inclusion and skipping:

p(obs|inc) = p(obs|de,1, ds,1, E, de,2, ds,2)

p(obs|skp) = p(obs|de, ds)

In many cases, our aim is not the estimation of Ψs per se, but the characterization of other parameters,

like the differences between experimental conditions e.g. tissues, developmental times or species, taking

into account technical biases. In these cases, we often use the logit transformation to work in a regression

framework. If we calculate the logit-transformation of the Ψ∗, we see that it can be decomposed in the

sum of the real logit(Ψ) and a bias term. Then, this term can be calculated for each sample and exon

and incorporated to the full model to control for differences in both sequencing conditions across different

samples and different transcript properties across species.

logit(Ψ∗) = log(
Ψ∗

1−Ψ∗
) = log

p(obs|inc)Ψ
p(obs|skp)(1−Ψ)

= log
p(obs|inc)
p(obs|skp)

+ log
Ψ

(1−Ψ)
= logit(bias) + logit(Ψ)

(3.40)

3.3.3 Exon orthology identification

Markov clustering on best-reciprocal hits graph

As we aim to quantitatively compare the exon Ψ across different species to track how this character has

changed over evolutionary time, a key step is the identification of exons that have a common ancestor and

therefore are equivalent across species i.e. groups of orthologous exons. Wheareas there are several known

tools for identifying gene orthologs e.g. OrthoFinder, InParanoid [68, 258] and systematic evaluations

[8], none have been developed for inferring exon orthology relationships to our knowledge.

We assume that the gene orthology relationships are known and only want to identify exon orthologs

within them. We propose to use two similar approximations to these methods, that are based on a

common framework consisting on 2 main steps (Figure 3.7):

1. Build a best-reciprocal hit graph. For this, all possible pairwise comparisons are performed between

exons of different species within groups of orthologous genes, using a certain metric for sequence

comparison. One can use a wide variety of metrics for sequence comparison: from very simple and

fast editing distance, which just counts the minimal number of changes that are required to change

one sequence into the second one; to alignment based methods, which are more computationally

expensive, especially if using algorithms for optimal pair-wise alignment like Smith-Waterman or

Needleman–Wunsch with a given scoring matrix. Intermediate solutions may involve the use of

more heuristic alignment methods like BLAST [9]. Whatever the distance used, we can then build

a graph in which nodes represent different exons, which are connected whenever both exons are the

best scoring exons in the other species.

2. Clustering on the best-reciprocal hit graph. Thus, we have obtained a graph in which highly similar

exons across species will be joined together, forming modules or clusters isolated from each other.

Thus, we can use methods for detecting modules or clustering on the graphs to identify putative
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sets of orthologous exons. The most widely used clustering method for the identification of clusters

of orthologous genes is Markov clustering (MCL) [159]. This method uses the principles of random

walk on a graph to identify sets of nodes that tend to be recurrently traversed in a random walk.

It uses an iterative algorithm with 2 steps called inflation and expansion, with their corresponding

parameters. In the inflation phase, the transition probabilities are modified to enhance the more

likely transitions and weaken the least likely ones by using a power of the transition probabilities

followed by re-normalization. In the expansion step, the inflated matrix is then powered to calculate

probabilities after certain number of steps in the random walk. Thus, after a number of iterations,

the algorithm will converge and return sets of nodes that tend to remain associated [69]. Finally,

if we want to obtain more confident sets of exon orthologs, we can select from each cluster only

the sub-graph that is fully connected, this is, the set of exons that are all best-reciprocal hits. As

exons from the same gene will never be connected in the graph, this already selects the best fitting

exon in case of exon duplication. Within gene exon duplicates can otherwise be easily identified or

removed if required for a particular analysis.

Modified multiple sequence alignment for order-aware exon distances

As exons are shorter than genes, it is more likely for find spurious similarities between them just by

chance. On the other hand, the space search is much smaller (whole genome vs gene fragments), which

may compensate the increased difficulty due to their shorter length. However, in contrast to genes, we

have a very clear unit in which exon order is usually maintained: the gene. Thus, we propose to use a

method that takes into account, not only sequence similarity, but also the relative order of exons across

the different ortholgous genes for the definition of exon orthology relationships. With this purpose, we

use MUSCLE [67] to perform Multiple sequence alignment (MSA) with a custom scoring matrix. We

modified the pre-defined nucleotide scoring matrix in which we have added a new character to represent

an intron, with a very high score for matching. This way, we force gene sequences to preferentially align

exon boundaries and help aligning full exon sequences in case of poor sequence conservation. Thus,

instead of calculating pairwise comparison between exon sequences without taking into account their

relative position in the transcript, we define the score for building the best reciprocal hit graph as the

number of aligned positions in the MSA between a pair of exons.

For our analysis, we have used the following scoring scheme for MSA, resulting in the scoring matrix

at Table 3.1.

• +40 for matching introns

• -1 for gap extension

• -10 for gap opening

• 4 for nucleotide match

• -3 and -4 for transitions and transversion missmatches, respectively

• -10 for aligning intron with a nucleotide

• 0 for a match with ”N” character

Moreover, we set the inflation and expansion parameters to 2 for MCL as provided by default in the

MCL-Markov-Cluster python library, and applied the complete sub-graph method to filter high confidence

orthologs with exons across at least 30% of the species included.
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Best reciprocal hit graph

Orthologous genes

Markov Clustering

Orthologous exons

Figure 3.7: General framework for finding orthologous exons from orthologous genes using Markov clus-
tering (MCL) on a best reciprocal hit graph

Table 3.1: Scoring matrix for Multiple sequence alignment (MSA)

Nucleotide A T G C Intron N
A 5 -4 -3 -4 -10 0
T -4 5 -4 -3 -10 0
G -3 -4 5 -4 -10 0
C -4 -3 -4 5 -10 0

Intron -10 -10 -10 -10 40 0
N 0 0 0 0 0 0
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3.3.4 Models of evolution of quantitative traits

Brownian motion (BM) model

In a Brownian motion (BM), variations introduced in the mean of the trait in a population by random

forces are accumulated over time without constraint at a constant rate τ2, such that the trait is expected

to diverge from the ancestral population linearly with time, on average (Figure 3.9).

dX̄ = τ2dWt (3.41)

dW̄t ∼ Normal(0, dt) (3.42)

A population with a starting average trait value X̄0 will evolve by accumulating random variance over

time, such that after some time t, the average X̄ will follow a normal distribution centered at the starting

value X̄0, with a variance proportional to t

X̄ ∼ Normal(X̄0, τ
2t) (3.43)

In a phylogenetic context, this process happens independently on each branch of the tree. Although

we do not have data of the trait values at the internal nodes of the tree, we can model them as latent

parameters and derive the joint probability of observing the data at the tips of the tree and the whole

set of parameters Θ = { ~̄X, τ2}.

In a tree with known topology and B branch lengths li, for each branch i:

p
(
X̄i|X̄Parent

i , li
)

= Normal
(
X̄Parent
i , τ2li

)
(3.44)

This probability can be calculated recursively for any combination of ~̄X, representing trait values for

every node in the tree, and τ2 values. The recursion ends up at the root of the tree X̄0, for which we need

to specify a prior distribution p(X̄0). In this case, as we have no prior expectation about the inclusion

rates in the mammalian ancestor for a given exon, we set a uniform prior on the Ψ0 = InvLogit(X̄0).

p(Ψ̄0) = Uniform(0, 1) (3.45)

However, we cannot directly measure population means X̄, but only a few individuals in the population

for each species. We assume that the within species variance is the same across species σ2. For each

individual n belonging to species j

p(Xn|X̄j , σ
2) = Normal(X̄j , σ

2) (3.46)

This within species variance is directly related to τ2 through beta, which represents the degree at

which the variance present in the population accumulates with time.

τ2 = βσ2 (3.47)

Thus, we just now need to set priors on σ2 and β, under which we allow flexible evolution of Ψs in a

relatively long evolutionary period of 100 my, as shown in Figure 3.8.

σ2 ∼ Gamma(1, 1)
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Figure 3.8: Prior distributions used for an exon-level BM model for exon inclusion rate. A Gamma prior
for the within species variance. B Resulting prior on the evolutionary rate τ2 by setting a logNormal
prior on the relative rate β. C Predicted evolution of Ψ in 100 my from an exon starting at Ψ0 = 0.95
under the specified priors. Shaded areas represent 2.5, 5, 10, 25 percentiles of the predicted Ψ at each
time point
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Figure 3.9: Traits evolving under Ornstein-Uhlenbeck (OU) and Brownian motion (BM) models over time
(A) and how the variance of the expected distributions changes with time from the ancestral population
(B)

β ∼ logNormal(−3, 3)

Having specified the conditional and prior distributions across all model parameters, we can now fully

specify p(X,Θ), which is directly proportional to the posterior probability p(Θ|X).

p(X,Θ) = p(X|Θ)p(Θ) = p(σ2)p(β)p(Ψ0)

N∏
n=1

p(Xn|X̄n, σ
2)

B∏
i=1

p
(
X̄i|X̄Parent

i , li, τ
2
)

(3.48)

Ornstein-Uhlenbeck (OU) model for a single exon

The OU model is a generalization of the BM model, in which there is a pull towards an optimal value i.e.

the value that maximizes the fitness of the population. The strength of the pull can be understood as the

selective strength, which constrains the divergence from the optimal values: if random forces introduce

variation too far from the optimal value, selection will eliminate this variation. Therefore, whereas in the

BM model the variance increases linearly with time, the stabilizing selection introduced in an OU model

drives the saturation of this variance (Figure 3.9).

We follow Butler’s work for the main derivation of the OU model [42]. Let X̄ be the mean of a

continuous character evolving over an infinitesimal time dt with a unique optimal value µ and infinitesimal

random fluctuations given by the infinitesimal variance τ2. Then the expected infinitesimal change in
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the mean of the character is

dX̄ = α(µ− X̄)dt+ τ2dWt; dWt ∼ Normal(0, dt) (3.49)

Starting from the mean state of the last common ancestor X̄0 at time t0, the trait value is then

normally distributed with mean

E[X̄](t0, X̄0, α, µ) = X̄0e
−αt0 + µ

(
1− e−αt0

)
(3.50)

and variance

V ar[X̄](t0, α, σµ) =
τ2

2α

(
1− e−2αt0

)
. (3.51)

Thus, the evolution across a li long branch i of a phylogenetic tree with a total B branches also follows

a normal distribution

X̄ ∼ Normal
(
X0e

−αli + µ(1− eαli), τ
2

2α
(1− e−2αli)

)
(3.52)

As with the BM, we can add intra-species variance σ2 and trait values at the internal branches as latent

parameters of the model as shown by equation 3.46. We also need to specify a prior distribution for the

trait value at the root of the tree X̄0. In contrast to the BM model, the OU model can provide a sensible

prior: as time increases (t → ∞), the expected distribution tends to reach a stationary state. Thus, if

we assume that time evolving under the same regime before species divergence has been sufficiently long,

we can expect the trait value at the root to be drawn from the equilibrium distribution.

X0 ∼ Normal(µ,
τ2

2α
) (3.53)

The resulting joint probability can then be written as follows:

p(X,Θ) = p(X|Θ)p(Θ) = p(σ2)p(α)p

(
τ2

2α

)
p

(
X0|µ,

τ2

2α

)
p(µ)

N∏
n=1

p(Xn|X̄n, σ
2)

B∏
i=1

p

(
X̄i|X̄Parent

i , li, α,
τ2

2α
, µ

)
(3.54)

Whereas the BM single parameter can be inferred with confidence with a relatively small comparative

dataset, there is increasing evidence of strong bias in the inference of OU parameters, mostly α, using

phylogenies fewer than 200 species [58, 232].

Global Ornstein-Uhlenbeck (OU) model

Despite our inability to infer every evolutionary parameter of the OU model for each exon independently,

we can assume that exons will evolve under the same process i.e. selective constraint and neutral evolu-

tionary rate. In other words, we can assume that the parameters that are hard to estimate from a single

exon i.e. α, τ2

2α , σ2 are common across all of them. Even if this may not be fully accurate, we can at least

use this approximation to obtain an average estimate across the whole set of exons under study. Similar

approaches have been previously used to estimate biological variance in transcriptomic datasets with few

samples [229, 171, 185].

To calculate the joint probability of the parameters and the data across the whole set of exons

together, we assumed that exons evolve independently from each other, since this allows calculating the

joint probability by multiplying the probabilities for individual exons.

p(X,Θ) = p(Θ)

K∏
k=1

p(Xk|Θ) (3.55)
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We assumed that all species share a common optimal value for the same exon, but each exon may

have a different optimal value µk, which we assume to be drawn from a normal distribution; and root

values are still drawn from the equilibrium distribution as previously described (equation 3.53).

µk ∼ Normal(µ0, σ
2
µ) (3.56)

Now, instead of using latent parameters representing the trait values across every internal node of the

tree for each of the exons, which greatly expands the number of parameters to infer, we used an alternative

multivariate parametrization [42] using covariance between samples separated by a given distance in the

phylogenetic tree. For species i and j, the covariance between X̄i and X̄j depends on their distance in

the tree ti,j ; and the total evolutionary time t0 (sum of branch lengths involving the species i and j).

Cov(X̄i, X̄j |ti,j , t0, α, τ) =
τ2

2α

(
e−αti,j − e−2αt0

)
(3.57)

With the trait values evolving along a bifurcating tree with known divergence times T, we can model

the vector of trait values ~̄X as a multivariate normal distribution with a common mean:

~̄X ∼MvNormal
(
E[X̄](t0, X̄0, α, µ), Cov[ ~̄X](T, α, τ)

)
(3.58)

For later use, we will denote ΣOU = Cov[ ~̄X] (T, α, τ) as the variance-covariance matrix for species means,

which will be common to all exons. As such, we need to invert Σ or calculate its Cholesky decomposition

only once for the whole dataset, becoming more computationally efficient than inferring internal nodes

as in the single exon models.

To account for intraspecific variability, we model directly trait values across individuals rather than

species. To do so, we can simply expand the covariance matrix to represent samples covariance rather that

species covariance. Thus, we still use the OU covariance function (equation 3.57) based on the species to

which each individual sample belong, but also add a common within species variance σ2, common across

species, to the diagonal elements of the covariance matrix

Σ = ΣOU + Σind = ΣOU + σ2I (3.59)

Using this, we can derive the joint probability of the data X and a certain combination of parameter

values Θ as the product of conditional probabilities. Considering X as the matrix containing trait values

for all K exons and N samples.

p(X,Θ) = p(µ0)p(σ2
µ)p(α)p(τ2)p(σ2)

[
K∏
k=1

p
(
~Xk|µk, X̄0,k, α, τ

2, σ2,T
)
p
(
X̄0,k|µk, α, τ2

)
p
(
µk|µ0, σ

2
µ

)]
(3.60)

There remains to specify the prior distributions for the basic OU parameters. We aim to specify

relatively informative prior distributions for the OU model, with the aim of setting soft bounds on the

parameter space in which the OU model seems reasonable for evolving exon inclusion rates.

• Even if many genes can be alternatively spliced, as one major AS isoform is usually produced

[70], we expect most exons to have high optimal inclusion rates. This allows us to specify prior

distributions for the mean and variance of the optimal values in our model

µ0 ∼ Normal(2, 3)
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Figure 3.10: Prior distributions for parameters related with AS optimal values, i.e. mean µ0 and standard
deviation µSD, and the expected distribution of optimal inclusion rates across exon skipping events Ψopt,k

.

µSD ∼ Gamma(2, 0.5)

These prior distributions are motivated by the resulting expectation on optimal inclusion rates

Ψopt,k, resulting from the inverse logit transformation after sampling from a normal distribution

with those means and variances. With these prior distributions, we obtain a relatively high amount

of exons with Ψopt close to 1, but allowing certain probability for exon skipping at all possible rates

(see Figure 3.10)

• To specify a prior distribution on selection strength α, we parametrized it as a function of the

phylogenetic half-life t 1
2

i.e. the time required for selection to reduce the distance to the optimal

value by half.

t 1
2

=
log(2)

α

If selection is very weak, t 1
2

will be longer than the range of times included in the phylogeny.

However, as this depends on the scale of the phylogeny, we set a prior on a scaled phylogenetic

half-life that per time unit in the phylogenetic tree:

t∗1
2
∼ Gamma(2, 4)t∗1

2
= t 1

2
/2.47

we put 95% of the prior probability mass between [2.53, 53.11] 100 m.y., consistent with the a priori

expectation of relatively neutral evolution of exon inclusion rates (Figure 3.11).

• We set also a Gamma prior distribution on the equilibrium variance

τ2

2α
10−2 ∼ Gamma(2, 3)

which allows a very wide range of values for the equilibrium variance, enough to allow any inclusion

rate in the equilibrium a priori but avoid very large and meaningless values.

• Finally, σ is parametrized as a function of τ , since rates of neutral evolution are expected to be

proportional to the genetic variance. Therefore, we set a prior on the proportionality constant β

β ∼ logNormal(3, 1)σ2 =
τ2

β

such that the resulting within species variance has 95% prior probability between 0.001 and 0.418

(Figure 3.11). This apparently strong informative prior on the logit scale actually allows relatively

high variability in inclusion rates i.e. individuals from a species with an average Ψ̄ = 0.5 will show

Ψ between 0.38 and 0.62 with a probability of 95% (Figure 3.11E).
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Inference of optimal inclusion rates

While the global OU model allows inference of the specific optimal values for each exon included in the

dataset, fitting it with the whole dataset is not feasible given the complexity of the model and the large

computational burden that it implies. However, we know that, with about 2000 exons the estimates of

the global parameters α, τ2 and σ2 become reliable. Thus, we can simplify the previous single exon

model (equation 3.54) by plugging these estimates as known parameters.

p(X,Θ) = p(X|Θ)p(Θ) = p

(
X0|µ,E

[
τ2

2α

])
p(µ)

N∏
n=1

p(Xn|X̄n, E
[
σ2
]
)

B∏
i=1

p

(
X̄i|X̄Parent

i , li, E[α], E

[
τ2

2α

]
, µ

)
(3.61)

This leaves the trait values at each node X̄ of the phylogenetic tree and the optimal value µ as only

parameters, which can be easily inferred now for each exon independently. In this model, instead of

setting a prior directly on µ, we specified a uniform prior for the optimal inclusion rate Ψopt, which can

then be transformed to µ using the logit function.

Ψopt ∼ Uniform(0, 1)

µ = logit(Ψopt) = log

(
Ψopt

1−Ψopt

)

Adaptive evolution of exon inclusion rates

As before, we assumed that the inferred global OU parameters are common across every exon in the

transcriptome. This provides an expectation of the change in Ψs that is allowed by random change and

stabilizing selection in a period of time. Therefore, if there is strong evidence for an unusually large

change at some branch of the phylogeny, we can reliably say that there has been a shift in the optimal

value. We now have an optimal value µb for each branch b, which depend on the ancestral optimal value

µ0 and the change in this optimal value along each branch of the tree ∆µb.

µb = µb,parent + ∆µb

We can safely assume that most of the times there are no changes in the optimal values: they are

zero. We can formalize this idea using a horse-shoe prior for regularization [46]. The horseshoe prior, a

member of the family of hierarchical shrinkage priors, specifies a normal prior for ∆µb with mean 0 and a

standard deviation τb, where τb is not a fixed value, but drawn from a common half Cauchy distribution
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with location parameter 0 and ρ scale. τb represents a local shrinkage parameter, as it only affects branch

b, whereas ρ can be understood as a global shrinkage parameter, affecting the whole phylogenetic tree.

We further set a half Cauchy prior in ρ centered at 0 with scale parameter of 0.1. While 1 was first

recommended for general applications [46], it was later shown to add only a weak regularization [219], so

we reduced it to 0.1.

p(∆µb | τb) = Normal(∆µb | 0, τb) (3.62)

p(τb | ρ) = Cauchy+(τb | 0, ρ) (3.63)

p(ρ) = Cauchy+(ρ | 0, 0.1) (3.64)

With this model what we infer is the minimal combination of shifts, if any, that best explain the

observed patterns across extant species given the known patterns of evolution in absence of shifts, as

provided by the global fit.

Previous models allow the inference of the specific location of a number of shifts, which is a parameter

itself [283]. This required the MCMC algorithm to jump between models of different complexity, as the

number of parameters changes with the number of shifts, which is intractable in stan [45], which leverages

the continuous nature of the parameter space to propose new samples with high acceptance probability.

Instead, we specified potential fixed locations of those shifts and assume that most of them will be zero.

Global prevalence of adaptive evolution

Let pa be the probability that an exon has experienced a shift along its evolutionary history or the

proportion of exons that have adaptatively change during mammalian evolution. Whether an exon has

a shift or not S is a binary outcome drawn from a Bernoulli distribution with parameter pa

S ∼ Bernoulli(pa)

However, we do no have access to S directly, as our method for detecting shifts is not perfect and makes

errors: there is a certain probability that our method detects a shift when there is a shift p(shift|S = 1),

which is true positive rate (TPR) sensitivity; and a probability that it detects a shift when there is not

in reality p(shift|S = 0), known as false positive rate (FPR). Thus, if we know how well the method

performs through these parameters, we can derive the probability of observing a shift ps with our method

by summing the probabilities from both scenarios:

ps = p(shift|S = 1)p(S = 1) + p(shift|S = 0)p(S = 0) = TPRpa + FPR(1− pa) (3.65)

At the same time, by fitting the shifts model to our data, we obtain the number of exons with observed

shifts Q out of a total of K exons, which is drawn from a binomial distribution.

Q ∼ Binomial(K, ps)

Now, how do we infer the sensitivity and false positive rates of the test? We need to have some data

in which we know the true states of the exons to be able to obtain information about those parameters.

We generated such dataset by simulating data under the inferred OU parameter values with a probability

of having a shift in each branch of 0.003. This probability results in a dataset in which about half of

the trees have at least one shift, so that we can reliably evaluate the performance of the method for
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identification of exons with a shift along their evolutionary history. To do so, we counted the number of

true positives (TP), false positives (FP), true negatives (TN) and false negatives (FN), which depend on

the sensitivity and false positive rates:

TP ∼ Binomial(TP + FN, TPR)

FP ∼ Binomial(FP + TN,FPR)

We specified uniform priors for the 3 model parameters, as we do not have a priori information about

the performance of the method or the pa

p(pa) ∼ Uniform(0, 1)

p(TPR) ∼ Uniform(0, 1)

p(FPR) ∼ Uniform(0, 1)

which allow us to specify the joint probability of the model parameters Θ = {pa, TPR, FPR} and

the data = {Q,K, TP, TN,FP, FN}

p(data,Θ) = p(Q|pa, TPR, FPR)p(TP |TP + FN, TPR)p(FP |FP + TN,FPR)p(TPR)p(FPR)p(pa)

In this model, we simultaneously infer the performance of the method on a finite dataset with known

true values, and estimate the prevalence or proportion of exons with shifts using the observed data. This

way, uncertainty in the estimation of the sensitivity and false positive rate is propagated to the estimation

of pa.

Parameter inference using Markov Chain Monte Carlo

Models were implemented in stan, a probabilistic programming language for bayesian inference [45]. Stan

uses No-U Turn Sampler (NUTS) [106] to approximate the complex joint posterior distribution of the

parameters. NUTS is a type of Markov Chain Monte Carlo (MCMC) algorithm based on Hamiltonian

Monte Carlo (HMC) that aims to maximize the effective sample size (ESS) per computation time using

proposal distributions with high acceptance probability and low autocorrelation [31]. The Markov chains

visit points in the parameter space proportional to their posterior probability, so we can use the sample

to estimate probabilities. For each dataset, 4 chains were run for 1000 iterations after 1000 warm-up

iterations for sampler parameters optimization. We assessed convergence and mixing of the chains by

measuring ESS and Gelman-Rubin R (R̂) of the parameters of interest.

Code availability and reproducibility

Main methods to extract exon orthologs, extract exon biases, merge and handle counts matrices, and fit

quantitative models for Ψ evolution are implemented in an in-house python library AS-quant. Specific

code to reproduce the analyses performed in this section are found in a different repository AS-evolution
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4. Results

4.1 Functional impact and regulation of alternative splicing in

heart development and disease

4.1.1 Characterization alternative splicing patterns in the developing and

diseased heart

To characterize the AS changes taking place during heart development and disease, we collected a large

dataset of heart samples from mouse models at different developmental stages and disease conditions

(Table S1). We grouped the collected samples according to 5 major phenotypes, including the three

major developmental stages that have been previously characterized (embryo (E10.5-E17), post-natal

(P0 to P7), and adult (from P10) stages) [126, 125, 92]; but also two common models of heart disease:

• myocardial infarction (MI), induced by permanent ligation of the left anterior descending (LAD)

coronary artery. Thus, blood flow to a specific region of the heart is blocked as in humans, when

a blood clot occludes a coronary artery. Thus, cells in this region die and we can study the

transcriptional changes taking place in the infarcted, border or remote region.

• trans-aortic constriction (TAC), by tying a knot in the aorta that reduces its diameter as a model of

increased arterial pressure. Thus, the heart is forced to grow to overcome the increased resistance

to blood flow as in human hypertensive patients.

Using this categorization of samples, we first identified a set of over 20,000 AS events with at least one

read supporting skipping or inclusion in 20% of the samples. We then focused on AS changes occurring

in these specific transitions:

1. embryonic development (ED), by comparing neonatal with embryonic samples.

2. post-natal development (PD), by comparing uninjured adult samples with neonatal samples

3. TAC, by comparing samples from hypertrophic and uninjured adult hearts

4. MI , by comparing samples from infarcted and uninjured adult hearts

Differentially spliced events for each comparison were identified using a Generalized Linear Mixed

Model (GLMM) with binomial likelihood and logit link function. To account for variability across exper-

imental settings and sample types, we included the experiment, sample type and individual as random

effects in the model. This model also allowed us to estimate the average Percent Spliced In (Ψ) in

each of the phenotypes simultaneously removing unwanted sources of variability, like batch or sequencing

conditions that may affect the observations in each of the collected samples.

AS changes were more abundant in the developmental transitions than in the disease models, sug-

gesting more prominent roles of AS during embryonic and postnatal development (Figure 4.1A). Given
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Figure 4.1: Alternative splicing landscape in heart development and disease. A Number of events showing
significant differences in each comparison according to the event type: alternative acceptor, alternative
donor, and exon skipping. B Heatmap representing z-scores calculated from estimated Ψ for each con-
dition. Clusters were calculated using k-means on the normalized profiles. C Principal Component
Analysis of all analyzed samples using exon cassette events without missing data in any of the samples.
Different symbol colours represent different datasets or experiments. Ellipses were drawn according to
each condition.

that the main AS changes in all comparisons were cassette exon events, we focused on this type of event

in downstream analyses. Interestingly, whereas exon inclusion and skipping were observed in similar

amounts during both embryonic and post-natal development, heart disease was mainly characterized by

increased exon skipping (Figure 4.1).

In agreement with the observations in Figure 4.1A, K-means clustering of the standardized Ψ profile

(Figure 4.1B) revealed that the largest clusters (II,III,IX,X) were those specific of developmentally reg-

ulated exons, with smaller clusters identified with specific changes in TAC and MI (clusters IV and VI).

Interestingly, clusters V, VII and VIII show similar pattern in MI and in embryonic samples, suggesting

partial re-expression or re-repression of the neonatal AS pattern after cardiac injury. Furthermore, Prin-

cipal Component Analysis (PCA) showed a small displacement of TAC and MI samples toward neonatal

samples (Figure 4.1C) reinforcing this idea. Embryonic and neonatal samples were clearly separated

from the adult samples, supporting the notion that developmental stage is the main source of variability,

over batch effects or sample source. This was nonetheless not specific to AS, as PCA of expression data

showed a similar pattern (Figure 4.2).
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Figure 4.2: Principal Component Analysis using gene expression data. Normalized counts were trans-
formed to z-scores, and genes with missing data were removed. Symbol shapes represent different condi-
tions and symbol colors represent different experiments or datasets.

4.1.2 Functional impact of alternative splicing changes in the heart

Alternatively spliced exons potentially result in different protein isoforms both in develop-

mental transitions and in disease

We next investigated the potential impact of AS changes on heart physiology. Two of the main potential

roles of AS are the production of different protein isoforms from the same gene and the regulation of

gene expression by RUST. Exons that generate alternative protein isoforms usually preserve the ORF

to avoid early termination of protein translation. We found that exons undergoing AS changes in the

heart in all studied conditions have a higher probability of having a length multiple of three, and thereby

preserve the ORF, than those exons that were differentially spliced (Figure 4.3A; Fisher test p-value

<0.01 for all comparisons except MI Included and TAC Included). To investigate the potential impact of

AS on these potential proteins, we compared the exon length and found that exons preferentially included

in developmental transitions and those preferentially skipped in TAC or MI tended to be shorter than

those that showed no significant changes (Figure 4.3B, Mann-Whitney U test p-value < 0.05). These

exons, which were the most abundant (Figure 4.1A), showed an under-representation of PFAM domains,

suggesting that they do not tend to introduce strong changes in protein function. In contrast, a higher

proportion of exons skipped in the ED or PD comparisons or included in MI encoded PFAM domains,

and are therefore expected to have a greater impact on protein function (Figure 4.3C, Fisher test p-value

< 0.05). These results, altogether, suggest that the prevalent role of AS in the heart is to generate slightly

different protein isoforms rather than to modulate gene expression through NMD.

Modulation of protein-protein interaction networks by AS in heart disease

Alternative splicing protein isoforms have been previously shown to have different interaction partners

[301]. To investigate whether AS changes in the heart regulate protein protein interactions we first

compared the connectivity of proteins encoded by genes undergoing differential AS using the Intact
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Figure 4.3: Properties of alternatively spliced exons in the heart. A-D, Values of different properties in
each comparison according to whether inclusion levels where increased (Included), decreased (Skipped),
or not significantly changed (No-change). A Proportion of exons with length that is multiple of 3 (reading
frame preservation (RFP)) and therefore have no impact on the open reading frame. B, Exon length
distribution. C, Proportion of exons overlapping with an annotated PFAM domain. D, Number of
connexions or degree in the Intact protein-protein interaction (PPI) network.
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Protein-Protein Interaction (PPI) network [206]. For all comparisons, genes with skipped exons showed

more connections to other proteins than genes without significant AS changes (Figure 4.3D; Mann-

Whitney U test p-value < 0.05 for PD and ED, p-value < 0.15 for MI and TAC). To check whether this

was a general property of transcriptional changes, we compared the PPI degree distribution of proteins

depending on their gene expression changes. In contrast to AS, DEGs did not show a higher number of

connections in the PPI network (Fig. S2), suggesting that this feature is specific to AS.

However, this does not necessarily mean that these particular AS changes are modulating the interac-

tion capabilities of these proteins. To determine whether PPIs are actually regulated by AS changes, we

used information of domain-domain interaction (DDI) information [87], and assumed that exons located

in a domain that mediates an interaction between two proteins are actually required for such interaction

to take place. Thus, we can identify interactions that are increased or decreased depending on whether

the inclusion of the exon spanning the domain increases or decreases, respectively. We found that exons

included during TAC or MI affected more domain mediated PPIs than unchanged exons (OR=3.50 and

OR=2.42, Fisher tests p=0.06 and p=0.21, respectively). Skipped exons in disease, if anything, avoided

changing interactions (OR=0.51 an OR=0.65, p-values ¿ 0.2) (Figure 4.4A). Overall, these results suggest

that AS changes can increase the number of interactions by increasing exon inclusion, but avoid reducing

them through exon skipping.

The impact of increasing or decreasing the amount of interacting proteins may however depend on their

position in the PPI network. In other words, reduction or even complete ablation of the binding affinity

between two proteins by differential exon inclusion may only affect slightly the overall function of a protein

complex, as cooperative binding of the remaining elements may compensate this lack of binding between

some of their elements. On the other hand, if two protein complexes interact only through an interaction

between a pair of proteins, the modulation of this interaction is expected to have greater functional

consequences. Thus, we analysed how AS changes affect the structure of the PPI network beyond isolated

interactions. To do so, we built an undirected graph using pairwise interactions for genes expressed in at

least one condition and calculated the betweenness for each edge. DDI interactions potentially modulated

by AS showed, in general, lower betweenness, compared to AS-insensitive interactions (Figure 4.4B, Mann-

Whitney U test p-value< 10−6). These results suggest that AS-modulated interactions tend to be located

within closely interacting modules rather than connecting different protein complexes. When comparing

across groups of modulated exons, we found that exons modulated during ED have significanly higher

betweenness in the PPI network than the unchanged exons (Mann-Whitney U test p=0.01, Figure 4.4C),

suggesting a stronger rewiring of the interaction networks during early heart development than in any

other condition. No significant difference was found in the betweenness for exons modulated during heart

disease (Mann-Whitney U test p¿0.1, Figure 4.4C).

Since proteins do not only interact through protein domains, we next studied AS-mediated PPI

changes in experimentally built networks that are not limited to DDIs [305]. We found that 100% of exons

changing in disease AS changes are located in genes with known AS-dependent interactions (Figure 4.4D),

significantly greater than the approximately 60% observed for unchanged exons (Fisher test p¡0.0001 and

p=0.53 for TAC and MI, respectively). These findings are specific to AS since GE changes showed the

opposite trend: only developmentally regulated genes are associated to AS-modulated interactions (Figure

4.4E). To investigate the global impact of AS on the PPI network, we built an interaction network using

only experimentally tested interactions in this dataset and calculated the edge betweenness, as before.

Interactions affected by AS changes in TAC and MI showed higher betweenness than unchanged exons

(Mann-Whitney U test p¡0.01 and p=0.05, respectively, 4.4F), suggesting a rewiring of the PPI network

by AS in heart disease. Despite the low statistical power due to the small size of groups overlapping with

available PPI data in each dataset, our results suggest that AS changes significantly alter PPIs networks

in heart disease.
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Figure 4.4: Impact of AS changes in the protein-protein interaction networks. A. Estimated proportion
of exons that map to a domain mediating protein-protein interaction according to whether they are
included, skipped or unchanged in the comparisons under study. Numbers in brackets represent the
number of exons in the groups Included and Skipped for each contrast, out of 8893 total exons under
study. B. Distribution of the log(Edge betweenness) for interactions that were found to be potentially
regulated by AS in the heart compared to the remaining interactions. An interaction was considered
to be potentially modulated by AS when an exon considered to be alternative in the heart encoded a
domain mediating this interaction. C. Network edge betweenness for interactions depending on whether
they were modified by AS in the conditions under study using domain mediated interactions [87]. D,E.
Estimated proportion of interactions that differed between AS isoforms [305] in genes with significant
differences in AS (D) or GE (E) in each contrast. F. Network edge betweenness for interactions depending
on whether they were modified by AS in the conditions under study using data in [305]. Fisher tests
were used to assess differences in proportions and Mann-Whitney U tests to analyze differences in edge
betweenness
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AS and GE control different biological processes in the heart

We next investigated the overlap between changes in AS and changes in GE. The proportion of differ-

entially expressed genes was similar in genes undergoing differential AS and in those showing no AS

changes, suggesting no association between AS and GE changes (Figure 4.5A). Even if GE and AS regu-

late different genes, these affected genes might regulate the same biological processes. To investigate this

possibility, we performed Gene Ontology (GO) enrichment analysis in each comparison and then calcu-

lated the pairwise semantic similarity of the 10 most significantly enriched GO terms among all groups

followed by hierarchical clustering based on the similarity profile (Figure 4.5B). This analysis clustered

enriched processes for alternatively spliced and differentially expressed genes separately, regardless of the

biological context (development or disease), indicating that AS and GE changes affect different biological

processes in the heart. Interestingly, processes regulated by AS clustered separately for disease and devel-

opment, whereas processes associated with GE changes clustered together (upregulated in development

and downregulated in disease clustered separately from downregulated in development and upregulated

in disease). This suggests a stronger functional reexpression of embryonic GE patterns than AS patterns

in heart disease. Whereas changes in GE were mainly related to cell division, the respiratory chain, and

extracellular matrix deposition, AS changes were more associated with cytoskeletal organization (Figure

4.5C).

4.1.3 Studying AS regulation in heart development and disease

MBNL1 drives major AS changes during embryonic and postnatal development in a position

dependent manner

To identify the potential regulators of AS in the heart, we looked for over-represented binding sites of

different RBPs across different potential regulatory regions. Binding sites were collected by integrating a

series of databases of CLiP-seq experiments (see Methods). We first filtered those RBPs that were found

to be significantly enriched (p<0.01, Fisher test) in at least one group of significantly changed exons.

We then used the reduced set of enriched RBPs binding to different regulatory regions as substrate for

regression analysis using a GLM with binomial likelihood to take into account co-linearities across binding

profiles of different RBPs. This analysis was then applied to sets of exons that were found to change in

any comparison (Figure 4.6A). Our results show that MBNL1 is strongly enriched in the upstream intron

of exons that are skipped and in the downstream intron of exons that are included during both PD and

ED. We also found that MBNL1 binding sites in exons showing changes tend to be more conserved across

evolution at the sequence level, suggestive of functional importance (Figure 4.6B). Additionally, MBNL1

expression increases during development and remains unchanged in both TAC and MI (Figure 4.6C).

To test whether different RBPs may regulate different biological functions, we looked for enrichment of

GO terms in exons bound by each RBP compared to all those that changed in any of the comparisons

under study (Figure 4.6D, one-tail Fisher test). We found that MBNL1 tends to bind to genes related

with actin cytoskeleton dynamics and cell junctions, whereas other RBPs tend to bind more to exons of

RNA binding proteins or proteins located in the nucleus. Whereas other RBPs may contribute to the

regulation of AS changes during development, such as QK, RBFOX1 or PTBP1/2, our results suggest

that MBNL1 is the main regulatory element.

PTBP1/2 drives a partial re-expression of AS neonatal patterns in heart disease

Although MBNL1 was found to be the main regulator of AS during ED and PD, we found only a mild

enrichment of the binding sites in changing exons, and its expression remained unchanged in both models

of heart disease: TAC and MI (Figure 4.6C). In contrast, PTBP1 and PTBP2 binding sites, among
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Figure 4.5: Functional impact of AS and GE changes and their overlap. A, Proportion of genes showing
GE changes that also show changes in AS in each comparison. B. Pairwise semantic similarity among
the most representative GO terms in each group of genes. Row colors represent the different comparisons
studied and column colors represent AS or GE. Semantic similarity profiles were then clustered using hi-
erarchical clustering. C, Heatmaps representing the –log10(p-value) of the functional enrichment analysis
for top enriched categories across all groups for AS (left) and GE (right).
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Figure 4.6: Direct regulation of alternative splicing changes. A Dotplot representing multivariate en-
richment analysis for CLiP-seq binding sites in regulatory regions for RBPs that showed significant
enrichment by univariate analysis for each group of exons. Regions are defined by combinations of the
following terms: (I: Intron, A: Alternative exon, DW: downstream, UP: upstream, L: left, R: right). The
dendrogram was calculated using the Ward method with distances between binding sites profiles to the
exons included in the analysis. B Mean difference in phastCons scores in binding sites of exons showing
changes compared to those that remained unchanged. Error bars represent the standard error of this
difference. X-axis range from -0.5 to 0.5 in all cases. C Centered expression levels per condition under
study for RBPs showing significant univariate enrichment from panel. D Dotplot representing the func-
tional enrichment of genes with binding sites for each RBP and region and showing significant changes
in at least one comparison. Genes with significant AS changes in at least one comparison were used as
background for enrichment (one-sided Fisher test). The dendrogram represents distances between GO
terms based on the proportion of shared genes using the Ward method.
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Figure 4.7: Validation of PTBP1 expression changes and predicted targets. A PTBP1 expression mea-
sured by qPCR in independent samples undergoing TAC and control treatment. B PTBP1 expression
measured by qPCR in independent samples undergoing MI and control treatment, separating by infarcted,
border and remote regions. C Relative expression of candidate alternative splicing changes measured by
qPCR in the TAC experiment

others, were enriched in the upstream intron of skipped exons in TAC and MI, and included in ED and

PD (Figure 4.6A). Additionally, PTBP1 expression decreased during ED and PD, and increased upon MI

or TAC (Figure 4.6A), suggesting that its binding to the upstream intron of alternative exon inhibits exon

inclusion. Although PTBP1/2 targets were not significantly enriched in any functional category (Figure

4.6D), their enrichment and expression patterns suggest that they mediate the partial re-expression of

neonatal AS patters in heart disease.

To validate these findings, we performed independent experiments inducing hypetrophic growth by

TAC and MI through LAD ligation. We confirmed that PTBP1 was significantly over-expressed after

both treatments, much more so in the infarcted area and the border region separating it from the healthy

tissue (Figure 4.7). Moreover, we selected a number of exons with the largest reduction in Ψ in TAC and

MI, with binding sites for PTBP1 in the upstream intronic flank, as putative direct targets of PTBP1.

Indeed, we found the TAC samples showed decreased inclusion rates compared with controls for all genes

except AP2A1, significantly different in 7 out of 10 of them (p-value≤0.1), providen support for PTBP1

upregulation to have an effect on AS patterns.

Regulatory roles for MBNL1 and PTBP1/2 are confirmed by experimental loss of function

To confirm the regulatory potential of the proteins identified above, we used published RNA-Seq data

from loss-of-function experiments for MBNL1 and PTBP1/2 (either knock-out (KO) or knock-down (KD))
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Figure 4.8: Comparison of AS changes in the heart with MBNL1 and PTBP1/2 LOF experiments.
Heatmap representing Pearson correlation coefficients between changes in exon Ψ for MBNL1-KO,
PTBP1-KD, PTBP1/2-KD and all comparison analyzed in the heart (ED, PD, TAC, MI).

[62, 93, 166, 153] (Figure 4.8). We analysed the correlation of AS changes between these loss of function

(LOF) experiments and the conditions under study in the heart. AS changes in the PTBP1/2 double

KD correlated with those in the cardiac PD, TAC, and MI contrasts, even though the KD experiment

had been carried out in neural progenitor cells. The higher correlation coefficient with the double KD

than with the individual PTBP1 KD suggests that PTBP1 and PTBP2 both actively regulate AS in the

heart in all the conditions studied, in agreement with the binding-site–enrichment analyses (Figure 4.6).

Interestingly, AS changes in the MBNL1 KD correlated with changes in ED, although the correlation was

greater with changes in PD, suggesting an effect on AS throughout development that is stronger in the

postnatal transition. Consistent with the enrichment results (Figure 4.6), no correlation was found with

either TAC or MI, suggesting that MBNL1 does not mediate AS changes in these contexts (Figure 4.8).

Reduced coordination of RBP expression changes is associated with complex regulatory

mechanisms of AS in heart disease

We have identified MBNL1 and PTBP1/2 as the main regulatory elements when analysed individu-

ally. However, more complex regulatory patterns, such as combinatorial binding of several RBPs, might

contribute significantly to the observed AS changes. To tackle this question, we expanded our logistic

regression model to include all pairwise combinations of RBP binding sites. As we expect most of these

interactions to have no effect on the inclusion patterns, we added a Lasso penalization to promote sparsity

of explanatory variables. We first optimized the regularizing constant using 10-fold cross-validation in

terms of the AUROC, as a measure of predictive power (Figure 4.9A). As expected, interactions were

less likely to contribute to predict inclusion or skipping of a particular exon (Figure 4.9B), even if the

magnitude of the coefficients was comparable (Figure 4.9C). However, as there were many more pairwise

combinations than single binding of RBPs, we found that the cumulative contribution of interactions

to the prediction of inclusion or skipping groups is comparable in ED and PD to that of single RBPs,

and this contribution was even higher in MI and TAC (Figure 4.9D). This suggests that the underlying

regulatory patterns of AS in heart disease are more complex than those that control AS during devel-

opment. Figure 4.9E,G show the specific interactions among RBPs that were found to be non-zero for

included and skipped exons in ED and MI, respectively. We hypothesized that this increased complexity

arises from the lack of coordination in RBPs expression changes. If the expression of two RBPs increased

or decreased while maintaining their stoichiometry, they would act mostly in complexes and only their

common targets would change. However, if there was an imbalance in their expression levels, both com-

mon and individual targets of these RBPs would change. Therefore, if lack of coordination underlied this

increased regulatory complexity, we would expect a lower correlation among RBPs in TAC and MI than
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in ED and PD. We found comparable normalized correlation coefficients among candidate RBPs in ED

and PD to that of pairs of interacting proteins from Intact. The correlation was however lower in MI and

TAC (Figure 4.9G). Furthermore, within each comparison, pairs of RBPs showing non-zero regulatory

interactions at the binding site level showed lower correlation at the expression levels, consistent with our

hypothesis (Figure 4.9H).

PTBP1 over-expression induces cardiac hypertrophy and diastolic disfunction

Our results suggests that PTBP1 upregulation mediates at least some of the AS changes in heart disease.

To investigate whether PTBP1 upregulation alone, potentially through AS regulation, is sufficient to

induce cardiac hypertrophy, we over-expressed PTBP1 specifically in the heart using an Adeno-Associated

virus type 9 (AAV9) as vector carrying PTBP1 cDNA and injected in 10-12 weeks old wild-type (WT)

mice in two independent experiments. These experiments were performed by Dr. Javier Larrasa, a former

researcher in the group. Mice were sacrified after 28 days post-injection, when PTBP1 was over-expression

was similar to the one achieved in TAC experiments (1.2 fold, Figure 4.10A). We also observed a significant

increase in the expression of markers of cardiac dysfunction (MYH7 and BNP, p-value<0.01), with no

significant increase of markers of fibrosis (LOC, COL1A1, COL3A1) (Figure 4.10B). Accordingly, no

increase in fibrosis was observed in histological analyses (Figure 4.10C), suggesting that PTBP1 does not

contribute to the characteristic fibrosis accompanying pathological cardiac fibrosis, at least up to 28 days

after treatment. We also evaluated cardiac function in vivo using echocardiography before sacrifice. We

found that mice over-expressiong PTBP1 showed an increased normalized cardiac mass (p-value=0.001,

Figure 4.10D), particularly on the left ventricular posterior wall. Although no decrease in left ventricle

ejection fraction was observed, suggesting normal systolic function, we found a reduction in the E/A

ratio (p-value=0.016). Low E/A indicates a de-compensation on the relative contribution of passive and

active left ventricle filling or, in more general terms, diastolic dysfunction (Figure 4.10E).

PTBP1 regulates a very small part of cardiac hypetrophy AS changes

To investigate whether PTBP1-driven cardiac hypertrophy was mediated by the previously characterized

AS, we measured the relative isoform expression of candidate targets by qPCR, as in the previous section,

and found significant changes in only 2 of them (PHDB1 and DST, p-value<0.05). We did not even

observed an average reduction across all of them as in TAC, supporting that only few of the AS changes

occurring in cardiac hypetrophy are mediated by PTBP1, and potentially mediate the development of

cardiac hypetrophy and dysfunction (Figure 4.10F).

To investigate this issue more in depth, we performed RNA-seq of a reduced number of samples, to

characterize PTBP1 mediated AS changes at a transcriptome-wide scale and confirm this trend. One of

the mice treated with PTBP1-AAV9 showed no over-expression, and PCA showed a global transcriptomic

pattern very similar to control samples, suggesting that it did not actually reach an over-expression of

PTBP1, and was subsequently removed from the analysis (Figure 4.11). Even if we did not find any

significantly changed gene, estimated log2(FC) were highly correlated (Pearson ρ = 0.6) with those

observed in TAC, suggesting that PTBP1 over-expression recapitulates a great deal of expression changes

induced in pathological cardiac hypetrophy models, even in absence of fibrosis (Figure 4.12A,B).

We found a large number of exon skipping events showing significant differences between groups,

mostly increased upon PTBP1 over-expression. These changes, however, showed little relationship, even

at the quantitative level, to those observed in TAC (Pearson ρ = 0.1). Even if this may be partly due

to more noisy estimation of ∆Ψs than for GE measures, it indicates that only a very small part of AS

changes in TAC is actually driven by PTBP1 (Figure 4.12C,D). To ensure that these AS changes are

likely regulated by PTBP1, we selected exons with an estimated ∆Ψ larger than 0.1 and lower than
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Figure 4.9: Analysis of AS regulatory complexity using regularized logistic regression with all pairwise
combinations of RBPs binding sites. A area under the Receiver Operating Characteristic curve (AUROC)
in 10-fold cross-validation analyses along a range of regularizing constants (Cregularization; the lower, the
stronger the regularization), used to select the value with strongest predictive power of a particular group
of exons. B, C, D Proportion of non-zero estimations (B), coefficient estimates (C), and cumulative
absolute values of coefficient estimates (D), for coefficients corresponding to a single RBP and to an
interaction between a pair of RBPs for each comparison under study. E, F Heatmap representing the
estimate of the coefficients for each combination of RBPs for exons that are either included (Red) or
skipped (Blue) for ED (E) and MI (F). Barplots represent the estimation of the coefficient for single RBPs.
G, H Distribution of normalized correlation coefficients between expression levels of RBPs included in
the regression model for each comparison (ED, PD, TAC, MI) and for pairs of interacting proteins and
randomly selected pairs of genes as a whole (G) and separating pairs that showed non-zero coefficient
(H).
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Figure 4.10: Phenotypic characterization of mice over-expressing PTBP1 using AAV9 vector. A PTBP1
expression measured by qPCR in mouse hearts injected with PTBP1-AAV9 and control virus. B Ex-
pression of markers cardiac dysfunction, hypetrophy and fibrosis measured by qPCR. C Percentage of
fibrotic area in histological cuts of mouse hearts. D Normalized cardiac mass derived from echocardiog-
raphy analysis. E Ratio of E to A flow velocities through the mitral valve assessed by echocardiography.
F Relative expression of candidate alternative splicing changes measured by qPCR
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Figure 4.11: Transcriptomic characterization of mice over-expressing PTBP1 using AAV9 vector at the
GE level by PCA. A Variance explained by each principal component. B,C PCA representation of
samples according to the treatment group (B) and PTBP1 expression as measured in the RNA-seq (C)

-0.1, as included and skipped, respectively, and plotted the distribution of CLiP-seq binding sites along

relevant regulatory regions, centered at the target exon. As in TAC and MI, skipped exons showed an

enrichment of binding sites in the upstream intronic flank. However, we also observed a lower frequency

of PTBP1 binding sites across the included exons, suggesting that binding of PTBP1 to the target exon

actually enhances its inclusion (Figure 4.12E). Finally, we performed functional enrichment analysis on

GO categories of genes undergoing GE and AS changes and found that upregulated genes are mostly

associated to immune response, whereas downregulated genes are more associated to mitochondria and

respiration. As before, we found different gene categories associated to AS changes: whereas genes

with included exons were associated to microtubules and muscle cell devlelopment, genes with skipped

exons were weakly related to regulation of cell contraction, more directly related to cardiac function

(Figure 4.12F). Overall, our results suggests that over-expression of PTBP1 is sufficient to induce cardiac

hypertrophy and may thus contribute to the underlying mechanisms of the disease. However, it seems

unlikely to be mediated by global AS changes, which showed little similarity to those previosly observed

in TAC. Whether this is actually mediate by only a few of the AS changes or other or other PTBP1-

dependent effects remains to be elucidated.
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F

Figure 4.12: AS and GE characterization of mice over-expressing PTBP1 using AAV9 vector at the GE.
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4.2 dSreg: A Bayesian model to integrate changes in AS and

RBP activity

4.2.1 dSreg rationale for regulatory analyses

dSreg models simultaneously the changes in the Ψ of the whole set of AS events rather than inferring

independently their changes fitting an independent model for each event. This allows modeling changes

between conditions as latent variables that depend on the actual parameters of interest: the regulatory

activity of the trans-regulatory proteins or RBPs. The key modeling assumption regards the relationship

between AS changes and the regulatory activities. We assumed an additive model of regulatory effects

θj on the logit(Ψ) of RBPs bound to each AS event, given known binding preferences of each RBP to

each exon k (Sk,j). We also add an additional εk term to model AS changes that are not explained by

the regulators included in the dataset.

βk = ∆logit(Ψ)k =

J∑
j=0

θjSk,j + εk (4.1)

An additional assumption made by dSreg is that the variance between individuals of the same condi-

tions is common across all AS events in the dataset, since RNA-seq experiments are usually done with

few samples, hindering the inference of an event-specific individual variance σ2. This approach allows

more robust estimation of teh variances for more reliable inference of the changes between conditions as

previously shown for gene expression analysis [229, 171].

Under these assumptions, we can derive the joint posterior probability of the regulatory activities

and changes in inclusion rates given the observed data across the whole transcriptome and explore this

probability distribution through Markov Chain Monte Carlo (MCMC) sampling. This sample from

the posterior allows calculating the expectation of the regulatory activities and provides an idea of the

uncertainty of the inferences. We can easily calculate the probability of such activity to be higher or

lower than certain threshold to prioritize regulatory candidates for experimental testing.

4.2.2 Evaluation using simulated data

To evaluate the performance of dSreg we simulated data under the same model and under a typical

experimental design of 3 samples per condition. As we are interested in the evaluation of the statistical

methods, rather than simulating heavy RNA-seq data with their technical artifacts, we directly simulated

the number of reads supporting inclusion or skipping, assuming that read assignment and counting is

comparably done across all methods. If our assumptions are realistic and hold in a real scenario, the

comparison with other methods will provide a realistic idea about the advantages of dSreg against previous

methods. We simulated data under different scenarios to evaluate the influence of different factors, like

sequencing depths and regulatory sparsity on the performance of the methods. Since dSreg performs

both inference of the regulatory activities and changes in the exon inclusion rates, we evaluated it from

the two points of view.

Adding information about regulatory elements improves the detection of AS changes even

at low sequencing depth

We first evaluated the performance standard GLM, as the one used by rMATS [249], for the detection

of changes in AS at different sequencing depths (λ). From the quantitative point of view, we analyzed

the correlation between the estimated β̂k and the real βk used for the simulations. This correlation was
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generally low and did not increase with sequencing depth, suggesting that the limitations to correctly

estimate AS changes may no lie on sequencing depth under this model, but on other factors like the

limited sample size: with as few as 3 samples per condition, it is very likely that, even if we estimate

perfectly the Ψ for a given sample with very high sequencing depth, it will hardly resemble the differences

between the two populations.

Sometimes, we are not so much interested in the exact quantification of the change and only require

selecting a reliable set of altered events. At this qualitative level, we can analyzed the performance of the

GLM using classification metrics. At low sequencing depths (log(λ) ≤ 3), the sensitivity at a 5% False

discovery rate (FDR) was smaller than 10%, this is, we only detect about 10% of the true changes. As

λ increased, so did the sensitivity (Fig. 4.13B). However, one may reach very high sensitivity by simply

selecting every event as altered. Of course, this is not very reasonable, as it will come with a high degree of

false positives. The F1 score is the harmonic mean of sensitivity and specificity and can provide a metric

for taking into account these considerations. Interestingly, the F1 score saturated with depth (4.13C),

suggesting that after some point, there was not much gain in performance by increasing sequencing depth.

This may be because although sensitivity continuously increases (4.13B), differences between the groups

of samples arisen by chance due to small sample sizes also become more reliable, decreasing the specificity.

At this point, we may benefit more from including more samples in our experimental design, rather than

increasing sequencing depth (Fig. 4.13C).

To avoid the need to select an arbitrary threshold to assess the performance of the different methods,

we additionally calculated the Receiver Operating Characteristic (ROC) curves for each simulated dataset

and the area under them (AUROC, Fig. 4.13D and E). These results showed that, at low sequencing

depths (log(λ) < 3), the performance was rather poor, with AUROC values of 0.7 at most.

In order to check whether potential improvements of dSreg were due to the inclusion of binding sites

and changes in RBPs activity in the model or just to variance pooling, we ran dSreg and a reduced model

that only pools variance from all exons without taking into account of the binding sites and changes in

regulatory activities (Null model). We defined as significantly changed events as those with a posterior

probability higher than 95% of having a βk > 0. The Null model already outperformed the GLM

at the single exon level and improved quantitative estimation of βj with depth (Fig 4.13A). However,

dSreg showed a much greater improvement in correlation and sensitivity, even at very low sequencing

depths (log(λ) < 3), when there was practically no information from individual events (Fig. 4.13). This

increased sensitivity did not come with a decrease in specificity as could be expected, since it showed also

very high F1 scores and AUROC, suggesting that differences in performance are intrinsic to the method

and not threshold dependent (Fig. 4.13C,D and E). Results with the Null model suggest that pooling

variance across events does only marginally improve the inference of splicing changes, at least with the

low variance used in these simulations. dSreg, in contrast, additionally used the information about the

underlying regulatory mechanisms to correct differences that may easily arise by chance in datasets with

limited sample size, given that simulations were done with only 3 samples per condition.

dSreg improves the detection of the RBPs driving AS changes

Once AS changes have been identified, we focused on the detection of the regulatory elements potentially

controlling these events. Using our simulated datasets, we compared dSreg with the traditional ORA

and GSEA approaches. As FDR<0.2 filtering showed higher F1 score in the identification of splicing

changes (Fig. 4.13C), we used this threshold to select significantly changed events to perform the down-

stream enrichment analyses. The dependency of Over-representation Analysis (ORA) on the detection of

significant changes led to low F1 scores for GLM results at any tested FDR threshold, especially at low

sequencing depths (Fig. 4.14A). We also used an in-house version of GSEA to take advantage of quan-
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Figure 4.13: Comparison of the performance for the identification of different event inclusion rates of a
standard method using a single GLM per exon considering two FDR thresholds (0.05 and 0.2),a bayesian
model that pools variance across all exons (Null model) and dSreg. Performance was analyzed in simu-
lations with increasing sequencing depths λ (the mean of the Poisson distribution used to simulate the
total number of reads mapping to an exon skipping event). A. Pearson correlation between real and
estimated βj . B Sensitivity. C F1 score. D, E Receiver Operating Characteristic (ROC) curves (D) and
the area under them (E)

.
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Figure 4.14: Performance of methods for the detection of regulatory elements: ORA with variable FDR
thresholds (0.05 and 0.2), non-parametric GSEA and dSreg. Performance was analyzed in simulations
with increasing sequencing depths λ, which is the mean of the Poisson distribution used to simulate
the total number of reads mapping to an exon skipping event. A, B. Mean F1 scores obtained with
different depths λ (A) and total number of regulators (B) for the different enrichment approaches. C,
D Calibration, measured as the proportion of times the real value lies within the CI of differentially
spliced exons and regulatory elements for increasing sequencing depth (C) or increasing number of total
regulatory elements (D).
.

titative information in the identification of regulatory elements. Briefly, events were ranked according to

their Maximum Likelihood Estimation (MLE) of the coefficient of the GLM, which represents the log of

the odds ratio of inclusion between the two conditions. Then, we looked for non-random distributions

of binding sites along the ranked list [264] (see Methods section for details). We found a substantial

improvement over ORA, with higher F1 scores, especially at low sequencing depths, but did not seem to

benefit from higher sequencing depths (Fig. 4.14A). dSreg outperformed both ORA and GSEA at every

evaluation metric, and was barely affected by low sequencing depths (Fig. 4.14). Therefore, integration

of the two sources of information improves results both in terms of inference of differential inclusion rates

and the identification of the mechanisms driving those changes.

Increasing the number of potential regulatory elements does not decrease dSreg perfor-

mance

We have so far used simulated data to explore the effect of sequencing depth on both the detection of

splicing changes and on the identification of the key RBPs driving these changes. We next assessed the

impact of the number of regulators, which may increase the number of false positives, particularly in

presence of co-linearities among binding profiles of different RBPs. To study this potential limitation, we

simulated datasets with only 5 active RBPs as in the previous simulations, but increasing the number

of total RBPs included in the analysis up to 250. We found that the F1 score tended to decrease as the

number of potential regulators increased with either ORA or GSEA, despite multiple test correction to

control false discovery rate. Once more, dSreg outperformed both methods and remained unaffected by

the inclusion of other inactive regulatory elements (Fig. 4.14B).

Model calibration remains robust while decreasing the proportions of active RBP

We further analyzed the performance of dSreg in terms of calibration. A model is well calibrated when

inferred probabilities actually represent the real frequency of a given phenomena i.e. a model is calibrated
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when the uncertainty of the parameter estimate matches the evidence contained in the data. Calibration

was calculated as the proportion of events and regulators whose real change in logit-transformed inclu-

sion rates (βk) or activity (θj) is within the estimated CI. Whereas changes in inclusion rates were well

calibrated, the uncertainty of the changes in the activity of RBPs seemed to be slightly overestimated,

given that CI included the real values more often than 95% of the times, independently on the sequencing

depth λ (Fig. 4.14C). We then tested how different numbers of total regulatory elements affected model

calibration with the previous simulations using only 5 active out of an increasing number of candidate

RBPs. We found that the total number of candidate regulators had no effect on calibration (Fig. 4.14D).

These results suggest that dSreg is conservative when estimating the uncertainty of the regulatory activ-

ities θj based on the data, since the real value is within the CI more often than expected across all tested

conditions (Fig. 4.14C,D).

4.2.3 Evaluation using real data

dSreg outperforms other methods using real data

To assess whether the better performance of dSreg could be confirmed with independent real data, we

used an RNA-seq dataset (around 120M reads per sample) for which a subset of AS events were quantified

using RASL-seq and can be used as gold standard [315]. We used CLiP-seq data of a number of RBPs

binding to upstream and downstream flanks of exon skipping events as regulatory features for dSreg [64].

Since dSreg performed particularly better than other methods at low sequencing depths, we subsampled

the sequencing reads by a factor of 2 up to 512 to analyze the extent of this advantage. We analyzed

the data also with MISO, BRIE and DARTS. Both BRIE and DARTS use prior information to improve

detection of splicing changes [128, 315, 107]. dSreg and the Null model showed the best performance,

compared to all other methods, except in extremely low coverages (dilution factor ¿ 100), in which DARTS

overcame dSreg (Figure 4.16A,B). In contrast to the results obtained from the simulated data, dSreg and

Null model performed similarly, which suggests that the regulatory features that were added do not

contribute much to the estimation of AS changes. However, it also shows that it remains robust to the

inclusion of non-relevant regulatory features. Neither BRIE nor DARTS outperformed the Null model.

We observed the same patterns when comparing the results to the full coverage RNA-seq dataset (Figure

4.15).

The main advantage and motivation of dSreg is the inference of the regulators driving AS changes,

a feature that is not provided by any of the existing tools for AS analysis. To assess whether dSreg

outperforms ORA and GSEA also with real data, we used the collection of RBP knock-down experiments

from ENCODE [203]. Although it is difficult to know the actual regulatory mechanisms in each case, one

may reasonably assume that at least some of the AS changes would be mediated by the down-regulation

of the target RBP. dSreg detected the highest percentage of knock-down RBPs as regulatory elements

compared to the random expectation in each case (Figure 4.16C). If the expression of other regulatory

element is affected by the perturbation, we would expect them also to contribute to explain AS changes.

Regulators detected by dSreg tended to be more often differentially expressed in the same experiment

than expected by chance compared to other methods (Figure 4.16D). Finally, we observed that, when

sorting the regulators by their evidence, the RBP that was knocked-down tended to appear higher in the

ranking produced by dSreg than in those yielded by ORA and GSEA (Figure 4.16E and F, respectively).

Altogether, these results suggest that dSreg also outperforms previous methods in the identification of

regulatory elements using real data.
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Figure 4.15: Evaluation of the identification of AS changes of dSreg with other methods on real data.
Performance of differential splicing methods using RASL-seq quantifications (left column) and full cover-
age RNA-seq (right column) as true values, measured by Pearson correlation of ∆Ψ, mean squared error
(MSE) and AUROC. The different measures are represented in different rows
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Figure 4.16: Evaluation of the performance of dSreg with other methods on real data. A,B Performance
of differential splicing methods using RASL-seq quantification as true values, measured by Pearson cor-
relation of ∆Ψ (A) and area under the Receiver Operating Characteristic curve (AUROC) for exons
significantly changed, defined as those with a |∆Ψ| > 0.05. Methods include a GLM. MISO, BRIE,
DARTS with and without using the predictions as prior (info and flat respectively), and dSreg and its
Null model. C Percentage of experiments in which the knocked-down RBP was found among the regula-
tory elements compared to expectation. D Percentage of regulatory RBPs identified by each method that
were detected to be differentially expressed (DE) compared to expectation. Expectations were calculated
by 20000 random sampling of the same number of regulators. E, F Difference in rank occupied by the
knocked-down RBP in the output of dSreg with that of ORA (E) and GSEA (F).
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4.2.4 Analyzing alternative splicing regulation in cardiomyocyte differentia-

tion

We then tested our model on a dataset of mouse cardiomyocyte differentiation from cardiac precursors

(GSE59383) with 3 samples per condition as in our simulated scenario. Binding sites for a number of

RNA binding proteins were obtained from CLiP-seq experiments and only those located in the upstream

and downstream intronic flanking 250bp were used (see Extended Methods section for details). We run

the 3 approaches explored in this work and found that ORA resulted in a high number of significantly

enriched candidates, most of which are likely to represent false positives as in our simulation analysis

(Fig. 4.17A). GSEA, on the other hand, showed no significant enrichment at FDR < 0.05, and only a few

at nominal p < 0.05, which suggest that these p-values can easily arise by chance. Indeed, there is little

concordance with results from ORA (Fig. 4.17A and B). dSreg did show an overall agreement with ORA

results, but, as expected, dSreg provided a reduced number of RBPs whose combined action best explain

the observed AS changes (Fig. 4.17, Table S1). Interestingly, a great deal of the identified regulatory

RBPs are considered to be members of the core spliceosome (BUD13, EFTUD2, PRPF8, SF3A3, SF3B4),

suggesting that changes in the activity of these particular components might be key for the AS changes

underlying cardiomyocyte differentiation. In this regard, the core spliceosomal machinery has been shown

to have extensive regulatory potential [211] and mutations in one of these genes (EFTUD2) have been

associated with congenital heart defects, among other phenotypes [167].

4.3 Comparative study of exon inclusion rates across mammals

In this last section, we aimed to study how AS quantitatively changed during mammalian diversification.

To do so, we will deal with Ψs as quantitative characters and use models of phenotypic evolution along

a phylogenetic tree to characterize the underlying evolutionary process and the optimal inclusion rates

across mammalian species. Using these models, we investigate not only the genetic forces driving AS

evolution, but also the extent to which exon skipping is functional or contributes to lineage-specific

adaptations.

4.3.1 Adapting models of phenotypic evolution for alternative splicing data

Quantitative traits may be assumed to derive from small contributions of a very large number of loci

across the genome. Thus, as mutations affecting the trait accumulate at a constant rate, one also expects

that mean value of the trait in the population diverges from the ancestral population. This can be

approximated for long evolutionary times by a continuous time stochastic process known as Brownian

motion (BM) model, in which the infinitesimal change in the trait value is proportional to a normal

distribution with an infinitesimal variance. The proportionality constant τ2 describes the evolutionary

rate, this is the rate at which variance accumulates in an evolving population over time.

dX = τ2dW

Based on this differential stochastic equation, we can derive the trait distribution after a finite period of

time t, which may be a branch of the phylogenetic tree, with starting trait value X0.

X ∼ Normal(X0, τ
2t)

There are numerous scenarios in which trait variance accumulates at a constant rate over time, including

not only evolution by pure random forces i.e. mutation and drift [146], but also constant directional

CHAPTER 4. RESULTS 87

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE59383


4.3. COMPARATIVE STUDY OF EXON INCLUSION RATES ACROSS MAMMALS

20 10 0 10

− log10(FDR)

R
B

P
-r

e
g

io
n

A
ORA

2 0 2

− log10(p − value)

B
GSEA

0.0 0.5

Regulatory effect  θ j

C
dSreg

Figure 4.17: Comparison of ORA, GSEA and dSreg using a real RNA-seq dataset from a cardiomyocyte
differentiation experiment. RBPs on the y-axis are sorted for the three panels according to the posterior
mean of the regulatory effect θj inferred by dSreg. A. Candidate regulatory proteins derived from the
ORA on the significantly included (blue) or skipped (red) exons represented by their significance expressed
as the log transformation of the FDR. B. GSEA results represented by the nominal empirical p-value
resulting from permuting the exon labels. RBPs with positive enrichment scores are represented on the
right, and those with negative scores on the left. C Posterior distributions of the regulatory effects θj
inferred by our model.
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Figure 4.18: Traits evolving under Ornstein-Uhlenbeck (OU) and Brownian motion (BM) models over
time (A) and how the variance of the expected distributions changes with time from the ancestral popu-
lation (B)

selection [104]. The BM model can be extended with a pull towards a certain value µ with strength α in

an Ornstein-Uhlenbeck (OU) model (Figure 4.18):

dX = τ2dW + α(X − µ)

This pull, which can be explained by stabilizing selection towards a single optimal value µ [146], pre-

vents the trait from accumulating variance indefinitely over time and reaches an equilibrium distribution

in which the pull compensates all the variance that tends to accumulate over a short period of time

(Figure 4.18).

X ∼ Normal
(
X0e

−αt + µ(1− e−αt), τ
2

2α
(1− e−2αt)

)
Trait X here is assumed to be continuous and unbounded. Inclusion rates (Ψs) are continuous values,

but are bounded between 0 and 1. Thus, to be able to use these models to describe Ψ evolution,

we conveniently transformed the Ψ by taking the commonly used logit transformation, and used the

transformed variable as the evolving trait X. Hence, from now on, we are assuming that the underlying

evolving trait is not the Ψ directly, but its logit transformation, which represents the log transformation

of the odds ratio, or ratio of inclusion to skipping probabilities.

X = logit(Ψ) = log
Ψ

1−Ψ

Nonetheless, we do not quantify X or Ψ directly, but through counting the number of reads supporting

exon inclusion I from a total number of reads T mapping to the ES event, naturally following a Binomial

distribution depending on Ψ. Thus, if we want to estimate model parameters taking into account the

uncertainty or error when estimating Ψ, we can simply expand our model with an additional binomial

layer, taking into account a bias term that models the systematic biases introduced by the transcript

structure, sequencing conditions and fragment size distribution specific of each sample (see Methods

section for details)

I ∼ Binomial(T, InvLogit(X + bias)) (4.2)

Despite our models working on the unbounded logit scale, we will use the models and the inferred

parameters to predict how evolution would take place at the Ψ scale to facilitate the interpretation of the
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Figure 4.19: Phylogenetic tree of the species with liver RNA-seq data included in the study. Divergence
times were taken from previous work [282]

results. In this sense, we can define the optimal inclusion rate Ψopt as the inverse logit transformation of

the optimal value in the logit scale µ

Ψopt = InvLogit(µ) =
eµ

1 + eµ
(4.3)

4.3.2 Characterization of exon inclusion evolutionary rates with Brownian

motion models

We collected a large number of RNA-seq datasets from livers of a total of 76 mammalian species with

known phylogenetic relationships (Figure 4.19 [282]). To compare Ψs across different species, we first

needed to identify sets of orthologous exons. For this, we used previously characterized sets of orthologous

genes in mammals from OrthoMaM database [244], and derived 1 to 1 orthology relationships among

exons composing those genes. Out of over 14000 sets of orthologous genes, we were able to identify 170400

sets of orthologous exons, characterized in at least 4 species. We the filtered a total of 27065 exons with

sufficient coverage and some evidence of skipping (see Methods section for details) as a high quality set

of exons for studying the evolution of their inclusion rates.

To obtain a first characterization of the evolutionary process underlying the quantitative changes in

exon inclusion rates Ψ during mammalian diversification, we fitted a Brownian motion (BM) to each

exon independently and calculated the posterior expectation of the evolutionary rate τ̂2, i.e. the amount

of variance accumulated per time unit. We found a unimodal distribution of evolutionary rates centered

at around τ̂2 = 0.39, with widespread variation across different exons, of about 2 orders of magnitude

(Figure 4.20A). Naturally, exons showing higher intra-species variability have also a trend to evolve

faster, even if the correlation between the two variables is only ρ = 0.25 (Figure 4.20B). We observed

that exons from the same gene tended to have more similar τ̂2 values, as clearly shown when comparing

90 CHAPTER 4. RESULTS



4.3. COMPARATIVE STUDY OF EXON INCLUSION RATES ACROSS MAMMALS

Figure 4.20: Evolution of exon Ψ under a BM model. A Distribution of exon inclusion evolutionary
rates under a BM model in units logit(Ψ) variance accumulated per million years (my). B,C Scatter
plots showing the association of the inferred exon evolutionary rates τ̂2 with within species variance σ2

(B) and gene-wise evolutionary rate τ̂2
g (C). D,E Scatter plots showing the association of the inferred

gene evolutionary rates τ̂2
g with gene relative substitution rates (D) and gene-wise substitution rate

heterogeneity α (E). F Boxplots showing the distributions of evolutionary rates across genes with different
phylogenetic ages.

them against the average across exons of the same gene (Figure 4.20C). Thus, an important part of the

variability in the evolutionary rates of exon Ψ lies at the gene level. We next wondered whether the

evolution of splicing rates is related with sequence evolution. We found a correlation of 0.07 between

rates of evolution of exon inclusion rates and nucleotide substitution (Figure 4.20E) and of -0.11 between

log10(τ2) and αGene, a measure of heterogeneity in the evolutionary rates across positions in the gene

(Figure 4.20E). Therefore, even if the correlation coefficients are very small, indicating that only a small

amount of variability is driven by these variables, genes with faster and more homogeneous evolutionary

rates along their sequence tend to evolve slightly faster at the exon Ψ level.

Intron expansion and increased exon skipping events have been associate to particular evolutionary

events during metazoan evolution [98, 97], particularly linked with the origin of bilaterians and changes in

the genome architecture. To investigate whether genes originated at different points during evolution have

evolve differently, we compared the rates of evolution for genes described to have originated at different

time points in the past [168]. We found that, of all gene groups, the Ψs of bilaterian-old genes have

evolved the fastest (Figure 4.20). These differences remained significant after simultaneously accounting

for different gene properties using a multiple linear mixed model framework (See Table 4.1). Moreover,

we additionally found a significant increase in evolutionary rates of boroeutherian and mammalian genes

that may have been hidden by confounding factors.
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Table 4.1: Gene and exon variables associated with the rate of evolution of Ψ in mammals in a multiple
regression framework

Variable Coefficient p-value
log(Downstream Intron length) -0.011 2.47e-05
log(σ2) 0.202 4.00e-186
Gene relative substitution rate 0.111 4.50e-10
Gene substitution rate heterogeneity -0.453 7.74e-22
Amniota 0.09 3.46e-01
Bilateria 0.10 2.35e-03
Boroeutheria 0.30 7.10e-03
Chordata 0.07 3.26e-01
Eukaryota 0.01 7.92e-01
Eumetazoa 0.05 4.03e-02
Euteleostomi 0.11 4.77e-06
Holozoa -0.02 6.35e-01
Mammalia 0.27 1.80e-04
Olfactores -0.23 1.02e-01
Opisthokonta 0.04 2.43e-01
Tetrapoda 0.00 9.81e-01

4.3.3 Studying the contribution of stabilizing selection using Ornstein-Uhlenbeck

models

Estimation of the contribution of selection to inclusion rate evolution

Although the evolutionary rate in a BM model provides an estimate of the average rate at which quanti-

tative characters evolve, there are a number of reasons that suggest that a BM model may not completely

describe the evolution of exons Ψ. First, an exon with an starting Ψ = 0.99 evolving at the average rate

of τ̂2 = 0.39, as estimated, will very quickly evolve low inclusion rates (Figure 4.22A). Thus, even if every

ancestral mammalian exon was originally included at Ψ0 = 0.99, about half of the exons will be included

at very low rates after 250 my, with about 18% of them with Ψ < 0.01. This hardly resembles the

observed Ψ distributions in any species (Figure 4.22C). Moreover, since splice sites are highly constrained

due to their relevance to the splicing reaction [14], one would expect the resulting quantitative trait i.e.

exon inclusion rate, to evolve under stabilizing selection.

The Ornstein-Uhlenbeck (OU) model is a generalization of the BM model, in which the average of the

quantitative trait in the population does not only accumulate random variation, but also experiences a

pull towards an optimal value. The increased number of parameters in the OU model hinders parameter

inference for each exon independently with only 76 different species [232, 58]. However, one can assume

that every exon evolves under the same regime and can be used as independent samples of the same

underlying OU process to perform accurate parameter inference. As performing Markov Chain Monte

Carlo (MCMC) on the complete dataset was too computationally demanding, we performed inference

on increasing numbers of randomly selected exons and found that parameter estimates were already

stable using up to 2000 exons (Figure 4.21A-E, Table 4.2). To investigate whether estimates were not

only stable, but unbiased, we simulated data under an OU model with the inferred parameter values,

and found that inferences converged to the true values similarly to random samples of exons (Figure

4.21F-J). The strength of selection in our model is represented by the phylogenetic half-life (t 1
2
), the

time required to reduce the distance to the optimal value by half. We inferred t̂ 1
2

= 25.72 million years,

supporting a weak but non-negligible selective force constraining exon Ψ around a common optimal value,

in average. Thus, as with the BM model, we can use the inferred parameters to predict the evolution of

exon Ψs across the genome from an ancestral Ψ0 = 0.999, derived from the average optimal value. Now
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Figure 4.21: Inferred parameters of the OU for an increasing number of randomly selected exons. A-E
panels show the posterior distribution for parameters inferred using the real dataset, with sets of up to
2000 exons. F-J show the posterior distribution of the same parameters inferred from simulated data
under the previously inferred parameters with the biggest dataset. Simulations comprised sets of exons
with increasing size up to 1000.

Table 4.2: Parameter estimation of an Ornstein-Uhlenbeck model for exon Ψ on a sample of 2000 exons

Parameter Expectation CI
t 1
2

25.72 [24.38, 27.01]

σ2 0.27 [0.26, 0.29]
τ2

2α 17.71 [17.03, 18.14]
µ0 7.48 [7.40, 7.56]
µSD 1.22 [1.26, 1.41]

we predict that even with an Ψopt ∼ 1, we expect a certain amount of sub-optimal inclusion rates in

any species, with about 11% exons with Ψ < 0.9 once steady state is reached in about 100 my (Figure

4.22B). We then compared the predicted Ψ distributions by the BM and OU models from a common

ancestral Ψ0 distribution derived from the distribution of optimal values after 250 my of evolution with

the estimations across the 76 different species under study (Figure 4.22C)). The OU model predicts much

better the average observed patterns across the different species than the BM model. In summary, our

results suggest that natural selection is limiting divergence of exon inclusion rates, but is not sufficiently

efficient to enforce optimal inclusion rates for every exon in the genome.

Evolutionary forces underlying variability in Ψ evolutionary rates

The OU model allows inference of the relative contribution of selective and random forces to the evolution

of quantitative traits. Thus, it allows, not only inferring the average behaviour across exons, but also

to study what is their relative contribution to the highly heterogenous evolutionary rates that were

inferred under the BM model (Figure 4.20A). To do so, we stratified exons according to the exon-level

inferences of τ2, and used samples of 200 exons from each group to infer evolutionary parameters under

an OU model. We found comparable or even shorter phylogenetic half-lifes for fast evolving exons (Figure

4.23A), but very different equilibrium variances (Figure 4.23B). Thus, variability in evolutionary rates

across exons is mainly driven by variation in the neutral evolutionary rates, rather than by differences in

selective strength. To better understand the nature of these differences, we used the quantitative genetics

parametrization of the OU model [146] based on the width on the fitness landscape w2 and effective
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Figure 4.22: Evolution of exon Ψ under a OU model. A Predicted exon Ψ evolving under a BM model
with an average τ2 = 0.40my−1 as inferred from the data. B Predicted Ψ evolution under the inferred
OU model parameters with an optimal inclusion rate Ψopt ∼ 1. Different degrees of shade represent, in
order the 2.5, 5, 10, 25, 35, 40 percentiles in both A and B. C Ψ distributions estimated for the different
species under study, as well as the predicted by the inferred BM after 250 my of divergence and the
inferred OU model in the equilibrium. D Cumulative distribution of the inferred Ψopt across all gene
and exon sets under study. For each gene we used the smallest estimated Ψopt across their exons. E
Proportion of exons whose skipping is known to provide a different function from VASTDB depending
on their inferred Ψopt. F Predicted protein impact in VASTDB human exons depending on their Ψopt.
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Figure 4.23: Random forces drive variability in average evolutionary rates of exon inclusion rates. Exons
were stratified by their previously estimated average τ̂2 under a BM model and subsets of 200 exons were
used to fit OU models A-F OU inferred and derived parameters for sets of exons with increasing average

evolutionary rates: phylogenetic half-life t 1
2

(A), equilibrium variance τ2

2α (B), within species phenotypic

variance σ2 (C), derived width of the fitness landscape w2 (D) under a constant effective population
size Ne = 2000, genetic variance h2σ2 (E) under a constant effective population size Ne = 2000, and
effective population sizeNe assuming a constant trait heritability of h2 and average generation time of
5 years applying quantitative genetic models [146]. G Average genetic diversity in 10kb regions around
exons evolving under varying rates estimated from allele frequencies annotated in dbSNP. H Synonymous
substitution rates from human and chimp genomes extracted from Ensembl database for genes with exons
with Ψs evolving at variable rates

population size Ne

V OUeq (X) =
τ2

2α
=
w2 + σ2

2Ne
(4.4)

If we assume that the effective population size is the same across all exons or at least with low

variation, and arbitrarily set it to 2000, considering the inferred within species variance (Figure 4.23C),

slowly evolving exons are characterized by a much narrower fitness landscape around the optimal values

and smaller genetic variance (Figure 4.23D,E). These factors compensate each other to yield a similar

pull towards the optimal value, as indicated by the phylogenetic half-life (Figure 4.23A), such that the

time required to reach optimal inclusion rates remains constant across different average evolutionary

rates. However, differences in the equilibrium variance may also be explained by variation in the effective

population size Ne. Nonetheless, very large differences in the effective population size within the genome

would be required to fully account for observed patterns (Figure 4.23F). To investigate this alternative

explanation, we calculated genetic diversity in 10 kb regions around each exon using dbSNP153 common

variants in humans, and found no differences across the different groups (Figure 4.23G). As genetic

diversity may be influenced by selection, we also used synonymous substitution rates dS between human

and chimp as a proxy for Ne. Whereas genes with rapidly evolving exons at the Ψ level were located in

genes with higher dS (Figure 4.23H), these differences alone can hardly account for the large variation

in observed in the equilibrium variance.
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Table 4.3: Gene Ontology function enrichment analysis on those genes with an exon with Ψ̂opt < 0.9

GO:id Description OR P-value FDR
GO:0030054 cell junction 4.31 0.000 0.009
GO:0005096 GTPase activator activity 5.23 0.000 0.030
GO:0043547 positive regulation of GTPase activity 4.50 0.001 0.030
GO:0007155 cell adhesion 3.99 0.002 0.088
GO:0042995 cell projection 2.60 0.009 0.323
GO:0008284 positive regulation of cell proliferation 3.00 0.014 0.342
GO:0000165 MAPK cascade 3.22 0.017 0.342
GO:0016324 apical plasma membrane 3.13 0.019 0.342
GO:0015629 actin cytoskeleton 3.60 0.019 0.342
GO:0007165 signal transduction 1.97 0.020 0.342
GO:0005856 cytoskeleton 1.84 0.038 0.506
GO:0005737 cytoplasm 1.35 0.039 0.506
GO:0006468 protein phosphorylation 2.09 0.040 0.506
GO:0007186 G-protein coupled receptor signaling pathway 2.84 0.043 0.506

Estimating the proportion of mammalian wide functional exon skipping events

To identify optimally alternative exons across mammals, we used the posterior expectation of the OU

parameters t 1
2
, τ2

2α and σ2 previously estimated (Table 4.2) to fit an OU model for each exon in our

dataset independently, and inferred their optimal inclusion rates Ψopt as well as the Ψ in each node of

the tree. We found 1.98 % of exons in 5.61% of the genes to have Ψ̂opt < 0.9, suggesting that, at least

in liver, a small amount of genes has at least one exon with optimal intermediate inclusion rates. To

validate our approach, only based on comparative Ψ data, we used human exons with experimentally

validated functions as annotated in VASTDB v1.8 [268], and found that exons with Ψ̂opt < 0.9 have

almost 10 fold probabilities of having an annotated function than those with higher optimal inclusion

rates (11% compared with 1.2%) (Figure 4.22E). Moreover, mammalian alternative exons were twice as

likely to encode an alternative protein compared with the remaining exons 55% of which disrupted the

reading frame upon exon skipping (Figure 4.22F). To investigate whether optimal alternative splicing is

associated to particular gene functions, we performed functional enrichment analysis using Gene Ontology

(GO) categories as annotated in OrthoMaM, and found an over-representation of genes related to cell

junction and signaling (Table 4.3).

Our findings suggest that even if a gene is alternatively spliced in a given species, it does not necessarily

imply that it will produce functionally different isoforms. Thus, it is interesting to know how much

evidence the hypothetical quantitative skipping of an exon provides about the functionality of such AS

event. We can approach this question using our model by calculating probability of the Ψopt for an exon

given its Ψ in a single species using Bayes theorem.

P (Ψopt|Ψ) =
P (Ψ|Ψopt)P (Ψopt)

P (Ψ)
(4.5)

Since we have an empirical distribution for Ψopt and P (Ψ) is constant, we can calculate this probability

for any observed Ψ (Figure 4.24A), showing that, even observing a relatively low inclusion rate for an

exon, the most probable value of Ψopt remains very close to 1 (Figure 4.24A). We also calculated the

probability of Ψopt being below certain threshold given an observed Ψ (Figure 4.24B), showing that not

only the highest probability value is close to 1, but that it is very unlikely that the Ψopt falls below a

certain threshold. For instance, having observed an exon with a Ψ = 0.5, the probability that the actual

Ψopt is higher than 90% is still 44%. Thus, we can never be sure that an exon is optimally alternatively

spliced solely based on its inclusion rate, as intermediate inclusion rates can easily derive from optimally
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Figure 4.24: Inference of optimal inclusion rate from species inclusion rate in a single exon. A,B Heatmaps
showing the probability density (A) and cumulative probability (B) of the optimal inclusion rate for a
given exon Ψopt depending on the observed Ψ in a given mammalian species sharing the characterized
Ψopt distribution

constitutive exons that are skipped to some degree, and optimally alternative exons are rare.

Characterization of the evolution of functionally skipped exons

To investigate whether optimally alternative exons evolve under a different regime, e.g. they evolve

under different selective constraints or diverge at faster rates; we stratified exons into 5 different groups

according to their Ψopt, and randomly selected a subset of 100 exons for each Ψopt range. We fitted

independent OU models to each group and inferred the parameters that characterize their evolution.

We found that the phylogenetic half-life remained comparable among the 5 different groups and always

lower that the approximate 25 my inferred with the bulk exons (Figure 4.26A), suggesting that rate

variation across exons may influence the inference of the selective strength. In contrast, there was a large

difference in the equilibrium variance, which was markedly higher for exons with optimal inclusion rates

below 80% (Figure 4.26B). Using these parameters, we can predict how exon Ψ may evolve depending

on their Ψopt. The equilibrium is reached relatively fast across all groups of exons. However, whereas

exons with high Ψopt reach stationary Ψ distributions near this optimal inclusion rate, the equilibrium

variance in optimally alternative exons is so large that most exons are expected to have either high or

low inclusion rates and only few exons would actually remain close to 50% inclusion (Figure 4.25).

To better understand the nature of these differences, we used the quantitative genetics parametrization

of the OU model [146]. If we assume that the effective population size is the same across all exons, and

arbitrarily set it to 2000, considering the inferred within species variance (Figure 4.26C), alternative exons

would be characterized by a much wider fitness landscape at the logit scale (Figure 4.26D) and larger

genetic variance (Figure 4.26E). These differences could also be explained by alternative exons being

located in regions with lower effective population size, as shown by assuming a constant heritability and

generation times (Figure 4.26F). We found no differences across the different groups in genetic diversity or

synonymous substitution rates (Figure 4.26G,H). Again, this suggests that differences in the equilibrium

variance are mostly explained by differences in the fitness landscape and genetic variance rather than by

differences in the effective population size.
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Figure 4.25: Prediction of exon inclusion rate evolution along time under independent OU models across
exons with variable optimal inclusion rates Ψopt (shown in columns) Bottom panels show the expected
Ψ distribution in the equilibrium for each optimal inclusion rate. These predictions were made based on
the inferred parameters using subsets of exons in different ranges of optimal inclusion rates. Different
degrees of shade are shown according to percentiles [2.5, 5, 10, 25, 35, 40, 50, 60, 65, 75, 90, 95, 97.5]

Figure 4.26: Alternative exons evolve under a different evolutionary regime. Exons were stratified by
their previously estimated optimal inclusion rate Ψ̂opt under a OU model and subsets of 100 exons
were used to fit independent OU models A-F OU inferred and derived parameters for sets of exons

with different optimal inclusion rates: phylogenetic half-life t 1
2

(A), equilibrium variance τ2

2α (B), within

species phenotypic variance σ2 (C), derived width of the fitness landscape w2 (D) under a constant
effective population size Ne = 2000, genetic variance h2σ2 (E) under a constant effective population
size Ne = 2000, and effective population sizeNe assuming a constant trait heritability of h2 and average
generation time of 5 years applying quantitative genetic models [146]. G Average genetic diversity in 10kb
regions around exons with different optimal inclusion rates estimated from allele frequencies annotated
in dbSNP. H Synonymous substitution rates from human and chimp genomes extracted from Ensembl
database for genes with exons with variable optimal inclusion rates Ψopt
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Figure 4.27: Inferred Ψ fitness landscapes under the OU model. Relative fitness associated to Ψ across
range of different optimal inclusion rates Ψopt. This model assumes a quadratic fitness function on the
logit(Ψ) with parameter w2

4.3.4 Alternative splicing fitness landscape

Following quantitative genetics derivation of the OU model, we assume a quadratic fitness function on

the logit(Ψ), characterized by a single parameter w2 that provides an idea about the width of the fitness

peak around the optimal value [146].

W (Ψ) = 1− (logit(Ψ)− logit(Ψopt))
2

w2

Assuming a certain effective population size, constant across different optimal inclusion rates, we can

derive w2 from the inferred equilibrium variance and study how the shape of the Ψ fitness landscape

changes depending on the optimal inclusion rate Ψopt (Figure 4.27).

τ2

2α
=
w2 + σ2

2Ne

Interestingly, we found that for optimally alternative exons, e.g. Ψopt = 0.5, the fitness barely

changes between 0.2 and 0.8, suggesting that the exact proportions are not very important for their

function, as long as there is certain amount of alternative product. In contrast, as the Ψopt increases, the

fitness landscape starts to peak more steeply around the Ψopt, such that smaller deviations have greater

impact on fitness, especially once we get near 100% optimal inclusion. Although the derived magnitude

of the fitness effects change depending on the assumed effective population size, the relative shapes of

the fitness landscapes remained constant with population sizes between 500 and 20000 (Figure 4.28).

These landscapes imply that skipping of a optimally constitutive exon is expected to have greater fitness

consequences than fully skipping or including an optimally alternative exon. Despite alternative exons

having wider fitness peaks and therefore evolving under lower fitness gradients, the strength of the pull

towards the optimal value remains relatively constant with Ψopt (Figure 4.26A). This can be explained by

alternative exons having simultaneously higher genetic variance available for selection, which compensates

the differences in the fitness gradient (Figure 4.26E).

4.3.5 Inference of lineage specific shifts in optimal inclusion rates

So far, our model assumes that there is a single optimal value across all mammalian species. If AS

patterns are associated to liver function, which has remained similar across species, we expect the same

for most exons Ψs. However, optimal inclusion rates in some exons may change in some lineages, for
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Figure 4.28: Fitness landscape shapes remain invariant to effective population size. Prediction of Ψ
fitness landscapes for variable optimal inclusion rates Ψopt under different population sizes as indicated
in each panel

instance, by exon skipping acquiring a new beneficial function in some environments. if we assume that

such changes are rare, the inferred OU parameter are not expected to be affected by them. Therefore,

using previously inferred parameters (Table 4.2), we can predict how the Ψ will evolve after a change

in the Ψopt, in this case the acquisition of a new function by exon skipping of an original constitutive

exon (Ψopt ∼ 1→ Ψopt = 0.5) has occurred (Figure 4.29A). These simulations show that the Ψs derived

from the newly acquired optimal value are difficult to distinguish from those evolving under the original

optimal constitutive inclusion rate.

To investigate this issue in more depth, we simulated data from exons evolving under the inferred OU

parameters, but allowing the optimal value to change in each branch with certain probability. In order the

infer those changes, we used a single exon-level OU model with known OU parameters allowing branch-

specific variations in the optimal values. However, when we compared the simulated changes in Ψopt with

the inferred ones, we find a very low correlation (Pearson ρ = 0.1), with high rates of false positives and

negatives (Figure 4.29B). To investigate whether the problem was locating the shift in a specific branch

of the tree or the identification of a shift across the evolution of a given exon, we assessed the performance

of the method at the whole tree level. We calculated the Receiver Operating Characteristic (ROC) curve

and calculated the area underneath it (AUROC=0.52), which was just slightly over the 0.5 representing

random performance (Figure 4.29C). Although we cannot identify which exons have experienced a shift

in the Ψopt over its evolution, we may still use the known sensitivity and specificity at a certain threshold

to try to infer the frequency of those changes across the genome. However, the poor performance of the

test for detecting shifts provided virtually no information about the % of exons that have experienced a

shift in the simulated data, since the posterior highly resembles the prior distribution (Figure 4.29D).

To investigate whether this limitation is inherent to the method or depends on the parameter space and

phylogenetic tree under study i.e. large neutral variance hindering identification of shifts in the optimal

values, we simulated data with decreasing equilibrium variance τ2

2α and repeated the same procedure.

Simulations showed a very different pattern when τ2

2α = 2.5, as trajectories derived from exons acquiring

a new Ψopt = 0.5 are clearly distinguishable from those maintaining their ancestral optimal inclusion rate

(Figure 4.29E). The correlation between real and observed ∆Ψopt and AUROC∆Ψopt
also increased as τ2

2α

decreased (Figure 4.29F,G) suggesting that inference of shifts becomes possible when the rate of neutral

evolution decreases. Even if the performance of the method remains poor, with AUROC values around

0.6, still close to random expectation, this is sufficient to at least infer the proportion of exons with shifts

in Ψopt during mammalian evolution (Figure 4.29H). These results, altogether, suggest that the fast rates

of neutral evolution driving Ψ divergence prevent us from estimating the prevalence of lineage-specific

adaptive changes in inclusion rates during mammalian evolution.
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Figure 4.29: Fast neutral divergence prevents the inference of lineage specific-shifts in optimal inclusion
rates. A Simulation of the evolution of 20 exons under the globally inferred OU model with a Ψopt ∼ 1.
After 50 my, new trajectories, shown in cyan, branch from the evolving exons to evolve under a Ψopt = 0.5.
B Comparison of the simulated and inferred ∆Ψopt along the branches of the phylogenetic tree for
1000 simulated exons. C Receiver Operating Characteristic curve for the identification of exons with
shifts in the optimal value based on the simulated data. D Prior and posterior distributions for the
percentage of exons with shifts in the optimal value with known sensitivity and specificity. The vertical
line shows the real percentage in the simulations. E Simulated Ψ trajectories as in A, but with using an

equilibrium variance τ2

2α = 2.5. F-H Correlation between simulated and inferred ∆Ψopt (F), AUROC for
the identification of exons with shifts (G) and estimated percentage of exons with shifts (H) for varying
sets of exons evolving under different equilibrium variances
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5. Discussion

5.1 The importance of definitions: function and alternative splic-

ing

In any scientific field, communication of ideas, results or controversies take place through language: we

need to have a common framework, a set of words and concepts that we all understand in a similar

way in order to build and reason about more complex ideas. There are some disciplines, like maths or

physics, that are very aware of this issue and emphasize the importance of explicit definitions and axioms

in their work. In contrast, biological sciences often come up with different intuitions about widely used

concepts that are not always explicit and lead to apparent disagreements and lack of consensus. This

happens most of the times because some concepts are rather difficult to define and have historically had

different uses in different sub-fields of biology. This is the case of ’function’. While everyone has an

intuition about the meaning of ’function’, it is hard to actually put that intuition into a clear definition

that allows distinguishing what is functional from what is not, at least conceptually. And this leads to

apparent scientific disagreement over the interpretation of findings, as it happened with the first ENCODE

publications claiming that 80% of the human genome was functional. This was viewed by evolutionary

biologists as nonsense, not because they did not believe the results, but because they had a different

understanding of ’function’ [184]. There are two main different views of the concept of function: while

some understand it as having some type of activity or effect, like binding to a particular molecule or

catalyzing a reaction, evolutionary biologists usually understand it as having some effect on the fitness

of the individuals carrying this element or variant [184]. The conflict arises as elements with some

biological activity, e.g. transcriptional activity, can have no impact on fitness. The debate about the

global functionality of alternative splicing [277, 34, 276] has a very similar nature, stemming from the

lack of explicit definitions of both function and alternative splicing.

We can define alternative splicing as any variation in the splicing process. Under this view, given

that biochemical reactions will never take place at 100% efficiency, every gene, even intron-less genes,

are subjected to alternative splicing, even if it is detectable only in some of them. Indeed, as technology

to detect AS variants and the amount of sequencing data improved, the estimates of the human genes

that are alternatively spliced has increased from 74 with microarrays to 95 % with RNA-seq [122, 202].

Similarly, if we sub-sample sequencing reads from a RNA-seq experiment, we can see that our ability

to find known major SJs saturates at lower sequencing depth compared with novel SJ, whose detection

continuously increases with coverage. This is probably due to increasing power for detecting low frequency

AS variants [292]. Similar results were found in a different study: as the number of human RNA-seq

datasets increased, so did the number of new SJ, revealing more than 50000 unannotated SJ, which

saturated only after over 7000 samples were included [201]. While some of these newly found SJ may

derive from genetic variation within individuals, the statistical power with about to 7000 RNA-seq samples

to detect rarely ocurring AS variants is also expected to increase and at least partially explain the results.
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Therefore, the important scientific question remaining is: what is the proportion of detectable AS variants

that are functional and how much of what we observe derives from noisy splicing?

In this thesis, we have approached this general question under the two different perspectives of ’func-

tion’. In the first section, one of the aims was the characterization of the functional impact of AS changes

throughout heart development and disease from the point of view of the biological activity. In this sense,

we have tried to characterize the biological functions associated with genes with varying AS patterns and

how much they were expected to modify the protein sequence and molecular function e.g. binding to

other proteins. The characterization of the global effects of AS changes provide no direct evidence of the

associated fitness consequences of each alternative processing event. However, the existence of a regula-

tory network to induce AS changes during development or in response to injury in a reproducible manner,

which are are additionally associated to specific biological activities, somehow suggests that these changes

are required for proper heart functioning. Modification of the AS events, alone or in combination, would

therefore have fitness consequences even if we do not know how that happens. Thus, an important part

of the thesis has been devoted to the inference of the regulatory network underlying observed AS changes

between different conditions. This not only provides a better understanding of the specific system under

study i.e. heart function, but also provides some hints about the relevance of the AS changes as a whole.

Indeed, we have seen how the perturbation of a single element of the regulatory network, PTBP1, leads

to cardiac dysfunction. Given the importance of this task, we have also developed dSreg, a new statistical

model for improved inference of the activities of AS regulators.

However, the relationship between the existence of a regulatory network and the fitness consequences of

modifying the target nodes of that network is not straightforward: structured AS changes may also derive

from propagation of noise in the trans-regulators through a regulatory network that may be functional in

different conditions. In this scenario, whether these changes take place or not would not influence fitness

and may not be deemed as functional from the evolutionary perspective even if they are associated to

certain biological effects. Given this uncertainty, in the third section we have studied AS functionality

from the evolutionary perspective, this is, aiming to characterize the fitness consequences of quantitative

changes in exon inclusion rates.

5.2 Alternative splicing regulation

An important part in the development of this thesis has to do with the identification of the regulatory

mechanisms driving AS changes between different biological conditions. In the following sections, we will

discuss different aspects about the regulation of AS, ranging from the specific trans-regulators driving

AS transitions in the heart to more general patterns of regulation and the methods to infer them from

RNA-seq data.

5.2.1 Regulation of alternative splicing patterns in the mouse heart

We aimed to study the regulatory patterns driving AS changes specifically in mouse models of heart

disease and how they resembled those modulating AS during developmental transitions in the heart. With

this purpose, we analyzed a large dataset of new and previously published RNA-seq experiments, including

several developmental stages and disease models i.e. myocardial infarction and cardiac hypertrophy

through TAC. We identified sets of exons with reliably increased or decreased inclusion rates across

4 widely defined transitions: two developmental and two disease transitions. Using a set of CLiP-seq

experiments, we identified RBPs whose binding sites were associated to AS changes more often than

expected by chance. We analyzed their gene expression patterns, since a change in their expression

is likely to be linked to a change in their regulatory activity. MBNL1 binding sites in the upstream
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intronic flank were associated to decreased inclusion during heart development, while its binding to the

downstream flank was associated to increased exon inclusion (Figure 4.6). These patterns can be explained

by a position dependent effect of MBNL1 binding to different regulatory regions in the pre-mRNA relative

to the target exon: it inhibits splicing when binding upstream and enhances it when binding downstream

the target exon, as previously proposed [77]. This, together with a marked increase in its expression

throughout development and the correlation with AS changes induced by MBNL1 knockout, suggests

that MBNL1 regulates AS in the heart mainly during development, as previously characterized [126, 62].

Based on these findings, we hypothesize that the increase in MBNL1 expression is responsible for the

highly dynamic AS regulation during development, as it promotes both exon inclusion and skipping in a

position-dependent manner. Although its activity may still be regulated at the protein level during heart

disease, both the lack of enrichment and expression changes suggest that its regulatory activity remains

unchanged, at least for the disease models included in this study. This may explain, at least partially,

why the re-expression of neonatal patterns in disease is not complete. While MBNL1 disruption leads to

cardiac disease, as previously shown [62], it does not play a role in the development the heart diseases

under study, limiting its therapeutic potential.

Then, what is modulating AS during heart disease? We hypothesize that PTBP1 is the main, but

not only, driver. PTBP1 showed the greatest contribution to explaining AS changes independently from

the other regulators in heart disease and, to a minor extent, in heart development. PTBP1 showed

consistent opposite expression changes during development and disease, correlating with their targets

being enriched in more included and skipped exons, respectively. These results are consistent with the

expected inhbitory role of PTBP1 when binding to the upstream intronic sequence [Gerogilis, 284, 223].

The simultaneous regulation by PTBP1 in opposite directions during development and disease, in absence

of MBNL1 changes in the latter, may underly the partial re-expression of the neonatal AS patterns in

heart disease. While this strongly suggests that PTBP1 modulates AS changes during disease, it may very

well be a downstream consequences of other molecular alterations rather than disease cause. However,

previous work suggested that PTBP1 may indeed drive cardiac dysfunction, since it is required for the

differentiation of iPSCs and fibroblasts to cardiomyocytes in vitro [169] and modulates the splicing of

essential genes for cardiomyocyte function (e.g. Titin, Tropomyosin 1 and 2 and Mef2) [74]. Even if

it was necesary for proper cardiomyocyte differentiation and function, its effect in vivo had not been

evaluated to date. Thus, to investigate whether PTBP1 can actually cause heart disease, we over-

expressed PTBP1 in the healthy myocardium of adult mice and found that these mice developed cardiac

hypertrophy and diastolic disfunction compared with control mice. Importantly, this over-expression

was very similar to that achieved in TAC, suggesting not only that our model was realistic, but also

that small alternations (1.2 fold) of PTBP1 activity can have important phenotypic consequences. We

hypothesize that this is effect takes place through modulation of AS patterns, but we can not rule out

that PTBP1 has other functions in RNA metabolism besides AS regulation [284, 234], e.g. it modulates

insulin mRNA stability in the cytoplasm [79], or that AS changes are secondary consequences of PTBP1-

induced hypertrophy by other means. Despite the low overall correlation of AS changes between TAC

and PTBP1 over-expression, the events affected in both situations were associated to PTBP1 binding.

Moreover, there is a small subset of AS events that are coherently modulated in both scenarios that

may drive the development of cardiac hypertrophy. The most affected event in both conditions is a

muscle-regulated exon in LRP4 gene. LRP4 encodes a low-density lipoprotein (LDL) receptor, which

is bound by Agrin and mediates MuSK activation, which is essential for the correct functioning of the

neuromuscular junction [133]. In the heart, Agrin is required for cardiac regeneration in neonates and its

over-expression was able induce regeneration in adults after injury [24] and to modulate cardiomyocytes

contraction in vitro [105]. Therefore, defects in the function or amount of its receptor may affect the

benefitial role of Agrin in the response to injury o hypertension. Moreover, mutations in LRP4 have been
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associated to sindactyly and polysindactyly in several mammalian species, including mouse, cow and

humans [253, 121, 164], which is usually accompanied by cardiac defects in Timothy Syndrome patients.

Inclusion of this exon introduces a stop codon near the C-terminal region of the protein and thus is

expected to produce a truncated version of LRP4 protein without the last exon. Even if the impact of

this highly conserved and cardiac-specific splicing event in protein function remains unknown, it is an

interesting candidate AS gene for better understanding PTBP1-mediated cardiac hypertrophy. PTBP1 is

also known to regulate Titin splicing isoforms in vitro [74]. Although we did not find large changes across

any exon in Titin upon PTBP1 over-expression, 27 of them showed estimated ∆Ψ < −0.04, which, when

considered together, may suggest a contribution to isoform shortening and increased passive stiffness of

the cardiac muscle, as it happens during development [144]. Other interesting AS changes mediated by

PTBP1 and potentially promoting cardiac disease affect LASS6 and CAD genes. The modulated exon

in CAD shows high inclusion rates in skeletal and cardiac muscle compared to most other tissues, as its

human ortholog does, suggesting that its cardiac-specific inclusion has functional consequences (Figure

5.1). CAD is a key enzyme for pyrimidine synthesis and aminoacid metabolism, and thus essential for

nucleic acid synthesis and proliferation. The affected exon in LASS6 gene, on the other hand, is included

specifically in neural tissues across both human and mouse genes (Figure 5.2). LASS6 participates in

ceramide synthesis, compounds that can cause mitochondrial dysfunction and heart failure [214, 309,

118]. Genetic and pharmacological inhibition of ceramide synthesis improves cardiac function in mouse

models of lipotoxic cardiomyopathy [214]. Thus, if LASS6 splicing event alters the ceramide synthesis

pathway, it will probably play an important role in cardiac pathology.

Although PTBP1 appears to be the main driver of AS changes in heart disease, it is unlikely to be

the only one. There are several sources of evidence pointing to a simultaneous contribution of its paralog

PTBP2 to AS modulation in cardiac disease. Even if both proteins bind to relatively similar targets

[166], we found that PTBP2 binding sites were independently associated to AS changes in heart disease

thanks to our regression framework (Figure 4.6A), suggesting increased chances of modulation whenever

having a PTBP2 binding site, regardless PTBP1 binding. This is further supported by the increased

correlation of AS changes TAC with PTBP1/2 KD compared with that with PTBP1 KD alone (Figure

4.8). These results are consistent with the observed simultaneous up-regulation of both PTBP1 and

PTBP2 in MI and TAC. This takes place even if PTBP1 actively inhibits PTBP2 expression through

RUST [260, 36], suggesting the existence of additional and dominant mechanisms driving the simultaneous

up-regulation of both genes. While PTBP2 keeps inhibited their common targets during later stages of

neural differentiation, there are also some unique targets to each regulatory protein, like PBX1, which is

specifically modulated by PTBP1 [166]. Altogether, we hypothesize that PTBP2 is also playing a role in

AS regulation in cardiac disease and would further contribute to hypertrophic growth if over-expressed

together with PTBP1.

Interestingly, neural and cardiac tissues also seem to share sequential regulation of AS by PTBP1 and

MBNL1 [114, 148, 153, 57, 298]. These results sug Althugh there are additional regulators apparently

specific to neural tissues, like SRRM4 [221, 113], differences in the AS patterns of muscle and brain

tissues may be explained by quantitative differences in the expression of trans-regulators rather than on

the structure of the regulatory network. This may be achieved if binding of RBPs to their targets depends

on both the affinity of the binding site and the protein concentration, as recently shown for RBFOX1 [27].

If this is a general issue for every RBP, small changes in the expression of certain regulatory elements

may drive the alternation of different AS targets and driver tissue-specific patterns.
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Figure 5.1: Exon inclusion rate of CAD alternative exon across mouse (top) and human tissues (bottom).
Data was extracted from VASTDB [268]
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Figure 5.2: Exon inclusion rate of LASS6 alternative exon across mouse (top) and human tissues (bottom).
Data was extracted from VASTDB [268]
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5.2.2 Improving the inference of trans-regulatory elements activity with dSreg

During the development of the first section, we became aware of some important limitations of the en-

richment approaches for identifying trans-regulators driving AS changes. First, as previously mentioned,

different RBPs often bind to similar target sequences [225, 64, 203], which hinders the identification of

the actual regulatory protein underlying the observed changes. To tackle this issue, we first performed

the classical Fisher test to analyze the over-representation of binding sites of each RBP in altered exons

individually. We used this as a first step to filter the potentially associated RBPs, rather than keeping

these candidates alone. We then used them for a second analysis to identify the subset of RBPs that

were independently associated to AS changes. In this second step, instead of a Fisher test, we worked

in a logistic regression framework, using the binding sites of the candidate regulators simultaneously as

predictors. While this approach was likely to reduce false positives in the identification of regulatory

elements due to correlations in the binding sites of different regulatory elements, it still ignored the quan-

titative information in the data and remains highly dependent on the classification of exons into different

discrete categories. Given this and other remaining methodological limitations, we developed dSreg, a

new method that takes into account the quantitative changes in mRNA proportions and the uncertainty

over such changes at a transcriptome wide level. dSreg is able to use quantitative information and gives

the proper weight to each exon according to its coverage or degree of information, by directly conditioning

on the number of reads supporting inclusion and skipping for each exon and sample. To deal with the

co-linearity between binding profiles of different RBPs, dSreg uses a regression framework so that the

changes in the logit(Ψ) of a certain exon are derived as a function of the sum of effects of all the RBPs

that bind to it.

To show the power of our hierarchical approach, we simulated data under this exact regulatory model

with known binding sites and tried to recover the true parameter values, i.e. RBPs differential activities,

giving rise to the observed data: the number of reads supporting exon inclusion and skipping across

every sample in the experiment (Figure 3.1). Our results showed very good performance in the inference

of trans-regulatory proteins, even at very low sequencing depths and few samples per condition (Figure

4.13). In these settings, there would certainly be no statistical power to test whether inclusion rate was

different between the two conditions for any particular exon independently. As expected, ORA, reliant on

such statistical power, is unable to identify any regulatory element at low depths and showed increasing

F1 score with depth. In contrast, the performance of GSEA, which uses quantitative information, even

if noisy, remains relatively unaffected by coverage like dSreg, but its performance is consistently lower.

Also as expected, as we increase the number of non-active regulators, both ORA and GSEA increase their

false positive rates, as they would report as significant both the driver regulators and those correlated

binding sites. Of course, the good performance of dSreg in these simulations is conditioned on perfect

knowledge about how splicing regulation takes place and the specific binding preferences of every potential

trans regulator. Even if these are rather unrealistic assumptions, our results suggest that if we know the

mechanisms by which AS is modulated and where each regulatory protein binds, we can very accurately

infer which are the regulators acting in a given situation with very limited sequencing depth.

We also evaluated the performance of the different methods for the identification of trans-regulatory

factors in real RNA-seq data. Unfortunately, there is no certain way to know which are the exact

regulatory elements acting in a real situation. The closest we can get to that is by experimentally

perturbing the expression of a certain factor or RBP, that may contribute to AS regulation through

their ability to bind RNA. This does not ensure that this RBP is modulating AS patterns and that it is

doing it alone. Still, over a large number of experiments, there should be at least an association between

altered and driver RBPs. Under this assumption, we used dSreg, ORA and GSEA to infer the trans-

regulators driving AS changes in a large collection of RBP knock-down experiments from the ENCODE

108 CHAPTER 5. DISCUSSION



5.2. ALTERNATIVE SPLICING REGULATION

project. Surprisingly, we found that both ORA and GSEA identify the perturbed RBP as often as

randomly selecting an number of RBPs equal to those deemed significant by each method. While dSreg

shows a better performance, its improvement over random performance is still very low (Figure 4.16).

Overall, these results suggest that our power to detect the perturbed RBP based on the AS patterns and

the set of binding sites employed here is very small for any available method. There are several non-

exclusive potential explanations for this. First, the set of derived binding sites from CLiP-seq experiments

probably contains errors. The extent to which errors in the binding profiles affect the inference of the

active regulatory elements remains unknown for every method. Unlike other issues, this can at least be

tested using simulations and introducing errors in the binding profile. Second, certain amount of RBPs

may not actually regulate splicing directly, and therefore there is no real association between AS changes

and their binding sites. In this case, AS may be secondary, and driven by other RBPs whose expression

is somehow dependent on the targeted protein.

Although the main motivation of dSreg is the inference of the RBPs driving AS changes, it simulta-

neously infers AS changes like widely used tools like MISO, rMATS, MAJIQ or Whippet [128, 249, 287,

261]. However, it does so taking into account the underlying regulatory network. These inferences were

very much improved in the simulation experiments thanks to the propagation of information across the

regulatory layers: when there is little evidence of change for the targets of a particular RBP, this strongly

suggests that the activity of the RBP is altered. However, the information flows in both directions: as we

know that an RBP activity is changing, then we have stronger evidence that their targets are changing,

even if there is poor direct evidence in form of few reads mapping to each target exon. This may help

improve estimates in case of errors due to small samples size. Similar attempts have been previously

made to leverage the regulatory information to improve the inferences of the AS changes. First, BRIE

[107] used k-mer composition to build an informative prior through a linear regression framework to infer

Ψs in scRNA-seq data. In this type of data there are very few reads per cell but there are many cells

that can compensate this lack of local information: having many cells can compensate the low cover-

age per cell if we are able to properly propagate information among different cells. Not surprisingly,

BRIE outperformed classical tools designed for bulk RNA-seq experiments like MISO or rMATS [128,

249]. More recently, a similar approach was implemented in DARTS [315], which used a Deep Learning

strategy to build an informative prior for each AS event for the probability of changing. In this case,

DARTS includes much more information in its prior, as it uses data from the large collection of RBPs

knock-down experiments from ENCODE [203], simultaneously integrating the expression of these RBPs

with the downstream AS changes into the model. This prior is of course only available for human species

and therefore limits its applicability in other model species like mouse, Drosophila or C. elegans. As it is

already trained in previous data, it can directly provide a prediction of the AS changes in a dataset based

only on the RBPs expression, or additionally incorporate the information from the RNA-seq experiment

to generate a posterior probability of AS change for each event. The incorporation of this prior was

shown to improve the detection of AS changes and outperformed classical tools like MISO and rMATS.

In our work, we have compared these new tools with dSreg using deep sequencing data processed by

DARTS [315] and sequentially reduced the sequencing depth. Assuming that the full sequencing depth or

independent RASL-seq quantification of a small subset of exons provided the true value, we evaluated the

dependency of these tools on coverage. This analysis showed that the performance of dSreg at quantifying

and detecting differential splicing is, at least, similar to these previous approaches except at very low

depths, at which DARTS outperforms the other methods. This happened regardless of using their model

based informative prior (flat vs info), suggesting that the specific model specification of DARTS is more

realistic when information is missing (Figure 4.16). The improvement of these approaches in comparison

with our Null model are rather small, if any. This suggests that we are missing relevant mechanistic

information in our regulatory models, given that information does not propagate through the regulatory
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network to improve inferences as much as in our simulations. Whether this is driven by incorrect binding

profiles or incomplete regulatory model remains unknown. Still, dSreg is able to identify whether there is

information across the provided regulatory network and use it to derive trans-regulatory factors. It does

it without perturbing the differential splicing inferences even under a possibly miss-specified regulatory

model, only using information when it is actually there. Thus, there is still a lot of room for improvement,

which can be monitored by comparing the relative improvements in performance achieved by methods in

real and simulated data.

5.2.3 Definition of RBP-RNA interactions

A key and complex part of the regulatory analysis is the definition of the binding sites for the regulatory

elements of interest. A whole variety of approaches have been taken in the literature, without a clear

evaluation of which works best in practice for this specific aim.

First works on the determination of RBPs binding specificity showed that binding preferences for

most RBPs could be confidently explained by 4-8 bases long stretches of RNA [173]. Based on these

findings, a first simple and often used way to define regulatory features for AS modulation is to extract

6-mer profiles for exons and their adjacent sequences. This approach has been used for identifying which

are the cis-regulatory signals affecting quantitative AS outcomes [235] or the specific factors modulating

a set of exons e.g. microexons [161]. As previously discussed, 6-mer profiles have also served to build a

global informative prior for inferring Ψ across exons in scRNA-seq experiments [107]. These cis-regulatory

sequences can be later associated to specific trans-factors based on databases like cisbp-rna or ATtRACT

[225, 91] using specific computational tools for motif comparison like TOMTOM [102].

In this work, we have taken advantage of the newly released ENCODE dataset with CLiP-seq data

for a large amount of RBPs [64], together with previous smaller databases [301, 35, 131, 158], and used

the obtained in vivo binding sites to define the binding profiles of the different RBPs across the whole

dataset of exons. We have assumed that these binding sites are generally conserved and have lifted-

over the coordinates from human experiments to mouse for our analyses in the mouse heart. These data

provide direct evidence of in vivo binding of a RBP to a sequence in the RNA. This decision was motivated

by the increasing evidence of differences between predictions from sequence motifs and in vivo binding

from experimental data, potentially driven by the 3D RNA conformation [267, 64]. On the other hand,

these data are highly dependent on the actual genes that are expressed in the experimental conditions:

if a gene is not expressed, an RBP can hardly bind to its pre-mRNA to modulate AS. If this gene is

expressed in the conditions we want to study, it may artificially be bound by no RBP at all. Thus, our

inferences about the trans-regulators mediating AS transitions may be biased or at least guided mostly by

genes that are expressed in the experimental settings in which the CLiP-seq experiments were performed.

For most RBPs, CLiP-seq experiments are performed in cell lines like K562 or HepG2 [64], which may

be very different from in vivo cardiac myocytes, for instance.

Ideally, instead of relying on directly determined binding sites, one could derive more complex models

for the binding of each RBP to predict their binding sites across the transcriptome, overcoming the

limitation of a gene being expressed in very specific experimental conditions. These models may improve

simpler and purely sequence based Position Weight Matrix (PWM) as in Cisbp-rna [225] into complex

Deep Learning approaches that take into account the RNA structure [311, 78, 187, 210, 6]. While PWMs

accurately describe the binding of some RBPs, there are some, like PTBP1, for which the structural

information i.e. both base pairing and 3D-structure, is a key determinant for in vivo binding to RNA [311].

Thus, although such models exist for a small number of RBPs, a comprehensive and systematic building

of complex models for the in vivo binding is still missing. This development would allow the extrapolation

of experimental results in very specific conditions to broader biological contexts and thus correct for gene
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expression variability when defining the binding profiles for downstream regulatory analysis.

5.2.4 Interaction between trans-regulatory proteins

So far, most efforts to study AS regulation have focused on the identification of specific trans-regulatory

elements that, alone, can explain at least part of the AS changes and potentially drive phenotypic differ-

ences [221, 126, 92]. However, there is increasing evidence that AS regulatory networks are more complex

than that: different RBPs have very similar binding affinities, bind to common targets in the RNA [225,

64, 203] and modulate them [40]. How these RBPs organize in complexes and how they affect AS is

not very well understood. Even considering a single RBP alone, several molecules may be required to

bind stably to the target RNA e.g. PTBP1 requires several binding sites along the RNA for protein

molecules to cooperatively bind simultaneously with higher affinity and specificity than individual pro-

teins to isolated binding sites [54]. Assuming that AS modulation by RBPs depends on their binding

affinities to their target sequences in the pre-mRNA, cooperative or competitive binding is expected to

have an important impact on the resulting AS changes.

Nowadays, there is only indirect evidence about the role of interactions between RBPs in the regulation

of AS. Previous work studying how AS rates change in large collections of mutant sequences in mini-

gene constructs suggests that regulatory interactions contribute little to the determination of the Ψ:

Accounting for pairwise interactions in the occurrence of 6-mers improved rather little the prediction

of Ψs in the mutant libraries [Rosenberg2015]. However, this is contingent on the suitability of 6-

mers to represent RBP binding: if they represent poorly the binding specificities, one can expect that

interactions among these 6-mers will provide little to no information to explain observed Ψ patterns. A

different study showed that epistatic interactions between pairs of nucleotides occurred mainly within

windows of 6 bases, suggesting that they arise due to the complex nature of RBP-RNA binding rather

than by the interaction between different regulatory elements [16].

Although the prevalence of interactions between RBPs in the AS regulatory network remains unclear,

there are several known examples: PTBP1 molecules bind cooperatively among themselves and can

interact with MBNL1 proteins and cooperatively bind and modulate the inclusion of Tropomyosin exon 3

[94] or with RBM20 to regulate Titin AS [74]. If interactions are widespread, a simple additive model with

independent effects for all RBPs may fail to identify the actual regulatory elements, since their effects

will be highly dependent on the factors that simultaneously bind each target. We have approached this

question by using regularized regression to allow pairwise interactions between candidate RBPs when

predicting whether an exon was changed in a particular transition in the mouse heart. These interactions

were relatively abundant, and had a greater contribution to the regulation of AS in heart disease than

to developmental changes. This does not necessarily imply a rewiring of the AS regulatory network in

disease, but can be explained by non-coordinated changes in the expression of the regulators. In contrast,

highly coordinated changes of RBPs during development resulted in a tightly regulated set of AS changes

as if they were all regulated by a single RBP, in this case, MBNL1. Moreover, by taking into account these

potential interactions, PTBP1 was unveiled as an important regulator whose contribution was validated

in an experimental mouse model over-expressing PTBP1. Under widespread interaction between trans-

regulators, it may not be surprising that PTBP1 up or downregulation (Figures 4.8 and 4.12) alone did

not reproduce a large number of AS changes compared with disease. This would require a very specific

modulation of a number of RBPs, according to our previous model, rather than the perturbation of a

single RBP alone.

An important consideration in our approach is that we did not model quantitative changes in Ψs,

but the qualitative definition of AS change in a certain transition. Although one can expect that bigger

quantitative changes are more easily detectable, whether quantitative additivity on logit(Ψ) would imply
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additive effects on the detection of significant changes is a complex question. We have only studied rather

superficially the role of regulatory interactions for AS regulation, but it can easily be improved by using

dSreg accounting for co-occurrence of binding sites of combinations of RBPs. Including interactions would

certainly increase the complexity of the model, since there are many more combinations of RBPs that

single RBP when considered individually. However, as dSreg uses a Horse-shoe prior to promote sparsity

on the regulatory activities, with little decrease in performance as the number of potential regulatory

elements increase, it provides an interesting computational tool to study this question in more depth in

the future. Still, additional studies would be required to validate this hypothesis experimentally, e.g. by

systematic perturbation of pairs of RBPs.

5.2.5 Limitations of dSreg regulatory model and potential improvements

The good performance of dSreg on simulated data suggests that it is very powerful when the regulatory

model is realistic and the binding sites for all potentially participating trans-regulators are perfectly

known. In these conditions, we found that dSreg is able to very accurately identify the quantitative

AS changes taking place for each exon even with few number of reads and samples supporting them in

comparison with a model ignoring the regulatory information. Therefore, the difference in performance

between the two models at identifying the AS changes upon decreasing sequencing depth may provide

indirect evidence about the amount of variation that can be explained by our regulatory model and binding

sites on real data. Indeed, in contrast to results in simulated data, the performance in the identification

and quantification of AS changes of dSreg and its Null model were very similar when assessed on real

data. While dSreg still provides better inferences about the trans-factors contributing to those changes,

it suggests that there is room for improvement in probably both the regulatory model and the definition

of binding sites.

We have previously discussed the difficulties we found at defining the binding sites for the potential

trans-regulatory elements. But the regulatory effect of an RBP may not only depend on the binding

affinity, but also its relative distance to a particular splice signal. For instance, we found that PTBP1

binding sites are mostly enriched in a window of about 100bp upstream of the splice acceptor, while

differences between modulated and unchanged events at larger distances was rather small (Figure 4.9).

The association of RBFOX2 binding sites with the modulated exons also decreases with the distance to

exon splice donor, but may extend up to about 200 bases [255]. SF3B1, on the other hand, exerts its

regulatory action by modulating the recognition of the branch point, and therefore the relative position

at which the regulatory effect is maximized may be different [101]. As the position dependency appears

to be unique to each regulatory protein or at least to regulatory modes, throughout this thesis, we have

simply assumed that the regulatory effect is the same whenever the binding site was located within 250

intronic and 50 exonic bases. In the future, dSreg may be extended to have an optimal distance to any

regulatory element, from which the regulatory effect would decrease according to certain function, e.g.

Gaussian function, to simultaneously model the position dependency and regulatory activities.

Another important issue that is ignored by dSreg regulatory model is the expression of the trans-

regulatory factor. In this model, we have assumed that the trans-factor would always bind to every

provided cis-element in the binding sites matrix. However, if the RBP concentration is not very high,

different cis-elements across the whole transcriptome may need to compete for the binding of the existing

RBP molecules. In this situation, only a small amount of binding sites will be actually bound, such that

only a small proportion of targets would be affected by the change in its activity. This has been recently

shown for RBFOX1: whose up-regulation unveils its ability to bind to lower affinity targets and exert its

regulatory function over them, while these targets are not sensitive to changes in lower concentrations

of RBFOX1 [27]. Evidence for competition of binding sites for RBP binding can be found in DM. As
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previously mentioned, expansion of GTC repeats in Dmpk 3’UTR out-competes other important cis-

regulatory elements of MBNL1, leading to AS alternations and cardiac dysfunction [149]. As expected

by the competition model, over-expression of MBNL1 in the skeletal muscle reverses myotonia [127] and

satellite cell proliferation [257].

Although we also have information about the expression levels of each gene in the RNA-seq data, this

is more difficult to incorporate to dSreg model. It would require to quantitatively characterize the binding

affinity across each binding site and RBP and introduce a model for simultaneous competition among all

binding sites depending on their pre-mRNA concentration. In this framework, one may not only consider

competition for molecules of the same RBP but also of different RBPs and use it to investigate how

changes in the stoichometry of RBPs may actually impact the resulting AS patterns. As we suggested for

heart disease, changes in the stoichometry may explain the apparent interactions between regulators: if

one regulator is limiting, then modification of the other may not have an effect. However, if the expression

of the limiting regulator increases, it might unveil dependencies on other trans-factors.

We have used a simple logistic regression framework to integrate the regulatory effects into the result-

ing Ψ for a particular exons. Despite its mathematical convenience and relatively easy interpretation as

the log-transformation of the ratio between inclusion and skipping, there is no mechanistic justification

for trans-effects to be additive in the logit scale. Recent work has shown a global dependency of the

effect of both mutations and trans-regulators on the actual Ψ. This dependency may be explained by a

delayed competition model between splice sites characterized by the rates of recognition by the spliceo-

some for each competing splice site [16]. This model can accommodate other known important factors

like intron size or nucleosome occupancy [110, 193, 172] as factors influencing the waiting time before

splice site competition. This work provides a more mechanistic model for how the regulatory activity of

a trans-regulator may be quantitatively translated into AS changes for building better models to identify

trans-regulatory elements from RNA-seq data.

Finally, there is an additional assumption that may limit the ability of dSreg to learn the underlying

regulatory patterns. dSreg assumes that the changes in Ψ between conditions depend on the combina-

tion of regulatory activities, but that biological variability between samples of the sample condition are

completely unrelated. This is, there is no variability in the regulatory activity within the same condition.

While this simplifies the amount of parameters in the model, there is no reason to think that the RBPs

activities do not vary within experimental groups, as they may be also subjected to noise and biological

variation. We find a very clear example of that in our own data: when injecting AAV9-PTBP1 into

mouse hearts, there is some variability in the over-expression that we achieved in the heart. In fact, we

found that one of the samples that were sequenced was not able to over-express PTBP1 sufficiently as

to induce changes in the AS patterns. Therefore, we are missing the additional information provided

by the relationships between exons that share binding sites within the same biological condition. If the

variability within each experimental group is due to regulatory factors, we should be able to leverage that

information. This can be incorporated in the model by assuming that each sample has a set of regulatory

activities, which themselves depend on the experimental condition with some noise. If the variance within

groups is driven, at least partially, by variability in the regulatory elements that propagates through the

regulatory network to the target exons, we should be able to separate it from random independent noise.

5.3 Alternative splicing functionality

5.3.1 Functional impact of alternative splicing changes in the heart

In this section, we used an unprecedented breadth of samples and conditions to investigate not only

the mechanisms that regulate AS changes in the heart, as previously discussed, but also their functional
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consequences, here understood as the changes in the biological activity of the resulting mRNAs. We found

that GE and especially AS patterns are more dynamically regulated during embryonic and postnatal heart

development than after the induction of MI or TAC. Despite a partial recapitulation of developmental

AS changes in heart disease, TAC and MI samples remained more similar to their adult controls than to

neonatal samples, a trend also seen with GE changes. In addition, the biological processes affected by AS

changes were mainly different from those altered by GE changes, regardless of the developmental or disease

context, suggesting that AS and GE changes play distinct roles in the heart. These functions are often

related with cytoskeleton, vesicle trafficking and acting dynamics, not only in myocytes, but also across

neurons [114, 148, 153, 85]. These observations suggest that the genes modulated through AS changes

are related to the same functions regardless, not only of the developmental stage in the heart, but also of

the tissue and possibly other experimental conditions. Interestingly, exons with increased inclusion levels

during development tended to be shorter and not to affect protein domains, whereas skipped exons tended

to be of similar length to unchanged exons and to encode functional domains, which would presumably be

disrupted by AS, suggesting strong effects on protein function. The latter changes are not recapitulated

in heart disease, indicating that cardiac injury triggers only those AS changes with a lower impact on

protein function compared to those taking place only during development.

We explored the global effect of AS changes on the PPI networks during heart development and

disease. Besides AS modulated genes being central in the PPI network, as previously described in

different contexts [114, 305], we found that AS changes tend to modify PPIs more often than expected

by chance in both interaction datasets under study, as previously shown in cancer [57]. We also analyzed

the relevance of the AS-dependent interactions in the global PPI network through the edge betweenness.

This property reflects how many shortest paths between nodes go through each edge, in other words,

how important those interactions are for the interconnection of different interacting modules. Our results

suggest that AS changes in disease not only tend to affect more interactions than expected, but that

these interactions are key in the PPI network. We did not find such association in domain mediated

interactions. However, previous work suggests that most AS-mediated interactions do not affect protein

domains, but short linear motifs [305]. Therefore, differences between the results in the two datasets may

lay on the different nature of interactions under study. These results may be limited by the small size of

exons groups overlapping between the interaction datasets and the exons that were characterized in our

study. Therefore, increasing the number of interactions or exons would help to further verify our findings,

besides careful experimental validation. In addition to this general trend, we observed some specific AS-

mediated PPI changes that may have functional impact. Among these, we found MEF2A to have isoform

specific interactions with MEOX1 and MAPK7/ERK5 and to show AS changes in both developmental

transitions and MI. MAPK7 activates MEF2A in response to MEK5, which is alternatively spliced itself

[247]. Since MEOX1 and MAPK7 expression and MEF2A splicing changes are known to modulate cardiac

hypertrophy [247, 135, 154], these AS-modulated interactions may play a role in the development of the

disease. In addition, among developmentally regulated AS-mediated interactions, we found the EGFR-

ERBB2-ANKS1 interaction triad to be reduced. ANKS1 regulates EGFR and ERBB2 transport to the

membrane, which is necessary for its ERBB2-mediated tumorigenesis [153, 213, 272]. ERBB2 deficiency

has been shown to cause dilated cardiomyopathy [59], whereas its transient induction reactivates the

regenerative potential of the neonatal heart in adults [60]. Therefore, changes in the interaction between

ANKS1 and ERBB2 or EGFR mediated by AS are expected to have major consequences for the heart.

5.3.2 Approaching alternative splicing function through comparative studies

In the third chapter, we have characterized AS mammalian evolutionary patterns as quantitative char-

acters evolving under a OU process. A key parameter of the OU model is the phenotypic optima i.e.
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the value of the quantitative trait that maximizes the fitness of the species. Thus, we have been able to

infer, for the first time, mammalian-wide optimal inclusion rates Ψopt for a subset of conserved exons in

the mammalian genome. Both global and exon-level inferences suggest that most Ψopts are very close

to 100% inclusion despite occasional exon skipping at certain rates across a single or few lineages. In

an attempt to answer the main question of how much of AS is functional, we may assume that an exon

skipping event is functional when selection tends to maintain its skipping at least at 10% of the processed

transcripts, i.e. Ψopt > 0.9. Under this assumption, we found that only about 2% of the exons with some

evidence of skipping in at least one species actually have an optimal inclusion rate below 90% (Figure

4.22D). These exons belong to about 5-6% of the genes under study, suggesting that AS, or at least exon

skipping events, are functional only in a minority of genes.

However, there are a number of factors that may influence the accuracy of our estimates. First, on

one hand, there are many more exons in which no evidence of exon skipping was found, either because

it is rare or gene coverage was low. This may lead to overestimating the percentage of functional exon

skipping. On the other hand, AS patterns can be developmentally and tissue regulated, or even cell type

specific [99, 194, 193, 21, 34]. Therefore, by studying only liver, a single tissue in adult stage, we may

be overlooking some exons that are meaningfully skipped only in a single tissue or specific biological

condition. In particular, brain shows quite distinct AS patterns at both RNA and protein levels [230].

Brain patterns are also more conserved than those of other tissues [21, 114, 194], suggesting that a good

amount of functional AS that takes places exclusively in brain may be missed in this study. Second,

AS functionality may not be detectable at the exon level, this is, there are indirect ways in which AS

may perform a different function, such as RUST [151]. If AS fitness effects depend on the ability of

exon inclusion or skipping to modulate gene expression, selection will not act to reach a certain Ψ for

a particular exon, but on the proportion of transcripts to be degraded under certain condition. There

are many different ways for a multiexonic gene to produce an aberrant transcript targeted by NMD e.g.

inclusion of a poison exon (frame-shifting or with an in-frame stop codon), skipping of a frame-shifting

exon or intron retention. Under this scenario, the selective constraint on a single of these options will be

smaller, as there are many other available mechanisms that can perform the same function that can be

easily evolved. Some RBPs have independent and recurrently evolved different ways of self-modulated

non-productive splicing. In these particular cases, it seems likely that selection is acting to maintain these

feedback loops regardless of the specific underlying mechanism [150]. More importantly, these alternative

splicing-related mechanisms modulating gene expression can easily arise during evolution to compensate

each other. How general these mechanisms are for and their functionality remains mostly unknown and

is not addressed in our comparative study.

Given these known and other possibly unknown issues, our estimate of the % of functional AS may

not be fully accurate. However, it provides completely orthogonal evidence to previous studies about AS

functionality not being as widespread as previously thought, relying either on protein quantification or

sequence analyses [277]. Indeed, our estimates are quite similar to those obtained from a literature based

curated database of about 700 human genes, out of which between 5-13% were likely to be functional

[32]. While this may seem disappointing, there was no rationale behind the expectation of AS greatly

expanding the encoding potential of a genome or that doing so for a small percentage of the genes

is not sufficiently advantageous to keep this mechanism. Indeed, it may very well be that not every

gene can provide easily evolvable new functions. In this regard, most gene duplicates, which may be

comparable to AS isoforms in terms of functionality, are actually lost and only a few are able to prove

sufficiently advantageous to be retained, not necessarily by selection. Only 8-14% of duplicates resulting

from the whole genome duplication in Saccharomyces [190] and between 4.4 and 16.2 % of duplicates

from different genome duplication events in Arabidopsis are maintained nowadays [182]. Although there

are many stochastic processes driving initial retention of duplicates and large chromosomal fragments
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with many genes, we may assume that these percentages represent the proportion of duplicates that are

functional. Under this assumption, the percentage of functional gene duplicates is similar to our estimates

of AS functionality, pointing towards a proportion of the genome that can easily evolve new functions

from pre-existing ones, either through gene duplication or AS.

Quantitative genetics theory links the OU model with the evolution of a quantitative trait under a

single peak quadratic fitness landscape characterized by a single parameter w2, that gives an idea of

its width. Under some assumptions about the effective population size, we derived w2 from the inferred

parameters and obtained a first approximation of the Ψ-fitness map for mammalian species (Figure 4.27).

If effective population sizes are in the order of thousands (Ne ∼ 2000), the expected fitness consequences

of quantitative changes in the Ψ are rather small, in the order of 10−4. We could also investigate how

the fitness landscape varied depending on the position of the fitness peak (Ψopt) and found that fitness

effects are predicted to be much smaller for functional AS, understood as Ψopt ∼ 0.5, than changes for

optimal constitutive splicing rates (Ψopt → 1). In other words, alternative exons do not require very

specific inclusion rates, as long as there is certain production of the alternative isoform, whereas partially

skipping a constitutive exon has much greater fitness consequences. This can be easily explained because

variation in the proportion of functionally related AS isoforms, in which one can replace the other to

some extent, is of course expected to have weaker impact than replacing it with nothing or an aberrant

product.

5.4 Alternative splicing evolution

The application of models of phenotypic evolution to describe AS patterns in extant species not only

allowed the estimation of the optimal inclusion rates and their fitness landscapes, as previously discussed,

but also the characterization of rates and modes of Ψ evolution. This has been possible thanks to the

time resolution provided the collection of a very large RNA-seq dataset including an unprecedented

number of species in comparative transcriptomics [21, 194, 88]. Using these data, we have been able

to obtain exon-level estimates of the average evolutionary rate under a BM model, which were highly

variable along the genome, with 95% of exons spanning 2 orders of magnitude around a single peak

at about τ̂2 = 0.39 for every 100 my. Exons from the same gene evolved at similar rates, suggesting

that there are gene properties that are associated to the rate of evolution of Ψs. We have explored

what these gene properties may be and found that slowly evolving genes at the sequence level, possibly

constrained by selection, also tend to evolve slowly at the Ψ level (Figure 4.20D), as previously reported

for GE evolutionary rates [52]. In addition, we found a stronger negative association with the within-gene

heterogeneity in the nucleotide substitution rate. In other words, the Ψs in genes with high variation

in the nucleotide substitution rate along their sequence evolve at slower rates than genes with more

homogeneous substitution rates. A potential explanation for this observation may be that genes that

are highly constrained at the sequence level may introduce variability in the encoded protein through

AS, allowing the partial removal of some protein segments. Alternatively, conserved AS, this is with

low evolutionary rates, may allow heterogeneous nucleotide substitution rates. Other factor associated

to variation in Ψ evolutionary rate is gene age. Bilaterian genes showed, in average, faster evolutionary

rates than genes originated at different time points in the evolution. Interestingly, exon skipping became

more prevalent in bilaterian genomes, possibly associated to changes in the genome architecture [97],

providing further evidence of the association of exon skipping to the origin of bilaterians.

While the BM model provided an estimate of the average evolutionary rate of an exon across the

mammalian phylogeny, it assumes that this rate is independent on the trait value, the Ψ for every exon.

Not only that, but it predicts unrealistic Ψ distributions after some time of evolution, very different to

the observed ones in extant species. All this suggests that the BM model is too simple to accurately
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describe the evolutionary process driving Ψ change. To overcome some of the limitations of the BM

model, we also used a generalized OU model for AS data. The OU models not only predicted better

the observed Ψ patterns in extant species in comparison with the BM model (Figure 4.22), but also

allowed us to study the evolutionary forces behind these variable Ψ evolutionary rates. We found that

stabilizing selection constrains Ψ evolution, and does so with a comparable strength to that acting on gene

expression patterns in Drosophila (t 1
2

= 19my) [26]. Selection strength does not appear to contribute

significantly to the variability in the average evolutionary rates, which are mainly explained by diverse

rates of neutral evolution (Figure 4.23). Aiming for a more mechanistic interpretation, we used the known

relationships between OU parameters and quantitative genetics theory [146]. A potential explanation

for these differences is the effective population size Ne, since small populations are less sensitive to

selection than bigger populations. Ne has been shown to vary within a single genome [95], spanning up

to 1 order of magnitude, which seems insufficient to reach the high variability in Ne required to fully

explain the data (Figure 4.23F). Moreover, even if fast evolving exons are located in genes showing higher

rates of synonymous substitutions, supporting the lower Ne hypothesis, such differences seem unlikely to

completely account for the variation observed in the equilibrium variances across exons (Figure 4.23H).

Other non-exclusive factors are the fitness effects and the genetic variance. Our results suggest that

rapidly evolving exons are characterized by large genetic variances, but also flatter fitness landscapes

i.e. weaker fitness effects. Interestingly, these two factors seem to compensate each other to produce a

relatively constant selective strength across exons. Still, random accumulation of phenotypic variance

remains faster in these exons due to the larger genetic variance (Figure 4.23A).

We have also studied how evolution depends on the optimal inclusion rate and found that optimally

alternative exons tend to evolve faster. Previous work suggested different evolutionary regimes for alter-

native and nearly constitutive exons [228] but, thanks to our comparative approach, we have been able

to further dissect the nature of these differences. As with BM τ2 variability, exons with different Ψopt

evolve under similar selective strengths but variable rates of neutral evolution. These differences can be

simultaneously explained by variation in the Ne across the genome, but also in the fitness landscapes and

genetic variance (Figure 4.26). Recently, alternative exons i.e. with intermediate inclusion rates, have

been shown to be more sensitive to mutations and binding of trans-regulatory elements both in deep

mutagenesis experiments and human population data [16, 17]. This can be explained by a delayed com-

petition model between splice sites, and provides an explanation to why genetic variance is larger when

Ψopt are far from 100%, without necessarily having more mutations affecting the trait [16]. Similarly,

it provides an additional explanation for the correlation between Ψ evolutionary rate of exons from the

same gene: the time before competition of splice sites depends on intron length, but also on transcription

elongation rate. The slower the elongation, the less competition between splice sites and less sensitive

the resulting Ψ should be to mutations. In this line, we found a small but significant negative association

between downstream intron length and the exon evolutionary rate (Table 4.1). Moreover, there are some

factors, like post-transcriptional splicing, that affect the time before competition of splice sites. Thus,

post-transcriptionally spliced genes are expected to be more sensitive to genetic variation, as recently

shown [83], and therefore diverge faster during evolution.

Previous work proposed that fast divergence of AS patterns can be explained by lineage-specific

adaptations [21, 88]. We have expanded our basic OU framework to account for potential changes in

optimal inclusion rates along mammalian evolutionary history. This method, however, was not able to

reliably identify shifts in simulated data under the inferred parameters, nor even its overall prevalence

(Figure 4.29). We hypothesize that this is not really a methodological limitation, since decreasing the

equilibrium variance in the simulated data significantly improves the performance of the method and

enables inference, at least, of the proportion of exons with lineage specific-shifts. It is therefore limited

by the large rates of neutral evolution that characterize the evolution of exon Ψs, which make adaptive

CHAPTER 5. DISCUSSION 117



5.4. ALTERNATIVE SPLICING EVOLUTION

changes virtually indistinguishable from neutral divergence, at least at these long evolutionary distances.

Although neutral divergence is a certainly more parsimonious explanation, as previously discussed [88],

the prevalence of lineage-specific adaptive changes in AS rates remains unknown and difficult to infer

with current methods and data. Denser phylogenetic data or even population level data, with higher time

scale resolution may help to distinguish rapid adaptive change from neutral variation in future studies.

5.4.1 Study limitations

Despite the improvements and knowledge generated with the application of models of phenotypic evo-

lution to AS patterns, this approach still has some important limitations, very similar to those already

discussed for gene expression evolution [71]. The first issue is the assumption of independent evolution

of exons. We have assumed independence at two different levels: genetic and selective independence.

While the former suggests that mutations rarely affect different AS events simultaneously, such that

accumulated mutations have independent phenotypic effects on inclusion rates, the latter assumes that

the fitness consequences of quantitative variation in the Ψ of a given exon is independent from the Ψ in

other exons.

Genetic independence is unlikely to hold for a number of reasons: AS variability is generally modulated

by cis and trans regulatory elements. The mere existence of trans-regulatory elements and a regulatory

network suggests that different AS events will be genetically linked through the underlying regulatory

network driving variation along development, tissues and environmental conditions. As we showed in

the first section, plastic AS changes take place through regulatory networks. The same would happen if

mutations in trans factors influence their activity. Large genetic association studies like GTex have found

genetic variants associated in trans to AS diversity [3]. As both cis and trans acting mutations fix and

differentially accumulate in different populations and species, one can reasonably expect a co-evolution

of co-regulated exons through trans-mechanisms. This is indeed the case, since analysis of parental and

hybrid lines of mouse and Drosophila species suggests a substantial contribution of trans-effects to AS

divergence [191, 155]. This, together with known factors affecting every exon in a gene e.g. elongation

rate or post-transcriptional splicing, suggest that our assumption might not be fully accurate and provide

a point for future development. If a multivariate BM accounting for correlations across morphological

character proved superior for estimation of divergence times [10], we can expect that evolutionary rates

inferred under known divergence times would also improve using a multivariate model for evolution that

takes into account correlations between exons.

Despite no evidence of widespread non-independence in the fitness landscapes of exons Ψ, there

are some known scenarios in which the fitness consequences of AS variation across different exons may

not be independent. This is the case of mutually exclusive exons. These exons, often originated by

tandem duplication, encode functionally similar protein sequences, such that inclusion of either of them

separately yields a functional protein. However, if both were simultaneously included, it would certainly

disrupt the protein function with the derived consequences on fitness. These pairs of exons, which are

generally highly conserved [1, 2], would have anti-correlated fitness impacts: including one or the other

but no the two simultaneously can produce a functional protein. Indeed, it may very well be that their

mutually exclusive properties may not be random, but actually driven by selection. Another example of

potentially correlated fitness consequences of different AS events is found in gene expression modulation

through RUST [150]. In this case, fitness may depend on a combination of the outcomes of the AS events

producing aberrant transcripts recognized by the NMD machinery. Therefore, the fitness consequences of

changes in the inclusion of one exon may depend on how much unproductive splicing is generated by the

remaining AS events. Linear fitness relationships across phenotypic dimensions e.g. exons, may be taken

into account and inferred by extending the OU model to a multivariate framework [22, 56, 147]. However,
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doing it for a large number of exons require working with increasingly larger covariance matrices, which

poses additional computational challenges.

An additional assumption made by models of phenotypic evolution is that genetic variance, and

hence rates of evolution, are independent of the phenotypic trait values [146]. This necessarily requires

a distribution of mutational effects centered at 0 and independent of the trait value [71]. The latter is

clearly violated by exons Ψ being bounded between 0 and 1, such that as Ψ gets closer to 1 or 0, the

potential mutational effects start to be biased. We have somehow dealt with this limitation by assuming

that the evolving character is its logit transformation log( Ψ
1−Ψ ) or log-isoform ratios. Although this new

character is mathematically unbounded, one may still expect fewer genotypes encoding for very large or

very small Ψs, as suggested by our results on varying τ2 across Ψopt. In this line, recent work has indeed

showed that mutational effects depend on the starting Ψ [16]. This mutational bias may actually provide

an alternative explanation for a constrained phenotypic divergence along evolution other than stabilizing

selection [71]. Given the complex nature of the interaction between trait values and their evolutionary

rates, more specific models taking into account the specific genetic architecture of exon Ψ and fitness

landscape [188] will be required to better understand the genetic forces shaping AS evolution.

5.5 Integrative hierarchical modeling of alternative splicing data

There are two types of biological questions that we aim to answer when using transcriptomic data and

bioinformatics analyses. The first, probably coming from a tradition in molecular biology, focuses on

the specific details of the units under study. For example, when studying gene expression, the objective

under this perspective is to identify whether each specific gene is changing in a certain biological process

or remains constant. Thus, we need to have statistical methods that allow answering these questions

specifically. This is the approach that most tools to infer gene expression levels and test whether they

are different across different biological conditions take [215, 229, 275, 39, 157]. Similarly, when studying

alternative splicing, we would want to know the details and have good estimations about the proportions

of full isoforms [128, 39] or of each local variation in the splicing process [128, 248, 249, 114, 261, 287].

Under this perspective, genome-wide data becomes some sort of database or library to query specific

biological information about the genetic element that we want to study e.g. gene, exon, transcript,

enhancer or genetic variant. This is the natural statistical approach when one aims to identify which

mutations or biomarkers e.g. genes, proteins, metabolites, are associated to disease susceptibility.

The second type of questions, on the other hand, shifts the focus from the individual entities e.g. genes

or exons, to study the general patterns and rules that govern the observed profiles and their changes.

This approach may be used to characterize the biological functions that are modulated or influenced by

certain experimental treatment or mutated gene, and to understand the functional consequences in more

general terms. It may also serve to identify the factors the drive the transcriptomic differences between

conditions e.g. gene properties, transcription factor binding sites, or miRNA target sequences. From this

perspective, the type of answers we aim to obtain are different: we are not really interested in knowing

whether a specific gene is affected by a particular process, but we want to know, for instance, which are

the trans-regulatory elements driving the transcriptomic changes between conditions.

Despite these philosophical differences, the common approach to tackle general questions still goes

through performing statistical tests across every genetic element in the dataset e.g. identifying a set of

elements for which we can confidently say that are changing in our experimental settings, even if this is

not the question we want to ask our data. Then, clusters of elements are defined based on rather arbitrary

thresholds to investigate which annotations or properties are different or more frequent in some groups

compared with others, for which we need to perform again a large number of statistical tests on these newly

generated datasets from our observations. These are the basis for a large collection of computational tools
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and analysis aiming to characterize the biological functions that are regulated at the transcriptomic level

or identify candidate regulatory elements driving them [290, 136, 189, 119]. This approach, although

far from ideal, is what has been applied in this thesis to identify AS regulatory elements throughout

heart development and disease. Although additional sources of information, especially gene expression

changes, were used to identify PTBP1 as the main regulatory protein during heart disease, this enrichment

approach has certainly helped to identify which AS regulator was driving AS changes in these two mouse

models of heart disease.

The main limitation of this enrichment approach lies in the need to create new qualitative data from

the actual observations: the assignment of each element to a group. By doing this, we are somehow

assuming a discrete nature of the data, this is, that there are true underlying groups from which genes

are sampled when we collect the data. Regardless of the validity of this assumption, this becomes

something more similar to a clustering analysis, in which statistical significance seems a poor criteria to

assign a group to each element. In practice, this makes the group definition highly dependent on the

statistical power of tests whose answers were are not even interested in. Other tools, led by the popular

GSEA, [264, 134, 15, 174, 314] go away the assumption of discrete gene categories associated to different

biological process or regulatory features and start to use quantitative information to identify sets of genes

that are particularly affected without relying on previous statistical tests. While these methods may be

more statistically appropriate to the questions at hand, they still rely on an intermediate inferential step

for the quantification of gene expression for each independent sample and gene, rather than on the raw

observations. While we do not really know the influence of errors when estimating gene expression levels

in the performance of GSEA, one may think it is small due to a large number of reads usually supporting

each gene [39, 215, 160]. For the same reason, we can predict that error propagation will be worse when

analyzing AS data, as there are much fewer reads that differentiate each alternative processing option

within a gene, yielding our estimates much more noisy than when analyzing gene expression. Therefore,

there are also practical reasons for a more principled and integrated statistical analysis of global patterns

of alternative splicing.

In this thesis, we have made two attempts at extracting the information of interest directly from the

data. First, we developed dSreg to infer the changes in the activity of regulatory proteins driving AS

changes between different biological conditions. Second, we assumed that exons evolved under a common

OU process to characterize the process that drives Ψ evolution along a phylogenetic tree. In both cases,

we conditioned directly on the observations i.e. number of reads supporting inclusion and skipping of an

exon, rather than on Ψ point estimates, which may be noisy for most of the exons. This allowed us to

weight the contribution of each exon to the global parameters i.e. changes in the activities of regulatory

factors or evolutionary parameters, according to the degree of information they provided. However,

one may argue that to do so one needs to specify a priori a parametric model for the relationships

between different exons or genes. In some situations, there are already theoretical models to describe the

underlying biological process under specific parametrizations that provide the answer to our questions.

This was the case of the OU model, which we merely extended to account for the binomial nature of AS

data. This model extension allowed us to infer the contribution of stabilizing selection and phenotypic

drift to AS evolution. In other situations, we do not know theoretical models to plug into our inferential

framework, so we have to make principled assumptions about how the parameters answering our question

relate to the observed data. This is what we did in dSreg, which models changes in the logit(Ψ) as the

sum of effects of the regulatory elements binding to each exon with some error. While the differences in

performance of dSreg between simulated and real data suggest that this model may not be very realistic,

it still outperforms the two-step approaches in simulated data and in the identification of the knocked-

down RBPs across the ENCODE dataset. Thus, even if we are not sure about the underlying model, a

simple linear approximation may still improve and outperform other strategies like ORA or GSEA.
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Overall, these results show that carefully modelling the data generating process in our experimen-

tal design can not only provide additional biological information directly through the model parameters

and their posterior distributions e.g. regulatory activities or evolutionary forces, but also improve our

estimates of the derived inclusion rates thanks to information and uncertainty propagation across the

different layers of the model. The inferential framework used here for modelling AS evolution and regula-

tion can be extended to model other complex processes for better understanding how AS patterns change

across different conditions and species.

5.6 Summary and perspective

The development of this thesis has greatly benefited from the incorporation of very different perspectives

and frameworks to the study of AS in general. We have studied a diverse range of topics of different

degree of generality and detail: from the identification of potential AS changes that may have an impact

in the physiology and function of the heart and the specific factors that modulate it under different ex-

perimental conditions, towards a more general understanding of the regulatory patterns i.e. contribution

of interaction between RBPs and their binding to the pre-mRNA, and how to infer them from the data.

We have also zoomed out from a single species and investigated the contribution of different evolution-

ary forces to shape current AS patterns through phylogenetic comparative methods. During this path,

we have developed the required statistical methods for each task, trying to improve on the limitations

that previous and more general methods had for our specific aims. While we are still far from complete

understanding of the importance and complexity of AS, how it is dynamically regulated to respond to

different stimuli and the rules that govern this regulation and its evolution, we hope that this work may

at least differentially get us closer to this aim.
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Based on the presented results throughout this thesis and despite a large remaining uncertainty about

many aspects, we have reached a number of conclusions:

1. Global AS patterns can distinguish disease samples from healthy adult hearts, as a partial regression

in the developmental axis.

2. AS and GE changes affect independent genes and functions throughout developmental and disease

transitions. While GE changes are associated to a large variety of functions, specific to the condi-

tions under study, AS are always associated to cytoskeleton and actin binding functions, regardless

of the tissue or experimental conditions.

3. AS changes in the heart are associated to changes in protein-protein interactions mediated by short

motifs that are important for the overall connectivity of the network.

4. PTBP1 is the main driver of AS changes in heart disease and its over-expression is sufficient to

induce heart dysfunction in mouse.

5. We have developed dSreg, a computational tool for the inference of active regulatory elements driv-

ing AS changes between different conditions that outperforms previous methods in both simulated

and real data.

6. We have developed computational tools to apply models of phenotypic evolution to study AS

patterns across mammals and proved that we can infer the parameters describing the evolutionary

process under certain assumptions

7. Exon Ψ evolves under weak but significant stabilizing selection, comparable to that previously

reported to constrain gene expression.

8. Diversity in exon Ψ evolutionary rates is mostly driven by variation in the random component

rather than by the strength of selection acting on each exon.

9. We have inferred optimal inclusion rates across mammals and found that only about 5% of the

genes are predicted to show functional exon skipping despite the widespread prevalence of AS

across mammalian genomes

10. Neutral evolution of exon Ψ is so high that we cannot distinguish it from rapid adaptive changes

at this large phylogenetic scale.
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