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Abstract: Asthma is a chronic disease of the airways that has an important inflammatory component.
Multiple cells are implicated in asthma pathogenesis (lymphocytes, eosinophils, mast cells, basophils,
neutrophils), releasing a wide variety of cytokines. These cells can exert their inflammatory functions
throughout extracellular vesicles (EVs), which are small vesicles released by donor cells into the
extracellular microenvironment that can be taken up by recipient cells. Depending on their size, EVs
can be classified as microvesicles, exosomes, or apoptotic bodies. EVs are heterogeneous spherical
structures secreted by almost all cell types. One of their main functions is to act as transporters of
a wide range of molecules, such as proteins, lipids, and microRNAs (miRNAs), which are single-
stranded RNAs of approximately 22 nucleotides in length. Therefore, exosomes could influence
several physiological and pathological processes, including those involved in asthma. They can be
detected in multiple cell types and biofluids, providing a wealth of information about the processes
that take account in a pathological scenario. This review thus summarizes the most recent insights
concerning the role of exosomes from different sources (several cell populations and biofluids) in one
of the most prevalent respiratory diseases, asthma.
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1. Introduction

Asthma is a heterogeneous airway disease with a complex inflammatory component.
This disease is characterized by a dysregulated process that contributes to its maintenance,
progression, and perpetuation. In this process, both resident cells (e.g., epithelial and
endothelial cells, fibroblasts) and inflammatory cells (e.g., eosinophils, mast cells, T cells)
interact with each other and secrete soluble mediators of inflammation, which drive disease
pathogenesis [1–3].

In recent decades, extracellular vesicles (EVs) have emerged as essential actors in
intercellular communication through cell-to-cell contact or by shuttling different molecules,
such as nucleic acids, lipids, and proteins. Exosomes can, therefore, significantly affect
target cell function, resulting in the development of a pathological state [4]. For example,
exosomes have been studied most extensively in association with different inflammatory
pathologies, such as cancer and other infectious diseases [5,6], and also in asthma [7–12]
(Figure 1).
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Figure 1. The implication of exosomes in inflammatory diseases. Exosomes have been described as modulators of different
inflammatory diseases in different organs, including the brain (Alzheimer’s and Parkinson’s diseases), eye (ocular glaucoma),
nose (chronic rhinosinusitis, nasal polyposis), lung (asthma, chronic obstructive pulmonary disease (COPD), and lung
cancer), gut (inflammatory bowel disease), and kidney (lupus nephritis, acute kidney injury, and renal fibrosis). Figures
inside and in the surface of the exosome represent some of their components. Inside: blue star: lipid mediators; exosome
biogenesis proteins; violet lines: nucleic acids. In the surface: blue and red elipses: tetraspanins; green, red and pink
structures: ceramide, phosphatidylserine, and sphingomyelin; violet and green: major histocompatibility complex (MHC)-I
and -II, blue structure: integrin; pink structure; adhesion molecule; blue hexagons: cholesterol; green star: Rab proteins.

In this review, we summarize current advances regarding the role of exosomes in the
pathogenesis of asthmatic inflammation.

2. Extracellular Vesicles: Biogenesis and Composition

EVs are small vesicles released by donor cells into the bloodstream and body fluids,
which can be taken up by recipient cells [13]. Though discovered decades ago, it has only
recently become apparent that EVs play an important role in cell-to-cell (intercellular)
communication and in the secretion of small soluble molecules into the extracellular
environment (the secretome) as well as direct cell-cell contact [14].

EVs are heterogeneous spherical structures secreted into the extracellular microen-
vironment by almost all cells, both prokaryotic and eukaryotic [15]. Suspended in the
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aqueous nucleus or associated with the lipid casing is a wide repertoire of molecules
contained and carried by EVs; these molecules include nucleic acids (DNA, mRNA, and
small non-coding RNAs, such as microRNAs (miRNAs)), lipids, and proteins (cytokines,
receptors, or their ligands) [16–18]. These vesicles are surrounded by a lipid membrane
(phospholipid bilayer) enclosing the materials contained within, which are immersed
in a small organelle-free cytosol [19,20]; this phospholipid bilayer creates a stable inter-
nal environment for biologically active components by protecting them from enzymatic
degradation during transit throughout the extracellular environment [21].

The ability of EVs to carry a variety of nucleic acids, lipids, and proteins and, conse-
quently, transfer this cargo to recipient cells influences various physiological and patho-
physiological functions in these cells, causing EVs to have a significant impact on the
phenotype of recipient cells [22]. For this phenotypic effect to occur, once EVs are re-
leased outside the donor cell, recipient cells can take these vesicles and trigger signaling
events on the cell surface or be internalized by the cells, either through endocytosis or
membrane fusion, which releases their contents inside the target cells, where they cause
functional effects [23]. Among other diseases, EVs are implicated in inflammatory lung
disorders, including asthma [7], chronic obstructive pulmonary disease (COPD) [24], and
sarcoidosis [25], and maybe a universal spreader of inflammation.

It should be noted that there have been discrepancies in the literature regarding the
classification of EVs. Some studies divide them into two main subgroups: exosomes, which
are vesicles released from multivesicular bodies (MVBs) by exocytosis, and ectosomes, vesi-
cles assembled and released by the plasmatic membrane (PM) [26]. However, more recent
studies categorize EVs according to their size, biogenesis, and release; these categories
include large apoptotic bodies (> 1 µm); microvesicles (MVs), also called cellular ectosomes
or microparticles, which comprise the intermediate fraction (200–1000 nm); exosomes, the
smallest fraction (30–150 nm) [27] (Figure 2).

2.1. Apoptotic Bodies

Apoptosis, or “programmed” cell death, is an important mechanism of cell death
in both normal and cancerous cells [28]. Whereas exosomes and MVs are secreted dur-
ing normal cellular processes, apoptotic bodies are vesicles that are released only from
cells undergoing this process of cell death (apoptotic cells) as products of apoptotic cell
disassembly [29].

Apoptotic cells undergo a series of morphological changes, such as condensation
of nuclear chromatin, fragmentation and degradation of internucleosomal DNA, nuclear
and cellular organelle rupture (endoplasmic reticulum, Golgi and mitochondria, with the
consequent release of cytochrome c), proteolytic cleavage of the cytoskeleton and focal
adhesion complexes, phosphatidylserine (PS) externalization, alteration of key survival
functions, blebbing of the PM, cell shrinkage, and commitment to the apoptotic phenotype.
These changes ultimately package cell content in vesicles called apoptotic bodies (also
called “apoptotic bullae” or “apoptotic vesicles”), ranging from 1–5 µm in diameter [30–32].
The term “apoptotic body” was coined by Kerr in 1972 [33].

Irrespective of the route to caspase activation, all pathways lead to the activation of the
major effector caspases (3, 6, and 7), and these enzymes carry out much of the proteolysis
seen during the apoptotic process [34].

During normal development, most apoptotic bodies are phagocytosed by macrophages
and thus eliminated locally [35]. Clearance is mediated by specific interactions between cer-
tain molecules of the apoptotic cells’ membrane—due to specific changes in its
composition—and recognition receptors on the phagocytic cells [36]. Translocation of PS to
the external face of the PM, one of the hallmarks of apoptosis, and its subsequent binding
to annexin V, recognized by phagocyte surface receptors, results in the digestion of “cell
debris” [37]. In addition to this, oxidation of surface molecules, another well-characterized
PM alteration, creates binding sites for thrombospondin (TSP) or complement protein C3b,
also recognized by phagocyte receptors [36,38].
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Therefore, the main protein markers of apoptotic bodies include, along with histones,
annexin V, TSP, and C3b [39,40]. A notable distinction between apoptotic bodies and
the other two major EV groups is that they also contain fragmented DNA and cellular
organelles from their host cell [41].

Figure 2. Extracellular vesicle biogenesis and exosome structure. Cells release several types of extracellular vesicles (EVs),
including apoptotic bodies, microvesicles, and exosomes. Apoptotic bodies are large vesicles (1000–5000 nm in diameter),
which are released from apoptotic cells. Microvesicles are medium-large EVs (100 nm to 1 µm in diameter), which originate
directly from the cell membrane, followed by fission and release towards the extracellular space. Exosomes are small
vesicles (30–150 nm) derived from endosomes. Maturation of early endosomes into late endosomes produces invaginations
called intraluminal vesicles (ILVs). This endosome with ILVs is denominated multivesicular bodies (MVBs). These MVBs are
able to fuse with lysosomes and degrade their cargo or with the plasma membrane to release ILVs towards the extracellular
space. Exosomes are formed by a double lipid membrane and contain cytoskeletal proteins, tetraspanins, integrins, and
adhesion molecules, and other proteins that reflect their endosomal biogenesis.
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2.2. Microvesicles (MVs)

Throughout the scientific literature, MVs have also been referred to as ectosomes
and microparticles, among other names [42]. Ectosomes were first defined by Stein and
Luzio, who observed ectocytosis and shedding of vesicles from the PM in stimulated
neutrophils [43]. MVs are formed from the outward budding of the PM of the host cell
surface [44]. The process that leads to MV generation starts with the formation of outward
buds at specific sites of the membrane, followed by fission and subsequent release of the
vesicle into the extracellular space [45].

MV biogenesis involves vertical trafficking of molecular cargo to the PM, molecular
rearrangements, and the use of contractile actin-myosin machinery on the cell surface to
allow for vesicle detachment [46]. The PM undergoes changes in lipid and protein compo-
sition and in Ca2+ levels, resulting in the recruitment and activation of calcium-dependent
enzymes that are involved in disassembling the cytoskeleton and the exchange of lipids
between the inner and outer leaflets of the membrane bilayer to maintain membrane
asymmetry, thereby favoring budding and membrane abscission [47–49]. The asymmetric
distribution of the PM is tightly regulated by aminophospholipid translocases [50]. In par-
ticular, externalization of the phospholipid PS occurs, which normally resides exclusively
in the inner monoleaflet, which induces the formation of MVs [51]. Proteins that promote
cytoskeleton contraction through actin-myosin interactions have been implicated in vesicle
formation and cleavage [52]. Both cargo content and MV shedding are firmly regulated by
several small GTPases, including members of the ADP-rybosilation factor (ARF; ARF1 and
ARF6), Rab, and Rho (Rac1 and RhoA) families [53–56].

MVs are shed from the PM through direct outward budding, which defines their
diameters and molecular compositions [57]. MVs are distinct from other EVs owing to
the expressions of phospholipids and proteins on their surfaces [58]. Weerheim et al.
determined that circulating MV membranes next to PS (3.63%) predominantly contained
phosphatidylcholine (59.2%), sphingomyelin (20.6%), and also phosphatidylethanolamine
(9.4%) [59]. Several studies have highlighted the fact that MVs contain a diverse population
of proteins, including matrix metalloproteinases, glycoproteins, integrins, receptors, and
cytoskeletal components; the main markers used to detect MVs are integrins, selectins, and
cluster of differentiation (CD)40 [60–63]. The content of MVs also can include nucleic acids,
particularly mRNA and miRNAs [64].

An important role in cargo selection seems to be that of the ARF6-regulated recycling
pathway, which can regulate the inclusion of proteins, such as major histocompatibility
complex (MHC) class I, β1 integrin receptors, vesicle-associated membrane protein 3
(VAMP3), and membrane type 1 matrix metalloproteinase (MT1MMP) [55].

2.3. Exosomes

The term exosome was coined by. Rose Johnstone to advance understanding of the bio-
logic process underlying the transformation from a reticulocyte to a mature erythrocyte [65].
This nomenclature was adopted for vesicles released during reticulocyte differentiation as
a consequence of MVB fusion with the PM [66].

Exosomes range in size from 30 nm to 150 nm and are formed within the cell by the
inward invagination of late endosome membranes to form what has come to be known
as MVBs [44]. The late endosome becomes a so-called MVB, comprising multiple vesicles,
intraluminal vesicles (ILVs), and thus incorporating components of the cytosol [67]. These
MVBs can either fuse with the lysosome if the content is destined for degradation or fuse
with the PM, resulting in the release of the ILVs as exosomes into the extracellular space
(Figure 2) [68].

ILV formation inside MVBs first requires reorganization of the endosome membrane,
which is highly enriched in tetraspanins; second, the process must involve recruitment of
the endosomal sorting complexes required for transport (ESCRTs) [69,70]. Four different
ESCRTs have been designated, i.e., ESCRT 0, I, II, and III [71]. Although the ESCRT
pathway is generally thought to be the main driver of exosomal biogenesis, the existence of
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ESCRT-independent exosome biogenesis has been shown [72], as seen in the involvement
of sphingomyelinase activity, the implication of other lipids—cholesterol and phosphatidic
acid—and the formation of these vesicles promoted by syntenin [73–75].

The Soluble NSF Attachment Protein Receptor (SNARE) protein complex has been im-
plicated in the fusion of the MVBs with the PM, and the Ca2+-regulated vesicle-associated
membrane protein 7 (VAMP7), a SNARE complex member, has been described as stimulat-
ing the release of acetylcholinesterase-containing exosomes [76]. Finally, in the release of
ILVs as exosomes, a number of Rab GTPases, including RAB7, RAB11, RAB27A/B, and
RAB35, are recognized as playing an important role [77].

Exosomes are typically composed of a lipid bilayer membrane and contain a luminal
cargo that comprises proteins, DNA, RNA, peptides derived from lipids, surrounded by a
lipid bilayer membrane (Figure 2). The phospholipid membrane contains lipids that bear
the signature of the PM of the cell of origin, with high levels of cholesterol, sphingomyelin,
ceramide, and detergent-resistant membrane domains, called lipid rafts [78,79]. The lumi-
nal content of exosomes predominantly includes cytosolic proteins derived from the donor
cell [80]. Since exosomes originate from endosomes, proteins involved in MVB formation
(e.g., Alix and tumor susceptibility geen [TSG]101), membrane transport, and fusion (e.g.,
annexins, flotillins, GTPases) are distinguishing proteins present on exosomes [81]. Another
distinguishing feature of exosomes is the presence of tetraspanins, including CD9, CD63,
CD81, and CD82 [82]. Other proteins present in exosomes include adhesion (e.g., integrins),
antigen presentation (MHC class molecules), and heat shock proteins (HSP70, HSP90) [81].

Furthermore, many studies have shown the presence of nucleic acid cargo, which may
include a variety of non-coding RNAs, including miRNAs and long non-coding RNA [82].
Other than different RNA species, exosomes also contain chromosomal and mitochondrial
DNAs [83].

3. Exosomes in Biofluids in Asthmatic Inflammation

Asthma complexity and its multifactorial character have been mentioned previously.
Given this complexity, when defining the disease, not only the cellular component is
important, but also the soluble inflammatory microenvironment plays a key role in the
development and evolution of asthmatic pathology.

Development of bodily fluid-extracted biomarkers would be a highly useful tool,
as these would eliminate the need to employ more invasive procedures and tissue sam-
ples; however, a disadvantage is that fluids from the organism contain large amounts
of aggregates and other components that pose contamination issue during isolation [84].
Pure EV isolation is mandatory to ensure that the results obtained are not confounded by
contamination by viruses or other components [85]. Thus, there are multiple methods for
the purification of EVs, based on the different characteristics of them. The methods present
several advantages and disadvantages, and it is necessary to select the most appropriate
method according to the specific characteristics of each sample (Table 1).

In the context of asthma, bronchoalveolar lavage and induced sputum will be the
more representative biofluids of the lung environment, providing overall knowledge of the
inflammatory composition of this specific microenvironment.
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Table 1. Methods to isolate extracellular vesicles (EVs).

Method Methodology Advantages/Disadvantages Ref.

Differential centrifugation * Stepwise manner.
* Sequential centrifugations, increasing the centrifugation speed.

- Low cost, large quantities of the solution, absence of chemicals.
- Complexity, equipment (ultracentrifuge), and efficiency depend
on the type of rotor.

[39,86,87]

Density gradient centrifugation
* Initial samples are EVs, partially isolated by differential
centrifugation.
* Use of solutions of sucrose, iohexol, or iodixanol.

- Pure preparations, no contamination with viral particles,
absence of chemicals.
- Complexity, equipment (ultracentrifuge), loss of sample.

[39,88,89]

Chromatography * Filtration through columns of porous smaller than EV of
interest

- Rapid isolation, preservation of vesicle integrity.
- Limitations of sample volume, specialized equipment,
complexity.

[90,91]

Ultrafiltration
* Use of porous membranes to trap molecules with a specific size
through successive steps to obtain EVs with the desired size.
* Based on size and mass.

- Simplicity, processing of many samples, lack of limitations on
sample volume.
- Sample contamination by proteins, loss of sample by filter
plugging

[92,93]

Precipitation by chemicals * Use of organic solvents, polyethylene glycol, sodium acetate, or
protamine.

- Relatively quick, able to be used in a wide range of samples.
- Contamination with non-EV proteins, retention of chemicals,
long processing time.

[94–97]

Precipitation by polymers

* Commercial kits
* Use of super hydrophilic polymers solutions, or PEGs.
* Diminished the solubility of EVs and generation of a pellet
precipitate.

- Simple procedure, no need for additional equipment.
- Usually costly, not be good for large samples of EVs, high
concentration of impurities.

[39,90]

Precipitation by protein surfaces
(immunoassay)

* Immunoprecipitation.
* Magnetic beads coated with antibodies for common EV surface
proteins, such as CD63, CD9, and CD8.
* Use after a centrifugation method for isolation.

- High purity and selectivity.
- High cost, selectivity may be too high, difficulties for
detachment antibodies and to analyze the intact vesicles.

[98,99]
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3.1. Bronchoalveolar Lavage Fluid

In bronchoalveolar lavage fluid (BALF), a widely used sample obtained from the
lung, the main limitation to EV purification is the small volume of the specimen, creating
a need to use an excellent purification method, for which there are several optimized
techniques [100]. In this type of sample, the MVs (100–400 nm) are the main type of EVs,
followed by exosomes [101].

Several studies have analyzed the effect of BALF-derived EV on the pathogenesis of
asthma, using different approaches to evaluate this, from animal models to proteomics.

The first studies carried out by Prado et al. [102,103] focused on allergic murine models
and demonstrated that BALF-derived exosomes inhibited specific immunoglobulin—(Ig)E
and IgG1—and that pre-treatment with these exosomes also inhibited Th2 cytokines. In
related findings, Shin et al. [104], using a murine model, observed that inhaled lipopolysac-
charide (LPS)-induced BALF-derived EVs play an important role in the intercellular com-
munication that takes place during the immune response and its possible dysfunction after
inhaled LPS-containing allergens.

In human samples, the first studies with BALF exosomes [105] explored the pheno-
typic and functional characteristics of BALF-derived exosomes in asthma compared to
others obtained from healthy subjects, simultaneously observing leukotriene (LT) biosyn-
thetic capacity of these exosomes from asthmatic patients to leukotriene (LT) C4 (LTC4) and
interleukin (IL)-8 release. BALF exosomes in the asthma context, therefore, might contribute
to subclinical inflammation in airway epithelium. Recently, a study using mass spectrome-
try reported significant differences in the lipid composition of EVs between four groups
studied (healthy, secondhand smoke (SHS)-exposed healthy, asthmatics, and SHS-exposed
asthmatics), revealing that ceramides, ceramide-phosphates, phosphatidylglycerols, and
sphingomyelins were altered based on pathology, and their abundance aided in discrimi-
nating between study groups [106]. Indeed, several studies about the influence of cigarette
smoke on exosome production and composition have been developed [107]. These results
point to a significant role for BALF-derived EVs, acting as elements to transfer active
lipids. Besides lipid content, other manuscripts, such as the Rollet-Cohen et al. study [108],
using a proteomic approach, demonstrated the different protein content of BALF exosomes
from three different lung diseases (cystic fibrosis, primary ciliary dyskinesia, and asthma),
observing different proinflammatory profiles.

EVs are an important transport element for multiple molecules, including miRNAs.
Some asthmatic and allergic murine models have evaluated the role of these structures in
the development and evolution of this disease, observing that some exert a proinflamma-
tory effect, such as miR-21 [109], while another like miR-224, in an asthma murine model
aggravated by particulate matter 2.5 (PM2.5), decreases the inflammation by targeting
Toll-like receptor (TLR)2 and the reduction of Th17 inflammatory cells [110]. Moreover,
Gon et al. [111] observed a higher amount of EVs in the airways in a house dust mite
(HDM) murine model vs. control mice, identifying significant changes in the expression
of 139 miRNAs from EVs and 175 miRNAs from lung tissues; a computational analysis
revealed that 31 genes, including IL13 and IL5RA, are putative targets of these miRNAs
found to be up-regulated in EVs [111].

Several studies have been performed in humans, showing a relation of exosomes’
content of BALF with different clinical characteristics of the disease (Table 2), as the studies
of Levänen [112] and Francisco-García [113].
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Table 2. Summary of data concerning miRNAs detected in different biofluids linked to clinical parameters.

Sample Groups of Study Results Function/Effects Ref.

Bronchoalveolar lavage fluid * Healthy and asthma individuals.
* Severe asthma patients.

- 24 miRNAs differentially expressed from 894 miRNAs
evaluated.
- Prominent role of the let-7 family, especially miR-200.
- Deficient loading of miRNAs into their nanovesicles. These
miRNAs generated a network.

- Downregulated in asthma group. Correlated with airway
remodeling.
- MiRNAs network associated with worsened lung function
and increased eosinophilic and neutrophilic inflammation.

[112]
[113]

Induced sputum
* Healthy, mild-to-moderate and severe
asthma patients.
* Healthy and asthmatic patients.

- Higher expression of miR-629-3p, miR-223-3p, miR-142-3p.
- Used epithelium, sputum, and plasma samples.
- In sputum, miR-221-3p correlates with eosinophils.
- Increase of miR-221-3p after 4 weeks of inhaled
corticosteroids compared to baseline.

- Related to neutrophilic inflammation.
- Biomarker for airway eosinophilic inflammation; moreover,
being an element of airway inflammation improve after
treatment.

[114]
[115]

Serum and/or plasma

* Asthmatic and healthy children. The
author sub-classified asthmatics children
into two groups, steroid-resistant and
steroid-sensitive.

- Serum miR-21 level was increased in asthmatics vs. healthy
as well as in steroid-resistant patients compared to
steroid-sensitive patients.
- Positive correlation with blood and sputum eosinophil count
and inversely correlated with FEV1.

- MiR-21 could be a severity biomarker in asthma pathology. [116]

* Asthmatic and healthy children.

- Higher levels of miR-155 in plasma from asthmatic patients
and decreased levels of let-7a.
- MiR-155 presented a direct correlation with IL-13 levels and
an inverse correlation with FEV1 and FVC. Let-7a correlated
positively with FEV1 and FVC and inversely with IL-13
expression.

- MiR-155 and let-7a showed opposite results. MiR-155 could
be a biomarker of worsened lung function. [117]

* Salmeterol-sensitive and resistant
asthmatic patients.
* Neutrophilic asthma patients and
healthy subjects.
* Asthma and healthy individuals.
* Pediatric asthma cohort.

- Serum MiR-16 levels present a significant negative
correlation with FEV1.
- MiR-199a-5p was increased in plasma and sputum of
patients with neutrophilic asthma. Negative correlation with
pulmonary function.
- Strong inverse correlation between plasma miR-181b-5p and
airway eosinophilia.
- Increase of miR-181b-5p levels after ICS treatment.
- Evaluation of 754 miRNAs in serum from 153 asthmatic
children.
- 12 miRNAs had significant odds ratios for exacerbation, the
most significant being miR-206.
- miR-146b, miR-206, and miR720 combination, alongside the
exacerbation clinical score, presented a predictive power with
an area under the ROC curve (AUC) of 0.81.

- Mir-16 may predict response to salmeterol with an AUC
value of 0.99, being a potential biomarker in response to
treatment.
- Plasma miR-199a-5p could be a marker of neutrophilic
asthma and poor lung function.
- Biomarker for airway eosinophilia.
- Using the logistic regression model created with three
miRNAs, it may be possible to predict exacerbations.

[118]
[119]
[120]
[121]
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Studies have even been conducted in the pediatric asthma population. Shi et al. [122]
observed a higher expression of miR-26a, miR-146a, and miR-31 in BALF of asthmatic
children compared to controls. In a manuscript from the same year, miRNA-let 7a, 7b, and
7c detected in BALF from asthmatic children were identified as biomarkers of asthma [123].

3.2. Induced Sputum

Nowadays, induced sputum is one of the biofluids with increasing applications, focus-
ing on asthma research and diagnosis, as it is easily obtained and has a direct relationship
with airway inflammatory status.

Globally, manuscripts about sputum in asthma have focused on miRNA contents and
their functions in this disease, although in 2017, the first study was published in which
exosomes of induced sputum were isolated from asthmatic patients [124].

In the same year, Maes et al. published their manuscript related to several miRNAs,
severe and neutrophilic asthma [114] (Table 2); the group led by Liu found that miR-125b
was downregulated in sputum from patients with eosinophilic asthma. They demonstrated
an indirect role of this miRNA on the inhibition of goblet cell differentiation, being a poten-
tial candidate for improving therapeutic approaches for asthma [125]. In addition, miR-145
and miR-338 were also found together in several respiratory diseases like asthma, COPD,
and asthma-COPD overlap syndrome (ACOS) [126]. Both miRNAs were more increased
in supernatant than in peripheral blood; miR-145 was only elevated in asthma, while
miR-338 was increased in all obstructive lung diseases analyzed. For both miRNAs, levels
were higher in the supernatant of COPD and asthma patients than in controls. A study
of cell-free sputum supernatants from allergic asthmatic patients showed a statistically
significant reduction in the level of miR-155 compared to healthy subjects [127], leading
the authors to suggest that the heterogeneous composition of sputum results in alternative
miRNA expression levels. The authors further hypothesized that this downregulation of
miR-155 might be linked to a lymphocyte dysfunction in the airways of these subjects.
In a similar trend, miR-146a was lower in allergic asthmatics than in healthy controls.
Recently, using sputum, an RNA sequencing and complex bioinformatics analysis showed
a miRNA network associated with specific phenotypes of asthma [128]. Gomez et al. found
a sputum miRNA network (particularly containing “nely” network module) associated
with sputum neutrophilia and lymphocytosis, with a reduction of forced expiratory volume
in 1 s (FEV1) percentage predicted and a decrease of the quality of life, just like increased
hospitalizations in the previous year. This network was made up of 12 miRNAs, and
among them, miR-223-3p was the miRNA most closely correlated with these clinical fea-
tures, and these results were similar to those obtained previously by another group [114].
Moreover, classifying patients by their expression of “nely” miRNAs, the results revealed
that subjects with asthma and these miRNAs had reduced FEV1 % predicted both before
and after bronchodilation in a scenario with similar inhaled corticosteroids (ICS) doses;
also, miR-223-3p expression levels were correlated with multiple features of severe asthma,
bronchodilator response, and fractional exhaled nitric oxide (FeNO) levels [128].

3.3. Serum and Plasma

In the study of EVs in asthma pathology, other approaches may use serum or plasma.
Just as in previous biofluids commented, EVs are the main transport elements of miRNAs
and are resistant to RNase degradation.

Multiple miRNAs have been identified as playing a role in asthma pathogenesis and
response to treatment, both in the adult and pediatric populations, which were measured
in serum or plasma samples [129].

MiR-21 is one of the most widely studied miRNAs in several pathologies, including
asthma, and it has been linked to several clinical parameters as eosinophil count, as in
the manuscript of Elbehidy and colleagues [116] (Table 2). In a recent paper, another
group confirmed elevated serum levels of miR-21 in patients with eosinophilic asthma
compared to sera levels in healthy individuals [130]. A positive correlation was found
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between serum miR-21 and IL-4, confirming the role of this miRNA in Th2 activation and
asthma pathogenesis. The authors also observed increased miR-155 expression in asthmatic
sera; however, the absence of correlation with both IL-4 and miR-21 expressions indicated
that the effect of both miRNAs on asthma pathogenesis is likely mediated by different
pathways.

Prior to this manuscript, other groups demonstrated the role of miR-155 in both adult
and childhood asthma pathology, like a manuscript of Karam and collaborators [117] in
relation to miR-155 and let-7a (Table 2); similar results about let-7a have been previously
detected [131]. Elevated levels of miR-155 in the serum of asthmatic children compared
with those of the control group were observed by Liu and collaborators [132], who found a
close association with the levels of indoor PM2.5 in the asthma group but not in the control
group. Recently, this miRNA was considered an intracellular pro-inflammatory mediator
of asthma, and the antagonism of miR-155-5p has been postulated to have corticosteroid-
like effects on the treatment of asthma in a childhood asthmatic population [133]. As
a result, miR-155 decreases glucocorticoid (GC)-induced NF-κB trans-repression. These
authors predicted an improvement in lung function in the ICS treatment group with
the combination of two miRNAs, that is, miR-155-5p and miR-532-5p, through a logistic
regression model. In this line, Weidner and collaborators [134] found that miR-155 and miR-
146 were differentially expressed in allergic asthmatic patients compared to a non-allergic
asthma population, and this increase was observed when the subjects were using ICS. The
two miRNAs share target genes involved in response to GCs and leukocyte regulation.
Moreover, miR-223 and miR-374 showed a significant change in the non-allergic asthma
group when blood eosinophil count was used as a classification parameter. These authors
postulated that a combination of circulating miRNAs could be a tool that would aid in
classifying asthmatic patients.

Similar to miR-155, other miRNAs, such as miR-16, may function as a biomarker
to predict responses to therapy in asthma [118] (Table 2). In certain cases, miRNA ex-
pression levels differ based on asthma endotypes, such as neutrophilic or eosinophilic
asthma [119,120] (Table 2), showing associations with different clinical parameters. In
addition to miRNA functionality as predictors of treatment response, a recent paper from
Fan and co-worker [135] demonstrated the role of miR-203a-3p in mechanisms linked to
the development of classical asthma features. The authors of the study demonstrated that
miR-203a-3p was able to modulate transforming growth factor-beta (TGF-β)1-induced
epithelial-mesenchymal transition (EMT) through the Smad3 pathway. Yang et al. ob-
served that miR-448-5p could affect TGF-β1-mediated EMT and pulmonary fibrosis in
asthma [136]. Following this mechanistic approach, Du et al. [137] observed that miR-98-5p
could be implicated in the development of bronchial asthma in a pediatric population
through the decrease of the IL-13 expression.

However, due to the complex relationship between miRNAs and genes, not all miR-
NAs can be used as biomarkers. One solution to this problem may be to use combinations
of several miRNAs or a specific miRNA profile, which may result in good sensitivity,
specificity, and positive and negative predictive values. Our group, basing our work on an
eosinophil miRNA profile, created a logistic regression model with three miRNAs (miR-185-
5p, miR-144-5p, and miR-1246) to better discriminate between asthma and healthy subjects;
indeed, a Random Forest model created with miR-185-5p, miR-320a, and miR-144-5p was
capable of separating healthy individuals from asthma patients and, within the disease
group, classified each one in terms of disease severity [138]. Findings from our study
suggest that the miRNA profile detected in eosinophils could be used as a diagnostic tool
for asthma in serum and rank patients according to severity. In this line, some manuscripts
about the prediction of exacerbations have been published [121] (Table 2). However, miR-
NAs contained in EVs are not the only good element to characterize asthma or predict
disease course or treatment response. This year, several manuscripts have probed the
importance of serum EVs analysis to understand other parameters that can exert an effect
on asthma pathology. Lee et al. [139] used EVs from the serum of healthy and asthmatic



Int. J. Mol. Sci. 2021, 22, 963 12 of 27

individuals to extract DNA and study, by means of metagenomic analysis, the microbial
composition and its relation to clinical characteristics of asthma. The authors obtained a
bacterial composition that was significantly different between the two groups, creating a
diagnostic model based on these differences with good predictive values (sensitivity: 0.92,
specificity: 0.93). They, therefore, demonstrated the important role of the microbiome as
a potential diagnostic marker of asthma, employing the serum. Kim et al. [140] focused
their attention on bacterial EVs IgG antibody titers in serum, observing that in asthma and
COPD patients, these titers were higher than in healthy controls, postulating that these
values could be used as a diagnostic tool for lung disease.

As we have previously reported, there are studies analyzing the relationship between
exosome production and various clinical parameters; however, the effect of age on exosome
synthesis is a field yet to be developed, with some existing data concluding that EVs in
plasma decrease with age [141].

All these results and data demonstrate that more research is needed to elucidate the
roles that EVs and their contents, such as miRNAs, can play as biomarkers or predic-
tors in the therapeutic response in asthma. Likewise, studies comparing EVs with other
biomarkers that are already well characterized and available are needed.

4. Exosomes from Eosinophils as Key Cells in Asthma

Eosinophils are innate immune cells that have been widely associated with asthma
pathophysiology [142]. This end-stage granulocyte derived from bone-marrow progenitor
cells can affect lung physiology, the inflammatory focus in asthma, driven by diverse
mediators [143]. The development, survival, and migration of eosinophils are due to
actions of key cytokines and chemokines of type 2 (T2) immune response as IL-5, IL-4,
RANTES (C-C chemokine ligand [CCL]5), and eotaxins (eotaxin-1 (CCL11), eotaxin-2
(CCL24), and eotaxin-3 (CCL26)), which are recognized by receptors (IL-5Rα and C-C
chemokine receptor [CCR]3) in the eosinophils, activating their functions [144–146].

The array of T2 cytokines, which induces eosinophils’ recruitment and activation in
asthma pathophysiology, is released by diverse cell types, including Th2 lymphocytes [147]
and type 2 innate lymphoid cells (ILC2s) [148]. ILC2s are the first source of T2 cytokines
when recruited by alarmins released by the lung epithelium (IL-25, IL-33, and thymic
stromal lymphopoietin (TSLP)) after an allergen encounter [149,150].

Eosinophils recruited to the lungs are triggers of asthma hallmarks, which include
airway remodeling (increase in smooth muscle mass and epithelial desquamation), mucus
hypersecretion, and local inflammation. This array of immuno-structural regulations is
done by the eosinophil granule proteins, which contain variable enzymes, compounds,
and cytokines. Their granules and vesicles can be studied by electron microscopy [151,152]
and contain receptors for eotaxin, interferon-gamma (IFNγ), and CCR3, making them
autonomously competent organelles capable of releasing their contents upon ligand
binding [153] by exocytosis, vesicle-mediated piecemeal degranulation [154–156], or by
eosinophil cytolysis [157]. The composition of protein granules consists of enzymes that
cause epithelial damage, such as eosinophil cationic protein (ECP), eosinophil peroxidase
(EPO), eosinophil-derived neurotoxin (EDN), or major basic protein (MBP) [158–160].

Eosinophils are able to release other molecules involved in remodeling, including
metalloproteinases like matrix metalloproteinase 9 (MMP-9) [161], molecules affecting
inflammation, such as nitric oxide (NO), lipid mediators like LTs (promote autocrine
eosinophil migration and survival) [162], and reactive oxygen species (ROS) that contribute
to airway injury [163]. Furthermore, eosinophils have the capacity of rapidly releasing
very diverse preformed cytokines both from T1 and T2 immune pathways (IL-4, IL-6,
IL-10, IL-12, IL-13, IFNγ, and tumor necrosis factor-alpha (TNFα)), due to their storage in
granules and vesicles, which facilitates fast release in response to different stimuli, such as
vesicle transported-IL-4 or eotaxin [158,164–168].

Equally important are the eosinophil extracellular DNA traps (EET) (from the nuclear
or mitochondrial origin), consisting of the release of DNA from the cell as a physical
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net with which to capture pathogens [169]. Sometimes, this liberation of extracellular
DNA traps causes eosinophil death (EETosis) [170,171]. In fact, eosinophils from severe
eosinophilic asthma have displayed an increased percentage of eosinophil extracellular
traps when treated with LPS and IL-5. These traps can autocrinally promote eosinophil
degranulation, inducing further inflammation in the airways of severe asthmatics [172].

In the last few years, a new eosinophil derivate has been studied due to its role in asth-
matic disease: the exosomes. The road to the discovery of eosinophils’ capability to release
exosomes began in 2002 when the tetraspanin CD63 was described inside eosinophils as
being involved in piecemeal degranulation after stimulation with IFNγ [173]. A few years
later, in 2009, Akuthota et al. showed that CD9, another exosomal marker, was expressed
on the surface of eosinophils and that it colocalized with MHC class II in the detergent-
resistant membrane microdomains (DRMs) after stimulation with granulocyte-macrophage
colony-stimulating factor (GM-CSF). These two proteins give eosinophils the capacity to
function as antigen-presenting cells [174].

Given that the multivesicular body marker CD63 is inside eosinophils, that eosinophils
express CD9 on their surfaces, and that other cells of the immune system are capable of
releasing exosomes [7], it is not unreasonable to consider that eosinophils are able to secrete
them, something which was speculated back in 2012 [175].

The theory was confirmed in 2015 when Mazzeo et al. [11] described the presence of
MVBs inside eosinophils. Using antibodies against the endosomal marker CD63 and the
multivesicular body marker lysobisphosphatidic acid (LBPA), the authors were able to
detect colocalization of both proteins in eosinophilic granules by confocal microscopy and
transmission electron microscopy (TEM). Interestingly, the addition of IFNγ, a well-known
stimulator of granule mobilization, caused enhancement of CD63 and LBPA expressions in
the PM. This confirmed vesicle fusion from the cytoplasm to the membrane to release their
contents. This mobilization was observed by time-lapse fluorescence microscopy and flow
cytometry, showing how the cytoplasmic levels of CD63 and LBPA decreased upon IFNγ
stimulation.

To characterize exosomes from eosinophils, the authors purified exosomes from
eosinophils of asthmatic or healthy subjects. Validation of exosomal markers was per-
formed by Western blot (Alix, CD63, and CD9) and TEM (Alix, CD63), and exosomes
were measured by nanoparticle tracking analysis (NTA). Results showed that exosomes
indeed expressed specific markers and had the expected exosomal size. Furthermore, NTA
showed that non-stimulated eosinophils from asthmatics were able to produce higher
amounts of exosomes when compared to eosinophils from healthy sources, while IFNγ
stimulation yielded no differences for the secretion of exosomes of asthmatics compared to
healthy individuals. Finally, using Western blotting, the authors confirmed the presence of
the eosinophil enzymes EPO, MBP, and ECP in exosomes derived from eosinophils, and
the quantity of these proteins was similar between exosomes from asthmatic and healthy
subjects. Together, these results confirmed the capacity of eosinophils to release exosomes,
further showing that exosome secretion is higher in eosinophils from asthmatics, which
may be related to the direct correlation found in another study between the EV concentra-
tion in the asthmatic airway and peripheral eosinophilia, meaning that the exosomes may
play a role in asthma pathology [11].

A year later, an independent research group corroborated Mazzeo et al.’s results.
Using techniques, such as TEM, nanoscale flow cytometry, and protein electrophoresis,
the authors were able to detect the exosomes released by eosinophils, confirming their
size and presence of CD63 and CD9 [176]. Using TEM, they observed an increase in MVB
release after treatment with CCL11, and even higher with TNFα, compared to untreated
individuals. Additionally, stimulation increased the number of MVB-producing eosinophils
from 50% to 90–100%, while MVBs released by the effect of TNFα were smaller in size
than those released following administration of CCL11 or when untreated. The results
of the study also highlighted the importance of marker selection for MVBs, around 50%
of MVBs were stained for CD63 and only 15% for CD9, so seemingly CD63 might be a



Int. J. Mol. Sci. 2021, 22, 963 14 of 27

better marker for MVBs. Finally, the authors confirmed MVB formation after stimulation
by annexin-V and reported that MBVs were not apoptotic bodies, as evidenced by TUNEL
assay in confocal microscopy [176].

Experimental procedures performed by Cañas et al. showed that exosomes released
from eosinophils were taken up by eosinophils themselves. Exosomes from asthmatics
were able to autocrinally increase the production of NO (colorimetric assay), while ex-
osomes isolated from both healthy and asthmatic subjects induced ROS synthesis (flow
cytometry intracellular staining) [177]. Proteomic mass spectrometry analysis was carried
out in order to determine exosome contents, revealing that the contents were similar to
those usually secreted by eosinophils, including ECP, MBP, EPO, asthma-related proteins
like periostin [178], and others related to migration, adhesion, cell signaling, redox, in-
flammation, or metabolism; no differences were found to reflect the asthmatic or healthy
origin of these contents. Basal eosinophil apoptosis was initially higher in eosinophils
from healthy subjects, and the addition of exosomes isolated from healthy or asthmatic
subjects did not cause any effect. Nonetheless, adhesion, chemotaxis, and chemokinesis
were increased by exosomes obtained from asthmatics. This enhancement of adhesion was
accompanied by upregulation of intercellular adhesion molecule (ICAM)-1 and integrin α2
on the surfaces of eosinophils treated with asthmatic exosomes, augmenting eosinophil
inflammation [179,180].

All these results confirmed that exosomes derived from asthmatics’ eosinophils could
upregulate eosinophils’ own functions, probably due to their protein content quantity and
due to the enhanced capacity of asthmatic eosinophils to release exosomes [11,177].

When exosomes derived from asthmatic or healthy eosinophils were taken up by
airway structural cells (small airway epithelial cells (SAECs) and bronchial smooth muscle
cells (BSMCs)), several changes in their behavior were induced [12]. Specifically, wound
healing capacity was delayed, while an increase in apoptosis (measured by annexin-
V and TUNEL assay) was observed in SAEC cultured after 24 h with exosomes from
asthmatics. Additionally, gene expression of the TNF, CCL26, and POSTN was upregulated
by the addition of asthmatic exosomes at different time points, depending on whether
there was an epithelial wound or not. Many of these phenotype changes result from the
effect of asthmatic exosomes on epithelial phosphorylated protein kinase B (pAKT) and
phosphorilated signal transducer and activator of transcription (pSTAT3)measured by
Western Blot, with a reduction of both proteins at 24 h and enhancement at 48 h.

In contrast, BSMCs treated with asthmatic exosomes showed increased proliferation
at 72 h due to an enhancement of phosphorylated extracellular regulated kinase (pERK)
protein levels and underwent an increase in the expression of the proangiogenic and
chemotactic genes VEGFA and CCR3.

All these results demonstrate the role of exosomes from asthmatic eosinophils as key
molecules, contributing to structural lung-cell activation and airway remodeling [12]. There-
fore, we can conclude that exosomes from eosinophils are indeed autonomous molecules
that are able to modulate and enhance the pathophysiology of asthma acting on eosinophils
and also on structural lung cells alongside the rest of the compounds released by these
immune cells (Figure 3).
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Figure 3. Specific roles of eosinophil-derived exosomes in asthmatic inflammation. Exosomes released by eosinophils
are able to alter several functions associated with asthmatic pathology on both eosinophils themselves and structural
lung cells, such as small airway epithelial cells and smooth bronchial muscle cells. Exosomes can increase eosinophil
adhesion and migration and the release of ROS and NO, contributing to tissue damage. Moreover, exosomes augment
BSMC proliferation and SAEC injury, increase the expression of several genes implicated in asthmatic inflammation and
remodeling (TNF, POSTN, CCL26, POSTN, VEGFA, and CCR3), and alter some pathways implicated in asthma, including
MAPK and JAK/STAT. Abbreviations. AKT: protein kinase B; STAT3: signal transducer and activator of transcription 3;
TNF: tumor necrosis factor; CCL26: C-C chemokine ligand 26; POSTN: periostin; ROS: reactive oxygen species; NO: nitric
oxide; ERK: extracellular regulated kinase; VEGFA: vascular endothelial growth factor A; CCR3: C-C chemokine receptor 3.

5. Exosomes from Other Cellular Populations Implicated in Asthma Pathology

As remarked previously, exosomes can be found in multiple localizations and can
be released by a variety of cell types. This fact draws a resemblance between exosomes
and their origin cells in terms of proteins and nucleic acids. Airway inflammation in
asthma pathogenesis is driven by several effector cells, including T and B lymphocytes,
macrophages, mast cells, eosinophils, and structural lung cells (epithelial and smooth mus-
cle cells) [181]. These cells exert their functions either directly or indirectly, via exosomes
and EVs [4]. This part of the review, therefore, focuses on the most recent findings related
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to exosomes released by the principal effector cells that participate in inflammation of the
asthmatic disease.

Peripheral blood mononuclear cells (PBMCs) have a round nucleus and comprise
lymphocytes (T and B) and monocytes/macrophages, principally.

It is known that T lymphocytes play a major role in the inflammatory response of
asthma, leading to tissue remodeling and airway hyperresponsiveness; moreover, it is
accepted that B cells exert important functions in the adaptive immune response to this dis-
ease [182]. Exosome release from T cells has been described [183]. Several studies by Shefler
et al. showed the role of EVs from these cells in the inflammatory lung response [184,185],
describing their role in mast-cell activation and degranulation, releasing cytokines (IL-8
and oncostatin M) [185], linking the miR-4443 to some of these processes [184]. They
demonstrate the activation of inflammatory cells through exosomes in different locations.

B cells were first reported to release exosomes more than twenty years ago [86]. B
cell-derived exosomes carry specific molecules of antigen-presenting cells, including MHC
class I and II, integrins, and costimulatory molecules (CD40, CD81, and CD86) [86,186];
these characteristics allow the exosomes to be functional units for antigen presentation,
inducing T cell responses, modulating their proliferation and the release of IL-5 and IL-13
cytokines. Although exosomes can conduct themselves as immunostimulatory molecules,
the immunoregulatory role of these nanovesicles has also been described [187].

On the other hand, macrophages and monocytes also play several roles in asthmatic
inflammation [188]. In asthma, the release of Th2 cytokines, including IL-4 and IL-13, allows
macrophage polarization towards an M2 phenotype [189]. Regarding exosomes, several
years ago, it was also described that macrophages could release these nanovesicles [190].
Some data could indicate that exosomes from macrophages might be implicated more in
T1 immune response than in T2 response [190–192]. However, Esser et al. demonstrated
that these macrophage-derived exosomes carried different enzymes implicated in LT
biosynthesis, particularly LTB4, which is a potent chemoattractant agent for eosinophils
and neutrophils [192]. Moreover, a recent study demonstrated that exosomes from M2
macrophages induced the differentiation of ILCs progenitors to ILC2, a potent source of
immune effector cytokines in asthma [193].

Although these data demonstrate the role of exosomes from PBMCs in inflammation,
more studies are necessary to elucidate the specific mechanisms of these nanovesicles on
inflammatory airway diseases.

Other cell populations that could produce exosomes are polymorphonuclear cells
(PMNs), which primarily comprise neutrophils, eosinophils, basophils, and mast cells.
The functions of these cells in allergic and severe asthma inflammation have been widely
described [145,194,195].

Neutrophils have been associated with non-T2 response and severe asthmatic phe-
notype [196] and are able to produce exosomes with a potential role in asthma. In 2016,
Vargas et al., using an equine model of asthma, demonstrated that neutrophil exosomes
contributed to airway remodeling and tissue inflammation by modulating apoptosis and
proliferation of smooth muscle cells [197]. In 2016, Butin-Israeli et al. observed that EVs
from neutrophils possessed MMP-9 activity, degrading proteins of the tight junctions and,
consequently, breaking down epithelial unions [198]. Recently, an exhaustive study on the
roles of neutrophil-derived exosomes in airway inflammation conducted by Genschmer
et al. [199] described that exosomes from neutrophils that contained elastase had prote-
olytic activity in the extracellular matrix, contributing to inflammation, epithelial damage,
and airway remodeling. Moreover, they observed that the elastase contained inside of
exosomes had more powerful effects than elastase-free.

Mast cells are another granulated cell type involved in asthma pathology [200], and
some authors have studied the effect of mast-cell exosomes in the modulation of allergic
inflammatory responses [201]. Various groups have demonstrated different ways in which
mast-cell exosomes can act in the context of asthmatic disease, finding that exosomes could
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act by interacting with cells, such as airway smooth muscle [202], exert their inflammatory
functions without contact [203], or act as immunoregulatory units [204].

Basophils are a population of granulated leukocytes that comprise 0.5–1% of peripheral
blood white cells and are involved in immune responses [205]. There is a lack of evidence
that basophils can release exosomes [205], although some authors have described that they
could release granules that resemble exosomes [206].

Exosomes Released by Other Cells Implicated in Asthma Inflammation

Aside from immune mediator cells, other cell types are implicated in asthma patho-
genesis and airway remodeling, such as structural lung cells, platelets, and mesenchymal
stem cells (MSCs).

Structural lung cells, including airway epithelial cells (AECs) and airway smooth mus-
cle cells (ASMCs), play pivotal roles in asthmatic disease and inflammation [207,208]. T2
cytokine-stimulated exosomes presented an increase in nitric oxide synthase 2 (NOS2), and
exosomes from T17-stimulated epithelial cells showed a capacity for neutrophil chemotaxis.
Kulshreshtha et al. demonstrated in a murine model that stimulated IL-13 epithelial cell-
derived exosomes induced infiltration and proliferation of macrophages in the lungs [207].
However, most articles about exosomes from ASMCs in asthma are based on the effect of
exosomes from other cell types in ASMCs [12,197,202].

On the other hand, although the roles of microparticles from platelets in airway hy-
perresponsiveness and bronchial remodeling have been described [209,210], unfortunately,
no studies have been conducted on platelet-derived exosomes.

Finally, many studies about MSCs-derived exosomes in asthma have been performed.
MSCs are pluripotent stromal cells that can reduce airway inflammation in asthma, thus
increasing the proliferation of T regulatory cells (Treg) [211]. Recent studies showed
the immunomodulatory role of MSC-derived exosomes in asthma pathogenesis [212]
as well as their role in airway inflammation [213], demonstrating that exosomes from
MSCs produce attenuation of airway inflammation, showing a similar effect to MSCs.
This effect is produced by an increase of Treg cells and immunosuppressive cytokines,
including IL-10 and TFG-β [213]. The role of the immunosuppressive effect of MSC-
derived exosomes has also been studied in other inflammatory and non-inflammatory
pathologies. It has been observed in eye diseases, where MSCs-derived exosomes promote
regulation of Treg, providing an immunosuppressive microenvironment in the inflamed
eyes [214]. Besides, immunosuppression promoting by MSCs exosomes has been observed
in allergic contact dermatitis [215], diabetes [216], and in diseases with liver injury [217]
by influencing Treg proliferation. Recently, Riazifar et al. demonstrated that exosomes
of MSCs reduced pro-inflammatory cytokine levels and promoted Treg expansion in an
experimental autoimmune encephalomyelitis model of multiple sclerosis [218]. On the
other hand, different studies showed the capacity of exosomes to modulate the functions
of other immune cells, such as dendritic cells [219]. Another study by Fang et al. in 2020
showed that small EVs from MSCs modulated ILC2 functions in vitro, decreasing allergic
airway inflammation in mice through the delivery of miR-146a-5p [220].

The use of MSCs-derived exosomes as therapeutic tools has been widely studied and
has shown promise in the field of regenerative medicine. Numerous studies have explored
the therapeutic effects of exosomes from MSCs on neurological, immunological, and
cardiovascular diseases [221]. Specifically, in asthma, several works have addressed this
topic [222]. In 2010, Porro et al. demonstrated that exosomes from MSCs had the ability to
accelerate lung tissue repair and wound healing, which could be used to alleviate asthmatic
airway remodeling [223]. Other studies demonstrated that MSC-derived exosomes could
mitigate airway inflammation in asthma pathology by increasing the proliferation of Treg,
promoting an increase of anti-inflammatory cytokine production and immunosuppressive
capacity [213]. Furthermore, exosomes from human adipose tissue-derived MSCs are able
to inhibit airway hyperresponsiveness and airway inflammation in a mouse model of
ovalbumin-induced asthma [224].
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All of these studies underscore the importance of exosomes from any cell type in
asthma and inflammation, as well as in the immunoregulation of this disease. As a result,
exosome research is a promising field that may aid in understanding asthmatic diseases
and in the search for novel therapies.

6. Conclusions

In the last decades, EVs have emerged as important and revolutionary elements of
intercellular communication, both in physiological processes and in various pathologies.
Their capacity to transport multiple elements, such as proteins, lipids, and nucleic acids,
among which miRNAs are found, makes them highly relevant factors in multiple processes.
All these characteristics turn these intracellular generating elements into factors of great
relevance to understand, in many cases, the development of diverse diseases as well as
many of their physiopathogenic mechanisms, being able to be keys to find new therapeutic
approaches. The study of EVs in specific biological samples, like induced sputum or serum
likewise diverse biofluids, can aid in getting knowledge about diverse pathologies, like
asthma.
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