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Resumen

El principal objetivo de este Trabajo Fin de Máster es analizar el efecto que tiene la
introducción de ruido en señales de eventos que son utilizadas en aplicaciones de visón
artificial basadas en Deep learning. En concreto, nosotros nos vamos a centrar en una
aplicación basada en Deep learning, la cual es capaz de solventar dos tipos de tareas,
clasificación y detección de objetos.

Para ello vamos a utilizar las señales de eventos, las cuales son capturadas a partir
de cámaras de eventos. Estas cámaras de eventos, son un nuevo tipo de cámaras
que han aparecido hace unos pocos años y tienen la principal caracteŕıstica de estar
basadas en el funcionamiento del ojo humano. Las cámaras de eventos tienen una serie
de pixeles inteligentes que son capaces de detectar cambios de intensidad, cuando este
cambio es mayor a cierto umbral se genera un evento. En comparación con las cámaras
tradicionales, las cámaras de eventos se caracterizan por tener una latencia más baja,
un mayor rango dinámico y gracias a esto evitar los problemas de motion blur y la
saturación de los pixeles cuando la diferencia entre el nivel máximo y mı́nimo de brillo
es muy alta.

Debido a la novedad de estas cámaras existe una falta de stock en el mercado, lo
que conlleva a una falta de datasets de este tipo de señales y esto tiene una relación
directa con el desarrollo de aplicaciones de visión artificial, especialmente aquellas que
usan Deep learning. Para solventar esta situación existen una serie de simuladores,
los cuales son capaces de, a partir de una señal rgb, generar una señal de eventos,
proporcionando de esta manera una herramienta para transformar datasets que han
sido capturados con cámaras tradicionales, en datasets de señales de eventos.

Actualmente, no existe ninguna manera de medir la distorsión que estos simuladores
generan, por ello, el VPULab está trabajando en diseñar una serie de métricas que
sean capaces de medir esta distorsión. Para poder verificar si estas métricas funcionan
correctamente, es necesario medir su correlación con los resultados de tareas de visión
artificial.

En este trabajo se va a evaluar como la introducción de ruido sobre un total de cuatro
datasets de señales de eventos, afectan al rendimiento de las tareas de clasificación y
detección de objetos. Vamos a trabajar con un total de cuatro tipos de ruidos y durante
los distintos experimentos que hemos realizado vamos a ver como el comportamiento de
ambas tareas es similar cuando introducimos el ruido, y como la información espacial
es la que tiene una mayor relevancia en ambos casos.
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Abstract

The main objective of this Master Thesis is to analyze the effect of the introduction
of noise in event signals that are used in artificial vision applications based on Deep
learning. Specifically, we are going to focus on an application based on Deep learning,
which can solve two types of tasks, classification and object detection.

For this, we are going to use event signals, which are captured from event cameras.
These event cameras are a new type of cameras that have appeared a few years ago
and have the main characteristic of being based on the functioning of the human eye.
Event cameras have a series of intelligent pixels that are able to detect changes in in-
tensity, and when this change is greater than a certain threshold, an event is generated.
Compared to traditional cameras, event cameras are characterized by a lower latency,
a higher dynamic range and thus avoid the problems of motion blur and saturation of
pixels when the difference between the maximum and minimum brightness level is very
high.

Due to the novelty of these cameras, there is a lack of stock in the market, which
leads to a lack of datasets of these types of signals and this has a direct relationship
with the development of artificial vision applications, especially those that use deep
learning. To solve this situation there are a series of simulators, which are capable
of generating an event signal from an rgb signal, thus providing a tool to transform
datasets that have been captured with traditional cameras into event signal datasets.

There is currently no way to measure the distortion that these simulators generate,
so VPULab is working on designing a set of metrics that are capable of measuring this
distortion. In order to verify whether these metrics work correctly, it is necessary to
measure their correlation with the results of computer vision tasks.

In this work, we are going to evaluate how the introduction of noise on a total of four
datasets of event signals affects the performance of object classification and detection
tasks. We will work with a total of four types of noise and during the different experi-
ments, we will see how the behavior of both tasks is similar when noise is introduced,
and how spatial information is the most relevant in both cases.

Keywords

Event cameras, Deep Learning, timestamp, polarity, sparse convolution, latency, dy-
namic range.
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Chapter 1

Introduction

1.1 Motivation

Event cameras are bio-inspired sensors that have emerged a few years ago. They are
characterized by being formed by a series of smart pixels, that, when they detect a
change in intensity greater than a certain threshold, generate an event and are acti-
vated, as opposed to traditional cameras, where the temporary sampling rate is fixed.
In comparison with traditional cameras, event cameras show some advantages: they
have a higher dynamic range, latency in the order of microseconds and they can avoid
the common problems of the standard cameras, that are caused by the motion blur and
when the difference between the maximum and minimum brightness levels is very high.

Due to their recent appearance, there is a shortage on the market and the few avail-
able cameras are very expensive for mass marketing. This means that there is a lack of
datasets on these types of signals, which poses a problem for research in this area, espe-
cially for learning-based approaches to computer vision algorithms for event cameras.
Fortunately, some simulators are able to generate an event signal from an rgb signal,
thus being able to transform images that have been recorded by traditional cameras
into images that would have been recorded by an event camera.

Currently, VPULab is working on designing a set of metrics that are capable of mea-
suring the distortion generated by these simulators. At this point, our work in the
TFM is focused on contributing to the validation process of these metrics. To do so,
we will use noisy event signals which will be introduced in different computer vision
applications based on deep learning. Finally, the results we have obtained will be com-
pared with the results of the VPULab through its metrics to check their correlation
levels, so, if the distortion measured with the metrics and the results we have obtained
show correlation, it means that the metric is working correctly.

1.2 Objectives

The main objective of this work is to test the influence of noise on the accuracy perfor-
mance on the task of classification and object detection. The application that we are
going to work with is called Event-based Asynchronous Sparse Convolutional Networks
[1] and it is based on a deep learning architecture, Sparse Neural Network. For this
purpose, different noisy versions will be generated from the original datasets used by

1



2 CHAPTER 1. INTRODUCTION

the application. Once we have the noisy datasets, different experiments will be carried
out to check how this noise influences the accuracy results in the classification task as
well as in the object detection task.
All this work is divided into four sections:

1. State of the art study: We will define event cameras by explaining their basic
concepts and the advantages they show over traditional cameras. In addition, we
will explain different computer vision and deep learning-based applications that
use this technology.

2. Design of a proposal: We will explain the methodology we have followed in this
work. In addition, we are going to explain the operation of the noise generator,
which is capable of introducing four types of noises of different natures. Finally,
we will explain the format converters that we have had to develop in order to
be able to work with different datasets, as there are currently several formats for
storing events.

3. Conducting experiments: We will perform different tests on a total of 4
datasets, these tests are divided into three steps: The first step is to replicate
the initial results, without the use of noise. The second step consists of gener-
ating the different noisy versions from the original datasets. Finally, the noisy
datasets will be tested and the results will be analyzed. The final objective of
these experiments is to evaluate the performance of the different datasets and
their different configurations (e.g. the type of representation: histogram or event
queue), against the different types of noise proposed.

4. Conclusions and future work: Once our experiments have been carried out,
we will have to draw a series of conclusions and different tasks will be proposed
in order to extend the study of the influence of noise.

1.3 Report structure

This report has the following chapters:

• chapter 1 Introduction

• chapter 2 Related work: In this chapter, a study of the state of the art will be
carried out, in which event cameras will be defined, explaining their fundamen-
tals and the advantages they show over traditional cameras. We will also show
examples of computer vision and deep learning applications that use this type of
technology.

• chapter 3 Design and development: We will show the work methodology that
we have followed to carry out the different experiments.

• chapter 4 Evaluation: In this chapter, we are going to present the different
datasets we are going to use and then proceed to explain the experiments we
have carried out.

• chapter 5 Conclusions and future work: In the fifth chapter, a series of
conclusions will be drawn from the work carried out and different lines of work
will be proposed to extend this research in the future.



Chapter 2

Related work

2.1 Introduction

In this second chapter, we define what are the event cameras and the benefits they show
over traditional cameras, then we will talk about the main computer vision applications
of events technology and after that, the ones that are based on deep learning. In
addition, we explain one of the problems that exist with event cameras, related to the
lack of enough dataset, and how our project is going to help in the task of solving it by
introducing noisy event signals into a deep learning-based computer vision application.
Finally, we analyze with detail some applications of computer vision-based on deep
learning that use event signals and could be used in our work.

2.2 Basics of event cameras

2.2.1 Definition

Event cameras [2] are bio-inspired sensor which first appeared about 6 years ago. As
you will see throughout this project and especially in this second chapter, these event
cameras show great qualities when applied to robotics or computer vision applications.

Before going deeper into event cameras, we are going to discuss how we, as humans,
capture visual information using our eyes [4]. We use the information our eyes pick
up to understand what is happening around us and to be able to react to changes in
our environment. This information is acquired through light, this light passes through
the cornea to the retina, where it will be captured. Inside the retina, there exist two
types of photoreceptor systems, rods and cones. The rods are responsible for cap-
turing information in low light conditions and are not able to perceive color. Cones,
on the other hand, are more sensitive to light and are able to perceive color. In both
cases, the light information is acquired asynchronously, that is, when the light hits
the retina it is transformed continuously into electrochemical signals, which are sent,
via the optic nerve, to the visual cortex, that is the part of the brain dedicated which
is dedicated to processing this information, we can visualize this process in Figure 2.1.

Event cameras [6] are made up of a series of pixels that try to imitate the photorecep-
tors of the retina, which we have mentioned previously, as they work independently
and asynchronously, so they will only be activated when there is a light change in the

3



4 CHAPTER 2. RELATED WORK

Figure 2.1: In this figure, we can visualize the process of how the light information is
acquired and which are the main elements of this process. (Source: [3])

Figure 2.2: In this figure, we can see how events are created when a change of intensity
happens. When this intensity change is increasing, the generated events will have a
positive polarity value, conversely, when this intensity change is negative, the generated
events will have a negative polarity value. (Source: [5])
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scene that is being captured. So, every time that a single pixel detects an intensity
change, higher than a certain threshold, that pixel will trigger an event, in Figure 2.2
we can visualize an example of how events are generated from changes in intensity.
Each event is made up of a total of four variables:

• X coordinate: Corresponds to the point on the horizontal axis where the in-
tensity change, that is, the event, has been detected.

• Y coordinate: Corresponds to the point on the vertical axis where the event
has been detected.

• Timestamp: Indicates the instant of time at which the event has occurred.

• Polarity: It is used to indicate whether the change in intensity has been upward,
in which case the polarity would be positive, or downward, in which case the
polarity would be negative.

On the other hand, traditional cameras, use a shutter, which opens and closes to
capture the light. This fact means that the speed at which the shutter can open and
close will limit the ability of the camera itself to capture high-speed images. Next, we
are going to take a closer look at the differences between event cameras and traditional
cameras.

2.2.2 Event cameras vs Traditional cameras

The past sixty years of research in the computer vision scenario have been devoted to
frame-based cameras but, as we are going to show you, the technology that they use
can be improved to obtain better results in the performance of some computer vision
algorithms and avoid some concrete problems while capturing scenes that we are going
to explain below.

Standard cameras [8], indeed, suffer from different types of problems, the first one
is that they work with a high latency, which depends on exposure time in ranges be-
tween 1 to 100 ms. Due to this first problem, the effect of the motion blur emerges.
Motion blur [7], in the field of images, it can be defined as the effect produced by
moving objects in a photograph or in a sequence of frames that make up a video in
Figure 2.3 we can see some examples of images that suffer from motion blur. Finally,
standard cameras have a low dynamic range, which may result in loss of information
due to the lighting conditions of the scene being recorded, most of these lighting prob-
lems appear in extreme situations, both when the scene being captured is very bright
and pixels may and pixels may get saturated, for example, due to sunlight, and when
the scene being captured has low light conditions, for example when recording at night.

In contrast, event cameras do not suffer from any of these problems. As we know,
event cameras are novel sensors that are able to capture all the motion that occurs
in a scene with the use of smart pixels that conform to them. Although this kind of
sensor have been created a few years ago and still has room for improvement, it has
some outstanding properties that, in comparison with the ones that standard cameras
provide us, can have a huge impact on computer vision and robotic applications. The
main properties of event cameras are the following ones [9]:
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Figure 2.3: In this figure, we have some visual examples of images that suffer from the
problem of motion blur. (Source: [7]).

• Latency: They have very low latency, in order of microseconds (us).

• Motion blur: Due to the low latency and unlike traditional cameras, event
cameras do not suffer from this problem.

• Dynamic range: In this case event cameras have a much higher dynamic range
than traditional cameras, approximately eight orders of magnitude superior (140
dB vs 60 dB). Thanks to this, event cameras will not suffer from lighting problems
when capturing a scene, again setting them apart from traditional cameras.

• Power consumption: They have ultra-low power consumption, in fact, if we
compare the average power consumption between traditional cameras and event
cameras, we can see that the average power consumption of traditional cameras
is 1 W, while in event cameras it is a hundred times lower, 1 mW.

• Bandwidth: As event cameras are designed to capture motion when there is
no movement in the scene that we are recording, no intensity changes will occur,
and thus no event will be generated. That is to say, in the parts of the scene
being recorded where there is no movement, no information will be obtained, thus
avoiding redundant information and making the bandwidth needed to process this
type of signal smaller than that required by the signals generated by traditional
cameras.

In Figure 2.4, we show you some visual examples of the properties that we had described
above. Specifically, two examples can be visualized, the first one shows how the low
latency of event cameras avoids the problem of motion blur, and the second one shows
how event cameras can obtain more information in bad lighting conditions due to a
higher dynamic range.
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Figure 2.4: In this figure we have some visual examples of images represent the advan-
tages that shows an event camera against a traditional camera. The image that is in
the upper part describe the motion blur problem, and the image that is in the bottom
part describe the problem of scene brightness. (Sources: [10, 11]).

2.3 Computer vision algorithms on event signals

Once that we know what the event cameras are and the advantages they show over
traditional cameras, we are going to look at the main computer vision algorithms that
use this technology.

2.3.1 SLAM (Simultaneous Localization And Mapping)

Simultaneous Localization And Mapping [12] most commonly known as SLAM, is a
computer vision application whose objective is to give a device (robot, drone, vehicle,
etc.) the ability to incrementally create a map of the surrounding environment and to
know its location within the map it is creating. These applications have been imple-
mented in a wide range of domains such as indoors [13] and outdoors [14] environments,
underwater [15], airborne systems [16], etc.

The incorporation of event cameras [8, 18] in these types of applications results in
a great improvement in high-speed scenes, in Figure 2.5 we show you a visual exam-
ple of how are the frames capture by a standard camera in a high-speed scene, where
appears the motion blur problem explained in Section 2.2.2, and the frames that are
captured by an event camera in the same situation. This improvement is due to the
high temporal resolution of the event cameras. In addition, with the incorporation of
event cameras, we will avoid the problems of the problem of abrupt lighting changes
as they also have a higher dynamic range than traditional cameras.
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Figure 2.5: In this figure, we can see how does a frame captured by a standard camera
in a high-speed scenario is, and how does it looks like when it is captured by an event
camera. This illustration shows how event cameras, by having a much lower latency
than traditional cameras, avoid the problem of motion blur that appears in the frame
that has been captured by a traditional camera. (Source: [17]).

2.3.2 Depth Estimation

Depth estimation [19] applications try to predict the depth of each pixel from an rgb
signal. This task is very simple for the human eye, but for computer vision algorithms
it is very challenging due to the occlusion of objects, the different textures that appear
in the same image, etc. These kinds of applications are of great applicability, they
can be used for autonomous driving [20], for 3-dimensional reconstruction applications
[21], etc.

When these applications are adapted to be used with event signals [22, 23], we can
see how the results are improved compared to those obtained using traditional cam-
eras. As in the previous case, where this remarkable improvement can be observed is
in the case of high-speed scenes, where event cameras avoid the appearance of motion
blur, and in scenes with large changes in lighting, where event cameras can lose much
less information than traditional cameras do. In Figure 2.6, we can see an example of
the results that a depth estimation application that uses event signals obtain.

2.3.3 Reconstruction of Visual Information

This type of application is the most common type of computer vision application using
event signals [24, 25]. These applications try to reconstruct images from the intensity
changes that occur in them, i.e. through events. Employing this, the results obtained
in reconstruction applications based on hand-crafted priors can be improved, specifi-
cally in cases where motion blur appears and where there is a loss of information due
to sudden changes in illumination
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Figure 2.6: In this figure, we can see the results of a depth estimation application that
uses event signals. The figure on the left, represents the original frame, next to it we
see the events that are detected in that frame, and finally, we can see of the right of
the image the depth estimation. We may observe that in this case, they use colors to
identify which objects are further away, with the lighter-colored pixels being closer and
the darker-colored pixels being further away.(Source: [22]).

Once the image is reconstructed and has the advantages provided by the event technol-
ogy, it can be applied to different tasks to improve the performance that was obtained
using traditional cameras, some examples of these tasks are object detection [6], face
detection [26], etc.

2.3.4 Others

In addition to the three computer vision applications that we have explained in more
detail, there are even more types of applications that use event signals, e.g. optical
flow [27, 28], tracking [29, 30], semantic segmentation [31, 32], etc. But we will not go
into detail in these cases.

2.4 Deep Learning in event cameras

Now that we have seen which are the main computer vision applications that use
event signals, we will move on to analyze those applications that also incorporate deep
learning technology for this type of signal. There are two main branches, the algorithms
that use the so-called Spiking Neural Networks [33] and the ones that use the Sparse
Neural Networks [34].
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Figure 2.7: In this figure, we can see how a spike looks like. When the voltage signal
is above the threshold, the spike is detected. (Source: [35]).

2.4.1 Spiking Neural Networks

Spiking Neural Networks [33] are part of the third generation of neural networks, which
are increasingly trying to link neuroscience and machine learning by using models that
increasingly resemble the way neurons are wired in our brains. The main quality of
spiking neural networks that differentiates them from other neural networks is that
they use the spikes voltages. These spikes are created when the value of the voltage
is superior to a certain threshold that had been previously fixed, when this happens,
the neuron that has detected it generates a spike. In Figure 2.7 we can visualize how
a spike looks like.

The main advantage of these spiking neural networks is that they are more energy
efficient than traditional neural networks, as each spike is sparse in time, which means
that each spike contains a lot of information [36]. But, although these networks were
developed a few years ago [37], they did not have much impact on deep learning appli-
cations that used traditional signals, mainly because there were not many algorithms
to train this type of network, and those that did exist were less efficient than those used
in traditional convolutional neural networks. However, this has not slowed down the
growth of spiking neural networks and work is being done to continue improving them,
in particular, several feature extraction [38] and image classification [39] applications
have been developed using this architecture. since, as we mentioned at the beginning,
they are one of the networks with the greatest potential for the future due to the good
energy consumption conditions they show.

In the field of event cameras, such networks are increasingly being used, as it is a
way to exploit even more the main advantage of the spiking neural network, that is the
sparsity of each spike in time. By introducing event signals into this networks, they will
become even more efficient in terms of energy consumption. There are already some
applications that introduce event signals into the described spiking neural network, as
we can see in [40, 41].
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Figure 2.8: In this figure we can see a comparison between the connections in a sully
conected layer (upper figure) and a sparsely conected layer (bottom figure). (Source:
[42]).

2.4.2 Sparse Neural Networks

The other neural network that is used when we are developing a deep learning al-
gorithm using event data is the Sparse Neural Network [34]. These neural networks
aim to solve one of the problems that appear in deep neural networks that use fully
connected layers. The problem came when, in these neural networks, we try to deal
with a huge amount of data, for example, rgb images. In this case, although it has
been proven several times that fully connected layers are very powerful, the number of
connections increases to a value too high to reach a point where it becomes inefficient.
This makes it necessary to set a maximum number of inputs to the fully connected
layers. By using sparsely connected layer [43], as in the Sparse Neural Networks,
we can avoid this problem. Unlike fully connected layers, in these layers, each input
node is not connected to all output nodes. In Figure 2.8, we can see a comparison
between the connections made in the fully connected layers and the sparsely connected
layer. Applying this method, we can see how the number of parameters needed in the
sparsely connected layer is much smaller than the number of parameters needed in the
fully connected layers, moreover, despite the reduction in the number of parameters,
the accuracy of the algorithm is very little affected as demonstrated in [42].

Another characteristic of the sparse neural network is the use of the sparse con-
volution [44] instead of the traditional convolution. This technique provides a much
more efficient approach to make convolutions. As the application that we have used to
work with during this project is based on the use of sparse convolution, we will give
you more details below:
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Figure 2.9: The figure shows how the data is sparsed over the representation space
in the case of the event representation (image on the left part) and the 3-dimensional
representation (image on the right part). (Sources: [1] [45]).

• Sparse Convolution

The operation of convolution is one of the most popular among the neural net-
works that use deep learning to solve problems that involve the use of images or
videos as they are effective when we are dealing with 2 dimensions. The problem
here comes when we are not using 2-dimensional images, and we use for example
a 3 dimensions signal, where the additional dimension significantly increases the
computational complexity of the convolution. In addition, as it happens in 3
dimensions representations and event representations, the information is sparse
in the representation space and many of the pixels (or voxels in the case of 3
dimensions) have a zero value. We can better visualize this second problem of
the sparsity of the data in Figure 2.9.

At this point, the sparse convolution [44] emerges as a solution to the problem
that we have just described above, as it is a way of calculating the convolution
only on those pixels that are active, that is, those pixels whose value is non-zero.
In addition to the computational benefits that we have explained, the use of the
sparse convolution does not affect the performance of the algorithm in compari-
son when we use the traditional convolution, in fact, in some cases, it can improve
it, as demonstrated over different experiments in [44, 46].

Now we are going to see, in a brief way, how does this sparse convolution work.
The first step will be to define the input data, that it will be pixels whose value
is non-zero, the active pixels. It is necessary to know the value of these active
pixels and also the location of these active pixels, in order to, in the following
operations, being able to locate them.
Once that the input is defined, a convolutional kernel will be applied to the in-
put data. In this second step, there is no difference compared to the traditional
convolution.
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Figure 2.10: The figure shows the two approaches to calculate the output when we are
using the sparse convolution. For the first case, in the sparse output, the cells with
A1 are the ones that have been obtained when the kernel is on one active pixel, called
A1. The same happen with the cells that have A2, but in this case the active pixel is
A2. Finally, the cells that have A1A2 are the sum up of the outputs that have been
calculated in the two previous cases. For the second case, the submanifold output, we
can see how the outputs are in the same positions than the inputs. (Source: [47])
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Finally, in the way of how the output is defined, we can use two different ap-
proaches as we can see in [44]. The first one is called Sparse output, and, from
input data, active input data, in this case, a traditional convolution is calculated
over all pixels covered by the kernel, it can be understood as a traditional con-
volution that only applies to active pixels. The second approach, that is the one
that the application that we are working with [1] applies to its data, is called sub-
manifold output. In this second case, the output will be only calculated when the
center of the kernel covers the active input data. In Figure 2.10 we propose you a
visual example where you may better understand these two approaches. As it is
demonstrated in [44], the submanifold output results in a much efficient approach.

By applying these techniques, especially the submanifold output approach, the
sparse convolution is able to give a more efficient approach to calculate convo-
lutions in neural networks by, as we have explained, instead of scanning all the
pixels that are contained in an image, only using the active pixels, that is, the
non-zero pixels.

As we have seen, the sparse neural networks can be applied to event signals in order to
exploit the main benefit that both parts have in common, the sparsity. In Section 2.6.1
we are going to study in detail an example of an application that uses these sparse
neural networks with event signals to solve two different tasks, image classification,
and object recognition.

2.5 Lack of event datasets

Nowadays, due to the novelty of event cameras, there are not many companies involved
in the development and marketing of them. However, the main companies involved are
the following [8]:

• Prophesee: Which have recently announced a partnership with SONY, they
can develop 1M pixels cameras that have an approximate market price of 4.000
USD.

• Inivation: As in the previous case, they have announced a partnership with
Samsung, they make event cameras with VGA (640 x 480 pixels) resolution that
are able to also output standard frames rather than just events and their approx-
imate price is 5.000 USD.

• Insightness: They can develop event cameras with very similar properties to
Inivation´s cameras have, the same resolution, and the same approximate price.

• CelexPixel Technology: This final company develops event cameras of 1M
pixel of resolution and that have the particularity that it does not output the
polarity, their approximate cost is 1.000 USD.

As you have seen, there are not many companies that support event cameras devel-
opment and, as a rule, the event cameras on the market are very expensive. This
means that when it comes to researching this new technology, the necessary datasets
do not exist. This fact, when we are working with computer vision applications and, in
particular, with applications based on deep learning, it becomes a very differentiating
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Standard camera Event camera 

Figure 2.11: In this figure we can see how event cameras simulators works, from a rgb
image (situated on the left), the are able to generate an image made up of events in
different colors (situated on the right), as if it had been recorded by an event camera.
(Source: [48]).

factor. This causes advances in this field to take place at a slower pace.

In order to solve this problem, some simulators have been developed [49, 50, 48]. These
simulators can transform images that have been captured with traditional cameras into
images that would have been captured with an event camera, in other words, from an
rgb signal, they are able to generate an event signal. In Figure 2.11, we can see an
example of how these simulators work.
The number of these simulators is growing considerably, as is the number of computer
vision applications that use event signals. In the following, we will explain how some
of the main event simulators work, although for more information we can find in [51]
a list with several of these simulators.

• ESIM [5]: This simulator features an adaptive rendering scheme, which gives the
simulator the ability to sample frames only when it is necessary. This simulator
also gives us the ability to generate large amounts of event data as well as a
ground truth.

• PIX2NVS [52]: The main feature of this simulator, is that it can transform large
annotated datasets of videos that have been captured by traditional cameras such
as YouTube-8M [53] or YFCC100M [54] into event signals, thus providing the
ability to use these large datasets in event-based applications.

• V2e [55]: This last simulator, is characterized by the synthesized generation of
realistic event signals. It is very useful for training networks for uncontrolled
lighting conditions as it is demonstrated in [55].

In addition to this first problem of missing event data, there is a second problem, that
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Figure 2.12: In this figure we can see a comparison between the traditional convolution
and the sparse convolution when we are facing an event signal (Source: [1])

is also related to the novelty that surrounds all this technology. As we have said the
number of available simulators is growing considerably, but there is no way to measure
them in order to identify which of the available simulators is the best one or is the one
that generates more distortion. To solve this second problem, the VPULab is working
on designing some metrics that determine the degree of distortion that an event simu-
lator generates.

At this point, our work comes as a tool for validating these metrics and checking
if the results that they are providing are correct. To do this we will use computer
vision applications based on deep learning that uses event data which are explained in
detail in Section 2.6. The work that we have done is to introduce noisy event signals
into these applications, these noisy event signals are developed by ourselves by using
our noise generator. Once that we have obtained the results using the noisy event
signals we will use them to check their correlation with the results that the VPULab
has obtained using their developed metrics.

2.6 Deep Learning-based CV applications using event

signals

2.6.1 Event-based Asynchronous Sparse Convolutional Net-
works

This first application called ’Event-based Asynchronous Sparse Convolutional Net-
works’ [1], is the one we have used throughout the project to carry out all our tests
and experiments, so we have explained it in detail.



2.6. DEEP LEARNING-BASED CV APPLICATIONS USING EVENT SIGNALS17

N-Caltech101 N-Cars

Representation Accuracy ↑ MFLOP/ev ↓ Accuracy ↑ MFLOP/ev ↓
Standard Conv. Event Histogram 0.761 1621 0.945 321

Ours 0.745 202 0.944 21.5

Standard Conv. Event Queue 0.755 2014 0.936 419

Ours 0.741 202 0.936 21.5

Table 2.1: Results obtained by the authors of Event-based Asynchronous Sparse Convo-
lutional Networks to demonstrate the efficiency of their method against the traditional
one in the task of image classification. (Source: [1]).

The application, as they said in their paper, was developed to create a framework
that can convert a model that has been trained using synchronous images of events
into an asynchronous model that has the same output as the previous one. By doing
this, they affirm that they are able to take advantage of the very characteristics that
events have by nature, which are asynchronous and sparsed in the representation space.
This sparsity is translated in an improvement in terms of computational cost, being
efficient in this aspect, while at the same time they maintain the same level of accuracy
as they obtained with the synchronous model. One of the main tools that they use to
take advantage of this sparsity that the events have is the sparse convolution that
we have explained in Section 2.4.2. The fact of using this sparse convolution, instead
of a traditional convolution, will make the application work much more efficiently. In
Figure 2.12 we can see an example of how traditional convolution and sparse convolu-
tion are applied when working with event signals.

Returning to the actual functioning of the Event-based Asynchronous Sparse Con-
volutional Networks, a key aspect that it has is that it is able to solve two different
tasks, the first one is image classification and the second one is object detection.
With this, the authors of the paper wanted to prove the statement that we have been
repeating along this section, that the sparse convolution allows us to work more effi-
ciently without worsening the accuracy results, over the two mentioned tasks. They
made several experiments over the two proposed tasks, in which they measure the two
key aspects that we have said, the accuracy and the efficiency.

In Table 2.1 we can see the results on image classification task. As we have pre-
viously said, we can see that they use two different datasets and they also use two
different kinds of representations, Event Histogram and Event Queue.

• Event Histogram: This kind of representation uses a sliding window that
contains a constant number of events. In this representation the events are stored
in two different channels, in one of them will be the positive polarity events and
in the other the negative polarity events.

• Event Queue: This second representation also creates a sliding window, but
in this case, there is a queue that stores the values of the polarities and the
timestamps of each event. This queue has a fixed length of 15 events, so when a
new event comes, the oldest one is discarded.

By analyzing the results that they obtain we can see that they use two metrics in order
of comparing both models, the one that uses the standard convolution and the one
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N-Caltech101 Gen1 Automotive

Representation mAP ↑ MFLOP ↓ mAP ↑ MFLOP ↓
YOLE [56] Leaky Surface 0.398 3682 - -

Standard Conv. Event Queue 0.619 1977 0.149 2614

Ours 0.615 200 0.119 205

Standard Conv. Event Histogram 0.623 1584 0.145 2098

Ours 0.643 200 0.129 205

Table 2.2: Results obtained by the authors of Event-based Asynchronous Sparse Convo-
lutional Networks to demonstrate the efficiency of their method against the traditional
in the task of object detection. (Source: [1]).

that uses the sparse convolution. The first metric is to measure is the accuracy, and it
is used for measuring the quality of the predictions that the evaluated model is doing,
for this first metric the results are practically the same for both models, so we can
assume that the sparse convolution does not decrease the accuracy levels. The second
metric measures the computational complexity of processing an input event, so, the
lower this value is, the lower the number of operations required and thus the lower the
computational cost. In this second metric, we can see that it exists a huge difference
between both models, we can see that the model using sparse convolutions is much
more efficient than the one using standard convolutions.

In Table 2.2 we will find the results that they obtained in the task of object clas-
sification. These results are very similar to the previous ones in the sense that the
levels of accuracy are still very similar between the two models, the model that uses
sparse convolutions requires far fewer operations than the one using standard convo-
lutions. In addition, they have added a third model of the state of the art in the
comparison, YOLE [56], and we can see that in both metrics it is outperformed by the
model developed by the authors of the paper.
With these two experiments, the author of the paper demonstrated the advantages that
the model that they had developed in comparison with traditional models that used
standard convolution, for further information about their work we recommend you to
read their original paper [1].

2.6.2 Convolutional spiking neural networks for spatio-temporal
feature extraction

This application called Convolutional spiking neural networks for spatio-temporal fea-
ture extraction [40] is based on the use of Spiking Neural Networks, explained in Section
2.4.1, with event signals. As we said then, Spiking Neural Networks can work in a much
more efficient way, but in this paper, the authors wanted to test if this neural network
could improve the results, in the task of feature extraction, obtained by some of the
state of the art algorithms based on C3D [57], ConvLSTM [58], etc.

In addition, they have created their own neural network, called STS-ResNet. This
network can be described as a fusion between the traditional Spiking Neural Network
and the ResNet-18 [59] and, as we will see in the experiments that the authors carry
out below, it obtains good results. The main advantage that this neural network show
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Method Config MNIST Seq1 Seq2 Seq3 Seq4 Seq5

CNN 256-256 99% 98.89% 98.2% 98.8% 98.27% 20.1%

CNN+LSTM 256-256(CNN) + 256(LSTM) 96.84% 67.74% 98.93% 98.96% 94.88% 91.2%

ConvLSTM 256-256 99% 99.11% 98.9% 30.0% 97.43% 40.7%

C3D 256-256 99.03% 98.49% 98.32% 99.17% 97.73% 64.0%

ConvSNN 48-48 99.4% 98.6% 98.4% 99.36% 98.8% 89.5%

STS-ResNet 18 layers 99.7% 99.26% 99.2% 99.43% 99.1% 92.7%

Table 2.3: Results obtained by the authors of Convolutional spiking neural networks
for spatio-temporal feature extraction to demonstrate the precision in terms of accuracy
that Spiking Neural Network and the STS-RestNet obtain against other approaches of
the state of the art in feature extraction. (Source: [40]).

is that it solves the problems of training a Spiking Neural Network.

For making the experiments that the authors were interested in, the have created
their own synthetic dataset that is based in the MNIST dataset [60]. This synthetic
dataset is made up of a total of 5 cases, each of them being a different challenge for
the feature extraction task.

• Sequence 1: This first sequence adds zoom in and zoom out to the MNIST
images.

• Sequence 2: The second sequence add rotations from 0 to 360 degrees and the
other way around

• Sequence 3: This sequence is also based on zoom in and zoom out, but in this
case instead of being a progressive change, the changes are 50%, so they are more
abrupt than in the first case.

• Sequence 4: The fourth case add masks to the images in order to generate
occlusions

• Sequence 5: Finally, the fifth sequence, which is the most difficult one for the
human eye, is to add rotations, like in sequence 2, but in this case they will be
done randomly.

In Table 2.4 we can see the results that they have obtained in their first experiment,
where they wanted to demonstrate the precision of the Spiking Neural Network and
of their neural network, STS-ResNet. Additionally, they made another experiment to
compare STS-ResNet with other neural networks in the task of image classification,
but in this case using event signals. For this second experiment, where event signals
appears, they have use different event dataset to evaluate themshelves like NMNIST
[61], DVS-CIFAR10 [62] or DVS-Gesture [63]. In Table 2.4 the results of this second
experiment are shown, and we can see how STS-ResNet outperforms the other networks
in all proposed datasets. For further knowledge you can read [40].

2.6.3 Inceptive Event Time-Surfaces for Object Classification
using Neuromorphic Cameras

The last application that we think could be interesting to use in our project is called
Inceptive Event Time-Surfaces for Object Classification using Neuromorphic Cameras
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Model Dataset Accuracy

SPA NMIST 96.3%

SpiNNaker NMIST 98.5%

STBP NMIST 97.92%

Natural ConvSNN NMNIST 99.42%

NeuNorm NMNIST 99.53%

STS-ResNet NMNIST 99.6%

CNN DVS-Gesture 94.59%

pointnet++ DVS-Gesture 95.32%

STS-ResNet DVS-Gesture 96.7%

HAT DVS-CIFAR10 52.4%

Natural ConvSNN DVS-CIFAR10 60.3%

NeuNorm DVS-CIFAR10 60.5%

SPA DVS-CIFAR10 67.8%

STS-ResNet DVS-CIFAR10 69.2%

ResNet18 (ANN+scratch) UCF-101 42.4%

STS-ResNet UCF-101 42.1%

ResNet18 (ANN+scratch) HMDB-51 17.1%

STS-ResNet HMDB-51 21.5%

Table 2.4: Results obtained by the authors of Convolutional spiking neural networks
for spatio-temporal feature extraction to demonstrate the precision in terms of accuracy
that the STS-RestNet obtain over other approaches of the state of the art in image
classification using event signals. (Source: [40]).
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Figure 2.13: The image (a) represent the time surface that is used, made up of a total
of approximately 17k events. Image (b), is the time surface after FSAE, where the
number of events has been reduced to approximately 8k. Finally, figure (c) represents
the time surface after IETS, where the number of events has been drastically reduced
to approximately 3k. (Source: [64]).

[64] and once again it is focused on solving the task of image classification using event
signals.

The main characteristic of this application is the introduction of the Inceptive Event
Time Surface (IETS). IETS is an enhancement of Filtered Surface of Active Events
(FSAE) [65]. FSAE is a technique that improves the time surface of events by only
using the first events of a sequence. This technique was used for the task of detecting
corners and tracking, and, as you can see in the original paper [65], FSAE is a very
effective technique for this task. However, in the image classification task, the objects
that appear are more complex than in the corner detection task, so the FSAE perfor-
mance is worse in this case. At this point, the authors of Inceptive Event Time-Surfaces
for Object Classification using Neuromorphic Cameras developed IETS, which is able
to remove more noise in complex objects compared to FSAE. The main factor that
sets IETS apart from other algorithms is that instead of using hand-crafted features to
remove noise, you use neural networks that learn to extract features from event images
with less noise. In Figure 2.13 we can see a comparison between the time surface after
applying FSAE and the time surface after applying IETS.

In Table 2.5, we can see the results that they obtain in the task of image classifi-
cation. In this experiment, they have compared other algorithms that work on the
task of image classification and we can observe how IETS is the one that obtains the
best results.
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Algorithm H-First HOTS Gabor HATS HATS FSAE IEST

Classifier SNN SVM SNN SVM CNN CNN CNN

Accuracy 0.561 0.624 0.789 0.902 0.929 0.961 0.976

AUC 0.408 0.568 0.735 0.945 0.984 0.993 0.997

Table 2.5: Results obtained by the authors of Inceptive Event Time-Surfaces for Object
Classification using Neuromorphic Cameras in the task of image classification, where
their algorithm, IETS, is the one which obtain better results for both proposed metrics
. (Source: [64]).



Chapter 3

Design and development

3.1 Introduction

Once that we have seen the state of the art of event cameras, in this third chapter, we
explain the methodology we have followed throughout this project, which is divided
into four main parts: the datasets, the format converter, the noise generator and the
classifier or the object detector. Finally, we explain to you the most relevant parameters
that we have needed to adjust to make the experiments that are shown in Chapter 4.

3.2 Methodology

The main objective of this project is to analyze the influence that, adding noise into
a dataset, has on the quality of the predictions made by a model that has already
been trained. To do this, although in Section 2.6 we have analyzed three possible ap-
plications that we could use to carry out our work, we have focused on the first one,
Event-based Asynchronous Sparse Convolutional Networks [1]. However, in the future,
we will expand our work on the other two remaining applications.

As we commented in Section 2.6.1, Event-based Asynchronous Sparse Convolutional
Networks application is able to solve two different tasks image classification and
object detection and for that it uses two different datasets for each task. To reach
our objective and analyze how the noise affects the performance of the algorithm in
both tasks, first, we have trained a total of four models, one for each available dataset.
Then, we have introduced the noise to the four datasets, in order to create a noisy
version of them. Finally, we have used the noisy dataset to test the models that had
been trained in the first step with the original datasets, without noise.

In Figure 3.1, we show you a block diagram that helps to visualize the main parts
that make up our evaluation framework: the datasets, the format converter, the noise
generator, and the classifier or object detector. The noise generator and the format
converter are explained below, while the datasets that we use and the results that we
have obtained in the classifier or object detector are explained in Section 4.

23
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Figure 3.1: In this block diagram, we show the methodology that we have follow during
this project.

3.3 Noise Generator

The noise generator has the crucial function of add noise into the datasets that we have
used during this project. As the original application does, we will work with the same
four datasets:

• NCaltech101 [66]: It is used for image classification task.

• NCars [67]: It is also used for image classification task.

• Object Detection NCaltech101 [66]: It is used for object detection task.

• Prophesee Gen1 Automotive [68]: It is use for object detection task.

The four of these datasets will be explained in more detail lately in Section 4.2.

When one of the datasets is introduced into the noise generator, four different types
of noises are added. Each of the four noises is from a different nature and they are
applied to the different dimensions of an event signal. These four noises that are added
are the following ones:

• Spatial noise (add noise xy): This type of noise is in charge of modifying the
x and y coordinates of each input event, the rest of the variables (polarity and
timestamp) remain unchanged.

The distribution that this noise can adopt can be of two types, Gaussian or
Beta, and they are selected by using the parameter noise type. In our case, we
have only use the Gaussian distribution.
While the value of the mean of the distribution is set to 0, the variance is de-
termined by the parameter p dg, which modulates the value of the variance in
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such a way that the higher the p dg, the higher the variance of the spatial noise
introduced.
Finally, the variance of the noise is limited by the width and height values.
These values define the diagonal of the sensor that has been used to obtain the
events, so they will be different for each dataset. Therefore, we can conclude
that the spatial noise variance corresponds to a percentage of the sensor diago-
nal, which is defined by the value of p dg.

• Temporal noise (add noise ts): In this second type of noise, the variable that
is modified is the timestamp.

Analogous to spatial noise, the distribution of temporal noise can be of two types,
Gaussian or Beta. Again, we have chosen to use the Gaussian distribution to
create this type of noise.
The mean value of the distribution is set to 0, and in this case, the variance in
this type of noise is limited between 0 and the maximum timestamp value of each
sequence of input events.
The variance is modulated by two different parameters. The first one is dt, which
is a unit of time that is fixed at the value of 10 ms that, according to a statis-
tical study done by the VPULab, it is the meantime between events. The other
parameter that modulates the value of the variance is p dt which defines the
percentage of the variance to be applied.

• Add events: This third noise, as the name suggests, has the function of adding
more events. These events are created randomly, so it has the effect of introduc-
ing useless events into the original dataset.

We are going to explain how one event is created since the rest will do the same.
First, the timestamp is created by selecting a random number between zero and
the maximum value of the timestamp for the original event. Then, to create the
x and y coordinates it is selected a random value between zero and the values of
width, in the case of the x coordinate, and height, in the case of y coordinate.
These two values vary depending on the sensor that has been used to capture the
events. Finally, the polarity is created by a random choice between two possible
values, 0 or 1.
There is a perct parameter that defines the percentage of events that will be
created out of the total number of events.

• Remove events: Finally, the fourth noise that uses in our work, has the op-
posite function to the previous one, instead of adding events, this type of noise
removes them. In this way, the noisy dataset will contain less information than
the original dataset.

This last noise is the simplest one as it just has one parameter that is perct,
which has the same function as it has in the case of add events, that is to define
the percentage over the total number of events that are going to be removed.
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Figure 3.2: In this figure, we can see some examples of how the events are organized
in the .txt format required by the noise generator. The blue box shows the timestamp
values, the green and red boxes show the values of the x and y coordinates respectively,
and finally, the yellow box shows the polarity data.

3.4 Format converter

As we have seen during Chapter 2, all the technology related to event cameras has
emerged only a few years ago. Because of this, there is no specific format in which
events must be stored. This applies both to the variables themselves that form an event
(x-coordinate, y-coordinate, timestamp, and polarity), and to the format in which these
events are stored, they can be stored in a text format (.txt), in binary format (.bin),
etc. So depending on the dataset that we are working with the format of the events
may vary.

This aspect has been a limitation for us because for the noise generator to work prop-
erly, it needs a specific format, unfortunately, this format does not match the one used
by three of the four datasets we work with. Therefore, we have had to develop two
format converters for each case, one to be able to introduce the dataset in the noise
generator, and the other to return the noisy dataset to its original format so that we
can carry out the tests we consider necessary.

Our noise generator needs the events to be stored in a text format (.txt), following
the following structure:

• The events must be formed in four columns, one for each of the four variables
that make up an event.

• The first column will be filled by the timestamps variable, which must be in
second with 9 decimal numbers.

• The second and the third column will be filled by the x and y coordinates respec-
tively, each of both values must be given in pixels.

• Finally, the fourth column corresponds to the polarity that must have the values
0 (for negative) or 1 (for positive).

In Figure 3.2 we show you some examples of how events are organized in .txt format
before going through the noise generator, following the guidelines described above.

Of the four datasets we work with, only the NCars dataset meets the requirement
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FORMAT .npy FORMAT .txt FORMAT .npy

NCaltech-101

FORMAT .bin FORMAT .txt FORMAT .bin

Object Detection
NCaltech-101

FORMAT .dat FORMAT .txt FORMAT .dat

Prophesee Gen1 
Automotive

Figure 3.3: In this figure, we show the format converters we have developed for the
three datasets that required it, each of them represented with a color.

of storing the events in a text format. Therefore, we needed to develop different con-
verters to each of the datasets that do not store the events in a text file. In these cases,
when the noisy datasets were created we needed to develop another converter that re-
turns the original format of the dataset so the application could run correctly. We have
needed to follow this process for the cases of NCaltech101 dataset (uses a .npy format),
NCaltech101 Object Detection dataset (uses a .bin format) and Prophesee Gen1 Au-
tomotive (uses a .dat format). It is important to note that in the datasets dedicated to
the object detection task, only the files containing information on the event sequences
have been modified and not those containing information on the bounding boxes. In
Figure 3.3 we illustrate how these format converters have been created for each of the
datasets that need it.

3.5 Implementation details

In this last section of the third chapter, we have introduced certain details of the
implementation of the Event-based Asynchronous Sparse Convolutional Networks ap-
plication [1] that we have considered necessary to be able to correctly understand its
operation.

The application can perform two types of tasks, image classification and object de-
tection using four different datasets. In addition, its original functionality, as it is
explained in Section 2.6.1, was to compare the efficiency of networks using sparse con-
volutions and those using traditional convolutions. In order to modulate all these fac-
tors, we use a file called settings.yalm whose most relevant parameters for our interests
are:

• name: Indicates the name of the dataset that you are going to use . It can be
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name

model_name

event_representation

resume_training

Prophesee

NCaltech101ObjectDetection

NCaltech-101

NCars

dense_object_det

fb_sparse_object_det

dense_vgg

fb_sparse_vgg

event_queue

histogram

False

True

Figure 3.4: In this figure, we can see an outline of relevant settings.yalm file parameters.
The parameters in green are those related to the image classification task and those in
red are those related to the object detection task.

NCaltech101, NCaltech101 ObjectDetection, Prophesee or NCars.

• model name: Indicates the kind of model that you want to use depending on
the task that you want to solve during your training. It can be fb sparse vgg,
dense vgg, fb sparse object det or dense object det. In our case we have just used
two of them, the fb sparse vgg when we where interested in solving the task of
image classification, and fb sparse object det when we wanted to solve the task
of object detection. We have made this choice based on the results in Table
2.1 and Table 2.2, which show that networks using sparse convolution work more
efficiently than networks using traditional convolution.

• event representation: It defines the kind of representation that we are going
to use, it can be histogram or event queue, both of them defined in Section 2.6.1.

• resume training: This parameter will only be used to test noisy datasets. By
setting this parameter to True, we can load the model that has been previously
trained with the original data, i.e. without noise.

In Figure 3.4 we can visualize an outline in a summary mode of the above-mentioned
parameters. The rest of the parameters that appear in the settings.yaml are not rel-
evant to our work and according to the authors of the paper, they are the optimal
ones.



Chapter 4

Evaluation

4.1 Introduction

In this fourth section, we will evaluate the computer vision application based on deep
learning that we have explained in Section 2.6.1, Event-based Asynchronous Sparse
Convolutional Networks [1].
We will start by explaining the four datasets we have used and then proceed to explain
the different tests we have done. This second part is divided into three steps: in the
first step, we have replicated the original results of the paper, where for the image
classification task we have obtained better results than for the object detection task.
In the second step, we have created the different noisy versions of each of the datasets
used, except for the case of Prophesee Gen1 Automotive dataset, where we have had
problems in the .txt to .dat format cover. Finally, in the third step, we have analyzed
the results obtained when running the application with the different noisy datasets for
both tasks, image classification and object detection.

4.2 Datasets

Before explaining the experiments that we have done and analyze the results of each
of them, we will study the different datasets that this application [1] uses.
As we have commented in Section 2.6.1, the application that we are working with is
able to solve two different tasks:

• Image classification

• Object detection

4.2.1 NCaltech101

The NCaltech101 or Neuromorphic-Caltech101 [66] is a dataset that is used in the
task of image classification. This dataset is based on the original Caltech-101 dataset
[69, 70], which was dedicated to frame-based cameras. To create the N-Caltech dataset,
an ATIS camera [71] was used, which was attached to a pan-tilt monitoring unit that
ensured that the sensor was in motion while recording the original Caltech-101 images,
which were displayed on an LCD monitor. In Figure 4.1, we can visualize how the
ATIS camera and the monitor were positioned to record the sequence of events.

29
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Figure 4.1: In this figure, we can see how the ATIS camera and the LCD monitor were
placed to capture the event images that appear in the NCaltech101 dataset. (Source:
[66]).

The images of the Caltech101 dataset were of different sizes, so, in order to make
the event images more similar in size, after they were captured, the event images were
resized to make them as large as possible while maintaining the width-to-height ratio
and ensuring that the maximum width was 240 pixels and the maximum height was
180 pixels, as it is explained in [66].

The NCaltech101 dataset is made up of 101 classes that correspond to different el-
ements such as, for example, airplanes, lamps, ants, etc. the distribution of event
sequences over these 101 classes do not follow a uniform distribution and makes up a
total of 8.709 event sequences. Of the total number of event sequences, 4457 are stored
in the train set, 2410 in the validation set and the remaining 1842 in the test set. All
of the event sequences that conform to this dataset have a sequence length of 300 ms.
The format that is used in this first dataset for storing all the events is a NumPy file
(.npy). We can some of the event sequences that appear in this dataset in Figure 4.2

Object Detection NCaltech101

There is another version of the NCaltech dataset called Object Detection NCaltech101
[66] that is used for the task of object detection. It is exactly the same data as the
previous one, but in this case, we also have information on the 2-dimensional bounding
boxes of the objects. In Figure 4.3, we can see some examples of the datasets that
appear in the Object Detection NCaltech101 with their bounding boxes.

Other difference between both versions of the dataset is that in this case, the events
are stored in a .bin file. Each event occupies 40 bits as it is described below:

• X coordinate: Correspond to the bits 39-32 (in pixels).

• Y coordinate: Correspond to the bits 31-24 (in pixels).
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Figure 4.2: Examples of event sequences that compose the NCaltech101 dataset, they
correspond to the classes airplane, fish and scorpion. The red points correspond to
the positive events, while the green ones correspond to the negative ones. In addition,
some yellow points correspond to a fusion of both previous cases, that is, both positive
and negative events have been detected at these points.

Figure 4.3: Examples of event sequences that compose the NCaltech101 for object
detection dataset, they correspond to the classes inline skate, airplane and motorbike.
The color-coding is the same as explained in Figure 4.2, with red dots being positive
events, green dots being negative events and yellow dots being the merger of the two.
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• Polarity: Correspond to the bit 24 (0 for negative and 1 for positive).

• Timestamp: Correspond to the bits 23-0 (in microseconds).

4.2.2 NCars

The NCars dataset [67] is dedicated to solving the task of image classification. In this
case, the dataset is formed by a total of 24.029 event sequences which are more or
less uniformly distributed between two classes, car (with 12,336 event sequences) and
non-car (with 11,693 event sequences). Following this distribution between classes, the
total distribution of event sequences between the different sets is as follows: The train
set is composed of 15,422 event sequences and the test set is composed of 8,607 event
sequences.

For capturing the events of this dataset, an ATIS camera [71] mounted behind the
windshield of a car was used. The event sequences that make up the NCars dataset
have a length of 100ms and the sensor width and height values are 120 and 100 respec-
tively. Originally, the format of the events that compose the NCars dataset is a binary
file (.bin), where each event has a total length of 8 bytes or, in other words, 64 bits,
that are filled in the following way:

• Timestamp: Is encoded using 32 bits.

• X coordinate: Is encoded using 14 bits.

• Y coordinate: Is encoded using 14 bits.

• Polarity: Is encoded using 1 bit (it is encoded as 1/-1).

• Unused bits: There are 3 bits left that are not used.

As we have said, this format is used in the original dataset, but for this project, we have
used a replica of the original dataset in text file format (.txt), that have been developed
by the authors of the application [1]. In addition to the fact that the data are in text
format, there is another difference concerning the original dataset and that is that a
validation data set is added, leaving the distribution between the 3 sets as follows: The
training set has 12.961 event sequences, the validation set has 2.462 event sequences
and finally, the test set has the remaining 8606 event sequences. In Figure 4.4 we can
see some examples of the event sequences that conform to the NCars dataset.

4.2.3 Prophesee Gen1 Automotive

Finally, in this fourth dataset that is called Prophesee Gen1 Automotive [68], we can
find a total of 39 hours of recording on different scenarios (urban, highway, suburbs,
etc.) which are traduced in a total of 255.781 event sequences that correspond to
two different classes cars (228.123 event sequences) and pedestrians (27.658 event se-
quences). All the events have been captured with a Prophesee Gen1 sensor [72] mounted
on a car, and for this case, the sensor dimensions are 304×240 pixels. This dataset is
designed, to solve the task of object detection.

Each data file is stored in a binary file (.dat) in a total of 8 bytes following the same
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Figure 4.4: Examples of event sequences that compose the NCars dataset, the images
that are in the left part correspond to the class: car, and the ones that are in the
right part of the image correspond to the class: no-car. In this case, the white pixels
correspond to positive events and the black ones to negative events. (Source: [67]).

Figure 4.5: Examples of event sequences that compose the Prophesee Gen1 Automo-
tive, in which we can visualize the two different classes that this dataset contains, the
detected objects whose bounding boxes are red correspond to the class car and the
ones whose bounding boxes are blue correspond to the class pedestrians. As happen
in NCars dataset the white pixels correspond to positive events while the black ones
correspond to negative events. (Source [68]).
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structure that we have explained in Section 4.2.2, as both datasets have been devel-
oped by the same technological company, Prophesee. In addition, as it is a dataset
for object detection, it contains for each sequence of events its corresponding .npy file
in which the bounding boxes in 2 dimensions of the objects that appear. In Figure
4.5 we will find some examples of the kind of events that we will find in this last dataset.

Because the original dataset is too large (200 GB compressed and 700 GB uncom-
pressed) to work on our computers, we have used a smaller version of it. The reduced
version we have used has the following distribution: 251 event sequences for both the
train and validation sets and 22 event sequences for the test set.

4.3 Experiments and results

In this section, we show you the different experiments and test that we have developed
in order of, at the end of the process, analyze the effects on the performance of the
application [1] of the different noises that we have explained to you in Section 3.3.
We have divided our experiments into three main steps:

1. Replicate the original results to verify whether the results indicated in the paper
are achievable.

2. Introduce the different types of noises in the dataset that we are working with.

3. Run the application with the noisy dataset and analyze the results.

4.3.1 Step 1: Replicate original results

The main goal of this first step is to develop a baseline model whose performance is as
close as possible to that achieved by the original authors of the paper [1]. For achieving
this first objective we have to use the code that the authors of the paper themselves
provide on GitHub [73]. We have divided this section into two to clarify the training
and the results for both proposed tasks, image classification, and object recognition.

Image Classification

We have trained a total of four models, two of them use the NCaltech dataset, and the
other two the NCars dataset. We have done this because we are interested in analyse
both types of event representations available (histogram representation and event queue
representation). For all the cases we have selected the model fb sparse vgg.

In Table 4.1 we can see a comparison between the results that we have obtained and
the ones that the authors achieved for this first task. When we analyze the results
obtained, we can see that we have fulfilled the main objective of Step 1, which was
to replicate, in an approximate way, the results obtained by the authors of the paper.
A remarkable aspect that we may observe while analyzing the results obtained is that
in both cases, for both datasets NCaltech101 and NCars, when we use the histogram
representation we obtain a value equal to or slightly lower than that obtained by the
original authors, but when we use the event queue representation the results we ob-
tain exceed those obtained by the authors of the paper, using the same parameters for
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Dataset Event representation Authors Accuracy
NCaltech Histogram Original 0.745

TFM 0.740
Event queue Original 0.741

TFM 0.760
NCars Histogram Original 0.944

TFM 0.944
Event queue Original 0.936

TFM 0.949

Table 4.1: We can see the results of the original authors in comparison with the ones
that we obtain in the task of image classification. We have evaluated both of the
available event representations.

Dataset Event representation Authors mAP
NCaltech101

Object Detection
Histogram Original 0.615

TFM 0.523
Event queue Original 0.643

TFM 0.544
Gen1

Automotive
Histogram Original 0.119

TFM 0.048
Event queue Original 0.129

TFM 0.030

Table 4.2: We can see the results of the original authors in comparison with the ones
that we obtain in the task of object detection. We have evaluated both of the available
event representations.

training, or at least the ones that they indicate in their paper.

Object recognition

Once that we have obtained our base models and we have analyzed the results obtained
in the task of image classification, we will follow the same procedure for the second task
that this application can cover, object detection. In this case, we have selected the
sparse model that is dedicated to object recognition, fb sparse object det. Analogously
to the image classification task, we can visualize the results obtained in the object
detection task in the following Table 4.2.

Analyzing the results that we have obtained in this second table, we can realise that
we have not been able to achieve the results indicated in the original paper in any of
the proposed cases. In the case of the NCaltech for Object Detection dataset, these
results may be due to the fact that we had to use a different Pytorch function for its
implementation due to a version problem. The function we have had problems with is
torchvision.ops.nms() and the one we have used to replace it can be found in [74].
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Type of noise Parameter Value of parameter
Dataset Add noise xy p dg 0 0.025 0.005 0.0075 0.01 0.015 0.02 0.025 0.03 0.04 0.05

Add noise ts p dt 0 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.6 0.7
Add events perct 0 0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Remove events perct 0 0.1 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Table 4.3: In this table we show you the number of noisy dataset that are created for
each of the original dataset. For each of the values that use p dg, p dt, or perct, a new
noisy dataset is created.

In the case of the Prophesee Gen1 Automotive dataset, the drop in the mAP results,
which are originally low, is since, as explained in Section 4.2.3, we have been forced to
use a reduced version of this dataset due to its large size, while the results of the paper
have been obtained using the full dataset for training.

4.3.2 Step 2: Introduce noise in the dataset

In this second step, we have created the noisy datasets that we will evaluate in the final
Step 3. To do that, first, we must transform to text format (.txt) all the datasets that
do not have this format in their original form, that is, all except NCars dataset. Then,
using the noise generator, we will add the different types of noise to each dataset, and
finally, we will use the format converter to return the datasets to their original format.
Both concepts, the noise generator and the format converter, have been previously
explained in Sections 3.3 and 3.4 respectively.

Next, as a reminder, we will describe very briefly the noises we have introduced in
the four datasets:

• Spatial noise: It is also called add noise xy and its main objective is to introduce
noise in the x and y coordinates that compose an event.

• Temporal noise: It is also called add noise ts and is responsible for introducing
noise into the timestamp of each event.

• Add events: It has the function of introducing events that have been created
randomly to each sequence of events.

• Remove events: It has the function to remove events from each sequence of
events.

Each type of noise has a parameter that serves to regulate the amount of noise that is
introduced into the dataset. In the case of spatial and temporal noise, the parameters
p dg and p dt, respectively, are in charge of modulating the variance of the distribution
of both noises, in the case of add and remove events, the parameter perct is in charge
of defining the percentage of events that will be created or removed.
In order to analyze the influence of noise on the precision results, we have decided to
create 10 different datasets of each type of noise, in which the parameters mentioned
above will vary. In Table 4.3, we can see an example of how many noisy datasets are
created for each of the original datasets.

In the case of the Prophesee Gen1 Automotive dataset, we have not been able to
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c)

b)a)

d)

Figure 4.6: The figure shows the results that we have obtained using the different
noisy versions that we have created from the NCaltech101 dataset. The vertical axis
represents the accuracy and the horizontal axis represents the noise ratio that have
been introduced.

overcome this second step. The problems have arisen when running the .txt to .dat
format converter, described in Section 3.4, in which we get failures in the use of the
RAM of the computer we are working with. This is why we have decided to propose as
a future task to optimize this second converter in order to be able to make a complete
analysis of this fourth dataset.

4.3.3 Step 3: Run the noisy dataset and analyse the results

Once that we have all of our four noisy datasets in the correct formats to make the
application performs correctly, we will advance to this final step.

The main objective of this Step 3 is to test the models that we have trained in the
Step 1 (with the original dataset) using the noisy datasets that we have created. Once
we have all our experiments done, we have analyzed the results obtained in order to
understand how the different kinds of noises that we have introduced affect the per-
formance of the application in both tasks that it is able to solve, image classification
and object detection. Is important to add that, the default setting for these tests is to
use the histogram representation, otherwise, if in some case we have to use the event
queue representation we will make sure it is clear.

Results on image classification

We will start by analysing the results that we have obtained using the noisy versions
of the NCaltech101 dataset (Figure 4.6) and the NCars dataset (Figure 4.7), which are
the ones used in the image classification task.
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c)

b)a)

d)

Figure 4.7: The figure shows the results that we have obtained using the different noisy
versions that we have created from the NCars dataset. The vertical axis represents the
accuracy and the horizontal axis represents the noise ratio that have been introduced.

In the case of spatial noise (add noise xy) we can see how, in the NCaltech101 graphic,
the results tend to get worse as the value of the noise ratio, which in this case corre-
sponds to the percentage of the diagonal of the sensor, increases. This noise is the one
that suffers a greater drop in performance, starting, as we have seen in Table 4.1, with
an accuracy of 0.741 and ending, with a value of 0.155.
When we analyze this type of noise in the case of NCars dataset, if we look once again
at Table 4.1, is 0.944, we can see how this value drops drastically at the first non-zero
value of the noise ratio. Also is remarkable that as the noise ratio increases to 0.0075,
the accuracy value is stuck at 50%, which would be the analog of a random choice
between two possible classes. The conclusion we can extract for this first noise is that
spatial information plays a key role in the image classification task. In Figure 4.8, we
can see how, although the noise introduced in both images is different, the effect is
devastating in both, as it almost completely modifies the edges of the car being cap-
tured.

On graphic b), we can see the one that corresponds to the temporal noise (add noise
ts). The impact that this kind of noise has on the performance in comparison to the
previous one is totally different, because it is almost non-existent for both cases, for
both NCaltech101 and NCars. The variation over the different values of the noise ratio
is negligible. With these results, we can extract that, in comparison with the other
noises, the variable of the timestamp has almost no impact on the performance of the
task of image classification.
As we explain in Section 2.6.1, the histogram representation does not look at the
timestamp information to divide the events, it just separates them using polarity in-
formation. In contrast, event queue representation uses event queues of a fixed length
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% Diagonal sensor = 0.0075 % Diagonal sensor = 0.03

Figure 4.8: The figure shows two event sequences corresponding to the spatial noise
added in the NCars dataset. Both event sequences correspond to the class car.

Figure 4.9: The figure shows the results of Addnoise ts using event queue representation
on the NCars dataset.
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Add events (0.6)Remove events (0.7)

Add noise ts (0.5)Add noise xy (0.03)

Figure 4.10: The figure shows some examples of the event sequences that we have
created from the original NCaltech101 dataset for each type of noise, the images cor-
respond to the classes: electric guitar, ceiling fan, motorbike and face easy.

of 15 events, where events are sorted by their timestamps. Therefore, we decided to test
this noise on the models that had been trained using the event queue representation.
In the case of NCaltech101 dataset, we have not been able to obtain any result due to
programming problems that we have not been able to solve. However, in Figure 4.9 we
can see the results obtained for NCars dataset, and, again, we can see that although
the event queue representation does take into account the timestamps of the events,
the modification of these has no influence on the accuracy results.

The following noise c), correspond to remove events, as a little reminder, this noise
was in charge of removing events. We can see that until the value of the noise ratio
is not high enough (approximately 0.4 in both cases), the performance of the algo-
rithm does not decrease, actually, in some cases, it does improve a little bit. On the
other hand, when the noise ratio gets higher values, the performance starts to decrease
unquestionably. It is remarkable that, in the NCaltech101 dataset, even though we
remove the 90% of the events, that correspond to the last case, the value of the ac-
curacy is higher than the one that we obtain in the worst case of add noise xy. As a
conclusion of this type of noise, we can say that, until the percentage of events that
are eliminated does not reach a value of approximately 40%, it does not have a great
influence on the image classification task.

Finally, the last noise that we can find on the image is add events, whose main objective
is contrary to the one that we just have analyzed. In this case, when we look at the
NCaltech101 results, the drop of the accuracy along the noise ratio values is similar to
the one that happens in add noise xy, but in this case, it does not as worse as in the add
noise xy one. The way of how the performance drops make a lot of sense because we
are adding random events, so when we have a higher value of the noise ratio, you will
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Add events (0.7)Remove events (0.8)

Add noise ts (0.5)Add noise xy (0.03)

Figure 4.11: The figure shows some examples of the event sequences that we have cre-
ated from the original NCars dataset for each type of noise, all of the figures corredpond
to the class car.

create more random events and more difficult will be the task of image classification.
But when we look at the results of NCars dataset, we can see some differences, ob-
viously, the performance of the algorithm get worse when we increase the noise ratio
and we add more events, but the slope of the fall is much less steep than in the previ-
ous case, in fact, when the noise ratio adopts its maximum value (0.9), the algorithm
returns an accuracy of 0.883 which is only one point less than the initial accuracy, 0.944.

Additionally, in Figures 4.10 and 4.11, we show some examples of event sequences
belonging to the different noisy versions of NCaltech101 and NCars respectively. In
both figures, we can see how the spatial noise modifies the edges of the objects being
displayed, while spatial noise does not seem to modify the event sequences too much.
Additionally, you can see how both add events and remove events add or remove events.

Results on Object Detection

In this part, we have only included the results of NCaltech101 Object Detection dataset
due to the memory problems that we have with the Prophesee Gen1 Automotive dataset
while converting the formats.

In Figure 4.12 we can see how the results that we have obtained look like. We will start
analyzing graph a) of spatial noise (add noise xy) which has a very familiar aspect to
us, as it suffers a huge drop along with the different values of the noise ratio, like in
the image classification task. In comparison with the other three graphics, it is the
one that shows a higher influence on the performance of the algorithm. Once again,
we can conclude by saying that for the object detection task it is very important that
the spatial localization of the events is correct, i.e. not distorted.
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c)

b)a)

d)

Figure 4.12: The figure shows the results that we have obtained using the different
noisy versions that we have created from the NCaltech101 Object Detection dataset.
The vertical axis represents the accuracy and the horizontal axis represents the noise
ratio that have been introduced.

Figure 4.13: The figure shows the results of Addnoise ts using event queue representa-
tion on the NCaltech101 Object Detection dataset dataset.
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In graphic b) of temporal noise (add noise ts), we can see how the behavior of the
performance of the algorithm along with the different values of the noise ratio still very
similar to the other cases that we have previously seen. During the eleven different
executions, the value of mAP is stacked around the initial value, that as we have seen
in Table 4.2, is 0.523.
In the same way, as we have done in the case of image classification, we have tried to
test this same noise on a model that has been trained using the event queue represen-
tation. In Figure 4.13 we can see the results we have obtained, and as in the image
classification task, we can see how the temporal noise has a minimal effect on the mAP
results of the application.

The next noise that we are going to analyze is remove events, that is figure c). We
can see how for the first values of the noise ratio, the performance of the algorithm
improves a little bit, but, as was also the case in the image classification task, when the
noise ratio reaches a value of 0.5, the performance of the algorithm starts to decrease,
reaching, in the last case, a value of 0.293.

Ultimately, the last noise of this dataset that we are going to analyze is add events,
which has a behavior very similar to the case of add noise xy, with a progressive drop
of the mAP along the values adopted by the noise ratio. The most remarkable thing
about this last graph is that in the first value of noise ratio, which means the inclusion
of a small number of random events, the drop in performance is much greater than in
the rest, causing a notable step in the graph we are analyzing.
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Chapter 5

Conclusions and future work

5.1 Conclusions

The main objective of this work was the analysis of the influence of different types of
noise on the results in the tasks of image classification and object detection on the
application, Event-based Asynchronous Sparse Convolutional Networks [1]. The key
points we can highlight from this study are:

• First of all, we would like to emphasize the knowledge acquired in the study of
the state of the art, where we have defined event cameras, thus learning about
their fundamentals and the advantages they have over traditional cameras. In
addition, we have also studied different examples of computer vision and deep
learning applications that use this technology.

• In Section 3.4, we have seen how, since there is no specific format in which to
store the events, it was required to develop different format converters to be able
to work with the different datasets proposed.

• The experiments we have carried out have been divided into three main steps. In
Step 1, which consisted of replicating the results obtained by the original authors
in their paper, we have seen how, in the case of the image classification task,
the results have been closer to those published in the paper than in the case of
object detection. This is because for the NCaltech for Object Detection dataset
we have used different versions in some libraries as we have seen in Section 4.3.1.
On the other hand, in the case of the Prophesee Gen1 Automotive dataset, was
because we were forced to use a smaller version of the original dataset due to its
large size (700 GB).

• In Section 4.3.3, where we have analyzed the results obtained when testing the
application with the noisy datasets, we have seen how the variation of the location
of the events (temporal noise), has a very big influence on the results obtained
in the image classification task as well as in the object detection task.
In contrast, the temporal information provided by the timestamps has hardly any
influence on the performance of the two types of tasks with either of the two event
representations used, histogram representation and event queue representation,
because none of them prioritised temporal data over other types of data such as
spatial data.
In addition, we have seen that for the two proposed tasks, removing events does
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not affect performance until 40%/50% of the events in each sequence are deleted.
Finally, we have observed that the addition of events worsens the performance of
the algorithm, however, depending on each dataset, this drop in performance has
a more or less pronounced slope. For example, the performance drop in the NCars
dataset is less pronounced than in the case of NCaltech101 and NCaltech101
Object Detection datasets.

5.2 Future work

Once we have analysed and drawn conclusions from the results we have obtained
throughout the different experiments carried out during the project, we are going to
propose a series of tasks that could be done in the future to make a broader study of how
noise in event signals affects the performance of different computer vision applications
based on deep learning:

• First of all, it would be important to solve the memory problems that we have
encountered in the .txt to .dat converter for the Prophesee Gen1 Automotive
dataset (explained in Section 4.3.2, to be able to make a more exhaustive analysis
of the application. In the same way, it would be necessary to train the model
using the complete dataset and not the reduced version we have had to work
with, in order to obtain results more similar to those obtained by the authors of
the paper.

• Another proposition is to use other computer vision applications that make use
of event signals and that are based on deep learning in order to perform more
sophisticated analysis. To do so, we propose to carry out the same procedure
as the one we have done in this project. The applications we would like to use
are the ones we have explained in Sections 2.6.2 and 2.6.3, corresponding to
Convolutional spiking neural networks for spatio-temporal feature extraction [40]
and Inceptive Event Time-Surfaces for Object Classification using Neuromorphic
Cameras [75] respectively.

• Another line of future work would be to compare these results with the results
obtained from the metrics developed by VPULab, whose aim is to serve as a
predictor of the behavior of the signals generated with the simulators, to analyze
the level of correlation between the event distortion metric and the performance.

• As we have commented in Section 3.3, when adding noise both in the x and y
coordinates (spatial noise) and when adding noise on the timestamp (temporal
noise), we could choose to adopt two types of distributions, Gaussian and Beta,
in our case we have only focused on the Gaussian type, so it could be interesting
to create noise using exactly the same parameters except for the distribution,
selecting theBeta distribution this time. In this way we could compare the results
and analyse the influence of the distribution that the noise adopts when it is
introduced in the performance of the algorithm.

• Finally, in order to further analyse of this application, another possible future
work would be to carry out the experiments with the second type of event rep-
resentation of the application, as we have seen in Section 2.6.1, we could choose
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between the histogram representation or the event queue representation and, al-
though in step 1 we have analysed the results using both types of representations,
in step 3, in which we analysed the influence of noise on the performance of the
algorithm, we have test the event queue representation in the case of the tempo-
ral noise. Therefore, it would be interesting to obtain the results with the other
noises using the event queue representation and compare them with those we
have obtained using histogram representation.
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