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Defective NADPH production in mitochondrial
disease complex I causes inflammation and cell
death
Eduardo Balsa1,2,4, Elizabeth A. Perry1,2, Christopher F. Bennett1,2, Mark Jedrychowski2, Steven P. Gygi2,

John G. Doench 3 & Pere Puigserver1,2,3✉

Electron transport chain (ETC) defects occurring from mitochondrial disease mutations

compromise ATP synthesis and render cells vulnerable to nutrient and oxidative stress

conditions. This bioenergetic failure is thought to underlie pathologies associated with

mitochondrial diseases. However, the precise metabolic processes resulting from a defective

mitochondrial ETC that compromise cell viability under stress conditions are not entirely

understood. We design a whole genome gain-of-function CRISPR activation screen using

human mitochondrial disease complex I (CI) mutant cells to identify genes whose increased

function rescue glucose restriction-induced cell death. The top hit of the screen is the

cytosolic Malic Enzyme (ME1), that is sufficient to enable survival and proliferation of CI

mutant cells under nutrient stress conditions. Unexpectedly, this metabolic rescue is inde-

pendent of increased ATP synthesis through glycolysis or oxidative phosphorylation, but

dependent on ME1-produced NADPH and glutathione (GSH). Survival upon nutrient stress or

pentose phosphate pathway (PPP) inhibition depends on compensatory NADPH production

through the mitochondrial one-carbon metabolism that is severely compromised in CI mutant

cells. Importantly, this defective CI-dependent decrease in mitochondrial NADPH production

pathway or genetic ablation of SHMT2 causes strong increases in inflammatory cytokine

signatures associated with redox dependent induction of ASK1 and activation of stress

kinases p38 and JNK. These studies find that a major defect of CI deficiencies is decreased

mitochondrial one-carbon NADPH production that is associated with increased inflammation

and cell death.
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M itochondrial oxidative phosphorylation (OXPHOS)
synthesizes ATP to maintain cellular bioenergetics,
particularly under restricted glycolysis or increased

energetic demand1,2. Electron transport chain (ETC) defects
occurring from mitochondrial disease mutations compromise cell
viability causing diverse pathologies like neurodegeneration,
myopathies, optic atrophy, or deafness3–6. However, the precise
metabolic processes altered by a defective mitochondrial ETC that
drive these fatal disorders are not entirely understood. In addition
to ATP synthesis, mitochondria provide a wide range of critical
metabolic-dependent functions that include cellular redox bal-
ance, calcium homeostasis, inflammatory signals, and apoptosis7.
Furthermore, complex I (CI)-driven reoxidation of NADH to
NAD+ is a critical ETC function that will unbalance metabolic
processes through alterations in mitochondrial NAD+/NADH
ratios. Interestingly, interventions aimed to correct these ratios
such as boosting NAD+ levels have proven to be beneficial in
diseases associated with mitochondrial dysfunction8,9. In this
redox balance, the mitochondrial matrix harbors the one-carbon
metabolism pathway that, similar to the cytosolic, consumes
serine and tetrahydrofolate through a series of redox reactions
and produces formate, which upon export into the cytosol feeds
into the pathway for purine and methyl group biosynthesis10.
Mitochondrial one-carbon metabolism produces cellular NADPH
which is coupled to the ALDH1L2 enzymatic activity11. Inter-
estingly, increased levels of mitochondrial one-carbon metabo-
lism enzymes have been found in different models of disrupted
ETC whose expression is regulated by the activating transcription
factor 4 (ATF4)12,13.

The design of cell-based assays to screen for genes that rescue
detrimental phenotypes associated with ETC inhibition has been
particularly challenging. This difficulty stems from the highly
glycolytic metabolic signature that most of the cell lines exhibit in
culture conditions. As a consequence, defects in OXPHOS are
well tolerated and masked by glycolytic ATP production2. To
overcome this difficulty, we have recently designed cell-based
screening platforms culturing OXPHOS-deficient cells in galac-
tose media14. Upon these nutrient stress conditions, cells are
forced to fully rely on mitochondrial oxidative metabolism for
survival15. In this study, we employ a genome-wide clustered
regularly interspaced short palindromic repeat (CRISPR)/Cas9
activator library to identify genes that could prevent cell death of
CI mutant cells cultured in galactose. One of the top positive hits
is the cytosolic malic enzyme 1 (ME1) that enables survival and
proliferation of CI-deficient cells under nutrient stress conditions.
We find that ME1-mediated survival is not dependent on
increasing ATP levels but rather on restoring defective NADPH
production. Wild-type (WT), but not CI mutant, cells increase
mitochondrial one-carbon metabolism in galactose conditions to
compensate for the decreased pentose phosphate pathway (PPP)-
dependent NADPH production. As a consequence, CI mutant
cells exhibit decreased levels of NADPH and glutathione (GSH),
with a concomitant increase in oxidative stress that leads to
inflammation and cell death. These results show an unanticipated
metabolic mechanism whereby ETC function is linked to
NADPH homeostasis and protects against oxidative stress and
inflammation, particularly under nutrient stress conditions.

Results
Gain-of-function CRISPR/Cas9 screen identifies ME1. Mito-
chondrial mutations in genes encoding for OXPHOS components
reduce cellular fitness, including survival, which is exacerbated
under stress conditions16,17. However, the metabolic processes
that directly cause cellular damage and pathologies in human
mitochondrial disease mutations are not entirely understood. To

gain new insights into this metabolic problem, we designed a
gain-of-function whole-genome CRISPR-based positive screen to
identify genes whose increased expression protected human
mitochondrial disease CI mutant ND1 (3796A>G) cybrid cells
from galactose-induced cell death. We employed a validated
pooled lentiviral single guide RNA (sgRNA) library targeting the
promoter of 18,675 genes in the human genome18. Each gene
activated by this library is targeted by 3–6 guides (sgRNAs) that
are split among two half-libraries. ND1 mutant cells, stably
expressing a nuclease-deactivated Cas9 (dCas9) fused to a tran-
scriptional activator domain (VP64), were infected with lentiviral
libraries and selected for 1 week. Cells were then challenged for
two rounds of galactose before surviving cells were collected for
sequencing (Fig. 1a). For each gene, we calculated log2 fold
change values in the abundance of the sgRNAs targeting the gene.
As expected, most genes, as well as the control sgRNAs, scored
negative with just a few genes scoring double positive in both
library replicate sets (Fig. 1b). The inability of OXPHOS-deficient
cells to survive under galactose has been attributed to the slow
enzymatic conversion of galactose into glucose and limiting
glycolytic-dependent ATP production19. The fact that galactose-
1-phosphate uridyl transferase was one of the top hits indicates
that this enzymatic reaction is a limiting step process and further
validated the whole-genome screen platform (Fig. 1b). Interest-
ingly, BCL-2 family members were among the strongest hits,
revealing that apoptosis is the cell death mechanism under these
nutrient stress conditions. ME1, an enzyme that catalyzes the
reversible oxidative decarboxylation of malate to pyruvate, was
the best scoring gene when ranked by significance (Fig. 1c).
Further validation using two independent guides confirmed that
ND1 cells were able to survive and proliferate in galactose con-
ditions after ME1 induction (Fig. 1d, e). ME1-induced resistance
occurred in the absence of pyruvate suggesting that the enzymatic
reaction favors the conversion of malate into pyruvate with
concomitant production of NADPH (Fig. 1f, g). A similar phe-
notype was observed in CI-deficient cells with a pathological
mutation in ND6 (14459G>A) (Supplementary Fig. 1a–c) and in
multiple cell lines when CI was inhibited pharmacologically
(Supplementary Fig. 1d). Conversely, ME1 ablation sensitized
WT cybrid cells to galactose-induced cell death (Supplementary
Fig. 1e). Of note, ME1 rescued CI-deficient cells without
increasing mitochondrial respiration or ETC components (Sup-
plementary Fig. 1f–h).

ME1 favors reductive carboxylation of glutamine. Next, we
investigated how ME1 rewired substrate utilization. When glu-
cose is limiting, glutamine becomes the primary substrate to
support the mitochondrial tricarboxylic acid (TCA) cycle, and
increased glutamine utilization is a metabolic hallmark of cells
with ETC dysfunction20,21. Malate, the substrate of the ME1, can
be generated by glutamine through the oxidative pathway or
reductive carboxylation of glutamine-derived α-ketoglutarate (α-
KG) (Fig. 2a). To determine how ME1 controls glutamine utili-
zation, sgNeg and sgME1 ND1 mutant cells were incubated for 3
h in galactose media supplemented with 13C-labeled ([U-13C5])
glutamine. Nearly 78% of the glutamine-derived malate was
already labeled after 3 h (Fig. 2b). ME1 overexpression increased
malate formation from glutamine-reductive metabolism (M+ 3)
by 17% while decreasing malate M+ 4 and overall oxidation of
glutamine by 19% (Fig. 2c–e). Increasing supplementation of
malate, however, did not result in cell survival rescue suggesting
that protein levels or activity of the enzyme rather than substrate
availability underlie these beneficial effects (Fig. 2f). These results
suggest that increased ME1 expression in glucose-restricted CI
mutant cells promoted glutamine flux through the mitochondrial/
cytoplasmic reductive pathway.
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Impaired NADPH and GSH levels in mitochondrial mutant
cells lead to oxidative stress. Since ME1 is a NADPH-generating
enzyme22, we sought to determine whether NADPH levels were
linked to survival in ND1 cells cultured in glucose-restricted
conditions. NADPH levels as well as NADPH/NADP+ ratios
were markedly reduced in ND1 mutant cells and were restored by
ME1 overexpression (Fig. 3a, b). Reduced NADPH translated into
lower GSH levels and significant increases in oxidative stress that
was ameliorated by ME1 overexpression (Fig. 3c, d). To assess
whether antioxidants promoted cell survival, ND1 mutant cells
were supplemented with GSH, N-acetyl cysteine (NAC), or
MitoQ. Both GSH and its precursor NAC were able to rescue cell

death although only GSH displayed a robust and long-lasting
effect (Fig. 3e, f). Surprisingly, MitoQ, which specifically buffers
mitochondrial-generated reactive oxygen species (ROS)23, did not
rescue cell survival (Fig. 3e), suggesting that cytosolic oxidative
stress rather than mitochondrial-produced ROS might initiate cell
death. The PPP represents an important source of cytosolic
NADPH24. We then tested whether pharmacological PPP inhi-
bition might recapitulate the phenotypes observed in galactose-
grown cells that exhibit reduced PPP activity. Notably, ND1
mutant, but not WT cells, had increased oxidative stress and cell
death after pharmacological PPP inhibition that is ameliorated
when ME1 is expressed (Fig. 3g–i). Consistent with ME1-
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dependent cell survival, GSH treatment protected against PPP
inhibition-mediated cell death in different cell lines with severe
ETC defects (Supplementary Fig. 2a). These results indicate that
CI inhibition under nutrient stress, similar to PPP reduction,
decreases NADPH levels and causes oxidative stress-dependent
cell death that can be rescued by cytosolic ME1 or exogenous
supplementation of GSH.

OXPHOS dysfunction impairs one-carbon metabolism and
sensitizes CI mutant cells to oxidative stress. To address the

cause of the different sensitivities to nutrient stress-induced cell
death between WT and ND1 mutant cells, we performed meta-
bolomic analysis. Whereas both cell types exhibited similar
decreases in glycolytic and PPP intermediates in galactose con-
ditions (Supplementary Fig. 2b), WT cells were protected from
NADPH and GSH depletion at subsequent cell death. To identify
the metabolic pathways that maintain NADPH and GSH levels
during these nutrient stress conditions in WT cells, we surveyed
for metabolites that were differentially regulated between WT
versus ND1 mutant cells in galactose conditions. We identified
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decreases in serine and 5,10-methylenetetrahydrofolate in
WT cells, whereas these metabolites accumulated in ND1
mutants (Fig. 4a). This suggested that one-carbon metabolism is
compromised in cells with impaired ETC function. In-depth
proteomic analysis of WT cells under galactose conditions
revealed significant increases in protein components of mito-
chondrial one-carbon metabolism and serine biosynthesis
(Fig. 4b). To directly assess the activity of this pathway, we
measured formate production in isolated mitochondria that were

incubated with serine and ADP+ Pi to stimulate respiration.
Notably, pharmacological inhibition of CI in WT or ND1 mutant
cells showed a strong reduction in serine-derived formate levels,
comparable to SHMT2 CRISPR-depleted cells (Fig. 4c) revealing
that mitochondrial one-carbon activity is linked to ETC function.
One of the potential mechanisms whereby mitochondrial one-
carbon metabolism might be deficient is the fact that MTHFD2/L
uses NAD+ and therefore could be sensitive to a reduced NAD+/
NADH ratio from CI inhibition. To test this, we took advantage
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of the NADH oxidase from Lactobacillus brevis (LbNOX), which
has been shown to regenerate NAD+ in cells with disrupted ETC
by selectively consuming NADH8. Consistent with an imbalanced
NAD+/NADH ratio constraining the flux of mitochondrial one-
carbon metabolism, mitochondrial-targeted LbNOX was able to
restore serine-derived formate in ND1 mutant cells (Supple-
mentary Fig. 2c). One-carbon metabolism occurs both in the

cytoplasm and the mitochondria, with parallel reactions taking
place in a highly compartmentalized manner10,25. We observed
that suppression of mitochondrial (SHMT2 CRISPR cells), but
not cytosolic (SHMT1 CRISPR cells) one-carbon metabolism,
sensitized WT cells, similar to CI-defective cells, to galactose or
PPP inhibition-mediated cell death (Fig. 4d and Supplementary
Fig. 2d–f). Increased ME1 expression or GSH supplementation
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rescued the cell death phenotype in SHMT2 CRISPR cells (Fig. 4e
and Supplementary Fig. 2g). Loss of SHMT2 has been shown to
reduce mitochondrial protein translation due to depletion of
formylmethionyl-tRNAs26. Indeed, SHMT2 knockout (KO) cells
displayed reduced respiration and decreased levels of MT-COI, a
mitochondrial encoded protein. Addition of exogenous formate
to cell culture media restored defects in mitochondrial respiration
and mitochondrially encoded protein MT-COI (Fig. 4f and
Supplementary Fig. 2h). However, formate was not sufficient to
prevent cell death in SHMT2-deficient cells (Fig. 4g) suggesting
that increased energetics is insufficient to rescue cell death under
these conditions. The one-carbon metabolism enzyme ALDH1L2
is one of the main contributors to mitochondrial NADPH pro-
duction27. Notably, this enzyme was highly upregulated in
galactose conditions when analyzed by mass spectrometry pro-
teomics and western blot analysis (Fig. 4b and Supplementary
Fig. 3a). In fact, ALDH1L2 depletion rendered WT cells sensitive
to cell death after glucose removal, which was rescued by GSH
supplementation (Fig. 4h and Supplementary Fig. 3b). Because
ALDH1L2 enzymatic reaction produces equimolar levels of CO2

and NADPH, we measured serine-derived CO2 as a reliable
indicator of mitochondrial NADPH production. In agreement
with formate assays, isolated mitochondria from ND1 cells
incubated with [3-14C] serine displayed reduced serine C3-
derived CO2 production, similar to ALDH1L2 KO cells. More-
over, ND1 mitochondria, in contrast to WT, failed to increase
CO2 production under galactose conditions, indicating that ETC
failures impair one-carbon oxidation and NADPH production
(Fig. 4i). Taken together, these results suggest that, under nutrient
conditions that limit glucose availability, increased serine-driven
mitochondrial one-carbon metabolism flux is preferentially
channeled toward NADPH production for reductive/oxidative
balance rather than preserving carbon blocks for nucleotide
synthesis and proliferation (Fig. 4j). Thus, in cells with impaired
mitochondrial one-carbon metabolism, similar to CI mutant cells,
increased cytosolic oxidative stress causes cell death.

NADPH is a compartmentalized molecule unable to freely
diffuse through lipid membranes. Therefore, one of the questions
is how WT cells under glucose-restricted conditions are able to
transfer mitochondrial-produced NADPH to the cytosol, a
process that is impaired in CI mutant cells. Within the TCA
cycle, NADPH can be used as a cofactor for the mitochondrial
NADP+-dependent isocitrate dehydrogenase 2 (IDH2) to
reductively carboxylate α-KG to isocitrate, which in turn can be
converted to citrate and be exported to cytosol. Cytosolic
isocitrate can then be oxidatively decarboxylated by cytosolic
NADP+-dependent IDH1, producing cytosolic NADPH to fuel
reduction of glutathione disulfide. Interestingly, we observed that
IDH1, and to a lower extent IDH2, were markedly upregulated

upon galactose treatment in our proteomic analysis and verified
by western blot (Supplementary Fig. 3c). Genetic ablation of
IDH1 sensitized WT cells to galactose media and was rescued by
GSH supplementation (Supplementary Fig. 3d). Furthermore, we
observed similar galactose cell-death sensitivity when IDH1-
R132H and IDH2-R172K mutant forms were overexpressed in
WT cells. These mutations change the function of the enzymes,
causing them to produce 2-hydroxyglutarate at the expense of
consuming NADPH during the process, thus creating a futile
cycle where WT-IDH1/2-produced NADPH is downstream
exhausted by mutant IDH1/2 (Supplementary Fig. 3e). This
indicates that, in WT cells, but not in CI mutant cells, the
mitochondrial NADPH shuttle system involving IDHs IDH2 and
IDH1 could be responsible for transferring reducing equivalents
from the mitochondria to the cytosol (Supplementary Fig. 3f),
thus providing additional reducing power and alleviating
cytosolic oxidative stress in conditions of diminished PPP
activity.

Oxidative stress in mitochondrial CI and one-carbon meta-
bolism-deficient cells underlies inflammation in vitro and
in vivo. To gain more mechanistic insights into the unbalanced
reductive/oxidation processes that cause cell death, we further
analyzed the positive hits from the CRISPR screen in CI mutant
cells (Fig. 1c) to identify genes involved in oxidative stress.
Among these hits, peroxiredoxin 1 (PRDX1), a member of the
peroxiredoxin family of antioxidant enzymes, was found as a
positive hit and its overexpression mildly increased survival in
ND1 mutant cells (Supplementary Fig. 4a). PRDX1 has been
found to interact and participate in the activation of the apoptosis
signaling kinase 1 (ASK1), a redox-sensitive kinase that mediates
cell stress signaling through downstream phosphorylation of
mitogen-activated protein kinases (MAPKs) p38 and c-Jun N-
terminal kinase (JNK)28. Consistent with this finding, galactose
treatment or PPP inhibition activated this signaling cascade in
ND1 mutant cells but not in WT counterparts (Fig. 5a, b). In
addition, activation of this kinase stress signaling module in ND1
mutant cells, but not in WT, strongly induced a pro-
inflammatory gene expression signature including cytokines
(Fig. 5c, d). Remarkably, ameliorating oxidative stress either by
increased NADPH production through ME1 overexpression
(Fig. 5c, d) or GSH treatment (Supplementary Fig. 4b, c) strongly
suppressed this inflammatory response. Moreover, and in align-
ment with the cell death results (Fig. 4d), SHMT2 CRISPR cells,
defective in mitochondrial one-carbon metabolism, also showed
significant activation of the same inflammatory markers (Sup-
plementary Fig. 4d). These results indicate that NADPH defi-
ciency triggered by CI-dependent inhibition of mitochondrial
one-carbon metabolism causes inflammatory gene signature.

Fig. 4 Mitochondrial one-carbon metabolism is linked to functional ETC activity. a Relative levels of intracellular serine and 5,10-methylenetetrahydrofolate
(5,10-meTHF) in WT and ND1 mutant cells cultured either in glucose or galactose for 24 h and analyzed by LC-MS (n= 3). b Proteomics heatmap in WT cells
exhibiting relative expression (log2 fold change) of proteins differentially regulated under 48 h galactose. c Measurement of formate production from
serine using isolated mitochondria from WT, ND1, or SHMT2Δ cells (n= 4). d Cell number of WT, SHMT1Δ, and SHMT2Δ cell culture in galactose for
96 h (n= 3). eME1 overexpression and 2mM GSH supplementation rescues cell survival in galactose-grown SHMT2Δ cells (n= 3). f Seahorse analysis in
WT sgNeg and SHMT2Δ in the absence or presence of 1 mM formate (n= 5). g GSH but not formate rescued cell survival in SHMT2Δ cells (n= 3). h GSH
rescued cell number in ALDH1L2Δ cells cultured in galactose (n= 3). i ALDH1L2 converts 10-formyltetrahydrofolate to tetrahydrofolate and carbon dioxide
in an NADP+-dependent reaction. ND1 cells display decreased serine-derived CO2 release compared to WT cells. ALDH1L2Δ cells were used as positive
control (left panel). Galactose stimulated serine-derived CO2 release in WT cells but not in CI-deficient ND1 mutant cells (right panel) (n= 3). j Model
illustrating the dependency of mitochondrial one-carbon metabolism on ETC function for NADPH production and how upregulation of ALDH1L2 stimulates
NAPDH production in glucose-free conditions. Immunoblots shown are representative of >3 independent experiments, and all other experiments are
represented as means ± SEM, n > 3 biological replicates. Asterisks denote *p < 0.05, **p < 0.01, or ***p < 0.001. Paired two-tailed Student’s t test in a and
two-way ANOVA in c–j. Gluc glucose, Galac galactose, ser serine, Gly glycine, THF tetrahydrofolate, Pir Piericidin, Oligo oligomycin, Rot rotenone, Ant
antimycin A. EV denotes empty vector. Red dashed lines indicate initial seeding density.
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Next, we determined whether the unbalanced reductive/
oxidative metabolism and inflammatory response observed in
mitochondrial mutant cells also occurred in vivo. We conducted
metabolomic analysis using the brains of Ndufs4 KO mice, a
model of CI deficiency that develops a fatal neuropathy and
recapitulates human Leigh syndrome3,29. Consistent with our
results in vitro, brain metabolomic analysis of Ndufs4 KO mice
exhibited significant decrease in NADPH and GSH with apparent

normal levels of ATP (Fig. 5e and Supplementary Fig. 4e). This
metabolic signature correlated with activation of JNK pathway
and increased expression of inflammatory markers (Fig. 5f, g). In
addition, isolated brain mitochondria from Ndufs4 KO mice also
exhibited a significant reduction in serine-driven mitochondrial
one-carbon metabolism that is in alignment with decreased
NADPH levels (Fig. 5h). These results indicate that a major
metabolic defect in human CI disease mutations is an impairment
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in mitochondrial-dependent NADPH production that causes
inflammation and cell death, without declines in energetics linked
to ATP.

Together, these studies show that unbalanced cytosolic
reduction/oxidation caused by NADPH deficiency, but not by
mitochondrial ROS, underlies the inflammatory and cell death
phenotypes caused by nutrient or oxidative stress in mitochon-
drial disease CI mutations.

Discussion
Recent studies have failed to identify cytosolic NADPH producers
beyond PPP, ME1, and IDH124, concluding that these metabolic
pathways constitute the three pillars that sustain NADPH
homeostasis. Here we report that limited glucose availability
suppresses PPP activity, which render cells completely dependent
on ME1 and IDH1 for NADPH production. Under these stress
conditions, cells adapt by increasing serine catabolism through
the mitochondrial one-carbon metabolism to generate NADPH.
Our results suggest that mitochondrial-produced NADPH can be
transferred to the cytosol via IDH2/IDH1 shuttle, thus estab-
lishing a functional link between one-carbon metabolism and the
IDH isoforms (also upregulated in glucose-free conditions). CI
dysfunction, by compromising one-carbon metabolism, virtually
impairs IDH1’s ability to extract reducing power from the
mitochondria, under nutrient stress conditions, which ultimately
leads to exacerbated oxidative stress and cell death. Under these
conditions, we found that augmenting ME1 activity was able to
compensate for this detrimental loss in NADPH and restore
redox homeostasis, promoting cell survival and alleviating an
inflammatory phenotype (Fig. 6). We predict that, in the back-
ground of mitochondrial dysfunction, cells and tissues with less
capacity to compensate via upregulation of PPP or ME1 would be
more susceptible to oxidative stress and cellular deterioration.

Interestingly, cell proliferation upon ETC inhibition has been
linked to GOT1/2-dependent aspartate activity that increases
nucleotide synthesis30,31, highlighting the importance of func-
tional ETC in cellular processes beyond ATP production to
maintain cell fitness and growth. ETC inhibition impairs NADPH
production from mitochondrial one-carbon metabolism, which
relies on functional CI activity. This pathway is essential for cell
viability in conditions of nutrient stress such as glucose depri-
vation or decreased PPP activity that lower cellular NADPH.
Notably, we show that cells harboring mitochondrial CI disease
mutations, similar to deficiencies in mitochondrial one-carbon
metabolism, are vulnerable to PPP inhibition. Interestingly,
mutations that produce glucose-6-phosphate dehydrogenase
(G6PD) deficiency in humans result in hemolytic anemia32. Even
though this enzyme is active in virtually all types of cells, its
deficiency specifically damages erythrocytes, literally the only cell
in the body that does not contain mitochondria33. Based on our
studies, it is conceivable that G6PD deficiency will sensitize cells
with mitochondrial disease mutations or to insults that impair
ETC activity.

Serine synthesis and mitochondrial one-carbon metabolism
genes are ATF4 transcription factor targets that are increased in
mitochondrial dysfunction mouse models, suggesting an attempt
to normalize this inhibited pathway that maintains NADPH
balance12,34. Our results suggest that functional restoration of
mitochondrial one-carbon metabolism in diseases associated with
ETC dysfunction might be a potential therapeutic target main-
taining NADPH levels, especially under oxidative stress condi-
tions. For example, serine fluxes through mitochondrial one-
carbon metabolism are controlled through the NAD+/NADH
ratio that depends on CI activity35. Consistent with this, oral
administration of nicotinamide riboside, a vitamin B3 and NAD+

precursor, prevents development and progression of mitochon-
drial myopathy in mice9. Along these lines, overexpressing one-
carbon metabolism genes in a Drosophila model of Parkinson’s
disease with mitochondrial defects but intact ETC rescued the
loss of dopaminergic neurons36. Alternatively, approaches that
increase NADPH levels and suppress oxidative stress, such as
ME1 expression, could be beneficial and a potential treatment
strategy for diseases associated with mitochondrial CI deficiency.

One-carbon metabolism has been extensively studied in the
context of cancer since rapidly proliferating cells exploit this
pathway for nucleotide biosynthesis to support cell growth37.
However, its impact on NADPH generation and protection
against oxidative stress has been less explored. Here we uncovered
a novel link between mitochondrial one-carbon metabolism and
inflammation that could have important implications for
human diseases. Even though loss of SHMT2 leads to defective
OXPHOS due to impaired mitochondrial translation, we show
that the cell death and inflammatory phenotype is driven by
decreased NADPH production and not mitochondrial translation
inhibition.

Previous studies have linked mitochondrial failures and
inflammatory pathways associated with mitochondrial DNA
leaking to the cytoplasm and activation of the cGAS/STING
signaling38,39. It would be of interest to determine in what con-
ditions, or specific mitochondrial defects, the different inflam-
matory cascades, including NADPH deficiency, might contribute
to different pathologies. Recent studies have showed that hypoxia
or rapamycin treatment can improve the lifespan of Ndufs4 KO
mice40,41. Interestingly, a commonality to both interventions is
the suppression of the inflammatory response. It is tempting to
speculate that, regardless of the upstream event causing inflam-
mation, blunting this response might ameliorate pathological
symptoms of mitochondrial disease models. Our results indicate
that a decrease in NADPH and GSH levels, associated with
increased ASK1-p38-JNK signaling, contributes to the oxidative
stress and inflammation in CI-defective cells. Targeting compo-
nents of this metabolic/signaling cascade could be therapeutically
exploited in mitochondrial diseases.

Methods
Cell culture and treatments. All cell lines were maintained in Dulbecco’s mod-
ified Eagle’s medium (DMEM) high glucose (HyClone), 10% fetal bovine serum

Fig. 5 Complex I inhibition, in vitro and in vivo, is associated with an inflammatory gene response caused by increased oxidative stress. Immunoblots
showing oxidative stress-mediated activation of ASK1/P38/JNK axis specifically in ND1 mutant cells a cultured in galactose or b after PPP inhibition using
6-AN at 100 μM for 48 h. Pro-inflammatory gene expression signature is induced in c 48 h galactose-grown or d PPP-inhibited ND1 cells and rescue by ME1
overexpression (n= 3). e Metabolomic analysis in brain samples of WT and Ndufs4 KO mice. Note that levels of GSH are reduced, while no changes are
observed in ATP. GSH/GSSG ratio for WT is 4.3920+/− 0.9039 (Average+/− Standard) (n= 5). f Increased phosphorylation of JNK (including long
and short exposures) and g induced gene expression of inflammatory markers in the brain of Ndufs4 KO mice. h Reduced formate production using brain-
isolated mitochondria from WT or Ndufs4 KO mice (n= 4). Immunoblots shown are representative of >3 independent experiments, and all other
experiments are represented as means ± SEM., n > 3 biological replicates. Asterisks denote *p < 0.05, **p < 0.01, or ***p < 0.001. Two-way ANOVA in
c, d, h. Paired two-tailed Student’s t test in e, g and one-way ANOVA in h. gluc/g glucose, Galac/G galactose, Pir Piericidin.
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(FBS), and 1% penicillin/streptomycin (P/S) at 37 °C and 5% CO2. MELAS and
Rieske KO cells were cultured with supplementation of 50 μg/mL uridine.
Homoplasmic human ND1 mutant and control cybrids were obtained from Rutger
Vogel and Jan Smeitink Radbound University Medical Centre, Netherlands.
Homoplasmic LHON ND6 cybrid cells and mouse fibroblast with deletions in ND4
(delA10227) were a gift from Carlos Moraes, University of Miami and Jose Antonio
Enriquez, CNIC, respectively. All cell lines were tested routinely, and before all
metabolomic analyses, for mycoplasma contamination. GSH reduced ethyl ester
(GSH-MEE) (G1404), NAC (A9165), 6-aminonicotinamide (A68203), and Pier-
icidin A (P4368) were purchased from SIGMA.

CRISPR activator library design and production. The human CRISPR activation
library (Calabrese P65-HSF) was designed and created by the Broad Institute as
previously described18.

Lentiviral-mediated CRISPR/Cas9 targets. Transfections were performed
according to the manufacturer’s instruction using the polyfect reagent (Qiagen,
301107). Guide sequences for CRISPR/Cas9 were cloned in the lenti-CRISPR v2
vector (Addgene, 52951), dCAS-VP64_Blast (pXPR_109) (Addgene, 61425), or
pXPR_502 (Addgene, 96923). The following constructs were used: activator guides
for sgME1#1, 5-CTGCGAGAAGCGCTGAGTCA-3; sgME1#2, 5-GCGAGAGG
GGGTGGACGCGT-3; sgPRDX1#1, 5-GACTCGGCGCTTTCCCTCGT-3;
sgPRDX1#2, 5-GGGAAAGCGCCGAGTCATTC-3. KO guides for sgME1#1, 5-AT
AGGACTTGGCCTTTACCC-3; sgME1#2, 5-ATAGAGCCAATTTACCCACA-3;
sgSHMT1#1, 5-ACCACTCACAAGACCCTGCG-3; sgSHMT1#2, 5-AGGCCCAT
GATGCGCCCATG-3; sgSHMT2#1, 5-GTAGTCAATGAGGCGAGCAT-3;
sgSHMT2#2, 5-GTTGTTCAGACAGGACCCCA-3; sgALDH1L2#1, 5-TGAA-
CACCCCTACTACTCGG-3; sgALDH1L2#2, 5-ATAATTGATAGTCCAAAGCA-
3. ME1 overexpression plasmid (Addgene, 49163).

Genome-wide CRISPR activator screen. In all, 8.5 × 107 human ND1 mutant
(3796A>G) cybrid cells, stably expressing dCas9-VP64, were seeded in a total of 28
150 mm × 25mm dishes (3.0 × 106 per dish). Cells were infected with the lenti-
pooled library to achieve a 30–50% infection efficiency, corresponding to a mul-
tiplicity of infection of ~0.3–0.5. Media was changed 24 h later, and 0.5 μg/mL
puromycin was added 48 h later and selected for 7 additional days. Cells were
trypsinized and separated into 150 mm × 25mm dishes (4.0 × 106 per dish). Next
day, cells were washed twice with phosphate-buffered saline (PBS), and media was
changed to non-glucose DMEM with glutamine (4 mM) supplemented with 10
mM galactose (Sigma, D7050), 10% FBS, 1% P/S, and 1 mM pyruvate. Cells were
cultured for 5 days in galactose media. After 5 days, galactose media was replaced

with high-glucose DMEM in order to expand the remaining cells. This process was
repeated for a second time, and surviving cells were collected and genomic DNA
was isolated using the QIAamp DNA Mini Kit (QIAGEN, 51304). Two biological
replicate experiments were performed.

Immunoblot. Cells were harvested in RIPA buffer (10 mM Tris-HCl pH 8.0, 1 mM
EDTA, 1% Triton X-100, 0.1% sodium deoxycholate, 0.1% sodium dodecyl sulfate,
140 mM NaCl, 1× protease inhibitor cocktail, 1 mM phenylmethanesulfonyl-
fluoride), and proteins were quantified using the BCA assay (Pierce, 23228). The
following antibodies were used for western blot analysis: Anti-ME1 antibody
(ab97445), β-Actin (CTS8457), Anti-IDH1 (ab81653), Anti IDH2 (ab131263),
Anti-FLAG (F3165), Anti-NDUFS2 (ab192022), Anti-UQCRC2 (ab14745), Anti-
MTCOI (ab14705), Anti-SDHA (ab1715), Anti-SHMT1 (ProteinTech, 14149-1-
AP), Anti-SHMT2 (ProteinTech, 11099-1-AP), Anti-ALDH1L2 (ProteinTech,
21391-1-AP), Anti-MTHFD2 (ProteinTech, 12270-1-AP), Phospho-ASK1
(Thr845) (CTS3765), ASK1 (CTS3762), Phospho-p38 MAPK (Thr180/Tyr182)
(CTS4511), p38 MAPK (CTS9212), Phospho-SAPK/JNK (Thr183/Tyr185)
(CTS9251), SAPK/JNK (CTS9252), Anti-NDUFS4 antibody (ab87399).

Gene expression. Total RNA was isolated with Trizol (Invitrogen, 15596-026).
Two micrograms of RNA were used to generate complementary DNA (cDNA)
with a High Capacity cDNA Reverse Transcription Kit (Applied Biosystems,
4368813) following the manufacturer’s protocol. For gene expression analysis,
cDNA samples were mixed with Sybr Green qPCR mastermix (Applied Biosys-
tems, 4309155) and were analyzed by a CFX 384 Real-Time system (Bio-Rad).
Primer sequences: Human: c-FOS F-ATCTGCAGCGAGCATCTGAG, R-GGAT
GACGCCTCGTAGTCTG; GDF15 F-GACCCTCAGAGTTGCACTCC, R-GCCT
GGTTAGCAGGTCCTC; IL-6 F-CCTGAACCTTCCAAAGATGGC, R-TTCAC
CAGGCAAGTCTCCTCA; MCP1 F-GCTGTGATCTTCAAGACCATTGTG, R-
TGGAATCCTGAACCCACTTCTG; PTGS2 F-CTGGCGCTCAGCCATACAG, R-
CGCACTTATACTGGTCAAATCCC; TNFα F-CACAGTGAAGTGCTGGCAAC,
R-AGGAAGGCCTAAGGTCCACT; ME1 F-GAGTGCTGACATCTGACATTGA,
R-TTGGCTTCCGAAACACCAAAC; ME2 F-ATATACACCGACGGTTGGTCT,
R-CATCAGTCACTACAACAGCCTT; ME3 F-TGAAGAAGCGCGGATACGA
TG, R-GAAAGCAGGGCGGGATTAGG; PRDX1 F-CCACGGAGATCATTGCT
TTCA, R-AGGTGTATTGACCCATGCTAGAT. Mouse: c-FOS F-GTGAAGACC
GTGTCAGGAGG, R-GATCTGTCTCCGCTTGGAGT; IL-6 F-CTGCAAGAGAC
TTCCATCCAG, R-AGTGGTATAGACAGGTCTGTTGG; MCP1 F-AGCTGTA
GTTTTTGTCACCAAGC, R-TGCTTGAGGTGGTTGTGGAA; PTGS2 F-CATC
CCCTTCCTGCGAAGTT, R-CATGGGAGTTGGGCAGTCAT; TNFα F-CATCT
TCTCAAAATTCGAGTGACAA, R-TGGGAGTAGACAAGGTACAACCC.
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Oxygen consumption. In intact cells: 1.0 × 105 of the indicated cell type were
seeded in an XFe-24 Seahorse plate (Seahorse Biosciences, 102340) and allowed to
adhere for 24 h at 37 °C and 5% CO2. Medium was then removed, and cells were
washed with pre-warmed unbuffered DMEM without bicarbonate (Sigma, D5030)
supplemented with 15 mM glucose, 2 mM sodium pyruvate, and 1 mM glutamine.
After the wash, 600 μL of the same buffer was added and cultured at 37 °C in a
non-CO2 incubator for 1 h. The Seahorse 24 optical fluorescent analyzer cartridge
was prepared in the interim by adding 5 μM oligomycin, 0.5 μM FCCP, and 2 μM
rotenone/5 μM antimycin A to each cartridge port. Oxygen consumption rates
(OCRs) (pmol/min) were then measured for each treatment condition at 37 °C
using the Seahorse Bioanalyzer instrument. After measurement, media was
removed and 20 μL of RIPA buffer was added and protein concentration using
BCA (Pierce 23228) was measured to normalize OCR values.

In isolated mitochondria: To minimize variability between wells, mitochondria
were first diluted 10× in cold 1× MAS buffer (70 mM sucrose, 220 mM mannitol,
10 mM KH2PO4, 5 mM MgCl2, 2 mM HEPES, 1.0 mM EGTA, and 0.2 % (w/v)
fatty acid-free bovine serum albumin (BSA), pH 7.2 at 37 °C). Stock substrates
0.5 M malic acid, 0.5 M pyruvic acid or 0.5 M succinate, and 0.2 mM ADP were
subsequently diluted to the concentration required for plating. Next, while the plate
was on ice, 50 μL of mitochondrial suspension (containing 25 μg of mitochondrial
protein) was delivered to each well (except for background correction wells). The
XF24 cell culture microplate was then transferred to a centrifuge equipped with a
swinging bucket microplate adaptor and spun at 2000 × g for 20 min at 4 °C. The
Seahorse 24 optical fluorescent analyzer cartridge was prepared in the interim by
adding 4 mM ADP and 10 μM rotenone to each cartridge port. After
centrifugation, 450 μL of prewarmed (37 °C) 1× MAS+ substrates pyruvate/malate
(10 mM/2 mM) or succinate (10 mM) was added to each well. In the case of
succinate-driven respiration, 100 μM rotenone was also added to the MAS buffer.
The mitochondria were viewed briefly under a microscope at 20× to ensure
consistent adherence to the well. The plate was then transferred to the Seahorse
XFe/XF24 Analyzer, and the experiment initiated.

Metabolomics. WT and Ndufs4 KO mice, 45–50 days of age, were sacrificed, and
tissues were snap-frozen immediately. Cells or 15 mg of pulverized brain frozen
tissue were incubated with 1 mL chilled 80% high-performance liquid
chromatography-grade methanol (Fluka Analytical). Cell mixture was incubated
for 15 min on dry ice prior to centrifugation at 18,000 × g for 10 min at 4 °C.
Supernatant was retained, and remaining cell pellet was resuspended in 800 μL
chilled 80% methanol and centrifuged. Supernatant was combined with the pre-
vious retention and was lyophilized using a SpeedVac (Thermo Fisher). Lyophi-
lized samples were resuspended in 20 μL ultrapure water and subjected to
metabolomics profiling using the AB/SCIEX 5500 QTRAP triple quadrupole
instrument. Data analysis was performed using the GiTools software. 13C-labeled
([U-13C5]) glutamine was acquired in SIGMA (605166). Negative ion values for
NADPH were selected as they produce more robust and reliable results. In this
analysis, there are some current methodological limitations particularly with
samples related to tissue collection.

Blue native (BN) gel electrophoresis. Digitonin at 4 g per g mitochondrial
protein was used to solubilize the electron transfer chain complexes and 50 µg were
applied and run on pre-cast 3–12% gradient BN gels (NativePAGETM NOVEX Life
Technologies) according to the manufacturer’s instructions. After electrophoresis,
the complexes were electroblotted onto polyvinylidene difluoride membranes and
sequentially probed with specific antibodies.

Measurement of NADPH/NADP+ ratio. NADP+ and NADPH levels were
individually measured in cell lysates by using the NADP/NADPH-glo™ Assay Kit
(Promega) according to the manufacturer’s instructions, and NADPH/NADP+

ratio was calculated.

Formate synthesis and CO2 release in isolated mitochondria. Mitochondria
were resuspended in experiment buffer EB (137 mM KCl, 2.5 mM MgCl2, 10 mM
HEPES, 1 mg/mL BSA, pH 7.4), and formate production assays were performed in
105 μL of EB with 150 μg mitochondrial protein, 3 mM Pi, 1 mM serine, and 1 mM
ADP, at 37 °C for 30 min as previously described13. Formate production was
stopped by centrifuging the mixture at 8000 × g for 10 min (4 °C) and removal of
supernatant. Replicate wells of 40 μL supernatant were analyzed using a formate
assay kit (Sigma), where one well did not contain enzyme and was used as a
background NAD(P)H control. Piericidin A was used at 1 μM, and the corre-
sponding vehicle control was 0.1% (w/v) dimethyl sulfoxide. When drug treatment
was used, mitochondria were incubated with drugs for 2 min at 37 °C prior to
addition of serine, Pi, and ADP.

To measure serine-induce CO2 release, mitochondria were incubated in the
same conditions described above plus the addition of 1 μCi of 14C serine (Perkin
Elmer NEC827050UC). After 30 min, the reaction was stopped by adding 200 μL of
1M perchloric acid. Next, 2-phenylethylamine-saturated Whatman paper was
placed under the tube cap in order to trap radiolabeled CO2 during overnight
incubation. Finally, the Whatman paper was placed in scintillation liquid, and

radioactive counts were measured in a scintillation counter (Perkin Elmer,
2900TR).

Proliferation and cell death quantification. For cell number and proliferation,
1.0 × 105 cells were seeded in 6-well plates grown in DMEM high glucose, 10% FBS,
and 1% P/S at 37 °C and 5% CO2 or DMEM with no glucose but supplemented
with 4 mM glutamine (HyClone) and 10 mM galactose (Sigma G0750), 10% FBS,
and 1% P/S. Cells were incubated in galactose-containing media for the indicated
times and were trypsinized and counted for trypan-blue exclusion using a hemo-
cytometer (NanoEnTek, DHC-N01). For cell death quantification, propidium
iodide (PI) cell exclusion assays were carried out as a measure of cell death. Cells
were incubated with PI and analyzed by flow cytometry. Sub-G1 peak was selected
as indicative of apoptosis.

Glutamine oxidation. In all, 5.0 × 104 sgNeg or sgME1 ND1 cells were seeded in a
24-well plate (Corning). Next day, media containing 0.5 μCi of 14C Glutamine
(Perkin Elmer, NEC451050UC) was added, cells were incubated at 37 °C for 3 h,
and the reaction was stopped by adding 200 μL of 1M perchloric acid. Next, 2-
phenylethylamine-saturated Whatman paper was placed under the tube cap in
order to trap radiolabeled CO2 during overnight incubation. Finally, Whatman
paper was placed in scintillation liquid, and radioactive counts were measured in a
scintillation counter (Perkin Elmer, 2900TR).

ROS measurement. 2ʹ,7ʹ-Dichlorofluorescin diacetate (DCFDA) assay was per-
formed according to the manufacturer’s instructions. Briefly, cells were incubated
with 5 μM CM-H2DCFDA (Invitrogen) for 30 min. Excess DCFDA was removed
by washing the cells twice with PBS, and labeled cells were then trypsinized, rinsed,
and resuspended in PBS and fluorescence was measured by flow cytometry.

Proteomic analysis. Mass spectrometric analysis were performed as previously
described15. The mass spectrometric proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE42 partner repository with the dataset
identifier PXD018839.

Ethics approval for mouse work. All animal studies and procedures were con-
ducted according to a protocol approved by the Institutional Animal Care and Use
Committee (IACUC) at Beth Israel Deaconess Medical Center, IACUC RN-150D
(IACUC protocol number: 112-2014). All the procedures that involves handling
and use of mice in the experiments proposed in this grant application will be in
strict accordance with the policies and guidelines established by the Beth Israel
Deaconess Medical Center Animal Research Facility, which is an AAALAC
accredited (Association for Assessment and Accreditation of Lab Animal Care) and
PHS Assurance with Office of Laboratory Animal Welfare and complies with all
federal, state, and local laws.

Statistical analysis. All statistics are described in figure legends. In general, for
two experimental comparisons, a two-tailed unpaired Student’s t test was used.
Three replicates per treatment were chosen as an initial sample size unless
otherwise stated in figure legends. All western blot analysis were repeated at least
three times. Statistical significance is represented by asterisks corresponding to *p
< 0.05, **p < 0.01, or ***p < 0.001. GraphPad Prism 7 was used for statistical
analysis.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this paper.

Data availability
The authors declare that the data supporting the findings of this study are available
within the paper and its Supplementary Information files and will be available from the
corresponding author upon reasonable request. Proteomics data have been deposited to
the ProteomeXchange Consortium via the PRIDE42 partner repository with the dataset
identifier PXD018839. Source data is available as a source data file. All CRISPR-based
screening data generated during this study has been uploaded to figshare (https://doi.org/
10.6084/m9.figshare.12310118.v1).
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