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ABSTRACT 
 

Aims: The goal of this project is to develop and test a new method for predicting the change 

of a known protein structure produced by a given amino acid mutation. This prediction 

consists of two parts: (1) Modelling the perturbation induced by the mutation, which was 

done in the host laboratory and whose parameters the present work aims to determine; and 

(2) Computing the structural change produced by this perturbation as the linear response of 

the protein, as suggested by the structurally constrained model of protein evolution 

developed by Julián Echave. For this second part the Torsional Network Model (TNM) 

developed in the host laboratory was applied. The grand-goal is to predict the fitness change 

associated with the mutation and integrate it with the Stability Constrained models of Protein 

Evolution model previously developed in the host lab to improve phylogenetic inference of 

protein evolution. In this work, predicted and observed structural changes and RMSD are 

used to determine optimal parameters on a training set and assess the model on a test set.  

 

Method: A set of protein pairs differing in one mutated amino acid were used for this project. 

Several filters were applied to ensure, as far as possible, that the observed structural change 

was mainly due to the mutation. For instance, the structures must contain the same ligands 

in order to reduce the possibility that the structural change arises from ligand binding. 

Proteins were divided into a training set and a test set. Three mutation parameters were 

optimized using Jarratt’s method of successive parabolic interpolation to minimize the error 

of the predicted RMSD of the training set.  

 

Results: The initial results suggested that overfitting was taking place and that it was 

necessary to regularize the optimization by imposing an additional condition on the direction 

of the structural change. The regularized parameters avoided unrealistic negative parameters, 

improved the prediction of the direction of the structural change and yielded an acceptable 

error on the predicted RMSD of the test set.  

 

Conclusion: The optimized parameters produced acceptable results, although the 

regularization could be further improved with additional work. 

 

Key Words: Stability Constrained models of Protein Evolution, Torsional Network Model 
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1 INTRODUCTION 

1.1 PROTEIN EVOLUTION  
 

Proteins have evolved over time to perform specialized tasks throughout different systems. 

They achieve this through natural selection which acts on the random mutations occurring 

in the replicative process (insertions/deletions, copy number variations or single-point 

mutations) [1]. Natural selection also acts with varying strengths on different protein sites, 

leading to site variation of evolutionary rates. This was discussed by Echave, Wilke et al., 

leading to two main conclusions: (1) Empirical substitution models assume that rates of 

evolution are the same at all positions, which is incorrect. (2) Stability, which is easier to 

predict than function, may rationalize the site dependence of evolutionary rates, which are 

strongly correlated with the number of native contacts that influence stability [2]. These 

conclusions form the basis for the development of Stability Constrained models of Protein 

Evolution (SCPE) as a method to study protein evolution.  

 

1.2 STUDYING PROTEIN EVOLUTION WITH SCPE  
 

The SCPE model models the fitness associated with a protein sequence as the probability 

that the protein is in its folded state [3], which is a function of its folding free energy (Δ𝐺) 

(Eq. 1):  

 

𝑓 =
1

1 + 𝑒𝑥𝑝(∆𝐺 𝑇)⁄  (Eq. 1) 

 

 

Fitness (f) is a sigmoidal function of stability (Δ𝐺). For a large range of stability values, this 

means fitness is very close to either 0 or 1, i.e., the model is effectively neutral [4]. In the 

SCPE model developed in the host laboratory, the folding free energy (Δ𝐺) is computed 

through a simple model of contact interactions that takes into account the known structure 

of the native state and the statistical ensemble of compact misfolded conformations [3].  

 

This model maintains computational simplicity by assuming that the evolution of sites 

occurs independently (i.e., it does not consider the effect that a change to a site has on one 

another). However, the model still reflects the average constraints imposed by other protein 

sites, in a mean-field spirit, and predicts that the resulting substitution process is different on 

each protein site. The evolutionary rates resulting from this model are shown to be lowest at 

buried sites with many native contacts that contribute more to protein stability and are less 

tolerant to mutations [3]. Therefore, these sites experience stronger evolutionary pressure. 

In comparison with empirical substitution processes, the site-specific substitution processes 

predicted by the model increase the likelihood of the inferred evolutionary process and allow 

for the reconstruction of more realistic ancestral sequences. 

 

This model presents, however, several limitations: While empirical data shows that site-

specific substitution rates decrease with the number of contacts, sites with an intermediate 

number of contacts present the highest substitution rates in this model, which is incorrect. 

This model is also too tolerant to mutations, in particular those at sites with an intermediate 
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number of contacts [3]. This is a result of the model assuming that protein structure is 

perfectly conserved and does not consider the structural changes caused by mutations. 

 

To study the differential tolerance to mutations of different protein sites, Echave modeled 

the effect single-point mutations have on the structural change of the protein by introducing 

a new Linear Forced Elastic Network Model (LFENM). This study found that protein 

structures evolve along the lowest normal modes and are predicted as the linear response of 

an Elastic Network Model (ENM) to the perturbation caused by the mutation, as observed 

when proteins undergo conformational changes induced by ligand binding [5]. It should be 

noted that the LFENM applies random perturbations at specific sites as opposed to 

perturbations caused by the single-point mutation. To fill this gap, the host laboratory 

developed a detailed mathematical model of the perturbations caused by each of the 210 

possible single-point mutations.  

 

Normal Mode Analysis (NMA) can also be used to analyze functional protein motions. 

NMA approximates harmonic potential between interacting atoms to describe their 

interactions. This was first proposed by Tirion [6] and, when used in conjunction with 

ENMs, has three important characteristics: 

 

1. They assume that the structure in the PDB is a minimum of the free energy 

function. 

2. Interactions are minimally frustrated, i.e., each interacting pair is at the distance 

where the interaction energy is minimal. 

3. The harmonic approximation is used to approximate this energy with a quadratic 

function.  

  

Over time, many variations of ENMs have been developed, such as the coarse grained 

version of Tirion’s approach, the Anisotropic Network Models (ANM) and the Gaussian 

Network Model (GNM) [7]. This also includes the program developed for this project, which 

is an ENM in torsion angle space model known as the Torsional Network Model (TNM).  

 

1.3 STUDYING PROTEIN EVOLUTION WITH TNM 
 

The TNM program used in this project was first developed in the host lab by Mendez and 

Bastolla [8] and uses the protein backbone torsional angles as the degrees of freedom. This 

is similar to other torsion angle space models where NMA is performed using the torsional 

angle space [9], [10]. The TNM program performs NMA by allowing only the rotation 

around the alpha C-N (phi) and rotation around alpha C-C (psi) angles to vary while fixing 

all other degrees of freedom [11]. Moreover, interactions and kinetic energy are computed 

using all atoms in the protein, not only the alpha carbons.  

 

TNMs have numerous advantages as detailed by Mendez and Bastolla [8]: 

 

1. They better predict the displacement of atoms without additional computational 

costs. This applies to all atoms and not just alpha carbon. 

2. They are faster at computation, compared to ANMs. This is due in part to the fact 

that they use fewer degrees of freedom. This results in diagonalizing a smaller 

matrix for computing the normal modes. 
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3. The covalent geometry is conserved up to the first order. This is achieved by 

applying small amplitude perturbations and has numerous advantages in 

constructing protein-like structures. 

 

The TNM program developed by the host lab can be used to predict the conformational 

change arising from a given perturbation. To predict the structural effect of a mutation, it is 

still necessary to model how an amino acid mutation is mapped into a structural perturbation. 

The host laboratory developed this model taking into account three types of effects (on 

amino-acid size, on contact stability and on contact distance), extracting their parameters 

from the PDB. However, there is still a need to optimize the three mutation parameters that 

allow to combine these three types of effects. This is the goal of the present work. 

  

1.4 HOW TO TACKLE THE PROBLEM OF OPTIMIZATION 
 

1.4.1 Parabolic Optimization 

 

The goal of this work is to find the set of three parameters that minimize the quadratic error 

between observed and predicted RMSD. There are numerous strategies that can be used for 

solving optimization problems. One such method utilized in this project is Jarratt’s method 

of Successive Parabolic Optimization (SPI) [12]. Given three values, all in the same direction 

and with the other parameters fixed, SPI determines a candidate optimum value by fitting a 

parabola to the three points. The SPI method is then applied recursively in the three 

directions. There are numerous benefits to using Jarratt’s method to optimize the predicted 

RMSD, including: (1) The method is superlinear to the order of α = 1.325, meaning as 

iteration continues, the optimization becomes faster [12]. (2) This method requires three 

starting points, which for the optimization problem presented in this work, are easily 

generated.  

 

1.4.2 Modelling the RMSD 

 

It has been shown that sequence similar proteins can have dissimilar protein structures [13], 

and even when no mutation is present, proteins with the same sequence can predict a non-

zero observed RMSD. Therefore, the Mean Square Deviation (MSD) was modeled between 

two proteins (the square of the RMSD) as the sum of the MSD in the absence of mutations 

and the MSD due to the mutation (Eq. 2). The MSD was summed because the mean is a 

linear operation whereas the square root is not linear. The TNM program predicts the RMSD 

due to the mutation, therefore Eq. 2 can be rewritten as Eq. 3, whose slope and constant can 

be computed by performing the linear regression.  

 

 𝑅𝑀𝑆𝐷𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
2 =  𝑅𝑀𝑆𝐷𝑛𝑜 𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛

2 + 𝑅𝑀𝑆𝐷𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛
2 (Eq. 2) 

 

𝑅𝑀𝑆𝐷𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑
2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + (𝑠𝑙𝑜𝑝𝑒2 ∗ 𝑅𝑀𝑆𝐷𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛

2) (Eq. 3) 

 

𝑅𝑀𝑆𝐷𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛  is output by the TNM program, where it is computed based on the effect of 

the mutation on all the structural contacts formed by the mutated residue. Three types of 

effects are modelled: based on change of amino acid size, change of stability, and change of 
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optimal distance. These changes are obtained from the statistics of the PDB, and are scaled 

by three mutation parameters that are optimized in the present work. 

 

1.5 MOTIVATION FOR THE PROJECT 

 
As described above, mutations play an important role in evolution. These mutations can have 

a positive or negative effect on the proteins, thus on the organism as a whole. Studying these 

mutations and their effects on a protein can be very complex, hence the requirement for 

numerous mathematical models and methods to tackle this problem. Increasing the accuracy 

of the predicted mutant structure increases our understanding on how a given mutation 

changes the structure and function of a protein and from this can improve the ability to 

develop drug targets for the mutant. 

 

The problem this project aims to solve is to reliably predict the RMSD between the wild-

type and the mutant structure. This is achieved by optimizing the mutation parameters (size, 

stability, distance). Improving the predicted RMSD improves the similarity of the predicted 

mutant to the actual mutant. 

 

Once the mutation parameters are optimized, the TNM program will allow improved 

predicted mutant atomic coordinates, which in turn is one step closer to predicting a more 

accurate mutant structure. 

1.6 OBJECTIVE OF THE PROJECT 

 
The objective of this project is to improve phylogenetic inference of protein evolution by 

integrating the structurally constrained model developed by Julian Echave [14] with the 

SCPE model previously developed in the host lab [15]. This can be achieved by reliably 

predicting the size of the structural change (predicted RMSD). 

 

The work presented here aims at testing the mathematical model that represents how a single-

point mutation perturbs the known native structure of the protein. This perturbation is 

applied to predict the mutated structure as the linear deformation of the TNM in response to 

the perturbation, and the comparison between the predicted and observed RMSD is adopted 

to assess the model. 

 

The objective will be achieved by optimizing the mutation parameters of size, stability and 

distance in the mutation model. In order to determine if these parameters are sufficiently 

optimized, the predicted RMSD, calculated based on the mutation parameters, will be 

compared to the observed RMSD. Ideally the predicted RMSD will be similar to that of the 

observed RMSD while maintaining a reasonably low standard error. 
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2 MATERIALS AND METHODS 

2.1  USING THE TNM PROGRAM 
 

The TNM can operate in two different modes: 

 

- Mode 1: Optimizing the mutation parameters for each pair independently, resulting 

in the observed and predicted RMSD being the same.  

- Mode 2: Manually setting the mutation parameters used by the TNM program, 

resulting in a different observed and predicted RMSD for each pair. The performance 

of these parameters was tested and optimized as part of the main goal of this project. 

 

The TNM program works by providing it with two or more protein files in PDB format and 

an input file containing the desired conditions to test (e.g., maximum number of mutations 

allowed between proteins, minimum RMSD allowed to continue calculations, etc.). In the 

absence of this input file (which is not required for the correct functioning of the program), 

the default parameters provided in the program are used.  

 

The TNM models the perturbation associated to a mutation based on the contacts that the 

mutated amino acid forms in the native structure. Each contact contributes a force that is 

oriented along the direction of the contact, and whose signed value depends on the 

combination of the change of the size, stability and optimal distance between the wild-type 

pair and the mutated pair of interacting residues. Size, stability and distance are pre-

computed from a representative set of the PDB and tabulated for the 210 possible amino acid 

pairs, so that the only free parameters are the coefficients of the three components of the 

force. 

 

The program functions by pulling the protein structure information, following these main 

processes: 

 

1. The sequences are aligned, using Needleman-Wunsch alignment method, 

and the number of mutations between each protein is calculated. If the 

number of mutations exceeds what is specified in the input file, the 

program exits. 

2. The program checks that the reference atoms exist. The center mass is 

placed at the origin, and the cartesian axes are reoriented along the 

principal axes.  

3. The topology is analyzed. At this stage, the location of the mutation/s 

between the two proteins and the number of bonds for building the 

molecule are recorded and tested to ensure they meet the minimum 

threshold. The observed RMSD of the conformational change is 

calculated based on the alpha carbon. If the RMSD does not meet the 

minimum specified in the input file, the program exits. 

4. A number of ENM computations are performed. These include: 

a. The interactions between the atoms, calculated using the Gō 

model. 

b. The degrees of freedom, calculated on both the main and side 

chains. Depending on the input parameter specified, the main 
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degrees of freedom will be used later in the computation of protein 

dynamics in the harmonic approximation. 

c. TNM normal modes, computed using the degrees of freedom. 

d. Normal modes, selected based on eigenvalues and collectivity. 

Those not selected are discarded. 

5. The conformational change is then analyzed. At this point, the predicted 

RMSD is calculated based on the input mutation parameters. 

2.2 PROTEIN DATA INPUT FILE 

 
The raw data protein input file (bc-95.out), containing all proteins with 95% sequence 

identity, was downloaded from the PDB supplemental archive:  

 

  https://www.rcsb.org/pages/download/ftp  

 

This file is composed of proteins with chains longer than 20 amino acids. Each line in the 

file represents a new cluster. The PDB generates this file by running blastclust with the 

following parameters: 

 

 -c param_file.txt[-e 0.01] -p T -b T -S 90 

 

At the time of this project, there were 60,590 clusters and a total of 472,717 proteins. 

 

2.3 GENERATING THE TRAIN AND TEST FILES 
 

To ensure the structural changes being examined were due to single-point mutations and 

not resulting from other factors (such as structural changes resulting from different 

ligands), only wild-type and mutant pairs from the same family, containing the same 

ligands and pairs separated by one mutation, were examined (Figure 1). Additionally, 

proteins whose structures are determined by nuclear magnetic resonance (NMR) were 

discarded. Structures determined by NMR are less compact, which results in the TNM 

predicting larger flexibility compared to structures determined by X-ray crystallography.  

 

The list of pairs was processed through the TNM program. The TNM computes the ratio 

between the observed conformational change at a position and the structural fluctuation 

predicted at the same position due to thermal motion. This computation is used to select 

mutants for which the conformational change is likely to be due to the mutation rather than 

changed experimental conditions. This was achieved by imposing the following criteria: 

 

- Observed RMSD > 0.4 

- Mutation: max. ratio ≥ 1.2 

- No-mutation: max. conformational change ≤ 1 

- Average ratio Mutation > Average ratio No-mutation 

 

Pairs that failed to meet these criteria were discarded. 

 

In order to ensure that the observed structural change resulted from the single-point 

mutation, the conformational change observed needed to be significant. A threshold of 1 was 

https://www.rcsb.org/pages/download/ftp
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set for the change not due to the mutation and a threshold of 1.2 was set for the change due 

to the mutation. If the non-mutation conformational change is larger than the mutation 

conformational change, this may be caused by factors other than single-point mutation.  

 

The final protein pair list was split roughly 80/20 into a train and test file, ensuring all pairs 

within the same cluster of sequence-related proteins were kept in the same file.  

 

 
 

Figure 1 – Pair Creation Requirements. All created pairs were required to be from the same 

cluster and have the same ligands. Only single-point mutations were analyzed in this project to ensure 

the changes observed could be associated with that specific mutation. 

2.4 OPTIMIZATION OF MUTATION PARAMETERS 
 

To generate the starting values for the optimization, the training set was passed through the 

TNM program in Mode 1, which optimizes the three mutation parameters (size, stability and 

distance) per each protein pair individually by maximizing the cosine between the observed 

and predicted direction of the conformational change and equating observed and predicted 

RMSD. The mean values of the optimized parameters for all protein pairs were chosen as 

starting parameters, and Standard Error of the Mean (SEM) (Eq. 4) was used to generate the 

three initial values in the parabolic optimization method. Subsequently, the optimization of 
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the parameters was disabled and the TNM was run with the same mutation parameters for 

all proteins. After each run, the linear regression was performed using the python package 

sklearn [16] over the squared observed and predicted RMSD. The slope of the regression 

line, returned from sklearn, was used to scale the parameters and SEM (Eq. 5). 

 

𝑆𝐸𝑀 =  
𝜎𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

√𝑛
 (Eq. 4) 

 

𝑆𝑐𝑎𝑙𝑒𝑑 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 = 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 ∗ √𝑠𝑙𝑜𝑝𝑒 (Eq. 5) 

  

One parameter at a time was optimized using SPI while the other two parameters remained 

fixed. The optimization starts by using the scaled mean and scaled SEM (Figure 2). Since 

the mean quadratic error of the linear fit is proportional to 1-r2, where r is the correlation 

coefficient of the fit, the correlation coefficient was maximized as the function of the 

parameters. 

 

In the SPI method, a parabola is fitted from three data points consisting of three values of 

the parameter to optimize ([param - SEM, param, param + SEM]) and the associated score 

(the correlation coefficient computed from the TNM results). 
 

In order to maximize the scoring function 𝑓(𝑥𝑖), the coordinates were fitted to a parabola 

using the equations below, where 𝑥 is the parameter value.  

 

 

 (𝑖 = 1, 2, 3)                               𝑓(𝑥𝑖) = 𝑎 ∗ 𝑥𝑖2 + 𝑏 ∗ 𝑥𝑖 + 𝑐                                            (Eq. 6) 

 

2𝑎𝑥4 + 𝑏 = 0  (Eq. 7)  
 

The new estimated parameter, {𝑥4} was computed as: 

 

𝑎 =  
𝑥3𝑦2 − 𝑥3𝑦1 − 𝑥2𝑦3 + 𝑥2𝑦1 + 𝑥1𝑦3 − 𝑥1𝑦2

𝑥3𝑥2
2 − 𝑥3𝑥1

2 − 𝑥2𝑥3
2 + 𝑥2𝑥1

2 + 𝑥1𝑥3
2 − 𝑥1𝑥2

2
  (Eq. 8) 

 

𝑏 =  
𝑦1𝑥2

2 − 𝑦1𝑥3
2 − 𝑦2𝑥1

2 + 𝑦2𝑥3
2 + 𝑦3𝑥1

2 − 𝑦3𝑥2
2

𝑥1𝑥2
2 − 𝑥1𝑥3

2 − 𝑥2𝑥1
2 + 𝑥2𝑥3

2 + 𝑥3𝑥1
2 − 𝑥3𝑥2

2
  (Eq. 9) 

 

𝑥4 = −
𝑏

2𝑎
   𝑖𝑓 𝑎 < 0,

𝑥4 =  𝐴𝑟𝑔𝑚𝑎𝑥(𝑓(𝑥1), 𝑓(𝑥2), 𝑓(𝑥3))   𝑖𝑓 𝑎 > 0 (Eq. 10)
 

 

The optimization is stopped when 𝑓(𝑥𝑖) no longer increases for three successive iterations 

in the three directions corresponding to the three parameter types (Figure 2). The parameters 

prior to the three successive iterations are considered the optimized parameters. 
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Figure 2 – Method for Optimization of Parameters. Optimization occurs one parameter 

at a time. In the event there are three successive iterations where the score remains the same 

or decreases without showing any sign of recovery, optimization will stop returning the 

optimized parameters. Otherwise, the next parameter is optimized until this condition is 

achieved. 

 

The parameters were scaled (Eq. 5) prior to testing on the test set. Using the test set, the 

scaled parameters were then run through the TNM in Mode 2. The un-normalized Root Mean 

Square Error (RMSE) on the RMSD, expressed in Angstrom, was calculated on the test set 

and on the training set from the following equations: 

 

 

𝑅𝑀𝑆𝐷𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 =  √𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + (𝑠𝑙𝑜𝑝𝑒2 ∗ 𝑅𝑀𝑆𝐷𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛
2)  (Eq. 11) 

 

𝑅𝑀𝑆𝐸 = √∑(𝑅𝑀𝑆𝐷𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑  −  𝑅𝑀𝑆𝐷𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)
2

𝑛
  (Eq. 12) 
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3 RESULTS  

3.1 INITIAL STARTING VALUES 
 

Table 1 shows the initial mean and scaled values calculated with the training set. These 

values were used as the starting parameters for optimization. 

 

Parameter 

Type 

Mutation Parameter SEM 

Size Stability Distance Size Stability Distance 

Mean 100.86 250.77 144.09 20.53 56.19 62.79 

Scaled 11.65 28.96 16.64 2.37 6.49 7.25 

 

Table 1 – Starting Values. The TNM was run in Mode 1 with the mean parameters. The slope of 

the regression line (0.1155) was used to generate the scaled parameters and scaled SEM. The scaled 

parameters are the starting parameters for SPI. 

 

3.2 OPTIMIZING THE MUTATION PARAMETERS  
 

3.2.1 Optimizing for Correlation Coefficient of the RMSD 

 

 

Table 2 details the initial optimization results. The optimized parameters are indicated in 

Iteration 20 ([-4.46, 95.71, 2.62]) with a correlation of 0.775, after which the correlation 

decreases. Using the slope of the regression line, the scaled parameters were run with the 

training set (Table 3). A large positive correlation was shown with an RMSE of 0.158. 

 

Nevertheless, this set of optimized parameters showed some problems. First of all, the 

optimal parameter related with the amino acid size is negative, which is contrary to physical 

intuitions since it means that, if an amino acid is mutated with a larger one, amino acids in 

contact are pulled towards it instead of being pushed away. The TNM program computes 

the cosine between the predicted and observed conformational change. Consistent with the 

negative value of the size parameter, it was observed that the cosine was on the average 

negative (see the last column of Table 2), i.e., the optimal parameters predict conformational 

changes of approximately correct magnitude (RMSD) but with qualitatively wrong 

directions. Since the same RMSD can be obtained with two conformational changes in a 

direction and the opposite one, this result suggests that the good fit of the RMSD was 

obtained not because of a reasonable physical model but because of overfitting. 

 

Overfitting is very common in ill-defined optimization problems in which there are 

correlated explanatory variables such as the size, stability and distance that are used to 

predict the RMSD. Very frequently, overfitting yields optimized parameters that may be 

contrary to physical intuition, as the obtained negative size parameter. To address overfitting 

issues, it is necessary to regularize the optimization problem imposing additional conditions 

that reduce the optimal score that can be achieved and reduce the risk of overfitting. A very 

popular regularization scheme is Tikhonov regularization or ridge regression. However, 

regularization requires fixing an optional parameter that weights the regularizing condition, 
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which is often arbitrary (even if some objective recipes have been proposed, also in the host 

laboratory) and it can be cumbersome when the computational burden is high as in the 

present case. Therefore, it was decided to choose the simplest regularization, i.e. reducing 

the number of parameters. 

 

 

Optimize Correlation - Train Set 

Iteration 
Mutation Parameter 

Correlation Cosine 
Size Stability Distance 

0 14.86 28.96 16.64 0.619 -0.0149 

1 14.86 19.00 16.64 0.692 -0.0066 

2 14.86 19.00 18.12 0.687 -0.0089 

3 21.76 19.00 18.12 0.708 0.0007 

4 21.76 9.97 18.12 0.723 -0.0013 

5 21.76 9.97 16.34 0.725 0.0008 

6 20.25 9.97 16.34 0.728 -0.0006 

7 20.25 1.71 16.34 0.738 -0.0008 

8 20.25 1.71 13.38 0.738 0.0033 

9 9.85 1.71 13.38 0.730 -0.0116 

10 9.85 100.00 13.38 0.694 -0.0553 

11 9.85 100.00 5.80 0.734 -0.0395 

12 -2.27 100 5.8 0.770 -0.0470 

13 -2.27 100.43 5.8 0.769 -0.0470 

14 -2.27 100.43 4.06 0.770 -0.0449 

15 -3.73 100.43 4.06 0.773 -0.0435 

16 -3.73 99.69 4.06 0.774 -0.0435 

17 -3.73 99.69 4.14 0.774 -0.0430 

18 -4.46 99.69 4.14 0.772 -0.0429 

19 -4.46 95.71 4.14 0.772 -0.0430 

20 -4.46 95.71 2.62 0.775 -0.0411 

21 -5.5 95.71 2.62 0.774 -0.0403 

22 -5.5 97.04 2.62 0.773 -0.0403 

23 -5.5 97.04 3.39 0.772 -0.0412 

 

Table 2 – Results from SPI (Optimize Correlation). For each iteration, only one parameter 

was optimized at a time, in the sequence of size, stability, distance. Optimization stops when the 

correlation no longer increases for three successive iterations. The optimized parameters are Iteration 

20. The cosine column contains the average cosine for each iteration. The cosine results are presented 

to four significant figures in order to assess small changes between each iteration. 
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Optimize correlation - Train Set 

Scaled Optimized Parameters 

[-4.32, 92.77, 2.54] 
Observed Model 

RMSD 0.801 0.823 

SEM 0.033 0.019 

  

Correlation 0.774 

RMSE 0.158  

 

Table 3 – Scaled Optimized Parameters (Optimize Correlation). Results from the training 

set when the scaled optimized parameters are used.  

 

 
 

Figure 3 – Observed RMSD and the Model RMSD (Optimize Correlation) 

 

3.2.2 Optimizing for Correlation Coefficient of the RMSD (2 Parameters) 

 

Each one of the three mutation parameters was eliminated and the best results were obtained 

when eliminating the stability parameter. Table 4 shows the results for the two parameter 

optimization. In this run, the optimized parameters are Iteration 1, after which the correlation 

coefficient stops increasing. All iterations in this run have a negative cosine. The scaled 

parameters returned an RMSE of 0.165 (Table 5), slightly higher than the three parameter 

run. Figure 4 shows the fit, which compared to the previous three parameter run (Figure 3), 

is very similar. Analyzing the results, the optimal iteration had a negative cosine, suggesting 

the model is not realistic.  
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2 Parameter - Train Set 

Iteration 
Mutation Parameter 

Correlation Cosine 
Size Stability Distance 

0 131.66 0 144.09 0.74 -0.007 

1 131.66 0 112.70 0.741 -0.002 

2 131.66 0 112.70 0.741 -0.002 

3 131.66 0 112.70 0.741 -0.002 

 

Table 4 – 2 Parameter Optimization 

 

2 Parameter Optimization – Train Set 

Scaled Optimized Parameters 

[23.3, 0, 25.5] 
Observed Model 

RMSD 0.801 0.821 

SEM 0.033 0.018 

 

Correlation 0.738 

RMSE 0.165 

 

Table 5 – 2 Parameter Optimization. Results of the scaled parameters run with the training set.  

 

 

 
 

Figure 4 – 2 Parameter Optimization 
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3.2.3 Optimizing for a Positive Cosine 

 

Since having a large cosine between the observed and predicted conformational change not 

only provides a more realistic physical model of the mutation but it may also achieve a good 

fit between the observed and predicted scale of the conformational change (i.e. the RMSD), 

it was decided to maximize the average cosine over the training set (Table 6). It is noteworthy 

that the average cosine becomes rapidly positive and keeps increasing, and all the parameters 

stay positive, which indicates that the resulting models are more realistic. Nevertheless, the 

correlation between observed and predicted RMSD reaches the maximum value at 

Iteration 4. Since our goal is to have a good fit between observed and predicted RMSD, 

Iteration 4 was chosen, where the correlation was reasonably high (0.65) and the average 

cosine was positive.  

 

 

Optimize Cosine – Train Set 

Iteration 
Mutation Parameter 

Correlation Cosine 
Size Stability Distance 

0 14.02 28.96 16.64 0.598 -0.019 

1 14.02 22.47 16.64 0.661 -0.012 

2 14.02 22.47 9.39 0.602 0.005 

3 16.39 22.47 9.39 0.629 0.010 

4 16.39 21.79 9.39 0.647 0.010 

5 16.39 21.79 2.14 0.473 0.032 

6 14.02 21.79 2.14 0.383 0.036 

7 14.02 28.28 2.14 0.186 0.043 

 

Table 6 - Results from SPI (Optimize Cosine). For each iteration, only one parameter was 

optimized at a time, in the order of size, stability, distance. Iteration 4 was considered the finishing 

point due to having a positive cosine and followed by three successive iterations of decreasing 

correlation. The cosine column contains the average cosine for each iteration. The cosine results are 

presented to four significant figures in order to assess small changes between each iteration. 

 

All optimized parameters are positive in this run. The scaled optimized parameters from 

Iteration 4 (Table 7) yielded a RMSE of 0.18 Angstrom, an accuracy similar to that of the 

previous runs. However, the correlation (0.635) was lower. 
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Optimize Cosine – Train Set 

Scaled Optimized Parameters 

[42.87, 57.00, 24.56] 
Observed Model 

RMSD 0.801 0.824 

SEM 0.033 0.015 

 

Correlation 0.635 

RMSE 0.184 

 

Table 7 – Training Set Results Using Scaled Optimized Parameters (Optimize Cosine). 
Table shows results using the scaled optimized parameters.  

 

 
 

Figure 5 – Observed RMSD and the RMSD Model (Optimize Cosine) 

 

 

3.2.4 Optimizing for Combination of Correlation and Cosine 

 

The decrease of the correlation coefficient for higher average cosine observed in Table 6 

suggests that optimizing the cosine is not sufficient to obtain a good fit between the observed 

and predicted RMSD. Therefore, it was decided to optimize a combination of the correlation 

coefficient plus the average cosine, adopting the following scoring function: 

 

Score = Correlation coefficient + λ ∗ Average cosine (Eq. 13) 

 

The correlation coefficient is the quantity to be optimized, and the term containing λ can be 

interpreted as a regularization. Optimizing the correlation corresponds to λ = 0  (no 

regularization), whereas optimizing only the cosine corresponds to the λ → ∞ limit. As can 

be seen from the first step (Iteration 0 to Iteration 1) in Table 6, the correlation coefficient 

increased roughly 10 times more than the average cosine, suggesting that λ = 10 could be a 

good estimation for the regularization parameter. 
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Table 8 shows the results for optimizing Eq. 13 with λ = 10  (combination column). 

However, the observed behaviour was not different from the run where only the cosine was 

optimized, since the correlation coefficient reached its maximum at Iteration 4 and decreased 

in the following iterations. Moreover, after a few iterations some parameters became 

negative, suggesting that the resulting models are not very realistic. Iteration 7 was 

considered the best combination of the correlation coefficient (0.707) and the average cosine. 

The optimized parameters [22.92, 2.01, 2.14] were scaled using the slope of the regression 

line and run on the training set. A strong positive correlation of 0.705 and an RMSE of 0.173 

were observed (Table 9).  

 

The scaled parameters [35.48, 3.11, 3.31] from Iteration 7 were considered the optimized 

parameters and tested on the test set. 

 

Optimize Combination – Train Set 

Iteration 
Mutation Parameter 

Correlation Cosine Combination 
Size Stability Distance 

0 16.26 28.96 16.64 0.621 -0.010 0.525 

1 16.26 13.47 16.64 0.711 -0.004 0.668 

2 16.26 13.47 9.39 0.701 0.008 0.778 

3 20.55 13.47 9.39 0.702 0.011 0.808 

4 20.55 6.98 9.39 0.724 0.010 0.824 

5 20.55 6.98 2.14 0.687 0.029 0.981 

6 22.92 6.98 2.14 0.689 0.030 0.987 

7 22.92 2.01 2.14 0.707 0.028 0.990 

8 22.92 2.01 -131.40 0.582 0.060 1.178 

9 25.29 2.01 -131.40 0.579 0.061 1.190 

10 25.29 -4.48 -131.40 0.578 0.063 1.206 

 

Table 8 – Results from SPI (Optimize Combination) 

 

Optimize Combination – Train Set 

Scaled Optimized Parameters 

[35.48, 3.11, 3.31] 
Observed Model 

RMSD 0.801 0.823 

SEM 0.033 0.017 

 

Correlation 0.705 

MSE 0.173 

 

Table 9 - Training Set Results Using Scaled Optimized Parameters 

(Optimize Combination) 
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Figure 6 – Observed RMSD and the RMSD Model (Optimize Combination) 

 

3.3 TESTING THE OPTIMIZED PARAMETERS 
 

The scaled optimized parameters were tested on the test set (Table 10). The correlation on 

this set was -0.220 and the RMSE was 0.239 Angstrom. Although the correlation was 

negative, upon further investigation, the pairs in test set showed a very limited range of 

RMSD. This would suggest that it is very difficult to fit this small variation of the order of 

less than 0.1 Angstrom. The low RMSE indicates that the accuracy of the prediction may be 

acceptable for our purposes.  

 

Scale Optimize Parameters – Test Set 

Scaled Optimized Parameters 

[35.48, 3.11, 3.31] 
Observed Model 

RMSD 0.464 0.699 

SEM 0.013 0.001 

 

Correlation -0.220 

RMSE 0.239 

 

Table 10 – Test Set Results. The model RMSD was calculated using the slope and intercept of 

the optimized iteration from the training set (Iteration 7). 
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Figure 7 – Test Results Using Scaled Optimized Parameters 
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4 DISCUSSION 
 

Maximizing the correlation coefficient of the RMSD (lambda = 0) yielded good results on 

the training set. However, it resulted in a negative optimized parameter (size) and a negative 

average cosine for the optimized iteration. Optimizing for correlation coefficient of the 

RMSD was problematic, since similar results can be obtained also with unphysical moves 

(negative cosines, negative parameters). This optimization resulted in a negative size 

parameter, which may have been generated to compensate for overestimation of the effect 

of the other parameters, suggesting that the model is overfitted to the data, as it is frequent 

when there are correlated explanatory variables. Removing the stability parameter and 

rerunning the optimization resulted in positive parameters but returned a negative average 

cosine and very low correlation.  

 

To try and overcome overfitting in the model, the cosine was optimized in order to achieve 

predicted conformational changes that are directed in the same direction as the observed 

ones. The optimized model produced more physical models of mutations, however, 

compared to previous runs, the correlation of the RMSD was lower.  

 

The two scoring functions (Eq. 13) were then combined. In this equation, the correlation is 

the quantity that we aim to fit and the average cosine is a regularization condition that 

imposes more realistic conformational changes. As an initial estimation, lambda=10 was 

chosen as the regularization parameter. The optimization returned positive average cosines 

and better correlation of the RMSD compared to just optimizing the cosine alone. However, 

the cosine and the correlation soon started to increase in opposite directions, which resulting 

in choosing suboptimal parameters where the correlation was sufficiently good. These 

parameters returned a strong correlation on the training set but a poor one on the test set. 

However, the range of RMSD in the test set was very limited, making it difficult to obtain 

good correlations. The RMSE was 0.24 Angstrom, which is acceptably good for our 

purposes.  

 

There is potential to further refine the lambda, however, the optimized parameters returned 

an RMSE on the training (0.172) and test (0.239) set that was considered low. This, 

combined with the fact that the optimized parameters had a positive average cosine, would 

suggest that the model can be accepted and the mutation parameters of size, stability and 

distance show sufficiently good performances. 
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5 CONCLUSIONS AND FUTURE WORK 
 

Optimization of the mutation parameters proved to be a more complex problem than 

originally thought because of problems of overfitting due to correlated explanatory variables 

and unphysical moves. Although optimizing for a positive cosine yielded positive 

parameters, they showed lower correlation on the training set compared to optimizing for 

the correlation of the coefficient. The combination of the two strategies resulted in a model 

that was more realistic and had a low RMSE. The chosen parameters are size = 35.48, 

stability = 3.11, distance = 3.31. 

 

The parameters obtained as a result of this project can be used as the initial starting values 

to test the fitness function (Eq. 1), with a modified version of the TNM program, to compute 

the effect of all possible mutations as opposed to just single-point mutations tested in this 

work.  
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