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Abstract: Providing useful information to the users by recommending highly demanded products and
services is a fundamental part of the business of many top tier companies. Recommender Systems
make use of many sources of information to provide users with accurate predictions and novel
recommendations of items. Here we propose, DeepMF, a novel collaborative filtering method that
combines the Deep Learning paradigm with Matrix Factorization (MF) to improve the quality of
both predictions and recommendations made to the user. Specifically, DeepMF performs successive
refinements of a MF model with a layered architecture that uses the acquired knowledge in a layer as
input for subsequent layers. Experimental results showed that the quality of both the predictions and
recommendations of DeepMF overcome the baselines.
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1. Introduction

Presently, data processing has become a priority for the society. The amount of information we
generate every day is on the rise, mainly due to the increase in the number of devices we use routinely
as well as new patterns of interaction with technology that have been developed over the last few
years. With such a high volume of real-time data, Machine Learning (ML) techniques became a key
tool for being able to extract knowledge from data. At present, ML is one of the most active research
field not only within computer science, but also in healthcare [1], sociology [2] and industry [3].

One of the most important applications of ML are Recommender System (RS) [4], which are
techniques that make use of different sources of information for providing users with predictions and
recommendations of items, adjusting factors such as accuracy, novelty, sparsity and stability in the
recommendations [5,6]. Top tier companies such as Netflix, Spotify and Amazon, use RS provide useful
information to the users by recommending highly demanded products and services. Although it is
possible to find many kinds of RS in the state of the art, they all share a key component: The filtering
algorithm at the core. According to the filtering algorithm used, RS might be categorized [7] into
(a) Collaborative Filtering (CF), (b) demographic filtering, (c) content-based filtering and (d) hybrid
filtering. Regarding CF, Matrix Factorization (MF) is one of its most widely used techniques [4,8].
It operates by decomposing the user-item interaction matrix into the product of two lower dimensional
rectangular matrices as well as assigning different regularization weights to the latent factors in order
to improve the prediction results [9].

A major recent breakthrough in the field of ML is the so-called Deep Learning (DL) technology,
that has attracted much attention not only from the scientific community, but also from society in
general. Oppositely to other ML techniques, which can only extract knowledge from the shallow of the
data, typically based on statistical evidence, DL is able to detect and exploit the underlying multi-layer
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structure of the data. Although DL is generally linked to artificial neural networks, the paradigm
is more complex than that. As stated by LeCun et al. [10], “DL allows computational models that
are composed of multiple processing layers to learn representations of data with multiple levels of
abstraction”. Since its inception, DL has positioned as a very top notch technology for uncovering
tangled structures in high-dimensional data. In this way, it has been applied to a wide range of
domains such as speech recognition [11], image recognition [12] or natural language processing [13],
among others.

As might be expected, RS have not been immune to the boom in DL and it is possible to find
several works in this direction. The most obvious interplay is to apply deep neural networks [14]
for improving the predictions of the RSs. Indeed, they provide appropriate a posteriori biases to the
input data type, exploiting any inherent structure within the data. Furthermore, deep neural networks
are capable of modeling the non-linearity in data with nonlinear activations, which is one of the
principal aims of modern RS, making it possible to capture complex interaction patterns between users
and items.

Due to the aforementioned advantages, neural networks with deep architectures, i.e., many layers,
have been used to create new RS. For instance, DeepFM [15] is an approach that models the interactions
of high and low order features through deep neural networks and factorization machines, respectively.
On the other hand, Autoencoder-Based Collaborative Filtering (ACF) [16] uses another well-known
DL architecture, namely variational autoencoders, to build a RS model that decompose the partial
observed ratings vectors in a similar way as one-hot encoding. In the same way, Bobadilla et al. [17]
provide an innovative DL architecture to improve CF results by exploiting the potential of the reliability
concept to raise predictions and recommendations quality by incorporating prediction errors in
the DL layers. Regarding convolutional neural networks, He et al. [18] propose to use them in
order to enhance CF by using the outer product instead of the customary dot product to model
the interaction patterns of both users and items, as well as capturing the high-order correlations
among embedding dimensions. In addition, Abavisani and Patel [19] proposed an artificial neural
network that consists of a convolutional autoencoder along with a fully connected layer to learn
robust deep features for classification. Along the same lines, Recurrent Neural networks have been
used with RS [20–22], although under some restrictions (i.e., session-based recommendations), due to
the features of this kind of deep architecture, which are suitable for sequential data processing.
Even Generative Adversarial Networks (GANs) have been used to generate negative samples for
a memory network-based streaming RS [23] and enhancing the Bayesian personalized ranking with
adversarial training [24].

Another promising line of application of DL is to pull apart the neural networks and to apply the
underlying philosophy to extend the usual MF algorithm to get deep factorizations. This approach is
a common trend in several machine learning contexts, but it has never been applied to RS. For instance,
Le Magoarou and Gribonval proposed FAuST [25], a deep factorization method of a matrix into
a product of many sparse factors that can be achieved through hierarchical refinements, in the spirit of
deep networks. FAuST has proven to be very successful in image processing, data compression and
inverse linear problems but, as we will see, it fails to provide a competitive alternative when applied
to RS. In a similar vein, Trigeorgis et al. [26] devised a semi-supervised learning method based on
Non-negative Matrix Factorization, which was applied to the problem of face clustering, while Guo
and Zhang [27] used a similar approach to perform dimension reduction and pattern recognition.
A multilevel decomposition method used to derive a feature representation for speech recognition is
presented in [28], which outperforms existing features for various speech recognition tasks.

In this paper, we propose a novel method for incorporating DL to CF-based RSs. For that purpose,
we present a new CF method that combines the DL paradigm with MF in order to improve the quality
of predictions and recommendations. The approach presented here is based on the principles of DL,
but unlike state-of-the-art works, the proposed method does not use deep neural network architectures.
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Instead, it transforms the MF process into a layered process, in which each layer factors out the errors
made in the previous layer.

Roughly speaking, the proposed model works as follows. Consider a matrix R that collects the
known ratings of the users of the RS to the supervised items. Typically, the MF looks for a factorization
of the form R ≈ P · Q for some matrices P, Q of low rank. In this way, the matrix E1 = R− P · Q
measures the error attained with the MF. The key point is that, if we were able to exactly predict the
error, then we could correct the output of our model by tuning it to take into account the expected
error. To get this, our proposal is to deepen this factorization and to look for a factorization of the
error E1 ≈ P1 ·Q1, which gives rise to a ‘second order error’ E2 = E1 − P1 ·Q1. This refinement of the
expected error can be continued as many times as desired in order to achieve a better control of the
error. In this way, as byproduct of the application of the DL process, we end up with a more accurate
model that auto-corrects its predictions with the estimation of the expected error in the guess.

Summarizing, the proposed RS model follows the DL paradigm by performing successive
refinements of a MF model with a layered architecture and letting it to use the acquired knowledge in
one layer to be used as input for subsequent layers. The novelty of our work lies in using the concepts
of DL, not for use with artificial neural networks, but to improve the MF itself.

The rest of the paper is structured as follows. Section 2 contains the material and methods used
to formalize the proposed method, as well as the associated algorithm. Section 3 presents the results of
the experimental evaluation conducted in order to measure the performance of the presented method.
As we will see, the proposed algorithm consistently outperforms the previous MF methods that can
be found in the literature. Finally, Section 4 discusses about these results and its impact on the RS

research field.

2. Materials and Methods

A current trend in the field of CF is to improve the quality of the predictions by means of different
techniques of MF, such as PMF [29], NMF [30], and SVD++ [31]. However, all these techniques rely
on the same approach: they pose an optimization problem through a loss function that measures the
divergence of the model of the expected behavior of users and items in a collaborative context from the
actual behavior. Trying to break with this paradigm, in this paper we present a novel recommendation
model that, using the MF paradigm, introduces the principles of DL to refine the output of the model
through successive trainings. We named this new model Deep Matrix Factorization (DeepMF).

Figure 1 summarizes the operation of DeepMF. As we can observe, the model is initialized with the
usual input of a CF-based RS: a matrix R that contains the ratings of the users to the items. Note that
this matrix is sparse, since a user generally only votes a very small subset of the existing items. As in
classical MF approaches, this matrix R, that will be also called R = E0 in our context, is approximated
by a dense matrix Ê0 of the form Ê0 = P0 ·Q0, where P0 and Q0 are matrices of small rank. This matrix
Ê0 provides the predicted ratings at the first step.

At this point the DL begins. A new matrix E1 = R− Ê0 is built by computing the attained errors
between the original ratings R and the predicted ratings stored in Ê0. This new matrix is, again,
approximated by a factorization into two new small rank matrices Ê1 = P1 · Q1, which produces
the errors at the second step E2 = E1 − Ê1. This process is repeated as many times as desired,
by generating and factorizing successive error matrices E1, . . . , EN . Presumably, this sequence of error
matrices converges to zero, so we get preciser predictions as we add new layers to the model.
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Figure 1. Illustrative explanation of proposed DeepMF method.

This method can be formalized as follows. Suppose that our CF-based RS is dealing with n users
and m items, whose ratings are collected in a spare matrix R = (Ru,i) ∈ Rn×m, where Ru,i is the rating
that the user u gave to item i (typically, integer values between 1 and 5), or Ru,i = • if u has not rated
the item i. We look for a factorization of E0 = R of the form E0 ≈ P0 ·Q0, where P0 is a n× k0 matrix
and Q0 is a k0 ×m matrix. Here, k0 is interpreted as the number of hidden factors we try to detect in
the first step (typically k0 is around 10) and Q0, P0 are seen as the projection/co-projection of the n
users and m items into a k0-dimensional latent space. These small rank matrices are learned such that
the product P0 ·Q0 is a good approximation of the ratings matrix E0 = R, that is

E0 ≈ Ê0 = P0 ·Q0 (1)

in the usual euclidean distance.
By subtracting the approximation performed by Ê0 to the original matrix R we can obtain a new

sparse matrix E1 that contains the prediction error

E1 = R− Ê0 = E0 − P0 ·Q0. (2)

Note that positive values in E1 denotes that the prediction is too low and must be increased and
negative values in E1 denotes that the prediction is too high and must be decreased. As we stated
before, the main contribution of the proposed method is its deep learning approach. This is achieved
by performing a new factorization to the E1 error matrix in such a way that

E1 ≈ Ê1 = P1 ·Q1. (3)

The matrices P1, Q1 have orders n × k1 and k1 × m for a certain number of latent factors k1.
Observe that we may take k1 6= k0 in order to get a different level of resolution in the factorization.

In the general case, if we computed s− 1 steps of the deep learning procedure, we compute the
s-th matrix of errors as

Es = Es−1 − Ês−1 = Es−1 − Ps−1 ·Qs−1, (4)



Appl. Sci. 2020, 10, 4926 5 of 14

and we look for a factorization into matrices Ps of order n × ks and Qs of order ks × m such that,
as much as possible in the euclidean norm,

Es ≈ Ês = Ps ·Qs. (5)

Once the deep factorization process ends after N steps, the original rating matrix R can be
reconstructed by adding the estimates of the errors as

R ≈ R̂ = Ê0 + E1 = Ê0 + Ê1 + E2 = . . . ≈ Ê0 + Ê1 + Ê2 + . . . + ÊN (6)

= P0 ·Q0 + P1 ·Q1 + · · ·+ PN ·QN =
N

∑
s=0

Ps ·Qs.

For any step s = 0, . . . , N, the factorization Es ≈ Ps · Qs is sought by the standard method of
minimizing the euclidean distance between Es and PsQs by gradient descent with regularization, as in
PMF [29]. In this way, if we write Es = (es

u,i), the rows of Ps are denoted by ps
1, ps

2, . . . , ps
n and the

columns of Qs are denoted by qs
1, qs

2, . . . , qs
m, the loss function is given by

F s(ps
u, qs

i ) = ||Es − Ps ·Qs||2 + λs

(
n

∑
u=1
||ps

u||2 +
m

∑
i=1
||qs

i ||2
)

(7)

= ∑
es

u,i 6=•

(
es

u,i − ps
u · qs

i
)2

+ λs

(
n

∑
u=1
||ps

u||2 +
m

∑
i=1
||qs

i ||2
)

,

where λs is the regularization hyper-parameter of the s-th step to avoid overfitting.
The previous loss function F can be derived with respect to ps

u and qs
i resulting the following

update rules for learning the model parameters

ps
u ← ps

u + γs ((es
u,i − ps

u · qs
i ) · qs

i − λs ps
u
)

, (8)

qs
i ← qs

i + γs ((es
u,i − ps

u · qs
i ) · ps

u − λsqs
i
)

,

where γs is the learning rate hyper-parameter of the s-th step to control the learning speed.
In this way, after finishing the nested factorization, the predicted ratings are collected in the matrix

R̂ = (R̂u,i), where the predicted rating of the user u to the item i is given by

R̂u,i =
N

∑
s=0

ps
u · qs

i . (9)

Note that the proposed method consists of successive repetitions of a MF process using the results
of the previous MF as input. Therefore, it is possible to make an algorithmic implementation of the
proposed method using a recursive approach. Algorithm 1 contains the pseudo-code of the recursive
implementation of DeepMF. The algorithm receives as input the E matrix, which contains either the
users’ ratings to the items (R = E0) for the first call or the errors of the previous factorization Es for the
successive ones. It also receives the model hyper-parameters: the number of latent factors on each step
(K), the number of iterations of the gradient descent optimization on each step (T), the learning rates
(Γ) and the regularizations (Λ).

Note that these hyper-parameters were stacked so that each of the factorizations performed uses
different hyper-parameters. The hyper-parameters of the first factorization will be placed at the top
of the stack, those of the second factorization in the next one and so on until the parameters of the
deeper factorization, which will be placed at the bottom of the stack. This allows us to define the
stopping criteria of the algorithm: as soon as a stack is empty the learning process will be finished.
Similarly, the output of the algorithm will be a stack containing the pairs 〈P, Q〉with the hidden factors
of each of the factorizations carried out.
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Algorithm 1: Pseudo-code of a recursive implementation of DeepMF.

Function deep_mf(E, K, T, Γ, Λ)):
Initialize P← U(0, 1) and Q← U(0, 1)
k, t, γ, λ← pop(K, T, Γ, Λ)

repeat
for each user u and item i in E such as eu,i 6= • do

for each factor f ∈ {1, . . . , k} do
error ← eu,i − Pu, f ·Qi, f

Pu, f ← Pu, f + γ
(

error ·Qi, f − λPu, f

)
Qi, f ← Qi, f + γ

(
error · Pu, f − λQi, f

)
end

end
until t iterations
if is_empty(K) then

return new stack(〈P, Q〉)
else

E′ = E− P ·Q
params_stack = deep_mf(E′, K, T, Γ, Λ);
return push(〈P, Q〉, params_stack)

end
End Function

Algorithm 1 needs to be run in a single thread since the update of the P matrix requires the Q
matrix and vice versa. However, this algorithm can easily be sped-up by using an Alternating Least
Squares (ALS) approach. Algorithm 2 contains a parrallel implementation of DeepMF using an ALS

approach. As can be observed, to perform a factorization, the matrices P and Q are updated t times
according to the loss function gradient. This update is performed in two steps: first, the values of the
Q matrix are fixed as constants allowing updating of the latent factors of each user (Pu) independently
from the latent factors of the rest of the users, thus, they can be updated in parallel for each user.
Second, the values of the P matrix are fixed as constants and the latent factors of each item Qi are
updated independently from the latent factors of the rest of the items, thus, they can be updated
in parallel for each item. Although this parallel implementation needs to go through the rating set
twice to update both the P and the Q matrices, its computation time is significantly less than that
of Algorithm 1 when more than 2 execution threads are available. For example, in a dataset with
1 million ratings, the total computation time of each iteration will be the time required to update the
Algorithm 2, the total computation time in a processor with 8 execution threads of each iteration will
be the time required to update the matrices P and Q 2 * 1 million / 8 threads = 250,000 times, a quarter of
the total computation time required by Algorithm 1.
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Algorithm 2: Pseudo-code of a parrallel recursive implementation of DeepMF using an ALS approach.

Function deep_mf(E, K, T, Γ, Λ)):
Initialize P← U(0, 1) and Q← U(0, 1)
k, t, γ, λ← pop(K, T, Γ, Λ)

repeat
/* This loop can be executed in parallel for each user */

1 for each user u in E do
2 for each item i rated by the user u (eu,i 6= •) do
3 for each factor f ∈ {1, . . . , k} do
4 error ← eu,i − Pu, f ·Qi, f

5 Pu, f ← Pu, f + γ
(

error ·Qi, f − λPu, f

)
6 end
7 end
8 end
9 /* This loop can be executed in parallel for each item */

10 for each item i in E do
11 for each user u who has rated the item i (eu,i 6= •) do
12 for each factor f ∈ {1, . . . , k} do
13 error ← eu,i − Pu, f ·Qi, f

14 Qi, f ← Qi, f + γ
(

error · Pu, f − λQi, f

)
15 end
16 end
17 end

until t iterations
if is_empty(K) then

return new stack(〈P, Q〉)
else

E′ = E− P ·Q
params_stack = deep_mf(E′, K, T, Γ, Λ);
return push(〈P, Q〉, params_stack)

end
End Function

3. Results

In this section we describe the empirical experiments designed to evaluate the performance of
the proposed method. According to the standard CF’s evaluation framework [32], the evaluation
of the quality of the predictions is carried out by measuring the Mean Absolute Error (MAE) of the
model output. The MAE is defined as average absolute difference between the actual ratings R and the
predicted ratings R̂ of the test split Rtest:

MAE =
1

#Rtest ∑
〈u,i〉∈Rtest

|Ru,i − R̂u,i|. (10)

Analogously, the quality of the top l recommendations is evaluated by the precision and recall
quality measures on the recommendation lists. Remark that, given an user u, his recommendation list
of l items, Ll

u, is the collection of the l items i1, . . . , il with R̂u,i1 , . . . , R̂u,il the highest l predicted ratings.
Now, we fix a parameter θ ≥ 0, which plays the role of a minimum threshold to discern whether

or not an item is of interest to the users. The precision is defined as the average proportion of successful
recommendations of the recommendation list:
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precision =
1

#Utest ∑
u∈Utest

{
i ∈ Ll

u|Ru,i ≥ θ
}

l
, (11)

where Utest is the collection of users in the test split.
In the same vein, the recall is defined as the averaged proportion of successful recommendations

included in the recommendation list with respect to the total number of test items the user u likes:

recall =
1

#Utest ∑
u∈Utest

{
i ∈ Ll

u|Ru,i ≥ θ
}

{
i ∈ Rtest

u |Ru,i ≥ θ
} , (12)

where Rtest
u is the collection of items in the test split at the u-th row of R.

The experimental evaluation has been carried out using MovieLens [33], FilmTrust [34] and
MyAnimeList [35] datasets. Table 1 contains their main parameters. To ensure the reproducibility of
these experiments, all of them have been run using the benchmark version of these datasets included
in Collaborative Filtering for Java (CF4J) [36].

Table 1. Main parameters of the datasets used in the experiments.

Dataset Number of Users Number of Items Number of Ratings Number of Test Ratings Possible Scores

MovieLens 100K 943 1682 92,026 7974 1 to 5 stars
MovieLens 1M 6040 3706 911,031 89,178 1 to 5 stars

FilmTrust 1508 2071 32,675 2819 0.5 to 4.0 with half increments
MyAnimeList 69,600 9927 5,788,207 549,027 1 to 10

The selection of the baselines has been done trying to pick a representative sample of the
existing MF models. A first approach, based on the deep nature of the proposed method, is to
focus on existing deep factorization models such as FAuST [25] and DNMF [27]. However recall that,
as stated in Section 1, these methods were designed for image processing, not for solving CF problems,
so a performance similar to other standard MF-based CF algorithms is not guaranteed. Trying to discern
whether these methods would be suitable for CF, we proposed a preliminary experiment for evaluating
the performance of FAuST against the MovieLens 100K dataset. To tune the hyper-parameters, a grid
search was conducted whose limits are as follows. It was searched for factorizations of the rating
matrix R into up to 4 smaller matrices, with 6 or 9 hidden factors for each level and a gradient descent
step size (learning rate) of γ = 0.0001 or 0.01. Notice that FAuST also allows you to impose a sparsity
constraint on each factor matrix. For this experiment, it was allowed a 0% of sparsity (i.e., fully
dense matrix with no restrictions) or a 20% of sparsity (that is, up to 80% of non-vanishing entries
are allowed). The best found model attained a MAE of 3.49262 with a factorization into 4 matrices,
all with 9 hidden factors, no sparsity constraints and a learning rate of γ = 0.01. This result is very
far from the current baselines reported in the literature, which are typically around 0.75 as we will
see below, showing that the existing deep methods are unsuitable as RSs. In is worthy to mention
that, although FAuST with no sparsity constraints is very similar to the usual PMF [29] algorithm,
it looks for a factorization into normalized matrices with Frobenius norm 1. This normalization seems
to be crucial for the bad performance of FAuST as RS: this restriction might be very useful for image
processing and memory saving problems which are the usual applications of FAuST, but it seems to be
very ill-posed for regression problems.

Due to the failure of this method as RS, it was decided to pull apart the existing deep factorization
methods, designed specifically for image processing, and to choose the competing baselines from the
most popular MF-based CF methods, namely PMF [29], NMF [30] and SVD++ [31].

These baselines contain several hyper-parameters that must be tuned in order to improve their
performance on the selected datasets. The optimal configuration of the hyper-parameters of each
baseline has been found by a grid search optimization. All combinations resulting from evaluating
a wide range of values for each hyper-parameter have been evaluated, and the combination returning
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the least MAE on the predictions of the test split has been selected as the most suitable for each baseline
and data set. Table 2 contains the resulting hyper-parameters of this optimization process. Recall that
k denotes the number of hidden factors in the factorization, γ is the learning rate of the associated
gradient descent optimization and λ is the regularization hyper-parameter.

Table 2. Best hyper-parameters for each baseline found by a grid search optimization.

Dataset PMF NMF SVD++

MovieLens 100K k = 2, γ = 0.01, λ = 0.025 k = 2 k = 2, γ = 0.0014, λ = 0.08
MovieLens 1M k = 8, γ = 0.01, λ = 0.045 k = 2 k = 4, γ = 0.0014, λ = 0.05

FilmTrust k = 4, γ = 0.015, λ = 0.1 k = 2 k = 2, γ = 0.0014, λ = 0.1
MyAnimeList k = 10, γ = 0.005, λ = 0.085 k = 2 k = 4, γ = 0.0014, λ = 0.02

Analogously, DeepMF also contains several hyper-parameters needed to fit the model to an specific
dataset. As with the baselines, we performed a grid search optimization in order to obtain the
combination of parameters that minimizes the prediction error (MAE) in the test split. In this case,
the recursive nature of the proposed method causes that the number of hyper-parameter combinations
to be evaluated grows exponentially.

To deal with this combinatorial explosion, we evaluated with depths from 1 to 4, i.e., performing
1 to 4 deep factorizations. Each of this factorizations has been evaluated varying the number of latent
factors k ∈ {3, 6, 9}, the learning rate γ ∈ {0.01, 0.1} and the regularization λ ∈ {0.01, 0.1}. The number
of iterations has been fixed to T = [50, 50, . . . , 50] for all factorizations. In total, 22,620 combinations of
hyper-parameters has been evaluated for each dataset. Table 3 contains the top five results returned
by the grid search optimization. Note that hyper-parameters has been named as in Algorithm 1 to
facilitate their interpretation.

Table 3. Top 5 results resulting from grid search optimization of DeepMF.

Dataset Rank Hyper-Parameters MAE

MovieLens 100K

1 K = [3, 3, 3, 3]; Γ= [0.01, 0.1, 0.01, 0.1]; Λ = [0.1, 0.01, 0.1, 0.01] 0.75017
2 K = [3, 3, 3, 9]; Γ= [0.01, 0.1, 0.01, 0.1]; Λ = [0.1, 0.01, 0.1, 0.01] 0.75077
3 K = [3, 6, 6, 3]; Γ= [0.01, 0.1, 0.01, 0.1]; Λ = [0.1, 0.01, 0.1, 0.01] 0.75079
4 K = [3, 3, 3]; Γ= [0.01, 0.1, 0.01]; Λ = [0.1, 0.01, 0.1] 0.75092
5 K = [3, 3, 9, 9]; Γ= [0.01, 0.1, 0.01, 0.1]; Λ = [0.1, 0.01, 0.1, 0.01] 0.75105

MovieLens 1M

1 K = [9, 3, 3]; Γ= [0.01, 0.01, 0.01]; Λ = [0.1, 0.01, 0.1] 0.70943
2 K = [9, 3, 9, 3]; Γ= [0.01, 0.01, 0.01, 0.1]; Λ = [0.1, 0.01, 0.1, 0.01] 0.70948
3 K = [9, 3, 9]; Γ= [0.01, 0.01, 0.01]; Λ = [0.1, 0.01, 0.1] 0.70949
4 K = [9, 3, 3, 9]; Γ= [0.01, 0.01, 0.01, 0.1]; Λ = [0.1, 0.01, 0.1, 0.01] 0.70956
5 K = [9, 3, 3, 3]; Γ= [0.01, 0.01, 0.01, 0.1]; Λ = [0.1, 0.01, 0.1, 0.01] 0.70959

FilmTrust

1 K = [6, 6, 3]; Γ= [0.01, 0.1, 0.01]; Λ = [0.1, 0.01, 0.01] 0.64936
2 K = [6, 6, 3]; Γ= [0.01, 0.1, 0.01]; Λ = [0.1, 0.01, 0.1] 0.64987
3 K = [6, 3, 6]; Γ= [0.01, 0.1, 0.01]; Λ = [0.1, 0.01, 0.1] 0.65072
4 K = [9, 3, 3]; Γ= [0.01, 0.1, 0.01]; Λ = [0.1, 0.01, 0.1] 0.65088
5 K = [6, 6]; Γ= [0.01, 0.01]; Λ = [0.1, 0.01] 0.65102

MyAnimeList

1 K = [9, 6, 9, 6]; Γ= [0.01, 0.1, 0.01, 0.1]; Λ = [0.1, 0.01, 0.1, 0.01] 0.97447
2 K = [9, 9, 6, 9]; Γ= [0.01, 0.1, 0.01, 0.1]; Λ = [0.1, 0.01, 0.1, 0.01] 0.97452
3 K = [9, 6, 6, 6]; Γ= [0.01, 0.1, 0.01, 0.1]; Λ = [0.1, 0.01, 0.1, 0.01] 0.97454
4 K = [9, 6, 6, 9]; Γ= [0.01, 0.1, 0.01, 0.1]; Λ = [0.1, 0.01, 0.1, 0.01] 0.97454
5 K = [9, 9, 9, 6]; Γ= [0.01, 0.1, 0.01, 0.1]; Λ = [0.1, 0.01, 0.1, 0.01] 0.97458

Once all the evaluated models have been set up, the best tuned models can be compared to
measure the prediction and recommendation improvement of DeepMF with respect to the selected
baselines. Table 4 contains the MAE of the predictions performed by all the evaluated models. We can
observe that the proposed model DeepMF significantly improves the accuracy of predictions with
respect to other models in MovieLens 100K, MovieLens 1M and FilmTrust datasets. Similarly, in the
MyAnimeList dataset, DeepMF substantially improves PMF and NMF baselines and achieves a slightly
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worse MAE than SVD++. Observe that this later underperformance might be due to the fact that
MyAnimeList is significantly larger than any other dataset, so deeper models of DeepMF would be
needed in order the exploit the recursive nature of the proposed method that fit the dataset better
than SVD++.

Table 4. Quality of the predictions measured by the MAE. The lower the better. In bold the best
recommendation model for each dataset.

Dataset DeepMF PMF NMF SVD++

MovieLens 100K 0.75017 0.76720 0.79138 0.78170
MovieLens 1M 0.70943 0.71868 0.75166 0.74285

FilmTrust 0.64936 0.84659 0.82911 0.65748
MyAnimeList 0.97447 1.10006 1.12025 0.95179

Figure 2 contains the precision and recall of the recommendations when varying the number of
desired top recommendations from l = 1 to l = 10 items. The threshold θ for precision and recall has
been set to θ = 4 for MovieLens datasets, θ = 3.5 for FilmTrust dataset and θ = 7 for MyAnimeList
dataset. We can observe that in all evaluated datasets the proposed method DeepMF provides the best
balance between the precision and recall quality measures for any number of recommendations.

(a) MovieLens 100K (b) MovieLens 1M

(c) FilmTrust (d) MyAnimeList
Figure 2. Quality of the recommendations measured by precision and recall. The higher the better.
Blue number over the lines represents the size of the recommendation list for each value.

All experiments conducted in this article are committed to reproducible science. The full code of
these experiments is available at https://github.com/ferortega/deep-matrix-factorization.

https://github.com/ferortega/deep-matrix-factorization
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4. Discussion

In this paper, we presented DeepMF, a novel MF-based CF algorithm using a DL approach. As stated
in Section 1 the DL is an incipient approach in the ML field that consists of a hierarchical self-training
method that uses the information acquired from data. Although DL has been used mainly in artificial
neural networks, the proposed model breaks this tendency by applying the foundations of DL to the
field of MF.

The essence of the proposed method lies in the DL approach. Our model performs successive
matrix factorizations in order to successively refine the model output. Thus, the first factorization,
the least deep one, represents the classic approach of MF-based CF models and seeks to predict the
score that a user will give to an item. The second factorization seeks to refine the previous prediction
by trying to increase the predictions that tend to be lower than the real rating and decrease those that
tend to be higher. Subsequently, the learning is deepened by correcting the errors of the errors to build
a DL model that converges towards a prediction as close as possible to the real value to be learned.

This expected behavior is corroborated by the results of the experiment shown in Figure 3.
On it, we plot the average value of the predictions provided by each factorization layer according
to its depth. The same decreasing trend in the average prediction is observed in all the analyzed
datasets: as factorization is deeper, errors to be refined tend to zero and the learning process converges.
The Figure 3 includes the top 5 combinations of hyper-parameters obtained in the grid search shown
in Table 3. Note that a logarithmic scale has been used on the y-axis to emphasize the differences in the
deeper factorizations.

(a) MovieLens 100K (b) MovieLens 1M

(c) FilmTrust (d) MyAnimeList
Figure 3. Average value of the predictions provided by each factorization according to its depth. Top 5
combinations of hyper-parameters for each dataset included in Table 3 are shown.
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The hypothesis of this contribution was that a DL approach applied to a MF-based CF can improve
the quality of both predictions and recommendations. This hypothesis has been confirmed with
the experimental results showed in Section 3. The quality of the predictions (see Table 4) and
recommendations (see Figure 2) of the proposed method, DeepMF, exceeds the baselines used in
the 3 datasets analyzed: MovieLens 100K, MovieLens 1M and FilmTrust.

Summarizing, the proposed model in this paper expands the landscape of matrix factorization
models by importing a Deep Learning approach from the field of neural computing. From this
point, several future research lines open. Maybe, the most obvious one would be to analyze the
DL approach performed in this paper with other matrix factorization models and to define different
loss functions depending on the depth of factorization. For example, experimental results show that
SVD++ factorization works properly on MyAnimeList dataset, so it would be interesting to evaluate
the performance of DeepMF using SVD++ as the initial factorization and other factorizations models for
the deeper factorizations.

A more ambitious prospective work would be transferring the ideas of this paper to a purely
bioinspired framework. For instance, it can be studied the incorporation of DeepMF as a model to
be implemented by the neurons of a fully connected or convolutional neural network. In this way,
the knowledge of the scientific community about network architectures can be applied to give rise to
deeper an more involved nested patterns of matrix factorizations.
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