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Resumen 

El reconocimiento facial se está convirtiendo en una tecnología muy usada en aplicaciones de

control de acceso, ya sea en el mundo real o en el virtual. Los sistemas basados en esta tecnología

tienen que hacer frente a las difcultades clásicas de los algoritmos de clasifcación y a los retos de los

ataques de suplantación de identidad. El morphing suele ser el método preferido para estos ataques,

ya que permite modifcar progresivamente los rasgos de una cara a partir de un sujeto original para que

se parezca gradualmente a otro. Hasta ahora, las publicaciones se han centrado en la suplantación de

esta segunda persona, normalmente alguien que tiene permiso para entrar en lugares o aplicaciones

restringidas. Sin embargo, en muchas otras aplicaciones no hay una lista de personas autorizadas,

sino una lista negra de personas que no pueden entrar, iniciar sesión o registrarse de nuevo. En estos

casos, la persona objetivo del morphing no es relevante, y el reto principal es minimizar la probabilidad

de ser detectado.

Presentamos una comparación del porcentaje de identifcación y el comportamiento de 5 recono-

cedores (Eigenfaces, Fisherfaces, LBPH, SIFT y FaceNet) contra ataques de morphing tradicionales,

en los que sólo se utilizan dos sujetos para crear la imagen alterada: el sujeto original y el objetivo.

También introducimos un nuevo método de morphing cuyo funcionamiento se basa en un proceso it-

erativo de morphing tradicional gradual, combinando el sujeto original con todas las imágenes de los

sujetos en la base de datos de entrenamiento. También probamos nuestro método de ataque contra

el reconocedor que obtiene mejores resultados contra el morphing tradicional (FaceNet), demostrando

que, utilizando nuestro método, podemos multiplicar por ocho las posibilidades de conseguir un ataque

de suplantación capaz de engañar a los algoritmos de identifcación facial y de detección de morphing

simultáneamente.

Palabras clave 

Aprendizaje profundo, biometría, control de acceso, FaceNet, identifcación, morphing, reconocimiento

facial, seguridad, suplantación de identidad.
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Abstract 

Face identifcation is becoming a well-accepted technology for access control applications, whether

in the real or virtual world. Systems based on this technology have to deal with the classic diffculties

of classifcation algorithms and the challenges of impersonation attacks performed by people who do

not want to be identifed. Morphing is often the preferred method for these attacks, as it allows modi-

fying an image’s features progressively from an original subject so that it gradually resembles another.

Publications focus on impersonating this other person, usually someone who is allowed to get into a

restricted place, building, or software app. However, there is no list of authorized people in many other

applications, just a blacklist of people who cannot enter, log in, or register again. In such cases, the

morphing target person is not relevant, and the main objective is to minimize the probability of being

detected.

We present a comparison of the identifcation rate and behavior of 5 recognizers (Eigenfaces, Fish-

erfaces, LBPH, SIFT, and FaceNet) against traditional morphing attacks, in which only two subjects are

used to create the altered image: the original subject and the target. We also introduce a new morph-

ing method that works as an iterative process of gradual traditional morphing, combining the original

subject with all the subjects’ images in the training database. We also test our morphing attack method

against the recognizer that obtains better results against traditional morphing (FaceNet), proving that,

using our method, we can multiply by eight the chances of a successful and complete impersonation

attack, one able to deceive face identifcation and morphing detection algorithms simultaneously.

Keywords 

Access control, biometrics, deep learning, FaceNet, face recognition, identifcation, morphing, se-

curity, spoofng attack.
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1
Introduction 

Face recognition is gaining momentum. Continuous improvements in this well-known research feld

( [1,2,10,11,26]) have led to an increasing number of commercial applications. Today face recognition

algorithms are implemented in a wide range of products and solutions. People counting cameras are

used to know the number of clients getting into a store and compute some statistics about their age

or gender [3]. Most mobile phones in the market have embedded technology to unlock them with a

simple look at the device [4]. More and more websites implement "Know your Customer" policies by

comparing a photo ID with real-time capture of the applicant [5]. People identifcation is likely one of

the most important uses of this area. Mobile phones or websites are just two examples of everyday life.

However, we can also think about access control in offces or airports, places where this technology is

very welcome for its ease of use and low intrusiveness.

Like in any other biometric technology, people have tried to deceive face recognition systems [38].

We can fnd several approaches in the literature. For instance, a person might print a photo of a subject

and try to use it to impersonate him [38, 39]. A more sophisticated method implies creating a mask to

be able even to deceive 3D face recognition [6]. Another more extravagant technique is the use of a

wearable face projector [7].

For some particular applications, like in airports with Automated Border Control (ABC) , where

nobody can put an image in front of the camera without being noticed, morphing techniques have

been studied. Originally, morphing techniques consisted of generating intermediate frames between

two images to achieve a smooth transition between them. If we use it on two images of different faces,

we could get frames that merge features of both faces in one. Depending on the level of morphing

being applied, one person will be recognized better than the other. In the ABC scenario, M. Ferrara [8]

studied a way to take advantage of morphing to use only one photo ID to successfully verify two different

subjects.

The previous approach is interesting because it has shown that it can fool face verifcation systems.

However, the morphing process itself can be discovered, making the spoofng attempt a failure. This

work focuses on concealing the attack in such a way that humans or automated systems cannot detect

that an image has been altered. As previous work, we have researched how different face identifcation
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Introduction 

methods behave against the morphing process. Face identifcation is different from face verifcation

because in the latter case we have information about who the subject might be. In some applications

this is not the case, for example, if we use the face image to check whether a user has already been

registered in a web site.

This paper is divided into seven sections. In Section 2, we present an overview of the state-of-

the-art face recognition and morphing software, as well as a brief review of past spoofng attacks to

face recognition algorithms. In Section 3, we describe the method used for selecting the most robust

algorithm against morphing and the proposed algorithm to defeat it. In Section 4, we explain the

implementation of the method. In sections 5 and 6, we present the results of the experiments and

their discussion. Finally, in Section 7, we make conclusions about the fndings of our experiments.

1.1 Contributions

As far as we know, our work is novel since we have found no other research publication that covers face

identifcation algorithms tested with morphed images and a method specifcally designed to deceive the

face identifcation algorithm while passing undetected. Next, we summarize our main contributions.

• We present a study of fve state-of-the-art techniques in face identifcation. Each technique is

tested with morphed images to fnd the more robust one, considering robustness the quality of

requiring a higher amount of morphing alteration to misclassify a subject.

• We propose a new method to reduce the amount of morphing alteration required to make a face

identifcation algorithm misclassify a subject.

Stegano-morphing: Concealing attacks on face identifcation algorithms2



2
Related work 

2.1 Face recognition

As seen in [9], the face recognition process involves the location of the face in the image, followed by an

analysis of the located face (for instance, extracting its features) and then a comparison of the analysis

results against all the faces stored in the database, using a classifer. Face recognition methods can be

divided into four main categories: holistic, local, hybrid and deep learning approaches [10], [11]. The

local approach classifes according to specifc facial features, whereas the holistic approach considers

the whole face as a unit. The hybrid approach combines both techniques. Many recent advances have

been made in the deep learning approach, using Convolutional Neural Networks (CNNs) that offer

better speed and accuracy.

The frst simple and fast algorithm that worked well in a constrained environment, Eigenfaces, came

in 1991 [12], based on the Principal Component Analysis (PCA) technique, which is included in

the holistic approach. Later, based on Eigenfaces’ same principle, Fisherfaces was developed, using

Linear Discriminative Analysis (LDA) and achieving a better performance over variation in lighting [13].

The third most popular technique in the holistic approach is Independent Component Analysis (ICA)

[14], which has excellent effciency. Other methods can be included in this category. Some of them,

combined with the three techniques mentioned before, can obtain good recognition performance. For

instance, Hafez et al. [15] used a Gabor flter and LDA.

In the local approach, we can fnd a simple method, Local Binary Pattern (LBP) , used to extract

features from any object. It was G. Zhang et al. [16] who frst used it for face recognition. Other well-

studied feature extractors utilized for face recognition are Scale-invariant Feature Transform (SIFT)

[17] and Speeded-up Robust Features (SURF) [18], inspired by SIFT but with better execution time.

Hybrid techniques can offer high recognition rates. However, they are more challenging to imple-

ment due to their high complexity, which makes them less popular than the others. An example can be

found in [19], where A.A. Fathima et al. used Gabor wavelet and Linear Discriminative Analysis. More

examples can be found in [10].
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Related work 

The deep learning approach can be considered as a nonlinear holistic technique [10]. Nevertheless,

some references ( [11] ) defne it as a new category due to its newness and great accuracy. A few

examples showing very good accuracy with the verifcation problem in the Labeled Faces in the Wild

(LFW) database [25] are: deepFace [20], developed in 2014, got an accuracy of 97.35%; DeepID3 [21]

(2015, 99.43%), FaceNet [22] (2015, 99.63%), VGGFace [23] (2015, 98.95%), and Arcface [24] (2018,

99.83%).

LFW is an excellent database to test face recognition algorithms because it is an unconstrained

database. Usually, algorithms struggle with lighting, location, setting, pose, or age variations, as well

as occlusions or misalignment [26–28]. However, over time, algorithms have improved signifcantly in

this area, so recent local and deep learning approaches can handle these problems better.

2.2 Morphing

For many years the flm and television industries have used morphing to obtain fuid transformations

between two different frames using mesh warping methods [29] based on three stages: feature spec-

ifcation, warping and blending. In the frst step, correspondence between the two images is created

(using a mesh). In the second stage, a geometrical alignment of the mesh is performed using warp-

ing [30]. In the latter, all warped images are aligned, so it only remains to merge each pixel’s color

value, using a cross-dissolve method.

A review of this morphing approach with other frst-generation morphing methods such as feld

morphing or radial basis functions, can be found in [31]. In his work [32], M. Steyvers analyzes feld

morphing with a greater mathematical perspective. More recently, U. Scherhag et al. presented an

overview of the publicly available state-of-the-art commercial and open-source face morphing tools [33].

Most of them are based on Delaunay triangulation [49], which we consider the principal approach to

morphing until the appearance of Generative Adversarial Networks (GAN) that also show promising

results [35]. However, to this day, GAN performs worse than the more classic methods against face

recognition systems like OpenFace (a face recognition implementation based on FaceNet) [35].

The steps followed by Delaunay triangulation based methods are the same as in mesh warping but

using different techniques to achieve each goal. The correspondence between the two images is made

by determining face key landmarks (eyes, mouth, nose, face contour ...) either manually or automatically

(using software). Then, a Delaunay triangulation is applied using the landmarks as vertices for the non-

overlapping triangles. During warping, the corresponding triangles of both images suffer a geometrical

transformation in order to be aligned. Finally, a linear blending is applied.

Stegano-morphing: Concealing attacks on face identifcation algorithms4
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2.3 Spoofng attacks

Attacks on biometric recognition systems are not only carried out on facial recognition devices. In

[36], authors conduct spoofng attacks on fngerprint sensors, iris scanners, and facial recognizers.

Moreover, they conclude that the method’s performance does not correlate with its vulnerability. In fact,

in all of them, a satisfactory attack can be achieved. This statement is also supported by A. Hadid

et al. [38], using 3D masks (face recognition spoofng) and fake fngerprints (fngerprint-recognition

spoofng), among others. They also study how anti-spoofng methods can reduce the vulnerability of

the systems.

Focusing on the facial recognition attacks, not only morphing poses danger. In [38,39], they explore

some databases with presentation attacks. Presentation attacks consist of showing a printed image (or

printed mask) to a camera with facial recognition software to fool it. In addition, in [39], they prove that

the higher the face verifcation accuracy, the higher is its vulnerability to presentation attacks. Apart from

this, M. Ferrara et al. [40] study the effects of geometric distortions (barrel distortion, vertical contrac-

tion, and extension) and digital beautifcation on face recognition accuracy. Other digital manipulation

techniques can be very harmful, e.g., face synthesis, attribute manipulation, and identity or expression

swap [41].

As mentioned before, M. Ferrara et al. [8] were the frst to present a successful morphing attack in a

simulation of an ABC, using two commercial face recognition software tools. Applying GIMP+GAP, man-

ually morphed images were created to verify the two contributing subjects with the same photo. They

were able to achieve that for eleven pairs of subjects in both face verifcation tools. Moreover, in [40],

the authors expand the experiment proving that human experts (border guard group) and non-experts,

in most cases, do not detect morphed images. However, in [42], D. J. Robertson et al. reveal that

although the attack may go more unnoticed in untrained subjects, when the subjects receive morphing

training, they tend to detect morphing with higher probability. Nonetheless, in their experiment, they

use Psychomorph, which creates lower quality morphings (with more ghost artifacts) than GIMP+GAP.

More examples of verifcation attacks can be found in [43] and [44]. In the frst one, they carried out the

experiment using FaceNet, utilizing more than 3000 pairs with 22 morphed images between each pair,

working with triplets of images (impostor-accomplice-morphing). In the second one, experiments were

conducted to prove face verifcation’s vulnerability both with printed and scanned images.

Another morphing attack perspective may be to protect the privacy of the users in video surveil-

lance systems. P. Korshunov and T. Ebrahimi [45] study this problem along with its robustness and

reversibility.

Finally, we would like to reference some studies in which we can fnd out how some parameters can

affect the success of a morphing attack [33, 36, 46]. Those parameters are the morphing quality, the

similarity between the impostor and the accomplice, or the recognizer’s threshold.

Luis Cárabe Fernández-Pedraza 5
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3
Concealing attacks on face 
identification algorithms with 
morphing 
A morphing attack is the alteration of a subject’s portrait using morphing techniques leading to his

misidentifcation. In our work, it is complete only when it meets two criteria: frst, a face identifcation

algorithm should not identify the morphed image, and second, the morphed image should appear as

a genuine image to a potential auditor. Face recognition algorithms might be beaten or defeated by

a morphing attack when the image resulting from a morphing process is not identifed as the original

subject. However, if the resulting image does not appear genuine, the attack cannot be considered

complete.

Considering the research done in Section 2.2, we have chosen a morphing method based on De-

launay triangulation [37], hereafter referred to as the traditional morphing method. At the warping and

blending steps of the process, a parameter is taken into account. In the case of warping ( w), it condi-

tions how much each position of each face’s landmarks contributes to the morphed image. If w = 0,

only the frst image’s landmarks are taken into account. If w = 1, only the landmarks of the second

image are considered. The in-between values achieve a linear combination of the positions of the land-

marks of both contributing images. The blending step ( b) has a similar behavior, the color of all the

correlated pixels are combined using a linear transformation. b = 0 only considers the frst image and

b = 1 the second.

For simplicity, some implementations only use one parameter , that refects the general percentage

of contribution of both faces in each step ( w = b = ). In our study, we use this simplifcation as a

quantifer of the morphing process. For example, a morphing process of 5% means that = 0.05. The

frst subject of the pair will contribute to the fnal image by 95% in both the landmarks’ position and the

pixels’ value. The second subject will contribute with the remaining 5%.

3.1 Face identifcation and Morphing detection

As we have seen in Section 2.1, face recognition is a very active research feld, and different approaches

are being studied. We have selected the more promising ones with care to include at least one from

each category (except hybrid):

7
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• Eigenfaces [12]

• Fishefaces [13]

• LBPH [51]

• SIFT [17]

• FaceNet [22]

However, the experiments found in the literature do not consider morphing attacks against face

identifcation. Our objective is to select the approach that performs better against these attacks. From

our perspective, good performance means that the algorithm can correctly identify the original subject

in images that have been morphed. Since morphing is an incremental process, we consider an algo-

rithm to be more robust than another when the amount of morphing required to make it fail is higher.

Therefore, the selection criteria is related to the frame at which the face recognition algorithm does not

recognize the original subject but another (either the target subject or any other person).

The original image is morphed into 100 images with n% morphing (n 2 {1, .., 100}). We consider

that the original image has been morphed 0%, the target image has been morphed 100%, and any

other image in between has n% (n 2 {1, .., 99}) as the amount of morphing. The higher the percentage

required to avoid that the recognizer correctly identifes the original subject, the more robust it will be

considered.

We recommend that face recognition algorithms are trained with a database composed of N sub-

jects, with a number of photos per subject between 5 and 20. This quantity helps to avoid imbalanced

data and biased results. We have chosen pairs of similar-looking subjects. This should reduce the

amount of alteration required to pass from the original image (referred to as A) to the target image

(referred to as B).

Since a complete morphing attack has to pass undetected, we need to defne a method to detect

morphed images. The easy procedure is to invite human experts that will evaluate the resulting image.

However, this method might not be the most consistent because the same person can change his

evaluation about a particular image or because different people may have different opinions. Therefore,

using a morphing detector algorithm seems a good idea.

Although some face anti-spoofng detectors already existed before morphing attacks became a re-

ality [60], the frst morphing detector was presented by R. Raghavendra et al. [61], which successfully

verifed all the 450 morphed face images from a database. It belongs to a category of morphing detec-

tors that operate in Single Image Morphing Attack Detection (S-MAD) scenarios. It refers to algorithms

that only analyze one photograph to verify its morphing. Contrarily, Differential Morphing Attack De-

tection (D-MAD) group algorithms that analyze a pair of images, one of them being a trusted unaltered

photograph that the algorithm uses to verify the morphing on the other image. Our scenario falls into

Stegano-morphing: Concealing attacks on face identifcation algorithms8



3.2. Proposed algorithm 

the frst category since we only provide one image to the detector to get a morphing verifcation. Some

state-of-the-art S-MAD algorithms can be found in [62–66].

3.2 Proposed algorithm

We have approached the problem of concealing morphing attacks as an optimization problem. The

universe of potential solutions is searched while trying to minimize the amount of morphing required

to beat the face recognition algorithm. This approach makes sense if we assume that the lower the

amount of morphing, the higher the chances of passing undetected. Starting with Subject A’s original

image, potential solutions are created by an iterative process of gradual morphing that combines the

original image and all the subjects’ images in the database.

The problem can be represented as a full m-ary tree, being m the number of images stored in

the database. The root vertex would be the unaltered image of Subject A and the other vertices, the

morphed images. Each branch would represent an n% morphing between the parent and a person

in the database. The less modifcation the image has, the less detectable it will be, so the algorithm

searches the vertex that causes misidentifcation with the lowest percentage of morphing (lowest depth)

and lowest morphing detection, using a Breadth-frst search: it starts at the root, then searches for a

misidentifcation in all of its child nodes’ images, then moves to the next depth level, and so on.

We use a morphing detector as an additional evaluator of the probability of a complete attack. The

resulting solution is the combination of morphing procedures with the lowest amount of alteration and

the lowest evidence reported by the morphing detector. In summary, our method requires:

• A robust face recognizer.

• A training database.

• A morphing algorithm.

• A morphing detector (S-MAD).

It follows these steps:

1. The original photo is morphed 5% separately with all the photos available in the training database

(except the original subject’s pictures).

2. The morphed photos are passed on to the face identifer:

(a) If in all the images it still identifes the original subject, it goes to Step 3.

(b) If a different person is identifed in one or more morphed photos, it goes to Step 6.

Luis Cárabe Fernández-Pedraza 9
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3. The frst ten images that most reduce the identifcation confdence are selected.

4. The morphing detector evaluates the ten images to get the photo with the least detectable morph-

ing, outputting the one with the least morphing detection confdence. In case of a tie, it is resolved

by the alphabetical order of the subjects used.

5. The algorithm goes back to Step 1, replacing the original photo of the subject with the surviving

image.

6. The morphing detector also evaluates those images to get the resulting photo with the least de-

tectable morphing, ending the algorithm.

When we say that the original image is morphed 5%, we mean that the frst face of each mor-

phing contributes 95% to the warping and blending process. For each iteration, the original image’s

contribution is reduced by the formula:

% of original image’s contribution = 0.95t, t 2 N, (3.1)

being t the number of iterations performed. For instance, in the third iteration t = 3, three morphings

have taken place, so the original subject’s contribution is 95%3 ˇ 85.74%.

Dealing with all the possible morphing paths has an exponential complexity over the database size.

Suppose the database size is m (with N subjects, N < m), the database size without the original
0subject’s pictures is m . If the algorithm needs t iterations to fnish, the complexity would be O((m0)t).

This is because, in each iteration, all the images of the previous iteration would be morphed with all the

training database. To reduce that computational cost, we have implemented a heuristic. It is refected

in steps 3–4 and manages to reduce to one the number of images that pass to the successive iteration.

The heuristic chooses the photo that is closest to the goal in each iteration, and the complexity becomes

linear (O(t ·m0)).

Additionally, the morphing detector is also used in the sixth step to make sure that we select the

picture that gets closer to a complete attack. Fig. 3.1 shows a fowchart of the process.

Stegano-morphing: Concealing attacks on face identifcation algorithms10



3.2. Proposed algorithm 

Figure 3.1: Flowchart of the proposed algorithm.
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4
Experiments 

We have carried out experiments to compare the morphing robustness of face identifcation algorithms

in order to select the best one. We have also tested our proposed attack method on the face identifer

selected, and compared the results obtained with the traditional attack.

All the experiments have been performed in an HP Pavilion x360 14-cd0005ns laptop, with 8 Gbs of

RAM and an Intel Core i3-8130U chip, running Ubuntu 18.04.5 LTS with bash 4.4.20(1)-release, Python

3.6.9 and Python 2.7.17. The versions of the libraries used are:

• OpenCV [34]: 3.4.2.

• Scikit-learn [54]: 0.21.3 in Python3 and 0.20.4 in Python2.

• Tensorfow [56]: 1.14.0 in Python3 and 1.7.0 in Python2.

• Numpy [68]: 1.18.2 in Python3 and 1.16.6 in Python2.

• Dlib [50]: 19.18.0.

4.1 Selection of the facial identifcation algorithm

We have chosen different solutions for each face recognition algorithm category (except hybrid). Within

the holistic approach, Eigenfaces [12] and Fisherfaces [13] have been selected. As representatives

of the second category (local approach), we have picked Local Binary Patterns Histogram (LBPH)

[51] and SIFT [17]. The LBPH algorithm works by creating histograms of the binary patterns extracted

by LBP [16]. As seen in [10, 13, 17, 47], these techniques have been well studied and have good

performance when using frontal views of faces. FaceNet [22] has been selected out of the deep learning

category due to its excellent performance [11].

For the frst three algorithms (Eigenfaces, Fisherfaces, and LBPH), we have employed a Python

implementation of R. Raja [52] that uses the Face library of OpenCV to cover the feature extraction and

classifcation. Besides, a Haar cascade classifer [53] is used for face detection. Slightly modifying the

previous implementation, we have gotten a SIFT deployment, using the xfeatures2d OpenCV class to
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perform the SIFT feature extraction and the Scikit-learn library for classifcation using a Support Vector

Machine (SVM) [55]. In addition, we have used a Tensorfow implementation of FaceNet [57] written

in Python. It uses a pre-trained model that employs VGGFace2 [58] as the training dataset and the

Inception-ResNet-v1 architecture [59], achieving an LFW accuracy of 99.65+-0.00252%. It also uses

an SVM for classifcation.

All the recognizers expect the testing subjects to be included in their training database, which is

known as closed-set identifcation. We have also made small changes in the code fles to get similar

behavior in all the implementations. Every algorithm used can output the top 5 identifcation matches of

the face presented. The parameters of the Haar cascade classifer that worked better with our database

were scaleFactor=1.001, minNeighbors=2, minSize=(90,90), outputRejectLevels=True. Regarding the

SVM used on SIFT, we have employed the settings kernel="poly", C=10, gamma=0.0001. We have left

all the other confgurations according to the original sources.

As we have seen, we need a fully automatic morphing implementation. We have used the Python

code presented by S. Patel [48], based on OpenCV functions [37]. In order to fnd the face landmarks, it

uses Dlib’s facial landmark detector. Then, as we have seen, those landmarks are employed as vertices

of the Delaunay triangles. Using the corresponding triangles, it performs warping and blending to obtain

all the intermediate frames.

We have created a database based on LFW [25]. As seen in [11], it is a widely used database to

test state-of-the-art face recognizers. The database has 5749 subjects, but, as mentioned earlier, we

want only the ones that have between 5 and 20 images each (both numbers included). That flters the

database to 366 people with a total number of 3062 images. The Haar cascade face detector does

not correctly detect the subject face in 5 of the 3062 images because those images have more than

one face present and the wrong face is detected. We deleted those images from the database. The

deleted images are Erika_Harold_0003, Hugh_Grant_0008, Igor_Ivanov_0014, Jean_Charest_0004,

and Joe_Lieberman_0004. That implies that Erika Harold now has four images instead of 5, considering

this an exception.

To determine the pairs of subjects who look more alike, we have used the Similar-looking LFW

(SLLFW) database [67], which offers 3000 pairs of similar-looking faces (using the images of LFW).

We have picked 25 pairs of images from it, taking into account two factors. First, the individuals must

be included in our 366 subjects database. Second, the subjects need to have more than fve photos to

train once the similar-looking images selected are removed from the training database. Fig. 4.1 shows

an example of one selected pair.

Considering all the pairs, there are 49 different images (Renee_Zellweger_0009 appears twice).

The training database of the morphing robustness comparison and selection experiments consists of

3062 − 5 − 49 = 3008 images of 366 subjects. In Table 4.1, we provide all the pairs used.
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4.1. Selection of the facial identification algorithm 

(a) Matthew_Perry_0007. (b) Rubens_Barrichello_0011.

Figure 4.1: Similar-looking pair.

No. Original subject Target subject

1 Amelia_Vega_0003 Norah_Jones_0015

2 Ana_Guevara_0002 Ian_Thorpe_0006

3 Andy_Roddick_0008 Richard_Virenque_0004

4 Angelina_Jolie_0002 Britney_Spears_0004

5 Anna_Kournikova_0011 Jelena_Dokic_0007

6 Ben_Affeck_0002 Ian_Thorpe_0007

7 Bill_McBride_0010 Jon_Gruden_0002

8 Bill_Simon_0011 Ron_Dittemore_0001

9 Catherine_Zeta-Jones_0001 Salma_Hayek_0001

10 Edmund_Stoiber_0004 John_Snow_0003

11 Eduardo_Duhalde_0006 George_HW_Bush_0005

12 Fidel_Castro_0018 Mohamed_ElBaradei_0003

13 Hillary_Clinton_0010 Renee_Zellweger_0009

14 Howard_Dean_0003 Kevin_Costner_0005

15 James_Blake_0006 Mark_Philippoussis_0003

16 Jason_Kidd_0003 Leonardo_DiCaprio_0003

17 Jean-Pierre_Raffarin_0001 Joschka_Fischer_0012

18 Jimmy_Carter_0006 John_Snow_0004

19 Joan_Laporta_0007 Pierce_Brosnan_0006

20 John_Kerry_0005 Robert_Redford_0002

21 Julianne_Moore_0019 Nancy_Pelosi_0002

22 Kate_Hudson_0008 Mariah_Carey_0006

23 Matthew_Perry_0007 Rubens_Barrichello_0011

24 Mike_Martz_0005 Paul_ONeill_0003

25 Renee_Zellweger_0009 Sheryl_Crow_0001

Table 4.1: Similar-looking pairs selected.
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4.2 Proposed method against face identifcation and

morphing detection

Our aim is to evaluate the performance of our method as a complete attack system. Therefore, we have

tested it with the most robust face recognition system selected in the previous part and a morphing

detector.

The basic morphing operation required in the algorithm is implemented with the traditional morphing

processing technique based on Delaunay Triangulation.

Regarding the Single Image Morphing Attack Detection, we have tried the algorithms of [64–66].

The one that had the best performance and integration in our scenario has been the detector presented

by R. Raghavendra et al. [65], which has better results than other state-of-the-art alternatives. Although

it is designed to detect morphing in printed-scanned photographs, it achieves excellent detection results

in our scenario (Fig. 4.2), and therefore, it is the morphing detector used.

In the testing of our proposed method, we no longer use the Haar cascade classifer, so there is

no need to delete its fve undetected faces. We start with the fltered LFW database of 366 subjects

with a total of 3062 images (with between 5 and 20 photos per subject). We have deleted 182 images

because the morphing algorithm throws exceptions on them.

We have tested the proposed morphing attack in 25 subjects based on the frst image of the similar-

looking pairs used in Experiment 1. However, we have changed some images due to morphing or

recognition problems (we want the frst image to be correctly identifed in all cases). Therefore, the

training database contains 3062 − 182 − 25 = 2855 images. Table 4.2 presents all the participants.

To train and test the morphing detector, we have picked the LFW subjects’ images not used in

the experiments (people with n images, n < 5 or n > 20). We have split the subjects randomly

into two groups, one for testing and the other one for training. Due to Matlab memory limitations, we

have trained the detector using 3000 bonafde (not altered) images from the training group and 3500

morphed images. The morphed images were created randomly using pairs from the subjects included

in the training group, covering all percentages between 1 and 99. Analogously, we have tested the

detector using 500 bonafde images and 500 morphed images. Fig. 4.2 represents the ROC curve and

the FAR vs. FRR curve obtained, showing the excellent performance achieved.

4.3 Attack comparison

We have conducted experiments comparing the proposed method with the traditional morphing attack

to have a better feeling of its concealing features.
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4.3. Attack comparison 

(a) ROC curve.

(b) FAR vs. FRR curve.

Figure 4.2: Performance of the morphing detector.
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No. Subject No. Subject

1 Amelia_Vega_0004 14 Howard_Dean_0003

2 Ana_Guevara_0002 15 James_Blake_0006

3 Andy_Roddick_0008 16 Jason_Kidd_0003

4 Angelina_Jolie_0002 17 Jean-Pierre_Raffarin_0007

5 Anna_Kournikova_0011 18 Jimmy_Carter_0006

6 Ben_Affeck_0001 19 Joan_Laporta_0007

7 Bill_McBride_0010 20 John_Kerry_0005

8 Bill_Simon_0011 21 Julianne_Moore_0019

9 Catherine_Zeta-Jones_0001 22 Kate_Hudson_0005

10 Edmund_Stoiber_0004 23 Matthew_Perry_0007

11 Eduardo_Duhalde_0006 24 Mike_Martz_0005

12 Fidel_Castro_0018 25 Renee_Zellweger_00012

13 Hillary_Clinton_0010

Table 4.2: Subjects selected to test our proposed method.

We have used the face identifer, training database, and morphing detector previously employed to

evaluate our proposed method (Section 4.2).

To select the testing subjects, we have used the common individuals from the two lists already seen

(tables 4.1 and 4.2). That is all the original subjects except for numbers 1, 6, 17, 22, and 25. We have

used the morphed images previously generated. In the case of the traditional attack, we have used

the similar-looking pairs and, in the case of our proposed method, the iterative morphing procedure.

We have compared the percentage of alteration needed to cause misidentifcation, and the morphing

detected in the misidentifed images using both morphing attack techniques.
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5
Results 

5.1 Selection of face recognizer

(a) Top 1. (b) Top 3.

(c) Top 5.

Figure 5.1: Percentage of morphed images identifed as the original subject for each level of morph-

ing.

Fig. 5.1 shows the face identifcation algorithms comparison of their robustness against morphing.

It is divided into three plots. Fig. 5.1(a) exhibits the face recognizers’ comparison analyzing the top 1

19



Results 

identifcation matches. Fig. 5.1(b) analyzing the top 3. Fig. 5.1(c) the top 5. Their x-axes represent the

level of morphing in the pairs. 0% morphing symbolizes the unaltered image of the frst subject of the

pair (original subject), 100% the second subject, and the rest of percentages the in-between morphings.

Their y-axes refect the percentage of couples who still have their original subject identifed within the

top for each morphing level.

We can observe that the identifcation percentages rise as we increase the top analyzed. However,

the three graphs show a similar robustness ranking:

1. FaceNet

2. LBPH

3. Eigenfaces

By far, FaceNet is above all the other recognizers. It is the one who takes the longest to misidentify

the original subject. LBPH is in second place, having a distance with FaceNet of more than 50% of

misidentifcation in some cases. Eigenfaces is in the third position, followed by Fisherfaces and SIFT,

which are the last ones and have a very similar performance (especially analyzing the top 3 and 5).

These positions are maintained in practically all the three graphs’ morphing levels, except for some ties,

e.g., beyond 80% morphing in Fig. 5.1(a).

Each top’s best identifcation scores are achieved, with 0% morphing, by FaceNet, being 84%,

96%, and 100%, respectively. Not even LBPH passes the 50% of identifcation of the original subject.

However, once the 100% morphing is reached, only in the top 3 and 5 the original subject is still

identifed in some pairs of FaceNet, LBPH, and Eigenfaces.

It is clear that the most robust face recognizer is FaceNet, so it is the algorithm selected. These

experiments’ complete results can be found in Appendix A, refecting all the percentages where Subject

A (frst member of the pair) or B (second member) are recognized for every pair of images.

5.2 Proposed morphing attack

Fig. 5.2 presents the summary of the results of our proposed morphing attack. It contains four plots.

The frst one (Fig. 5.2(a)) represents the number of iterations required to make FaceNet misidentify the

original subject. The second plot (Fig. 5.2(b)) presents the necessary decrease in the original subject’s

contribution to the morphing in order to achieve the misidentifcation. Fig. 5.2(c) shows the percentage

of complete (undetected) attacks depending on the morphing detector’s confdence threshold. The

threshold is the confdence needed to classify an image as morphed. The last plot (Fig. 5.2(d)) displays

the relation between the number of iterations and the morphing detection confdence, showing the

percentage of subjects per tuple iterations-morphing detection. For example, 12% of the subjects
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5.2. Proposed morphing attack 

(a) Percentage of subjects that are misidentifed by FaceNet. (b) Percentage of subjects that are misidentifed by FaceNet.

(c) Percentage of complete attacks depending on the morphing detec- (d) Scatter plot that refects the relation between the number of iterations

tor’s classifcation threshold, i.e., the confdence needed to classify and morphing confdence. The size of the point measures the % of

an image as morphed. subjects that share the same relation. (Some percentages on the y-

axis have been rounded +-2% for clarity.)

Figure 5.2: Summary of the results of the proposed morphing attack.
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needed four iterations to achieve the misidentifcation, and their misidentifed images have morphing

confdence of 100%.

We can see that most images needed four iterations or less to fnish, being one iteration the most

common case (32% of the images). This means that in many cases, 5% of modifcation is enough

to cause misidentifcation. Only 28% of the subjects needed more than six iterations. The maximum

number of iterations required has been nine, so, if the subject contribution is down to 63% (0.959 , Eq.

3.1), all the images obtain the original subject’s misidentifcation.

With a 100% confdence threshold of morphing detection, 40% of the subjects achieve a complete

attack. However, this percentage drops to 32% with a threshold of 98%. This refects the excellent

performance of the morphing detector. Nevertheless, it is not infallible, and we can conceal 24% of the

attacks if the threshold is set to 50%. Even with a threshold near 0% we can achieve a 20% of complete

attacks.

If we observe the relation between iterations and the morphing detected, we notice that even some

portraits that only needed one iteration get a 100% of morphing detection. However, all the images with

morphing detection confdence near 0% are cases with one or two iterations. Every image with three

or more iterations has morphing detection confdence of almost 100%, except one subject with eight

iterations that have a 42.75% detection rate.

The experiments’ complete results, including the initial and fnal image of each subject can be found

in Appendix B.

5.3 Attack comparison

(a) Percentage of subjects that are misidentifed by FaceNet. (b) Percentage of complete attacks depending on the classifcation

threshold of the morphing detector.

Figure 5.3: Comparison of attack methods.
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5.3. Attack comparison 

Fig. 5.3 displays the comparison of the traditional morphing attack technique and our proposed

method. It is divided into two plots. The frst one (Fig. 5.3(a)) compares the percentage of subjects

misidentifed by FaceNet for each level of contribution of the original subject in the morphed image. In

the second plot (Fig. 5.3(b)), we can see the comparison of the percentages of complete (undetected)

attacks depending on the morphing detector’s confdence threshold.

The new method achieves misidentifcation much faster than the traditional method. With the sub-

ject’s contribution down to 63%, they get 100% and 35% of misidentifcation, respectively. The tradi-

tional method needs the contribution to go down to 36% so that the misidentifcation reaches 100%.

Our method also achieves a higher percentage of complete attacks, between 40% and 5% depending

on the threshold, compared to the 5% that the traditional attack accomplishes at most.

Luis Cárabe Fernández-Pedraza 23





6
Discussion 

6.1 Performance of face recognizers against traditional

morphing

The results obtained in facial identifcation on the LFW database are notably worse than those ob-

tained in verifcation. This might be expected since, for identifcation, we work 1 vs. N (N = 366 in
our database), and regarding verifcation, we work 1 vs. 1. Thus, as mentioned in [69], the diffculty

of identifcation is related to the number of subjects contained in the database. Some examples are

Eigenfaces, in which we have obtained 16% of identifcation accuracy in contrast with 60.02% of ver-

ifcation accuracy [69], and FaceNet, with 84% and 99.6% of identifcation and verifcation accuracy,

respectively [69].

FaceNet obtains a good performance identifying the in-between morphed images correctly. This

means that in the case of a real attack on FaceNet, the attacker would need to signifcantly alter the

image to fool the recognizer. Taking a look at Table 6.1, we can see that analyzing the top 1, the attacker

would need a 43% morphing alteration to have more than a 50% chance of the attack being successful.

If we analyze the top 3, the required morphing alteration is higher than 66%. Finally, if we analyze the

top 5, the alteration needed rises to 71%. FaceNet shows such good results that some attacks will fail

even with the original image wholly modifed (100% morphing) if we consider top 3 or top 5 lists.

Top 1

Top 3

Top 5

% of morphing

0% 43% 50% 66% 71% 100%

84% 48% 32% 12% 12% 0%

96% 80% 72% 48% 32% 8%

100% 80% 76% 64% 48% 12%

Table 6.1: Accuracy of FaceNet at different percentages of morphing using the traditional method.

Since the morphing process converts the original image progressively into the target one, we may

expect to obtain identifcation results transitioning from the former to the latter. However, this only hap-

pens with FaceNet and only with some pairs. The other recognizers studied have behaviors such that
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they identify other subjects in some intermediate morphings, and they might even recognize the orig-

inal subject intermittently. For example, Table A.2 shows that in the fourth pair, Fisherfaces recognize

the original subject in 0–28% and 34–36% of morphing. On the contrary, FaceNet has a much more

regular and expected performance. For instance, Table A.5 exhibits that in the case of the fourth pair,

the original subject is identifed in the top 1 in 0–54% morphing, then she goes to the second and third

position in the top in 55–58% morphing and fnally to the fourth and ffth position in 59–64% morphing.

On the contrary, the target appears in the fourth and ffth position in 44–53% morphing. Then she goes

up to the second and third position at 54–59% morphing. Finally, she remains in the top 1 in 60-100%

morphing.

The percentage considered for the results has been the frst percentage at which the original subject

ceases to be recognized, regardless of whether he is recognized again in later percentages or not.

Another interesting approach could be to study all these intermediate percentages where the original

subject is identifed again.

6.2 Results achieved by our proposed method

Our morphing method requires a considerably lower amount of morphing process to fool FaceNet. Table

6.2 shows that FaceNet misidentifes 25% of the images where the original subject contributes with

95% of the information. This is especially interesting if we consider that with the traditional morphing

technique, the success rate is 0%. Moreover, our method successfully beats FaceNet in all the cases

when the original subject contributes with 63% or less to the morphed image. The traditional method

is much less capable since it requires that only 36% of the original image remains to get all the attacks

passed by.

Contribution of the original subject

100% 95% 90% 85% 81% 73% 63% 58% 36%

Trad. 0% 0% 5% 10% 20% 30% 35% 50% 100%

Ppsd. 0% 25% 40% 50% 65% 70% 100% 100% 100%

Table 6.2: Comparison of misidentifcation of the original subject by FaceNet for each level of his

contribution on the image using the traditional (trad) morphing and our proposal (ppsd). Higher is

better.

Moreover, the performance of the morphing detector is also remarkable. The traditional morphing is

not able to reach more than 5% of complete attacks (Table 6.3). This means that the morphing detector

can detect 95% of the attacks unless the confdence required is lowered to meaningless values (0.2%

confdence in the classifcation). Our method improves these results in a very signifcant way. For

example, when 100% confdence is required we can achieve 40% of complete attacks, eight times more

than the traditional morphing technique. The improvement decreases with the demanded confdence
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such that when only a certitude of 42% is required, we achieve 15% of complete attacks versus 5%

from the other method, three times more.

Threshold

100% 98% 78% 42% 0.2%

Trad. 5% 5% 5% 5% 0%

Ppsd. 40% 25% 20% 15% 10%

Table 6.3: Comparison of complete attacks depending on the morphing detector’s classifcation

threshold of the morphing detector using the traditional (trad) morphing and our proposal (ppsd).

Higher is better.

If we consider the option of a human being as a morphing detector, the detection accuracy might be

lower, and therefore the number of complete attacks could be higher. Fig. 6.1 shows two images that

most people would consider equal, whereas the morphing detector is 100% sure that Fig. 6.1(b) has

been morphed.

(a) Unaltered image. (b) Morphed image.

Figure 6.1: Initial and fnal (misidentifed) images of subject number 17.

The experiments’ results are also conditioned by other parameters such as the size of the database

or the amount of morphing per iteration. The bigger the database, the more possible morphing com-

binations. With a smaller percentage of morphing added at each iteration, we could get closer to an

optimal result in exchange for increasing the number of iterations.
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7
Conclusions 

In the literature, one can fnd several approaches to deal with impersonation in facial verifcation sys-

tems. However, it is not the case when face identifcation is required. Our experiments show that some

well-known methods like EigenFaces, FisherFaces, or SIFT completely fail in such a task.

More recent techniques based on Deep Learning like FaceNet offer better results than the others.

FaceNet can robustly identify images that have less than 15% morphing alteration. When dealing with

images with higher morphing alteration, we propose the addition of an S-MAD. This combination offers a

highly secure and robust solution that can be used to prevent attacks, for example, in online registration

processes.

Moreover, we have presented a new way of attacking face identifcation systems that minimizes the

chances of being detected by both face identifcation and morphing detectors: stegano-morphing. The

results outperform previous morphing techniques by 700% in the best case and 200% in the worst one.

A soft modifcation of 30% of the original image is enough to make the best identifcation algorithm

misclassify almost 90% of the subjects.

In this work, we have tested recognition algorithms from different types. It seems that the ones

based on Deep Learning outperform other families by far. In future work, we propose to evaluate other

Deep Learning-based facial recognition algorithms.
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Terminology 

complete attack A morphing attack that manages to fool both the facial identifcation algorithm and

the morphing detector.

FAR vs. FRR curve It represents, for each threshold value, the False Acceptance Rate (FAR) and

the False Rejection Rate (FRR) . That is to say, in the case of the morphing detector, for each

threshold confdence, the percentage of genuine images that are classifed as morphing (FAR)

and the percentage of morphed images that are classifed as genuine (FRR).

full m-ary tree Rooted tree where each node has 0 or m child nodes.

ghost artifact Part of a morphed image that, due to mismatched or unaligned elements of the two

subjects involved, appears blurred or shaded.

heuristic A method designed to solve more effciently a complex and costly problem. It does not

necessarily fnd the most optimal solution but an approximation.

ROC curve The Receiver Operating Characteristic (ROC) curve represents the FAR against the

True Acceptance Rate (TAR) . That is to say, in the case of the morphing detector, the percentage

of genuine images that are classifed as morphing (FAR) against the percentage of morphed

images that are classifed as morphing (TAR = 1 − FRR).

threshold The confdence that must be exceeded to classify the entry with a certain label.

unconstrained database Database containing images taken in uncontrolled scenarios. The photos

may present different conditions of lighting, background, occlusions, or poses.
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Acronyms 

ABC Automated Border Control.

CNNs Convolutional Neural Networks.

D-MAD Differential Morphing Attack Detection.

FAR False Acceptance Rate.

FRR False Rejection Rate.

GAN Generative Adversarial Networks.

ICA Independent Component Analysis.

LBP Local Binary Pattern.

LBPH Local Binary Patterns Histogram.

LDA Linear Discriminative Analysis.

LFW Labeled Faces in the Wild.

PCA Principal Component Analysis.

ROC Receiver Operating Characteristic.

SIFT Scale-invariant Feature Transform.

SLLFW Similar-looking LFW.

S-MAD Single Image Morphing Attack Detection.

SURF Speeded-up Robust Features.

SVM Support Vector Machine.

TAR True Acceptance Rate.
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Appendices 





A
Detailed results of the robustness 
against morphing 

In tables A.1 to A.5, all the results of the face recognizers’ comparison against traditional morphing

are presented. For each recognizer, the tables show in what percentages of morphing alteration is the

original or the target subject identifed (Column A for the original subject and B for the target). Column

No. refects the pair number (to see the individuals’ names check Table 4.1). Pos. 1, Pos. 2–3 and Pos.

4–5 represent the frst, second and third, fourth and ffth positions (respectively) of each face recognition

algorithm’s top identifcation matches. For clarity, rows of couples that have not been identifed within

the top 5 at any percentage have been deleted.

Pos. 1 Pos. 2–3 Pos. 4–5

No. A B A B A B

1 72–100 – 70–71 98–100 69 94

2 – – – – – 72–76

4 0–20 – 21–34 – 35–37 –

5 100 – 91–92, 95–99 95–100 93–94 92, 94

6 – – – – – 94–95, 97–100

8 0–15 72–89 16–19 52–71, 90–100 20–28 48–51

10 43–92 – 9–42, 93–97, 100 – 0–8, 98–99 –

13 – – 0–16,38 – 17–20, 27, 29–30, –

35, 39–41, 43–44

15 – 95–100 – 82–94 0–12, 14–16 77–81

16 – – – 56, 59–69, 71–82 – 51–55, 57–58,70,

83–89, 91–92

18 30–31, 33–38, –

40–44, 46–47, 53,

55, 60–62, 74

25–29, 32, 39, 45, –

48–52, 54, 56–59,

63–73, 77

22–24, 75–76,78, –

80, 86–89, 91–92,

98–100

19 – – – 89, 91 – 71–88, 90, 92–100

20 0–12, 15 – 13–14, 16–19 – 20–25, 54, 56, 58, –

63

22 – – – – – 40–41, 49, 51–54

24 0–54 – 55–60 14–19 61–63 0–13, 20–22

25 – – – 64, 67–71, 73, 77,

80–83

– 61–63, 65–66, 72,

75–76, 78–79,

84–90, 92–93

Table A.1: Complete results of the robustness of Eigenfaces against traditional morphing.
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Pos. 1 Pos. 2–3 Pos. 4–5

No. A B A B A B

4 0–28, 34–36 – 29–33, 37–50 – 51–52, 59 –

7 – – – – – 53–54, 58–59,

62–68, 70–75,

77–81, 83–93, 95,

98–99

12 33, 69, 81 – 70–74, 77, 79, 84, –

86–87

41, 50, 65–68, –

75–76, 78, 80–81,

83, 85, 89, 91, 93

13 – – – – – 87, 99

15 – – 0–1 – – –

16 – – – 100 – –

17 – – – 50–51, 94 – 52–57, 60, 62–63,

81, 83, 96, 99–100

18 – – 25–26 – – 27

19 0–1, 3, 6 28–29, 77–78 2, 4–5, 7–13, 16–17, 25–26, 31, 33, 35,

19 75–76

15 15, 24, 27, 30, 32,

74, 83, 85

20 – – 0–4 – 5, 11, 55, 60–62 –

25 – – 2 – 0 –

Table A.2: Complete results of the robustness of Fisherfaces against traditional morphing.
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Pos. 1 Pos. 2–3 Pos. 4–5

No. A B A B A B

1 38–39, 47–48, 50 – 40–41, 45, 49, 51, –

53–55, 65, 75,

78–79, 81–90, 92,

94

25, 30, 35–36, 90, 100

42–44, 52, 56–60,

64, 77, 80, 91, 93

2 – 37–38, 40–100 – 34–36, 39 28 –

3 – – – – 30 –

4 – 95–96 6 69–81, 83–86, 88,

90–94

1–2, 44, 47, 51–52, 82, 87, 89

54–56, 66–67,

90–94, 97–100

5 90–95, 97–98 – 67–68, 70–79, –

83–85, 87–89, 96,

99–100

61, 63–66, 69, –

81–82, 86

7 – – 17, 26–27, 29, 31, –

33, 36, 44

22, 24, 30, 37, 39, –

41, 43, 45

8 0–6, 8–19, 23–24 85–86, 97–100 7, 20–22, 25–35, 39 82–84, 87–92,

94–96

36–38, 46 93

9 – – – – 0, 3, 20–22, 24–32, –

36, 40, 44, 51–52,

63, 78, 80–82, 84,

87

12 5–6 46, 54–85, 96 4 44–45, 47–53,

86–95, 97–100

2–3 37, 42–43

13 0–5, 7–15, 22, 44, 98–100

51–57

6, 16–21, 23–43, 78, 80, 83–90,

45–50, 58–60 92–97

61–62 76–77, 79, 81–82,

91

14 – – – – 0–1, 3, 7–14, 20–23, –

25–26, 28

15 0–21, 26–32, 34–35, 43–100

37, 39–42

22–25, 33, 36, 38, 41

43–44, 49–52, 70,

74, 85, 87, 90

45–48, 53, 71, 76, 31–40, 42

82, 86, 88, 91

16 0–13, 15 56, 63–64, 70, 77,

79, 81–100

14, 16, 20 49, 53–55, 57–62,

65–67, 69, 71–76,

78, 80

17, 19, 21 50–51, 68

17 – 23–25, 27–28,

30–71, 73–100

– 20–22, 26, 29, 72 10 16–19

18 0–80, 83–85, 87–94 – 81–82, 86, 95–100 82, 86, 89–92 – 47–48, 59, 61–81,

83–85, 87–88,

93–97

19 0–1, 3–11 31, 42, 44, 57–58 2, 18–19, 21–23, 28 9–11, 14, 32–40,

46–48, 59, 65–67,

71–95, 99–100

14–17, 20, 24–27 7, 12–13, 15–16, 19,

24, 28–30, 41, 45,

49–51, 54–55,

61–64, 68, 70,

96–98

20 0–35, 37–54, 56–67 81, 86, 91–97,

99–100

36, 55, 68–69 85, 87, 89–90, 98 70–72, 74, 76 84, 88

22 – – – 45, 48–49, 51–63 – 46–47, 50, 64

24 0–50 – 51, 53, 55–56 – 52, 54, 58 –

25 2 – 0–1, 3–16, 19–22, 94–99

31, 33

17–18, 23, 32, 34, 86

36

Table A.3: Complete results of the robustness of LBPH against traditional morphing.
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Pos. 1 Pos. 2–3 Pos. 4–5

No. A B A B A B

1 – 55, 71, 75, 86,

95–96

– 39, 59, 62, 64–65,

67, 69–70, 72–74,

82, 76–79, 88, 90,

94, 97

– 61, 84–85, 93, 98

3 43–44 – 38, 46–47, 49, 52, –

55, 97

37, 42, 53, 57 –

4 – 67, 81, 86–87,

89–100

– 58, 66, 69–70,

78–80, 82–84, 88

9 55, 85

5 34, 79, 81 – 33, 82 – 21, 29, 73, 83 –

6 – – 5 – – –

8 68–69, 80, 82, –

84–85

23, 72, 75, 79, 96 63 5, 24, 86 –

9 39 10, 33–37, 39–40,

50, 54, 57–59,

64–65, 67–68, 70,

86–87, 93

49 31–32, 38, 41–43,

45, 51, 53, 56,

60–63, 69, 71–73,

75, 83–84, 94, 96,

99

– 49, 95

10 – 32, 34, 50 – 33, 36 – –

11 10 70 4, 11 – – –

12 18, 20, 22, 28–29, –

38

1–2, 8, 12–14, 19, 55, 60, 76, 80

25–27, 30–31,

33–34, 75

0, 4 , 10 –

13 0–9, 11, 13–14, 16, –

18, 30–31

10, 15, 17, 20–22, 43, 80, 91

27, 29, 32

12, 25 –

15 3, 11–12, 14, 16–19, 55–56, 59–100

21, 27–33, 35–43,

45–49, 51–52, 56,

60

0–2, 4, 7–8, 10, 50, 54, 58

22–26, 34, 44, 50,

58–59, 61–62, 69,

71, 77, 80, 81–87,

91–94, 99–100

5–6, 67, 89 52, 57

16 0, 10, 14, 17–19, 22, –

27

6, 9, 15–16, 20, –

23–24, 28–30, 33

25–26, 32 –

17 – 33–40, 42–44,

47–53, 56, 58, 61,

66–68, 70–100

– 0, 13, 41, 46, 54, 57,

62, 65

– 8, 32, 45, 69

18 0–10, 12, 13, 16–18, 62, 73, 77, 81

20, 23, 25, 28–30,

34, 39, 43–51,

53–54, 57, 64

11, 14, 27, 33, 56, 65, 76, 79–80

35–37, 52, 55, 59

38 83

19 – – 12 – – 45

20 6, 8, 11, 13–15, 21, –

25, 27, 29

7, 10, 16, 19–20, 31, –

53

9, 28, 38 –

21 0, 3, 20, 27 72 13, 15–16, 18–19, 73–75

21–22, 26–26

– 0

22 – – – 18, 36, 47 – 34, 48

23 – – 15, 18, 44 – – –

24 – 76 – 75, 84, 95, 99 8 –

25 10, 18, 94 – 11–12, 14–17, –

19–20, 30, 51, 91,

95–96

13, 31–32, 45 –

Table A.4: Complete results of the robustness of SIFT against traditional morphing.
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5

10

15

20

25

Pos. 1 Pos. 2–3 Pos. 4–5

1 – 45–100 0–7 32–44 8–19, 21 20, 22–31

2 0–24 25–100 25–43 8–24 44–49 4–7

3 0–72, 74 75–100 73, 75–100 65, 68, 71–74 – 18, 20–21, 23–25,

33–34, 36–39,

42–64, 66–67,

69–70

4 0–54 60–100

0–77 78–100

55–58 54–59

78–100 0–77

59–64 44–53

– –

6 – 41–100 – 37, 39–40 0–4, 6 33–34, 36, 38

7 0–64 71–100 65–68 69–70 69–73 63, 65–68

8 0–36 37–39, 41, 75–100 37 30–36, 40, 42–74 38–39, 41–44 10, 17–29

9 0–14, 18 66–100

0–47 67–100

15–17, 19–70, 47, 49–65

72–73

48–62 56–66

71, 74–79 27–46, 48

63–66 54–55

11 0–48, 52 53, 55–100 49–51, 53–65 47–52, 54 66 41–46

12 0–46, 48 47, 49–100 47, 49–54, 56 32, 34–46, 48 55, 57–58 29–31, 33

13 0–37, 39 38, 40–100 38, 40–72, 74 17–37, 39 73, 75–76 10–16

14 0–21, 35 78–100

0–54 55–100

22–34, 36–67 68–77

55–96, 98–99 21–22, 26–54

68–71, 73–75 66–67

97, 100 14–17, 19–20,

23–25

16 0–55 65–100 56–61, 63 55, 57–64 62, 64–70 41, 45–54, 56

17 5, 7–36 37–100 0–4, 6, 37–74, 78 0–3, 5–36 75–77, 79–94 4

18 0–53 54–100 54–71 50–53 72–75, 77–80, 82 46–49

19 0–42 49, 52–100

0–14, 16–19, 21–24 20, 25–54, 56–57,

59, 61–100

43–69 22–48, 50–51

15, 20, 25–35 21–24, 55, 58, 60

70–82 16, 19–21

36–38, 40, 42–48, 12–19

52, 60–67, 69–70

21 0–45 46–100 46–81 21–45 82–91 14, 16–20

22 – 62, 64–100 0–18 33–61, 63 19–24 25–32

23 0–26 – 27–55 – 56–67 69–70, 73–100

24 0–20, 22–25 21, 26–100

0–80 81–100

21, 26–45 0–20, 22–25

81–88 34–80

46–56, 58 –

89–98 1–33

Table A.5: Complete results of the robustness of FaceNet against traditional morphing.
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B
Detailed results of the proposed 
method 

Table B.1 presents the results of our proposed morphing attack. It shows all the original subjects’ por-

traits and their respective images produced by our method that achieve misidentifcation with FaceNet

and reduces the amount of morphing needed. Column No. refects the image number (check Table 4.2),

It. the number of iterations needed to get the misidentifcation and Mor. conf. the morphing detector

confdence of the misidentifed image.

Table B.1: Complete results of the proposed method.

No. Initial image

1

Final image It.

3

Mor.

conf.

100

2 4 100

3 2 0.2

4 3 100

5 8 42.75

No. Initial image

14

Final image It.

1

Mor.

conf.

98

15 2 100

16 7 100

17 1 100

18 6 100
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Detailed results of the proposed method 

6 1

7 2

8 1

9 3

10 7

11 4

12 9

13 9

0

99.63

0.13

99.98

100

100

100

100

19 4 100

20 1 78.85

100
21 7

22 1

23 1

24 1 100

25 3 100
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