
 

 
 Repositorio Institucional de la Universidad Autónoma de Madrid 

https://repositorio.uam.es 

 
 Esta es la versión de autor del artículo publicado en: 
 This is an author produced version of a paper published in: 
 

Journal of the Science of Food and Agriculture 100.3 (2020): 1106-1117 
 

DOI: https://doi.org/10.1002/jsfa.10119 

 
Copyright: © 2019 Society of Chemical Industry 

 

. 

 

 
 El acceso a la versión del editor puede requerir la suscripción del recurso  

Access to the published version may require subscription 

https://repositorio.uam.es/
https://www.scopus.com/sourceid/33928


 1 

Effect of Fe:ligand ratios on hydroponic conditions and calcareous soil in Solanum 1 

lycopersicum L. and Glycine max L. fertilized with heptagluconate and gluconate 2 

Samira Islas-Valdez, Sandra López-Rayo, Jessica Arcos, Nieves Menéndez, Juan J. 3 

Lucena*. 4 

Department of Agricultural Chemistry and Food Science. Universidad Autónoma de 5 

Madrid, Av. Francisco Tomás y Valiente 7, 28049 Madrid, Spain. *Corresponding author: 6 

juanjose.lucena@uam.es  7 



 2 

ABSTRACT 8 

BACKGROUND: The environmental risk of synthetic chelate application promotes the 9 

implementation of biodegradables complexes to correct Fe-deficiency in plants. In this 10 

paper, the Fe oxidation state, the Fe:ligand ratio and molecular weight distribution for 11 

heptagluconate (G7) and gluconate (G6) are consider as key factors for the complexes 12 

efficacy as fertilizes. Complexes with different Fe:ligand ratios were prepared and 13 

analyzed by gel filtration chromatography (GFC). The ability of Fe:ligand ratios to provide 14 

Fe to tomato in hydroponics and soybean in calcareous soil was tested and compared to 15 

synthetic chelates (Fe3+:HBED and Fe3+:EDTA). 16 

RESULTS: The G7 presented a higher capacity to complex both Fe(II) and Fe(III) than G6, 17 

but the Fe(II) complexes show low stability at pH 9 and oxidation in solution. GFC 18 

demonstrated the polynuclear nature of the Fe3+:G7 at various ratios. The effectiveness of 19 

the Fe fertilizers depend on the Fe3+:ligand ratio and the ligand type being the Fe3+:G7 (1:1 20 

and 1:2) the most effective. The Fe3+:G7 (1:1) also presented a better response for the 21 

uptake of other micronutrients. 22 

CONCLUSION: The Fe3+:G7 molar ratios have shown to be critical for the Fe plant uptake 23 

under hydroponic conditions and calcareous soil. Thus, the Fe3+:G7 at equimolar ratio and 24 

1:2 molar ratio can be an environmentally friendly alternative to less degradable synthetic 25 

chelates to correct Fe chlorosis in strategy I plants. 26 

 27 

Keywords: Fe:ligand ratio, polynuclear complexes, strategy I plants, gluconate, 28 

heptagluconate.29 
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1 INTRODUCTION  30 

Iron (Fe) chlorosis is a nutritional disorder characterized by a decrease of chlorophyll 31 

content in leaves. This is a common problem of sensitive crops grown in calcareous soils, 32 

since under these conditions; the Fe uptake by the plant is prevented1. Iron chlorosis 33 

harms several physiological processes such as photosynthesis, chlorophyll biosynthesis, 34 

respiration and enzymatic activities2,3. Dicotyledonous and non-graminaceous 35 

monocotyledonous plants have developed a Fe uptake strategy named Strategy I, 36 

inducing the rhizosphere acidification followed by the reduction of Fe3+ to Fe2+ from 37 

membrane-bound enzyme ferric-chelate reductase1. Tomato (Solanum lycopersicum L.) 38 

and soybean (Glycine max) are widely used as model plants to investigate the Fe 39 

deficiency of the Strategy I2,4. The strategy I plants growing on calcareous soil usually 40 

requires the application of synthetic Fe chelates such as the Fe3+:EDTA (ethylene diamine 41 

tetra acetate), Fe3+:EDDHA (ethylene diamine-N,N’-bis(hydroxyl phenil acetate)) or the 42 

Fe3+:HBED (N,N-bis(2-hydroxybenzyl) ethylene diamine-N,N-diacetate). While Fe3+:EDTA 43 

is mainly used in drip irrigation systems or in crops without severe Fe deficiency under 44 

calcareous soil conditions5, Fe3+:HBED and Fe3+:EDDHA are highly stable6 and effective 45 

fertilizers7, recommended even in the more adverse conditions for Fe nutrition. Parameters 46 

such as the stability of the Fe-chelate and of the chelates formed with the competing ions 47 

as Ca2+, the retention on soil surfaces, the plant Fe uptake mechanism8 and the so called 48 

“shuttle effect mechanism”9 affects the effectiveness of Fe-chelates to correct Fe chlorosis. 49 

Despite these benefits, synthetic Fe chelates are expensive and may involve 50 

environmental risks related to their mobility in the soil9. Complexing agents such as 51 

sodium gluconate (G6) or sodium glucoheptonate (G7) have a low environmental impact 52 

due to their high biodegradability10. They can complex metals through their carboxylic and 53 

hydroxylic groups by different binding modes depending on the metal itself and the 54 

reaction conditions. Only a few studies have explored the effect of G6 and G7 in plant 55 
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nutrition, with contradictory results. An adequate capacity of the Fe3+:G6 (1:2) to correct 56 

chlorotic soybeans grown in calcareous soil was observed by Martín-Fernández et al.11 57 

similar to Fe3+:IDHA (Iminodisuccinate), but not comparable to Fe3+:EDDHA when applied 58 

at similar dose. A similar result was obtained by Rodriguez-Lucena et al.12 in hydroponics, 59 

where the G6 was able to provide Fe to deficient soybean plants in a similar concentration 60 

than the Fe3+:EDTA and the Fe3+:IDHA, but lower than for Fe3+:EDDHA. Lucena et al.13 61 

also confirmed that the percentage of Fe remaining in solution for G6 in the pH range 5-7.5 62 

was around 20%. In contrast, Clemens et al.14 suggested that the G7 would be a better 63 

complexing agent for Fe3+ than EDTA and G6 in alkaline soils. Also, Fuentes et al.15 in a 64 

gene expression study in Fe-deficient cucumber plants found that the foliar application of 65 

Fe3+:G7 was effective providing Fe, but its delivering was slow or scarce. On the contrary, 66 

Shaddox et al.16 reported a decrease of soluble Fe after one-day application of the 67 

Fe2+:G7 in incubated soils similar to ferrous sulfate. Similar results were obtained by Goos 68 

and Germain17 when Fe3+:G7 and Fe3+:G6 were applied to soil in batch incubation 69 

experiments in comparison with EDTA, DTPA (diethylen triamine penta acetic), EDDHA 70 

and EDDHSA (ethylen diamino-N’N-bis (2-hydroxy-5-sulfo) phenyl acetic acid). Thus, the 71 

effect of Fe complexes of G6 and G7 on plant nutrition is limited or not conclusive. 72 

Most of these studies were conducted by using a 1:1 and 1:2 (Fe:ligand) molar ratio. 73 

However, the metal complexes can form a wider variety of chemical species, depending 74 

on the ligand type, pH, the Fe:ligand molar ratio and synthesis temperature, affecting to 75 

the effectiveness of the complexes. These effects have been observed for complexes of 76 

several natures. For instance, Fe3+ forms very stable complexes in solution with ligands 77 

such as sugars and citrate due to the formation of polymers, preventing the precipitation of 78 

the Fe(III)-hydroxy-polymer18,19. Studies conducted by Silva et al.20 with Fe citrate 79 

complexes, demonstrated that at pH 9, a mononuclear Fe complexe is predominant with a 80 

low Fe3+:citrate molar ratio, whereas a high Fe3+:citrate molar ratio at neutral pH lead to 81 
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the formation of oligomeric complexes. Stevenson21, showed that humic metal complexes 82 

with high metal:humic acid ratios presented a lower stability than those with low 83 

metal:humic acid ratios. Experiments conducted with lignosulfonates and humic acid from 84 

leonardite with different iron sources [Fe (III) and Fe (II)] confirmed the effect of the 85 

Fe:ligand ratios in the binding sites and the complexes stability. The Fe source was also 86 

determinant in the formation of weak or strong complexes22,23, indicating that strong 87 

complexes are prepared from the Fe3+. It is also remarkable that an excess of chelating 88 

agents in nutrient solutions can retard, and even inhibit, the uptake of metals by plants24,25. 89 

Then, a better knowledge of the effect of the Fe:ligand ratio with G6 and G7 complexes 90 

plays an important role to study their efficacy as Fe fertilizers and their possible “shuttle 91 

effect” for the turnover of micronutrients naturally present in the soil solution, similar to that 92 

already demonstrated for synthetic chelating agents.  93 

Currently, several spectroscopic techniques such as 13C nuclear magnetic resonance (13C-94 

NMR), Fourier transformed infrared (FTIR) and Mössbauer spectroscopy are considered to 95 

determine some physical characteristics of the metal complexes such as the purity, 96 

geometry and structure, the bonding sites and the Fe oxidation states. Besides, gel 97 

filtration chromatography (GFC) on Sephadex® has demonstrated to be a useful tool for 98 

the characterization of metal-complexes and metal:chelates. The GFC permits the 99 

fractionation based on size18,26 and also the identification of the free and complexed metal 100 

by comparison between the retention time and the quantification of the soluble Fe in the 101 

obtained fractions27,28. By the application of this technique, the presence of polynuclear 102 

compounds in Fe3+:G6 (1:1) complexes11, and low molecular compounds in Fe2+:G6 103 

(1:2)29 could be determined. To understand, the discrepancies obtained in previous studies 104 

for the molecular weight distribution of Fe complexes, which may be related to the 105 

Fe:ligand ratio and the Fe source used.  106 
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Although a few studies have proved the efficacy of the G6 and G7 Fe complexes to correct 107 

Fe chlorosis, their effectiveness related to parameters such as Fe:ligand ratio, molecular 108 

weight distribution, and the Fe complexing capacity with different Fe sources has not been 109 

explored. Therefore, it can be hypothesized that the ligand type (G6 or G7) and the 110 

Fe:ligand molar ratio are important parameters for their effectiveness as Fe fertilizers in 111 

plants under hydroponics and calcareous soil. For that purpose, firstly, the complexing 112 

capacity of the complexing agents G6 and G7 with a different Fe source [Fe (III) and Fe 113 

(II)] was evaluated to improve the stability of the complexes and the amount of Fe provided 114 

to the plants. Secondly, the molecular weight distribution of the Fe:ligand molar ratios 115 

obtained were chemically characterized. Finally, the effectiveness of the complexes to 116 

supply Fe to strategy I plants under hydroponic (different Fe:G7 ratios) and calcareous soil 117 

conditions (G6 and G7, and different Fe:G7 ratios) was evaluated.  118 

2 MATERIALS AND METHODS 119 

Pure reagents of sodium gluconate (Sigma Aldrich, >99%) assigned as G6, and sodium 120 

glucoheptonate dihydrate (G7) kindly provided by DABEER (99%, Barcelona, Spain) were 121 

used. Synthetic chelating agents of ethylenediaminetetraacetic and disodium salt 122 

[Na2EDTA, tritriplex III (Merck, 99%)] and N-N´-bis (2-hydroxybenzyl) ethylenediamine-N-123 

N´-diacetic acid (HBED, 93.72%) provided by ADOB PPC; Poznan, Poland were used for 124 

comparison. Iron complexes were prepared with FeCl3·6H2O (Merck, 99%), or 125 

FeSO4·7H2O (Merck, 99%) of analytical grade and the water used was grade I30, free of 126 

organic contaminants. 127 

2.1 Complexing capacity of gluconate and heptagluconate and Fe complexes 128 

preparation 129 
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The maximum complexing capacity (MCC) of G6 and G7 with Fe (III)/Fe (II) was 130 

determined by the maximum Fe content remaining in solution at pH 9 after one day in the 131 

dark according to the method previously described by Villén et al.31. 132 

After that, Fe complexes were prepared at room temperature with the aim to prepare 133 

several Fe:ligand molar ratios according the dry weights of the ligands: 1:0.5 for G7 with 134 

Fe3+, and 1:1, 1:2 and 1:3 (Fe:ligand molar ratios) for both G6 and G7 with Fe3+, and 1:2 135 

for G6 with Fe2+, and 1:1 and 1:2 (Fe:ligand molar ratios) for G7 with Fe2+. These 136 

complexes were selected based on the stability observed during the determination of the 137 

MCC, being the Fe3+ complexes the most stable and the Fe2+ the less. The complexes 138 

were prepared at pH 6-7 and then freeze-dried. The total soluble Fe in the freeze-dried 139 

samples was determined following the methods 9.2, 9.3 and 9.432 by extraction with water 140 

and filtration through a 0.45 µm filter. The total complexed Fe in the samples was analyzed 141 

according to EN 15962:201133, following the same preparation then that for the soluble 142 

element but rising the pH to 9 before the filtration. In addition, the complexed fraction 143 

(expressed as percentage of complexed Fe with respect to the soluble Fe) was 144 

determined as an index of the complexe stability and its effectiveness as fertilizer12. A 145 

flame atomic absorption spectrometer (AAS, Perkin-Elmer AAnalyst 800; Shelton, CT, 146 

USA) was used for all the Fe determinations. 147 

2.2 Structural characterization of the complexing agents and the Fe complexes 148 

The structural changes of G6 and G7 after complexation with Fe3+ in the different ratios G6 149 

(1:1) and G7 (1:0.5, 1:1, 1:2 and 1:3) were analyzed by FTIR spectra on a Bruker IFS66vd 150 

spectrometer (Germany) using KBr pellet method in the 3800-600 cm-1 region at a 151 

resolution of 4 cm-1 in the transmittance mode. 13C-NMR spectra of G6 and G7 dissolved in 152 

deuterated water (D2O) were recorded on a Bruker DRX 500 MHz (Germany) to check 153 

their chemical structure. 57Fe Mössbauer spectroscopy was used to analyze the oxidation 154 
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state of Fe of G7 complexes prepared with Fe2+ or Fe3+ (at 1:2 molar ratio). The analysis 155 

was conducted at T= 298 K in triangle mode with a 57Co (Rh) source with and activity of 50 156 

mCi and calibrated with 6 µm α-iron at room temperature. The principal parameters 157 

obtained from the spectra were isomer shift (δ, mm s-1), quadrupole splitting (∆, mm s-1), 158 

and relative content area (A, %), which can provide information about the oxidation state, 159 

the coordination number of the resonant nucleus and the semiquantitative information for 160 

the species obtained. 161 

2.3 Gel filtration chromatographic 162 

The molecular weight distribution of the Fe3+:G7 complexes were analyzed on a glass 163 

column (1.0 x 30 cm) packed with Sephadex® G-10 (molecular weight cut-off, MWCO 164 

>700 Da; 40-120 µm particle size distribution from Sigma Aldrich). The Fe3+:G7 (1:3) was 165 

also analysed by a Sephadex® G-15 (MWCO >1500 Da; 40-120 µm particle size 166 

distribution). The Fe3+:G7 complexes were additionally eluted in a Sephadex® G-25 167 

(MWCO >5000 Da; 50-150 µm particle size distribution). The samples were dissolved in 168 

0.6 % (w/v) of 0.1 M NaCl at pH 6, filtrated by 0.22 µm filter, and the Fe content measured 169 

by AAS prior to the fractionation under gravity of 125 µL in the columns at room 170 

temperature. The fractions were monitored at 220 nm in a Spectrostar nano microplate 171 

reader (BMG Labtech, Ortenberg, Germany) and the Fe concentration analysed by AAS 172 

after gel filtration chromatography on Sephadex® G-10. The exclusion volume (Vo) was 173 

determined with blue dextran 2000 (MW∼2000 kDa) and the total volume (Vp) with 174 

Fe3+:HBED (MW∼440 Da) from 0.1 M NaCl at pH 6. In agreement with a previous study in 175 

which the molecular weight distribution of Fe:lignosulfonate complexes were evaluated34. 176 

2.4 Plant experiments 177 

Two experiments were conducted by using two different Strategy I plants sensitive to Fe 178 

chlorosis. Tomato was grown under hydroponics and soybean was grown in calcareous 179 
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soil conditions. Both experiments were done in a growth chamber (Dycometal type CCK) 180 

with a photoperiod of 16 h to 23ºC and 40% relative humidity during the light period, and 8 181 

h to 19ºC and 60% relative humidity during the dark period. The composition of the full-182 

strength nutrient solution (NS) was: macronutrient (mM) 1.0 Ca (NO3)2·4H2O, 0.9 KNO3, 183 

0.3 MgSO4·7H2O, 0.1 KH2PO4; micronutrients (µM) 2.5 MnSO4·H2O, 1.0 CuSO4·5H2O, 184 

10.0 ZnSO4·7H2O, 1.0 NiCl2·6H2O, 1.0 CoSO4·7H2O, 115.5 Na2EDTA, 35.0 NaCl, 10.0 185 

H3BO3, 0.05 Na2MoO4·2H2O. 186 

2.4.1 Growth conditions in the hydroponic experiment 187 

Tomato (Solanum lycopersicum L., cv. Marmade) seeds were germinated for 12 days in 188 

vermiculite (1-4 mm grain; Projar, Spain) moistened with 1mM CaSO4. Uniform seedlings 189 

were transferred to 1.8 L vessels filled with 1/4 diluted NS for three days containing 5 µM 190 

Fe3+:HBED at pH 6, and then, 11 more days in full strength NS at pH 7.5. After that, they 191 

grow for eight days in a Fe-free full-strength NS. The plants were individually transferred to 192 

250 mL vessels containing the NS and the Fe treatments. In this experiment, the Fe3+:G7 193 

complexes at several molar ratios (1:0.5, 1:1, 1:2 and 1:3) were studied and compared to 194 

the synthetic chelate Fe3+:HBED as the positive control, assayed in a concentration of 10 195 

µM of Fe3+. This low Fe concentration permits a better differentiation of the effect in the Fe 196 

nutrition between the treatments35. Likewise, a Fe-free negative control (-Fe) was also 197 

assayed for comparison. The nutrient solution was continuously aerated and buffered at 198 

pH 7.5 with 1.0 x 10-4 M HEPES and 0.1g L-1 of CaCO3 to simulate calcareous soil 199 

conditions. The sampling was done 15 days after the treatment (DAT). The NS was 200 

renewed every seven days. Six replicates (one vessel with one plant each) per treatment 201 

were assayed. 202 

2.4.2 Growth conditions in the soil experiment  203 
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Soybean (Glycine max L., cv. RGT Speeda) seeds were germinated in perlite (1-5 mm 204 

grain; Projar, Spain) moistened with distilled water for 12 days. Uniform seedlings were 205 

transferred to 4 L vessels filled with a 1/5 diluted NS containing 10 µM Fe3+:HBED at pH 6 206 

for seven days and for seven more days in a Fe-free full strength NS. After this pre-growth 207 

period under hydroponic conditions, two seedlings per pot were transplanted to 208 

polystyrene pots covered with aluminium foil to avoid photodegradation of Fe complexes36, 209 

filled with 180 g calcareous sand (975 g Kg-1 CaCO3; 2-4 mm) mixed with 420 g of a sandy 210 

loam soil (pH 7.9; 435 g Kg-1 sand, 80 g Kg-1 silt, 485 g Kg-1 clay; 9.2 g Kg-1 organic 211 

matter; 380 g Kg-1 total CaCO3, 89 g Kg-1 active lime; and Soltanpour and Schwab37 212 

extractable micronutrients: 5.3 g Kg-1 Fe, 4.5 g Kg-1 Mn, 1.0 g Kg-1 Cu and 3.0 g Kg-1 Zn) 213 

from Picassent (Valencia, Spain). This soil has been previously described11. 214 

Two days before transplanting, pots were irrigated until 100% of the soil-sand mixture 215 

water holding capacity (SWHC). Two days after transplanting, the treatments were 216 

initiated: the Fe3+:G6 (1:1), the molar ratios of Fe3+:G7 (1:0.5, 1:1, 1:2 and 1:3) and, the 217 

Fe3+:EDTA (positive control). In all cases there were 6 replicate pots, two plants each, per 218 

treatment. The solutions of the Fe complexes and the Fe3+:EDTA were split over the 219 

experiment: 0, 7 and 14 after the first treatment application at an Fe dose of 4.2, 2.1, and 220 

2.1 µmol Fe3+ per pot, respectively. In addition, a Fe-free negative control (-Fe) was 221 

assayed. During the experiment, pots were irrigated until 80% SWHC every two or three 222 

days with a macronutrient NS in 0.1g L-1 of CaCO3. One plant shoot per pot was sampled 223 

at 7 DAT and grouped in three pairs per treatment (three analytical replicates). At 21 DAT, 224 

the remaining plants shoots in each pot and the roots were sampled and kept separated in 225 

six replicates per treatment. On completion of the experiments, the soluble and available 226 

Fe, Mn, Zn and Cu fractions in soil were determined in all the pots (six replications) by the 227 

extraction method proposed by Nadal et al.38 with water and DTPA solutions37 followed by 228 

the acidification with HNO3 (65%, Merck) to 1% and analyzed by AAS.  229 
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2.5 Physiological parameters 230 

Leaf chlorophyll index was measured every two or three days after the beginning of the 231 

treatments on the youngest and fully expanded leaf (three readings per level), by using a 232 

portable chlorophyll meter Dualex 4 Scientific (FORCE-A, Orsay, France). Shoot and root 233 

lengths were measured after each sampling. Leaves, stems and roots were separated and 234 

washed with 0.1% non-ionic detergent (Tween 80) and 0.1M HCl followed by tap-water 235 

and distilled water39, and finally wiped and weighed to obtain the fresh weight. Plant 236 

tissues were dried in a forced air oven at 65 ºC for three days until constant weight to 237 

obtain dry weight (DW) and ground with a porcelain mortar and pestle. Samples were 238 

mineralized by dry digestion in a muffle furnace at 480 ºC for 4 h followed by the acid 239 

digestion with HCl suprapur (1:1) for the ash solubilization at 80 ºC for 30 min40. Total Fe, 240 

Mn, Cu and Zn concentration in the plant tissues extracts was determined by AAS.  241 

2.6 Statistical analysis 242 

Data were analysed by using the IBM SPSS statistical software (version 23.0; SPSS Inc., 243 

Chicago, IL, USA). Differences among treatments were tested by one-way analysis of 244 

variance (ANOVA), with a Duncan post hoc test at p-value < 0.05.  245 

3. RESULTS  246 

3.1 Fe complexing capacity of gluconate and heptagluconate 247 

The Fe MCC complexing capacity of Fe3+:G7, Fe2+:G7, Fe3+:G6 and Fe2+:G6 (Fig. 1), was 248 

determined by the intersection point between the complexing segment and the coagulation 249 

segment, as a consequence of the excess of metal. Here, the highest values of the MCC 250 

for Fe3+ and Fe2+ were obtained by G7 (2.65 and 1.25 mol Fe mol-1 ligand, respectively), 251 

and the lowest for G6 (1.85 and 0.47 mol Fe mol-1 ligand, respectively). 252 

3.2 Soluble and complexed Fe of the complexes at the different Fe:ligand ratios  253 
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Because of the highest complexing capacity presented by G7 with Fe3+, a wider range of 254 

molar ratios was prepared for this complexe (1:0.5, 1:1, 1:2 and 1:3) for further analysis. In 255 

addition, the equimolar ratio of Fe3+:G6 was studied since it has been previously evaluated 256 

in other studies. As a result of the low complexing capacity presented by G7 and G6 with 257 

the divalent Fe2+, only the 1:1 and 1:2 molar ratios for Fe2+:G7, as well as the 1:2 molar 258 

ratio for Fe2+:G6 were further explored. The freeze-dried samples of the Fe2+ complexes 259 

presented a pale green color while the Fe3+ complexes a yellow color. However, after 260 

dissolution of the solid samples, both Fe2+ and Fe3+complexes presented a yellow color, 261 

which suggest the oxidation of the Fe2+ complexes.  262 

The results obtained for the analysis of the soluble Fe in the above mentioned prepared 263 

complexes were checked with the European official method for fertilizers32. Accordingly, 264 

the complexes of Fe3+:G7 (1:0.5, 1:1, 1:2 y 1:3), Fe3+:G6 (1:1), Fe2+:G7 (1:1 y 1:2) and 265 

Fe2+:G6 (1:2) presented 14, 11, 9.1, 5.8, 11, 9.9, 6.7 and 6.2%, respectively. Then, all of 266 

them complied with the minimum percentage of the soluble Fe required by the regulation32 267 

(5% for solid samples). Attending to the fraction of Fe complexed33, a minimum of 80% is 268 

required32. The Fe3+:G7 (1:1), Fe3+:G7 (1:3), Fe2+:G7 (1:1) and Fe2+:G6 (1:2) products 269 

presented higher values (86, 100, 90 and 89%, respectively), but Fe3+:G7 (1:0.5), Fe3+:G7 270 

(1:2), Fe3+:G6 (1:1) and the Fe2+:G7 (1:2) (2.0, 74, 77 and 74%, respectively) lower than 271 

the 80% required. 272 

3.3 Structural characterization of the complexing agents and Fe complexes 273 

The 13C NMR spectra of the G6 and G7 free ligands presented six and seven, 274 

respectively, well-defined peaks in the range of 62.61-178.59 ppm (Fig. 2), suggesting that 275 

both products contained the pure complexing agent. This fact was confirmed by the FTIR 276 

spectra of G6 and G7, presenting the G6 a similar spectrum to the sodium gluconate 277 

previously reported29. The FTIR spectra of Fe3+:G6 (1:1) and the different molar ratios of 278 
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Fe3+:G7 were also analyzed. In all of them, a broad band at 3400 cm-1 due to the vibration 279 

of hydroxyl groups, bands at 1625 and 1380 cm-1 assigned to asymmetric and symmetric 280 

carboxylate anion were observed. The C-O vibration of the primary and secondary 281 

hydroxyl groups appeared at 1057 cm-1 and 1090 cm-1, respectively29. In addition, bands 282 

at 2943-2893 cm-1 were associated with C-H stretching vibration18 and the vibrations of 283 

Fe-O were presented in the region 1000-600 cm-1. A weak band was additionally 284 

presented by Fe3+:G7 (1:2) at 1778 cm-1, which indicated the dissociation of the carboxylic 285 

group18 involved in the Fe complexation. 286 

To confirm the oxidation state presented in the final complexes, Fe2+:G7 (1:2) and Fe3+:G7 287 

(1:2) were selected and further analyzed by Mössbauer spectroscopy. The Fe3+:G7 (1:2) 288 

spectrum reflects two symmetrical doublets (Fig. 3a). The main component denoted by 289 

Fe3+A with δ= 0.37 mm s-1, ∆= 0.75mm s-1 and a= 56% represents a high spin Fe3+ that can 290 

be associated with ferrihydrite. The Fe3+B has δ= 0.38 mm s-1, ∆= 1.22 mm s-1 and a= 44% 291 

compatible with Fe3+ polynuclear structures41. Attending to Fe2+:G7 (1:2) spectrum (Fig. 292 

3b) reflects an asymmetric doublet by the superposition of the Fe2+ (δ=1.25 mm s-1, ∆=2.51 293 

mm s-1 and a=76%) and Fe3+ (δ= 0.26 mm s-1, ∆= 1.10 mm s-1 and a=24%) phases, 294 

respectively. The Fe2+ phase is in good agreement with those of high-spin Fe2+ in a 295 

distorted octahedral O6 coordination23, which may indicate bind of the Fe2+ with carboxylic 296 

and hydroxylic groups of the G7. The Fe3+ phase is also related to iron polynuclear 297 

structures. 298 

As mentioned above, the Fe2+ complexes oxidized after dissolution and the G6 complexes 299 

presented lower complexing capacity, thus the different molar ratios were only prepared 300 

for the Fe3+:G7 complexes. These complexes were analyzed by UV absorption 301 

spectroscopy (Fig. 3c), showing a strong band about 350 nm due to the oxo-metal charge 302 

transfer absorption band. This band is characteristic of the Fe3+ complexes in a high spin 303 
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state octahedrally chelated by oxygen, as it has been reported for Fe3+:gluconate with an 304 

approximate molecular weight 11.6 kDa42. 305 

Concerning the molecular weight distribution of the Fe3+:G7 complexes with different molar 306 

ratios on Sephadex® G-10, all eluted in the exclusion volume similar to the blue dextran 307 

2000 eluting at 7.2 mL, suggesting the formation of complexes with a molecular weight 308 

higher than 700 Da (Fig. 3d). This fact was confirmed by the high percentage of Fe 309 

recovered in the peak exclusion with values about 88%, 75%, 70% and 85% for Fe3+:G7 310 

(1:0.5, 1:1, 1:2 and 1:3 molar ratios, respectively) of the total content of Fe eluted. In 311 

addition, Fe3+:G7 (1:3) was also passed through the Sephadex® G-15 (Fig. 3e) and eluted 312 

in the exclusion volume (8.1 mL), indicating the formation of a complexe with a molecular 313 

weight higher than 1500 Da. Finally, all samples with the different molar ratios were also 314 

passed through the Sephadex® G-25 (Fig. 3f), as well as those which also eluted in the 315 

exclusion volume (8.4 mL), indicating a molecular weight higher than 5000 Da. These 316 

results confirmed the tendency of the Fe3+ complexes to form polynuclear compounds. 317 

3.4 Effect of the Fe complexes on tomato seedlings under hydroponic conditions  318 

The evolution of the chlorophyll index of the youngest, fully expanded leaf (fifth leaf level) 319 

by Dualex is presented in (Fig. 4). The –Fe treatment suffered a detriment of the 320 

chlorophyll index over the experiment, showing visible symptoms of Fe deficiency such as 321 

the yellowing of the fully expanded leaves and the proliferation of lateral roots. In contrast, 322 

all the Fe treatments showed a recovery of the chlorophyll index from 6 DAT with a leaf re-323 

greening. All the molar ratios of the Fe3+:G7 complexes presented similar chlorophyll 324 

indices (29.5-30.5) than the positive control Fe3+:HBED (31.9) at 15 DAT.  325 

No differences in the shoot length among treatments were observed at the end of the 326 

experiment (15 DAT) (Table 1). The application of the Fe3+:G7 (1:1) and the Fe3+:G7 (1:2) 327 

increased significantly the DW (by 0.3- and 0.2-fold, respectively) and the elongation of the 328 
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root (by 0.5- and 0.6-fold, respectively) compared to the Fe3+:HBED. The lowest values 329 

were obtained for the –Fe treatment with a 0.8-fold lower than the Fe3+:HBED. A similar 330 

effect of the different molar ratios of Fe3+:G7 to Fe3+:HBED on the Fe concentration in leaf 331 

was obtained. They presented an Fe concentration 1.5-fold higher than the –Fe treatment, 332 

indicating a clear Fe deficiency at 15 DAT. Although, the Fe treatments increased the Fe 333 

concentration in stem compared to the Fe-deficient plants, the highest Fe concentration 334 

was obtained by Fe3+:HBED with a 2-fold increase. In roots, the Fe concentration was 335 

clearly lower in the -Fe treatment. Here, the Fe3+:HBED presented the lower value of the 336 

Fe treated plants; similar Fe concentrations were obtained by the Fe complexes at 337 

different ratios except for the 1:0.5 ratio which presented the highest, raising 1.3-fold as 338 

compared to the Fe3+:HBED treatment. Furthermore, the Fe translocation (TR) was 339 

calculated as the percentage of Fe in leaf per Fe in the root. The highest Fe TR was 340 

presented by the Fe3+:G7 (1:1), similar to the Fe3+:HBED, but the lowest was obtained by 341 

the Fe3+:G7 (1:0.5) with a 1.2-fold decrease compared to the Fe3+:HBED. 342 

In addition, the influence of the treatments in other metal micronutrient concentrations was 343 

studied (Table 2). The –Fe treatment presented the highest values for Mn, Zn and Cu in 344 

some tissues as compared to the Fe treatments. A similar increase was obtained for the 345 

Mn concentration in leaf and stem by Fe3+:G7 (1:1) and Fe3+:G7 (1:2), respectively. The 346 

Fe3+:HBED treatment showed a negative effect on the Cu concentration in leaf as 347 

compared to the rest of the treatments. Also, the Fe3+:G7 (1:3) treatment decreased the 348 

Cu and Zn concentrations in root and leaf, respectively. The Fe:Mn molar ratio was also 349 

evaluated as an index to evaluate an adequate Fe nutrition, which should be within the 350 

optimal range 1.5-2.5 in healthy plants according to Adriano43. With the exception of the 351 

Fe3+:G7 (1:0.5), the Fe:Mn molar ratio was within the range of 1.5-2.5 for the Fe 352 

treatments while the –Fe treatment presented a low value.  353 
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3.5 Effect of the Fe complexes on soybean seedlings under calcareous soil 354 

conditions  355 

No significant differences among treatments were found in the plant growth, nor for the 356 

shoot and root DW (average data ± standard error: 1.09 ± 0.10 and 0.28 ± 0.02 g plant-1, 357 

respectively) or shoot and root length (average data ± standard error: 45.9 ± 8.24 and 20.0 358 

± 1.41 cm plant-1, respectively). The chlorophyll indices by Dualex readings were recorded 359 

for all the leaf levels during the experiment but the evolution of the third and fifth leaf levels 360 

(from 15 DAT) were used to describe the changes induced by the Fe treatments (Fig. 5a 361 

and 5b, respectively). Attending to the third leaf level, the Fe3+:EDTA reached the highest 362 

chlorophyll index at 7 DAT, and no differences were presented among the other 363 

treatments with respect to the –Fe treatment at that time. At the end of the experiment, all 364 

the Fe treatments except of the Fe3+:G7 (1:0.5) were significantly different from the –Fe 365 

treatments, showing a recovery in the chlorophyll index with leaf re-greening. For the fifth 366 

leaf level, Fe3+:G7 (1:1, 1:2 and 1:0.5) corrected the Fe chlorosis similar to Fe3+:EDTA at 367 

21 DAT, whereas Fe3+:G7 (1:3) and Fe3+:G6 (1:1) along with the –Fe treatment presented 368 

the lowest values. 369 

The highest Fe concentration in leaf was presented by the Fe3+:G7 (1:2), which did not 370 

present significant differences in comparison with Fe3+:EDTA at 7 DAT (Table 3). For the 371 

stem, the Fe3+:EDTA presented the highest Fe concentration, whereas Fe3+:G7 (1:2), 372 

Fe3+:G6 (1:1) and the –Fe treatment presented the lowest. At 21 DAT, the Fe3+:G7 (1:0.5, 373 

1:1 and 1:2) presented the highest Fe concentration in leaf similarly to the Fe3+:EDTA, but 374 

Fe3+:G7 (1:3) and Fe3+:G6 (1:1) presented the lowest values, similarly to the –Fe treatment 375 

at both 7 and 21 DAT. Similar Fe concentrations were found in the root for all the 376 

treatments with the exception of the Fe3+:G7 (1:1) presenting the highest Fe concentration, 377 

but this data must be taken with care since they could be affected by the precipitation of 378 

Fe which may be not completely removed by washing, considering the high values 379 
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obtained in all the cases. The soluble and the available Fe concentration in soil were also 380 

analyzed, but the quantification of the soluble Fe was not possible because of the 381 

instrument detection limit. The highest value in the available fraction was obtained by the 382 

Fe3+:EDTA (1.8-fold) followed by the Fe3+:G7 (1:1) (1.2-fold) as compared to the –Fe 383 

treatment. 384 

No differences among treatments were shown in the Mn concentration in leaf or stem at 7 385 

DAT, whereas Fe3+:G7 (1:1) presented the highest concentration at 21 DAT in all the 386 

soybean tissues analysed as compared to the rest of Fe3+:HBED (Table 4). The Fe3+:G7 387 

(1:3) and Fe3+:G6 (1:1) presented the lowest concentrations similar to the -Fe at 21 DAT in 388 

all the soybean tissues. Regarding to the Fe:Mn molar ratio in leaf , the highest values 389 

were obtained by the Fe3+:G7 (1:2) and the Fe3+:EDTA at 7 DAT while at 21 DAT they 390 

corresponded to the Fe3+:G7 (1:0.5) and the Fe3+:EDTA. For the Zn concentration, the 391 

highest value was presented by the Fe3+:EDTA at both 7 and 21 DAT in all the soybean 392 

tissues, whereas the Fe3+:G7 (1:3) and the Fe3+:G6 (1:1) presented the lowest at both 7 393 

and 21 DAT in leaf and root. The Fe3+:G7 (1:1) increased the Zn concentration at 7 DAT in 394 

leaf and at 21 DAT in stem similar to the Fe3+:HBED. For the Cu concentration in leaf, no 395 

differences were observed among the Fe treatments with G6 or G7 at 7 DAT, whereas 396 

both control treatments showed the lowest Cu concentration. A similar result was observed 397 

in leaf at 21 DAT for both control treatments along with Fe3+:G7 (1:3) and the Fe3+:G6 398 

(1:1). With the exception of the Fe3+:EDTA, these treatments also presented the lowest Cu 399 

concentration in the stem. In contrast, the Fe3+:G7 (1:1) presented the highest Cu 400 

concentration at 21 DAT in all soybean tissues as compared to the Fe3+:HBED. The 401 

soluble fraction of the micronutrient concentrations (Table 3) was restrained by the 402 

instrument detection limits, whereas the available fraction showed an increase of 1.5-2.0-403 

fold by the Fe3+:EDTA and the Fe3+:G7 (1:1) for all the micronutrients as compared to the 404 

rest of the treatments. 405 
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4 Discussion 406 

4.1 Complexing capacity of the gluconate and heptagluconate and characterization 407 

in function of the Fe:ligand ratios 408 

For both G6 and G7 the MCC with Fe3+ was higher than that with Fe2+ inorganic salts, 409 

indicating a higher stability of the Fe3+ complexes than for the Fe2+ complexes at high pH. 410 

This parameter has been confirmed by the low complexed fraction by Fe2+:G7 (1:2) at pH 411 

9 mentioned above, as a consequence of the formation of Fe oxides and hydroxides and, 412 

thus, decreasing the solubility of the Fe22,23. The presence of a Fe3+ phase in the 413 

Mössbauer spectrum of the Fe2+: G7 (1:2) (see Fig. 3b) also confirms the oxidation of 414 

these complexes. The higher complexing capacity with Fe3+ as compared to the Fe2+ salts, 415 

have been also described for other complexes such as the lignosulfonates22. These 416 

complexing agents present a wide variety of functional groups such as carboxylic and 417 

hydroxyl groups, which are also present in G7 and G6. The presence of other complexing 418 

agents in the complexing agents G6 and G7 used was discarded by the13C NMR and FTIR 419 

spectra (Fig. 2), thus confirming that the higher Fe3+ complexing capacity of G7 than for 420 

the G6 was not due to impurities. These results are consistent with those reported by 421 

López-Rayo et al.44, where G7 presented a better complexing capacity than G6 for Mn in 422 

solution. Also, Clemens et al.14 hypothesized that G7 has a higher complexing capacity 423 

than G6 due to previous studies that demonstrated its effectiveness to correct Fe chlorosis 424 

in calcareous soils. 425 

The molecular weight distribution over 5000 Da for Fe3+:G7 complexes at different molar 426 

ratios (Fig. 3f) is in agreement to the molecular weights of Fe3+:sugars previously 427 

reported18 analyzed by GFC on Sephadex® G-25 and G-100. Silva et al.20, also observed 428 

the formation of oligomeric species for a 1:2 Fe3+:citrate mixture at neutral pH. The high 429 

molecular weight obtained by the different molar ratios of the Fe3+:G7 is attributed to the 430 
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formation of polynuclear structures, as was confirmed by the Mössbauer spectrum of the 431 

Fe3+:G7 (1:2) (see Figure 1a). The formation of the polynuclear structures in the Fe3+:G7 432 

complexes involves carboxylate oxygen and deprotonated alcoholic hydroxy groups45, as 433 

was detected in the FTIR spectra of the Fe3+:G7 complexes (Fig. 2d). This FTIR spectra 434 

showed the binding of Fe3+ with carboxylic and hydroxyl groups, as well as the interaction 435 

Fe-O that can take place in the formation of the polynuclear complexes18.  436 

4.2 Effectiveness of the complexes at different Fe:ligand ratios to provide Fe under 437 

hydroponic conditions  438 

The Fe3+:G7 complexes at all the molar ratios were able to correct the Fe chlorosis when 439 

they were applied at the same Fe dose than the Fe3+:HBED, based on the chlorophyll 440 

indices results (see Fig. 4). Moreover, the Fe concentration in the leaves did not show 441 

significant differences among the Fe treatments, being all within the Fe sufficient 442 

concentration range (50-150 µg g-1 DW) described by Marschner1. According to Ejraei2, Fe 443 

plays an important role in the growth and development of tomato. Therefore, the increase 444 

in the length and the DW of roots for the Fe3+:G7 (1:1) and the Fe3+:G7 (1:2) can be an 445 

indicator of the ability of these complexes to provide Fe in hydroponic conditions. 446 

Carrasco-Gil et al.46 also observed an increase in the DW of roots after the application of 447 

Fe to deficient tomato plants grown under hydroponic conditions. The effect of the 448 

treatments in the Fe nutrition was visible compared to the Fe-deficient plants, which 449 

presented a low chlorophyll index (see Fig. 4), and visible symptoms of chlorosis together 450 

with low Fe concentrations in the plant tissues. These plants also showed a marked 451 

decrease in the DW and root length, which values were similar to the Fe-deficient tomato 452 

plants grown under hydroponic conditions of other authors4,47. The high Fe concentration 453 

in the root of plants treated with Fe3+:G7 (1:05) could suggest a possible Fe precipitation 454 

on the root surface, and, as a consequence of the low percentage of Fe TR to leaf (1.2-455 

fold) as compared to the Fe3+:HBED (Table 1), related to its low stability. This 456 
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accumulation was also observed by Kovács et al.48 when using Fe3+:citrate but no when 457 

stable synthetic chelates were used. In contrast, the high percentage of Fe TR presented 458 

by the Fe3+:HBED (Table 1) was confirmed by a 2-fold increase in the Fe concentration in 459 

stem as compared to the rest of the treatments. This result is in agreement with Martín-460 

Fernández et al.49, who demonstrated a high percentage of Fe TR when the Fe3+:HBED 461 

was applied in early growth stages. A similar percentage of Fe TR to the Fe3+:HBED was 462 

presented by the Fe3+:G7 (1:1) compared to the rest of molar ratios. These differences 463 

may be due to the different stability of the complexes, as a main consequence of the 464 

different molar ratios used for their preparation. According to Carrasco et al.22, the 465 

Fe:lignosulfonate molar ratio influenced in the coordination sites involved in the formation 466 

of Fe complexes. 467 

The Mn concentration in leaves of the plants treated with the complexes were above the 468 

critical deficiency concentrations (10-20 µg g-1 DW) indicated by Marschner1, presenting 469 

the Fe3+:G7 (1:1) the highest concentration in leaf and Fe3+:G7 (1:2) in the stem (Table 2). 470 

The larger elongation of the root for both treatments may be contributing to the better Mn 471 

uptake (Table 2). Because the G7 has shown to be an efficient complexing agent to 472 

maintain the Mn in solution under hydroponic conditions according to López-Rayo et al.44, 473 

it may explain the higher Mn uptake obtained in our experiment as compared to the Zn and 474 

Cu. Besides, these results suggest that a higher Mn uptake by the plant may be promoted 475 

by the application of Fe3+:G7 (1:1 and 1:2) under the same conditions. In contrast, the 476 

Fe3+:G7 (1:3) showed a low Mn concentration, as well as the lowest Zn concentration in 477 

leaf, even lower than the critical deficiency concentration (15-20 µg Zn g-1 DW) established 478 

by Marschner1. The low concentrations of micronutrients obtained by Fe3+:G7 (1:3) can be 479 

due to the combined effect of an excess of complexing agent and a low Fe concentration. 480 

These explanation was supported by the results obtained by Wallace et al.25, where a Cu 481 

deficiency was obtained in bush bean plants grown under hydroponic conditions growth 482 
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with a low Fe concentration (10-5 M) and an excess of EDTA. In the case of the Cu in leaf, 483 

the Fe3+:G7 complexes presented concentrations above the critical deficiency 484 

concentrations (1-5 µg g-1 DW) in agreement with Marschner1, but not the Fe3+:HBED 485 

treatment (Table 2). High concentrations of Mn, Cu and Zn in some tissues of the Fe-486 

deficient plants were also observed in tomato grown under hydroponic conditions in Fe-487 

free conditions46. 488 

4.3 Effectiveness of Fe:G7 and Fe:G6 complexes to provide Fe in calcareous soil 489 

conditions  490 

This second experiment in calcareous soil was performed with soybean plants instead of 491 

tomato plants. Tomato has shown low sensitivity to Fe deficiency50 and, consequently, 492 

lower differences are expected among the Fe treatments under soil conditions. Despite the 493 

soil used was selected for its low Fe availability, this could be enough to supply sufficient 494 

Fe to the tomato plants. Moreover, the Fe3+:EDTA presented the highest chlorophyll index 495 

at 7 DAT (Fig. 5a) and, both, the Fe3+:EDTA and Fe3+:G7 (1:2) presented the highest Fe 496 

concentration in leaf at 7 DAT (Table 3). Iron chelates have shown a faster effect for the 497 

Fe chlorosis recovery than the Fe complexes. A long-lasting effect prevails in these 498 

compounds because the Fe is mainly accumulated in the soil available fraction (Table 3); 499 

however, the remaining Fe in the soluble fraction was not analyzed in our experiment due 500 

to the instrumental limitations. This long-lasting effect of the studied Fe complexes such as 501 

Fe3+:G6 (1:2) and Fe3+:LS, and the fast effect of the Fe chelates such as Fe3+:EDDHA 502 

have been also observed by Martín-Fernández et al.10. At 21 DAT, the Fe3+:G7 (1:0.5 and 503 

1:3) and Fe3+:G6 (1:1) showed that the chlorophyll indices for the third and fifth leaf level 504 

were variable (Fig. 5a and b, respectively), except to the Fe3+:G7 (1:1 and 1:2) that 505 

presented a similar increase to the Fe3+:EDTA for both leaf levels. The fact that re-506 

greening occurred in both leaf levels for the Fe3+:G7 (1:1 and 1:2) suggests a higher Fe 507 

distribution in the leaves, similar to the Fe3+:EDTA, as has been shown by Martín-508 
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Fernández et al.11 for Fe3+:G6 (1:2) and Fe3+:lignosulfonate. In addition, the chlorophyll 509 

indices measured in the fifth leaf level presented a similar tendency to the total Fe content 510 

in leaves. Most of them were above the Fe critical concentrations (45-50 mg kg-1 DW in 511 

leaf) in soybean estimated by Adams et al.51, with the exception of Fe3+:G6 (1:1) and 512 

Fe3+:G7 (1:3), which values were lower or closer to the critical concentration. A Fe:Mn 513 

molar ratio in leaf within the range 1.5-2.5 indicates an adequate nutrition according to 514 

Adriano43 but, in this study, values below 1.5 were obtained due to the low Fe dose used in 515 

the treatments to obtained a better comparison of the treatments. However, at 7 DAT, the 516 

values were higher than the values obtained by García-Marco et al.52 under hydroponic 517 

conditions, with soybean (0.67-0.54) grown for 14 days with low Fe concentrations of 518 

Fe3+:EDDHA. At 21 DAT, only the Fe3+:EDTA and the Fe3+:G7 (1:0.5) were higher than 519 

those values since our study was conducted for 7 days more. 520 

Fertilization with Fe3+:G6 (1:1) resulted in a low chlorophyll index at 21 DAT in the fifth leaf 521 

level which can be associated to its lower complexing capacity in comparison with G7 (Fig. 522 

1), which has already been hypothesized by Clemens et al.14. This treatment also showed 523 

a decrease in the concentrations of Fe, Mn, Zn and Cu in soybean tissues (Table 3 y 4). 524 

This fact is in good agreement with the low stability of G6 to maintain Mn and Zn in 525 

calcareous soil previously reported53. 526 

Based on the results obtained in these experiments, the influence of the variation of the 527 

Fe:ligand ratio in the complexes may affect the following chemical mechanisms for the Fe 528 

stability and availability to the plants: (I) When the Fe3+:G7 (1:3) ratio is considered, the 529 

equilibrium of the complexation reaction is shifted to the complexes formation due to the 530 

excess of ligand. As a result, the bioavailability of the other micronutrients is reduced, and 531 

even the Fe uptake by the plants can be retarded. (II) When the Fe3+:G7 (1:0.5) ratio is 532 

considered, the equilibrium of the complexation reaction is shifted to the release of Fe3+ 533 

due to a decrease in the complexing agent. Because of the high pH in the media, the Fe is 534 
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more susceptible to precipitation as Fe-oxyhydroxides on root surfaces, thus, reducing the 535 

Fe available to plants and affecting the Fe translocation. (III) When the Fe3+:G7 (1:1) and 536 

Fe3+:G7 (1:2) ratios are considered, the equilibrium among micronutrients, as well as the 537 

stability of the Fe and the complexing agent seems to be promoted. This effect could be 538 

related to the affinity of the metal:ligand that can avoid competition among micronutrients 539 

and the Fe-oxyhydroxides precipitation.  540 

The proposed chemical mechanistic behavior of the studied complexes are consistent with 541 

the low concentrations of Fe, Mn and Zn presented by soybean plants treated with 542 

Fe3+:G7 (1:3) (Table 3 and 4), as well as with the results obtained for the Fe3+:G7 (1:3) 543 

under hydroponic conditions (Table 2). This fact was also noticed by the low chlorophyll 544 

index presented in the soybean at 21 DAT (Fig. 5b). This decrease in the plant uptake of 545 

Fe, Mn, and Zn associated with the excess of ligands have already been described for 546 

other ligands such as DTPA, BPDS and EDTA24,25. In our work the Fe3+:G7 (1:1) showed 547 

also the highest Mn and Cu concentrations (Table 4), indicating that this molar ratio can be 548 

optimal for keeping and adequate levels of these micronutrients in the plants, which was 549 

also supported by the highest Mn concentration founded by the experiment under 550 

hydroponic conditions (Table 2). So, although Fe3+:G7 (1:2) presented a low Fe 551 

complexed fraction, it was able to sufficiently provide Fe to the plants due to the formation 552 

of polynuclear Fe complexes, that can present variable stability depending on the 553 

Fe:ligand ratio, confirming the hypothesis of this study. As it have been observed by 554 

previous studies21,54, where the complexes stability is high at low Fe:humic substances 555 

ratios at alkaline pH (e.g 1:2 compared to 1:0.5 in this work). 556 

5 Conclusions 557 

The present work provides sufficient evidences to demonstrate that Fe can be used more 558 

efficiently from Fe complexes with G7 than with G6 prepared at room temperature, 559 
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providing a more stable complex and high availability for the plant, and in both cases, a 560 

long-lasting effect due to the formation of polynuclear Fe complexes. Considering the Fe 561 

source, both complexing agents G6 and G7 have a higher affinity with Fe3+ than with Fe2+, 562 

showing a better Fe complexing capacity and stability of the Fe3+ complexes at high pH. 563 

The Fe3+:G7 molar ratios have shown to be critical for the Fe plant uptake under 564 

hydroponic conditions and calcareous soil. An excess of ligand with respect to the Fe3+ 565 

reduced the micronutrients uptake in the plant by the displacement of the equilibrium 566 

reaction towards the complex formation. The Fe3+:G7 1:1 and 1:2 molar ratios were those 567 

highly improving the Fe uptake while high Fe3+:G7 ratios are not adequate due to the Fe-568 

oxyhydroxides precipitation. The results obtained also showed that a Fe3+:G7 equimolar 569 

ratio can improve the uptake of other micronutrients such as Mn and Cu. Thus, the 570 

Fe3+:G7 at equimolar ratio and 1:2 molar ratio can be an environmentally friendly 571 

alternative to less degradable synthetic chelates to correct Fe chlorosis in strategy I plants. 572 

Further studies with Fe3+:G7 ratios of 1:1 and 1:2, but of low molecular weight synthetized 573 

according to other methodologies, as described by Nikolić et al.29 would contribute to 574 

improving the knowledge of their effectiveness and their long-lasting effect. 575 
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Table 1: Data of growth, Fe concentration and translocation (TR, leaf concentration/root 736 

concentration) in tomato plants at 15 DAT, grown under hydroponic conditions. 737 

Treatment 
Length (cm) DW (g plant-1) Fe (mg Kg-1 DW) Fe TR (%) 

Shoot Root Shoot Root Leaf Stem Root Leaf/root 

-Fe 22.8ns 24.8c 0.97c 0.19c 19.0b 9.48e 32.1d 55.4b 

Fe3+:G7 (1:0.5) 25.5 40.0b 1.75b 0.25c 54.4a 20.7d 152a 34.4c 

Fe3+:G7 (1:1) 24.3 53.3a 1.81b 0.46ab 59.5a 31.4bc 104b 65.5ab 

Fe3+:G7 (1:2) 24.1 48.3ab 2.41a 0.49a 50.3a 26.7c 102b 58.4b 

Fe3+:G7 (1:3) 27.5 40.1b 1.62b 0.33bc 55.2a 32.9b 101b 58.6b 

Fe3+:HBED 24.8 42.6b 2.01ab 0.33bc 49.1a 38.5a 61.1c 81.8a 

Different letters indicate significant differences among treatments according to Duncan´s 738 

test (p < 0.05). ns, not significant. 739 



Table 2: Cu, Mn and Zn concentrations in tomato plants tissues and Fe/Mn ratio in leaf at 15 DAT under hydroponic conditions. 740 

Treatment Mn (mg Kg-1 DW) Fe:Mn Zn (mg Kg-1 DW) Cu (mg Kg-1 DW) 

Leaf Stem Root Leaf Leaf Stem Root Leaf Stem Root 

-Fe 49.6a 10.1b 29.1a 0.39d 40.6a 21.7a 29.7a 6.03a 3.16 ns 14.6a 

Fe3+:G7 (1:0.5) 39.3b 10.1b 34.0a 1.40c 17.9b 15.7c 26.7ab 5.99a 3.19 9.22bc 

Fe3+:G7 (1:1) 43.3ab 12.2ab 18.4b 1.53bc 17.0b 19.2b 15.2d 7.61a 3.20 8.04c 

Fe3+:G7 (1:2) 29.6c 12.9a 18.9b 1.84ab 14.9bc 15.0c 19.9bcd 5.81a 2.51 9.63bc 

Fe3+:G7 (1:3) 25.4c 10.1b 22.4b 2.18a 11.1c 17.0bc 18.2cd 5.89a 3.36 7.93c 

Fe3+:HBED 29.2c 9.5b 20.6b 1.68bc 18.1b 14.9c 23.5abc 4.13b 2.53 12.3ab 

Different letters indicate significant differences among treatments according to Duncan´s test (p < 0.05). ns, not significant. 741 



Table 3: Fe concentrations in soybean tissues at 7 and 21 DAT in calcareous soil, and the 742 

available fraction of metals extracted from soils at 21 DAT. 743 

Treatment 

7 DAT 

(mg Kg-1 DW) 

21 DAT 

(mg Kg-1 DW) 

Available metal in soil  

(mg Kg-1) 

Leaf Stem Leaf Stem Root Fe Mn Zn Cu 

-Fe 56.1cd 29.7d 42.6c 35.7a 618b 6.31c 5.51c 0.91c 1.03d 

Fe3+:G7 (1:0.5) 64.4bc 45.8bc 58.5a 20.1b 662b 6.46c 4.66c 0.88c 0.95cd 

Fe3+:G7 (1:1) 66.9bc 33.9cd 54.1a 19.5b 928a 14.3b 15.5b 3.71a 2.87a 

Fe3+:G7 (1:2) 83.4a 31.8d 51.5ab 24.0b 791ab 9.20c 6.92c 2.10b 1.71bc 

Fe3+:G7 (1:3) 47.3d 51.3b 45.7bc 18.9b 632b 5.76c 6.13c 0.85c 0.87cd 

Fe3+:G6 (1:1) 49.3d 30.5d 43.7c 18.4b 589b 6.08c 8.00b 0.66bc 0.97cd 

Fe3+:EDTA 72.5ab 70.6a 56.4a 26.9b 642b 22.6a 22.0a 2.63bc 2.58b 

Different letters indicate significant differences among treatments according to Duncan´s 744 

test (p < 0.05). ns, not significant.  745 
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Table 4: Cu, Mn and Zn concentrations in plant soybean plants tissues at 7 and 21 DAT in calcareous soil. 746 

Different letters indicate significant differences among treatments according to Duncan´s test (p < 0.05). ns, no significant.  747 

Treatment 
Sampling 
(DAT) 

Mn (mg Kg-1 DW) Fe:Mn Zn (mg Kg-1 DW) Cu (mg Kg-1 DW) 

Leaf Stem Root Leaf Leaf Stem Root Leaf Stem Root 

-Fe 

7 

73.5ns 13.8ns --- 0.76c 39.0c 14.0ns --- 5.83b 7.50bc --- 

Fe3+:G7 (1:0.5) 72.1 14.9 --- 0.95abc 41.0c 16.3 --- 14.7a 12.4a --- 

Fe3+:G7 (1:1) 84.5 18.9 --- 0.83bc 55.5ab 17.4 --- 15.6a 12.9a --- 

Fe3+:G7 (1:2) 80.7 19.0 --- 1.10ab 47.0bc 15.1 --- 15.5a 4.30c --- 

Fe3+:G7 (1:3) 64.1 15.9 --- 0.75c 42.4c 14.7 --- 14.8a 7.40bc --- 

Fe3+:G6 (1:1) 63.6 16.2 --- 0.82bc 49.3bc 15.4 --- 16.0a 10.1ab --- 

Fe3+:EDTA 71.4 15.8 --- 1.15a 62.2a 17.2 --- 5.88b 11.8a --- 

-Fe 

21 

102c 14.3c 19.8c 0.43b 42.0bc 8.97b 20.8cd 10.9cd 3.09c 16.4b 

Fe3+:G7 (1:0.5) 107c 14.6c 19.2c 0.55a 46.4b 11.8b 35.1a 14.0ab 2.96c 22.6a 

Fe3+:G7 (1:1) 161a 23.0a 46.6a 0.35b 47.1b 16.4a 25.3b 15.0a 5.48a 23.0a 

Fe3+:G7 (1:2) 128b 18.8b 33.9b 0.43b 40.9bc 11.8b 24.2bc 13.2ab 3.97b 13.6c 

Fe3+:G7 (1:3) 106c 15.1bc 18.5c 0.43b 27.2d 9.10b 22.9bcd 10.6d 2.83c 17.8b 

Fe3+:G6 (1:1) 101c 15.2bc 19.2c 0.41b 31.5cd 9.81b 19.5d 10.4d 3.23c 13.6c 

Fe3+:EDTA 89c 16.3bc 33.7b 0.65a 83.9a 17.6a 35.4a 12.7bc 4.98a 16.3b 
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Figure legends  748 

Figure 1: Titration curves for the determination of the maximum complexing capacity 749 

of heptagluconate (G7) with a) Fe3+ and c) Fe2+, and gluconate (G6) with b) Fe3+ and 750 

d) Fe2+. 751 

Figure 2: 13C-NMR spectra of a) G6 and b) G7. FTIR spectra of c) G6 and Fe3+:G6 752 

(1:1) and d) G7 and the Fe3+:G7 complexes. 753 

Figure 3: 57Fe Mössbauer spectra of a) Fe3+:G7 (1:2) and b) Fe2+:G7 (1:2) recorded 754 

at 298 K. The blue line indicates Fe3+ and the red line indicates Fe2+. c) Absorption 755 

spectra of the molar ratios of Fe3+:G7 and G7. d) Gel filtration chromatography of the 756 

Fe3+:G7 complexes eluted on Sephadex® G-10. e) Elution of Fe3+:G7 (1:3) on 757 

Sephadex® G-15 and f) elution of the molar ratios of Fe3+:G7 on Sephadex® G-25 758 

with 0.1 M NaCl at pH 6. Vo indicate the exclusion volume marker in each column. 759 

Figure 4: Effect of the treatments applied to tomato plants under hydroponic 760 

conditions on a) chlorophyll index measured by Dualex in the fifth leaf level. Error 761 

bars indicate the standard error (N=5). Different letters represent significant 762 

differences among treatments following Duncan test (p < 0.05 level). ns, not 763 

significant. 764 

Figure 5: Effect of the treatments applied on the chlorophyll index in the soybean 765 

plants grown in calcareous soil measured by Dualex in a) the third leaf level and b) 766 

fifth leaf level. Error bars indicate the standard error (N=6). Different letters represent 767 

significant differences among treatments at each day following Duncan test (p < 0.05 768 

level). ns, not significant. Arrows indicate the days of application of the treatments. 769 
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Figure 1: Titration curves for the determination of the maximum complexing capacity of heptagluconate 
(G7) with a) Fe3+ and c) Fe2+, and gluconate (G6) with b) Fe3+ and d) Fe2+. 
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Figure 2: 13C-NMR spectra of a) G6 and b) G7. FTIR spectra of c) G6 and Fe3+:G6 (1:1) and d) G7 and the 
Fe3+:G7 complexes. 
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Figure 3: 57Fe Mössbauer spectra of a) Fe3+:G7 (1:2) and b) Fe2+:G7 (1:2) recorded at 298 K. The blue 
line indicates Fe3+ and the red line indicates Fe2+. c) Absorption spectra of the molar ratios of Fe3+:G7 

and G7. d) Gel filtration chromatography of the Fe3+:G7 complexes eluted on Sephadex® G-10. e) Elution 
of Fe3+:G7 (1:3) on Sephadex® G-15 and f) elution of the molar ratios of Fe3+:G7 on Sephadex® G-25 

with 0.1 M NaCl at pH 6. Vo indicate the exclusion volume marker in each column. 
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Figure 4: Effect of the treatments applied to tomato plants under hydroponic conditions on a) chlorophyll 
index measured by Dualex in the fifth leaf level. Error bars indicate the standard error (N=5). Different 

letters represent significant differences among treatments following Duncan test (p < 0.05 level). ns, not 
significant. 
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Figure 5: Effect of the treatments applied on the chlorophyll index in the soybean plants grown in calcareous 
soil measured by Dualex in a) the third leaf level and b) fifth leaf level. Error bars indicate the standard error 

(N=6). Different letters represent significant differences among treatments at each day following Duncan 
test (p < 0.05 level). ns, not significant. Arrows indicate the days of application of the treatments. 
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