

UNIVERSIDAD AUTONOMA DE MADRID

ESCUELA POLITECNICA SUPERIOR

Master Universitario en Deep Learning

for Audio and Video Signal Processing

MASTER THESIS

Real-time camera operation and tracking for the streaming of

teaching activities.

Javier Vinuesa Solana

Advisor: Jesús Béscos Cano

June 2021

Real-time camera operation and tracking for the streaming of

teaching activities.

AUTOR: Javier Vinuesa Solana

TUTOR: Jesús Béscos Cano

Video Processing and Understanding Lab. (VPULab)

Dept. Tecnología electrónica y de las Comunicaciones

Escuela Politécnica Superior

Universidad Autónoma de Madrid

June de 2021

This study has been partially supported by the Spanish Government through its

TEC2017-88169-R MobiNetVideo project.

Resumen (castellano)

La principal razón de este trabajo proviene de la necesidad del Laboratorio en ofrecer a los

estudiantes la oportunidad de asistir a un evento desde casa o desde cualquier parte del

mundo en tiempo real. El objetivo principal de este trabajo es construir un tracker que

funcione a tiempo real para seguir los movimientos del conferenciante. Después

construiremos un framewok para manejar una cámara PTZ (Pan Tilt and Zoom) basándose

en los movimientos del conferenciante. Es decir, si el conferenciante va para la izquierda,

la cámara girara hacia la izquierda.

Para abordar este proyecto continuaremos un proyecto desarrollado por Gebrehiwot, A.

que consistía en construir un tracker que funcionaba tiempo real. El problema de este

tracker es que estaba implementado en Ubuntu y se ejecutaba con una CNN muy compleja

que requería el uso de una GPU en nuestro ordenador. Como bien señala Gebrehiwot, A. al

final de su informe, no todo el mundo tiene una partición de Ubuntu o una GPU en sus

ordenadores, así que el primer objetivo era portar el tracker a Windows. Para lograr este

objetivo utilizamos Anaconda Windows, que nos facilitó mucho el trabajo. Después

implementamos un backbone ligero para el tracker que nos permitía ejecutarlo en

ordenadores con poca capacidad de procesamiento. Una vez realizado todo este proceso,

pusimos en práctica el mencionado framework para manejar el movimiento de la cámara

PTZ. Este framework utiliza el tracker ligero implementado para seguir los movimientos

del profesor/conferenciante y, en función de estos movimientos, la cámara se desplazará y

se inclinará automáticamente. Hemos probado este framework en plataformas de streaming

como YouTube demostrando que puede mejorar mucho la calidad de las clases online.

Finalmente sacamos conclusiones del trabajo realizado y proponemos trabajo futuro que se

podría hacer para mejorar el framework.

Abstract (English)
The primary driving force of this work comes from the Lab’s urgent needs to offer students

the opportunity to attend a remote event from home or anywhere in the world in real-time.

The main objective of this work is to build a real-time tracker to follow the movements of

the lecturer. After that we will build a framework to handle a PTZ (Pan Tilt and Zoom)

camera based on the lecturer movements. That is, if the lecturer goes to the left, the camera

will turn to the left.

To tackle this project we will follow a project developed by Gebrehiwot, A. which

involved building a real-time tracker. The problem of this tracker is that was implemented

on Ubuntu and running with a very complex CNN which required the use a good GPU on

our computer. As Gebrehiwot, A. rightly points out at the end of his report, not everyone

has an Ubuntu partition or a GPU on their computers so we started moving the real time

tracker to Windows. To achieve this objective we used Anaconda Windows which made

our work much easier. After that we implemented a lightweight backbone of the tracker

allowing us to run it on computers with a fewer processing power. Once that all this

process was done, we put into practice the mentioned framework for handling the

movement of the PTZ camera. This framework uses the implemented lightweight tracker

to follow the lecturer moves and depending on these movements the camera will pan and

tilt automatically. We tested this framework on streaming platforms like YouTube proving

that can greatly improve the quality of online classes.

Finally we draw conclusions from the work done and propose future work to improve the

framework.

Palabras clave (castellano)
Aprendizaje profundo, redes neuronales, redes convolucionales, seguimiento de objetos en

video, cámaras PTZ.

Keywords (inglés)
Deep Learning, neural networks, convolutional networks, video object tracking, PTZ

cameras.

 Acknowledgements

Primero de todo, quiero dar las gracias a mi tutor, Jesús, por su gran ayuda y compromiso

durante este año.

Agradecer también a mis padres y mi familia por su gran apoyo y confianza durante este

año, no solo académicamente, sino en todos los aspectos de mi vida. Nunca lo hubiese

conseguido sin vosotros.

Gracias a mis amigos de toda la vida, tanto arenalos como madrileños, por el apoyo y los

buenos ratos que me habéis dado. Habéis hecho que este viaje se haga mucho más ameno.

Gracias también a mis compañeros de clase, en especial a Daniel, con el cual empecé la

carrera y acabo el máster. Sois unos cracks.

i

CONTENTS
1 Introduction .. 2
1.1 Motivation .. 2
1.2 Objectives ... 2
1.3 Structure of the report ... 3
2 State of the art ... 6

2.1 Video object tracking.. 6
2.1.1 What is Video object tracking? .. 6
2.1.2 Differences with Video Object Detection .. 6
2.1.3 Single Object Tracking vs Multiple Object Tracking 7
2.1.4 Challenges in Single Object Tracking .. 7

2.1.5 Main components in Single Object Tracking ... 8
2.1.6 Deep Learning Methods for tracking.. 9

2.1.6.1 Taxonomy of Deep Trackers. .. 9

2.1.6.2 Siamese Region Proposal Network ... 11
2.1.6.3 Lightweight CNN’s ... 12

2.2 PTZ Cameras .. 12
3 Development ... 14

3.1 Previous work ... 14
3.1.1 System Design .. 14

3.1.2 Drawbacks of the system proposed .. 15
3.2 Objective 1: Port the system to MS Windows .. 16
3.3 Objective 2: Test lightweight CNN’s for target tracking. 17

3.4 Objective 3: Design and implement the camera operation module. 19

3.4.1 Communication between PC (laptop) and PTZ camera. 19
3.4.2 Implementation of the camera operation module. .. 20

3.4.2.1 Extension of the camera operation module ... 22

4 Integration, testing and results .. 23
4.1 System requirements .. 23

4.2 Setting up the system .. 24
4.2.1 Hardware Set up ... 24

4.2.2 Software Set up ... 26
4.3 Video Live Streaming ... 29
4.4 Demos ... 32

5 Conclusions and future work .. 33
5.1 Conclusions .. 33

5.2 Future work .. 34

Bibliography .. 36

ii

LIST OF FIGURES

FIGURE 2-1 DIFFERENT TYPES OF STATE IN TRACKING. SOURCE: [2] .. 6

FIGURE 2-2: REPRESENTATION OF MOTION PROBLEM. SOURCE: [2] ... 8

FIGURE 2-3: REPRESENTATION OF MATCHING PROBLEM. SOURCE: [2] .. 8

FIGURE 2-4: TYPICAL VIDEO TRACKING PIPELINE. SOURCE: [2] ... 8

FIGURE 2-5: ARCHITECTURE OF SIAMRPN. IT IS DIVIDED IN TWO, AT LEFT THE SIAMESE NETWORK

AND AT RIGHT THE REGION PROPOSAL NETWORK. SOURCE: [7] .. 11

FIGURE 2-6 : ARCHITECTURE OF MOBILENET. SOURCE: [8] .. 12

FIGURE 2-7: PTZ CAMERA ... 13

FIGURE 3-1: PREVIOUS PROPOSED METHOD: HARDWARE SET UP. SOURCE: [1] 14

FIGURE 3-2: GENERAL OVERVIEW OF THE PROPOSED SYSTEM .. 15

FIGURE 3-3THIS IS WHAT IT SHOULD APPEAR WHEN YOU TYPE ‘PYTHON’ ON THE ANACONDA

PROMPT AND THE ANACONDA IS WELL INSTALLED ... 16

FIGURE 3-4: SIAMMASK ARCHITECTURE. WE CAN SEE THE ADDED BRANCH TO MAKE

SEGMENTATION MASK (THE FIRST ONE STARTING BY THE TOP). THIS IS THE TRACKER USED IN

AWED’S ALGORITHM. .. 18

FIGURE 3-5: EXAMPLE OF MANUAL TARGET SELECTION .. 21

FIGURE 3-6: SYSTEM OF RULES TO HANDLE THE MOVEMENTS OF THE PTZ CAMERA. 21

FIGURE 3-7. ZOOM FUNCTIONALITY INCLUDED IN THE RULE SYSTEM... 22

FIGURE 4-1: SWITCH CONNECTIONS. THE ETHERNET BLUE CABLE DIVIDE THE INTERNET SIGNAL IN

THE TWO WHITE CABLES. THE WHITE CABLES WENT ONE TO THE LAPTOP AND THE OTHER TO

THE PTZ CAMERA. THE BLUE CABLE COMES FROM THE ROUTER. .. 25

FIGURE 4-2: LAPTOP CONNECTIONS. THE ETHERNET CABLE COMES FROM THE SWITCH. THE

USB3.0 COMES FROM THE PTZ CAMERA .. 25

FIGURE 4-3: PTZ CAMERA CONNECTIONS. THE ETHERNET CABLE COMES FROM THE SWITCH. THE

USB3.0 IS CONNECTED TO THE LAPTOP... 25

FIGURE 4-4: PC (LAPTOP) CONFIGURATION .. 26

FIGURE 4-5: HOW YOUR CONNECTION SHOULD BE AFTER CHANGING THE IP ADDRESS OF YOUR

LAPTOP. .. 27

FIGURE 4-6: MINRRAY CAMERA WEB ACCESS AND CONFIGURATION WINDOW. 27

FIGURE 4-7: EXAMPLE OF THE GLOBAL VARIABLE PYTHONPATH. .. 28

file:///C:/Users/Emi/Desktop/DEEP_LEARNING_MASTER/TFM/MEMORIA/TFM_completo_v_rev.doc%23_Toc75114459
file:///C:/Users/Emi/Desktop/DEEP_LEARNING_MASTER/TFM/MEMORIA/TFM_completo_v_rev.doc%23_Toc75114460
file:///C:/Users/Emi/Desktop/DEEP_LEARNING_MASTER/TFM/MEMORIA/TFM_completo_v_rev.doc%23_Toc75114461
file:///C:/Users/Emi/Desktop/DEEP_LEARNING_MASTER/TFM/MEMORIA/TFM_completo_v_rev.doc%23_Toc75114462
file:///C:/Users/Emi/Desktop/DEEP_LEARNING_MASTER/TFM/MEMORIA/TFM_completo_v_rev.doc%23_Toc75114463
file:///C:/Users/Emi/Desktop/DEEP_LEARNING_MASTER/TFM/MEMORIA/TFM_completo_v_rev.doc%23_Toc75114463
file:///C:/Users/Emi/Desktop/DEEP_LEARNING_MASTER/TFM/MEMORIA/TFM_completo_v_rev.doc%23_Toc75114464
file:///C:/Users/Emi/Desktop/DEEP_LEARNING_MASTER/TFM/MEMORIA/TFM_completo_v_rev.doc%23_Toc75114465
file:///C:/Users/Emi/Desktop/DEEP_LEARNING_MASTER/TFM/MEMORIA/TFM_completo_v_rev.doc%23_Toc75114466
file:///C:/Users/Emi/Desktop/DEEP_LEARNING_MASTER/TFM/MEMORIA/TFM_completo_v_rev.doc%23_Toc75114467
file:///C:/Users/Emi/Desktop/DEEP_LEARNING_MASTER/TFM/MEMORIA/TFM_completo_v_rev.doc%23_Toc75114468
file:///C:/Users/Emi/Desktop/DEEP_LEARNING_MASTER/TFM/MEMORIA/TFM_completo_v_rev.doc%23_Toc75114468
file:///C:/Users/Emi/Desktop/DEEP_LEARNING_MASTER/TFM/MEMORIA/TFM_completo_v_rev.doc%23_Toc75114469
file:///C:/Users/Emi/Desktop/DEEP_LEARNING_MASTER/TFM/MEMORIA/TFM_completo_v_rev.doc%23_Toc75114469
file:///C:/Users/Emi/Desktop/DEEP_LEARNING_MASTER/TFM/MEMORIA/TFM_completo_v_rev.doc%23_Toc75114469
file:///C:/Users/Emi/Desktop/DEEP_LEARNING_MASTER/TFM/MEMORIA/TFM_completo_v_rev.doc%23_Toc75114470
file:///C:/Users/Emi/Desktop/DEEP_LEARNING_MASTER/TFM/MEMORIA/TFM_completo_v_rev.doc%23_Toc75114471
file:///C:/Users/Emi/Desktop/DEEP_LEARNING_MASTER/TFM/MEMORIA/TFM_completo_v_rev.doc%23_Toc75114472
file:///C:/Users/Emi/Desktop/DEEP_LEARNING_MASTER/TFM/MEMORIA/TFM_completo_v_rev.doc%23_Toc75114473
file:///C:/Users/Emi/Desktop/DEEP_LEARNING_MASTER/TFM/MEMORIA/TFM_completo_v_rev.doc%23_Toc75114473
file:///C:/Users/Emi/Desktop/DEEP_LEARNING_MASTER/TFM/MEMORIA/TFM_completo_v_rev.doc%23_Toc75114473
file:///C:/Users/Emi/Desktop/DEEP_LEARNING_MASTER/TFM/MEMORIA/TFM_completo_v_rev.doc%23_Toc75114474
file:///C:/Users/Emi/Desktop/DEEP_LEARNING_MASTER/TFM/MEMORIA/TFM_completo_v_rev.doc%23_Toc75114474
file:///C:/Users/Emi/Desktop/DEEP_LEARNING_MASTER/TFM/MEMORIA/TFM_completo_v_rev.doc%23_Toc75114475
file:///C:/Users/Emi/Desktop/DEEP_LEARNING_MASTER/TFM/MEMORIA/TFM_completo_v_rev.doc%23_Toc75114475
file:///C:/Users/Emi/Desktop/DEEP_LEARNING_MASTER/TFM/MEMORIA/TFM_completo_v_rev.doc%23_Toc75114476
file:///C:/Users/Emi/Desktop/DEEP_LEARNING_MASTER/TFM/MEMORIA/TFM_completo_v_rev.doc%23_Toc75114477
file:///C:/Users/Emi/Desktop/DEEP_LEARNING_MASTER/TFM/MEMORIA/TFM_completo_v_rev.doc%23_Toc75114477
file:///C:/Users/Emi/Desktop/DEEP_LEARNING_MASTER/TFM/MEMORIA/TFM_completo_v_rev.doc%23_Toc75114478
file:///C:/Users/Emi/Desktop/DEEP_LEARNING_MASTER/TFM/MEMORIA/TFM_completo_v_rev.doc%23_Toc75114479

iii

FIGURE 4-8: THIS WHERE YOU SHOULD PUT A ‘1’ OR A ‘0’ DEPENDING IF YOU HAVE WEBCAM OR

NOT. ... 28

FIGURE 4-9: HOW TO CREATE A NEW MULTIMEDIA SOURCE IN OBS STUDIO. 29

FIGURE 4-10: THIS IS HOW YOU HAVE TO FILL IN THE TABLE WHEN YOU CREATE THE NEW

MULTIMEDIA SOURCE .. 30

FIGURE 4-11: CONFIGURATION OF A LIVE EVENT ON YOUTUBE. THE YELLOW PART IS THE STREAM

KEY. ... 30

FIGURE 4-12: THIS IS HOW YOU MUST FILL UP THE GAPS TO LINK YOUR YOUTUBE LIVE EVENT

WITH THE OBS STUDIO. ... 31

FIGURE 4-13: BUTTON TO START STREAMING TO YOUTUBE. .. 31

file:///C:/Users/Emi/Desktop/DEEP_LEARNING_MASTER/TFM/MEMORIA/TFM_completo_v_rev.doc%23_Toc75114480
file:///C:/Users/Emi/Desktop/DEEP_LEARNING_MASTER/TFM/MEMORIA/TFM_completo_v_rev.doc%23_Toc75114480
file:///C:/Users/Emi/Desktop/DEEP_LEARNING_MASTER/TFM/MEMORIA/TFM_completo_v_rev.doc%23_Toc75114481
file:///C:/Users/Emi/Desktop/DEEP_LEARNING_MASTER/TFM/MEMORIA/TFM_completo_v_rev.doc%23_Toc75114482
file:///C:/Users/Emi/Desktop/DEEP_LEARNING_MASTER/TFM/MEMORIA/TFM_completo_v_rev.doc%23_Toc75114482
file:///C:/Users/Emi/Desktop/DEEP_LEARNING_MASTER/TFM/MEMORIA/TFM_completo_v_rev.doc%23_Toc75114483
file:///C:/Users/Emi/Desktop/DEEP_LEARNING_MASTER/TFM/MEMORIA/TFM_completo_v_rev.doc%23_Toc75114483
file:///C:/Users/Emi/Desktop/DEEP_LEARNING_MASTER/TFM/MEMORIA/TFM_completo_v_rev.doc%23_Toc75114484
file:///C:/Users/Emi/Desktop/DEEP_LEARNING_MASTER/TFM/MEMORIA/TFM_completo_v_rev.doc%23_Toc75114484
file:///C:/Users/Emi/Desktop/DEEP_LEARNING_MASTER/TFM/MEMORIA/TFM_completo_v_rev.doc%23_Toc75114485

iv

LIST OF TABLES

TABLE 2-1: COMPARISON BETWEEN HAND-CRAFTED TRACKERS AND DEEP TRACKERS. 9

TABLE 3-1: LIST OF COMMANDS FOR PAN, TILT, ZOOM AND FOCUS DRIVE. 19

TABLE 4-1 : SOFTWARE REQUIREMENTS OF THE DEVELOPED SYSTEM .. 23

TABLE 4-2: HARDWARE REQUIREMENTS OF THE DEVELOPED SYSTEM.. 24

file:///C:/Users/Emi/Desktop/DEEP_LEARNING_MASTER/TFM/MEMORIA/TFM_completo_v1.doc%23_Toc74672265

 1

 2

1 Introduction

1.1 Motivation

Just a few months ago, the world was brought to a standstill by the arrival of Covid-19.

Quarantines began and people had to stop going to their jobs. Covid-19 has strongly

affected people´s behaviours and routines. This affected the student’s community as well.

Students had to stop going to class and started with online classes. In the best case, online

classes are usually based on a few slides and the teacher commenting on them in the

background. This is fine for a couple of classes, but if the online teaching is prolonged, it

may not be very productive. So, this work comes from the Lab’s urgent to offer students

the opportunity to study from home or anywhere in the world in real time with quality

classes.

To improve the quality of the classes the Lab thought of PTZ cameras. PTZ cameras are

special cameras which can Pan 360 degrees, Tilt 90 degrees and Zoom automatically. The

idea was to develop a framework to handle the PTZ camera movements to follow the

lecturer movements to make it seem as if the student was in a face to face classroom

(although obviously it will never be the same). So, with that idea in mind, the Lab, more

specifically Gebrehiwot, A., developed a first version of the framework [1]. This

framework worked very well but had some problems when it came to implementation. The

two main problems were the complexity of the model and that it only worked under

Ubuntu.

This project planned to solve both problems. Many lecturers don’t have an Ubuntu

partition on his laptop so the first thing will be porting the system to Windows so that a

larger number of users can use it. Also, many lecturers don’t have a GPU installed on his

laptop so the second thing to do will be to develop a lightweight framework to track the

professor. If these two objectives are achieved, we will be able to offer good quality online

classes.

1.2 Objectives

Port the system to MS Windows.

The first objective of this Thesis is to port the existing system to MS Windows. We will try

to run the actual tracking module in Windows Anaconda. This objective is important

because some people do not have an Ubuntu partition on his PC, so to make that this

algorithm could be used by as many people as possible we will port it to Windows.

Test lightweight CNN’s for target tracking.

The actual tracking algorithm used to manage the PTZ camera is a state of the art one. Is a

very good algorithm but it has the problem that we need a good GPU to run it. Not all the

people have a good GPU, so we will try to change the tracking algorithm for a lightweight

one to avoid this limitation.

Design and implement the camera operation module.

Once we have decided our lightweight algorithm, we will implement the camera operation

module. This camera operation module will manage the movements of the PTZ camera,

based on the movements of the lecturer.

 3

1.3 Structure of the report

This report has the following chapters:

 Chapter 1: Motivation, objectives and organization of the thesis.

 Chapter 2: State of the art. In this section we will talk about the state of the art

of the latest tracking algorithms, lightweight CNN’s and PTZ cameras.

 Chapter 3: Development. In this section we will talk about how we have

developed and achieved our three objectives. We will talk also about the

previous work of Gebrehiwot, A.

 Chapter 4: Integration, testing and results. In this section we will show how to

run the tracker in a laptop from scratch. We will also show how to make a

Video Live Streaming (for the teaching activities) using the tracker.

 Chapter 5: Conclusion and future work.

 5

 6

2 State of the art

2.1 Video object tracking

2.1.1 What is Video object tracking?

Video object tracking is the task of estimating over time the state of one or more arbitrary

objects of interest in video sequences. The target or object state xk are variables describing

its properties (e.g. location, shape appearance, structure…) for each k frame in the video

[2]. We can see different types of target states in Figure 2-1. We usually locate the target

with a bounding box (four variables for the object state). In video object tracking it is used

also the recursive estimation. Recursive estimation means that once you have estimated the

first state xk, you will use this information to estimate the next state, xk+1.

Video object tracking is widely used in lot of applications as autonomous driving, human-

computer interaction, surveillance…

2.1.2 Differences with Video Object Detection

The terms "tracking" and "detection" are often used interchangeably. The purpose of

detection is to find one or more objects in a given image, but the purpose of tracking is to

find these objects throughout a video while keeping track of which object is which. To

track an object, you must first give the tracking algorithm with an image of the object and

this is either done by a detection algorithm (Detection-based trackers) or manually

(Detection-free-trackers). [3]

Some people may think that we can perform an object tracking algorithm by making an

object detection algorithm in each frame, but this is a very naïve way to perform. Tracking

is necessary for many reasons:

Figure 2-1 Different types of state in tracking.

Source: [2]

 7

- Detection is computationally expensive.

- Objects for which no detector has been trained can be tracked using detection-

free trackers.

- With tacking we can maintain identities along the video.

- Changes in light, motion blur, change in scale, occlusions (when the subject is

partially or totally obscured by another object for a period of time in the video),

poor image quality... might all be managed with tracking. [3]

2.1.3 Single Object Tracking vs Multiple Object Tracking

In Single Object Tracking (SOT), the bounding box of the target in the first frame is given

to the tracker. The tracker's purpose is to find the same target in all of the other frames.

Because the first bounding box is provided, Single Object Trackers are classified as

detection-free trackers. They should be able to track any item without any prior experience

with it. Siamese network-based trackers and Correlation Filter-based trackers are the top

performers for short-term tasks.

In Multiple Object Tracking (MOT) there are multiple objects to track. The tracking

algorithm is supposed to figure out how many objects are in each frame and then maintain

track of their IDs. MOT is a more challenging topic, and demonstrating an explicit class of

algorithms that outperforms the rest is more challenging.

In this Thesis we will perform Single Object Tracking.

2.1.4 Challenges in Single Object Tracking

There are some challenges that could affect the performance of our Single Object Tracking

algorithm. The main challenges are:

- Object Modelling: One of the major tasks of object modelling is to find an

appropriate visual description that makes the object distinguished from other

objects and background [4].

- Changes in shape and appearance: As the camera angle changes, the

appearance of an object can change. During successive video frames,

deformable objects such as humans can change their shape and appearance. The

perspective effect, in which things farther away from the camera appear smaller

than those closer to the camera, can also modify the appearance and shape.

- Illumination changes: Changes in lighting can have a significant impact on the

look of an object. In an indoor (artificial light) environment, an object may

appear differently than in an outside context (sun light). Even the time of day

(morning, afternoon, evening) and the weather conditions (cloudy, sunny, etc.)

can affect lighting.

- Shadows and reflections: For a shadow on the ground that behaves and

appears like the target, some aspects such as motion, shape, and background are

more sensitive. Reflections of moving objects on smooth surfaces might

generate the same problem.

 8

- Occlusions: Occlusion happens when one object is occluded by another item or

when an object is occluded by a background component. The objects and their

features become ambiguous under occlusion. Before and after the occlusion, the

tracking algorithms must be able to determine the individuality of the objects

involved in the occlusion. [4]

2.1.5 Main components in Single Object Tracking

Single Object Tracking mainly relates to:

- Motion Problem (i.e. prediction): identify a limited search region where the

object is expected to be found with high probability. We can see that on Figure

2-2.

- Matching Problem (i.e. detection or location): identify the target state in the

next frame within the designated search region. We can see that on Figure 2-3.

The typical pipeline that we can see on Video Tracking Algorithms is the one shown on

Figure 2-4.

Figure 2-2: Representation of Motion Problem. Source: [2]

Figure 2-3: Representation of Matching Problem. Source: [2]

Figure 2-4: Typical Video Tracking Pipeline. Source: [2]

 9

The main objective is to estimate the target state over the time (e.g. shape, position). In all

tracking problems you have to make three choices. First of all, you have to select an object

representation method for your target (the features that you will use to represent your

target). Second, you have to select a searching process to generate candidate locations.

Finally you have to select a similarity measure to find the best candidate (from the ones

generated on the previous step) for your target.

All in this section is a summary extracted from [2].

2.1.6 Deep Learning Methods for tracking.

In this section we are going to see some Deep Learning Methods to perform Single Object

Tracking. Deep Learning methods have been lately adopted in visual tracking and it have

become a major achievement. In Table 2-1 we can see a comparison of Hand-Crafted

(HC) and deep trackers over the dataset VOT2017 [5]. The measurements are: expected

average overlap (EAO), accuracy (A) and robustness (R). Only one tracker used hand-

crafted features in VOT2020 [19].

2.1.6.1 Taxonomy of Deep Trackers.

Following [2] we can divide Deep Trackers according to their: Tracking strategy,

Architecture, Network exploitation, Network training, Network objective and by their

Network output.

Looking the tracking strategy we can find two types of trackers:

- Detection-based trackers: They perform tracking by detection. These trackers

learn the possible positions of the target in the training phase. They have to re-

detect the object at every frame and update the classifier.

- Correlation-based trackers: Correlation is applied between the observed data

and the target model. These trackers operate in the frequency domain to manage

computational cost.

 Deep trackers can be also divided by their Network architecture. The most common

architectures for deep trackers are:

Table 2-1: Comparison between Hand-Crafted trackers and Deep trackers (extracted from

[2])

 10

- CNN: This was the most common architecture between 2015 and 2017. This

architecture extracts the features better than handcrafted methods. It is focus on

target modelling and matching.

- Siamese: It is the most popular architecture since 2017. It is based on

modelling the target and matching. It is focused on achieving a trade-off

between accuracy and speed. This architecture is the architecture that we are

going to use in this Thesis.

- RNN: This architecture tries to model the target and features avoiding pre-

trained CNN’s. Due to its complexity it is limited on training.

- GAN: This architecture is focused on improving training modelling by

enriching training samples. The drawback is that it is hard to train and evaluate.

We can divide also Deep Trackers by their Network Exploitation. There are two types:

- Deep of-the-self features: Is the preferred option. They use the network as a

feature extractor. These networks have been previously trained on non-tracking

still-image datasets. Features from different layers of the network are used to

track the object.

- Deep Custom Features: This type of Network Exploitation is growing now. It

is an end to end training. These trackers do not use pre-trained Networks. They

make a specialised training for visual tracking and they are focused on

designing, training and adaptation of tracking features.

There are also two types of training for Deep trackers:

- Offline Training: The tracker is previously trained on a large dataset to obtain

generic target representations. The drawback is that it is limited to the ‘classes’

that we have on the Dataset, e.g., if you want to track an object that was not on

your database, the Network would not extract a good representation of the

target; but if your object was on the Database, this tracker would perform very

well on real-time applications.

- Online Training: These trackers adapt their parameters according to the

variation of the target appearance. They are prone to overfitting and may lead to

drift. They have limitations for real time.

We can also divide the trackers by their Network Objective:

- Classification-based objective function: It is like a two-class (or binary)

classification problem over object proposals. These trackers use a classification

loss function.

- Regression-based objective function: Tracking is reformulated as optimizing

L1 or L2 loss functions.

Finally, we can divide Deep Trackers by their Network output. The two more typical are:

- Confidence map: it is a probability density function on the output image,

assigning each pixel of the new image a probability, which is the probability of

the pixel colour occurring in the object in the previous image. [6]

- Bounding Box: Is an area defined by two points (x, y) and the width and high

of the box.

This classification of Deep Trackers is extracted from [2].

 11

2.1.6.2 Siamese Region Proposal Network

It is the architecture that we are going to follow in this thesis. As we can see on 2.1.6.1

Siamese based tracking is the most popular architecture since 2017. Siamese region

proposal network (Siamese-RPN) is an end-to-end tracker trained off-line with large-scale

of image pairs. Specifically, it consists of a Siamese subnetwork for feature extraction and

a region proposal subnetwork including the classification branch and the regression branch.

In the inference phase, the proposed framework is formulated as a local one-shot detection

task. [7]

Siamese Network: It consists of two branches which are to be used as feature extractor for

the two images that are passed as input (the template frame and the detection frame). In

each of the branches will be the same Convolutional Neural Network to extract the

features. Continuously the features extracted will be merged to generate a single output as

we can see on Figure 2-5. Siamese Networks are common due to its accuracy and speed. It

can be seen as a regression method using the bounding box predicted in the last frame as

the only proposal. Siamese Networks are also very robust to the rapid movement of

objects. The two branches share CNN parameters, so both images will perform a very

similar transformation.

Region Proposal Network: Before RPN, traditional proposal extraction methods were

time consuming. These networks are a type of network that arose to accelerate the process

of region proposal. This was achieved through the enumeration of several anchors and the

sharing of convolutional features. This type of networks is fast and achieves high quality

results. RPN is able to extract more accurate proposals thanks to the supervision of the

foreground-background classification and bounding box regression. The RPN used in this

thesis consists of a pair-wise correlation section and a supervision section. The supervision

section has two branches, one for foreground-background classification and the other for

proposal regression. First, the pair-wise correlation section will divide the transformations

obtained with the Siamese network in two. We will have a transformation of the template

branch on the classification branch and another one on the regression branch, as we can see

in Figure 2-5. The same will occur to the transformation obtained from the detection

branch. The correlations between the two transformations will be performed in the two

supervision branches. For this purpose, the convolution of the transformation of the

template branch with the transformation of the detection branch will be performed both in

the classification branch and in the regression branch. The output we obtain in the

classification branch is an output with two thousand channels which represent the positive

or negative activations of each anchor. In this branch we utilize a softmax loss function.

The output of the regression branch consists of four thousand channels with dx, dy, dw ad

dh of the distance between the anchor and the ground truth. [7]

Figure 2-5: Architecture of SiamRPN. It is divided in two, at left the Siamese Network and at

right the Region Proposal Network. Source: [7]

 12

2.1.6.3 Lightweight CNN’s

Deep CNN-based object tracking algorithms are more and more used in Artificial

Intelligence (AI) applications. However, it still very difficult to deploy large CNNs

architectures on small devices with limited hardware resources, because they consist of

millions of parameters, which make them computationally very exhausting. Lightweight

CNN architectures are proposed as a solution to make the deployment of deep neural

networks on small devices feasible. [8]

In this section we are going to see the Lightweight Network used on our tracker. This

Network is called MobileNet.

MobileNet is an efficient CNN architecture for mobile and embedded vision

systems. It splits the convolution into a depth wise separable convolution followed by a

pointwise convolution to build a lightweight deep neural network. Furthermore, it

introduces two simple hyper-parameters that give us the possibility to build small and low

latency models that can be easily matched to the design requirements for mobile and

embedded vision applications. One of the hyper-parameters is the width multiplier that

allows us to thin the number of channels, while the second hyper-parameter is the

resolution multiplier that reduces the spatial dimensions of the feature maps. We can see its

architecture on Figure 2-6. [8]

2.2 PTZ Cameras

The term PTZ camera has two uses within the video security and surveillance products

industry. First, it is an acronym for pan-tilt-zoom and can refer only to the characteristics

of specific surveillance cameras. Second, "PTZ cameras" can also describe a whole

category of self-tracking cameras, in which sound, motion - or a combination of these

factors - triggers camera, focus and field-of-view changes.

PTZ cameras can rotate around two axes, one horizontal (360 degrees) and one vertical (90

degrees), as well as zoom in and out to focus on an area or object manually or

Figure 2-6 : Architecture of

MobileNet. Source: [8]

 13

automatically. These cameras have been widely used on video-surveillance. Nowadays due

to Covid, video conferences are increasing and to improve the quality of these, PTZ

cameras are starting to be used, which give a more realistic experience. We can see a PTZ

camera on Figure 2-7. [9]

Figure 2-7: PTZ Camera. Source:[9]

 14

3 Development

3.1 Previous work

This thesis continues the work developed by a previous project. This previous project is

titled ‘Real-Time Target Tracking to Position a Mobile Device’ [1]. The objective of this

project was to obtain a fully portable system capable of automatically track the presenter

(lecturer) and creates a far more appealing live presentation. [1]

The primary driving force of this previous project comes from the Lab’s urgent needs to

offer students the opportunity to study from home or anywhere in the world in real-time.

The main objective of this project was to build a prototype for real-time lecturer tracking

with the aim of live-lecture video streaming. Therefore, this work focuses on developing a

real-time active tracking framework to position a mobile camera precisely w.r.t the target

of interest. The mobile camera was a PTZ camera, the same we have studied on section 2.2

and the target of interest was a lecturer. The tracking output was processed to control the

PTZ mobile camera.

3.1.1 System Design

In this section we are going to see the system design of the previous work. For a moving

target, tracking algorithms using a PTZ camera are a bit complex compared to using a

static camera. The primary reason is, PTZ camera has pan, tilt, and zoom control, and it

can rotate 360 degrees on its axis. Thus, each acquired frame captures a dynamic

background scene in terms of position and location, which makes it difficult to relay in

simple tracking algorithms that consider a static background. The proposed system fulfils a

smooth camera movement like a professional human cameraman does. The proposed

method is composed of three modules: acquisition module, tracking module and streaming

module as we can see on Figure 3-1.

Acquisition Module: The acquisition module contains a PTZ camera (section 2.2). This

module is responsible for capturing video frames and delivering them to the tracking

module, and also receives back a control command, i.e., pan, tilt and zoom from the

tracking module to accurately position the PTZ camera according to the tracked target

(lecturer) position and orientation. [1]

Tracking Module: The tracking module contains a laptop with an on-board tracking

algorithm. This module is responsible for processing each received frame from the

acquisition module and initiate the tracking process. It tracks the target (Lecturer) in real-

Figure 3-1: Previous proposed method: Hardware Set Up. Source: [1]

 15

time and sends back control signal in order to position the PTZ camera precisely w.r.t the

location and orientation of the target in the PTZ camera field of view (FOV). The overall

hardware configuration of the system is depicted in Figure 3-2. The laptop equipped with

an on-board tracking algorithm utilizes the video frames from the PTZ camera and apply

the tracking algorithm to locate the target (Lecturer) and then send a control commands,

i.e., pan, tilt and zoom back to the PTZ camera aiming to accurately position the PTZ

camera enabling to record a good quality lecture and stream the videos online over the Wi-

Fi connection. [1].

Streaming Module: The streaming module is in charge of broadcasting the video to the

student’s devices. It is composed of the OBSstudio program and Youtube, plus the router

and Ethernet cables needed to make connections. The signal from the PTZ camera is sent

to the OBSstudio via RTSP. Then, from OBSstudio, the signal is sent to Youtube via

RTMPS. Finally, students will connect to the Youtube link and will be able to watch the

live broadcast. To see how to make a streaming from scratch go to section 4.3

3.1.2 Drawbacks of the system proposed

The system proposed in [1] has some drawbacks.

The first problem is that the system only works in Ubuntu. This is a drawback because

some lecturers (the final users of the system) do not have an Ubuntu partition on his laptop.

Figure 3-2: General overview of the proposed

system. Source: [1]

 16

For this reason, our first objective is port the system to MS Windows and try to run the

tracking module there.

The second problem is about complexity. The tracking algorithm used is too complex to

run it without GPU. Most of the laptops do not have a GPU. For this reason, our second

objective is to test lightweight algorithms and CNN’s for target tracking and try to run it

without a GPU.

The third problem is that the system proposed does not use the zoom functionality of the

PTZ camera. We want our tracking algorithm to look like a man anchoring the camera. For

this reason, our third objective is to design and implement the camera operation module.

This camera operation module will have the zoom functionality incorporated.

3.2 Objective 1: Port the system to MS Windows

In this section we are going to see step by step how we have implemented objective 1. As

we have mentioned before, the tracking algorithm implemented by Gebrehiwot, A. in [1]

only works on an Ubuntu partition. To solve that we are going to port the system to MS

Windows. To do that we had following the next steps:

1. Download Anaconda for Windows: The first step is to download Anaconda on

Windows. Anaconda is a distribution of the Python and R programming languages

for scientific computing (data science, machine learning applications, large-scale data

processing, predictive analytics, etc.), that aims to simplify package management and

deployment. The distribution includes data-science packages suitable for Windows,

Linux, and macOS [10]. With Anaconda we can run python code in a Windows

partition in an easy way. To install Anaconda we have followed the steps included in

[11] which are:

- Visit Anaconda Downloads page: www.Anaconda.com/downloads

- Select Windows from the three options.

- Download. You have to select 64 bit version or 32 bit version depending

on your Windows version. With that step you should have downloaded

the .exe installer.

- Open and run the .exe installer. You have to accept the license.

- Open the Anaconda Prompt. Anaconda is the Python distribution and

the Anaconda Prompt is a command line shell (a program where you

type in commands instead of using a mouse).To check if everything is

good installed, open the Anaconda Prompt and type ‘python’. You

should see something like Figure 3-3. With the interpreter running,

you will see a set of greater-than symbols ‘>>>’ before the cursor. [11]

Figure 3-3This is what it should appear when you type ‘python’ on the Anaconda prompt

and the Anaconda is well installed

https://en.wikipedia.org/wiki/Software_distribution
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/R_(programming_language)
https://en.wikipedia.org/wiki/Scientific_computing
https://en.wikipedia.org/wiki/Data_science
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Predictive_analytics
https://en.wikipedia.org/wiki/Package_management
http://www.anaconda.com/downloads

 17

2. Install the Environment: The second step of this objective is to install the same

environment that we have on Ubuntu. An environment is a tool that helps to keep

dependencies required by different projects separate by creating isolated python

virtual environments for them [12]. So, we are going to get all the packages installed

on the Anaconda Ubuntu environment (the packages that allow us to run the

Gebrehiwot, A. tracker) and we are going to install them on our new Windows

Anaconda environment. To do that you have to follow the next steps:

- Activate the Ubuntu environment of Gebrehiwot, A. tracking algorithm.

- Create a .yaml file. In this file we will have all the packages installed on

Awed’s environment. To create this file you have to run the next

command on the Anaconda Prompt (once that the environment is

activated): ‘conda env export > environment.yml’. All the packages that

we need will be on the environment.yml file.

- Now we have to install all this packages on our Anaconda Windows

Environment. To do that we open the Anaconda Prompt in our Windows

partition and we create a new environment from the file generated in the

previous step. To do that we run on the prompt the next command:

‘conda env create –f environment.yml’. Now we have the same

environment / packages on the two partitions. [12]

3. Install and run the tracker: This is the final step. Once you have all the packages

that you need installed you have to port the tracker to Windows. This is very easy.

You only have to take and copy all the files that we have on our tracking algorithm

project on Ubuntu and paste it in the same way to the new project created in

Windows. After that you can run the tracker on Windows.

3.3 Objective 2: Test lightweight CNN’s for target tracking.

In this section we are going to see how we have implemented objective 2. As we have

mentioned before, the Gebrehiwot, A. tracker is a state of the art algorithm, which works

very well but with the drawback that a GPU is needed to run it. Most of the laptops do not

have a GPU installed. As our algorithm will be run on a laptop most of the times, we need

to make it simpler to run it on a CPU.

The tracking algorithm used in Gebrehiwot, A. tracker is called SiamMask [13]. This

algorithm is based on Siamese Networks, the most popular architecture for deep trackers

since 2017, as we mentioned on section 2.1.6.1. SiamMask it is an improvement/evolution

of the SiamRPN proposed on section 2.1.6.2. SiamMask unlike existing tracking methods

that rely on low-fidelity object representations, argue the importance of producing per-

frame binary segmentation masks. Binary segmentation masks are images of pixels, where

the pixels of the target are ‘1’ and the background pixels are ‘0’. To this aim SiamMask

show that, besides similarity scores and bounding box coordinates, it is possible for each

response of a candidate window (RoW) of a fully convolutional Siamese network to also

encode the information necessary to produce a pixel-wise binary mask. This can be

achieved by extending existing Siamese tracker with an extra branch and loss [13], as we

can see on Figure 3-4.

 18

The SiamMask architecture is a State of the art method in terms of accuracy. The problem

for us, is that is too complex to perform without GPU. The thing is that our problem is not

very complex or difficult. We just need to implement a Single Object Tracker, where the

target will be in a controlled environment. Probably we will not have complex challenges

as occlusions or distractors (aka similar objects) so we will not need a State of the art

tracker. It is better to use a simpler one that allows us to have de same performance but

with much less parameters.

For this reason we have selected the SiamRPN tracker (section 2.1.6.2). To implement this

tracker we have follow the instructions from [14]. The steps are as follows:

- Step 1: Install the framework. To do that you have to run the next

commands on your Anaconda Prompt:
‘cd ~’

‘git clone https://github.com/STVIR/pysot.git’

‘export PYTHONPATH=home/youruser/pysot:$PYTHONPATH’

‘bash install.sh /opt/anaconda3.7 pysot’

- Step 2: Get the tracker Model. In this step we download the model zoo

of our tracker model. To do that you have to run the next commands on

your Anaconda Prompt:
‘wget http://wwwvpu.eps.uam.es/~jcs/DLVSP/pysot_nets/

siamrpn_mobilev2_l234_dwxcorr/siamrpn_mobilev2_l234_dwxcorr.pth’

‘mv siamrpn_alex_dwxcorr.pth ~/pysot/experiments/

siamrpn_mobilev2_l234_dwxcorr/’

In this step we have chosen MobileNetV2 (section 2.1.6.3) as the

tracker model because it is a lightweight CNN and it has less

parameters than other CNN’s. This will help us to make a simpler

module for tracking which is one of the objectives in this thesis.

Once you have done these two steps, you will have installed the SiamRPN tracker. If you

want to test the tracker with the webcam of your laptop you can run the next command on

the Anaconda Prompt:
´ python tools/demo_ptz_zoom.py \

 --config experiments/siamrpn_mobilev2_l234_dwxcorr/config.yaml \

 --snapshot experiments/siamrpn_mobilev2_l234_dwxcorr/model.pth’

Figure 3-4: SiamMask Architecture. We can see the added branch to make segmentation

mask (the first one starting by the top). This is the tracker used in Awed’s algorithm. Source:

[13]

https://github.com/STVIR/pysot.git

 19

3.4 Objective 3: Design and implement the camera operation
module.

In this section we are going to see how we have implemented objective 3. Once we have

our tracking algorithm installed, we will implement the camera operation module. This

camera operation module will be in charge of the PTZ camera movements. The PTZ

camera must follow the movements of the lecturer as we have seen on section 3.1.1.

3.4.1 Communication between PC (laptop) and PTZ camera.

First of all, we are going to see how we can handle the movements of the PTZ camera. To

access the camera from a PC/laptop one can use the USB 3.0 cable or the Ethernet cable,

both of them serve different access to the camera. With the USB 3.0 it is possible to read

the video frames from the camera and using the Ethernet cable it is possible to access the

Camera configuration setup from any browser and also control the PTZ motion of the

camera. During the project the Camera was assigned an IP address of 192.168.1.163,

anyone who wants to access the camera for the first time, they have to configure the PC

(laptop) that they are using to be in the same network with the PTZ Camera IP address.

The PTZ camera allows to be remotely controlled via IP by sending VISCA commands. In

this project a socket programming with Pan, Tilt and Zoom commands has been written

aiming to control the Pan, Tilt and Zoom motion of the camera. The Pan, Tilt and Zoom

commands are sent over the dedicated VISCA IP address: 192.168.1.163 and port: 1259.

The specific code written to handle the camera movement can be found inside

pysot/tools/minnary_ptz_control_ZOOM.py. The specific VISCA commands used to

control the camera are shown in Table 3-1. [1]

Command Function VISCA Command Package Note

 Up 81 01 06 01 VV WW 03 01 FF VV: Pan speed

0x01 (low speed)

to

0x18 (high speed)

WW: Tilt speed

0x01 (low speed)

to

0x14 (high speed)

 Down 81 01 06 01 VV WW 03 02 FF

 Left 81 01 06 01 VV WW 01 03 FF

 Right 81 01 06 01 VV WW 02 03 FF

 UpLeft 81 01 06 01 VV WW 01 01 FF

 UpRight 81 01 06 01 VV WW 02 01 FF

Pan Tilt
and Zoom

DownLeft 81 01 06 01 VV WW 01 02 FF

DownRight 81 01 06 01 VV WW 02 02 FF

Stop 81 01 06 01 VV WW 03 03 FF

 Absolute
81 01 06 02 VV WW 0Y 0Y 0Y 0Y 0Z 0Z 0Z 0Z FF

YYYY: Pan Position

 Position ZZZZ: Tilt Position

 Relative
81 01 06 03 VV WW 0Y 0Y 0Y 0Y 0Z 0Z 0Z 0Z FF

YYYY: Pan Position

 Position ZZZZ: Tilt Position

 Home 81 01 06 04 FF

 Reset 81 01 06 05 FF

 Zoom in 81 01 04 07 02 FF

 Zoom out 81 01 04 07 03 FF

 Zoom stop 81 01 04 07 00 FF

 Focus in 81 01 04 08 02 FF

 Focus stop 81 01 04 08 00 FF

Table 3-1: List of commands for Pan, Tilt, Zoom and Focus drive. Source: [1]

 20

3.4.2 Implementation of the camera operation module.

In this section we are going to see the ‘system of rules’ that we have implemented to

handle the movements of the PTZ camera based on the lecturer movements. Up to this

point we have our tracking algorithm installed on our laptop and a PTZ camera connected

to it. The PTZ camera and the laptop can communicate between them sending VISCA

commands through a socket as we can see on section 3.4.1.

The first thing that our algorithm does is to reset the camera to the Home position. The

Home position is the intermediate position of both horizontal and vertical. We reset the

Zoom position too. This is done to always start in the same position, not in the position in

which the last user of the camera left it.

The next thing is to select the target. This can be done in two ways: manually or

automatically. If the user selects “manual target selection”, a pop-up window will appear

and the user will have to mark the target with a bounding box as we can see on Figure 3-5.

If the user selects “automatic target selection”, the target will be selected by the algorithm.

To do that we pass the frame to an object detector. After that we apply a filter to keep only

the ‘person’ object. The bounding box generated by the object detector, will be the

bounding box to track in the rest of the algorithm. If the object detector detects more than 1

person, a pop-up window will appear and the user will select one of them. It works better

with the manual target selection.

After that a Zoom will be done to improve the camera framing. If the room is big the Zoom

will be larger than in a small room.

Once we have the target selected and the zoom applied, we start tracking. At every frame

of the video we will have the position of the target in a bounding box. The bounding box

will be represented by the x and y coordinates plus the width and height as we can see on

Figure 2-1. To handle the movements of the PTZ camera we will focus on the movement

of the bounding box. The first thing we are going to do is to calculate the centroid of the

bounding box (cX and cY will be the coordinates of the centroid). With the coordinates of

the centroid we will calculate the location of the target in the frame (lX and lY). After that

we define the target area by dividing the frame into 6 by 5 grid regions (rX and rY). Then

we define the rules:

- If (lX > rX) we pan to the right.

- If (lX < -rX) we pan to the left.

- If (lY > rY) we tilt down.

- If (lY < -rY) we tilt up.

These rules are very simple. They are based on a grid region and when the target changes

the grid in where it is, we move the camera. We can see this ‘system of rules’ on Figure

3-6.

 21

Figure 3-5: Example of Manual Target selection

Figure 3-6: System of rules to

handle the movements of the PTZ

camera.

 22

3.4.2.1 Extension of the camera operation module

Once the algorithm was developed, we thought of an extension for it. It occurred to us that

we could make an improved version of the tracker for those users who had a GPU in their

laptops. (It could be used also by users with a good CPU, such as Intel i7 8700 or higher)

This extension is based in the zoom functionality. Up to this point, the rule system we were

using only handled the Pan and Tilt functionalities. The new rule system includes rules that

handle Zoom in and Zoom out automatically, based on the size (T_size) of the selected

bounding box. T_size is calculated by subtracting y_max and y_min of the bounding box.

We included this two rules to the system:

- If (T_size > 2.5*rY) we make a Zoom Out.

- If (T_size < 2*rY) we make a Zoom in.

We can see that on Figure 3-7. To see a comparison between the two versions implemented

go to section 4.4.

Figure 3-7. Zoom functionality

included in the rule system

 23

4 Integration, testing and results

4.1 System requirements

In this section we will describe the software and hardware needed to run the system.

Software requirements: The software infrastructure employed during the project is

completely written in python; in particular the Python version 3.7.10. The software system

has a set of components; the majority of them are related to the fields of computer vision

and deep learning. The most prominent unities are shown in Table 4-1. All necessary

libraries can be found on the ENV_pysot_zoom_cpu.yml file located inside the pysot

directory. [1].

For the extended version of the tracker we have developed other environment. This

environment has the same libraries as the other environment but with the GPU versions.

We have remove the gluoncv library because it causes conflicts with other libraries. For

this reason the extended version of the tracker doesn’t have automatic target detection. All

necessary libraries can be found on ENV_pysot_zoom_gpu.yml file located inside the

pysot directory.

 Type Version Description
Python Programming lenguaje 3.7.10 A general-purpose and high-level programming

language, used for developing Data Science

including machine learning, data analysis, and

data visualization

PyTorch Deep Learning

framework

1.8.1 Open-source Machine Learning framework based

on the Torch library, supports a tensor

computation (like NumPy) with strong GPU

acceleration.

TorchVision Part of the Pytorch

Framework

0.9.1 The torchvision package consists of popular

datasets, model architectures, and common image

transformations for computer vision. [17]

OpenCV CV library 4.5.1.48 Provides a common infrastructure for computer

vision applications.

Numpy Python library 1.19.5 Fundamental library for Python with packages for

scientific computing, multi-dimensional arrays,

with high-level mathematical functions.

Keras Deep Learning

framework

2.3.1 Keras is an open-source software library that

provides a Python interface for artificial neural

networks [15]

Windows OS 10 It is a desktop operating system developed by

Microsoft. [16]

Anaconda Environment 4.9.2 Open-source distribution of the Python

programming languages for scientific computing,

that aims to simplify package management and

deployment.

Table 4-1 : Software requirements of the developed system

https://pytorch.org/vision/master/#module-torchvision
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/AI_software
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network

 24

Hardware requirements: The software system has been developed on a laptop equipped

with Intel Core i7-10750H with 2.60GHz CPU, Nvidia GeForce GTX 2060 8GB, GDDR5,

with 16GB RAM. The PTZ camera described on section 2.2 with Pan, Tilt and Zoom

functionalities has been used as video source module. The communication between camera

and laptop through IP address has been descripted on section 3.4.1. Detailed description

regarding the PTZ camera and used hardware can be found in Table 4-2.

 Type Description

Computer model Laptop PC Laptop with on-board GPU is

used for processing the tracking

algorithm and to position the

PTZ camera

Camera model UV950A-12-U3 Minrray PTZ

camera

A portable Minrray PTZ camera

is used

Camera control PTZ control Onboard with pan, tilt and zoom

control functionality

Camera PTZ communication IP address Ethernet cable is used for

control data communication

between the Camera and the

computer or router

Camera data communication Serial port USB cable is used for data

communication between the

Camera and the computer

Camera power source DC USB cable is used for data

communication between the

Camera and the computer

Table 4-2: Hardware requirements of the developed system

4.2 Setting up the system

In this section we are going to see how to run the system from scratch. We will divide this

section in two. On part will be to set up the hardware and the other to set up the software.

4.2.1 Hardware Set up

As we have seen on section 3.4.1 the communication between laptop and PTZ camera will

be with the USB3.0 and the Ethernet cables. We will use a switch and three Ethernet cables

to be in the same subnetwork. The signal entering port 1 (coming from a router) is divided

to the ports 2 and 3 of the switch. The Ethernet cable coming out of port 2 goes to the

laptop and the Ethernet cable coming out of port 3 goes to the PTZ camera. The USB 3.0

connects the PTZ camera with the laptop. We can see this connections on Figure 4-1,

Figure 4-2 and Figure 4-3.

 25

Figure 4-1: Switch connections. The Ethernet blue cable

divide the internet signal in the two white cables. The white

cables went one to the laptop and the other to the PTZ

camera. The blue cable comes from the router.

Figure 4-2: Laptop connections. The

Ethernet cable comes from the switch.

The USB3.0 comes from the PTZ camera

Figure 4-3: PTZ camera connections. The Ethernet cable comes

from the switch. The USB3.0 is connected to the laptop.

 26

4.2.2 Software Set up

Once you have all the connections ready, we can start with the software.

The first thing to do is install Anaconda. We can see how to download Anaconda on

section 3.2.

After that, as we have said in section 3.4.1, during the project the Camera was assigned an

IP address of 192.168.1.163, anyone who wants to access the camera for the first time, they

have to configure the PC (laptop) that they are using to be in the same network with the

PTZ Camera IP address. This can be done by manually changing the IP address of the PC

(laptop), to a similar network address (e.g 192.168.1.26) as shown in Figure 4-4. Even if

you are connected by Ethernet cable, you should still be connected to the internet via Wi-

Fi. The Ethernet cable is used to move the camera, not to have internet connection. We

can see that on Figure 4-5. Then by opening an browser and putting the camera IP address

192.168.1.163, it will present a screen which asks for ”Username” and ”Password” as

shown in Figure 4-6, please fill admin on both the ”Username” and ”Password”, ones

logged in it is possible to modification any configuration. [1]

Figure 4-4: Pc (laptop) configuration

 27

Once you have changed the IP address of your laptop, you should create the Conda

Environment with all the libraries needed to run the algorithm. To do this you should

follow this steps:

- Go to the downloaded zip and extract the pysot folder to you Desktop.

- Open the pysot folder.

- Open Anaconda Prompt and run the next command:

’ conda env create -f ENV_pysot_zoom_cpu.yml’

- Activate the Environment:

‘conda activate pysot_cpu’

Figure 4-5: How your connection

should be after changing the IP

address of your laptop.

Figure 4-6: Minrray Camera web access and configuration window.

 28

- Export the PYTHONPATH.

To do that, you have to create a global variable: Control panel >

Click on the Advanced system settings link and then click

Environment Variables.

You have to create a new variable named PYTHONPATH. This

variable should be the path to your pysot project (the folder where

are all the files), as we can see on Figure 4-7.

Now is time to run the tracker. To do that you must follow these steps:

- Check if your laptop has a webcam installed. This is to prevent the

software from analyzing the images from the webcam instead of the

images it receives via USB from the PTZ camera.

Once you have checked it go to the file:

pysot/tools/demo_ptz_zoom.py line 41.

If you have a webcam installed put a ‘1’ on the function.

If you don’t have a webcam installed put a ‘0’.

We can see that on Figure 4-8.

Figure 4-7: Example of the global variable PYTHONPATH.

Figure 4-8: This where you should put a ‘1’

or a ‘0’ depending if you have webcam or not.

 29

- Once you have checked that, you can run the tracker with the next

command:

‘python tools/demo_ptz_zoom.py --snapshot

./experiments/siamrpn_mobilev2_l234_dwxcorr/siamrpn_mobilev2_l

234_dwxcorr.pth --config

./experiments/siamrpn_mobilev2_l234_dwxcorr/config.yaml’

- Now you have to follow the instructions that appears in the command

line.

4.3 Video Live Streaming

In this section we are going to see step by step how to make a Video Live Streaming once

that you have the tracker installed. This could be useful to stream the lectures.

First of all we will need to install a program called OBS studio. OBS Studio is a free and

open source software for video recording and live streaming. To download this program

you must follow the next steps:

- Go to www.obsproject.com.

- Select Windows from the Home page.

- Open the downloaded file (.exe).

- Follow the steps of the .exe and agree the license. (as a common

program).

Once you have OBS Studio installed we will link it to the PTZ camera. We will do this Via

RTSP (point to point to a physical decoder). To do that you must follow the next steps:

- Open OBS Studio.

- Create a new multimedia source as in Figure 4-9.

Figure 4-9: How to create a new multimedia source in OBS Studio.

http://www.obsproject.com/

 30

- A pop-up window is open and you must select ‘create new’

- After that a new pop-up window is open. You must fill it with the IP of

the camera (192.168.1.163) followed by the Stream Name (live/av0).

You must fill it exactly as we can see on Figure 4-10. Then you press

‘ok’ and the PTZ camera will be linked with OBS Studio.

Now we have the PTZ camera and the OBS linked. The next step is to link YouTube with

OBS to start streaming. You must follow the next steps:

- Create a live event on YouTube as it can be shown on Figure 4-11.

- Copy the Stream Key (the highlighted part in yellow on Figure 4-11).

Figure 4-10: This is how you have to fill in the table when you create the new

multimedia source

Figure 4-11: Configuration of a Live Event on YouTube. The yellow part is the Stream Key.

 31

- The next step is done in OBS Studio. Go to settings and then to stream

(inside settings). You must fill up the table as shown in Figure 4-12.

You must paste your Stream Key in the Stream key gap.

- After that you can start streaming clicking the button shown on Figure

4-13.

- After that the signal will arrive to YouTube via RTMPS and you will be

doing a video live streaming on YouTube.

Figure 4-12: This is how you must fill up the gaps to link your YouTube live event with

the OBS Studio.

Figure 4-13: Button to start streaming to YouTube.

 32

4.4 Demos

In this section we are going to leave the link to two videos in which you can see a demo of

the project implemented.

Demo with CPU: https://youtu.be/aJAs-dAxKSQ

Demo with GPU: https://youtu.be/KzUjNTt7ZpY

 33

5 Conclusions and future work

5.1 Conclusions

Our life has changed radically in the last year. Due to the spread of covid-19 many jobs

were done remotely and many students started online teaching. The focus of this thesis will

be online teaching, more exactly, in the improvement of students online classes.

For this purpose, the university purchased the PTZ cameras. These are special cameras that

can pan 360 degrees, tilt 90 degrees and zoom automatically. The goal was to make online

classes of higher quality and make it seem as if the student was actually in class. So, with

this in mind Gebrehiwot, A. developed a framework that handles the movement of the PTZ

camera based on lecturer’s movements [17]. The framework developed was so good and

uses a state of the art tracker to follow the teacher movements but it has two main

problems. The first problem is that the framework only works under Ubuntu and the

second problem is that the framework is to complex too run it without a GPU. So, this

Thesis continues the work developed trying to fix these two problems. In addition to this, it

will also focus on improving the camera operation module.

The first objective we went for was to port the system to Windows. If the framework only

works under Ubuntu is a problem. It is a problem because many teachers, who are the end

users of the system, do not have an Ubuntu partition installed on their laptops. To tackle

this problem we downloaded Anaconda for Windows. Anaconda is a distribution of

the Python and R programming languages for scientific computing (data science, machine

learning applications, large-scale data processing, predictive analytics, etc.), that aims to

simplify package management and deployment [17]. With Anaconda we can run python

code in a Windows partition in an easy way. The main problem to achieve this goal were

some libraries that worked on Ubuntu but not on Windows. To solve this, we either looked

for a previous version that worked on Windows and was compatible with the rest of the

libraries versions or we did not install these libraries. Fortunately this did not happen too

much and the libraries that did not work were not necessary for the main function of the

framework. So in general this was not a very difficult objective to achieve.

The second objective we went for was to make lightweight framework. The framework

that Awed implemented was based on SiamMask [13]. SiamMask is a State of The Art

algorithm for tracking in Real Time. This algorithm worked very well tracking the

movements of the lecturer. The problem was that running this algorithm required a lot of

computational power because it was very complex and had many parameters. Basically

you needed a GPU in your laptop for the algorithm to work properly. This is a problem

because as with Ubuntu partition, most lecturers do not have a GPU in their laptops. To

solve this we replaced the framework based on SiamMask by a framework based on

SiamRPN. SiamRPN was like a previous version of the SiamMask. It has less parameters

and it is less complex. This is not a State of the Art algorithm but it is more than enough

for the work it need to do. After all, is nothing more than a Single Object Tracking

problem that does not require the best tracking algorithm since we are in a controlled

environment and with not too much challenges. Achieving this objective was somewhat

https://en.wikipedia.org/wiki/Software_distribution
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/R_(programming_language)
https://en.wikipedia.org/wiki/Scientific_computing
https://en.wikipedia.org/wiki/Data_science
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Predictive_analytics
https://en.wikipedia.org/wiki/Package_management

 34

more complicated than the previous one, since we have to study different algorithms and

once chosen the right one, we had to fit it to the camera`s control system.

The third objective was to design and implement the camera operation module. The camera

operation module managed the movements of the PTZ camera based on the movements of

the lecturer. We will do tracking with the algorithm developed in objective two, and based

on the movements of the target we move the camera. This makes the online classes much

more dynamic. To tackle this project we have based our module in the one developed by

Awed. We divide the frame in to a grid and when the bounding box change the grid we

move the camera in that direction. In addition, we zoom in to adjust the image of the

teacher and the blackboard in the best possible way. This objective has also been difficult

because inventing a ‘system of rules’ to manage the camera movements is not an easy task.

Reviewing the objectives we had at the beginning of the thesis, we can see how they have

been achieved. In addition, we have shown how video live streaming can be done for the

use of the developed software. This will help the teachers to improve online teaching.

5.2 Future work

Observing the final visual results it can be said that the developed algorithm is good but

not perfect. As future work we would like to improve it as much as possible to improve the

quality of the online classes. So, in this section we are going to propose a series of

improvements that can be made to the thesis.

The first improvement proposed is to develop a dataset for moving cameras (like the PTZ

camera). One of the problems was that when comparing tracking algorithms we did not

have numerical results to compare them. We only relied on visual results. This was

because we did not have a dataset with ground truth to evaluate them. All the datasets we

had for tracking were developed for fixed cameras, so our algorithm, which was developed

for the PTZ camera, could not be tested correctly. To solve this problem, we think that the

development of a database with labels for moving cameras could be a good option.

The second improvement we have come up with to improve the quality of the online

classes is to add more cameras to the class. If we add a second camera to the class (does

not have to be a PTZ camera) we could have a camera tracking the teacher’s movements

and another camera fixed on the blackboard so that when teacher writes on it, it can be read

correctly.

If the use of GPU’s becomes more widespread (and cheaper) and laptops start to

incorporate them, an improvement of the rule system could be made. For example, pose

detectors could be added to track the teacher’s gestures as well as his movements. Also the

automatic target selection could be improved. If we achieve to select a more accurate

automatic bounding box we can skip the step of selecting the manual bounding box.

With this three improvements we think that online classes could be improved.

 35

 36

Bibliography

[1] Gebrehiwot, A., 2020. Real-Time Target Tracking to Position a Mobile Device

[2] San Miguel, J., 2021. DLVSP – Video Tracking: single object – Fundamentals.

[3] Trinh, C., 2019. A tour of Video Object Tracking — Part I: Presentation. Available at:

https://medium.com/@cindy.trinh.sridykhan/a-tour-of-video-object-tracking-part-i-

presentation-8a8aa9da9394

[4] Singh Jalal, A. and Singh, V., 2012. The State-of-the-Art in Visual Object Tracking.

[5] Matej, K. et all., 2018. The Visual Object Tracking VOT2017 challenge results.

[6] Stack Overflow. 2021. What is consistency map (confidence map)? Available at:

https://stackoverflow.com/questions/21086082/what-is-consistency-map-confidence-map.

[7] Li, B. and Yan, J., et All 2018. High Performance Visual Tracking with Siamese

Region Proposal Network.

[8] Taberkit, A. and Bouguettaya, A., 2019. A Survey on Lightweight CNN-Based Object

Detection Algorithms for Platforms with Limited Computational Resources.

[9] Es.wikipedia.org. 2021. Cámara PTZ - Wikipedia, la enciclopedia libre. Available at:

https://es.wikipedia.org/wiki/C%C3%A1mara_PTZ

[10] En.wikipedia.org. 2021. Anaconda (Python distribution) - Wikipedia. Available at:

https://en.wikipedia.org/wiki/Anaconda_(Python_distribution).

[11] Kazarinoff, P., 2021. Installing Anaconda on Windows - Problem Solving with

Python. Problemsolvingwithpython.com. Available at:

https://problemsolvingwithpython.com/01-Orientation/01.03-Installing-Anaconda-on-

Windows/.

[12] Conda.io. 2021. Managing environments — conda 4.10.1.post28+e567fcd1b

documentation. Available at: https://conda.io/projects/conda/en/latest/user-

guide/tasks/manage-environments.html#creating-an-environment-from-an-environment-

yml-file.

[13] Wang, Q., Zhang, L. and Berinneto, L., 2019. Fast Online Object Tracking and

Segmentation: A Unifying Approach.

[14] San Miguel, J., 2021. DLVSP – LAB3 - Tutorial: SiamRPN Tracker deployment and

evaluation.

[15] En.wikipedia.org. 2021. Keras - Wikipedia. Available at:

https://en.wikipedia.org/wiki/Keras.

https://medium.com/@cindy.trinh.sridykhan/a-tour-of-video-object-tracking-part-i-presentation-8a8aa9da9394
https://medium.com/@cindy.trinh.sridykhan/a-tour-of-video-object-tracking-part-i-presentation-8a8aa9da9394
https://stackoverflow.com/questions/21086082/what-is-consistency-map-confidence-map
https://es.wikipedia.org/wiki/C%C3%A1mara_PTZ
https://problemsolvingwithpython.com/01-Orientation/01.03-Installing-Anaconda-on-Windows/
https://problemsolvingwithpython.com/01-Orientation/01.03-Installing-Anaconda-on-Windows/

 37

[16] Techterms.com. 2021. Windows Definition. Available at:

https://techterms.com/definition/windows.

[17] torchvision — Torchvision master documentation. Pytorch.org. 2021. Available from:

https://pytorch.org/vision/master/

[18] En.wikipedia.org. 2021. Anaconda - Wikipedia. Available at:

https://en.wikipedia.org/wiki/Anaconda.

[19] Matej, K. et all., 2020. The Visual Object Tracking VOT2020 challenge results.

https://techterms.com/definition/windows

 - 1 -

