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ABSTRACT Event-related potentials (ERPs) are important neurophysiological markers widely used in
scientific, medical and engineering contexts. Proper ERP detection contributes to widening the scope of
use and, in general, improving functionality. The morphology and latency of ERPs are variable among
subject sessions, which complicates their detection. Although variability is an intrinsic feature of neuronal
activity, it can be addressed with novel views on ERP detection techniques. In this paper, we propose an
agile method for characterizing and thus detecting variable ERPs, which keeps track of their temporal and
spatial information through the continuous measurement of the area under the curve in ERP components.
We illustrate the usefulness of the proposed ERP characterization for electrode selection in brain-computer
interfaces (BCIs) and compare the results with other standard methods. We assess ERP classification
for BCI use with Bayesian linear discriminant analysis (BLDA) and cross-validation. We also evaluate
performance with both the information transfer rate and BCI utility. The results of our validation tests show
that this characterization helps to take advantage of the information on the evolution of positive and negative
ERP components and, therefore, to efficiently select electrodes for optimized ERP detection. The proposed
method improves the classification accuracy and bitrate of all sets of electrodes analyzed. Furthermore,
the method is robust between different day sessions. Our work contributes to the efficient detection of ERPs,
manages inter- and intrasubject variability, decreases the computational cost of classic detection methods
and contributes to promoting low-cost personalized brain-computer interfaces.

INDEX TERMS Personalized brain-computer interface, brain-machine interface, continuous ERP
characterization, event-related potentials, inter- and intrasubject variability, negative ERP, online electrode
selection, P300, positive ERP.

I. INTRODUCTION
A brain-computer interface (BCI) is a technology that allows
people to communicate with the external environment with-
out relying on the usual peripheral pathways. In recent years,
this technology has beenwidely studied, andmodern research
has provided different methods to implement it, particularly
through event-related potentials (ERPs). However, due to
their low speed, long calibration time and low reliability,
BCIs are not yet used in daily life tasks [1].

The lack of control of inter- and intrasubject variability
is one of the factors that makes it difficult to overcome
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problems of BCI technology. Additionally, such variable
brain responses reflect intrinsic neurophysiological charac-
teristics of the brain and are closely associated with cognitive
function varying across individuals, ages, pathological con-
ditions or genetic factors [2]–[5]. Therefore, variability is an
intrinsic property of brain function that we must understand
and manage.

Currently, ERPs are used to characterize neural variability,
and their information can be used to index individual dif-
ferences in brain function, providing an indicator of vari-
ability at the neurophysiological level [5]. For example,
changes in ERPs are used as measures for diagnosing neu-
rological and psychiatric diseases. ERPs are also employed
in the study of emotions, attention, cognitive processes
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and personality traits [6]. However, retrieving information
from ERPs remains challenging due to the small differences
between an ERP and neural background activity. Several
methods have been created to improve the performance of
ERP-based BCIs. For example, a common approach is a
system design that maximizes signal recognition by employ-
ing distinct stimulation paradigms to evoke several ERPs
[7]–[10]. Another approach is signal processing improve-
ments by optimizing classification algorithms [11]–[13],
employing effective methods of selection and extraction
of features [14]–[16], or considering electrode selection
[17]–[20]. Currently, many of these options involve a high
computational cost, and their performance is variable across
subjects or sessions [21]–[24]. There is a need for low com-
putational cost methodologies that allow online execution and
adaptability between machines and users [1], [22], [25], [26].

In this context, we developed a simple and computationally
inexpensive methodology that can characterize the evolu-
tion of positive and negative deflections of voltage (a main
characteristic of ERPs). This methodology can contribute to
subject adaptation and handles variability across sessions,
as we discuss below. Our methodology takes advantage of
low computational cost measures such as the area under the
curve (AUC) applied to the EEG signal, which is widely
used and well received in the ERP research community
[3], [27]–[29]. In our approach, this measure is continu-
ously calculated and used to characterize positive and neg-
ative ERPs throughout the epoch, thus keeping track of
their temporal and spatial information. The maximum AUC
(maxAUC) was calculated as the sum of several AUCs
within a sliding window (SW). This SW used in our method
covers an entire epoch, considering positive and negative
deflections. In this way, we evaluate the existence of ERP
features that contribute to the detection of target stimuli. This
characterization allows determining more accurately where
(electrodes/cerebral lobes) and when (time in ms) ERPs were
generated in response to target stimulus.

One direct application of our method of ERP character-
ization is the selection of electrodes, which can be seen
as a feature selection prior to the implementation of any
machine learning method. In this paper, we show that the
implementation of these methods improves the performance
of P300-based BCIs with Bayesian linear discriminant anal-
ysis (BLDA). The methodology was tested in a widely used
dataset of a P300-based BCI [30] to select the electrodes,
i.e., to determine which electrodes provide the best infor-
mation to the classifier. The proposed ERP characterization
method also opens new opportunities to obtain additional
information from ERPs beyond the BCI context, as argued
in the discussion.

II. MATERIAL AND METHODS
A. ERP VARIABILITY ANALYSIS
To understand the problem we are trying to overcome, it is
necessary to mention two facts. (1) Several components are
generated after the presentation of a stimulus and not only

the ERP that it is intended to evoke. All these compo-
nents affect the detection of the target stimulus. (2) There
is variability in the latency and amplitude of the compo-
nents in each electrode, among subject sessions and among
subjects [3]–[5].

These two issues are present in P300-based BCIs and
have been manifested since the seminal paper on BCI
by Vidal [31] and later confirmed by several authors
[30], [32]–[35]. Variability of amplitude and latency has been
described in P300 speller-based BCIs [28] and henceforth
shown by several works [32], [36]–[39]. Thus, information
useful for the detection of the target stimulus is not concen-
trated in a specific time interval of an ERP component; rather,
it fluctuates during and after the presentation of the stimulus
and varies between sessions and subjects.

Both issues can be characterized through a tool widely used
in BCIs: Signed-r2-values [32], [40] based on point-biserial
correlation, which is a special case of Pearson correla-
tion [41]. This tool measures the association of a con-
tinuous variable and a dichotomous variable by providing
discriminatory information in the spatiotemporal plane.

In the analysis of ERPs, the continuous EEG signal
measured by an electrode is divided into epochs from
the onset of the stimulus, and each epoch is labeled as
target or nontarget (dichotomous variable). In this study,
signed-r2 was implemented in preprocessed EEG signals
(as explained in section II-E) under the rapid serial visual
presentation (RSVP) model and the oddball paradigm [30].
Each subject underwent four sessions, two on one day
(sessions 1-2) and the remaining two on another day
(sessions 3-4). This methodology facilitated performing
inter- and intrasubject variability analyses.

Figure 1 shows the values of signed-r2 in each subject
session. The sequence of ERPs could be seen once the target
stimulus was presented. Warm colors represent high values
of signed-r2 (positive deflections in the EEG signal), whereas
cold colors indicate low values (negative deflections).

The figure shows that discriminant information appears
in different brain regions depending on the subject. In some
subjects, discriminant information is preserved between ses-
sions of different days, e.g., subject 1 in the electrodes of
the frontal and occipital lobes in the range of 335-395 and
540-800 ms or subject 5 in the range of 335-395 ms. In other
subjects, it changes from one day to another, e.g., sessions 1-2
in subject 3 present high signed-r2 values between 205 and
325 ms in the frontal lobe and negative values in the occipital
lobe. In sessions 3-4 (second day), the maximum values were
found in the parietal region in the ranges of 135-195 and
335-410 ms, and negative valueswere found between 205 and
325 ms in the occipital and parietal (P/O) lobes. Similarly,
for subject 8 in sessions 1-2 (first day), the most discriminant
information is observed in the P/O in the ranges 155-195 and
285-420 ms; however, in the sessions of the second day, this
information appears distributed in all regions.

To corroborate the results of signed-r2, we applied
the BLDA classifier throughout the time intervals, which
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FIGURE 1. Signed-r2 matrix: High values of signed-r2 vary temporally and spatially between subject sessions. Positive and negative ERPs
are present at different time intervals at different electrodes. Maximum and minimum values of signed-r2 in each day session are shown in
the upper right corner. Panel A) corresponds to sessions 1 and 2 on the first day. Panel B) corresponds to sessions 3 and 4 on another day.

confirmed the separability for detection of the target stim-
ulus. We observed an increase in the accuracy in the time
intervals with maximum and minimum values of signed-r2
(see Figure 1 of section 1 in the supplementary information).

In the inter- and intrasubject variability analysis, it is
necessary to measure the similarity degree of spatial
(i.e., electrodes) and temporal features of events evoked dur-
ing the presentation of a series of stimuli, in this case under
the RSVP model [42], [43]. For this task, cross-correlation
was used as a quantitative factor to compare the signed-
r2 matrices of the different sessions. We thus measured the
degree of similarity between sessions, considering the vari-
ability inherent in neuronal activity. This measure shows
that the greatest similarity occurs between subject ses-
sions (even when they were recorded on different days),
whereas between subjects, there were larger differences.

Figure 2 was generated from each session of each sub-
ject. A total of 16 matrices (cf. Figure 1) were compared.
Warm colors represent the maximum values of similar-
ity between sessions, and cold colors correspond to low
similarity.

B. PROPOSED APPROACH: CONTINUOUS
ERP CHARACTERIZATION
An ERP is a positive or negative voltage deflection over time.
Our method takes advantage of this basic characteristic and
continuously measures its evolving AUC. We must highlight
that several ERPs may be present in response to a stimulus;
for this reason, we calculate the AUC evolution with a sliding
window that moves throughout the epoch. In each electrode,
this methodology converts EEG signal epochs to a hit vector
ĥ considering the stimulation temporal information. This hit
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FIGURE 2. Measure of similarity between sessions per day. Each square
represents the cross-correlation between the values of the two
signed-r2 matrices (cf. Figure.1) corresponding to sessions 1-2 of one day
and 3-4 of another day. The maximum values correspond to the
comparison of a session with itself, in warm colors; cold colors represent
less similarity. Panel a) represents the comparison between temporal
features, and panel b) represents the comparison of spatial features of
signed-r2 matrix columns.

vector characterizes ERPs while maintaining their temporal
and spatial features.

To apply the proposed method, the EEG signal of each
electrode is divided into epochs and grouped by each set
of stimuli presented in a trial; each epoch has an identifier
called the stimulus code. For each electrode, we build a 3D
matrix X ∈ IRMxTxQ with M stimulus codes, T samples
and Q trials (one trial is equal to a set of M stimuli). To
illustrate the application of the maxAUC method, let us first
consider the MxT matrix of one trial. In each epoch of this
matrix, we apply a sliding window (SW) of size n, which can
be adjusted according to the duration of the ERP that pre-
dominates in the analyzed signal, e.g., around 250 – 300 ms
for P300 or around 150 - 200 ms for the N200 ERP [44].
In our application, we apply the two window sizes men-
tioned above, since they are the most prevalent in ERP-based
BCIs [30], [32], [33], [45]–[48]. Therefore, the window size
may change depending on each ERP of interest. The SW
moved through each sample, from stimulus onset to 1000 ms
after.

Within each SW, f subwindows are created, and their
AUCs are calculated (see Figure 3); and for this, it is neces-
sary to have an SWwith an odd sample size. Then, we choose
the central sample to which we add and subtract a sample to
obtain a subwindow until reaching the limit of the SW. For
instance, if we have an SW of size 7, we obtain 3 subwindows
with sizes of 3, 5, and 7 samples. In this way, we seek to give
greater advantage to the center of the ERP, which is the one
with the greatest amplitude, and therefore, a greater AUC.
This procedure is repeated in eachM epoch

Aij =
f∑

k=1

AUC(Wijk ), (1)

where AUC(Wijk ) is the AUC of the temporal segment Wijk
from the ith sliding window of the jth epoch and the kth
subwindow. Then, from Aij, we obtain si, which is the stim-
ulus code with the highest accumulated AUC for positive
deflections.

si = argmax(Aij). (2)

FIGURE 3. Continuous ERP characterization is achieved progressively by
measuring AUC throughout the epoch of the EEG signal, distinguishing
positive and negative deflections.

For negative deflections, we select the stimulus code with the
minimum value

si = argmin(Aij). (3)

The hit vector ĥ is built by averaging vectors h as defined as
follows: if the stimulus code si matches the stimulus code of
the target stimulus starget , hi = 1; otherwise, hi = 0:

hi =

{
1, if si == starget ,
0, otherwise.

(4)

The component hi stores the result of each ith sliding window.
The average of all vectors h results in the vector ĥ, which we
call the hit vector; with values between 0 and 1; 1 indicates
that in all trials, the stimulus code with maximum AUC
corresponds to the stimulus code of the target stimulus, and
0 indicates that it corresponds in no cases. At the end, for
each electrode, we obtain two ĥ vectors: one for positive
deflections and another for negative deflections. This vector
can be seen as a feature vector for multiple further analyses.

C. APPLICATION OF ELECTRODE SCORING
An electrode selection method can use the hit vector ĥ to
calculate the score of an electrode. The AUC of each ĥ vector
results in a scalar value that represents that score. Although
here we used the AUC, other methods can be investigated,
i.e., feature selection methods. We illustrate an example of
applying this method to P300-based BCI data taken from
sessions 3-4 of subject 5 in the dataset [30]. The left panel
in Figure 4 shows the EEG signals corresponding to six stim-
uli: one target (stimulus code 1) and five nontarget stimuli
(stimulus code 2-6) in two electrodes: FC2 and O2. Several
ERPs are present throughout the epoch. Note the different
ERP evolution depending on the electrode. The right panel
shows the evolution of the AUCwithin each SW. This method
can be used to characterize positive or negative ERPs by
quantifying the positive maxAUC (maxAUC-P) or negative
maxAUC (maxAUC-N) of the EEG signal.
Figure 5 illustrates how our hit vector characterizes the

ERPs present in the EEG signal of each electrode. Panel
A shows an average of the EEG signal for each electrode
in response to the target stimuli. Several ERPs are present
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FIGURE 4. Evolution of the AUC as a function of the stimulus. Positive
and negative deflections are present throughout the epoch and vary
depending on the electrode. The figure shows the epoch of one target
stimulus (dark blue line, stimulus code 1) and five nontarget stimuli per
electrode, recorded in electrodes FC2 and O2 (one trial in the same
subject). The vertical red lines point out two different intervals of the SW
ongoing analysis (beginning at time 312 and 625 ms, respectively). The
duration of the SW in this example corresponded to 9 samples,
i.e., 281ms. A and D intervals correspond to Negative deflections. B and C
intervals correspond to Positive deflections. Left Panels: illustration of
the method for the ERPs corresponding to each stimulus. Right panels:
AUC values obtained when applying the method. Note that the target
stimulus during the SW intervals corresponds to AUC maxima for positive
deflections and minima for negative deflections.

FIGURE 5. Conversion of a vector of voltage amplitudes to a hit vector.
All ERPs throughout an epoch are presented. Panel A: amplitude in time
per electrode; in blue, the electrodes of the P/O lobes and in red for the
F/C lobes. Panel B: hit vectors for positive AUCs. Panel C: hit vectors for
negative AUCs. Each element of a hit vector is the probability that a target
stimulus has the maximum (or minimum) amplitude throughout the
epoch.

throughout the epoch and vary in each electrode. The maxi-
mum orminimum amplitude is not always found in electrodes
that are traditionally used, such as Pz (in black). In fact, they
can also appear in other locations, e.g., FC2 or O2, which
in some occasions are disregarded, depicted with thick lines.
Therefore, this figure shows how these positive and negative
deflections of the EEG signal are captured by the maxAUC
method. In panel A, we can see that between 300 and 500 ms,
there are negative deflections in most electrodes located in
the P/O lobes, depicted with blue color. These deflections
are detected by the maxAUC method. In panel B, the value
0.8 out of 1 (80% of trials) reached by electrode O2 represents

the percentage of hits in which the minimumAUC in the EEG
signal corresponds to a target stimulus. However, we can see
that between 200 and 500 ms, there are positive deflections
in most electrodes of the frontal and central lobes (F/C),
depicted in red. In panel C, it is observed that the maxAUC
method detects these positive deflections related to the max-
imum AUC of the target stimulus. In this case, the average
hits reach 0.9 out of 1 in electrode FC2.

D. DATASET
We validated the proposed maxAUCmethod in a well-known
publicly available database [30]. This dataset contains the
data of 4 disabled subjects and 4 healthy subjects. Each
subject completed 4 sessions: 2 sessions were performed one
day and the remaining 2 sessions were performed another
day. Each session had 6 runs, and each run contained data
from 32 EEG electrodes placed at the standard positions
of the 10-20 international system. Following the oddball
paradigm [28], 6 imageswere presented one by one in random
order, and the user was asked to silently count the times that
a specific image was repeated. This was called the trial. Each
trial was repeated 20 - 25 times per run. Each presentation
of an image lasted 100 ms, and during the following 300 ms,
no image was presented. For our study of inter- and intrasub-
ject variability, we generated 2 groups of analyses per day:
the first group formed sessions 1-2 in one day, and the second
group formed sessions 3-4 of another day.

E. PREPROCESSING
For our analysis, before segmenting the signals in epochs,
we averaged the signal of two mastoid electrodes that were
used as references. The data were filtered with a sixth-order
forward-backward butterworth bandpass filter, and cut-off
frequencies were set to 1.0 Hz and 12.0 Hz, following previ-
ous tests [30]. These data were downsampled from 2,048 Hz
to 32 Hz, and each run was standardized to a mean of 0 and
standard deviation of 1. For our analysis, we considered an
epoch of 1,000 ms from the onset of the stimulus.

F. ELECTRODE SELECTION METHODS
1) TRADITIONAL/STANDARD ELECTRODE SELECTION
In ERP-based BCIs, electrodes located in the occipital and
parietal lobes are typically used, as it is assumed that they
provide more information and greater precision to detect
target stimuli. For example, in the 1970s, Vidal [31] used
electrodes of the occipital and parietal lobes: Oz, O1, O2,
Pz (10/20 international system) and only one of the frontal
lobes, Fz, as an electrode for the artifact detection process.
Different electrode combinations between these lobes have
been employed, either by increasing the electrodes of the
central lobe (Fz, Cz) or those of the posterior lobe (P3, P7,
P4 and P8) [30], [49]–[52], the latter significantly increased
the accuracy of the detection [30], [32], [33], [45]–[48].
Currently, the standard configuration that mostly uses elec-
trodes located in the parietal and occipital regions and in
fewer numbers in the frontal zone is widely accepted, and
many authors use it by default [35], [53], [54].
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TABLE 1. Electrode selection approaches to detect P300-ERPs. Since the
first work in P300-based BCIs the Pz electrode has been used in most
implementations together with those of the middle line Cz, Fz, Oz.
Evidence has shown that the lateral electrodes of P/O lobes also
contribute to accuracy improvement of ERP detection.

Another approach is to select the best electrodes according
to an automated criterion that scores the information pro-
vided in each location. Exhaustive search and greedy search
(forward selection and backward elimination methods) stand
out [17], [19]–[21], [23], [38], [55]. Although these methods
can improve accuracy without a priori information, one of
their weaknesses is typically their high computational cost by
using exhaustive search or greedy algorithms [19]. Another
disadvantage of these methods is their high variability of
performance between user sessions, which impacts their gen-
eralization performance [19], [21], [23], thus preventing the
adaptability of the BCIs. In addition, these methods face the
problem of the lack of knowledge regarding what character-
istics of the signal are more relevant and best contribute to the
accuracy of the BCI. Table 1 chronologically summarizes the
evolution of electrode use in P300-based BCIs from the first
works in 1973.

In summary, the works discussed above conclude that
the electrodes of the central and frontal lobes contain rele-
vant information for ERP-based BCIs and that the posterior
lobes contain considerable relevant information for improv-
ing the accuracy of this type of BCI [19], [21], [23], [30],
[32], [38]. However, when looking for the optimal preci-
sion of a BCI, one may want to consider methods of elec-
trode selection adapted to the subject and robust between
sessions [21]–[24].

2) PROPOSED ELECTRODE SELECTION CRITERIA
An appropriate personalized selection of the electrodes can
lead to an increase in the accuracy of the BCI and a decrease
in the computational cost. Systems with few electrodes are
easier to configure and more user friendly than systems with
many electrodes. It is known that a large set of electrodes
does not always increase the precision of the classifier [30]; in
fact, in some cases, it is problematic and results in overfitting
the model [58], [61]. The challenge, then, is a BCI with few
electrodes that achieves high precision.

As we saw in section II-F.1, different electrode configura-
tions have been employed over the years (see Table 1), but
all of them maintain in common the presence of the electrode
Pz, followed by the electrodes of the midline. Then, lateral
electrodes of the posterior part were added, and in some
cases, the configuration includes electrodes of the central and
frontal lobes. The above described together with the findings
of [21] show that although the most relevant electrodes are
in the parietal and occipital lobes, the frontal lobe electrodes
may also be relevant for some subjects.

With this background, we want to evaluate the evolution
of the classifier accuracy as a function of the number and the
specific set of electrodes. This evaluation is performed for
two kinds of electrode configurations: 1) through the stan-
dard electrode selection and 2) by means of the personalized
alternative selection proposed in this work based on the AUC
and described below.

Our selection of electrodes is based on the electrode score
described in section II-C. To select one electrode, we choose
the one with the best score. For two or more electrodes,
we select one electrode with the highest score from the F/C
regions (the one with the highest score), and the remaining
electrodes are selected from P/O regions with the highest
score (same criterion as in the F/C regions), as illustrated
in Figure 6. In this study, in the context of P300-based
BCIs, electrodes were selected with the a priori knowledge
that there are differences between the components that are
generated in different brain lobes [3], [4], [34]. The evidence
from several studies that demonstrate improvements in clas-
sifier accuracy using electrodes of the posterior brain regions
[30], [32], [50], as explained in section II-F.1, were also
considered.

Typically, a classification method is used to verify the
accuracy of the ERP detection of each set of electrodes. Next,
the classification method used in this work is explained.

G. CLASSIFICATION
After the electrodes were selected according to each criterion
seen in section II-F, we used their EEG signal for classifica-
tion. Determining the presence or absence of ERPs is usually
considered a binary classification problem. BLDA is a variant
of Fisher’s LDA [30] and has been widely used in these
types of problems with good results [30], [34], [62]. BLDA
performs regression in a Bayesian framework that assumes
that regression targets t and feature vectors X are linearly
related to additive white Gaussian noise n:

t = wTX + n, (5)

where w represents the weight vector; with these weights
used in regression, we can write the likelihood function.
To perform inference in a Bayesian context, it is necessary
to specify an a priori distribution, which is defined with a
zero-mean Gaussian prior for the weights. These express the
penalty, such as the effect of the regularization term used in
ridge regression. The posterior distribution can be computed
by Bayes’ theorem. To obtain the predictive distribution,
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FIGURE 6. Electrode Selection. Electrodes were divided into two groups, one with electrodes from the central and frontal lobes and others
from the parietal and occipital lobes (P/O). For the analysis, 6 sets of electrodes were chosen, mostly electrodes with the highest score in
the P/O zone, according to the a priori knowledge that more relevant information is found in these lobes (see section II-F.1).

the likelihood function for a new input vector x̂ (i.e., a new
epoch to detect the ERP) and the posterior distribution must
bemultiplied and integrated overw; this distribution was used
to obtain the class probabilities by calculating the probabil-
ity of the target values used during training. The predictive
and posterior distributions depend on the hyperparameters
α and β. These are calculated by maximizing the likelihood
estimation with respect to them through an iterative algorithm
described in [63] or [64]. The classifier output is a scalar
value, which represents the mean of the predictive distribu-
tion of each stimulus. The stimulus with the highest value was
considered the target. An expanded version of the classifica-
tion process can be seen in section 2 of the supplementary
information.

H. CROSS-VALIDATION
The classifier was validated using a K -fold cross-validation
scheme, where K is equal to two. We trained the model with
one session (six runs) and tested it with another (another six
runs) and vice versa. This provided two accuracies that were
averaged; thus, one subject had an average accuracy per day.
Remember that each subject had two sessions per day in two
different days (as we saw in section II-D); finally, we obtained
16 accuracies. The accuracy of the classifier was evaluated for
each set of electrodes considered in our analysis.

I. STATISTICAL ANALYSIS
The Wilcoxon signed-rank test (WSR test, p<0.05) was used
to assess whether the difference between the accuracies pro-
vided by the maxAUC-N method and that of the standard
electrode selection was statistically significant.

III. RESULTS
In this section, we show the results of the accuracy achieved
with the maxAUC method to characterize ERPs and compare
the associated performance with the accuracy of electrodes
of a widely used standard configuration (see Figure 6). The
results show how themaxAUC method improves the accuracy
of the BLDA classifier when electrodes with better features
are selected.

The selected electrodes with the highest score of positive
and negative AUCs were tested in the classifier. Throughout
the analyses, we used a color code for each set of electrodes.
Red indicated the results corresponding to the electrodes with
maxAUC-N, green indicated those for maxAUC-P and black
indicated the results for the standard electrodes.

A. MAXAUC ERP DETECTION CONTRIBUTES TO
CLASSIFICATION ACCURACY
Figure 7 shows the comparison of the accuracy of six elec-
trode sets. Each panel shows the evolution of the accuracy
of 20 trials. The upper left panel shows that a single stan-
dard electrode (Pz in all subjects) provided less precision in
each trial when compared to an electrode selected for each
user with maxAUC-N or maxAUC-P. This advantage was
seen for all sets of electrodes. Better precision was achieved
with fewer trials using the maxAUC method in each set of
electrodes compared.

We show in the same figure that the accuracy of the BLDA
classifier with our electrode selection method outperforms
the accuracy with the standard electrodes from the first trial.
The accuracy of a single selected electrode is comparable
to that of three standard electrodes. This advantage over
standard electrodes wasmaintained over all sets of electrodes.
Note that the best precision corresponds to electrodes selected
with maxAUC-N.

With the purpose of making a further quantitative compar-
ison, a measure that we call precision gain Pgain was used as
a comparative measure of the precision between themaxAUC
method and the standard electrode sets. Pgain is a normalized
measure between -1 and 1. Positive values correspond to a
better performance of the maxAUC method over the use of
standard electrodes, whereas negative values correspond to
the opposite case. Pgain is defined as:

Pgain =

∑n
k=1 µ

maxAUC
k − µstdk

Pp{
Pgain > 0 maxAUC wins,
Pgain < 0 std wins,

(6)
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FIGURE 7. BLDA classifier accuracy by trial for each set of electrodes.
From the first trial, the accuracy of the selected electrodes (green and
red) was greater than that of the standard set of electrodes (black),
described in Figure 6. The accuracy of a single selected electrode was
comparable to that of three standard electrodes. Each point represents
the average of the 16 accuracy values.

whereµ represents the average accuracy of the 20 trials of the
set of electrodes that are being compared, µmaxAUC for the
electrode set selected with our methodology and µstd for
the standard. Pp is equal to 100%, which represents perfect
precision of the classifier, and n is the number of cases to
be compared (in our case, n = 16). We also measured
the percentage in which the maxAUC method wins, ties and
loses, regarding the standard method, across the obtained
16 accuracies for both methods.

Figure 8 shows a summary of the comparison between
electrode sets by day; for this, the 16 accuracies of each set
of electrodes were averaged. The accuracy of the electrodes
selected with our method was better than that of the standard
configuration. The largest difference occurred when few elec-
trodes were used. It is interesting to note that the accuracy
of the electrodes selected with maxAUC-N surpassed that
corresponding to maxAUC-P.
Panel A in Figure 8 shows a summary chart of the accuracy

achieved with data from first-day sessions. In this panel,
we compared the accuracies of maxAUC-N and maxAUC-P
with that of standard electrode sets. The accuracy with one
selected electrode surpassed approximately 30% that of the
standard electrodes (WSR test, p<0.05). The accuracy of four
electrodes selected with the maxAUC-N was greater than the
accuracy of 10 standard electrodes.

Panel B in Figure 8 shows the Pgain calculated with
equation (6) and depicts the gain (or loss) of the electrode
sets selected with our methodology (described in II-F.2)
versus that of the standard electrode configurations cur-
rently used. As we mentioned above, positive values indi-
cate that the accuracy of the BLDA classifier achieved
with the maxAUC method was better than that of the stan-
dard electrode configurations. We can see that our method
always had an advantage over the standard electrode con-
figurations, and with the configurations of few electrodes,

FIGURE 8. Classifier Accuracy Improvement and Precision Gain. Panel A
shows the classifier accuracy of the first-day sessions. Panel B shows a
Pgain between 1 and -1; 1 when the accuracy of maxAUC completely
outperforms the standard electrode choice. Panel C (bar graph) shows
the percentage of times in which one method outperformed the other,
red shows when the maxAUC outperforms the standard electrode choice,
black corresponds to the opposite case and yellow shows when they
match. Panels D, E, and F show the classifier accuracy of the second-day
sessions. The accuracy of the electrodes with maxAUC-N outperforms all
electrode sets compared.

this advantage was greater. When the number of electrodes
increased, the gain in our method decreased, but it was still
positive until the configuration of 10 electrodes.

Panel C in Figure 8 depicts the percentage in which the
maxAUC method wins, ties and loses in each set regarding
the standard method. The red color shows how many times
our method overcomes the standard electrode choice. The
accuracy with one electrode is 100%, i.e., accuracy improves
in all sessions for all subjects.

Panels D, E, and F show the accuracy achieved with the
data of second-day sessions. Our method maintains an advan-
tage over the standard configuration. ThePgain in all electrode
sets is better except for the configuration of 8 electrodes in
which the difference is minimal with a Pgain = −0.0052.
We also evaluated statistically significant differences in the
accuracies of the selected electrodes with maxAUC-N and
with the standard configuration. Table 2 shows the p-values
applying the WSR test. This analysis was performed on each
dataset for each day. Values less than 0.05 were obtained
for all p-values, which indicates that our electrode selection
method provides better results than the standard electrode
selection.

B. BITRATE IMPROVEMENT
Another measure of performance in a BCI, in addition to
the accuracy used in the previous section, is the informa-
tion transfer rate (ITR) proposed by Wolpaw et al. [65]
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TABLE 2. Statistical analysis for each day sessions and for cross-session. The table displays the p-values of the accuracy difference of the electrode sets
analyzed. A p-value<0.05 was considered statistically significant. Each column represents the number of electrode in each set.

in 1998 and widely used to date [66]–[69]. In this section,
we show how our method of electrode selection exceeds the
performance of the standard selection method using the ITR
metric as a comparative measure for both methods. There
are also other metrics, such as BCI-utility [70] that are more
focused on the user and that contemplate error correction.
That is, the objective of this measure is to consider certain
measurable benefits for a BCI user through a function that
quantifies the user’s benefit over time. To promote the gener-
alization of our results, we applied the BCI-utility metric to
our method (see Figure 4 of section 4 in the supplementary
information). As expected and given by the precision gain
that our method has over the standard, for both metrics,
the performance of the selected electrodes with the maxAUC
method has an advantage over the standard approach.

Next, the quantification of ITR is described, and we used
the bitrate definition proposed in [65], in which the equations
(7) and (8) are used

R = log2N + P log2P

+ (1− P) log2 [(1− P)/(N − 1)], (7)

ITR(bits/minute) = R 60/τ, (8)

where N is the number of classes (or stimuli, 6 in this study),
P is the accuracy and τ is the time in seconds for one trial
(2,400 ms in this study), see section II-D. The results of
our method showed an increase in bitrate in all datasets
(see Figure 9). This figure shows that the bitrate achieved
with four electrodes selected withmaxAUC-N is equal to that
of 10 standard electrodes. We also calculated the percentage
in which the maxAUC method wins, ties and loses, c.f.
as in section III-A. Figure 9 shows that our method, in red,
generally outperforms the bitrate of standard electrodes, and
the advantage is greater for cases in which fewer electrodes
are used.

C. ADAPTABILITY OF THE MAXAUC METHOD TO
INTER- AND INTRASUBJECT VARIABILITY
The effectiveness of this method regarding adaptability can
also be addressed. The electrodes selected in one-day sessions
can be used in sessions of another day while maintaining
superiority over the standard electrode selection and back-
ward elimination method. To test this, the electrodes selected
on the first day were used with the second day data. One can
observe that the accuracy obtained with themaxAUCmethod-
ology remains superior to that of the standard electrode selec-
tion and the backward elimination method.

FIGURE 9. Comparison of ITR between standard electrodes and our
selection of electrodes. An average of 16 ITR results, two per user. The bar
graphs in the upper corner show the times each set outperforms the
other, red illustrates when maxAUC-N outperforms the standard
selection, black corresponds to the opposite case, and yellow shows
when they match.

Figure 10 shows three comparative measures. Panel A
shows the classifier accuracy of the second-day sessions
using the electrodes selected on the first day with our method,
the backward elimination method, and the standard electrode
selection. The average accuracy of one selected electrode
overcomes standard electrode selection by approximately
20%. On average, the sets of 10 selected electrodes reach
the highest accuracy, surpassing that of all the standard elec-
trode sets and the backward elimination method. The great-
est advantage of the maxAUC method with respect to the
standard electrode sets is presented when few electrodes are
used. Panel B shows the precision gain of each electrode set
compared with the standard electrode choice. One can see
thatmaxAUC-N outperforms all standard electrode sets. Panel
C shows a measure of sensitivity; red depicts the percentage
of times that the maxAUC method outperforms the standard
electrode choice, black indicates the percentage of times that
the standard wins and yellow indicates when they tie.

This advantage is also manifested in the statistical analysis,
where high levels of statistical significance are obtained,
especially for the smaller electrode sets. Table 2 shows the
calculated p-values.

In addition to the lack of adaptability of the backward
elimination method, its computational cost also impairs
its implementation for electrode selection. With backward
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FIGURE 10. Cross-sessions accuracy summary. Panel A shows the
classifier accuracy of the second-day sessions with the electrodes of the
first day (left y-axis) and time consumed for the maxAUC-N electrodes
(mean 41.2795 ms) and the backward elimination electrodes (mean
1,954.9600 ms) (right y-axis). Panel B shows the Pgain between 1 and −1;
1 when the accuracies of the maxAUC completely outperformed the
standard. Panel C (bar graph) shows the percentage of times in which
one method outperformed the other, red when maxAUC exceeded the
standard, black on the contrary and yellow when they matched. The
accuracy of the electrodes with maxAUC-N outperformed all electrode
sets compared.

elimination, the maximum average accuracy (10 electrodes)
of the analyzed electrode sets for the 8 subjects was reached
in 1,897.9 ms (1,896.3 ms for electrode selection + 1.69 ms
for cross-validation); for the maxAUC-N method, the time
consumed was 41.53 ms (39.9 ms for electrode selec-
tion + 1.63 ms for cross-validation). Figure 10 shows the
time consumed for processing the 8 subjects in each set
of electrodes. The average time consumed and standard
deviation in each set of the maxAUC-N electrodes was
41.2795(±0.0987)ms, and in the backward elimination elec-
trodes, it was 1, 954.9600(±28.3515)ms. This difference in
time consumption is because our method performs succes-
sive sums to obtain the AUC (numerical integration), which
corresponds to linear operations, while backward elimination
implements a classification method (SVM, LDA, BLDA,
etc.) to select each electrode in each set, which corresponds
to nonlinear operations. All experiments were performed
on a physical machine with an Intel i7-4790 processor at
3.6 GHz, and 8 GB RAM. The same programming language
(MATLAB) and classifier (BLDA) were used for all
operations.

The proposed method selects electrodes with their own
specific conditions and signal features for each subject ses-
sion. It was observed that there are electrodes whose selection
was repeated for all subject sessions, whereas others changed
in each session. Table 3 shows eight electrodes selected in
sessions 1-2 of a day and 3-4 of another day for each subject.
For all subjects, at least half of the 8 best electrodes of the
first sessions (1-2) were repeated in the second (3-4), see the
last column of Table 3. The electrodes that were consistently
the best in the subject sessions were not necessarily the same
among subjects, e.g., subjects 1 and 5 in Table 3.
Finally, we compared our electrode selection methodol-

ogy with the standard used by Hoffmann et al. [30] using
the same number of electrodes in each set. Please note that
Hoffmann et al. did not provide an analysis distinguishing

the data on different days. Therefore, we merged the two-day
sessions for this comparison. Our electrode sets exceeded
the accuracy and ITR with high statistical significance
(see Figure 2 and 3 in supplementary information). A detailed
description of this analysis can be found in section 3 of the
supplementary information.

IV. DISCUSSION
We proposed the use of continuous ERP characterization to
improve detection by tracking its temporal evolution. This
method characterizes the EEG signal according to positive
and negative AUCs over time. The characterization shows
that several positive and negative components stand out in
an ERP recording. Positive and negative deflections are dis-
tributed throughout the poststimulus time and contribute to
a better detection of the target stimulus. This approach can
serve to select electrodes for BCI applications. The proposed
approach can be used in anymodern EEG systemwith a small
or large number of electrodes.

The maxAUCmethod characterizes the temporal evolution
of ERPs and thus can be implemented in any procedure
that involves their detection. The method creates a feature
matrix, and each of its rows stores the percentage of times
in which the maximum (or minimum) AUCs are related to
the target stimulus over time in each electrode. Thus, one of
the advantages of this methodology is the characterization in
each electrode of the positive and negative deflections that are
being generated when a specific stimulus is presented. This
could help in identifying specialized brain processes since
ERPs are considered electrophysiological markers [5], [71].
In the context of BCIs, our work also benefits those who use a
combination of ERPs to improve their accuracy, for example,
as in the case of Qin et al., who combined four ERPs P1, N1,
P2a, and P2b [47], or Blasco et al., who combined P300 and
N2pc [72].

The maxAUC electrode selection method simplifies BCI
implementation and contributes to improving the associated
accuracy. This electrode selection can be understood as a
feature selection technique [19], [22], [30], [51], with which
we eliminate information redundancy, reduce the number
of parameters to optimize the classifier, increase the SNR
and identify characteristics related to the targeted neural
responses [22]. This approach of selection of electrodes
works in three ways by reducing the computational cost,
improving the accuracy and contributing to the design of
more friendly BCIs through a reduction in the number of
electrodes.

The maxAUC method allows us to address inter- and
intrasubject variability. This variability is caused by func-
tional dynamics in healthy and disabled subjects or by
other extrinsic factors affecting electrode conductance, noise,
external interference, etc. In the analysis reported in this
paper, maximum differences between the signals of target and
nontarget stimuli varied among sessions and subjects, as illus-
trated in Figure 1. By its continuous ERP characterization,
the proposed electrode selection method provides improved
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TABLE 3. The electrodes selected with the negative AUC per user sessions are presented. The last column shows the selected electrodes that were
common in the two session groups 1-2 and 3-4 in different days. Note that one group of electrodes was the same in the two daily sessions (last column),
while the other group changed between sessions. Moreover, it is worth highlighting that for this dataset, the widely used Pz electrode is not selected as
the best electrode (see Fig.8, and Fig.10).

classifier accuracy in the detection of target stimuli compared
to traditional electrode selection approaches. Another impor-
tant advantage to this methodology is its robustness between
subject sessions. The electrodes selected in the one-day ses-
sion can be used in the session of another day, maintain-
ing their advantage over standard electrode selection and
backward elimination. Negative areas (maxAUC-N) are more
robust over time than positive areas, see Figure 10, which is
in agreement with evidence that shows the importance of the
negative deflections in the ERP-based BCIs [23], [30], [32],
[51]. Our methodology seems to detect neuronal signatures
of visual recognition events evoked during RSVP, manifested
in several investigations [42], [43]. However, a deeper study
with more sessions of different days is necessary to validate
this hypothesis.

When analyzing the variability, we observe that at least
50% of electrodes are again selected between the sessions
on different days of each subject. This is consistent with
what was previously observed in section II-A , which shows
that there is a degree of similarity in spatial information.
However, the rest of the electrodes are different, which we
attribute to the variation in positions when placing the cap,
and the variation in the attentional state of each subject or its
environment, which can influence performance, asmentioned
in several works [2], [4], [23].

V. CONCLUSION
The proposed method provides efficient detection and
continuous characterization of ERPs, manages intersubject
variability, decreases the computational cost of classic detec-
tion methods and contributes to the search for inexpensive
brain-computer interfaces. Furthermore, the method con-
tributes to the design of personalized adaptable BCIs, a chal-
lenge that is still latent in this technology. This methodology
can also be combinedwith artifact removal and other methods
of feature extraction and/or selection to build further BCI
optimizations.
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