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 

Abstract. Skin cancer is a major health problem. There are 

several techniques to help diagnose skin lesions from a captured 

image. Computer-aided diagnosis (CAD) systems operate on 

single images of skin lesions, extracting lesion features to further 

classify them and help the specialists. Accurate feature 

extraction, which later on depends on precise lesion 

segmentation, is key for the performance of these systems. In this 

paper, we present a skin lesion segmentation algorithm based on 

a novel adaptation of superpixels techniques and achieving the 

best reported results for the ISIC 2017 challenge dataset. 

Additionally, CAD systems have paid little attention to a critical 

criterion in skin lesion diagnosis: the lesion’s evolution. This 

requires operating on two or more images of the same lesion, 

captured at different times but with a comparable scale, 

orientation and point of view; in other words, an image 

registration process should first be performed. We also propose 

in this work an image registration approach that outperforms top 

image registration techniques. Combined with the proposed 

lesion segmentation algorithm, this allows for the accurate 

extraction of features to assess the evolution of the lesion. We 

present a case-study with the lesion-size feature, paving the way 

for the development of automatic systems to easily evaluate skin 

lesion evolution. 

 
Index Terms. Lesion segmentation, image registration, lesion 

evolution feature, computer-aided diagnosis, superpixels, 

LF-SLIC, local features, SP-SIFT. 

I. INTRODUCTION 

CCORDING to the World Health Organization, one in 

every three cancers diagnosed is a skin cancer. The 

global incidence of skin cancer continues to rise. 

Early detection of skin cancers boosts the effectiveness of 

the health care actions carried out. For instance, the 5-year 

survival rate for Melanoma can be increased over 90% if 

detected in its early stages of development [1]. 
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Due to the widespread unavailability of equipment and 

qualified human resources required to screen every patient, 

there is a need for an automated system to assess skin lesions 

and classify them into melanoma, non-melanoma and benign. 

This work presents contributions to the state-of-the-art 

(SOTA) in this direction. 

Dermoscopy or Epiluminescence Microscopy (ELM) is a 

noninvasive imaging technique that helps diagnose skin 

lesions. ELM allows visualization of the subsurface structures 

of the skin revealing lesion details in colors and textures. 

ELM improves the detection rate of skin lesions with 

respect to naked eye inspection, in which the highest accuracy 

is around 60% [2]. Nevertheless, diagnostic accuracy using 

ELM largely depends on the dermatologist’s experience. 

Well-trained generalist computer-aided diagnosis (CAD) 

systems are designed to reduce this dependency. CAD systems 

may also be used to monitor benign skin lesions in order to 

prevent their evolution to malignant lessons. Generally, a 

CAD system is composed of three major stages: image 

segmentation, feature extraction, and classification [3][4]. 

Image segmentation is used to locate the boundary between 

the lesion area and the surrounding skin. Obtaining an 

accurate segmentation of the lesion is important, especially to 

provide low error rates prior to later quantification of the 

shape, border and size features of the skin lesion [5]. In 

general, the segmentation process aims at the spatial 

discrimination of sets of inter-related pixels in a region of 

interest (ROI) to facilitate the detection of spatial transitions 

between these sets. Reported skin lesion segmentation 

methods are based on: edge extraction, image thresholding, 

region segmentation, artificial intelligence or active contours. 

Edge based techniques [6][7] are based on information 

about the image edges; more specifically, they search for 

abrupt changes in the intensity of neighboring image pixels. 

The segmentation process may also depend on similarity 

criteria, such as similar grey levels, colors or textures. 

Accurate segmentation and registration of skin 

lesion images to evaluate lesion change 
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Fig. 1. ELM skin lesion image (left), skin lesion segmentation (middle) and 

skin lesion registered over a subsequent ELM skin lesion image (right) 
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Thresholding [8][9] and region-based [10][11] segmentation 

are examples of methods that use similarity criteria to identify 

skin lesions in images. 

Techniques based on artificial intelligence (AI) [12][13] 

classify pixels as belonging to the lesion or to the background 

of the images. Neural networks, evolutionary computation and 

fuzzy logic are some examples of these techniques. 

Algorithms based on active contours are also used for 

segmenting skin lesion images [14][15]. In these algorithms, 

the initial curves evolve towards the boundaries of the lesion 

through appropriate automatic deformation. 

Feature extraction plays a major role in automatic skin 

lesion diagnosis. In human-driven analysis of skin lesions, 

there are widely accepted templates to evaluate the evidence 

of particular lesions. For instance, dermatologists have created 

the ABCDE rule for Melanoma lesions. Melanomas tend to be 

Asymmetric, have an irregular Border, present uneven Color 

distributions, their Diameter is greater than 6 mm and they 

Evolve in size, shape and color. 

The (E)volve feature is a key element in the diagnosis of 

pigmented lesions. Its extraction is based on a prior image 

registration stage. Therefore, image registration is a critical 

task and an area that has been widely studied. Image 

registration can be done at a full-body level, i.e. full-body 

images are registered to detect the apparition of new moles or 

the growth of pre-existing ones [16][17][18]. Image 

registration can also be done at the level of individual single 

skin lesions [19][20]. Skin lesions are registered with 

millimetric precision so even the smallest changes in the 

lesion can be observed. The main techniques tend to rely on 

points matching [21][22][23] or regions [20]. Some solutions 

include a prior skin lesion segmentation process [24]. 

Advances in the feature extraction stage in CAD systems 

have been focused on the automatic extraction of these cues. 

The spatial pixel area extracted from the segmentation process 

has been analyzed to derive asymmetry, shape, border and 

diameter features (ABCD rule)[25][26]. 

Nevertheless, the automatic extraction of these features is 

problematic mainly due to inaccuracies at the segmentation 

stage and to the complexity in registering images of a skin 

lesion taken at different times. 

Classification consists in recognizing and interpreting the 

information on the pigmented skin lesions based on the 

features extracted. 

The main contributions of this paper are: a novel 

segmentation algorithm which obtains a highly precise 

isolation of the skin lesion; and a new strategy to match 

successive images of a skin lesion in order to measure its 

evolution. Segmentation is based on the superpixels technique, 

which provides a tight-to-boundaries result that enables the 

ABCD features to be reliably obtained from a single image. 

We then present a novel image registration process to measure 

the evolution (E) of the features describing a skin lesion, given 

two images capturing different stages of the lesion. An 

example of the above is shown in Figure 1. 

The rest of the paper is organized as follows. In section 2 

we present the background to the segmentation and 

registration techniques. The proposals for segmentation and 

registration are set out in section 3. Section 4 lays out the 

experimental results. Section 5 includes a discussion about 

proposals and their results. The last section draws some 

conclusions. 

II. BACKGROUND 

A. Superpixel segmentation 

Region segmentation techniques are pivotal for several 

computer vision applications including object segmentation 

[27], depth estimation [28], body model estimation [29], and 

object localization [30]. Traditional region segmentation 

approaches generate regions based on similarity measures. 

These measures may yield low levels of accurate regions if 

image borders are not well defined due to poor or smooth 

contrast [31]. Recently, superpixels have proven to be an 

efficient and effective solution for performing image 

segmentation under a conservative, low-error paradigm [32]. 

Superpixel algorithms group pixels into perceptually 

meaningful regions (see Fig. 2 top image) by capturing image 

redundancy and preserving boundaries. Superpixels provide a 

convenient primitive from which to compute image features, 

greatly reducing the complexity of subsequent image 

processing tasks [32]. They provide more reliable lower-error 

supports than SOTA alternatives [31]. In particular, a 

superpixel method segments a given image ψ into a set of 

superpixels {𝛺𝑗  𝑗 = 1 … 𝐽}, such that 𝜓 = ⋃ 𝛺𝑗
𝐽
1  and 𝛺𝑗 ∩

 𝛺𝑘 = ∅, ∀ 𝑗 ≠ 𝑘. 

In spite of their widespread use in computer vision, their use 

in medical image applications is scant. However, the number 

of successful applications based on superpixels in this field is 

growing fast. They have been used as supporting regions for 

computational methods [33], as a tool for generic medical 

image segmentation [34], in detection tasks for segmenting 

ROIs [35], and prior to feature extraction tasks [36]. 

Among existing superpixel segmentation techniques, SLIC 

[32] has excelled due to its accuracy. SLIC depends on a 

single parameter, 𝐽, which represents the desired number of 

 

 
 

Fig. 2.  SLIC and LF-SLIC comparison. Top row shows an input image (left) 
and the SLIC results (right). Bottom row shows LF-SLIC seeds in green 

superimposed on the image (left), and resulting LF-SLIC segmentation 

(right). 
 

 

 



 

 

approximately equally-sized superpixels. 𝐽 is initially used to 

set the superpixel centers by evenly sampling the image with a 

regular grid (see Fig. 2 top image). Centers are then moved to 

seed locations corresponding to the lowest gradient position in 

a 3×3 neighborhood. Then, following a scheme similar to the 

classical K-Means algorithm [37], pixels in the image are 

associated with the nearest center, attending to spatial distance 

and color similarity. After this first association, centers are 

repositioned in their respective clusters, the error between 

previous and current centers is obtained, and the association is 

performed again. This process is repeated until error 

convergence is reached. 

B. Local features and descriptors 

Image registration has been tried with a wide variety of 

strategies. Some applications require high precision during 

registration. In those applications, local features have emerged 

as the most reliable technique in the SOTA. 

A local feature is an image pattern which differs from its 

immediate neighborhood. It is usually associated with a 

change or singularity of an image property or set of properties, 

e.g. image intensity, color, or texture. Local features are 

usually image points, but they also can be edges or small 

image patches. A feature is typically described or 

characterized by indicators extracted from a region around it, 

which overall conform the feature descriptor. These 

descriptors are vectors which ideally characterize an image 

feature unequivocally. 

Feature detectors can be categorized based on the type of 

image structures they extract: corners, blobs or regions. 

According to [38], feature descriptors can be categorized as 

local binary, spectral, basis spaces, polygons and volume. 

Local binary descriptors are the fastest approaches, and 

spectral descriptors are the most used in the SOTA. Generally, 

the prevalence of one scheme over the other depends on the 

target application. 

The Scale Invariant Feature Transform (SIFT) [39] is a 

well-known and widely used technique which combines both a 

feature detector and a description methodology. The detector, 

based on scale-space theory [40], identifies robust-to-scale 

feature points. The descriptor, a 128-dimensional vector based 

on gradient distribution around the feature point, is invariant 

to image rotation. 

When the SIFT feature points are located close to the 

boundaries of the object being characterized, the descriptor 

might be affected by non-object areas, which leads to poor 

characterization. In order to solve this, we propose the 

SP-SIFT [41] technique. It previously segments the image in 

superpixels isolating information areas. Then it computes the 

SIFT descriptor using just the pixels of the superpixel 

containing the feature point. The result is a full-foreground or 

full-background feature descriptor. 

III. MATERIALS AND METHODS 

A. Skin lesion segmentation 

We present here an adaptation of the SLIC segmentation 

algorithm to ELM images of skin lesions, which is the first 

scientific contribution of this paper. We currently assume that 

the image captures a single lesion, and that the lesion is fully 

contained in the image, a common acceptable situation; these 

requirements could, however, be removed in the future. 

 

SLIC guided by local features (LF-SLIC) 

The original SLIC technique has been shown to be highly 

competitive for image segmentation. However, if there is a 

region of interest (ROI) in the image, segmenting the whole 

image is useless whereas accurately defining the contour of 

the ROI is convenient. 

Initializing centers using a regular grid (see Fig. 2 top 

image) results in missing small details in the skin lesion 

boundaries while it extracts useless boundaries in the rest of 

the skin. 

We propose to replace uniform center initialization with 

feature-driven initialization, so that superpixels are forced to 

be smaller around detected features. We first use the SIFT 

detector to identify feature points in the image. Then, we use 

these as anchor points to place initial centers using a Gaussian 

distribution (see Fig. 2 bottom image). Finally, we apply the 

SLIC algorithm to these centers. The result is a higher 

precision in the segmentation around the skin lesion at the 

expense of a lower precision in the segmentation in the rest of 

the image. 

 

LF-SLIC region labeling via spatial continuity classification 

The image ψ is segmented into a set of LF-SLIC 

superpixels {𝛺𝑗 , 𝑗 = 1 … 𝐽}, where 𝐽 is the number of 

superpixels. Two superpixels, 𝛺𝑗 and 𝛺𝑗′, are neighbors if at 

least one of the pixels in 𝛺𝑗 is 8-connected with a pixel in 𝛺𝑗′. 

Let 𝑏𝑤̅̅ ̅̅  be the bandwidth of this partition, defined as the 

largest 5-dimensional distance vector (evaluating position and 

RGB color) between the centers of any two neighboring 

superpixels. 

The final objective is to obtain two disjoint sets of 

superpixels: a subset of superpixels classified as 

non-lesion 𝑁 = {𝛺𝑝, 𝑝 ∈ [1. . 𝐽]}, |𝑁| = 𝑃; and a subset of 

lesion superpixels 𝐿 = {𝛺𝑞 , 𝑞 ∈ [1. . 𝐽]}, |𝐿| = 𝑄, where 𝑃 +

𝑄 = 𝐽.  For this purpose, a greedy labelling scheme with 

connectivity restrictions is proposed. 

First, assuming that the lesion is fully contained in the 

image, all superpixels that are 8-connected to the image 

boundary are assigned to the 𝑁 set (see Fig. 3 top image), 

creating an initial estimation of non-lesion superpixels, 𝑁0, 

and the complementary initial set of lesion superpixels, 𝐿0. 

Then, superpixels in the 𝑁0 set are grouped into regions using 

a conservative mean-shift approach [42] with a bandwidth 

 𝑏𝑤𝑀𝑆
̅̅ ̅̅ ̅̅ ̅ = 𝑏𝑤̅̅ ̅̅ . This process merges superpixels in 𝑁0 into 

regions {𝑅1 … 𝑅𝑚 … 𝑅𝑀}, each containing a subset {𝛺𝑝,𝑚} of 

the 𝑁0 superpixels. Due to this conservative grouping, the set 

of colors {𝑐̅(𝛺𝑝,𝑚)} of the superpixels in every region can be 

assumed to define a close-to-Gaussian-distribution. Under this 

assumption, superpixels in 𝐿0 are reclassified by evaluating 

their likelihood to be part of any of their 8-connected regions 



 

 

in the set {𝑅1 … 𝑅𝑚 … 𝑅𝑀}. For this purpose, for a superpixel 

in 𝐿0 with color 𝑐̅(𝛺𝑞) that is connected to region 𝑅𝑚, a 

Grubbs’ test is used to determine whether the superpixel is an 

outlier of the color distribution inside 𝑅𝑚: 

𝐺 =
|𝐸[𝑐(̅𝛺𝑝,𝑚)]−𝑐̅(𝛺𝑞)|

2

𝜎[𝑐(̅𝛺𝑝,𝑚)]
  (1) 

with 𝐸[𝑐̅(𝛺𝑝,𝑚)] as the mean vector of the colors of the 

superpixels in 𝑅𝑚 and 𝜎[𝑐̅(𝛺𝑝,𝑚)], its standard deviation. The 

hypothesis of 𝛺𝑞 where part of 𝑅𝑚 is accepted at significant 

level 𝛼, fixed in the experimental parameter setup. If: 

𝐺 ≤
𝑀 − 1

√𝑀
√

𝑀 − 1

𝑀 − 2 + 𝑡𝑠2
∝/2𝑀,𝑀−2

 

where 𝑀 is the number of superpixels in the set, and 𝑡𝑠 the 

Student’s t-distribution. 

Reclassified superpixels are removed from 𝐿0 and assigned 

to 𝑁0. This process is repeated for any superpixel in 𝐿0 which 

is a neighbor of at least one region {𝑅1 … 𝑅𝑚 … 𝑅𝑀}, creating 

two new sets 𝐿1 and 𝑁1. 

The whole process is repeated until at a given iteration, 

say 𝑡, no further reassignments are performed. The sets at this 

iteration 𝑁 =  𝑁𝑡 and 𝐿 =  𝐿𝑡 define a tight-to-boundaries 

segmentation of the skin lesion (see Fig. 3 for iteration 

examples). However, artifacts in the image can also be 

segmented, so we propose an artifact removal method. 

Artifact removal 

The first step for the successful removal of artifacts is to 

define them precisely. According to SOTA reports, artifacts in 

ELM images mainly consist of hair and air bubbles. 

These artifacts clearly differ from the skin lesions. Skin 

lesion boundaries show irregular shapes, and present smooth 

transitions with the surrounding skin; on the contrary, the 

artifacts identified show contours that contrast greatly with the 

surrounding skin and also very regular shapes: straight lines 

for the hairs and circles for the bubbles. 

There are many established approaches to detect 

pre-defined and highly contrasted shapes. For this purpose, we 

propose to use the well-known Hough Transform (HT) [43], a 

voting scheme that obtains highly robust detection results in 

these situations. We apply the HT to detect pixels belonging to 

lines, circles or ellipses in the segmented image. Superpixels 

containing pixels voted as lines, circles or ellipses are 

re-classified into the 𝑁 set. 

B. Skin lesions registration to evaluate lesion change 

The second contribution of this paper is the measurement 

the evolution of a skin lesion, given two images capturing 

different stages of the lesion, a crucial criterion for diagnosis. 

The result of the proposed segmentation is a precise image 

of the isolated skin lesion, which allows for the extraction, for 

instance, of the ABCD features to further classify the lesion. If 

we have two images of the same lesion captured on different 

days, we could measure the change or evolution (E) in the 

ABCD features. However, in order for this process to be 

reliable and effective, both images should show the lesion 

with a comparable scale, orientation and point of view; that is, 

an image registration process should first be performed. 

Image registration with SP-SIFT features 

Registration requires identifying the same feature points in 

the two images to perform proper image alignment. 

SOTA algorithms for skin lesion registration face the 

problem of aligning reference features that may have suffered 

remarkable changes (evolution). 

We propose to use the SP-SIFT technique to detect and 

describe feature points in both images first, so that the 

evolution of the skin does not corrupt the characterization of 

the feature points. Detected features are used to establish 

matching points between these two images. These matches 

define a geometric transform (in this case, homography) 

between the pair of images. We use the transformation to align 

both images. An example of the image alignment process is 

depicted in Figure 4. 

Evaluation of the lesion change 

In this paper we do not explore the extraction of features to 

characterize skin lesions. Instead, we focus on obtaining a 

precise segmentation in order to extract the desired features 

more accurately, and on registering skin lesion images to 

allow comparison of features extracted at different times and 

then evaluate lesion change. 

In order to illustrate and demonstrate the potential of our 

proposal, we present in the next section results on the 

evolution of the size of the lesion, one of the main 

characterization features. Variations could also be obtained for 

color, boundaries or asymmetry; however, this falls outside 

the scope of this work. 

 
 

Fig. 3. LF-SLIC labeling process. The top-left image shows the LF-SLIC 

superpixels segmentation. The top-right image shows the N0 set of 

superpixels in light green. The mid-left image shows an iteration t, where 

different green areas indicate different clusters formed in the Nt set. The mid-

right image shows in red the superpixels classified into the Lt set for a later 

iteration. The bottom row shows the final classification: the left image 

describes the final clusters (green for the N set and red for the L one) while 

the right one depicts the final segmentation mask.  
 



 

 

TABLE I 

SEGMENTATION RESULTS ISIC 2017 CHALLENGE DATASET 

Reference Jaccard Index Dice Coefficient Accuracy 

Top 1  0.765 0.849 0.934 

Top 2  0.762 0.847 0.932 
Top 3  0.76 0.844 0.934 

Top 4  0.758 0.842 0.934 

Top 5  0.754 0.839 0.934 
Proposed-1 0.769 0.854 0.955 

Proposed-2 0.846 0.938 0.960 

 

We use the image registration technique to align both skin 

lesions and their segmentations. We compare the segmented 

areas and calculate a pixel-level difference. The scale of the 

images is known, so we can map pixels to millimeters and 

provide the size-feature evolution in a comprehensive metric. 

IV. EXPERIMENTAL RESULTS 

We present here the results of a comparative analysis of the 

proposed segmentation method, using the recent benchmark 

proposed in the scope of the ISIC 2017 challenge1. 

Additionally, we evaluate the proposed image registration 

method against a modified version of the ISIC 2017 test set. 

Finally, we show how these methods allow a precise 

evaluation of the variation in the diameter of a skin lesion. 

A. Evaluation of the proposed segmentation method 

Data analyzed 

We have arranged the data according to the ISIC 2017 

evaluation framework: 

- Training data: 2000 dermoscopic images and their 

respective 2000 binary ground-truth masks. 

- Validation data: 150 dermoscopic images and their 

respective 150 binary ground-truth masks. 

- Test data: 600 dermoscopic images and their respective 

600 binary ground-truth masks. 

The training data are used to set the algorithm parameters; the 

validation data are used to assess the setup; the test data are 

used to evaluate the proposed algorithm and to perform the 

comparison with alternative state-of-the-art algorithms. 

Evaluation measures 

We first select the Jaccard Index (𝐽), which is one of the 

most widely-used metrics to evaluate segmentation methods, 

and the one used in the ISIC 2017 challenge. 𝐽 is also known 

as intersection-over-union. It is defined as the ratio 𝐽(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|/|𝐴 ∪ 𝐵|, where 𝐴 and 𝐵 are two binary masks; and it 

 
1 https://challenge.kitware.com/#challenge/583f126bcad3a51cc66c8d9a 

provides a normalized measure, the higher the better, of the 

overall performance of a segmentation method. We 

complement this indicator with the Dice coefficient (𝑆), also 

widely used to evaluate the similarity between two binary 

masks. 𝑆 is usually considered to be a semi-metric version of 

𝐽: 𝑆(𝐴, 𝐵) = |𝐴 ∩ 𝐵|/(|𝐴| + |𝐵|). Additionally, as 

segmentation can be viewed as a pixel classification task, 

performance can also be measured by a classification quality 

indicator. We used Accuracy: 𝐴𝐶𝐶 = 𝑇𝑃 + 𝑇𝑁/(𝑇𝑃 + 𝑇𝑁 +
𝐹𝑃 + 𝐹𝑁). 
System setup 

Default parameters are used for the SLIC, SIFT and SP-

SIFT methods. The Mean-Shift bandwidth is set according to 

the LF-SLIC result. Hence, the training and validation data are 

just used to set the value of the significant level 𝛼 associated 

to the Grubbs’ test. For this purpose, we have obtained 𝐴𝐶𝐶 

values for the range 𝛼 ∈ [0.7,0.99]. We selected as a trade-off 

value the one that returns the highest value in both sets. In the 

experiments, this value was 𝛼 = 0.91 achieving 𝐴𝐶𝐶 = 0.998 

in both validation and training sets. 

Quantitative results 

The proposed method is compared (see Table 1 – 

Proposed-1) to the Top-5 algorithms in the ISIC 2017 

Challenge; the Dice Coefficient and the Accuracy are also 

included. To better assess our method’s performance, we also 

include our results (see Table 1 – Proposed-2) previously 

removing from the dataset those images that do not fulfill our 

assumptions (i.e. images where the skin lesion is not fully 

contained in the image). To further evaluate the operational 

range of the methods compared, Fig. 6 depicts box-plot 

diagrams of the Jaccard Index distribution: the vertical size of 

the box indicates result dispersion (standard deviation) and the 

horizontal lines represent average values; points outside the 

boxes are outliers. 

 
 

Fig. 4. Skin lesion registration and size evolution. The top row shows the 

first (A) and second (B) skin lesion images. The bottom left image shows the 

matched SP-SIFT feature points between both input images. The bottom 

right image shows the segmentation masks aligned or registered for easy use 

in size comparison. 

 
Fig. 6. Distribution of the Jaccard Index for all the images in the test set of 
the ISIC 2017 segmentation challenge. See text for discussion. 

https://challenge.kitware.com/#challenge/583f126bcad3a51cc66c8d9a


 

 

TABLE II 

SP-SIFT IMAGE REGISTRATION AND DIAMETER EVOLUTION RESULTS  

Category 

Ground-truth 

diameter 

evolution 
(mm) 

Estimated 

diameter 

evolution 
(mm) 

ε 

(mm) 

Average 

matched 

features 

No Change 0 0.01 0.01 64.32 

Short time 1.28 1.46 0.18 12.93 

Mid/large time 4.51 5.15 0.60 3.23 
Overall 1.63 1.86 0.23 26.56 

 

 

 
 
Fig. 8. Precision and Recall matching results for modifications of the images 

in the ISIC 2017 test set. 

B. Evaluation of the proposed lesion registration method 

The aim of this experiment is to assess the effectiveness of 

the proposed registration method in the task of aligning skin 

lesion images. We compare the performance in this task of the 

SP-SIFT technique against two well-known feature detection-

description algorithms: SIFT [39] and SURF [45]. 

Data analyzed 

In order to carry out a systematic evaluation, we use the 

ISIC 2017 test dataset as the set of initial skin lesion images 

(i.e., those corresponding to the initial lesion capture), and we 

then generate for each image in this test set, a new image 

simulating a capture in a different instant/conditions: we 

randomly generate one of the following modified images: a 

illumination change, a rotation or orientation change, a scale 

change, or a change in the point of view (see Figure 7). 

Evaluation measures 

Each technique compared extracts local features from both 

the original image and each of the modified images, and 

matches them to establish correspondences between the initial 

and the modified image. The quality of the correspondence is 

then evaluated in terms of average precision and recall: if the 

correspondence is correct, a true positive is declared (TP); if it 

is incorrect a false positive is declared (FP); if no 

correspondence is established, a false negative is declared 

(FN). Precision (P) and recall (R) of the matching process are 

then defined as 𝑃 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) and 𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁). 

Quantitative results 

Figure 8 includes the results obtained for the three 

techniques on the modified version of ISIC 2017 test dataset 

in terms of average precision and recall. Results are given for 

each image modification. 

C. Case study: Assessing the evolution of the lesion diameter. 

In this experiment the objective is to present a potential 

application of the image registration process: measuring the 

evolution of the lesion’s diameter. 

Data analyzed  

For this experiment, we use a subset of the [44] dataset. 

This subset contains 10 pairs of images from 10 different 

patients. Temporal distance between images of the same 

patient ranges between a few days (6) and a few months (4.5). 

Each pair of images has associated ground-truth information 

indicating the diameter variation between them. 

Evaluation measures 

We perform the evaluation based on two criteria. The average 

number of correctly matched points between the two 

temporally spaced samples and the error in mm (ε) between 

the predicted and the annotated diameter change. Note that the 

image registration process, i.e. the homography estimation, 

requires at least three matched points. 

Quantitative results 

Table 2 shows the results of the evaluation on average. To 

evaluate the capabilities of the method better with respect to 

time variation, images are grouped into three categories: 

- No change: the skin lesion analyzed suffered no change 

between the first and the second picture. 

- Short time: the time elapsing between the first and 

second images is less than 2 weeks. Changes are 

expected to be small. 

- Medium to long time; the time elapsing between the 

first and the second image is more than 2 weeks. 

Changes are expected to be bigger than in the short 

time category. 

 
 

Fig. 7. Example of image distortion applied to the ISIC 2017 segmentation 

test set. Firs row original image (left) and light change (right). Second row, 

scale change (top-left), view-point change (bottom-right) and orientation 
change (right). 



 

 

 
 

Fig. 9. Failure cases (three of the outliers in the Jaccard Index distribution 

presented in Figure 6). First row, dermoscopic images. Second row, 
segmentation results obtained with the proposed method. Third row, 

ground-truth segmentation. 

V. DISCUSSION 

Proposed segmentation method 

In the segmentation stage, we extracted referenced results of 

state-of-the-art methods from the ISIC 2017 skin lesion 

segmentation challenge. Top-ranked algorithms present 

Jaccard Indexes ranging from 0.765 to 0.754, all very close 

(see Table I). The proposed segmentation method yields a 

Jaccard Index of 0.769, outperforming the other approaches. 

Besides, the proposed method also performs better in terms of 

the Dice Coefficient and Classification Accuracy. Results are 

obtained using the whole test set, including images that do not 

meet the method’s prerequisite of having the skin lesion fully 

contained in the image. For a deeper understanding of the 

segmentation results, we include a box plot graphic in 

Figure 6. The proposed method also outperforms the other 

methods by yielding a lower deviation, i.e. its operation is 

more stable for more images in the set. However, the 

distribution of the Jaccard Index achieved by the proposed 

method presents a higher number of outliers than the other 

methods. These outliers are basically the images which do not 

meet the prerequisite. If these images are removed, results 

improve up to 0.846 in Jaccard Index terms, 10.56% better 

than the top approach in the challenge (see Table I). 

Results of the proposed approach (and of all the other 

approaches evaluated) are biased by the annotated ground-

truth. Despite the high quality of the dataset, and the amount 

of data provided, the annotation of skin lesions is a subjective 

task.  This can be observed in the failure cases presented in 

Figure 9. The ground-truth annotations of the images in the 

two first columns are not tight to the lesion itself, but rather 

include a roughly affected spatial area around it which 

substantially differs from the proposed segmentation, which is 

tighter to the lesion. Differently, the third column depicts an 

example of an annotation mistake, in which the ruler is 

included in the ground-truth mask. 

Despite the good results obtained, there is room for 

improvement. Superpixel segmentation provides a robust tool 

for skin lesion segmentation. However, the accuracy of the 

segmentation on the lesion boundaries is biased by the 

superpixels’ sizes. Despite the high accuracy achieved by the 

LF-SLIC, it can be improved by operating at pixel level. 

Proposed registration method and evolution assessment 

Although it is a key stage for the extraction of feature 

evolution, to the best of our knowledge, there is no prior study 

dealing with skin lesion registration. We present a comparison 

between SOTA local features, as they have been shown to be 

successful tools for image registration in other fields. 

According to Figure 8, the SP-SIFT descriptor used for 

describing the superpixels obtained by the LF-SLIC 

segmentation, yields better results than the SIFT and SURF 

techniques. Light changes are well handled by both the 

proposed SP-SIFT scheme and the SIFT features. The scale 

changes affect the SIFT features slightly, but the proposed 

version of SP-SIFT is robust to these changes due to the 

tightness of the description supports. Finally, whereas 

geometric changes in terms of image orientation are handled 

well by all three methods, affine transformations or point-of-

view changes are still challenging. Despite the proposed 

version of SP-SIFT yielding a recall 8.48% and 46.37% better 

than SIFT and SURF, its results can be still improved. 

The image registration is presented as a tool to facilitate the 

extraction of feature evolution (E). Dermatologists agree on 

the relevance of the features’ evolution over time to detect 

potentially malignant lesions. Whereas there are some studies 

that describe strategies to extract this feature, the complexity 

of the process hinders the existence of robust automatic 

approaches and SOTA evaluations. 

In this paper, the potential of image registration is 

exemplified by evaluating the variation in the diameter of 10 

different skin lesions. The results obtained (see Table II) 

indicate that there is an average error of 0.23 mm between the 

estimated and the real evolution of lesion diameters. 

Considering that the critical diameter of a skin lesion is 6 mm, 

the error represents a deviation of 0.04% of this magnitude. 

However, results also suggest that accuracy degrades with the 

time elapsed between lesion samples, suggesting that a 

continuous observation of the lesion will be required for 

effective assessment of its evolution. The downgrading can be 

explained by the decrease in the average number of matched 

features. For large time lapses, the average number of 

correctly matched features is close to three, the minimum 

number required for image registration. In these situations, 

registration may be driven by incorrectly matched features. 

VI. CONCLUSIONS 

The two main contributions of this paper are an algorithm 

for the accurate segmentation of skin lesions, and an algorithm 

for the accurate registration of two images of the same skin 

lesion. Moreover, these algorithms operate together to achieve 

a more challenging objective: a precise segmentation mask 

enables the extraction of precise features characterizing the 

skin lesion; precise registration further allows reliable 

measurement of the evolution of such features, which is also 

in a major contribution of this work. 

We propose a segmentation algorithm that relies on a novel 

super-pixel segmentation method, which we refer to as 



 

 

LF-SLIC, combined with a robust artifact removal technique. 

Results demonstrate that this algorithm achieves top SOTA 

results with the dataset provided by the ISIC 2017 skin lesion 

segmentation challenge. 

We also propose a technique for the registration of skin 

lesion images. The proposal uses a feature point detection and 

description technique, the SP-SIFT, which combines the SIFT 

detector with a description guided by superpixels 

segmentation. The experimental results show that the proposal 

is able to perform the skin lesion registration under different 

capture conditions and lesion stages. 

Finally, the combination of these techniques, an accurate 

segmentation and a reliable image registration, paves the road 

for the precise computation of features’ evolution and 

automatic skin lesion classification. 
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