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Abstract: Robotics technology has become increasingly common both for businesses and for private
citizens. Primary and secondary schools, as a mirror of societal evolution, have increasingly integrated
science, technology, engineering and math concepts into their curricula. Our research questions are:
“In teaching robotics to primary and secondary school students, which pedagogical-methodological
interventions result in better understanding and knowledge in the use of sensors in educational
robotics?”, and “In teaching robotics to primary and secondary school students, which analytical
methods related to Learning Analytics processes are proposed to analyze and reflect on students’
behavior in their learning of concepts and skills of sensors in educational robotics?”. To answer
these questions, we have carried out a systematic review of the literature in the Web of Science and
Scopus databases regarding robotics sensors in primary and secondary education, and Learning
Analytics processes. We applied PRISMA methodology and reviewed a total of 24 articles. The
results show a consensus about the use of the Learning by Doing and Project-Based Learning
methodologies, including their different variations, as the most common methodology for achieving
optimal engagement, motivation and performance in students’ learning. Finally, future lines of
research are identified from this study.

Keywords: learning analytics; primary and secondary education; robotic sensors; educational
robotics; systematic review; STE(A)M; PRISMA methodology

1. Introduction

The acronym, STEM refers to science, technology, engineering, and math. The National
Science Foundation initially began to use the acronym SMET (for science, math, engineer-
ing, and technology) but decided to change it to STEM for phonetic reasons. The evolution
of the term STEM in education has led some authors to create the concepts “STEM Educa-
tion”, “Integrative STEM Education”, and “STEM Integration” [1]. STEM Education has
been defined in different ways and from different disciplines [2–5], “is used to identify indi-
vidual subjects, a stand-alone course, a sequence of courses, activities involving any of the
four areas, a STEM-related course, or an interconnected or integrated program of study” [6].
Integrative STEM Education is a dynamic teaching-learning process focused on students.
STEM Integration is a more static process overseen by the teacher [7], as an approach where
the borders between the different disciplines are blurred through a progressive integration
that implies a greater interconnection and interdependence between disciplines [4]. Any-

Sensors 2021, 21, 153. https://doi.org/10.3390/s21010153 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9610-954X
https://orcid.org/0000-0001-9471-153X
https://orcid.org/0000-0003-0631-5102
https://www.mdpi.com/1424-8220/21/1/153?type=check_update&version=1
https://doi.org/10.3390/s21010153
https://doi.org/10.3390/s21010153
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21010153
https://www.mdpi.com/journal/sensors


Sensors 2021, 21, 153 2 of 21

wise, authentic STEM education should increase students’ understanding of how things
work and improve their use by different technologies.

STEM [8,9] skills can contribute to the empowerment of youth by eliminating the
gender gap in education [10–13] and by providing equal employment opportunities as a
strategy to reduce overall inequalities, eradicate poverty and promote peace and prosperity
for all. Moreover, many nations propose improving STEM education as a response to
increasing demand for STEM skills to meet economic challenges [3,14,15]. These are
all challenges posed in the 2030 Agenda [16–18]. Therefore, STEM education or STEM
integration in pre-university education can help future engineers to solve current and future
sustainability problems [19,20]. However, integrating STEM in primary and secondary
education needs a well-defined framework for instructional practices [21–23]. Our intention
in this paper is to focus on any kind of STEM education, searching for those teaching-
learning experiences, with a particular focus on robotics sensors, that could help understand
which strategies are better to adopt.

All of the papers presented in our literature review seek to engage and prepare our
students to be future leaders and effective members of our global society [16,24]. In fact,
STEM is currently widely used in primary and secondary education curricula primarily
through the use of robotics to teach key science-based concepts [25–27]. Hence, robotics
is growing in importance in pre-university education. Furthermore, it has the power to
motivate young students, either as a field of knowledge in itself to learn complex notions
in an almost play-like environment, or as a tool to present technology and other subjects to
those students in an attractive and motivating manner [28,29].

This reflects the fact that robotics technologies have become increasingly common
in both business and private life. These include such examples as advanced Artificial
Intelligence (AI) for facial recognition [30–33], industrial robotics, and automation in
society as well as autonomous and self-driving cars, aerial drones, or the integration of
robots in the workplace and in manufacturing [34–36]. Moreover, robots are expected to
perform the work of about 800 million employees by 2030 [28,37,38]. Policymakers have
understood that adding the teaching of scientific concepts to these examples is essential
to addressing the future needs of society and industry [39]. Therefore, STEM education
is critical to addressing the future needs of a technology-driven and sustainable global
economy [16,40–42]. STEM education can help handle possible future adaptation issues
by introducing Artificial Intelligence and robotics [43], two science fields that fits well
in conjunction.

Robotics is an innovative field that embraces different scientific domains, from physics
and electronics to mechanical engineering, mathematics, and computer programming [44–47].
Educational robotics (ER) is robotics applied to education to teach STEM through activities
that use simple as well as complex robots [48–50].

The constructivist learning theory proposed by Piaget and Papert [35,51–54] is the
basis of ER. In an ER activity or lesson, students design, build, program, debug and
share their robotic constructions. When students create these personal and expressive
robots, they construct their own unique meanings for concepts. Furthermore, ER can also
support inclusive education in computer science and robotics literacy for all ages [55,56],
as demonstrated by the Crumble robot workshops, for instance [57].

Constructivism [58,59], as an educational method based on the constructivist learning
theory, is one of the reasons that ER is integrated into primary and secondary education.
Constructing a robot is considered an integral part of the learning process, where the
creativity and enthusiasm of students are stimulated through an open-ended and problem-
solving process in the real world. Regarding STEM, working with ER in pre-university
education instills technological literacy and a better understanding of the different parts
that make up a robot as an engineering system [52].

Hence, constructivist learning theory is a cornerstone of ER teaching and learning
processes. Moreover, understanding the way the brain works is necessary to inspire new
scientists by helping them to think smart, be sensible, and wise [60]. Most students receive
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almost no education in neuroscience, and there is no public understanding of the brain.
Educational neurorobotics [25,61], where neurorobotics is the study of robots controlled
by artificial nervous systems, has the potential to revolutionize STEM education and the
understanding of the brain [25,62].

In ER curricula, as extracted from our literature review, some of the most effective
methodologies to learn STEM concepts and skills are learning by doing and project-based
learning approaches [63], which facilitate the implementation of robotics technology in
an interdisciplinary way. Project-based learning is student-centered, focused on a specific
topic, driven by a set of accomplishments to achieve, and usually finishes with a robotic con-
struction. Projects foster an environment of discussion, creativity, problem-solving, inquiry,
modeling, and testing, and may be applied to all grade levels and subjects, such as pro-
gramming. For instance, combining ER with visual programming makes it more attractive,
fosters students’ attention and interest, and results in immediate feedback [64–67].

Robotics competitions are another scenario that has become widely available around
the world in recent years [68–72]. This scenario can incorporate different types of robotics
frameworks and stimulate interest in robotics in primary and secondary students. Schools
learn by using the ER curriculum, subjects, material, and classrooms to practice for these
events. Furthermore, practice for robotic competitions involves and promotes STEM.
Students need to collaborate, communicate, and use skills beyond science-based ones to
solve competition challenges [28].

To support constructivist learning, there are many robotics commercial based kits
available to teach STEM. They are usually composed of particular robotic hardware which
is programmed in a particular language using a particular software coding tool that
only works in a particular commercial based kit suite. Each vendor usually has its own
hardware and software that is incompatible with each other, with popular programming
languages, such as python, and standard sensors. With such basic hardware, commercial
based kits are difficult to modify in their mechanical and electronic structure [73] so
new types of sensors can rarely be introduced to expand learning or AI concepts [43].
Therefore, most of them are limited to learning basic skills. Usually, there is only time in the
classroom to finish hardware and mechanical assembly [74], and the robots that students
can construct are limited to a few possible applications quite far from reality [75]. Besides,
for many schools in developing countries, the acquisition of these toolkits could become an
economical barrier [73]. Hence, some authors remark that it is important to integrate open
robotics frameworks [73] and to incorporate other kinds of robotic sensors, such as vision
systems [28].

In the ER context, the teaching of robotics converges with other disciplines and fields
such as learning analytics [76]. In the case of learning analytics, the aim is to comprehend
how students behave in the use of robotics to enhance learning processes. Siemens, which
advocates connectivism, is the first to enter into the academic debate to define Learning
Analytics from a pedagogical perspective [77]. To the definitions of that time [78], he adds
data beyond the virtual learning environment (VLE), such as social networks or personal
blogs. He describes Learning Analytics as “the use of intelligent data, learner-produced
data, and analysis models to discover information and social connections, and to predict
and advise on learning” [77]. Siemens’ definition is broader in the sense that it fits the
educational system and complements it. His description, in his own words, “is less clean,
but it does not try to modify the educational system”, but rather to use the analytical
results to improve it. Therefore, Learning Analytics in ER helps to improve teaching
and learning science-based and art concepts and skills [67,78–82]. However, we found
only two references that converge ER, robotics sensors, and Learning Analytics [51,65].
Notwithstanding the few references, the positive results in both pieces of research foster
to continue integrating Learning Analytics in the teaching and learning processes during
robotic sensors activities.

The importance and relevance of engineering education, such as ER, is double. On the
one hand, to address future needs in society, work and industry urged by the coming of
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technological advances and revolutions that press to develop, starting from schools, the
necessary skills in future engineers to be able to anticipate sustainability problems [83]
as well as to find solutions to emerging technologies in time [16]. On the other, to build
digital citizens able to understand and live in a technological world surrounded by robots, the
internet of things, artificial intelligence, and other engineer solutions that drive digital society.

Hence, it is time to focus on ER’s teaching-learning processes, methods, and ap-
proaches used in the pre-university education context, detect which are useful to teach and
learn STEM concepts and skills and if the convergence of educational data analysis [84]
as support approaches, such as Learning Analytics [85,86], can help to improve learning
ER [87–89].

Due to the importance of the implementation and deployment of the ER curriculum,
we present a systematic review of this issue below, focusing on robotics sensors’ teaching
and learning methodologies in primary and secondary education. This is a systematic
review of the literature published in three major databases to explore the different teaching
and learning methodologies, and analytics practices applied in primary and secondary
education to teach and learn the use of ER, in particular, robotics sensors. In the literature
review experiences, initiatives, new curricula, the proposal of new robots, and other reviews
that foster the teaching and learning of robotics sensors in primary and secondary contexts
are analyzed from a learning methodologies perspective.

The STEAM learning model (where “A” represents the arts as an integral component
of student learning [35,90–94]) incorporates technical skills [95,96], ICT competencies [97],
and thought processes related to art and design into the curriculum as students learn
science, technology, engineering, and math. The performing arts, including public speaking
or exhibition, are useful in the communication stage of an engineering design process.
Similarly, creative thinking, which is cultivated in the arts, is an integral part of the process
of searching for solutions regardless of the educational area. Creativity can be learned and
used in problem-solving [98,99], providing benefits in the integral learning of the student
and the consolidation of concepts. Despite the availability of the STEAM learning model
to enhance STEM and Arts skills in this manuscript, we position the research in STEM
education results. Although we focus on STEM education research primarily, some papers
using the STEAM learning model have been included in the search results.

Although there are experiences, practices, and examples of how teaching and learning
methodologies around robotics sensors are applied in primary and secondary education,
an inclusive and global systematic review is still missing. Therefore, this is the main
contribution of this research.

2. Materials and Methods

We have used the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) to conduct the systematic review [100,101]. The PRISMA approach
is an update of the QUORUM [102] approach to continue improving the reporting of
meta-analysis, but without limits in terms of types of studies and scientific fields. We
present the results of the qualitative systematic review from manuscripts regarding aspects
derived from the two research questions. We quantified, classified and analysed the found
concepts in order to interpret what has been researched and published until this moment.

2.1. Research Questions

We define the research questions and facilitate the literature search using a specialized
framework called Participants, Interventions, Comparators and Outcomes (PICO) [100,103].
This framework is commonly used in systematic reviews to formulate research questions,
specially indicated in the PRISMA-P [104]. We have defined two research questions:

R1: In teaching robotics to primary and secondary school students, which pedagogical-
methodological interventions result in better understanding and knowledge in the use
of sensors in educational robotics? The aim is to see which teaching-learning actions are
being carried out in primary and secondary education that facilitate the acquisition of
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concepts and skills to use robotic sensors, regarding the know-how needed to use robotics
sensors correctly.

R2: In teaching robotics to primary and secondary school students, which analytical
methods related to Learning Analytics processes are proposed to analyze and reflect on
students’ behavior in their learning of concepts and skills of sensors in educational robotics?
The aim is to see which Learning Analytics methods and techniques are being explicitly
carried out.

Regarding both research questions, what we sought are individual actions of a school
or collaborations between different agents focused on the teaching and learning of robotics
sensors, or experiences addressed to teachers or students through the application of any
teaching-learning or analytics strategies.

2.2. Search Strategy

In this systematic review, we have considered articles from scientific journals and
papers published in conference proceedings from 2015 to September 2020. We consider this
time period as adequate to carry out the review due to the recent evolution of educational
robots and their sensors. Influenced by Papert’s Logo language [104,105], the LEGO
Education division from its inception in 1980 to the present [106–109] evolved its products
from the initial versions without motors or sensors to its latest SPIKE Prime product, with
color and strength detection sensors. Concurrently, other commercial and open-source
solutions appear that denote a state of maturity of the educational robotics market [110,111].
Moreover, in 2015 the maker movement was consolidated in education [112,113]. Therefore,
we consider 2015 as an appropriate year to begin the collection of scientific literature due
to the maturity in the market regarding robotic kits in education and the consolidation of
the maker movement.

These papers deal with the execution of teaching and learning methodologies in pri-
mary and secondary education, or students, to learn concepts and skills of robotics sensors.
The search has been carried out in the Web of Science and SCOPUS index databases. The
keywords used were “robotics”, “sensors”, “primary”, “secondary”, “education” “analyt-
ics” and “learning analytics”, together with synonyms or derivatives of these keywords
such as “school”. On the one hand, adding the word “sensors” avoided extensive results
with very disparate articles and far from what we wanted to review. On the other hand,
conducting such a specific search allowed us to find those articles that focused on high-
lighting something specific and precise about the sensors. Thanks to this narrower focus,
we found some authors criticizing the sensors included in educational robotics commercial
kits as being limited in either functionalities, editability, or educational aims. For instance,
a search with “LEGO robotics” and “LEGO robotics light sensor” should show both papers,
although “LEGO robotics” does not mean that the articles found will directly refer to
sensors, which is the focus of the present research. Moreover, we excluded the search for
specific trademarks, such as LEGO or Arduino, due to too many different educational
robotics kits and trademarks currently available. Hence, instead of focusing on technology,
we set the focus on teaching-learning strategies.

These criteria have been searched in the fields of Article title, Abstract and Keywords.
Tables 1 and 2 shows how these terms have been combined to perform the search, as well
as the complete search strategy in both databases, as requested by PRISMA, so that the
searches can be reproduced.
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Table 1. Search terms and fields for Research Question 1.

Database Search Terms

WOS complete searches

Search 1: TS = (robotics AND sensors AND secondary) OR TS = (robotics AND sensors AND primary)
Search 2: TS = (robotics AND sensors AND secondary)

Search 3: TS = (robotics AND sensors AND school)
Search 4: TS = (robotics AND sensors AND “high school”)

Search 5: TS = (robotics AND sensors AND education)

SCOPUS complete
searches

Search 1: TITLE (robotics sensors) AND KEY (primary)
Search 2: TITLE (robotics sensors) AND KEY (secondary)

Search 3: TITLE (robotics sensors) AND KEY (school)
Search 4: TITLE (robotics sensors) AND KEY (“high school”)

Search 5: TITLE (robotics sensors) AND KEY (education)

Table 2. Search terms and fields for Research Question 2.

Database Search Terms

WOS complete searches

Search 1: TS = (robotics AND sensors AND learning AND analytics)
Search 2: TS = (robotics AND learning AND analytics)
Search 3: TS = (robotics AND sensors AND analytics)

Search 4: TS = (robotics AND analytics)

SCOPUS complete searches

Search 1: TITLE (robotics sensors) AND KEY (“learning analytics”)
Search 2: TITLE (robotics) AND KEY (“learning analytics”)

Search 3: TITLE (robotics sensors) AND KEY (analytics)
Search 4: TITLE (robotics) AND KEY (analytics)

2.3. Inclusion and Exclusion Criteria

The papers sought had to review teaching and learning methodologies from the
last 5 years used to learn concepts and skills related to robotics sensors in primary and
secondary education. Thus, papers that did not focus on this topic were excluded. This
process was developed in three stages, at the end of which 24 articles were assessed for
eligibility and used in the present work. All of the four authors have participated in parallel
in all of the phases, including searching, selecting and extracting data, in order to achieve
the reliability and security of the process as recommended by PRISMA.

2.4. Trial Flow/Selection Process

A total of 784 articles were obtained in the search, 386 of which were excluded once
those from 2015 and beyond were selected. From the 398 resulting articles, 97 were removed
due to duplication. Next, those that did not contain the concepts searched for (robotics
sensors and primary or secondary education, or robotics sensors and learning analytics) in
their title, as keywords or in the summary, in any of their combinations and derivatives
listed in Tables 1 and 2 were excluded. After that, 250 additional articles were discarded.
The abstracts of the remaining 53 were then analysed to see if they covered the research
questions. This led to a further elimination of 29 articles, resulting in a total of 24 final
articles that were analysed in depth. Thus, data has been obtained for 24 articles, which are
analysed in the following sections. This data has been refined and clarified in subsequent
stages. Figure 1 shows a flow chart of the whole process.
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Figure 1. Flow diagram to show study-selection process.

3. Results

We conducted an analysis of the papers resulting from the selection process, consisting
of quantitative and qualitative processing in which we provide information on the number
of publications per year, the countries, the publication in journals or conferences, the classi-
fication by teaching-learning methodologies, and the classification of analytical approach
used in the identification of the sample indicators. The result of this initial analysis is
presented in figures and tables for easy consultation and understanding, accompanying
each table with a percentage analysis of the most relevant data. The four authors reviewed
the results of all the papers selected. For each of the papers, we present on the one hand,
two summary tables related to teaching-learning and analysis methodologies, and on the
other, a summary of the essential ideas, as well as those methods applied for their execu-
tion. All this information and data lay the basis for the subsequent discussion presented
in Section 4.

3.1. Study Descriptors

In regard to the number of papers by year of publication exposed in Figure 2, it can
be seen an average publishing of four articles, with three significant years in the period
studied: 2016 with zero papers, 2018 with seven papers, and 2020 with five papers.



Sensors 2021, 21, 153 8 of 21Sensors 2021, 21, x FOR PEER REVIEW 8 of 20 
 

 

 

Figure 2. Number of published documents per year of publication (until 30 October 2020). 

Table 3a shows the summary countries of the different selected articles. It can be ver-

ified that there has been a wide participation, where four articles were published by edu-

cational institutions in the USA and four others in Spain, three are from Greece, two from 

Colombia and two from India, and one from each of the remaining countries in South 

America, Central America and Asia. Table 3b shows the medium of publication, with 10 

articles sent in indexed journals and 14 in different international conferences. EDUCON 

is the conference with the most publications, in particular three, followed by the INTED 

and ISEC conferences. The journals Computer Applications in Engineering Education and Ad-

vances in Intelligent Systems and Computing presented one publication each. 

We consider differences in research perspectives according to the countries of origin 

of the authors’ institutions. Articles from Spain, the country to which the institutions of 

the authors of this manuscript belong, try to solve social problems such as home-made or 

low-cost robots, although one of the selected articles adds more sensory capacity by using 

a smartphone. The USA articles deal with more recent science and technology topics such 

as artificial nervous systems, artificial intelligence, and algorithms applied to robotics. Ar-

ticles from Greece tend to focus on the programming of robots using sensors, and those 

from South America tend to focus on students’ awareness of different subjects of social 

impact, such as electronic waste. 

Table 3. Researcher countries and publication in journals/conferences. 

Reference Research Country Reference Journal/Conference 

[25,34,43,65] USA [63,64,110] EDUCON 

[28,57,75,110] Spain [60,73] Computer Applications in Engineering Education 

[52,64,114] Greece  [35,75] Advances in Intelligent Systems and Computing 

[35,115] Colombia [111,114] INTED 

[24,74] India [24,34] ISEC 

[51] Italy [52] Sensors 

[111] Portugal [51] Frontiers in Robotics and AI  

[39] Suisse [25] Frontiers in Neurorobotics 

[116] Brazil [65] The Physics Teacher 

[117] Costa Rica [28] Electronics 

[60] Pakistan [74] Procedia Computer Science 

  [117] Latin American Computing Conference 

  [115] International Conference of Education, Research and Innovation 

  [116] Latin American Robotics Symposium 

  [39] IEEE Int. Conf. on Robot & Human Interactive Communication 

  [57] Frontiers in Education 

  [43] SIGGRAPH Asia 

  [118] International Mechanical Engineering Congress & Exposition 

 (a)  (b) 

Figure 2. Number of published documents per year of publication (until 30 October 2020).

Table 3a shows the summary countries of the different selected articles. It can be
verified that there has been a wide participation, where four articles were published by
educational institutions in the USA and four others in Spain, three are from Greece, two
from Colombia and two from India, and one from each of the remaining countries in South
America, Central America and Asia. Table 3b shows the medium of publication, with
10 articles sent in indexed journals and 14 in different international conferences. EDUCON
is the conference with the most publications, in particular three, followed by the INTED
and ISEC conferences. The journals Computer Applications in Engineering Education and
Advances in Intelligent Systems and Computing presented one publication each.

Table 3. Researcher countries and publication in journals/conferences.

Reference Research Country Reference Journal/Conference

[25,34,43,65] USA [63,64,110] EDUCON

[28,57,75,110] Spain [60,73] Computer Applications in Engineering Education

[52,64,114] Greece [35,75] Advances in Intelligent Systems and Computing

[35,115] Colombia [111,114] INTED

[24,74] India [24,34] ISEC

[51] Italy [52] Sensors

[111] Portugal [51] Frontiers in Robotics and AI

[39] Suisse [25] Frontiers in Neurorobotics

[116] Brazil [65] The Physics Teacher

[117] Costa Rica [28] Electronics

[60] Pakistan [74] Procedia Computer Science

[117] Latin American Computing Conference

[115] International Conference of Education, Research and Innovation

[116] Latin American Robotics Symposium

[39] IEEE Int. Conf. on Robot & Human Interactive Communication

[57] Frontiers in Education

[43] SIGGRAPH Asia

[118] International Mechanical Engineering Congress & Exposition

(a) (b)
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We consider differences in research perspectives according to the countries of origin
of the authors’ institutions. Articles from Spain, the country to which the institutions of
the authors of this manuscript belong, try to solve social problems such as home-made
or low-cost robots, although one of the selected articles adds more sensory capacity by
using a smartphone. The USA articles deal with more recent science and technology topics
such as artificial nervous systems, artificial intelligence, and algorithms applied to robotics.
Articles from Greece tend to focus on the programming of robots using sensors, and those
from South America tend to focus on students’ awareness of different subjects of social
impact, such as electronic waste.

The first classification proposed is based on the teaching-learning strategy imple-
mented. Reviewing the papers selected in our study, we have observed 10 different
approaches that are classified in Table 4:

Table 4. Classification of the papers selected by type of teaching-learning strategy implemented:
(A) Learning by doing, (B) Project-based learning, (C) Challenge-based learning, (D) Problem solving,
(E) Discovery learning, (F) Competency-based learning, (G) Collaborative learning, (H) Adventure-
based learning, and (I) Simulation-based learning.

Authorship (Year) [Reference]
Type of Document

A B C D E F G H I

Balaji et al., (2015) [74] X

Bellas et al., (2018) [75] X X

Camargo et al., (2015) [115] X

Costa, Santos, & Sousa, (2018) [111] X

Fonseca & Hernandez, (2018) [117] X

Foukarakis & Syrris, (2018) [114] X

Gonzalez et al., (2020) [35] X

Harris et al., (2020) [25] X

Hartigan & Hademenos, (2019) [65] X

Jawaid et al., (2020) [60] X X X

Johal et al., (2019) [39] X

Karalekas, (2020) [52] X

Karaman et al., (2017) [34] X X

Narahara & Kobayashi, (2018) [43] X

Plaza et al., (2017) [110] X

Plaza, et al., (2019) [57] X

Rothe, (2015) [63] X X

Scaradozzi et al., (2020) [51] X

Serrano & Juarez, (2019) [73] X

Sklirou, (2017) [64] X X X

Stiehm et al., (2015) [118] X X

Teixeira, Bremm, & Roque, (2018) [116] X

Vega, & Canas, (2018) [28] X

West et al., (2017) [24] X

The most common approach used is Learning by doing with 13/24 (54.16%) ex-
periences published, followed by Project-based learning with 9/24 (37.5%) experiences
published. Seven papers have used more than one teaching-learning strategy in the learn-
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ing process, and Gonzalez et al. [35] is the only study that used an approach not used in
any other article (Competency-based learning).

The second classification proposed is based on the analytical approach of Educational
Data Analysis (EDA). Reviewing the papers selected in our study regarding data analysis,
we can observe two different approaches that are classified in Table 5:

Table 5. Classification of the papers selected by type of EDA strategy implemented: (A) k-means
clustering (Elbow Method), and (B) Data Plot.

Authorship (Year) [Reference] A B

Hartigan and Hademenos, (2019) [65] X

Scaradozzi et al., (2020) [51] X

Half of the papers identified and studied have addressed issues related with data
clustering, in particular using machine learning methods such as Elbow Method based in
k-means clustering. The other 50% focuses on data plotting and the calculus of perceptual
analysis of collected data.

3.2. Main Data and Conclusions of Each Study

In this final subsection, we present a qualitative analysis of the 24 selected papers.
Tables 6 and 7 present the papers related to each research question. In Table 6, papers are
organized by robotics sensors’ teaching-learning methods extracted from the reading of
each paper and the main results obtained. In Table 7, papers are organized by analytics
methods extracted from the reading of each paper and the main results obtained.

Table 6. Summary of robotics sensors’ teaching-learning methodologies (based on the classification in Table 3) and main
results of the papers selected.

Authorship [Reference] Methodologies
(Based on Table 3) Main Results

Balaji et al. [74] A

• The results show high usability of the robot used.
• Increased motivation of the users for engineering vocations.
• High satisfaction of teachers with the student’s behavior.

Bellas et al. [75] A-D

• Developed approach focused on improving interaction.
• Adaptation of the proposal for use in smartphones.
• Multi-language program system environment.

Camargo et al. [115] B

• High flexibility of the platform developed.
• Multi sensor connection allowed.
• Possibility of social PBL project development.
• New learning processes with high-level taxonomies implemented.

Costa, Santos, & Sousa [111] A

• Application of low-cost solutions.
• Combined use of smartphones and virtual sensors.
• Possibility to use the approach presented in the resolution of

mechanical, electronics, and/or informatics challenges.

Fonseca & Hernandez [117] C

• High motivation in students and teachers.
• Reduction of the gender gap.
• Improvement of the teacher’s technology capabilities.
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Table 6. Cont.

Authorship [Reference] Methodologies
(Based on Table 3) Main Results

Foukarakis & Syrris [114] B

• High level of technical and programming skills achieved by
the students.

• Improvement of teamwork competence.
• High motivation.

Gonzalez et al. [35] F

• Integration of different methodologies.
• The student’s autonomy level was increased using robotics for

problem solving.

Harris et al. [25] A

• High level of understanding in students about concepts related to
neuroscience after the workshop.

• Low level of usability needs further improvement.

Hartigan & Hademenos [65] B

• Identification of several needs about working in a collaborative way.
• Low level of knowledge to develop a first robotic approach for

navigation.
• High level of knowledge on using teamwork to address water

navigation approaches.

Jawaid et al. [60] B-G-H

• Teaching and learning processes can be improved by using PBL
with the integration with CL.

• Adding an introductory support lecture improves the final results.
• The course bridges the gap between technical aspects of learning

and the old-fashioned curricula of schools.
• The approach promotes the development of problem-solving and

teamwork skills.

Johal et al. [39] A • Using AR increases the learning outcomes in a significant way.

Karalekas [52] A

• The proposal used had a positive impact on the students.
• The system used helped the students in understanding sensors,

actuators, and controlling systems.

Karaman et al. [34] B-C

• High level of improvement in the teamwork and technical skills of
the students applying software systems that allow the mini race car
to operate completely autonomously.

Narahara & Kobayashi [43] A

• It is demonstrated that AI can personalize ER solutions.
• It is not currently possible to run AI networks in real time as a

limiting factor.

Plaza et al. [110] A

• Robotics can be used to bring together adults and children.
• Sharing knowledge between adults and children increases their

skills and knowledge about robotics.
• High motivation.
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Table 6. Cont.

Authorship [Reference] Methodologies
(Based on Table 3) Main Results

Plaza, et al. [57] A

• Crumble is a low-cost robot constructed by the authors that is as
easy to use and can be used at home by children and adults,

• Helps to understand the basics of robotics sensors and increases
motivation while programming.

Rothe [63] A-B

• Starter projects increase student motivation and improve scientific
skills such as programming.

• Feedback collection should be enhanced in a systematic and
rigorous manner.

Scaradozzi et al. [51] B

• Machine Learning helps to extract students’ behavior.
• Two behaviors detected in testing phase: those students that make

small changes and others that make bigger changes.

Serrano & Juarez [73] B

• Breaking the technological and economic gap is possible with
ultra-low-cost ER.

• Low-cost ER introduces more motivation to study programming
languages and helps increase the attractiveness of different areas of
engineering to students.

Sklirou [64] B-D-E

• The use of platforms based on new ICTs helps students to better
understand programming techniques and methods.

• Interaction is fundamental to increasing motivation and
understanding.

Stiehm et al. [118] D-I

• Robotics are more motivating to students than simulations.
• Exchange experiences, feedback and coaching by scientific

professionals is relevant to deepen contents of lectures.

Teixeira, Bremm, & Roque [116] A

• Presentations and classes are not enough to raise concern about
e-waste.

• The use of the Arduino platform elevates motivation of young
people to reuse obsolete electronics.

Vega, & Canas [28] A

• Level gap detected between pre-university science curricula and
university scientific and technological degrees

• A new educational tool was developed.

West et al. [24] A

• Use of free and open-source software to conduct high quality
low-cost ER activities.

• High motivation.



Sensors 2021, 21, 153 13 of 21

Table 7. Summary of analytical methods (based on the classification in Table 4) and main results of the papers selected.

Authorship [Reference] Methodologies
(Based on Table 4) Main Results

Hartigan and Hademenos [65] A

• Data collection and analysis from robotic sensors improves and
avoids failure in ER construction.

• Robotics sensors data helps students to learn and apply data
analysis.

Scaradozzi et al. [51] B

• Tracking systems can be integrated into robotics commercially
available kits to extract student behavior and learning paths using
Machine Learning techniques such as Elbow Method (k-means).

Considering that Tables 6 and 7 summarize the results of each of the studies, we
supplement the data by presenting below a synthesis of our findings.

We found articles where authors present their own robotics solutions: Balaji et al. [74]
present FastBot, Bellas et al. [75] present the Robobo Project, Camargo et al. [115] present
a low-cost Android and Arduino-based mobile robot, Costa, Santos and Sousa [111] cre-
ated the SquirlRob, and Vega and Canas [28] present the PiBoot Tool implementation.
Although all of these articles present their own solutions, the objectives tend to differ. Balaji
et al. studied using robotics education as a way for school students to become aware of
engineering as a career choice. The goal of Bellas et al. [18] is to inspire more practical
implementations of ER. Camargo et al. provide for the connection of different sensors and
actuators depending on academic requirements. Costa, Santos and Sousa support teaching
robotics as a multidisciplinary scientific and engineering field. Vega and Canas provide
for the addition of new types of sensors compared to those commonly included in ER
commercial kits.

Some articles can be categorized in new and emerging scientific disciplines, such as
neurorobotics, artificial intelligence, or remote-controlled robots. West et al. [24] present an
integrated teaching program where students can learn programming and robotic design
from the basics to advanced levels at little or no cost. After being introduced to program-
ming and robotics using a pre-designed curriculum, students can remotely access and
operate robots in a simulated manner. Narahara and Kobayashi [43] propose a new educa-
tional framework for teaching AI and robotics in hands-on modules for beginning learners
from K-12 to adult. Harris et al. [25] investigate fundamental concepts in neuroscience
while using a do-it-yourself robot built from generic parts.

The common objective of these different studies is improving the learning environ-
ments in which robotics is taught. On the one hand, allowing students to learn STEM
and soft-skills concepts in different degrees of depth. On the other, to offer robotic solu-
tions adapted to each learning need. Hartigan and Hademenos [65] merge physics and
engineering concepts in a practical and hands-on engineering activity. The proposal from
Jawaid et al. [60] fosters skills such as critical thinking, problem-solving, independent learn-
ing, and collaboration, and also supports learning specialized technical information. The
goal of Karalekas [52] is to provide students with an open platform to learn mechatronics
concepts from introductory to advanced levels. Narahara and Kobayashi [43] support the
acquisition of basic programming and electronics knowledge and skills. Plaza et al. [57]
conduct a workshop introducing participants to the robotics world. Rothe [63] teaches
programming, algorithms, sensor technology, and robotics. Serrano and Juarez [73] develop
skills for coding hardware, and artistic expression based on modeling and cardboard design.

The articles differ in the medium in which students learn robotics. Different au-
thors carry out the study using workshops, such as Harris et al. [25], Plaza et al. [110],
Stiehm et al. [118], Vega and Canas [28]. Other authors conducted their studies in courses
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within curricula, such as Foukarakis and Syrris [114], Jawaid et al. [60], Rothe [63],
Stiehm [118], and Vega and Canas [28].

The contributions of these studies vary as well. Some articles describe the development
and implementation of new robotic platforms, others can be grouped within novel scientific
fields. In general, all authors seek the transmission of STEM knowledge, where some
stand out for facilitating other types of skills or knowledge such as collaborative work
or creativity.

4. Discussion

The research questions of this review of 24 papers on how robotics sensors are taught
in primary and secondary education contribute to the learning of primary and secondary
education students as future citizens empowered in scientific and technical skills.

Robotics, science, and technical-scientific practice, in general, have become increas-
ingly common in both personal and industrial context [34,35]. In both social contexts, we
see how artificial intelligence (AI) is integrated into different processes such as security
forces and facial recognition in the field of security or detection or even prevention of
disease in the field of public health. Robotics has been integrated into the workplace for
many years as well, but AI has opened up new avenues and possibilities and fostered
its application in many industries. The Internet of Things is also a growing trend where
robotics and AI will be mixed in the near future, where drones, autonomous cars, and
smart cities will be commonplace.

Faced with this present and future scenario, policymakers have understood that
introducing scientific concepts into pre-university education will be key to addressing the
future needs of society and industry [39], in line with the 2030 Agenda for a Sustainable
-and Driven by Technology- Future [16]. These are the reasons why STEM learning plays a
key role in primary and secondary education. It is therefore hoped that this education will
help develop citizens committed to digital society and capable of leading future sustainable
change. All the articles presented in our bibliographic review seek to engage and prepare
our students in this regard.

ER [119] aims to teach science, technology, engineering, and math through activities
using robots, their sensors, and their programming. Moreover, arts and humanities educa-
tion are also included in these learning objectives, where STEM becomes STEAM. However,
in this manuscript we will refer to STEM. To facilitate these teaching and learning goals, we
analyze 24 papers to identify the most common and most effective educational practices
for teaching-learning the use of robotic sensors, and how these can be aided through the
analysis of educational data.

Of the 24 articles analyzed, we detected at least 10 teaching-learning methodologies:
Learning by doing, Project-based learning, Challenge-based learning, Problem-solving,
Discovery learning, Competency-based learning, Collaborative learning, Adventure-based
learning, and Simulation-based learning. From this analysis, we extract that teaching-
learning processes based on the Learning by doing methodology are the most widespread
in use, as it appears in 54.16% of the articles (13 of 24). Furthermore, we observed that the
second most important methodology, commonly used in dealing with unknown situations,
is the Project-based learning methodology, which appeared in 37.5% of articles (9 of 24).
The rest of the methodologies range from 4% to 8% occurrence in the articles. All articles
consider as a learning goal the construction of a robotic device, where the sensors and the
programming of the robot are fundamental for its achievement. Therefore, Piaget’s and
Papert’s constructivist theories are present in all articles [35,51,52].

From the results of the articles, we conclude that building a robotic device by outlining
goals to be achieved offers students the opportunity to learn to be more autonomous,
to work both individually and as a team, and to acquire scientific concepts related to
mathematics, mechanics, electronics, physics, technology, programming, and science in
general [34,35,60,63–65,114]. In addition, Learning by doing or learning based on problem-
solving in uncertain situations encourages students to be more aware of how problems in
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society can be solved with science, and to learn complex concepts requiring high cognitive
ability in a relaxed way [52,57]. Moreover, neuroscience, augmented reality, virtual reality,
and artificial intelligence [39,43,75,81] could play an important role in improving STEM
learning [25].

With these constructivism-based teaching-learning approaches, teachers also perceive
that students learn more with enjoyable activities, and are more excited, curious, and
motivated, and acquire better STEM concepts than in an old-fashioned curriculum based
on instructional lessons [115,117]. In summary, the processes that facilitate better learning
of concepts and skills in the use of robotic sensors are those based on constructivist learning
theory, which is practical and experiential, and competency-based approaches such as
Learning by doing and Project-based learning [60,118].

Learning analytics, despite generating high interest currently among educators, is
often used interchangeably with concepts such as artificial intelligence or machine learn-
ing [120]. We propose that this imprecise use of the above three concepts may explain
the fact that we have found few papers related to sensor-centered learning analytics and
educational robotics. However, in this work, we wanted to include those who have done
research precisely in learning analytics and robotics sensors. We found only two. One
expressly applies learning analytics using machine learning techniques, specifically the
Elbow Method, performing a k-means clustering [51]. The other uses robotic sensors to col-
lect environmental data [65], where students learn data literacy by analyzing the resulting
data and making objective decisions. Both analytical actions are part of the foundation of
learning analytics. With these two findings, we realize that there is still a long way to go in
developing the intersection of two scientific fields such as learning analytics and robotics
sensors. Therefore, we observe the need to continue learning analytics and ER as applied
to robotics sensors as a line of research.

It is interesting to note that given the strong entry of commercial robotics kits, new
software and hardware platforms for educational robots are appearing which are more
open, more modular, and more economically accessible [73,110,111,116]. These new ini-
tiatives are moving away from a closed robot and black box [24,28] format to an open
and customizable one. The new proposals have arisen for different reasons. They say
that with commercial robotics kits you can learn basic notions, but that they do not allow
you to bring practice closer to reality in that they fall short in showing students the real
possibilities of robots. Others state reasons to justify the need for modular, open robots
which use general programming languages such as Python and universal hardware or
sensors, without specifying the specific brand and model of the robot. They, therefore,
aim for an open ER where the software and hardware are interoperable with other robotic
solutions, unlike commercially available robotics kits. Other authors point to the high
prices of commercially available robotics kits, which in certain educational contexts make
them impossible to acquire. All of these aspects have been observed in the current lines
of research.

As a final point to conclude this review, we must highlight the fact that the 24 articles
found do not present any counter argument against the use of educational robotics or
problem-based learning. All of the experiences discussed in the literature focus on the
positive. For example, the use of robots at home can foster relationships between adults and
young participants. In addition, robotics education can increase attention and motivation
and facilitate the learning of different concepts and skills such as mechanics, electronics,
physics, technology, programming, and science in general. However, the literature related
to teaching-learning methodologies presents negative results when misused or incorpo-
rated into the curriculum at inappropriate times. Therefore, it is worth exploring possible
difficulties when adopting two of the most used strategies in the selected literature, Learn-
ing by doing and Project-based learning, since they are present in 90% of articles found.
We caution that the idea that the use of these teaching-learning strategies in conjunction
with educational robotics only leads to positive results is false. Below we present some of
the counterarguments for Project-Based Learning.



Sensors 2021, 21, 153 16 of 21

As stated by David: “The core idea of Project-based Learning is that real-world problems
capture students’ interest and provoke serious thinking as the students acquire and apply new
knowledge in a problem-solving context. The teacher plays the role of facilitator, working with
students to frame worthwhile questions, structuring meaningful tasks, coaching both knowledge de-
velopment and social skills, and carefully assessing what students have learned from the experience”
([121], p. 80). This statement implies that teachers have the skills and knowledge necessary
to implement PBL and meet learning objectives. One of the mistakes Kugle points to [122]
is that PBLs can take place both inside or outside classrooms. However, when PBL extends
participation time outside of class, students do not enjoy the process. Hence, poor planning
of the learning experience in terms of project length, focus, or topic can produce negative
outcomes [123,124].

Other possible issues with PBL regards into the language used to conduct the learning
experience. Students often find that PBL, when not introduced in students’ native language,
may become too challenging because of the types of activities involved. Hence, students
have the feeling that they do not have enough communicative competence to complete
these types of activities [125], which can also lead to lower motivation and engagement.

As we illustrated with Project-based learning, different aspects of the teaching-learning
strategies must be considered and well planned, such as the needs and competencies of
the teachers or students [126,127] as well as external concerns to education, such as the
inability to purchase technology due to limited availability of financial resources, since
these issues may lead to negative results [124].

We have to acknowledge some limitations in our review. We have used only two
databases for the selection of papers and considered articles and conference papers in the
very specific context of robotics sensors and teaching-learning methodologies. We are sure
that a more generalist angle would have provided more results, which may be explored in
future research. However, the scope of this research has allowed us to discern which are the
most used teaching-learning methodologies, which pedagogical theories have been applied.
We conclude that despite its steadily increasing importance, the analysis of learning in the
area of robotic sensors is an almost unexplored path of research to follow. The hardware of
the educational robotics kits themselves is a limiting factor. Commercial kits do not allow
modifications, so extracting data from robotics sensors is not easy. Extracting data from
the robotics software is likewise difficult. These limitations make conducting quantitative
research challenging. Perhaps these issues may explain the lack of research using data
analysis methods applied to data extracted from robotics sensors.

Finally, we point out different lines of research, which merit further exploration. On
the one hand, we see the need to focus on research in Learning Analytics and ER applied to
robotic sensors, due to its potential for enhancing the learning experience, and the relatively
few publications we have found dealing with this phenomenon. On the other hand, we
consider that it is necessary to further research the use open-source for robotics sensors
and robotics in general. This research line in open-source robotics can enable new and
advanced sensors, foster new learning possibilities, and reduce the price of educational
robotics kits. Artificial Intelligence also requires attention to its uses in educational robotics
to help introduce new STEM concepts and skills other than those commonly found in
standard curricula.
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