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Abbreviations 

 ADM: Acinar-to-Ductal-Metaplasia 

 ATAC-seq: Assay for Transposase-Accessible Chromatin using sequencing 

 BAM: Binary Alignment Map 

 ChIP-seq: Chromatin InmunoPrecipitation sequencing 

 DWM: Dinucleotide Weight Matrix 

 GEMM: Genetically Engineered Mouse Model 

 GRN: Gene Regulatory Network 

 GTEx: Genotype-Tissue Expression 

 IDR: Irreproducible Discovery Rate 

 NGS: Next-Generation-Sequencing 

 OCR: Open Chromatin Region 

 PDAC: Pancreatic Ductal Adenocarcinoma 

 PFM: Position Frequency Matrix 

 PPM: Position Probability Matrix 

 RPKM: Reads Per Kilobase per Million mapped reads 

 scRNA-seq: single cell RNA sequencing 

 TF: Transcription Factor 

 TFBS: Transcription Factor Binding Site 

 TSS: Transcription Start Site 

 WT: Wild Type 

 ZFP: Zinc-Finger Protein 
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Abstract 

Pancreatic acinar cells compose around 85% of the exocrine component of the 
pancreas, which constitutes the vast majority of the tissue. Genetically Engineered 
Mouse Models (GEMMs) provide evidence that pancreatic ductal adenocarcinoma 
(PDAC) can efficiently arise from acinar cells through a transdifferentiation process 
called acinar-to-ductal-metaplasia (ADM), proposing the loss of acinar cell identity as 
the predominant origin for PDAC. Here, we present a comprehensive multi-omic 
integrative approach to generate a network-based resource to interrogate the 
transcriptional regulation underlying acinar cell identity in wild type (WT) mouse 
pancreas. As a proof-of-concept, we examine the regulatory activity of several acinar-
expressed transcription factors (TFs) involved in pancreas regulation and validate it by 
comparison with experimental ChIP-seq analysis, obtaining consistent results. We 
consider that this approach represents a valuable resource to perform a priori analyses 
that can be experimentally validated providing new knowledge to the field. Moreover, 
the presented methodology will be further explored to determine the optimal 
parameters for improving the potential in the detection of different regulatory events, 
and will be applied to GEMMs displaying different conditions, as well as to other 
organisms like human to cross-validate the results and the usefulness of our resource. 
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Introduction 

The pancreas is an endoderm-derived organ that plays a crucial role in the 
metabolism of all vertebrates and can be functionally divided into an endocrine and an 
exocrine component. The endocrine pancreas is composed of five specialized cell types 
grouped in the Langerhans islets and secrete peptide hormones responsible for 
glucose homeostasis. The exocrine component represents more than 95% of the 
pancreatic mass in mammalians and constitutes a branching network of acinar and 
ductal cells. The acinar cells compose approximately 85% of the exocrine pancreas and 
produce the hydrolytic digestive enzymes that are secreted into the lumen of ductal 
cells, which convey the enzymes to the gut for protein, carbohydrate and fat 
digestion1,2,3 (Figure 1). 

 

Figure 1. Schematic representation of the exocrine component of the pancreas.  Acinar cells constitute 
the vast majority of the exocrine functional element and secrete digestive enzymes that are conveyed 
by the ductal cells into the small intestine. Together with mesenchymal and centroacinar cells, they 
conform the exocrine cellular composition. (Image is a kind gift of S. Leach, Darmouth Cancer Center, 
NH, USA). 

 PDAC is one of the deadliest cancers with a 5-year survival rate of 6%. One of 
the causes of this high mortality is its late diagnosis, consequence of the appearance of 
symptoms at advanced stages when the tumor has spread and become metastatic4. 
Unless there is substantial progress, PDAC will become the second most common 
cause of cancer-related deaths by 2030, due to its close relation with age, obesity and 
metabolic syndrome5.  
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 The precise cellular origin of PDAC still remains a core question. At the 
histological level, PDACs resemble ductal cells, displaying cuboidal shape, ductal 
antigen expression and growth into tubular structures6. GEMMs provide evidence that 
PDAC can arise from all exocrine epithelial cells7,8,9,10,11. Genetic lineage tracing studies 
have shown that ductal and endocrine cells have limited oncogenic capacity10,12,13, 
while PDAC can develop efficiently from immature acinar cells that undergo a series of 
reprogramming processes known as ADM and pancreatic intraepithelial neoplasms 
(PanINs)13. It is therefore believed that the exocrine acinar cells of the pancreas are the 
predominant cells of origin for PDAC.  

Loss of cell identity has been shown to be associated with tissue injury, 
representing a first step towards carcinogenesis, and it is believed that acinar cell 
differentiation can act as a tumoral suppressor mechanism in the pancreas14,15,16,17. 
Acinar cell identity is determined by specific gene programs controlled by well-defined 
DNA-binding TFs1,18. These gene programs are organized into transcriptional modules, 
set of genes co-regulated by the same transcription factor that binds specific DNA 
sequence motifs within cis-regulatory elements such as enhancers and promoters19. 
Precisely defining these modules and their degree of overlap is crucial for 
understanding the regulatory mechanisms of the biological functions responsible for 
the intricated relationship between loss of acinar identity, tissue damage and cancer. 

Genome regulation depends not only on the linear sequence of the DNA, but 
also on its organization in a three-dimensional structure. Eukaryotic genomes are 
packed into nucleosomes, structures of ~146 bp of DNA wrapped around an octamer 
of histone proteins, which, in turn, are compacted to form the chromatin20,21. Highly 
condensed chromatin, known as heterochromatin, affects the accessibility of TFs and 
prevents the recruitment of RNA polymerase II to DNA in many contexts, resulting in 
the silencing of gene expression22,23. Although it has been shown that some of this 
compacted DNA can be transcribed, the mRNA is continuously turned over, avoiding 
translation24,25,26. On the contrary, the euchromatin is a less compacted state and 
regulatory elements such as enhancers and promoters are usually nucleosome-
depleted regions where TFs can access and physically interact with the DNA to recruit 
the transcriptional machinery and promote the transcription of genes or, on the other 
hand, block the recruitment of RNA polymerase II to repress gene expression levels27. 
The modulation of chromatin structure and, therefore, the accessibility and activity of 
the underlying genes are highly influenced by a complex and dynamic regulatory 
network of DNA methylation events and chemical modifications of histone proteins 
that together constitute the epigenome28,29. 

Transcriptional regulation is a fundamental biological process which has been 
widely studied in order to better understand how gene expression levels are 
modulated30.  TFs often interact with other TFs and co-factors to form complexes that 
bind to DNA and regulate the levels of transcription of different sets of target genes. 
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These complexes, as well as their exerted regulation, vary in different cell types and 
under different cellular conditions31,32. The ensemble of DNA binding events can be 
used to decipher the architecture of interactions between different TFs and target 
genes, constituting a transcriptional regulatory network33,34.  

To interpret the high degree of complexity characterizing regulatory 
mechanisms of biological systems, network biology has become a major strategy35,36. 
Through the construction of mathematical models based on qualitative and 
quantitative empirical measurements, it is possible to infer and reverse-engineer 
cellular functions by creating Gene Regulatory Networks (GRNs) representations37,35. 

The rapid development of molecular biology techniques and next-generation-
sequencing (NGS) technologies, along with computational biology methods of analysis 
have opened the way for interrogating in a comprehensive manner the behaviour of 
complex systems, such as transcriptional regulation, through the construction of 
predictive network models by integrating multiple and complementary sources of 
data38. 

In this work, we present a comprehensive multi-omic approach to decipher the 
transcriptional network that governs acinar cell identity in mouse pancreas under 
homeostatic conditions. We integrate several layers of information from different NGS 
omic data using multiple computational biology methods to obtain robust results. Our 
approach starts from the most unbiased method to detect open chromatin regions 
(OCRs) in the pancreas (Figure 2A), followed by filtering (Figure 2B) and footprinting 
analysis (Figure 2C) restricted to active regulatory regions in acinar cells through the 
integration of different NGS methodologies (Figure 2D and E). This allows to identify 
specific transcription factor binding sites (TFBS) (Figure 2F) to build networks that 
model the genetic regulation underlying acinar cell identity. Ultimately, this resource 
can be useful to identify important transcriptional modules and their respective 
biological functions, providing a baseline model against which to compare subsequent 
examinations of GEMMs displaying different conditions such as PDAC. Moreover, the 
presented methodology can be applied to other organisms, such as human, and tissues 
to compare and cross-validate the obtained results. 
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Figure 2. Project overview. A) Identification of OCRs in WT mouse pancreas by ATAC-seq data analysis. 
B) Integration of histone marks ChIP-seq data to filter and restrict the identified OCRs to promoter and 
enhancer locations as complementary approaches. C) Footprinting analysis on the different sets of OCRs 
to identify DNA protected sites from transposase cleavage due to protein binding. D) Selection of TFs 
expressed in WT mouse pancreas by integration of RNA-seq data. E) Integration of scRNA-seq data to 
filter the previously selected TFs, keeping only those expressed in pancreatic acinar cells. F) Integration 
of the footprint scores with TF binding motif information for the acinar-expressed TFs to identify specific 
TFBS and for construction of TF-TF interaction networks and individual TF-target genes networks. G) 
Validation of the networks built for individual TFs by comparison with ChIP-seq experiments performed 
for the same TFs. 
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Results 

Identification of consensus open chromatin regions using ATAC-seq 

Our first step in this work was to identify transcriptionally accessible regions, 
which represent potentially active regulatory regions and set up the basis for all the 
downstream analysis. 

The Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq)39 
has become in recent years the gold standard technique to reveal open chromatin 
accessibility at a genome-wide level. It relies on the hyperactive Tn5 transposase, 
which inserts sequencing adapters into accessible chromatin regions40. The distribution 
of the Tn5 insertion signal defines the OCRs and allows for the detection of TF binding 
events occurring within these accessible regions. Bound sites are represented as a 
signal depletion because the Tn5 is not able to cut the DNA protected by protein 
binding. This lack of cleavage events inside OCRs is called footprint41 (Figure 3) and can 
inform about TF binding distribution throughout the genome. 

 

Figure 3. Footprint detection by ATAC-seq. The hyperactive Tn5 transposase accesses to the open 
chromatin regions to cleave the DNA and insert sequencing adapters. DNA regions occupied by proteins 
are protected from Tn5 cleavage and no insertions occur. DNA fragments are purified, amplified and 
sequenced to produce reads that can be mapped to the reference genome to generate signals 
corresponding to the Tn5 insertions into accessible regions. A depletion of the signal within these 
regions of high read coverage indicates the presence of protein binding events, also known as 
footprints. 

We made use of publicly available ATAC-seq data from WT mouse pancreas to 
identify TF-binding events occurring in normal mouse pancreas. This data was 
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extracted from an ATAC-seq atlas consisting of 66 profiles from 20 different tissues42 of 
both female and male mice. For the aim of this work, we focused on the 4 available 
pancreas profiles, corresponding to two adult female mice and two adult male mice. 

The analysis of the raw data was performed using the ENCODE ATAC-seq 
pipeline developed by Anshul Kundaje’s laboratory43. This pipeline allowed for an end-
to-end quality control and processing from raw FASTQ files to peak calling between 
replicates. The obtained filtered Binary Alignment Map (BAM) files, containing the 
reads mapped to the reference genome, constitute the basal information for 
performing footprinting analysis into accessible regions in each of the replicates. 

Female and male replicates were processed separately, resulting in two peak 
files containing the significant OCRs identified in each case. The consistency of the 
peak calls between replicates was assessed by the Irreproducible Discovery Rate 
(IDR)44, discarding peaks with more than a 5% chance of being an irreproducible 
discovery (0.05 IDR). 

In order to generate the most robust OCRs consensus set, we focused on the 
regulatory regions common to all four replicates. To do so, we merged both peak files 
making use of mergePeaks function from HOMER software45 to obtain a consensus file 
where the peaks comprise the coordinates from both female and male replicates in 
the common regions. We obtained 38424 common peak coordinates between 
replicates that constitute a consistent representation of normal mouse pancreas active 
chromatin landscape and therefore were taken as the regions of interest to focus our 
subsequent analysis (Figure 4A). 

Restriction of OCRs to specific functional regions by integrating histone marks 
information 

Once determined the accessible chromatin regions by ATAC-seq analysis, we 
interrogated, separately, different functional regions of the active chromatin. To do so, 
we filtered the ATAC-seq identified OCRs by introducing information of epigenetic 
histone modifications. This approach also constitutes a cross-validation and a quality 
assessment of the previously defined OCRs. 

Chromatin accessibility can be influenced by chemical modifications of the 
histone proteins, typically on their unstructured ends, which are often used as marks 
for transcriptional activation or repression. Moreover, some of them are known to be 
enriched in certain genomic locations such as enhancers or promoters. Therefore, we 
used this information to restrict the ATAC-seq based OCRs to perform complementary 
analyses focusing on specific regulatory regions. 

We took advantage of ChIP-seq data from experiments performed in our 
laboratory for three different histone marks: H3K4me3, H3K27ac and H3K27me3. ChIP-
seq is a method for genome-wide detection of protein binding to DNA. It combines the 
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use of specific antibodies targeting DNA binding proteins for chromatin 
immunoprecipitation with sequencing. In this case, it allowed us to determine the 
genomic coordinates where these histone marks were present in WT mouse pancreas. 
H3K4me3 and H3K27ac are epigenetic modifications associated with the activation of 
transcription, enriched in promoters46 and both promoters and enhancers47, 
respectively. On the other hand, the H3K27me3 mark is associated with the repression 
of nearby genes through the formation of heterochromatic regions48.  

ChIP-seq data analyses for these three histone marks were performed using 
RUbioSeq+, a command line multiplatform application that integrates automated and 
parallelized workflows for the analysis of new generation sequencing data49. The 
obtained peaks for the different replicates were intersected again using HOMER’s 
mergePeaks function to obtain the consensus coordinates between all the replicates. 
We obtained 23053 consensus peaks between replicates for the H3K4me3, 41772 for 
the H3K27ac and 15173 for the H3K27me3 (Supplementary figure 1).  

In order to restrict the OCRs identified by ATAC-seq to active promoter and 
enhancer regions, as well as to repressed regions as quality assessment, we 
intersected the sets of peaks identified for each histone mark with the ATAC-seq OCRs. 
In this case we used bedtools50 intersect function to establish a specific overlap 
threshold and to keep in the output file the coordinates corresponding to the 
overlapping ATAC-seq peaks only. 

In the case of the H3K27ac, as it is a mark for both promoters and enhancers, 
instead of intersecting the whole set of peaks, we divided it into two subsets, one 
corresponding to promoters, which also allowed us to compare and validate the 
results obtained with the H3K4me3 modification and another one enriched in 
enhancers. To do so, using bedtools, we intersected the H3K27ac consensus peaks 
with mouse transcription start  sites (TSS) expanded 1 kb upstream and downstream to 
represent promoter regions. We defined as the H3K27ac promoter subset those peaks 
overlapping at least 1 bp with the TSS +/-1 kb regions, while the remaining were 
assigned to the enhancer-enriched subset.  

After the intersection of the histone mark peak sets with the 38424 OCRs 
identified by the ATAC-seq analysis, we obtained 16408 OCRs overlapping with 
H3K4me3 mark (Figure 4B), 14788 OCRs that overlap with the peaks of the promoter 
subset of the H3K27ac modification (Figure 4C) and 10877 OCRs overlapping with the 
enhancer peaks subset of H3K27ac mark (Figure 4D). 

As a quality control, we checked the consistency between the peaks identified 
by the H3K27ac promoter subset and the peaks marked as promoters by H3K4me3. 
We obtained 14348 common regions between both promoter peak files, which shows 
a good overlap and supports the quality of the ChIP-seq data, as well as the accuracy of 
our splitting of the H3K27ac peaks (Supplementary figure 2A). 
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In order to identify functional elements in the whole OCRs identified by ATAC-
seq and in the different sets of regions filtered by histone marks ChIP-seq data, we 
annotated the genomic locations of the peaks by genomic feature association analysis 
with HOMER. We observed that in the case of the H3K4me3 mark and the promoter 
subset of the H3K27ac more than half of them corresponded to TSS or exons, of which 
around 85% were first exons, which are close to promoter regions. In the case of the 
enhancer subset of the H3K27ac, we found that almost half of the peaks corresponded 
to intergenic regions and this set was depleted of promoter regions (Figure 4E). 

 

Figure 4. Sets of open chromatin regions used for footprinting analysis. A) OCRs identified by ATAC-seq 
in WT mouse pancreas. There are 38424 identified consensus regions where the Tn5 cut in both female 
and male replicates. B) Overlap between the consensus OCRs identified by ATAC-seq and the regions 
marked as active promoters by H3K4me3 epigenetic modification. 16408 overlapping peaks were 
identified. C) Overlap between the identified OCRs and the regions marked as active promoters by 
H3K27ac (promoter subset) epigenetic modification. 14688 overlapping peaks were identified. D) 
Overlap between the consensus OCRs and the regions marked as active enhancers by H3K27ac 
(enhancer subset) epigenetic modification. 10877 overlapping peaks were identified. E) Genomic 
location distribution of the OCRs as a whole and filtered by different histone marks. 
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As negative control, we assessed the overlap between the peaks of H3K27me3, 
which is a mark associated with transcriptionally repressed chromatin, and the ATAC-
seq identified OCRs. As expected, only a small fraction (946 out of 38424 OCRs) 
overlapped with peaks marked by H3K27me3 as repressed regions (Supplementary 
figure 2B). 

In summary, the integration with histone marks showed that OCRs identified by 
ATAC-seq were consistently enriched in transcriptionally active chromatin. 
Furthermore, this integrative approach allowed us to create different OCRs subsets  
that will facilitate downstream analyses to separately interrogate different functional 
regions of the active chromatin in WT mouse pancreas. 

Identification of TFBS through footprinting analysis 

 In order to determine specific TF binding events to DNA in the previously 
generated OCRs subsets, we further examined the Tn5 cut signal through footprinting 
analysis to identify signal depletion events within accessible regions due to the 
presence of DNA bound proteins. We made use of TOBIAS, a collection of command-
line bioinformatic tools specifically developed for this purpose51. We also restricted the 
analysis specifically to active regulatory regions in acinar cells through the integration 
of other NGS technologies using different computational biology methods. These 
computational methods allowed us to measure the TF expression levels in the different 
pancreatic cell types in order to filter the identified TFBS, excluding information related 
to non-acinar-expressed TFs. 

The first thing to consider when performing footprinting analysis on ATAC-seq 
data is that the Tn5 transposase, like the DNaseI enzyme used in DNase-seq chromatin 
accessibility assay, has preference for specific DNA sequences52,53. This causes an 
intrinsic sequence-dependent transposition site bias that interferes with the 
identification of footprints54,55. Therefore, as a first step, it was necessary to correct 
that bias for an accurate footprint prediction. To do so, we used the ATACorrect TOBIAS 
module, which takes the mapped ATAC-seq reads and the peak file with the regions of 
interest and, using a Dinucleotide Weight Matrix (DWM)56, calculates an expected Tn5 
insertion signal for each genomic region. This signal corresponds to the background 
cleavage bias of the transposase, which is subtracted from the observed signal to yield 
a corrected signal. That correction allowed to identify regions with weaker cut signal 
than expected, suggesting DNA protection from Tn5 cleavage due to the presence of 
protein binding (Figure 5A).  

In order to identify potential footprints, we quantitatively assessed the 
corrected cut signal by calculating footprint scores across regions using the 
ScoreBigwig tool. These scores are calculated as the difference of the background 
mean signal and the footprint mean signal, thereby taking into account not only the 
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depletion of signal, but also the accessibility of the flanking regions, which improves 
the prediction of bound TFs with weak footprints (Figure 5B). 

 

Figure 5. TOBIAS footprinting analysis. A) The ATACorrect module estimates the Tn5 sequence 
preference based on the observed reads and calculates the expected Tn5 insertion signal for each 
genomic region. Then, this biased signal is subtracted to obtain the corrected signal. B) The ScoreBigwig 
module performs footprinting to estimate the presence of transcription factor binding events. This tool 
calculates a footprint score based on both the depletion of insertion signal and the accessibility of the 
regions flanking the footprint. C) The BINDetect module integrates the footprint scores with information 
of transcription factor binding motifs to estimate the specific binding sites across the genome. It also 
establishes a threshold based on the footprint scores to determine the bound or unbound status of the 
identified sites. Scheme modified from Bentsen, M. et al., 2020. 

 Once we had quantitatively predicted DNA footprints across regions, we 
integrated the calculated scores with TF binding motif information to estimate the 
specific binding coordinates of individual TFs. Since our work was focused on the 
regulation of acinar cell identity, we integrated data from other computational biology 
methods to restrict the introduced motif information to acinar-expressed TFs. 

 Firstly, we analysed RNA-seq data from WT mouse pancreas coming from 
experiments performed in our laboratory and publicly available. This data allowed us 
to measure and rank the expression levels of TFs in WT mouse pancreas. A threshold of 
1 RPKM was set to differentiate between expressed and non-expressed TF in normal 
mouse pancreas, as expression values below 1 RPKM are considered to represent 
noise rather than true biological signal. In supplementary table 1, we show the top 100 
TFs ranked by measured expression levels in WT mouse pancreas. 
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The representation of the distribution of TFs expression levels showed that, 
surprisingly, only a few of them are highly expressed, while the rest of TFs compose a 
long queue with lower expression levels. Interestingly, a similar distribution was 
observed in the case of human pancreas data, coming from the Genotype-Tissue 
Expression (GTEx) project57. In both cases, Xbp1 had the highest expression levels, 
followed by Rbpjl, Bhlha15 (also known as Mist1) and Atf4 and a long queue of 
gradually less expressed TFs. This similarity between the TFs expression levels in both 
mouse and human pancreas indicates that the results of this project could, to some 
extent, be extrapolated to human data (Figure 6). 

 

Figure 6. Mean expression and standard deviation comparison between the top 50 expressed TFs in 
mouse and human pancreas. Similar mean expression distribution is observed for mouse and human 
data. Xbp1 is highly expressed compared to the overall expression levels and is followed by Rbpjl, 
Bhlha15 and Atf4 among the top 5 most expressed TFs in both human and mouse data. A long queue of 
gradually less expressed TFs is observable in both cases. 

The measured expression mostly corresponds to acinar expression, as this cell 
type constitutes around 85% of pancreatic mass. However, since the scope of our work 
was the transcriptional regulation of acinar identity, we introduced acinar cell expres-
sion data from scRNA-seq to discard TF binding motif information from TFs expressed 
specifically in non-acinar pancreatic cells. In contrast to bulk RNA-seq, scRNA-seq 
method can capture the transcriptome of individual cells, allowing to assess the biolog-
ical properties of specific cell types. We took advantage of mouse pancreas scRNAseq 
data analysed in our group consisting of WT acinar cells, acinar cells treated with ceru-
lein and OSKM reprogrammed acinar cells (Red circles in figure 7B). To be conserva-
tive, we considered as acinar-expressed those TFs with expression in ≥ 1 acinar cell in 
the whole dataset (Figure 7A). The final list with the selected acinar-expressed TFs is 
shown in supplementary table 2. 



 

14 
 

 

Figure 7. Identification of transcription factors expressed in acinar cells by single cell RNA-seq. A) 
Heatmap showing the expression of each TF in the different sets of acinar cells assessed. B) UMAP plot 
showing the clusters of different cell types in the scRNA-seq, with the acinar cells surrounded by a red 
circle. TFs with expression signal in any cell from wild type acinar cells (green), acinar cells treated with 
cerulein (pink) or OSKM reprogrammed acinar cells (orange and blue) were considered as acinar-
expressed TFs for downstream analysis. 

The previously calculated footprint scores across regions were linked with 
Position Frequency Matrices (PFMs) for the selected acinar expressed TFs to identify 
specific TFBS. These PFMs, consisting of nucleotide counts per position representing 
the binding motifs of each TF, were extracted from CIS-BP and JASPAR databases. The 
association between these motifs and footprint scores was assessed by using the 
BINDetect module from TOBIAS, which allowed us to set a footprint threshold to 
distinguish between bound and unbound TFBS (Figure 5C). 

In order to visualize the different shapes and patterns of footprint signals 
between bound and unbound sites, we created aggregated views of these signals 
across regions making use of TOBIAS PlotAggregate function. This allowed us to 
analyse in more detail the footprint signals for specific TFs and to compare the 
different shapes between pairs of TFs commonly working as co-regulators. As example, 
in figure 8 we show the aggregated footprint signals obtained in one of the female 
replicates for Nfic and Nr5a2, two acinar-expressed TFs of particular interest in our 
group due to their role in the maintenance of acinar identity in a context of 
inflammatory response of the pancreas58. While Nfic shows a canonical footprint 
signal, with a clear depletion between two peaks indicating chromatin accessibility, 
Nr5a2 has a weaker and more irregular signal. Although the shown aggregated 
footprint signals for Nr5a2 do not present a canonical shape, the represented regions 
passed the threshold to be identified as sites bound by Nr5a2 since the accessibility of 
the flanking regions is also taken into account to determine the bound or unbound 
state of TFs. 
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Figure 8. Aggregated footprint signals for bound/unbound sites. Aggregated plots showing the Tn5 cut 
signal across the identified OCRs containing the Nfic (top) and Nr5a2 (bottom) binding motifs. On the 
left, mean signals across regions that passed the footprint threshold to be classified as bound TFBS. On 
the right, aggregated signals across regions where the corresponding transcription factor binding motif 
was identified but did not pass the footprint threshold. The plots are centered around the identified TF 
binding motif, delimited by a dashed line. 

Altogether, we integrated TF binding motif information for the selected acinar-
expressed TFs with the previously calculated footprint scores to estimate specific TFBS 
across the OCRs identified by ATAC-seq and across the different subsets of regions fil-
tered by histone marks. The resultant TF-annotated footprints maps constituted the 
stepping stone for the construction of regulatory networks in different functional re-
gions of the active chromatin in WT mouse pancreas. 
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Transcriptional regulatory networks construction 

Once we had identified specific binding sites for individual TFs, we associated 
the estimated TFBS with the corresponding target genes to elucidate the regulation 
exerted by each TF. To do so, we used HOMER annotation function to assign each TFBS 
to the gene corresponding to the nearest TSS. Then, taking the identified TF-gene pairs 
and using the CreateNetwork tool, we could model the interactions between different 
TFs and their target genes to represent regulatory networks underlying acinar identity 
in different functional regions. 

A gene regulatory network is a mathematical representation of interactions 
between TFs and genes, represented as nodes, which are connected by directed edges 
indicating the regulatory relationship between them. We started building TF-TF 
networks, excluding genes not coding for TFs, to obtain a global view of the 
interactions of TFs occurring in pancreatic acinar cells. We also excluded the zinc-finger 
proteins (ZFP) because their functions are mostly unknown, which could interfere with 
the interpretation of the resulting networks and therefore should be explored 
separately. Furthermore, most of ZFP present poorly defined motifs, which could lead 
to an inaccurate representation of this kind of TFs in the networks. 

Networks modelling TF-TF interactions were built for the whole set of OCRs 
identified by ATAC-seq, for the OCRs restricted to promoters by H3K4me3 filtering, for 
the OCRs filtered by the promoter subset of H3K27ac and for the OCRs filtered by the 
enhancer subset of H3K27ac. Four networks were built in each case, corresponding to 
the four initial replicates, and were visualized with Cytoscape59. To obtain a robust 
representation of the TF interactions, we intersected the replicates using Cytoscape’s 
merge tool to generate a consensus network for every approach. 

The obtained TF-TF networks consist of 336 nodes representing the acinar-
expressed TFs and 8637 edges in the ATAC-seq network (Figure 9A), 4556 edges in the 
network restricted to promoters by H3K4me3 (Supplementary figure 3A) and 3968 
edges in the network restricted to promoters by H3K27ac (Supplementary figure 4A). 
The network restricted to enhancers by H3K27ac consists of 331 nodes and 2578 edges 
(Supplementary figure 5A). These representations gave us a global view of the great 
number of interactions occurring between TFs expressed in acinar cells and allowed us 
to focus on specific regions by interrogating the global networks. 

Important nodes playing a central role in the network could be identified taking 
advantage of NetworkAnalyzer module from Cytoscape. This tool allowed us to analyse 
the topological properties of the different networks based on local and global 
topological methods. A local method measures the relevance of a node in the network 
by considering the relationship between the node and its direct neighbours, whereas a 
global method considers the relationship between the node and the entire network. 
These analyses allowed us to rank the relevance of the TFs in the network at two 
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different scales. Specifically, we used two metrics, the degree, a local method that 
measures the number of nodes directly interacting with the node being assessed; and 
the betweenness centrality, a global method that measures the centrality of a node 
based on the number of shortest paths. Thus, considering that between each pair of 
nodes in the network exists at least one shortest path, the betweenness of a node is 
calculated by the summatory of the fractions of shortest paths between each pair of 
nodes that pass through the node being assessed. 

A strong correlation was found between the degree and the betweenness 
centrality scores of the nodes in all cases (Figure 9C and supplementary figures 3C, 4C 
and 5C). This similarity between both local and global methods when ranking the 
nodes of the network allowed us to determine the relevance of each node in the 
network in a consistent way. Therefore, we could build subnetworks to focus on the 
most important nodes and their interactions for further analysis.  

Global TF-TF networks were ranked by degree to generate subnetworks for the 
top 20 TFs based on this metric, obtaining consistent results between the ATAC 
network (Figure 9B) and both H3K4me3 (Supplementary figure 3B) and H3K27ac 
promoter (Supplementary figure 4B) networks. Klf (Klf4, Klf5, Klf11, Klf15) and Sp (Sp1, 
Sp2, Sp4) family members were observed as the most relevant nodes, but also other 
key transcription factors involved in the maintenance of a healthy acinar cell 
differentiated state like Bhlha15 and Nr5a260,61. On the other hand, Klf or Sp members 
were not found among the most relevant nodes in the enhancer network, suggesting 
that their regulatory activity is restricted to promoters. We found Gata6 and Gata4, 
two important TFs in this context due to their role as regulators of epithelial 
differentiation in pancreas and their controversial function in PDAC62,63. Again, we 
found Bhlha15 among other highly expressed TFs in pancreas (Supplementary figure 
5B). Considering the strong correlation between degree and betweenness methods 
when ranking nodes, we focused on the former to build these subnetworks and to 
perform further analysis. 

The correlation between the ranking of nodes based on topological 
measurements and the ranking of TFs based on expression levels was assessed starting 
from the assumption that TFs playing a central role in the network should be more 
expressed than others. A global network with all TFs and target genes interactions was 
also generated for more realistic comparison. A weak correlation was found for the TF-
TF networks (Figure 9D and supplementary figures 3D, 4D and 5D) and no correlation 
was observed for the global network (Supplementary figure 6). 
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Figure 9. Construction and topological analysis of TF-TF network (ATAC-seq peak set). A) Global view 
of the TF-TF network for the whole ATAC-seq set of peaks. B) Top 20 nodes (TFs) of the network ranked 
by degree. C) Correlation between degree and betweenness centrality measures for the ATAC network. 
A strong correlation was found between both local and global methods. D) Correlation between nodes 
degree and expression levels of TFs. A weak correlation was found. Also see supplementary figures 3-5. 

In addition, we followed an alternative candidate approach to generate 
networks consisting of individual TFs and their target genes to study in more detail the 
regulation of biological functions through the identification of co-regulatory events. 
We started building networks for Gata4, Gata6, Foxa2, Nr5a2, Nfic, Rbpjl, Ptf1a, 
Bhlha15 and Hnf1a, TFs of interest for our group, with which we have worked due to 
their important role in different regulatory functions in acinar pancreas. On the left 
panels of figure 10, we show a pairwise comparison of the regulated genes by each TF 
based on the individual networks. The number of target genes identified individually 
for each TF is indicated on the heatmap axis, between brackets. The number of 
common target genes regulated by each pair of TFs is indicated on the heatmap cells.  
As expected, Gata4 and Gata6 presented the highest number of co-occurrences in 
both promoters and enhancers, since both are involved in the regulation of similar 
biological functions in the pancreas, often working as co-regulators64,65,63,66,67. It is also 
remarkable the lower number of target genes for Hnf1a in the enhancer network, as 
well as the increased number of regulated genes by Rbpjl and Nfic in the same 
network, which gives an idea of the proximal and distal regulation exerted by each TF. 
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On the right panels of figure 10, we generated subnetworks with the top 50 nodes 
comparing the studied individual TF networks ranked by degree. The assessed TFs 
were displayed on the periphery, with the most relevant target genes on the centre. 
Among these target genes we obtained important acinar enzymes such as Cela1, 
Cela3b, RNaseI (Figure 10A-C), Amy2b and Pnlip (Figure 10A). We also obtained TFs 
involved in the development of PDAC such as Foxo3 (Figure 10A), Jun, Onecut1 (Figure 
10B) and RREB (Figure 10C) 68,69,70,71,72. 
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Figure 10. Construction and topological analysis of individual TF-target genes. A) ATAC-seq peaks-
based networks. B) Networks based on OCRs restricted to H3K4me3 peaks. C) Networks based on OCRs 
restricted to H3K27ac promoter peaks subset. D) Networks based on OCRs restricted to H3K27ac 
enhancer peaks subset. On the left, pairwise comparison of the target genes identified for each TF. On 
the right, network for the top 50 nodes ranked by degree from the merge of all individual TF networks. 
Regulated genes are located on the centre, while the evaluated TFs are on the periphery. 
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In addition, we took advantage of ChIP-seq experiments performed for these 
TFs for which we built individual TF networks to validate our approach. To do so, we 
annotated the ChIP-seq coordinates to determine the corresponding target genes of 
each TF. For both network and ChIP-seq, we filtered the identified genes to keep only 
those with expression in pancreas. As we did before, we integrated RNA-seq data from 
WT mouse pancreas to rank the gene expression levels and we kept those with at least 
1 RPKM. 

We also introduced motif information to check which of the peaks identified by 
ChIP-seq were associated to their canonical binding motif for further analysis. In each 
case, the motif was identified by performing a de novo motif analysis with HOMER 
software on the ChIP-seq identified coordinates, obtaining the Position Probability 
Matrix (PPM) for the most enriched motif. These PPMs consist of a normalization of 
PFMs, showing nucleotide probabilities per position to represent TF binding motifs. 

Therefore, to assess the consistency of the results, we compared the identified 
target genes from the networks with those from the ChIP-seq data. Moreover, for a 
more comprehensive analysis, we divided the ChIP-seq peaks into two subsets based 
on their association, or not, with the corresponding de novo identified motif. The 
annotated target genes from each subset were compared again with the target genes 
identified from the networks to assess the consistency of the results. 

In figure 11, we represent the percentage of genes identified in the individual 
TF networks that were also identified by ChIP-seq analysis for the same TF. As shown in 
the heatmaps, the target genes identified in the individual networks built based on the 
whole ATAC-seq OCRs, as well as in the networks restricted to promoter and enhancer 
regions, were consistent with the target genes identified in the ChIP-seq for Gata4, 
Gata6, Foxa2, Nr5a2, Nfic and Rbpjl. This consistency is especially high in the enhancer 
networks, also for Ptf1a. 

In general, many of the identified target genes were lost when restricting the 
ChIP-seq peaks with motif information, although the results for Gata4, Gata6 and 
Nr5a2 remained very consistent. Surprisingly, in the case of Foxa2 and to a lesser 
extent in the case of Rbpjl, the consistency of the results was higher for the ChIP-seq 
peaks not matching the motif compared with the peaks matching the motif. This 
suggests a discrepancy between the motifs used in network and ChIP-seq approaches 
to identify specific TFBS and a low accuracy of the de novo canonical motif identified 
from the ChIP-seq peaks, which was used for the motif/no motif split. 
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Figure 11. Validation of the results of individual TF-target genes networks. A) ATAC-seq peaks-based 
networks. B) Networks based on OCRs restricted to H3K4me3 peaks. C) Networks based on OCRs 
restricted to H3K27ac promoter peaks subset. D) Networks based on OCRs restricted to H3K27ac 
enhancer peaks subset. Numbers and colours of each cell represent the percentage of target genes 
identified by our multi-omic approach in each of the individual networks that were also identified by 
ChIP-seq analysis for the corresponding TF. In each heatmap, from left to right, validation of network  
results with all the ChIP-seq identified TFBS, with the regions associated to the corresponding TF binding 
motif and with the regions not matching the TF binding motif. P-values are indicated in each case. 
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In order to assess the significance of the common results between the network 
and ChIP-seq approaches, we generated random permutations of the ChIP-seq regions 
through the reference genome. Using bedtools shuffle function, each peak was 
repositioned on a random chromosome at a random position, while preserving the 
original size and strand. The permuted regions of each TF ChIP-seq were annotated to 
determine the target genes based on the nearest TSS and the results were compared 
with the target genes obtained in the corresponding individual TF network. Next, to 
determine the statistical significance of the results, the number of common genes 
identified between the individual TF network and the permuted regions from the ChIP-
seq analysis of the same TF was compared with the number of common genes 
identified previously from both the network and the original non-permuted ChIP-seq 
peak regions. The common results between all the assessed individual TF networks in 
the different functional regions and the corresponding ChIP-seq data showed strong 
statistical significance (Figure 11). These statistical analyses validate the construction 
of individual networks as a useful starting point to infer the genes regulated by each TF 
expressed in pancreatic acinar cells. 
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Discussion 

 In this project, we have analysed and integrated different NGS omic data using 
multiple computational biology methods to generate networks that model the 
regulation underlying acinar cell identity in WT mouse pancreas. Starting from ATAC-
seq data to detect OCRs, we have integrated histone marks ChIP-seq data to perform 
parallel approaches restricted to specific functional regions in order to distinguish 
between proximal and distal DNA regulatory events in promoters and enhancers, 
respectively. We have also integrated RNA-seq and scRNA-seq data to restrict the 
analysis to TFs specifically expressing in pancreatic acinar cells that, together with 
footprinting analysis, allowed us to identify specific TFBS. Based on this information, 
we generated in a first place, TF-TF networks modelling the hierarchical interactions 
between TFs involved in the regulation of acinar cell identity in normal mouse 
pancreas. On the other hand, we built subnetworks for individual TFs and their target 
genes for detailed analysis of their regulatory activity. 

Degree and betweenness-based analyses were performed on the generated TF-
TF networks to rank the nodes involved in the regulatory network. Degree and 
betweenness centrality constitute two topological measures frequently used to 
characterize the importance of nodes in a network73,74,75,76,77. Considering the high 
correlation obtained between both methods, we focused on the degree score, which 
showed consistent results between the network based on the whole ATAC-seq OCRs 
and the two networks restricted to promoter regions by H3K4me3 and H3K27ac. As 
shown in figure 9B and supplementary figures 3B and 4B, Klf and Sp family members 
emerged as the most relevant nodes in the networks following topological measures, 
which are known to be involved in regulation of growth, proliferation and migration of 
pancreatic cancer cells78,79,80,81,82,83,84. However, these families of TFs present GC-
enriched binding motifs, which could lead to their overrepresentation due to a non-
specific association of the TFs to non-related GC-rich functional elements. Similarly, 
there could be a wrong association between TFs and motif sequences belonging to 
other members of the same family, as they present very similar TF binding motifs and, 
therefore, should be taken into consideration when interpreting the results. 

Based on these topological analyses of TF-TF networks, we can select important 
nodes and build individual networks for the selected TFs and their target genes for a 
detailed analysis of the regulation exerted by each TF. 

The results obtained from the assessed individual TF-target genes networks 
allowed us to perform pairwise comparisons of the targets obtained for each TF to 
identify co-regulation events. The highest number of common target genes was 
observed for the Gata4 and Gata6 comparison. On the one hand, these results are 
expected from a biological perspective, as both Gata4 and Gata6 play an important 
role in mouse pancreas organogenesis, regulating similar and complementary cell 
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functions, and have gained especial attention in the past years due to their 
controversial role in PDAC and patient outcome62,63,64. Nevertheless, as well as with 
the results obtained from the topologically ranked TF-TF networks, we should consider 
the high similarity between both TF binding motifs, which could lead to false positive 
matches between one TF and the partner motif. Therefore, in an alternative and more 
conservative approach we could integrate both results, focusing on TF families instead 
of specific TFs with highly similar TF binding motifs. 

To better understand this co-regulation, we compared the Gata4 and Gata6 
target genes identified in promoter networks with the annotated genes in TSS regions 
from ChIP-seq experiments for the same TFs. We also performed this comparison for 
Nfic and Nr5a2, which unlike Gata4 and Gata6, present very different binding motifs, 
but also regulate similar functions in the pancreas, especially interesting in the 
maintenance of acinar cell differentiated state in the context of inflammatory 
response58.  The results of these comparisons showed that the identified common 
target genes between the promoter networks of Gata4 and Gata6, as well as the 
common targets between Nfic and Nr5a2 promoter networks, were consistently 
identified as common between the corresponding TF ChIP-seq analyses. However, 
some of the target genes obtained as specifically identified by one of the networks 
were also identified by both TF ChIP-seq analyses. Taking into account that the number 
of target genes identified by the networks is lower than the number of genes identified 
by ChIP-seq, these results suggest that our approach could be too restrictive when 
identifying specific TFBS, leading to subnetworks that represent only a part of the real 
interaction landscape. Therefore, it would be interesting to relax some of the 
thresholds applied in each analysis and assess the consistency of the results. An 
improvement in the detection of common target genes between the network and the 
ChIP-seq analyses, while maintaining the specificity, would indicate that we can be 
more permissive in regard to the applied thresholds. 

The methodology described in this work can be a useful approach to 
interrogate the regulatory network underlying the identity of pancreatic acinar cells in 
WT mouse. However, as mentioned, there are some caveats that should be considered 
to optimize this methodology and the scope of the results. 

 Since TFs belonging to the same family present similar binding motifs, this 
could lead to miss association between TFs and binding motifs of other TFs of 
the same family. Therefore, instead of describing separately the regulation 
exerted by TFs with highly similar binding motifs, focusing on families of TFs 
could avoid false positive results. 

 Another consideration following the previous constraint is that there are 
families of TFs with GC-rich binding motifs, as Klf and Sp families, which 
emerged in our topological analysis as the most important TFs. Nevertheless, 
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the presence of isochores (large GC-rich DNA regions) throughout the genome 
could lead to non-specific associations of these TFs with other non-related GC-
rich DNA regions and therefore, to their overrepresentation. To improve the 
specificity on the association of footprints with TFs exhibiting unspecific 
sequence motifs, our future work will be focused on introducing new layers of 
information such as TF binding motif energy measures to strengthen the 
identification of specific TFBS85,86,87. 

 Regarding the target genes identified by our networks, we have observed that 
our approach represents only a fraction of the real regulatory landscape 
compared with the homologous ChIP-seq analysis. Therefore, future efforts 
should be centered on further studying the parameters and thresholds of the 
different computational methodologies applied in this work in order to find a 
good balance between scope and precision on the detection of TFBS. Our next 
step will be to relax the restrictiveness on the selection of OCRs coming from 
ATAC-seq, making use of all the significant identified regions (filtered by 0.05 
IDR) from both male and female replicates instead of selecting the intersecting 
OCRs. This would cover more information and the accuracy would be assured 
by the downstream footprinting analysis and the integration of multiple 
filtering layers of information. 

 The integration of multiple sources of data could also act as a limiting factor 
regarding the number of identified TFBS. Identifying the most restrictive data 
applied in this work and assessing alternative data sources could also increase 
the scope of the project. 

Despite the mentioned limitations, we consider that we have generated a useful 
resource that, based on the integration of different omics in a comprehensive manner, 
has passed several filters and showed consistent results, which were also 
experimentally validated. Therefore, this resource can be helpful to make an a priori 
analysis to interrogate the WT mouse pancreas about transcriptional modules playing 
an important role in the regulation of acinar cell identity.  

Although in this approach we have focused on WT mouse acinar pancreas, the 
aim of the project is to apply the explained methodology to other cell types, organisms 
and conditions. Based on the analysis exposed in figure 6, we believe that the results 
obtained in the present work can be partially extrapolated to human pancreas under 
homeostatic conditions. Therefore, building the transcriptional network underlying 
acinar cell identity in WT human could be useful to cross-validate the results obtained 
in mouse and establish parallelisms between the regulatory networks of both 
organisms. In fact, part of this work was driven in parallel for WT human making use of 
FAC-sorted pancreatic data, which gave us the possibility to directly perform the 
analyses at cell population level88. Global TF-TF networks were already generated for 
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acinar and ductal pancreatic cells (Supplementary figure 7), but additional analysis will 
be performed for the endocrine compartment in both human and mouse pancreas as 
quality control, focusing on beta cells-expressed TFs, as this is the predominant cell 
type in pancreatic islets.  

In addition, future interrogation of acinar cell identity regulation in GEMMs 
displaying different tumorigenic conditions, such as KRAS-driven cancer models and KO 
mice for different acinar-expressed TFs studied in our group, can provide extremely 
valuable knowledge to the field of pancreatic cancer and, more specifically, of PDAC. 
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Methods 

Datasets 

High quality ATAC-seq datasets were downloaded from a publicly available 
resource on mouse epigenome (http://identifiers.org/ncbi/insdc.sra:SRP167062) using 
SRA toolkit fastq dump function (http://ncbi.github.io/sra-tools/fastq-dump.html). 
Two adult female (SRX4946168, SRX4946169) and two adult male (SRX4946145, 
SRX4946117) pancreas profiles were used for this project. 

Processing of ATAC-seq data 

Paired-end raw fastq files were analysed using the ENCODE ATAC-seq pipeline 
developed by Anshul Kundaje’s laboratory43. Male and female replicates were analysed 
separately. The ENCODE pipeline allowed for an automated end-to-end quality control 
and processing of ATAC-seq data (Figure 12). Caper (Cromwell Assisted Pipeline 
ExecutoR) was used to run the pipeline from FASTQ to peak calling in an automated 
way (caper run [WDL script] -i [Input JSON file containing information of genomic data 
files, parameters and metadata]). Briefly, Cutadapt89 v2.5 was used to find and remove 
the adapter sequences. Then, reads were mapped to reference genome (mm10, 
GRCm38, December 2011) using Bowtie290 v2.3.4.3 and the resulting SAM (Sequence 
Alignment Map) files were converted to BAM format using SAMtools91 v1.9. Next, 
Sambamba92 v0.6.6 was used to detect and remove reads unmapped, not primary 
alignment, duplicates and reads mapping to mitochondrial DNA (chrM). PCR read 
duplicates were removed by using Picard’s MarkDuplicates93. Accessible regions were 
identified by peak calling using MACS294. Consistent peaks between replicates were 
selected by applying an 0.05 IDR threshold. 

  

Figure 12. Steps followed in the analysis of ATAC-seq datasets. Identical end-to-end quality control 
from raw fastq files to peak calling was performed for both female and male replicates. Filtered BAM 
files and consistent OCRs obtained after this analysis constituted the basis for downstream footprinting 
analysis. 
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Quality control after processing showed robust results for the four analysed 
replicates. Regarding the library complexity, no bottlenecking was observed after 
checking the PCR bottlenecking coefficients (PBC1 and PBC2). PBC1 is the ratio of 
genomic locations with exactly one read pair over the genomic locations with at least 
one read pair. PBC2 is the ratio of genomic locations with exactly one read pair over 
the genomic locations with exactly two read pairs. All the replicates passed the 
threshold of TSS enrichment in OCRs for mm10 established as quality control. 

Processing of ChIP-seq data 

ChIPseq data from histone marks and transcription factors were analysed using 
Rubioseq pipeline49 mounted in a Docker container. Reads were aligned to reference 
genome (mm10, GRCm38, December 2011) using Burrows-Wheeler Aligner (BWA). 
Duplicates were marked and removed using Picard. Peak calling was performed with 
MACS2 using --nomodel --extsize 200 --gsize mm --broad-cutoff 0.01 argument for 
histone marks and --nomodel --extsize 200 --gsize mm for transcription factors. 

Processing of RNA-seq data 

RNAseq data was analysed using Nextpresso pipeline95 mounted in a Docker container. 
Reads were aligned using Bowtie and TopHat296 aligners. Gene counts matrices were 
generated using HTseq-count97 and normalization and differential expression analysis 
was carried out with DESeq298 package. 

Processing of scRNA-seq data 

Single cell RNA seq data was preprocessed using Cell Ranger software for Chromium 
10X based data99. Sparse matrices were loaded into R for Seurat analysis100 (cell QC, 
dimensionality reduction, normalization and graph-based clustering). Cell population 
annotation was based on the differential expression of canonical markers in each of 
the obtained clusters. 

Selection and filtering of consensus OCR peaks 

Peak files obtained for male and female replicates after ATAC-seq processing 
were merged to obtain a unique consensus peak file with robust OCRs. Both peak files 
were intersected using the HOMER software mergePeaks function. The “-d given” 
option was set to be conservative with the obtained common regions between both 
files. Instead of getting an average position between overlapping peaks, this option 
allowed to obtain a broader region comprising both overlapping peaks. 

Peak files obtained from ChIP-seq analysed histone marks were used to filter 
and restrict the ATAC-seq consensus OCRs. Firstly, peak files from replicates for each 
histone mark were merged using HOMER’s mergePeak function with -d given option. 
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Consensus peaks from H3K4me3 and H3K27me3 were intersected with the consensus 
ATAC-seq OCRs using bedtools intersect function. Histone mark locations, identified by 
ChIP-seq experiments, comprise a broader region than the real OCR identified by 
ATAC-seq, as the ChIP-seq peaks also include the histone position. The “-f “ option was 
set as 0.5 to be restrictive enough to ensure a real overlap instead of the default 1bp 
to consider two peaks as common. With the -f 0.5 threshold it was required an overlap 
between the histone mark peak and a 50% of the OCR peak as a minimum to consider 
them as common peaks. The “-wa” option was set to keep the ATAC-seq peaks in the 
output file when an overlap occurs (bedtools intersect -a [ATAC-seq peaks] -b [Histone 
mark peaks] -wa -f 0.5). Consensus peaks from H3K27ac were divided into two subsets 
by intersecting them with TSS for GRCm38 downloaded from GENCODE, with +/- 1 kb 
around TSS. Bedtools intersect function was used with default parameters (bedtools 
intersect -a [H3K27ac peaks] -b [TSS +/- 1kb peaks] -wa). H3K27ac peaks overlapping in 
1bp with TSS +/- 1kb regions were established as the promoter subset, while the non-
overlapping peaks were established as the enhancer subset. Both subsets were 
intersected with the ATAC OCRs using the same procedure explained for H3K4me3 and 
H3K27me3. 

Replicates of ChIP-seq identified coordinates for individual TFs were intersected 
with HOMER mergePeaks function to obtain the consensus peaks between replicates. 

Peak annotation 

Consensus peak files were annotated using HOMER annotatePeaks.pl function. 
mm10, GRCm38, December 2011 genome was used as reference genome and a gtf 
annotation file for mm10, GRCm38 extracted from the UCSC Genome Browser was 
used to annotate the peaks. 

HOMER de novo motif analysis using the findMotifsGenome.pl function was 
performed to find enriched motifs in ChIP-seq consensus peaks for individual TFs. The 
PPM corresponding to the TF binding motif was used to annotate the peaks, again with 
HOMER annotatePeaks.pl, and differentiate regions matching and not matching the 
motif. 

Footprinting analysis 

 TOBIAS ATACorrect function was used to correct the sequenced reads 
regarding Tn5 sequence bias. ScoreBigwig function was used to calculate footprint 
scores from cutsites across accessible regions. BINDetect module was used to estimate 
TF binding events from footprints and motif information. Default parameters were 
used in each step (0.001 p-value threshold for bound/unbound TF split). 
CreateNetwork module was used to model the interactions between bound TFs and 
their target genes to build regulatory networks. 
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Processing of motif information 

TF binding motifs were mainly downloaded from CIS-BP101 database for Mus 
musculus. Motifs for Ets2, Foxa3, Nfyb, Rbpjl, Sox9 and Tead2, known TFs with 
expression in pancreatic acinar cells, whose motifs were not present in CIS-BP, were 
downloaded from JASPAR CORE 2020102. 

The motif information included in the analysis was restricted to TFs expressed 
in pancreatic acinar cells. RNA-seq data was used to restrict the information to TFs 
with pancreatic expression levels greater than 1 RPKM. scRNA-seq data was used to 
restrict the motif information to pancreas-expressed TFs with expression in ≥ 1 acinar 
cell. 

Visualization 

Venn diagrams, barplots, piecharts, correlation plots and heatmaps were 
generated with RStudio v1.2.5019103. Network views were drawn with Cytoscape 
v3.8.2. Subnetworks with top nodes ranked by degree were drawn with cytoHubba104 
plugin in Cytoscape. Aggregated footprints were visualized with TOBIAS PlotAggregate 
function. 

Statistical analysis 

Pearson correlation coefficient was applied to measure the linear correlation 
between degree and betweenness centrality, as well as between these topological 
metrics and TF expression levels from RNA-seq analysis. 

Statistical significance of the common results between networks and ChIP-seq 
analysis on individual TFs was assessed by random permutations of the ChIP-seq 
regions. These permuted regions were annotated, and the identified target genes were 
compared with those identified in the corresponding network. Next, the number of 
common genes was compared with the enrichment obtained from the comparison of 
the network and the real ChIP-seq data. Pearson’s chi-squared test was used to 
determine the statistical significance of the observed consistency of the results relative 
to the expected enrichment105. 

All statistical analyses were performed using R106. 

Code availability 

 For detailed information of the code used to analyse and represent the results 
obtained see https://github.com/PabloPerez5/TFM. 
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Supplementary Information 

 

Supplementary Figure 1. Histone marks consensus peaks. Venn diagrams showing the peak regions 
identified by ChIP-seq experiments for different epigenetic modifications. A) For H3K4me3, there are 
23053 common peaks identified by the three replicates. B) 41772 consensus regions between the three 
replicates were identified for H3K27ac. C) In the case of H3K27me3, considering that the first replicate 
has few peaks compared with the others and almost all of them are overlapping, it was excluded and 
the 15173 common peaks between the other two replicates were took as the consensus peak set. 

 

Supplementary Figure 2. Peak sets consistency verification. A) Promoter regions identified by H3K4me3 
and H3K27ac (promoter subset). Most of H3K27ac peaks overlaps with H3K4me3 peaks. B) Overlap 
between the OCRs identified by ATAC-seq and repressed regions marked by the H3K27me3 epigenetic 
modification. A minimum intersection is obtained. 
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Supplementary Figure 3. Construction and topological analysis of TF-TF network (H3K4me3-filtered 
peak set). A) Global view of the TF-TF network for the set of peaks restricted to promoters by H3K4me3. 
B) Top 20 nodes (TFs) of the network ranked by degree. C) Correlation between degree and 
betweenness centrality measures for the H3K4me3-filtered network. A strong correlation was found 
between both local and global methods. D) Correlation between nodes degree and expression levels of 
TFs. A weak correlation was found. 
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Supplementary Figure 4. Construction and topological analysis of TF-TF network (H3K27ac promoter 
subset-filtered peak set). A) Global view of the TF-TF network for the set of peaks restricted to 
promoters by H3K27ac. B) Top 20 nodes (TFs) of the network ranked by degree. C) Correlation between 
degree and betweenness centrality measures for the H3K27ac promoter subset-filtered network. A 
strong correlation was found between both local and global methods. D) Correlation nodes degree and 
expression levels of TFs. A weak correlation was found. 
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Supplementary Figure 5. Construction and topological analysis of TF-TF network (H3K27ac enhancer 
subset-filtered peak set). A) Global view of the TF-TF network for the set of peaks restricted to 
enhancers by H3K27ac. B) Top 20 nodes (TFs) of the network ranked by degree. C) Correlation between 
degree and betweenness centrality measures for the H3K27ac enhancer subset-filtered network. A 
strong correlation was found between both local and global methods. D) Correlation between nodes 
degree and expression levels of TFs. A weak correlation was found. 
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Supplementary Figure 6. Correlation between the degree of TF nodes and mean expression levels in 
the global network built for all acinar-expressed TFs and their target genes. No correlation was found. 

       

Supplementary Figure 7. Parallel analysis performed for human acinar pancreas. A) OCRs identified by 
ATAC-seq in WT human acinar pancreas. 11956 consensus regions were identified between replicates. 
B) TF-TF network built from the 11956 consensus OCRs identified in human acinar pancreas under 
homeostatic conditions, consisting of 110 nodes (TF) and 242 edges (interactions). 
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Transcription factor Average expression  Transcription factor Average expression 
Xbp1 3224,526308265  Deaf1 188,7294904037 
Bhlha15 2117,0835867338  Ppard 181,448328333 
Nme2 1676,2067027481  Kdm2a 181,111201324 
Rbpjl 1547,5161185468  Nfat5 178,6499605608 
Atf4 974,2099002556  Cebpg 177,3238040221 
Atf5 926,9699547841  Cebpa 176,9674109971 
Tead2 817,1204197394  Epas1 175,3177519375 
Atf6 553,6087661701  Mbd2 173,0352093183 
Son 545,9655962968  Cggbp1 172,9839539462 
Klf15 504,1595133485  Creb3 172,3834590697 
Jund 493,9339829912  Stat6 168,1824840878 
Preb 467,2507425435  Cebpz 167,8869317995 
Kcmf1 460,7877138226  Baz2a 167,4051861618 
Pa2g4 427,8411133771  Gpbp1 165,4124227595 
Glyr1 427,6188023606  Sp1 161,2911401825 
Cenpb 423,8887302389  Meis2 160,2990907802 
Nfe2l1 399,7284173814  Nfib 160,2333664851 
Gtf2i 357,191192227  Nfx1 156,6802720181 
Cxxc1 354,1297566215  Rela 153,9129851835 
Cux1 319,2360390111  Ash1l 148,8350627154 
Tsc22d1 305,8274320829  Mef2d 147,6892814619 
Tef 290,717258602  Mxd4 147,4266308338 
Nr3c1 288,3094275963  Adnp 146,9725942487 
Klf9 287,1549493714  Hnf4a 146,6085129266 
Nr1d2 285,9913122555  Prdm2 143,226649482 
Gata4 285,0187012837  Mlx 143,1340664599 
Irf6 284,2570659822  Foxp4 142,5768717475 
Ptf1a 280,5579125471  Ahctf1 142,4538485431 
Rxra 276,7830786548  Rxrb 141,9307584946 
Mbnl2 276,3122628736  Gpbp1l1 141,0357122983 
Nfic 272,7066766024  Cic 140,7384571155 
Stat3 272,4564463418  Myc 140,1365480884 
Creb3l1 271,5448377125  Klf6 139,8394678731 
Tfdp2 270,3198562047  Bptf 139,7831472151 
Srebf1 261,1951981888  Bach1 137,8030206875 
Ets2 250,7319207906  Irf3 136,9386646741 
Dbp 242,5844532446  Mxi1 135,1111076508 
Cxxc5 235,9642600382  Hif1a 134,9045478783 
Usf2 229,6053672063  Smad5 134,6394426612 
Chchd3 229,507090639  Sp3 133,8779044269 
Drap1 227,7459621267  Clock 132,8726913994 
Nr2f6 215,9091003994  Cdc5l 132,07321345 
Mlxip 215,2683237544  Tcf4 131,8396451176 
Nr5a2 209,259546813  Tead1 129,7358286923 
Hbp1 209,1492884816  Gatad2a 128,4493152467 
Purb 208,1692629418  Ctcf 128,2050977072 
Ski 198,9572394732  Crebzf 127,5420718557 
Nr1d1 198,7511440913  Srebf2 126,4076907638 
Aebp1 196,7322470996  Klf13 125,5254618471 
Ubp1 191,1920450102  Usf1 124,2997115701 
Supplementary Table 1. Top 100 most expressed (RPKM) transcription factors in WT mouse pancreas.  
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Xbp1 Bach1 Esrra Trp53 Hsf2 Etv1 Twist1 
Bhlha15 Irf3 Stat1 Pou2f1 Nkx2-2 E2f3 Foxc1 
Rbpjl Hif1a Hes6 Kdm2b Tcf7 Glis3 Nr1i3 
Atf4 Smad5 E2f4 Tgif1 Irf7 Tgif2 Egr2 
Atf5 Clock Crebl2 Nfya Elf4 Irf4 Rel 
Tead2 Cdc5l Foxk1 Glis2 Elk4 Naif1 Foxs1 
Atf6 Tcf4 Rfx7 Nfil3 Gmeb1 Ebf3 Alx4 
Klf15 Ctcf Foxp2 Mnt Tcf7l1 Arid3a Creb5 
Jund Crebzf Nfyb Dnmt1 E2f2 Atf3 Hoxb6 
Cenpb Srebf2 Gmeb2 Rfx1 Tfap4 Gli3 Tbx6 
Nfe2l1 Usf1 Hnf1b Rarg Bcl6 Nfatc4 Foxq1 
Cxxc1 Tet3 Hsf1 Junb Relb Klf5 Hoxd8 
Cux1 Smad3 Irf2 Mef2a Crem Snai3 Fosb 
Tef Smad4 Phf21a Mynn Pparg Hey1 Tead4 
Nr3c1 Arnt Gfi1 Meis3 Hlf Pax6 E2f7 
Klf9 Atf6b Hnf1a Tfeb Mitf Tbx2 Etv4 
Gata4 Foxa3 Mecom Nr4a2 Osr1 Klf8 Hoxc4 
Irf6 Foxo4 Bbx Hes1 Hic1 Vdr Msx1 
Ptf1a Atf1 Mtf1 Pknox1 Arid3b Tet1 Sp6 
Rxra Tcf12 Etv5 Plagl2 Sox7 Nkx2-3 Irx3 
Nfic Nfix Nr1h3 Tfcp2 Bcl11a Sox17 Hey2 
Stat3 Jun Elf3 Klf11 Irf5 Prdm1 Pax5 
Creb3l1 Yy1 Foxn2 Rara Rest Runx1 Runx2 
Tfdp2 Spdef Stat2 Hmbox1 Maff Foxm1 Arnt2 
Srebf1 Rbpj Terf2 Klf16 Hes7 Npas2 Hoxc5 
Ets2 Foxa2 Foxj2 Ddit3 Rora Snai1 Gata3 
Dbp Mga Heyl Sp2 Elk1 Mesp2 Crx 
Usf2 Nfe2l2 Nr2f2 Lin54 Wt1 Sox5 Irx2 
Nr2f6 Etv6 Meis1 Cebpd Homez Hoxa5 Prrx2 
Mlxip Max Ets1 Mlxipl Foxo6 Ar Tbx1 
Nr5a2 Rreb1 Sox6 Rfx5 Atf7 Nkx6-1 Hoxb8 
Hbp1 Foxo1 Tcf3 Sp100 Sp4 Bcl6b Batf3 
Ubp1 Pbx1 Elk3 Ovol2 Fli1 Hand2 Nkx3-2 
Kdm2a Ehf Tigd2 Sox18 Mypop Stat4 Twist2 
Nfat5 Gabpa Six5 Rbak Jdp2 Insm1 Sox10 
Cebpg Mafk Sox13 Prrx1 Six4 Klf7   
Cebpa Mecp2 Sox12 Foxn3 Trps1 Tcf21   
Creb3 Srf Etv3 Mef2c Nfe2l3 Tbx3   
Stat6 Elf2 Irf9 Setbp1 Grhl1 Pou2f2   
Sp1 Sox9 Klf4 Tcf7l2 Bhlhe41 Rarb   
Meis2 Creb3l2 Sox4 Arid5b Sp110 Hoxb4   
Rela Atf2 Egr1 Ovol1 Klf12 Neurod1   
Mef2d Arid2 Grhl2 Mafb Onecut1 Mybl2   
Hnf4a Bhlhe40 Klf2 Mafg Prox1 Gata5   
Mlx Gata6 Fosl2 Pdx1 Barx1 Snai2   
Foxp4 Foxj3 Arntl Arid5a Hlx Myb   
Ahctf1 Plagl1 Prdm4 Tbp Rfx2 Hoxb3   
Rxrb Creb1 Cebpb Rfx3 Foxj1 Hoxb7   
Cic Hmg20b Nr2c1 Cux2 Meox1 Hoxb5   
Myc Tfe3 Nfkb2 Thap1 Erg Osr2   

Supplementary Table 2. List of TFs selected as expressed in pancreatic acinar cells. 


